Skip to main content

Immunosensors and DNA Sensors Based on Impedance Spectroscopy

  • Chapter
Ultrathin Electrochemical Chemo- and Biosensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 2))

Abstract

Impedance spectroscopy is a rapidly developing electrochemical technique for the characterization of biomaterial-functionalized electrodes and biocatalytic transformations at electrode surfaces, and specifically for the transduction of biosensing events at electrodes. The immobilization of biomaterials, e.g., antigen/antibodies or DNA on electrode surfaces alters the capacitance and interfacial electron transfer resistance of the electrodes. The impedance features of the modified electrodes can be translated into the equivalent electronic circuits consisting of capacitances and resistances. The kinetics and mechanisms of the electrochemical processes occurring at modified electrode surfaces could be derived from the analysis of the equivalent circuit elements. For example, electron transfer resistances can be found upon analysis of Faradaic impedance spectra in the form of Nyquist plots. The electron transfer rate constants can be calculated from the measured electron transfer resistances. Different immunosensors that use impedance measurements for the transduction of antigen-antibody complex formation on electronic transducers were developed. These include: (i) in-plane impedance measurements between electrodes separated by a nonconductive gap modified with antigen or antibody molecules, (ii) the amplified detection of antigen-antibody complex formation using biocatalyzed precipitation of an insoluble product as an amplification route and Faradaic impedance spectroscopy as readout signal, or (iii) the amplified detection of antigen-antibody complex by the biocatalytic dissolution of a polymer film associated with the electrode and Faradaic impedance spectroscopy as transduction method. Similarly, DNA biosensors using impedance measurements as readout signal were developed. The assembly of nucleic acid primers and their hybridization with the complementary DNA were characterized by Faradaic impedance spectroscopy using [Fe(CN)6]3−/4− as a redox probe. Amplified detection of the analyte DNA using Faradaic impedance spectroscopy was accomplished by the coupling of functionalized liposomes or by the association of biocatalytic conjugates to the sensing interface, providing biocatalyzed precipitation of an insoluble product on the electrodes. The amplified detections of viral DNA and single-base mismatches in DNA were accomplished by similar methods. The theoretical background of the different methods and their practical applications in analytical procedures were outlined in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

AlkPh:

Alkaline phosphatase

BSA:

Bovine serum albumin

CAu :

Capacitance of a bare Au electrode

Cdl :

Double-layer capacitance

Cgap :

Capacitance of the gap between conductive electrodes

Cmod :

Capacitance originating from the modified layer

CPE:

Constant phase element

dATP, dTPP, dGTP, and dCTP:

Deoxyribonucleoside triphosphates

DNA:

Deoxyribonucleic acid

DNP:

Dinitrophenyl

DNP-Ab:

Dinitrophenyl antibody

ds:

Double-stranded

E0 :

Standard redox potential

ELISA:

Enzyme-linked immunosorbent assay

f:

Excitation frequency, Hz

FET:

Field-effect transistor

GOx:

Glucose oxidase

HIV:

Human immunodeficiency virus

HRP:

Horseradish peroxidase

IC :

Capacitance current

IF :

Faradaic current

I(jω):

Current phasor

IgG:

Immunoglobulin G

ket :

Electron transfer rate constant

NADH:

1, 4-Dihydro-β-nicotinamide adenine dinucleotide

NAD(P)+:

β-Nicotinamide adenine dinucleotide (phosphate)

PCR:

Polymerase chain reaction

RAu :

Electron transfer resistance at a bare Au electrode

Ret :

Electron transfer resistance

Rgap :

Resistance of the gap between conductive electrodes

Rmod :

Electron transfer resistance originating from the modified layer

RNA:

Ribonucleic acid

Rs :

Ohmic resistance of the electrolyte solution

SEB:

Staphylococcus enterotoxin B

TS:

Tay-Sachs genetic disorder

U(jω):

Voltage phasor

VSV:

Vesicular stomatitis virus

|Z|:

Absolute impedance value

Zim(ω):

Imaginary component of complex impedance

Zre(ω):

Real component of complex impedance

ZW :

Warburg impedance

δdl :

Thickness of the double-charged layer

ε0 :

Dielectric constant of the vacuum

εdl :

Dielectric permittivity of material in the double-charged layer

ερ :

Effective dielectric constant

ω:

Excitation frequency, rad s−1

ω0 :

Characteristic frequency

References

  1. Willner I, Willner B, Katz E (2002) Rev Mol Biotechnol 82: 325

    Article  CAS  Google Scholar 

  2. Willner I, Katz E (2000) Angew Chem Int Ed 39: 1180

    Article  Google Scholar 

  3. Willner I, Katz E, Willner B (2000) Layered functionalized electrodes for electrochemical biosensor applications. In: Yang VC, Ngo TT (eds) Biosensors and their applications. Kluwer, New York, p 47

    Chapter  Google Scholar 

  4. Heller A (1990) Acc Chem Res 23: 128

    Article  CAS  Google Scholar 

  5. Göpel W, Heiduschka P (1995) Biosens Bioelectron 10: 853

    Article  Google Scholar 

  6. Zhong C-J, Porter MD (1995) Anal Chem 67: 709A

    CAS  Google Scholar 

  7. Bourdillon C, Demaille C, Gueris J, Moiroux J, Savéant J-M (1993) J Am Chem Soc 115: 122–64

    Google Scholar 

  8. Bourdillon C, Demaille C, Moiroux J, Savéant J-M (1994) J Am Chem Soc 116: 103–28

    Article  Google Scholar 

  9. Bourdillon C, Demaille C, Moiroux J, Savéant J-M (1996) Acc Chem Res 29: 529

    Article  CAS  Google Scholar 

  10. Rogers KR (2000) Mol Biotechnol 14: 109

    Article  CAS  Google Scholar 

  11. Yang M, McGovern ME, Thompson M (1997) Anal Chim Acta 346: 259

    CAS  Google Scholar 

  12. Willner I, Katz E, Willner B (2002) Amplified and specific electronic transduction of DNA sensing processes in monolayer and thin-film assemblies. In: Brajter-Toth A, Chambers JQ (eds) Electroanalytical methods of biological materials. Marcel Dekker, New York, p 43

    Google Scholar 

  13. Campbell CN, Gal D, Cristler N, Banditrat C, Heller A (2002) Anal Chem 74: 158

    Article  CAS  Google Scholar 

  14. Bardea A, Katz E, Bückmann AF, Willner I (1997) J Am Chem Soc 119: 9114

    Article  CAS  Google Scholar 

  15. Anzai J, Takeshita H, Kobayashi Y, Osa T, Hoshi T (1998) Anal Chem 70: 811

    Article  CAS  Google Scholar 

  16. Willner I, Rubin S, Cohen Y (1993) J Am Chem Soc 115: 4937

    Article  CAS  Google Scholar 

  17. Sethi RS (1994) Biosens Bioelectron 9: 243

    Article  CAS  Google Scholar 

  18. Bartlett PN, Tebbutt P, Whitaker RC (1991) Prog React Kinet 16: 55

    CAS  Google Scholar 

  19. Ianniello RM, Lindsay TJ,Yacynych AM (1982) Anal Chem 54: 1980

    Article  CAS  Google Scholar 

  20. Ghindilis AL, Kurochkin IN (1994) Biosens Bioelectron 9: 353

    Article  CAS  Google Scholar 

  21. Lion-Dagan M, Ben-Dov I, Willner I (1997) Colloids Surf B 8: 251

    Article  CAS  Google Scholar 

  22. Ben-Dov I, Willner I, Zisman E (1997) Anal Chem 69: 3506

    Article  CAS  Google Scholar 

  23. Bardea A, Dagan A, Ben-Dov I, Amit B, Willner I (1998) Chem Commun 839

    Google Scholar 

  24. O’Sullivan CK, Vaughan R, Guilbault GG (1999) Anal Lett 32: 23–53

    Google Scholar 

  25. Kazanskaya N, Kukhtin A, Manenkova M, Reshetilov AN, Yarysheva L, Arzhakova O, Volynskii A, Bakeyev N (1996) Biosens Bioelectron 11: 253

    Article  CAS  Google Scholar 

  26. Zayats M, Kharitonov AB, Katz E, Bückmann AF, Willner I (2000) Biosens Bioelectron 15: 671

    Article  CAS  Google Scholar 

  27. Pardo-Yissar V, Katz E, Wasserman J, Willner I (2003) J Am Chem Soc 125: 622

    Article  CAS  Google Scholar 

  28. Amador SM, Pachence JM, Fischetti R, McCauley JP Jr, Smith AB, Blasic JK (1993) Langmuir 9: 812

    Article  CAS  Google Scholar 

  29. Hobara D, Niki K, Zhou C, Chumanov G, Cotton TM (1994) Colloids Surf A 93: 241

    Article  CAS  Google Scholar 

  30. Liedberg B, Nylander C, Lundström I (1995) Biosens Bioelectron 10: 1

    Article  Google Scholar 

  31. Jordan CE, Corn RM (1997) Anal Chem 69: 14–49

    Google Scholar 

  32. Raitman OA, Katz E, Bückmann AF, Willner I (2002) J Am Chem Soc 124: 6487

    Article  CAS  Google Scholar 

  33. Raitman OA, Patolsky F, Katz E, Willner I (2002) Chem Commun 1936

    Google Scholar 

  34. Kharitonov AB, Alfonta L, Katz E, Willner I (2000) J Electroanal Chem 487: 133

    Article  CAS  Google Scholar 

  35. Athey D, Ball M, McNeil CJ, Armstrong RD (1995) Electroanalysis 7: 270

    Article  CAS  Google Scholar 

  36. Nahir TM, Bowden EF (1996) J Electroanal Chem 410: 9

    Article  Google Scholar 

  37. Bresler HS, Lenkevich MJ, Murdock JF, Jr, Newman AL, Robbin RO (1992) Application of capacitive affinity biosensors; HIV antibody and glucose detection. In: Biosensor design and application. ACS Symp Ser 511, p 89

    Chapter  Google Scholar 

  38. Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  39. Stoynov ZB, Grafov BM, Savova-Stoynova BS, Elkin VV (1991) Electrochemical impedance. Nauka, Moscow

    Google Scholar 

  40. Randles JEB (1947) Discuss Faraday Soc 1: 11

    Article  Google Scholar 

  41. Ershler BV (1947) Discuss Faraday Soc 1: 269

    Article  Google Scholar 

  42. Champagne GY, Belanger D, Fortier G (1989) Bioelectrochem Bioenerg 22: 159

    Article  CAS  Google Scholar 

  43. Savitri D, Mitra CK (1999) Bioelectrochem Bioenerg 48: 163

    Article  CAS  Google Scholar 

  44. Bardea A, Katz E, Willner I (2000) Electroanalysis 12: 10–97

    Google Scholar 

  45. Janata J (2002) Crit Rev Anal Chem 32: 109

    Article  CAS  Google Scholar 

  46. Pravda M, Kreuzer MP, Guilbault GG (2002) Anal Lett 35: 1

    Article  CAS  Google Scholar 

  47. Sapsford KE, Charles PT, Patterson CH, Ligler FS (2002) Anal Chem 74: 1061

    Article  CAS  Google Scholar 

  48. Luppa PB, Sokoll LJ, Chan DW (2001) Clin Chim Acta 314: 1

    Article  CAS  Google Scholar 

  49. Mullett WM, Lai EPC, Yeung JM (2000) Methods 22: 77

    Article  CAS  Google Scholar 

  50. Fare TL, Cabelli MD, Dallas SM, Herzog DP (1998) Biosens Bioelectron 13: 459

    Article  CAS  Google Scholar 

  51. Berggren C, Bjarnanson B, Johansson G (2001) Electroanalysis 13: 173

    Article  CAS  Google Scholar 

  52. Laureyn W, Nelis D, Van Gerwen P, Baert K, Hermans L, Magnée R, Pireaux J-J, Maes G (2000) Sens Actuators B 68: 360

    Article  Google Scholar 

  53. Van Gerwen P, Laureyn W, Laureys W, Huyberechts G, De Beeck MO, Baert K, Suls J, Sansen W, Jacobs P, Hermans L, Mertens R (1998) Sens Actuators B 49: 73

    Article  Google Scholar 

  54. Valdes JJ, Wall JG, James J, Chambers P, Eldefrawi ME (1988) Johns Hopkins APL Tech Digest 9: 4

    CAS  Google Scholar 

  55. Eldefrawi ME, Sherby SM, Andreou AG, Mansour NA, Annau Z, Blum NA, Valdes JJ (1988) Anal Lett 21: 1665

    Article  CAS  Google Scholar 

  56. Pak SC, Penrose W, Hesketh PJ (2001) Biosens Bioelectron 16: 371

    Article  CAS  Google Scholar 

  57. Taylor RF, Marenchic IG, Spencer RH (1991) Anal Chim Acta 249: 67

    Article  CAS  Google Scholar 

  58. Bresler HS, Lenkevich MJ, Murdock JF, Newman AL, Robin RO (1992) ACS Symp Ser 511: 89

    Article  CAS  Google Scholar 

  59. Sergeyeva TA, Lavrik NV, Piletsky SA, Rachkov AE, El’skaya AV (1996) Sens Actuators B 34: 283

    Article  Google Scholar 

  60. Sergeyeva TA, Lavrik NV, Rachkov AE, Kazantseva ZI, El’skaya AV (1998) Biosens Bio-electron 13: 359

    CAS  Google Scholar 

  61. DeSilva MS, Zhang Y, Hesketh PJ, Maclay GJ, Gendel SM, Stetter JR (1995) Biosens Bio-electron 10: 675

    CAS  Google Scholar 

  62. Hardeman S, Nelson T, Beirne D, DeSilva M, Hesketh PJ, Maclay GJ, Gendel SM (1995) Sens Actuators B 24–25: 98

    Article  Google Scholar 

  63. Sadik OA, Xu H, Gheorghiu E, Andreescu D, Balut C, Gheorghiu M, Bratu D (2002) Anal Chem 74: 3142

    Article  CAS  Google Scholar 

  64. Finklea HO (1996) Electrochemistry of organized monolayers of thiols and related molecules on electrodes. In: Bard AJ, Rubinstein I (eds) Electroanalytical chemistry, vol 19. Marcel Dekker, New York, p 109

    Google Scholar 

  65. Knichel M, Heiduschka P, Beck W, Jung G, Göpel W (1995) Sens Actuators B 28: 85

    Article  Google Scholar 

  66. Rickert J, Göpel W, Beck W, Jung G, Heiduschka P (1996) Biosens Bioelectron 11: 757

    Article  CAS  Google Scholar 

  67. Taira H, Nakano K, Maeda M, Takagi M (1993) Anal Sci 9: 199

    Article  CAS  Google Scholar 

  68. Ameur S, Martelet C, Jaffrezic-Renault N, Chovelon JM (2000) Appl Biochem Biotechnol 89: 161

    Article  CAS  Google Scholar 

  69. Blonder R, Katz E, Cohen Y, Itzhak N, Riklin A, Willner I (1996) Anal Chem 68: 3151

    Article  CAS  Google Scholar 

  70. Mirsky VM, Riepl M, Wolfbeis OS (1997) Biosens Bioelectron 12: 977

    Article  CAS  Google Scholar 

  71. Ouerghi O, Touhami A, Jaffrezic-Renault N, Martelet C, Ben Ouada H, Cosnier S (2002) Bioelectrochemistry 56: 131

    Article  CAS  Google Scholar 

  72. Feng C-D, Ming Y-D, Hesketh PJ, Gendel SM, Stetter JR (1996) Sens Actuators B 35: 431

    Article  Google Scholar 

  73. Ameur S, Martelet C, Jaffrezic-Renault N, Chovelon JM, Plossu C, Babier D (1997) Proc Electrochem Soc 19: 10–19

    Google Scholar 

  74. Jie M, Ming CY, Jing D, Cheng LS, Huaina L, Jun F, Xiang CY (1999) Electrochem Commun 1: 425

    Article  Google Scholar 

  75. Patolsky F, Filanovsky B, Katz E, Willner I (1998) J Phys Chem B 102: 103–59

    Article  Google Scholar 

  76. Willner I, Willner B (1999) Biotechnol Prog 15: 991

    Article  CAS  Google Scholar 

  77. Sargent A, Loi T, Gal S, Sadik OA (1999) J Electroanal Chem 470: 144

    Article  CAS  Google Scholar 

  78. Lillie G, Payne P, Vadgama P (2001) Sens Actuators B 78: 249

    Article  Google Scholar 

  79. Farace G, Lillie G, Hianik T, Payne P, Vadgama P (2002) Bioelectrochemistry 55: 1

    Article  CAS  Google Scholar 

  80. Ouerghi O, Senillou A, Jaffrezic N, Martelet C, Ben Ouada H, Cosnier S (2001) J Electroanal Chem 501: 62

    Article  CAS  Google Scholar 

  81. Maupas H, Soldatkin AP, Martelet C, Jaffrezic N, Mandrand B (1997) J Electroanal Chem 421: 165

    Article  CAS  Google Scholar 

  82. Willner I, Blonder R, Dagan A (1994) J Am Chem Soc 116: 9365

    Article  CAS  Google Scholar 

  83. Blonder R, Levi S, Tao G, Ben-Dov I, Willner I (1997) J Am Chem Soc 119: 104–67

    Google Scholar 

  84. Alfonta L, Bardea A, Khersonsky O, Katz E, Willner I (2001) Biosens Bioelectron 16: 675

    Article  CAS  Google Scholar 

  85. Katz E, Alfonta L, Willner I (2001) Sens Actuators B 76: 134

    Article  Google Scholar 

  86. Alfonta L, Willner I, Throckmorton DJ, Singh AK (2001) Anal Chem 73: 52–87

    Google Scholar 

  87. Yoon HC, Yang H, Kim YT (2002) Analyst 127: 1082

    Article  CAS  Google Scholar 

  88. Ruan CM, Yang LJ, Li YB (2002) Anal Chem 74: 4814

    Article  CAS  Google Scholar 

  89. Pei R, Cheng Z, Wang E, Yang X (2001) Biosens Bioelectron 16: 355

    Article  CAS  Google Scholar 

  90. Alfonta L, Singh AK, Willner I (2001) Anal Chem 73: 91

    Article  CAS  Google Scholar 

  91. McNeil CJ, Athey D, Ball M, Ho WO, Krause S, Armstrong RD, Wright JD, Rawson K (1995) Anal Chem 67: 39–28

    Article  Google Scholar 

  92. Ho WO, Krause S, McNeil CJ, Pritchard JA, Armstrong RD, Athey D, Rawson K (1999) Anal Chem 71: 19–40

    Article  Google Scholar 

  93. Wang J (2000) Nucleic Acid Res 28: 3011

    Article  CAS  Google Scholar 

  94. Wang J, Palecek E, Nielsen PE, Rivas G, Cai X, Shiraishi H, Dontha N, Luo D, Farias PAM (1996) J Am Chem Soc 118: 76–67

    Google Scholar 

  95. Horns WCI (2002) Anal Lett 35: 18–75

    Google Scholar 

  96. Mikkelsen SR (1996) Electroanalysis 8: 15–19

    Article  CAS  Google Scholar 

  97. Wilson EK (1998) Chem Eng News 76: 47

    Article  Google Scholar 

  98. Millan KM, Mikkelsen SR (1993) Anal Chem 65: 2317

    Article  CAS  Google Scholar 

  99. Yang MS, McGovern ME, Thompson M (1997) Anal Chim Acta 364: 259

    Google Scholar 

  100. Oliveira-Brett AM, Brett CMA, Silva LA (2002) Bioelectrochemistry 56: 33

    Article  CAS  Google Scholar 

  101. Oliveira-Brett AM, Silva LA, Brett CMA (2002) Langmuir 18: 23–26

    Article  CAS  Google Scholar 

  102. Lust E, Jänes A, Lust K (1998) J Electroanal Chem 449: 153

    Article  CAS  Google Scholar 

  103. Brett CMA, Brett AM, Serrano SHP (1999) Electrochim Acta 44: 42–33

    Article  Google Scholar 

  104. Zhao Y-D, Pang D-W, Hu S, Wang Z-L, Cheng J-K, Qi Y-P, Dai H-P, Mao B-W, Tian Z-Q, Luo J, Lin Z-H (1999) Anal Chim Acta 388: 93

    Article  CAS  Google Scholar 

  105. Saoudi B, Despas C, Chehimi MM, Jammu’ N, Delamar M, Bessière J, Walcarius A (2000) Sens Actuators B 62: 35

    Article  Google Scholar 

  106. Lisdat F, Ge B, Krause B, Ehrlich A, Bienert H, Scheller FW (2001) Electroanalysis 13: 12–25

    Article  Google Scholar 

  107. Strasik L, Dvoak J, Haso S, Vetterl V (2002) Bioelectrochemistry 56: 37

    Article  Google Scholar 

  108. Patolsky F, Lichtenstein A, Willner I (2001) J Am Chem Soc 123: 51–94

    Article  CAS  Google Scholar 

  109. Wang G, Xu J-J, Chen H-Y (2002) Electrochem Commun 4: 506

    Article  CAS  Google Scholar 

  110. Luo L, Liu J, Wang Z, Yang X, Dong S, Wang E (2001) Biophys Chem 94: 11

    Article  CAS  Google Scholar 

  111. Pei R, Cui X, Yang X, Wang E (2001) Biomacromolecules 2: 463

    Article  CAS  Google Scholar 

  112. Hason S, Dvorak J, Jelen F, Vetterl V (2002) Crit Rev Anal Chem 32: 167

    Article  CAS  Google Scholar 

  113. Yan F, Sadik OA (2001) Anal Chem 73: 52–72

    Google Scholar 

  114. Yan F, Sadik OA (2001) J Am Chem Soc 123: 113–35

    Google Scholar 

  115. Haso S, Dvoak J, Jelen F, Vetterl V (2002) Talanta 56: 905

    Article  Google Scholar 

  116. Bardea A, Patolsky F, Dagan A, Willner I (1999) Chem Commun 21

    Google Scholar 

  117. Patolsky F, Lichtenstein A, Willner I (2000) Angew Chem Int Ed 39: 940

    Article  CAS  Google Scholar 

  118. Patolsky F, Katz E, Bardea A, Willner I (1999) Langmuir 15: 3703

    Article  CAS  Google Scholar 

  119. Patolsky F, Katz E, Willner I (2002) Angew Chem Int Ed 41: 33–98

    Google Scholar 

  120. Patolsky F, Lichtenstein A, Willner I (2001) Nat Biotechnol 19: 253

    Article  CAS  Google Scholar 

  121. Patolsky F, Lichtenstein A, Kotler M, Willner I (2001) Angew Chem Int Ed 40: 2261

    Article  CAS  Google Scholar 

  122. Alfonta L, Willner I (2001) Chem Commun 1492

    Google Scholar 

  123. Gooding JJ (2002) Electroanalysis 14: 1149

    Article  CAS  Google Scholar 

  124. Vagin MY, Karyakin AA, Hianik T (2002) Bioelectrochemistry 56: 91

    Article  CAS  Google Scholar 

  125. Caruana DJ, Heller A (1999) J Am Chem Soc 121: 769

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Katz, E., Willner, I. (2004). Immunosensors and DNA Sensors Based on Impedance Spectroscopy. In: Mirsky, V.M. (eds) Ultrathin Electrochemical Chemo- and Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05204-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05204-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05961-2

  • Online ISBN: 978-3-662-05204-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics