Skip to main content

Auger Sampling, Ingrowth Cores and Pinboard Methods

  • Chapter
Root Methods

Abstract

This chapter outlines those methods for assessing root systems structure and function in the field which are based on washing roots free from the soil in which they grew. Some of these methods are included in previous reviews (Kolesnikov 1971; Böhm 1979). The methods are either disruptive or totally destructive to the root system being studied and to the immediate environment (Taylor et al. 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht D (1951) Verbesserung der Spatendiagnose. Dtsch Landwirtsch 2: 41–43

    Google Scholar 

  • Albrecht D, Fritzsche KH, Winkler S (1953) Weitere Entwicklung des Strukturbohrers. Dtsch Landwirtsch 4: 206–208

    Google Scholar 

  • Amato M, Pardo A (1994) Root length and biomass losses during sample preparation with different screen mesh sizes. Plant Soil 161: 299–303

    Article  Google Scholar 

  • Baarstad LL, Rickman RW, Wilkins D, Morita S (1993) A hydraulic soil sampler providing minimum field plot disruption. Agron J 85: 178–181

    Article  Google Scholar 

  • Bland WL, Mesarch MA (1990) Counting error in the line-intercept method of measuring root length. Plant Soil 125: 155–157

    Article  Google Scholar 

  • Böhm W (1979) Methods of studying root systems. Ecological Studies: Analysis and Synthesis, vol 33. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Böhm W, Maduakor H, Taylor HM (1977) Comparison of five methods for characterizing soybean rooting density and development. Agron J 69: 415–419

    Article  Google Scholar 

  • Byrd DW Jr, Barker KR, Ferris H, Nusbaum CJ, Griffin WE, Small RH, Stone CA (1976) Two semiautomatic elutriators for extracting nematodes and certain fungi from soil. J Nematol 8: 206–212

    PubMed  CAS  Google Scholar 

  • Caldwell MM, Fernandez OA (1975) Dynamics of Great Basin shrub root systems. In: Hadley NF (eds) Environmental physiology of desert organisms. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, pp 38–51

    Google Scholar 

  • Caldwell MM, Virginia RA (1991) Root systems. In: Pearcy RW, Ehleringer J, Mooney HA, Rundel RW (eds) Plant physiological ecology: field methods and instrumentation. Chapman and Hall, London, pp 367–398

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595

    Article  Google Scholar 

  • Cassel DK, Raczkowski CW, Denton HP (1995) Tillage effects on corn production and soil physical conditions. Soil Sci Soc Am J 59: 1436–1443

    Article  CAS  Google Scholar 

  • Crozier CR, King LD (1993) Corn root dry matter and nitrogen distribution as determined by sampling multiple soil cores around individual plants. Commun Soil Sci Plant Anal 24 (11&12): 1127–1138

    Article  Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests: Part II. Fine root growth, nutrient availability and litter decomposition. Oecologia 76: 222–235

    Article  Google Scholar 

  • De Jager A (1982) Effects of localized supply of H2PO4, NO3, SO4, Ca and K on the production and distribution of dry matter in young maize plants. Neth J Agric Sci 30: 193–203

    Google Scholar 

  • Dowdy RH, Smucker AJM, Dolan MS, Ferguson JC (1995) Root length measurements of segments washed from soil cores without removal of extraneous debris. Proc 14th Long Ashton Int Symp: Plant roots - from cell to systems. Sept 1995. Long Ashton, Bristol, England

    Google Scholar 

  • Evdokimova TI, Grishina LA (1968) Productivity of root systems of herbaceous vegetation on flood plain meadows and methods for its study. In: Methods of productivity studies in root systems and rhizosphere organisms. Int Symp USSR 1968. USSR Academy of Sciences, Nauka, Leningrad, pp 24–27

    Google Scholar 

  • Fabiâo A, Persson HA, Steen E (1985) Growth dynamics of superficial roots in Portuguese plantations of Eucalyptus globulus Labill. studied with a mesh bag technique. Plant Soil 83: 233–242

    Article  Google Scholar 

  • Farrell RE, Walley FL, Lukey AP, Germida JJ (1993) Manual and digital line-intercept methods of measuring root length: a comparison. Agron J 85: 1233–1237

    Article  Google Scholar 

  • Floris J, De Jager A (1981) Een schatting van het verlies aan drogestof en van de verandering in diameter van wortels van engels raaigras (Lolium perenne) dor bemonsteren, bewaren en spoelen. Inst Bodemvruchtbaarheid Haren-Gr Rapp: 1–81

    Google Scholar 

  • Floris J, Van Noordwijk M (1984) Improved methods for the extraction of soil samples for root research. Plant Soil 77: 369–372

    Article  Google Scholar 

  • Gaze SR (1996) Water balance of farmer-managed millet and fallow-savannah on sandy soils in south west Niger. PhD Thesis, Department of Soil Science, University of Reading, Reading

    Google Scholar 

  • Gregory PJ, Tennant D, Belford RK (1992) Root and shoot growth, and water and light use efficiency of barley and wheat crops grown on a shallow duplex soil in a Mediterranean-type environment. Aust J Agric Res 43: 555–573

    Article  Google Scholar 

  • Grzebisz W, Floris J, Van Noordwijk M (1989) Loss of dry matter and cell contents from fibrous roots of sugar beet due to sampling, storage and washing. Plant Soil 113: 53–57

    Article  Google Scholar 

  • Hairiah K, Van Noordwijk M, Setijono S (1991) Tolerance to acid soil conditions of the velvet beans Mucuna pruriens var. utilis and M. deeringiana. I. Root development. Plant Soil 134: 95–105

    CAS  Google Scholar 

  • Hairiah K, Van Noordwijk M, Stulen I, Meijboom FW, Kuiper PIC (1993) P nutrition effects on aluminium avoidance of Mucuna pruriens var. utilis. Environ Exp Bot 33: 75–83

    Article  CAS  Google Scholar 

  • Hansson A, Andrén O, Steen E (1991) Root production of four arable crops in Sweden and its effect on abundance of soil organisms. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 247–266

    Google Scholar 

  • Henry CM, Deacon JW (1981) Natural (non pathogenic) death of the cortex of wheat and barley seminal roots, as evidenced by nuclear staining with acridine orange. Plant Soil 60: 255–274

    Article  Google Scholar 

  • Heringa JW, Groenwold J, Schoonderbeek D (1980) An improved method for the isolation and the quantitative measurement of the crop roots. Neth J Agric Sci 28: 127–134

    Google Scholar 

  • Jackson RB, Canadell J, Ehleringer JR, Mooney HA, Sala OE, Schulze ED (1996) A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411

    Article  Google Scholar 

  • Jawson MD, Elliot LE (1986) Carbon and nitrogen transformations during wheat straw and root decomposition. Soil Biology and Biochemistry, 18 (1): 15–22

    Article  Google Scholar 

  • Kalela EK (1950) On the horizontal roots in Pine and Spruce stands. Acta For Fenn 57 (2): 62–68

    Google Scholar 

  • Kaspar TC, Logsdon SD, Prieksat MA (1995) Traffic pattern and tillage system effects on corn root and shoot growth. Agron J 87: 1046–1051

    Article  Google Scholar 

  • Kolesnikov VA (1971) The root system of fruit plants. Mir Publishers, Moscow

    Google Scholar 

  • Kücke M, Schmid H, Spiess A (1995) A comparison of four methods for measuring roots of field crops in three contrasting soils. Plant Soil 172: 63–71

    Article  Google Scholar 

  • Mackie-Dawson LA, Atkinson D (1991) Methodology for the study of roots in field experiments and the interpretation of results. In: Atkinson D (ed) Plant root growth, an ecological perspective. Blackwell, London, 25–47

    Google Scholar 

  • Marcum KB, Engelke MC, Morton SJ (1995) Rooting characteristics of buffalograsses grown in flexible plastic tubes. HortScience 30 (7): 1390–1392

    Google Scholar 

  • Marsh B.a’B (1971) Measurement of length in random arrangements of lines. J Appl Ecol 8: 265–267

    Article  Google Scholar 

  • Mitchell AR, Shouse PJ, Rechel EA (1993) Using acetic acid to wash roots from the soil. Soil Sci Plant Anal 24: 15–16

    Google Scholar 

  • Naab JB (1994) Interaction of canopy and root system in water use of potato. PhD Thesis, University of Reading, Reading

    Google Scholar 

  • Newman EI (1966) A method for estimating the total length of root in a sample. J Appl Ecol 3: 139–145

    Article  Google Scholar 

  • Nielsen CCN (1990) Methodische and ökologische Untersuchungen zur Sturmfestigkeit der Fichte. In: Einflüsse von Pflanzenabstand and Stammzahlhaltung auf Wurzelform, Wurzelbiomasse, Verankerung sowie auf die Biomassenverteilung im Hinblick auf die Sturmfestigkeit der Fichte, Schriften aus der Forstl Fak Uni Göttingen ud Niedersächs Forst Versuchsanst. JD Sauerländers, Frankfurt

    Google Scholar 

  • Nielsen CCN (1994) Aspects of sustainability by afforestation of agricultural set-aside areas: Development of roots and root/shoot-ratios (AIR3-ct93–1269), 1st Progress Report, Royal Vet Agric University, Kirkegaardsvej 3A, DK-2970 Hoersholm

    Google Scholar 

  • Pallant E, Holmgren RA, Schuler GE, Mccracken KL, Drbal B (1993) Using a fine root extraction device to quantify small diameter corn roots (≤0.025 mm) in field soils. Plant Soil 153: 273–279

    Article  Google Scholar 

  • Parr JF, Papendick JR (1978) Factors affecting the decomposition of crop residues by mirc000rganisms. In: Iscwald WR (ed) Crop residue management systems. American Society of Aoronomy, Madison, pp 101–129

    Google Scholar 

  • Passioura JB (1980) The transport of water from soil to shoot in wheat seedlings. J Exp Bot 31: 335–345

    Google Scholar 

  • Prior SA, Rogers HH (1992) Portable soil coring system that minimizes plot disturbance. Agron J 84: 1073–1077

    Article  Google Scholar 

  • Prior SA, Rogers HH (1994) A manual soil coring system for soil-root studies. Commun Soil Sci Plant Anal 25: 517–522

    Article  Google Scholar 

  • Richards D, Goubran FH, Garwoli WN, Daly MW (1979) A machine for determining root length. Plant Soil 32: 69–76

    Article  Google Scholar 

  • Rowse HR, Phillips DA (1974) An instrument for estimating the total length of root in a sample. J Appl Ecol 11: 309–314

    Article  Google Scholar 

  • Schroth G, Kolbe D (1994) A method of processing soil core samples for root studies by sub-sampling. Biol Fertil Soils 18: 60–62

    Article  Google Scholar 

  • Schuurman JJ, Goedewaagen MAJ (1971) Methods for the examination of root systems and roots, 2nd edn. Pudoc, Wageningen

    Google Scholar 

  • Sivakumar MVK, Salaam SA (1994) A wet excavation method for root shoot studies of pearl-millet on the sandy soils of the Sahel. Exp Agric 30: 329–336

    Article  Google Scholar 

  • Smucker AJM (1992) Contemporary analytical methods for quantifying plant root dynamics. In: Hiibl E, Lichtenegger E, Persson H, Sobotik M (eds) ISSR Symp. Root ecology and its practical application. Klagenfurt, Austria, pp 721–726

    Google Scholar 

  • Smucker AJM, McBurney SL, Srivastava AK (1982) Quantitative separation of roots from compacted soil profiles by the hydropneumatic elutriation system. Agron J 74: 500–503

    Article  Google Scholar 

  • Spek LY, Van Noordwijk M (1994) Proximal root diameters as predictors of total root system size for fractal branching models. II. Numerical model. Plant Soil 164: 119–128

    Article  CAS  Google Scholar 

  • Steen E (1984) Variation of root growth in a grass ley studied with a mesh bag technique. Swed J Agric Res 14: 93–97

    Google Scholar 

  • Steen E (1991) Usefulness of the mesh bag method in quantitative root studies. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, pp 75–86

    Google Scholar 

  • Tanaka S, Yamauchi A, Kono Y (1993) Cultivar difference in response of root system to nitrogen application in rice plant. Jpn J Crop Sci 62: 447–455

    Article  Google Scholar 

  • Tardieu F, Manichon H (1986) Caractérisation en tant que capteur d’eau de l’énracinement du maïs en parcelles cultivées. I. Discussion des critères d’étude. Agronomie 6: 345–354

    Article  Google Scholar 

  • Taylor HM, Upchurch DR, Brown JM, Rogers HH (1991) Some methods of root investigations. In: Mc Michael BL, Persson H (eds) Plant roots and their environment. Elsevier, London, pp 553–562

    Google Scholar 

  • Tennant D (1975) A test of a modified line intersect method of estimating root length. J Ecol 63: 995–1001

    Article  Google Scholar 

  • Tennant D (1976) Root growth of wheat. I. Early patterns of multiplication and extension of wheat roots including effects of levels of nitrogen, phosphorus and potassium. Aust J Agric Res 27: 183–196

    Article  Google Scholar 

  • Van Noordwijk M (1993) Roots: length, biomass, production and mortality. Methods for root research. In: Anderson JM, Ingram JSI (eds) Tropical soil biology and fertility, a Handbook of Methods. CAB International, Wallingford, pp 132–144

    Google Scholar 

  • Van Noordwijk M, Brouwer G (1991) Quantitative root length data in agriculture. In: McMichael BL, Persson H (eds) Plant roots and their environment. Proc ISRR-Symp, Aug 21–26, 1988, Uppsala, Sweden. Elsevier, Amsterdam, pp 515–525

    Chapter  Google Scholar 

  • Van Noordwijk M, Floris J (1979) Loss of dry weight during washing and storage of root samples. Plant Soil 53: 239–243

    Article  Google Scholar 

  • Van Noordwijk M, Purnomosidhi P (1995) Root architecture in relation to tree-soil-crop interactions and shoot pruning in agroforestry. Agrofor Syst 30: 161–173

    Article  Google Scholar 

  • Van Noordwijk M, Floris J, De Jager A (1985) Sampling schemes for estimating root density in cropped fields. Neth J Agric Sci 33: 241–262

    Google Scholar 

  • Van Noordwijk M, Spek LY, De Willigen P (1994) Proximal root diameters as predictors of total root system size for fractal branching models. I. Theory. Plant Soil 164: 107–118

    Article  Google Scholar 

  • Veller F (1971) A method for studying the distribution of absorbing roots of fruit trees. Exp Agric 7: 351–361

    Article  Google Scholar 

  • Vogt KA, Persson H (1991) Measuring growth and development of roots. In: Lassoie JP, Hinckley (eds) Techniques and approaches in forest tree ecophysiology. CRC Press, Boca Raton, pp 477–501

    Google Scholar 

  • Walters SA, Wehner TC (1994) Evaluation of the US cucumber germplasm collection for root size using a subjective rating technique. Euphytica 79: 39–43

    Article  Google Scholar 

  • Wilhelm WW, Norman JM, Newell RL (1982) Semiautomated x-y-plotter-based method of measuring root length. Agron J 74: 149–152

    Article  Google Scholar 

  • Williams TE, Baker HK (1957) Studies of root development of herbage plants. I. Techniques of herbage root investigations. J Br Grassi Soc 12: 49–55

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

do Rosário G. Oliveira, M. et al. (2000). Auger Sampling, Ingrowth Cores and Pinboard Methods. In: Smit, A.L., Bengough, A.G., Engels, C., van Noordwijk, M., Pellerin, S., van de Geijn, S.C. (eds) Root Methods. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04188-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04188-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08602-1

  • Online ISBN: 978-3-662-04188-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics