Skip to main content

Introduction to Biopolymers from Renewable Resources

  • Chapter
Biopolymers from Renewable Resources

Part of the book series: Macromolecular Systems — Materials Approach ((MACROSYSTEMS))

Abstract

A wide range of naturally occurring polymers derived from renewable resources are available for material applications. Some of these, such as cellulose and starch, are actively used in products today, while many others remain underutilized. With the rapid advancement in understanding of fundamental biosynthetic pathways and options to modulate or tailor these pathways through genetic manipulations, new opportunities for the use of polymers from renewable resources are being considered. These biopolymers are derived from a diverse set of polysaccharides, proteins, lipids, polyphenols, and specialty polymers produced by bacteria, fungi, plants and animals. Some of these polymers have recently been reviewed (for examples, see [5, 12, 26, 45, 74, 131].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arcidiacono S, Kaplan DL (1992) Biotechnol Bioeng 39: 281

    CAS  Google Scholar 

  2. Arcidiacono S, Lombardi SI, Kaplan DL (1989) In: Skjak-Brack G, Anthosen T, Sandford P (eds) Chitin and chitosan. Elsevier, London

    Google Scholar 

  3. Ball DH, Wiley BJ, Reese ET (1992) Canadian J Microbiol 38: 324

    CAS  Google Scholar 

  4. Betlach MR, Capage MA, Doherty DH, Hassler RA, Henderson NM, Vanderslice RW, Marelli JD, Ward MB (1987) Biotechnol 3: 35

    CAS  Google Scholar 

  5. Bogdansky S (1990) In: Chasin M, Langer R (eds) Biodegradable polymers as drug delivery systems. Marcel Dekker, New York

    Google Scholar 

  6. Borel M, Kergomard A, Renard MF (1982) Agr Biol Chem 46: 877

    CAS  Google Scholar 

  7. Brandi H, Gross RA, Lenz RW, Fuller RC (1988) Appl Environ Microbiol 54: 1977

    Google Scholar 

  8. Buchanan CM, Gardner RM, Komarek RJ (1997) J Appl Polym Sci (in press)

    Google Scholar 

  9. Buchanan C, Gardner R, Komarek R, Gedon S, White A (1993) Biodegradable Materials and Packaging. Technomic Publishers, PA, p 133

    Google Scholar 

  10. Budwill K, Fedorak PM, Page WJ (1992) Appl Environ Microbiol 58: 1398

    CAS  Google Scholar 

  11. Burns JW, Cox S, Waits AE (1991) US Patent 5, 017, 229

    Google Scholar 

  12. Byrom D (1992) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 1

    Google Scholar 

  13. Byrom D (1991) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 333

    Google Scholar 

  14. Byrom D (1991) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 263

    Google Scholar 

  15. Cappello J, Crissman J, Dorman M, Mikolajczak M, Textor G, Marquet M, Ferrari F (1990) Biotech Prog 6: 198

    CAS  Google Scholar 

  16. Cottrell IW, Baird JK (1980) Encyclopedia of chemical technology. Wiley, New York, pp 12, 45

    Google Scholar 

  17. DeLucca GV, Kezar HS, O’Brien JP (1989) US Patent 4, 833, 238

    Google Scholar 

  18. DeLucca GV, Kezar HS, O’Brien JP (1989) US Patent 4, 857, 403

    Google Scholar 

  19. DeLucca GV, Pelosi LF, O’Brien JP (1989) US Patent 4, 861, 527

    Google Scholar 

  20. Doi Y, Kanesawa Y, Kunioka M, Saito T (1990) Macromolecules 23: 26

    CAS  Google Scholar 

  21. Filpula DR, Lee S-M, Link RP, Strausberg SL, Strausberg RL (1990) Biotechnol Frog 6: 171

    CAS  Google Scholar 

  22. Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Eur Polym J 25: 1019

    CAS  Google Scholar 

  23. Giannos S, Shah D, Gross R, Kaplan DL, Arcidiacono S, Mayer J (1990) Preprints Am Chem Sec Div Polymeric Materials Sci and Eng 62: 236

    CAS  Google Scholar 

  24. Gilbert RD (1990) In: Glass JE, Swift G (eds) Agricultural and synthetic polymers. American Chem Sec Symp Series 433, p 259

    Google Scholar 

  25. Giraud-Guille M-M (1992) J Mol Biol 224: 861

    CAS  Google Scholar 

  26. Glass JE, Swift G (1990) American Chem Sec Symp Series, American Chem Sec, Washington, DC, p 1

    Google Scholar 

  27. Glasser WG (1989) In: Chum HL (ed) Assessment of biobased materials. Report SERI/T-R-234–3610, Solar Energy Research Institute, Colorado, p 41

    Google Scholar 

  28. Goldberg EP, Yaacobi Y (1992) U S Patent 5, 080, 893

    Google Scholar 

  29. Goldberg EP,Yaacobi Y (1992) U S Patent 5, 140, 016

    Google Scholar 

  30. Goldberg I, Salerno AJ, Patterson T, Williams JL (1989) Gene 80, 305

    CAS  Google Scholar 

  31. Gorham S (1991) In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, p 55

    Google Scholar 

  32. Griffin GJL (1987) Proceedings Symposium on Degradable Plastics. The Society of Plastics Industry, Washington, June 1987, p 47

    Google Scholar 

  33. Gutnick DL (1987) Biopolymers 26: S223

    Google Scholar 

  34. Gutnick DL, Allon R, Levy C, Petter R, Mina, W (1991) In: Towner KJ (ed) The biology of Acinetobacter. Plenum Press, New York, p 411

    Google Scholar 

  35. Hamilton R, Fox EM, Acharya RA, Waits AE (1990) U S Patent 4, 937, 270

    Google Scholar 

  36. Harada T (1986) Biochem Soc Symp 48: 97

    Google Scholar 

  37. Hassler RA, Doherty DH (1990) Biotech Progress 6: 182

    CAS  Google Scholar 

  38. Holland SJ, Jolly AM, Yasin M, Tighe BJ (1987) Biomaterials 8: 289

    CAS  Google Scholar 

  39. Holland SJ, Yasin M, Tighe BJ (1990) Biomaterials 11: 206

    CAS  Google Scholar 

  40. Holmes PA, Collins SH, Wright LF (1984) U S Patent 4, 477, 654

    Google Scholar 

  41. Housewright RD (1962) In: Gunsalus LC, Stanier RY (eds) The bacteria: a treatise on structure and function. Academic Press, New York, III, p 389

    Google Scholar 

  42. Huang SJ, Bell JP, Knox JR, Atwood H, Bansleben D, Bitritto M, Borghard W, Chapin T, Leong KW, Natajan K, Nepumuceno I, Roby M, Soboslai J, Shoemaker N (1976) In: Sharpley JM, Kaplan AM (eds) Proceedings 3rd International Biodegradable Symp, Applied Science, London, p 731

    Google Scholar 

  43. Huisman GW, Wonink E, Meima R, Kazemier B, Terpsaa P, Witholt BJ (1991) Biological Chemistry 266: 2191

    CAS  Google Scholar 

  44. Kaneko Y, Yoshida 0, Nakagawa R, Yoshida T, Date M, Ogihara S, Shioya S, Matsuzawa Y, Nagashima N, Irie Y, Minura T, Shinkai K, Yasuda N, Matsuzaki K, Uryu T, Yamamoto N (1990) Biochem Pharmacol 39: 793

    CAS  Google Scholar 

  45. Kaplan DL, Wiley BJ, Mayer IM, Arcidiacono S, Keith I, Lombardi SJ, Ball D, Allen AL (1994) In: Shalaby S (ed) Designed to degrade biomedical polymers. Carl Hanser

    Google Scholar 

  46. Kaplan DL, Thomas E, Ching C (1993) Biodegradable materials and packaging. Technomic Publishers, Lancaster, PA, pp 1 — 411

    Google Scholar 

  47. Kaplan DL, Mayer JM, Lombardi SI, Wiley B, Arcidiacono S (1989) Polymer Preprint, American Chem Sec Div Polymer Chem 30 (1): 509

    CAS  Google Scholar 

  48. Kaplan DL, Hartenstein R (1980) Soil Biol Biochem 12: 65

    CAS  Google Scholar 

  49. Kaplan DL, Fossey S, Viney C, Muller W (1992) Proceedings Materials Research Society 255: 19

    CAS  Google Scholar 

  50. Kaplan DL, Lombardi SJ, Muller W, Fossey S (1991) In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, p 1

    Google Scholar 

  51. Kawaguchi Y, Doi Y (1992) Macromolecules 25: 2324

    CAS  Google Scholar 

  52. Keith J, Wiley B, Ball D, Arcidiacono S, Zorfass D, Mayer J, Kaplan D (1991) Biotech Bioeng 38: 557

    CAS  Google Scholar 

  53. Kerkam KL, Viney C, Kaplan D, Lombardi S (1991) Nature 349: 596

    CAS  Google Scholar 

  54. Kester JJ, Fennema OR (1986) Food Technol 12: 47

    Google Scholar 

  55. Kishida A, Yoshioka S, Takeda Y, Uchiyama M (1989) Chem Pharm Bull 37: 1954

    CAS  Google Scholar 

  56. Kobayashi S, Shoda S-L, Kashiwa K (1991) Polymer Preprints, American Chem Sec, Div Polymer Chem 32: 417

    Google Scholar 

  57. Kohn J (1990) In: Chapin M, Langer R (eds) Drugs and the pharmaceutical sciences. Marcel Dekker, New York, pp 45, 195

    Google Scholar 

  58. Koskan L (1992) Industrial Bioprocessing May 1–2

    Google Scholar 

  59. Kumar GS, Kalpagam V, Nandi U S (1984) J Applied Polymer Sci 29: 3075

    CAS  Google Scholar 

  60. Kunioka M, Goto A (1994) Appl Microbiol Biotechnol 40: 867

    CAS  Google Scholar 

  61. Linton JD, Ash S, Huybrechts G (1991) In: Byrom D (ed) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 215

    Google Scholar 

  62. Lipinsky E S, Sinclair RG (1986) Chemical Eng Progress 82: 26

    CAS  Google Scholar 

  63. Lombardi EC, Kaplan DL (1993) Proc Materials Res Sec 292 (in press)

    Google Scholar 

  64. Lombardi SJ, Kaplan DL (1990) Polymer Preprints, Div Polymer Chem, American Chem Soc 31: 195

    Google Scholar 

  65. Mackerras AH, de Chazal NM, Smith GD (1990) J Gen Microbiol 136: 2057

    CAS  Google Scholar 

  66. Maddever WJ, Chapman GM (1989) Plastics Engineering Jul 31

    Google Scholar 

  67. Marchessault RH (1984) Topics Polym Sci 5: 15

    CAS  Google Scholar 

  68. Martin J (1982) Encyclopedia of chemical technology. Wiley, New York, p 737

    Google Scholar 

  69. Mathur NK, Narang CK (1990) J Chem Education 67: 938

    CAS  Google Scholar 

  70. Mayer JM, Kaplan DL (1991) US Patent 5, 015, 293

    Google Scholar 

  71. Mayer JM, Greenberger M, Ball DH, Kaplan D (1990) Preprints Proceed American Chem Sec Div Polymeric Materials Sci Eng 63: 732

    CAS  Google Scholar 

  72. McGrath KP, Tirrell DA, Kawai M, Mason TL, Fournier MJ (1990) Biotechnol Frog 6: 188

    CAS  Google Scholar 

  73. McGrath KP, Fournier MJ, Mason TL, Tirrell DA (1992) J Am Chem Sec 114: 727

    CAS  Google Scholar 

  74. McGrath K, Kaplan DL (1998) Protein based baterials. Birkhauser

    Google Scholar 

  75. McPherson DT, Morrow C, Minehan DS, Wu J, Hunter E, Urry DW (1992) Biotechnol Prog 8: 347

    CAS  Google Scholar 

  76. Meister JJ, Patil DR (1985) Macromolecules 18: 1559

    CAS  Google Scholar 

  77. Meister JJ, Patil DR, Channell H, (1984) J Appl Polymer Sci 29: 3457

    CAS  Google Scholar 

  78. Milstein O, Gersonde R, Huttermann A, Chen M-J, Meister JJ (1992) Appl Environ Microbiol58:3225

    Google Scholar 

  79. Nagata N, Nakahara T, Tabuchi T, Morita R, Brewer J, Fujishige S (1993) Polym J 25: 585

    CAS  Google Scholar 

  80. Narayan R (1989) In: Chum HL (ed) Assessment of biobased materials. Report SERI/TR234 3610, Solar Energy Research Institute, CO, p 71

    Google Scholar 

  81. Nassander UK, Storm G, Peeters PAM, Crommelin DJA (1990) In: Chasin M, Langer R (eds) Drugs and the pharmaceutical sciences. Marcel Dekker, Inc, New York, 45, 261

    Google Scholar 

  82. O’Brien JP (1984) US Patent 4, 464, 323

    Google Scholar 

  83. Otey FH, Westhoft R (1984) Starch-based films. I&EC Products Research and Development, American Chemical Society, June, p 284

    Google Scholar 

  84. Otey FH, Doane WM (1987) Proceedings of Symposium on Degradable Plastics. The Society of Plastics Industry, Washington DC, p 39

    Google Scholar 

  85. Page WI, Knosp 0 (1989) Appl Environ Microbiol 55: 1334

    CAS  Google Scholar 

  86. Peoples OP, Sinskey AL (1989) J Biol Chem 264: 15, 293

    Google Scholar 

  87. Peoples OP, Sinskey AJ (1989) J Biol Chem 264: 15, 298

    Google Scholar 

  88. Pitts CG, Gratzl MM, Kimmel GL, Surles J, Schindler A (1991) Biomaterials 2: 215

    Google Scholar 

  89. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Science 256: 520

    CAS  Google Scholar 

  90. Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Applied Environ Microbiol 57: 625

    CAS  Google Scholar 

  91. Reese ET (1957) Indust Eng Chem 49: 89

    CAS  Google Scholar 

  92. Richtering HW, Gagnon KD, Lenz RW, Fuller RC, Winter HH (1992) Macromolecules 25: 2429

    CAS  Google Scholar 

  93. Riley PA, Kaplan DL, Kaplan AM (1984) Report 85 — 004 US Army Natick Research, Development and Engineering Center, Natick, Massachusetts

    Google Scholar 

  94. Rosenberg E (1979) Appl Environ Microbio 37: 402

    CAS  Google Scholar 

  95. Rossall B (1974) Intl Biodeterioration Bulletin 10: 95

    CAS  Google Scholar 

  96. Rowell RM, Young RA (1989) In: Chum HL (ed) Assessment of biobased materials. H L Report SERI/TR-234–3610, Solar Energy Research Institute, Colorado, p 11

    Google Scholar 

  97. Schakenraad JM, Nieuwenhuis P, Molenaar I, Helder J, Kijkstra J, Feijen JJ (1989) Biomedical Materials Research 23: 1271

    CAS  Google Scholar 

  98. Shabtai Y, Wang DIC (1990) Biotechnol Bioeng 35: 753

    CAS  Google Scholar 

  99. Sinclair RG (1987) Proceedings Society of Plastics Engineers Annual Technical Conf and Exhibit, May 1987

    Google Scholar 

  100. Skjak-Braek G, Anthonsen T, Sandford P (1989) Chitin and chitosan. Elsevier Applied Science, London

    Google Scholar 

  101. Slater SC, Voige WH, Dennis DE (1988) J Bacteriol 170: 4431

    CAS  Google Scholar 

  102. Slater S, Gallaher T, Dennis D (1992) Appl Environ Microbiol 58: 1089

    CAS  Google Scholar 

  103. Smidsrod O, Skjak-Braek G (1990) Trends in biotechnol 8

    Google Scholar 

  104. Srinivasan VR, Cary JW (1987) Wood and cellulosics: industrial utilisation, biotechnology, structure and properties. Ellis Horwood Ltd, Chichester p 267

    Google Scholar 

  105. Stannett V (1989) In: Chum HL (ed) Assessment of biobased materials. Report SERI/TR234–3610, Solar Energy Research Institute, Colorado, p 31

    Google Scholar 

  106. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Science 258: 287

    CAS  Google Scholar 

  107. Steinbuchel A (1991) In: Byrom D (ed) Biomaterials: novel materials from biological sources. Stockton Press, New York, p 123

    Google Scholar 

  108. Strausberg RL, Link RP (1990) Trends in Biotech 8: 53

    CAS  Google Scholar 

  109. Sullivan J, Putnam HD, Keim MA, McClave JT, Nichols JC (1978) Report by Water and Air Research, Gainsville, Florida, Contract DAMD17–77-C-7027

    Google Scholar 

  110. Sunamoto J, Sato T, Taguchi T, Hamazaki H (1992) Macromolecules 25: 5665

    CAS  Google Scholar 

  111. Sutherland IW (1991) In: Byrom D (ed) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 307

    Google Scholar 

  112. Swann DA, Kuo J (1991) In: Byrom D (ed) Biomaterials — novel materials from biological sources. Stockton Press, New York, p 285

    Google Scholar 

  113. Takagi H, Kadowaki K (1985) Agric Biol Chem 49: 3159

    CAS  Google Scholar 

  114. Teot AS (1982) Encyclopedia of chemical technology. Wiley, New York, pp 20, 207

    Google Scholar 

  115. Troy FA (1982) In: Kleinkauf H, Dohren HV (eds) Peptide antibiotics: biosynthesis and functions. Waiter de Gruyter, Berlin, p 49

    Google Scholar 

  116. Tsuchi A, Takeda K (1990) Appl Environ Microbiol 56: 269

    Google Scholar 

  117. Tsuchi A, Suzuki T, Takeda C (1985) Appl Environ Microbiol 50: 965

    Google Scholar 

  118. Urry DW, Haynes B, Zhang H, Harris RD, Prassad KU (1988) Proc National Acad Sci 85: 3407

    CAS  Google Scholar 

  119. Viney C, Huber A, Verdugo P (1993) In: Kaplan DL, Thomas N, Ching C (eds) Biodegradable materials and packaging. Technomic Publishers, Lancaster, PA (in press)

    Google Scholar 

  120. Viro F (1980) Encyclopedia of chemical technology. Wiley, New York, pp 11, 711

    Google Scholar 

  121. Waite JH (1987) Intl J Adhesion and Adhesives 7: 9

    CAS  Google Scholar 

  122. Waite JH (1990) Intl J Macromol 12: 139

    CAS  Google Scholar 

  123. Weaver JC (1982) Encyclopedia of chemical technology. Wiley, New York, pp 20, 197

    Google Scholar 

  124. Wei YC, Hudson S, Mayer JM, Kaplan DL (1992) J Polymer Sci 30: 2187

    CAS  Google Scholar 

  125. Welford CR (1976) US Army Medical Bioengineering Research and Development Laboratory, Ft Detrick, Maryland, Report 8609, AD-A186–413

    Google Scholar 

  126. Wiley BJ, Ball DH, Arcidiacono S, Sousa S, Mayer JM, Kaplan DL (1992) J Environ Polym Degradation 1: 3

    Google Scholar 

  127. Wiley BI, Arcidiacono S, Ball DH, Mayer JM, Kaplan DL (1989) Report 89/035, U S Army Natick Research, Development and Engineering Center, Natick, Massachusetts

    Google Scholar 

  128. Williams DF (1981) Engineering in Medicine 10: 5

    Google Scholar 

  129. Williams GR (1982) Intern Biodeterioration Bulletin 18: 31

    CAS  Google Scholar 

  130. Xu M, Lewis RV (1990) Proc National Acad Sci 87: 7120

    CAS  Google Scholar 

  131. Yalpani M (1987) Progress in biotechnology. Elsevier, Amsterdam, p 3

    Google Scholar 

  132. Yalpani M (1988) Polysaccharides: synthesis, modifications and structure/property relations: studies in organic chemistry. Elsevier Amsterdam, p 36

    Google Scholar 

  133. Yasin M, Holland ST, Jolly AM, Tighe BJ (1989) Biomaterials 10: 400

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaplan, D.L. (1998). Introduction to Biopolymers from Renewable Resources. In: Kaplan, D.L. (eds) Biopolymers from Renewable Resources. Macromolecular Systems — Materials Approach. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03680-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03680-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08341-9

  • Online ISBN: 978-3-662-03680-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics