Skip to main content

DNA Transfer in Conifers

  • Chapter
Clonal Forestry I

Abstract

Within the past two decades, it has become possible to isolate, identify, and manipulate specific genes to modify the inherited characteristics of a wide Variety of plants and animals. This technology has been widely applied to biomedical sciences and agriculture. It is now apparent that this technology can also be applied to forest trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahuja MR (1988a) Gene transfer in forest trees. In: Hanover JW, Keathley DW (ed) Genetic manipulation of woody plants. Plenum, New York, pp 25–41.

    Google Scholar 

  • Ahuja MR (1988b) Gene transfer in woody plants: perspectives and limitations. In: Ahuja MR (ed) Somatic cell genetics of woody plants. Kluwer, Dordrecht, pp 83–101.

    Chapter  Google Scholar 

  • An GM (1985) High efficiency transformation of cultured tobacco cells. Plant Physiol 79:568–570.

    Article  PubMed  CAS  Google Scholar 

  • An GM, Costa MA, Mitra A, Ha SB, and Marton L (1988) Organ-specific and developmental regulation of nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552.

    Article  PubMed  CAS  Google Scholar 

  • An GM, Costa MA, Ha SB (1990) Nopaline synthase promoter is wound-inducible and auxininducible. Plant Cell 2(3):225–233.

    Article  PubMed  CAS  Google Scholar 

  • Ballas N, Zakai N, Friedberg D, Loyter A (1988) Linear forms are superior to supercoiled structures as active templates for gene expression in plant protoplasts. Plant Mol Biol 11:517–528.

    Article  CAS  Google Scholar 

  • Bekkaoui F, Pilon M, Laine E, Raju DSS, Crosby WL, Dunstan DI (1988) Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep 7:481–484.

    Article  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue specific patterns. EMBO J 8:2195–2202.

    PubMed  CAS  Google Scholar 

  • Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721.

    Article  PubMed  CAS  Google Scholar 

  • Binns AN (1983) Host and T-DNA determinants of cytokinin autonomy in tabacco cells transformed by Agrobacterium tumefaciens. Planta 158:272–279.

    Article  CAS  Google Scholar 

  • Clapham DH, Ekberg I (1986) Induction of tumours by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. Scand J For Res 1:435–437.

    Article  Google Scholar 

  • Clapham DH, Ekberg I (1988) Induction of tumors by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York 463 pp.

    Google Scholar 

  • Dandekar AM, Gupta PK, Durzan DJ, Knauf V (1987) Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/Technology 5:587–590.

    Article  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, van Montague M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6:2513–2518.

    PubMed  CAS  Google Scholar 

  • De Cleene M, de Ley J (1976) The host range of crown gall. Bot Rev 42:389–466.

    Article  Google Scholar 

  • De Cleene M, Ley J (1981) The host range of infectious hairy-root. Bot Rev 47:147–194.

    Article  Google Scholar 

  • Diner AM, Karnosky DF (1987) Differential responses of two conifers to in vitro inoculation with Agrobacterium rhizogenes. Eur J For Pathol 17:211–216.

    Article  Google Scholar 

  • Diner AM, Karnosky DF (1988) Agrobacterium-mediated gene transfer in European larch. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, 465pp.

    Google Scholar 

  • Ellis D, Roberts D, Sutton B, Lazaroff W, Webb D, Flinn B (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens. Plant Cell Rep 8:16–20.

    Article  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Hassig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199.

    Article  CAS  Google Scholar 

  • Fishman WH (1955) Beta-Glucuronidase. Adv in Enzymol 16:361–409.

    CAS  Google Scholar 

  • Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electroporation. Nature (London) 319:719–793.

    Article  Google Scholar 

  • Gahan PB, McLean J, Kalina JM, Sharma W (1967) Freeze sectioning of plant tissue: the technique and its use in histochemistry. J Exp Bot 18:151–159.

    Article  CAS  Google Scholar 

  • Gupta PK, Dandekar AM, Durzan DJ (1988) Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts. Plant Sci 58:85–92.

    Article  CAS  Google Scholar 

  • Herrera-Estrella L, Teeri TH, Simpson J (1988) Use of reporter genes to study gene expression in plant cells. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–22.

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sata SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6:915–922.

    Article  CAS  Google Scholar 

  • Hood EE, Jen G, Kayes L, Kramer J, Fraley RT, Chilton M-D (1984) Restriction map of pTiBo542, a potential Ti plasmid vector for genetic engineering of plants. Bio/Technology 2:702–708.

    Article  CAS  Google Scholar 

  • Hood EE, Chilton WS, Chilton M-D, Fraley RT (1986) T-DNA and opine synthetic loci in tumors incited by Agrobacterium tumefaciens on soybean and alfalfa plants. J Bacteriol 168:1283–1290.

    PubMed  CAS  Google Scholar 

  • Hood EE, Ekberg I, Johannson T, Clapham DH (1989) T-DNA presence and opine production in Agrobacterium-tumefaciens A281 induced tumors on Norway spruce. J Cell Biochem Suppl 0 (13 Part D):260.

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231.

    Article  CAS  Google Scholar 

  • Hutchison KW, Singer PB, Greenwood MS (1988) Gene expression during maturation in eastern larch. In: Hallgren J-E (ed) Molecular genetics of forest trees. Proc Frans Kempe Symp, Umea, Sw, June 1988, pp 101–114.

    Google Scholar 

  • Jefferson RA, Burgess SM, Hirsh D (1986) Beta-glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907.

    PubMed  CAS  Google Scholar 

  • Kenny JR, Dancik BP, Florence LZ (1988) Nucleotide sequence of the carboxy-terminal portion of a lodgepole pine actin gene. Can J For Res 18:1595–1602.

    Article  CAS  Google Scholar 

  • Kinlaw CS, Harry DE, Sederoff RR (1990) Isolation and characterization of alcohol dehydrogenase cDNAs from Pinus radiata. Can J For Res 20:343–1350.

    Article  Google Scholar 

  • Klee HJ, Yanosky MF, Nester EW (1985) Vectors for transformation of higher plants. Bio/Technology 3:637–642.

    Article  CAS  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA 85:4305–4309.

    Article  PubMed  CAS  Google Scholar 

  • Krussman G (1985) Manual of cultivated conifers. Timber, Portland, Or.

    Google Scholar 

  • Loopstra CA, Stomp A-M, Sederoff RR (1990) Agrobacterium mediated DNA transfer in sugar pine. Plant Mol Biol 15:1–9.

    Article  PubMed  CAS  Google Scholar 

  • Lundquist RC, Close TJ, Kado CI (1984) Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol Gen Genet 193:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Matzke AJ, Chilton M-D (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumor-inducing plasmid: An approach to genetic engineering of higher plant cells. J Mol Appl Gen 1:39–49.

    CAS  Google Scholar 

  • McCabe D, Swain W, Martineil B, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6:923–926.

    Article  Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandekar AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6:800–804.

    Article  CAS  Google Scholar 

  • Morris JW, Castle LA, Morris RO (1988) Transformation of Pinaceous gymnosperms by Agrobacterium. In: Hanover JW, Keathley DE (eds) Genetic manipulation of woody plants. Plenum, New York, 481 pp.

    Google Scholar 

  • Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34:451–462.

    Article  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol 51:263–273.

    PubMed  CAS  Google Scholar 

  • Ochman H, Medhora MM, Garza D, Hartl DL (1990) Amplification of flanking sequences by Inverse PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed) PCR protocols: a guide to methods and applications. Academic Press, New York London San Diego, pp 219–227.

    Google Scholar 

  • Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of lux-a and lux-b genes in Vibrio harveyi. Gene 81(2):335–348.

    Article  PubMed  CAS  Google Scholar 

  • Ow DW, Wood KV, Deluca M, De Wet JR, Helinski DR, Howell SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234(4778):856–859.

    Article  PubMed  CAS  Google Scholar 

  • Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for quantitative and qualitative assay of neomycine phosphotransferase in crude cell extract. Gene 30:211–218.

    Article  PubMed  CAS  Google Scholar 

  • Reynaerts A, De Block M, Hernalsteens J-P, van Montagu M (1988) Selectable and screenable markers. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A9, 1-16.

    Google Scholar 

  • Sederoff RR, Stomp A-M, Chilton WS, Moore LW (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens. Bio/Technology 4:647–649.

    Article  CAS  Google Scholar 

  • Sederoff RR, Stomp A-M, Gwynn G, Ford E, Loopstra C, Hodgskiss P, Chilton WS (1987) Application of recombinant DNA techniques to pines: a molecular approach to genetic engineering in forestry. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Forestry sciences, vol 1. Nijhoff, Dordrecht pp 314–329.

    Google Scholar 

  • Smith CO (1935a) Crown gall on conifers. Phytopathology 25:894.

    Google Scholar 

  • Smith CO (1935b) Crown gall on the Sequoia. Phytopathology 25:439–440.

    Google Scholar 

  • Smith CO (1936) Crown gall on Araucaria bidwillii. Phytopathology 26:400–401.

    Google Scholar 

  • Smith CO (1937) Crown gall on incense cedar, Libocedrus decurrens. Phytopathology 27:844–849.

    Google Scholar 

  • Smith CO (1938) Crown gall on Taxus baccata. Phytopathology 28:153–155.

    Google Scholar 

  • Smith CO (1939) Susceptibility of species of Cupressaceae to crown gall as determined by artificial inoculation. J Agric Res 59:919–925.

    Google Scholar 

  • Smith CO (1942) Crown gall on species of Taxaceae, Taxodiaceae, and Pinaceae, as determined by artificial inoculations. Phytopathology 32:1005–1009.

    Google Scholar 

  • Stachel S, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of A. tumefaciens. EMBO J 5:1445–1454.

    PubMed  CAS  Google Scholar 

  • Stachel S, Zambryski PC (1986) Agrobacterium tumifaciens and the susceptible plant cell. a novel adaptation of extracellular recognition and DNA conjugation. Cell 47:155–157.

    CAS  Google Scholar 

  • Stomp A-M (1989) Genetic engineering and traditional breeding: where is the interface? In: Proc 20th Southern forest tree improvement Conf, Charleston, pp 204-210.

    Google Scholar 

  • Stomp A-M, Loopstra C, Sederoff RR, Chiltron S, Fillatti J, Dupper G, Tedeschi P, Kinlaw C (1988) Development of a DNA transfer system for pines. In: Hanover JW, Keathley DE (ed) The genetic manipulation of woody plants. Basic life sciences, vol 44. Plenum, New York, pp 231–241.

    Google Scholar 

  • Stomp A-M, Loopstra C, Chilton WS, Sederoff RR, Moore LW (1990a) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92:1226–1232.

    Article  PubMed  CAS  Google Scholar 

  • Stomp A-M, Weissinger AK, Sederoff RR (1990b) Characterization and developmental regualtion of microprojectile-mediated gene expression in loblolly pine. Plant Cell Rep 1991 10:187–190.

    Google Scholar 

  • Tautorus TE, Bekkaoui F, Pilon M, Dalta RSS, Crosby WL, Fowke LC, Dunstan D (1989) Factors affecting transient gene expression in electroporated black spruce, (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor Appl Genet 78:531–536.

    Article  Google Scholar 

  • Thompson CJ, Rao Movva M, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbucide resistant gene bar from Streptomyces hygroscopicus. EMBO J 6:2519–2523.

    PubMed  CAS  Google Scholar 

  • Tomes DT, Weissinger AK, Ross M, Higgins R, Drummond B, Schaaf S, Malone-Schoneberg J, Staebell M, Flynn P, anderson J, Howard J (1990) Transgenic tobacco plants and their progeny derived by microprojectile bombardment of tobacco leaves. Plant Mol Biol 14:261–269.

    Article  PubMed  CAS  Google Scholar 

  • Topfer R, Schell J, Steinbiss H-H (1988) Versatile cloning vectors for transient gene expression and direct gene transfer in plant cells. Nucleic Acids Res 16:8725.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sederoff, R.R., Stomp, A.M. (1993). DNA Transfer in Conifers. In: Ahuja, MR., Libby, W.J. (eds) Clonal Forestry I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-84175-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-84175-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-84177-4

  • Online ISBN: 978-3-642-84175-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics