Skip to main content

Gene Transfer in Woody Plants: Perspectives and Limitations

  • Chapter
Somatic Cell Genetics of Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 30))

Abstract

Conventional and more recently unconventional methods have been employed for transfer of genes in plants. Hybridization involving backcrosses has been effectively utilized in plant species for transfer of specific genes. However, this procedure takes too long, and would be impractical in long-lived tree species. By employing unconventional approaches involving Agrobacterium mediated gene transfer, or by direct gene transfer, transgenic plants have been produced in a number of plant species, including a tree species Populus. Dominant selectable markers (kanamycin resistance), herbicide tolerance and insecticidal genes, originally cloned from bacteria, have been transfered and expressed in plants. In some cases the transmission of the foreign genes to the progeny has been demonstrated. Unexpected genetic variability may be associated with foreign gene transfer in plants. This variability may be a cause of concern in long-lived tree species, following foreign gene transfer. Perspectives and limitations of foreign gene transfer will be discussed in plants, in particular tree species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abdullah C, EC Cocking and JA Thompson: Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4: 1087–1090, 1986.

    Article  Google Scholar 

  2. Ahuja MR: A Cytogenetic study of heritable tumors in Nicotiana species hybrids. Genetics 47: 865–880, 1962.

    PubMed  CAS  Google Scholar 

  3. Ahuja MR: Genetic control of tumor formation in higher plants. Quart. Rev. Biol. 40: 329–340, 1965.

    Article  Google Scholar 

  4. Ahuja MR: An hypothesis and evidence concerning the genetic components controlling tumor formation in Nicotiana. Mol. Gen. Genet. 103: 176–184, 1968.

    Article  PubMed  CAS  Google Scholar 

  5. Ahuja MR: Genetic Control of Phytohormones in tumor and non-tumor genotypes in Nicotiana. Ind. J. Exptl. Biol. 9: 60–68, 1971.

    CAS  Google Scholar 

  6. Ahuja MR: On the nature of genetic change as an underlying cause for the origin of neoplasms. In Antivival Mechanisms in the Control of Neoplasia, P Chandra (ed), Plenum Press, New York, pp. 17–37, 1979.

    Google Scholar 

  7. Ahuja MR: Isolation, Culture and fusion of protoplasts: problems and prospects. Silvae Genet. 31: 66–77, 1982.

    Google Scholar 

  8. Ahuja MR: Somatic cell genetics and rapid clonal propagation of aspen. Silvae Genet. 32: 131–135, 1983.

    Google Scholar 

  9. Ahuja MR: Protoplast research in woody plants. Silvae Genet. 33: 32–37, 1984.

    Google Scholar 

  10. Ahuja MR: A commercially feasible micropropagation method for aspen. Silvae Genet. 33: 174–176, 1984.

    Google Scholar 

  11. Ahuja MR: Aspen. In Handbook of Plant Cell Culture, DA Evans, WR Sharp and PJ Ammirato (eds), Macmillan Publishing Company, New York, pp. 626–651, 1986.

    Google Scholar 

  12. Ahuja MR: Perspectives in plant biotechnology. Curr. Sci. 55: 217–224, 1986.

    Google Scholar 

  13. Ahuja MR: Somaclonal variation. In Cell and Tissue Culture in Forestry, vol. 1, JM Bonga and DJ Durzan (eds), Martinus Nijhoff Publishers, Dordrecht, pp. 272–285, 1987.

    Google Scholar 

  14. Ahuja MR: Gene transfer in forest trees. In: Genetic Manipulation of Woody Plants, J Hanover and D Kiethley (eds), Plenum Press, New York (in press), 1987.

    Google Scholar 

  15. Ahuja MR and F Anders: Cancer as a problem of gene regulation. In Recent Advances in Cancer Research: Cell Biology, Molecular Biology, and Tumor Virology, RC Gallo (ed), CRC Press, Cleveland, Ohio pp. 103–117, 1977.

    Google Scholar 

  16. Ahuja MR and GR Doering: Effect of Gibberellic acid on genetically controlled tumor formation and vacularization in tomato. Nature 216: 800–801, 1967.

    Article  PubMed  CAS  Google Scholar 

  17. Ahuja MR and GL Hagen: Morphogenesis in Nicotiana debneyitabacum, N. longiflora and their tumor-forming hybrid derivatives in vitro. Dev. Biol. 13: 408–423, 1966.

    CAS  Google Scholar 

  18. Ahuja MR and BV Singh: Induced genetic variability in mumg-bean through interspecific hybridization. Indian J. Genet. & PI. Breed. 37: 13–136, 1977.

    Google Scholar 

  19. Akiyoshi DE, et al.: T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc. Natl. Acad. Sei. USA 81: 5994–5998, 1984.

    Article  CAS  Google Scholar 

  20. Barocka KH, M Baus, E Lontke and F Sievert: Tissue Culture as a tool for in vitro mass propagation of aspen. Z. Pfanzenzüchtg. 94: 340–343, 1985,.

    Google Scholar 

  21. Barry GF et al.: Identification of cytokinin genes and transfer into plants. Curr. Top. Plant Biochem. Physiol. 4: 101–109, 1985.

    Google Scholar 

  22. Braun AC: A physiological basis of antonomous growth of crown gall tumor cell. Proc Natl Acad Sci USA 44: 344–349, 1958.

    Article  PubMed  CAS  Google Scholar 

  23. Braun AC and HN Wood: Supression of the neo-plastic state with the acquisition of specialized functions in cells, tissues and organs of crown gall teratomas of tobacco. Proc Natl Acad Sci USA 73: 496–500, 1976.

    Article  PubMed  CAS  Google Scholar 

  24. Buijtenen JP van, PN Joranson and DW Einspahr: Naturally occuring triploid quaking aspen in the United States. Proc. Soc. Am. For.: 62–64, 1957.

    Google Scholar 

  25. Caboche M and A Deshayes: Utilization de loposome pour la transformation de protoplasts de mesophylle de tabac par Plasmide recombinant de E. Coli leur conferant la resistance à la Kanamycine. C.R. Acad. Sci. (Paris), 229: 663–666, 1984.

    Google Scholar 

  26. Chaleleff RS and TB Ray: Herbicide resistant mutants from tobacco cell cultures. Science 223: 1148–1151, 1984.

    Article  Google Scholar 

  27. Chilton MD et al.: Stable incorporation of plasmid DNA into higher plants: The molecular basis of crown gall tumorigenesis. Cell 11: 263–271, 1977.

    Article  PubMed  CAS  Google Scholar 

  28. Clapham DH and I Ekberg: Induction of tumors by various stains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. Scand. J. For. Res. 1: 435–437, 1986.

    Article  Google Scholar 

  29. Cocking EC and MR Davey: Gene transfer in cereals. Science 236: 1259–1262, 1987.

    Article  PubMed  CAS  Google Scholar 

  30. Crossway A et al: Micromanipulation techniques in plant manipulation. Biotechniques 4: 320–334, 1986.

    Google Scholar 

  31. David A: Conifer protoplasts. In Cell and Tissue Culture in Forestry, vol. 2, J.M. Bonga and D.J. Durzan (eds.), Martinus Nijhoff Publishers, Dordrecht, pp. 2–15, 1987.

    Google Scholar 

  32. David DJ, AJ Passey, S Fredieri and E. Rugini: Regeneration and transformation of apple plants using wild type and engineered plasmid in Agrobacterium spp. This volume.

    Google Scholar 

  33. Dandekar AM, Gupta, PK, Durzan DJ and Knanf V: Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Bio/Technology 5: 587–590, 1987.

    Article  CAS  Google Scholar 

  34. De Block M et al: Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3: 1681–1689, 1984.

    PubMed  Google Scholar 

  35. De Cleene M and L De Ley: The host range of crown gall. Bot. Rev. 42: 389–466, 1976.

    Article  Google Scholar 

  36. De la Pena A, H Lörz and J Schell: Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325: 174–176, 1987.

    Google Scholar 

  37. Doering GR and MR Ahuja: Morphogenetic studies of a genetically controlled tumor-like condition in Lycopersicon hybrids. Planta (Ber) 75: 85–93, 1967.

    Article  Google Scholar 

  38. Dudits D et al.: Plant regeneration from intergeneric cell hybrids. Plant Sci.Lett. 15: 101–112, 1979.

    Article  CAS  Google Scholar 

  39. Einspahr DW and LL Winton: Genetics of quaking aspen. Forest Service, US Department of Agriculture, US Govt. Printing Office, Washington, pp. 1–23., 1977.

    Google Scholar 

  40. Fillatti JJ et al.: Agrobacterium mediated transformation and regeneration of Populus. Mol.Gen.Genet. 206: 192–199, 1987.

    Article  CAS  Google Scholar 

  41. Fozdar BS and WJ Libby: Chromosomes of Seguoia sempervirens: 8-hydroxyquinoline-caster oil pretreatment for improving preparation. Stain Tech. 43: 97–100, 1968.

    CAS  Google Scholar 

  42. Fraley RT et al.: Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807, 1983.

    Article  PubMed  CAS  Google Scholar 

  43. Fry JE and RB Horsch: Transformation of Brassica napus by Agrobacterium tumefaciens based vectors. Proc. 6th Int. Congr. Plant Tissue Cell Culture (Abstracts), p. 127, 1986.

    Google Scholar 

  44. Gleba YY and F Hoffmann: Arabidobrassica: A novel plant obtained by protoplast fusion. Planta (Beri) 149: 112–117, 1980.

    Article  CAS  Google Scholar 

  45. Goodman RM, H Hauptli, A Crossway and V Knauf: Gene transfer in crop improvement. Science 236: 48–54, 1986.

    Article  Google Scholar 

  46. Gupta PP, 0 Schieder and M Gupta: Intergeneric nuclear gene transfer between somatically and sexually imcompatible plants through asymmetric protoplast fusion. MolGen.Gen.197: 30–35, 1984.

    Article  CAS  Google Scholar 

  47. Hain R, HH Steinbiss and J Schell: Fusion of Agrobacterium and E. Coli spheroplasts with Nicotiana tabacum protoplasts - Direct gene transfer from microorganisms to higher plants. Plant Cell Rep. 3: 60–64, 1984.

    CAS  Google Scholar 

  48. Hain R et al.: Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol. Gen. Genet. 199: 161–168, 1985.

    Article  CAS  Google Scholar 

  49. Herrera-Estrella L et al.: Agrobacterium as a vector for the introduction of genes into plants. In: Plant Genetic Engineering, JH Dodds (ed.), Cambridge University Press, Cambridge, pp. 61–93, 1985.

    Google Scholar 

  50. Hoffmann F and Adach T: Arabidobrassica: Chromosomal recombination and morphogenesis in asymmetric intergeneric hybrid cells. Planta (Beri.) 153: 586–593, 1981.

    Article  Google Scholar 

  51. Horsch RB et al.: Inheritance of functional foreign genes in plants. Science 223: 496–498, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Horsch RB et al.: A simple and general method for transferring genes into plants. Science 227: 1229–1281, 1985.

    Article  CAS  Google Scholar 

  53. Johnsson H: Cytological studies of diploid and triploid Populus tremula and of crosses between them. Hereditas 26: 321–352, 1940.

    Article  Google Scholar 

  54. Karnosky DF, AM Diner and WM Barnes: A model for gene transfer in conifers: European larch and Agrobacterium. This volume.

    Google Scholar 

  55. Klee HJ, MF Yanofsky and EW Nester: Vectors for transformation of higher plants. Bio/Technology 3: 637–642, 1985.

    Article  CAS  Google Scholar 

  56. Klee, H, R. Horsch and S Rogers: Agrobacterium-mediated plant transformation and its further applications to plant biology. Ann. Rev. Plant Physiol. 38: 467–486, 1987.

    Article  CAS  Google Scholar 

  57. Knott DR: The inheritance of rust resistance. IV. The transfer of stem rust resistance from Agropyron elongatum to common wheat. Can. J. PI. Sei. 41: 109–123, 1961.

    Article  Google Scholar 

  58. Koncz C and J Schell: The promotors of T-L-DNA gene 5 controls the tissue-specific expression of chimerics carried by anovel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396, 1986.

    Article  CAS  Google Scholar 

  59. Krumbiegel G and O Schieder: Selection of Somatic hybrids after fusion of protoplasts from Datura innoxia Mill and Atropa belladonna L. Planta (Beri) 145: 371–375, 1979.

    Article  Google Scholar 

  60. Lörz H, B Baker and J Schell: Gene transfer to cereal cells mediated by protoplast transformation. Mol Gen. Genet. 199: 178–182, 1985.

    Article  Google Scholar 

  61. Lemmers M et al.: Genetic identifications of functions of TL-DNA transenpts in octopine crown gall. EMBO J. 1: 147–152, 1980.

    Google Scholar 

  62. Lloyd AM et al.: Transformation of Arabidopsis thaliana with Agrobacterium tumefaciens. Science 234: 464–466, 1986.

    Article  PubMed  CAS  Google Scholar 

  63. Martin FW: Frosty spot. A developmental disturbance of tomato leaf. Ann. Bot. 30: 701–709, 1966.

    Google Scholar 

  64. Mattila RE: On the production of tetraploid hybrid aspen by colchicine treatment. Hereditas 47: 631–640, 1961.

    Article  Google Scholar 

  65. McCormick S., J Niedermeyer, J Fry, A Barnason, R Horsch and R Fraley: Leaf disc transformation of cultivated tomato (Lycopersicon esculentum) using Agrobacterium tumefaciens. Plant Cell Rep. 5: 81–84, 1986.

    Article  CAS  Google Scholar 

  66. McCown BH and JA Rüssel: Protoplast culture of hard woods. In Cell and Tissue Culture in Forestry, vol. 2, JM Bonga and DJ Durzan (eds), Martinus Nijhoff Publishers, Dordrecht, pp. 16–30, 1987.

    Google Scholar 

  67. Melchers G: Protoplast fusion, mechanisms and consequences for potato breeding and production of potatoes + tomatoes. In Advances in Protoplast Research, L. Ferency and G.L. Farkas (eds), Pergamon Press, Oxford, pp. 283–286, 1980.

    Google Scholar 

  68. Melchers G, MD Sacristan and AA Holder: Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res. Commun. 43: 203–218, 1978.

    Article  Google Scholar 

  69. Michler CH and BE Haissig: Somaclonal selection of hybrid poplars that tolerate herbicides. This volume.

    Google Scholar 

  70. Nehls R et al.: Development of protoplast fusion products. In: Differentiation of Protoplasts and of Transformed Cells J Reinert and H Binding (eds), Springer Verlag, Berlin, pp. 67–108, 1986.

    Google Scholar 

  71. Nester EW, MP Gordon, RM Amasino and MF Yanofsky: Crown gall: a molecular and physiological analysis. Ann. Rev. Plant Physiol. 35: 387–413, 1984.

    Article  CAS  Google Scholar 

  72. Ohgawara T, H Uchimiya and H Harada: Uptake of liposome-encapsulated plasmid DNA by plant protoplasts and molecular fate of foreign DNA. Protoplasma 116: 145–148, 1983.

    Article  CAS  Google Scholar 

  73. Ooms G, MM Burrell, A Karp and J Hille: Genetic transformation in two potato cultivars with T-DNA from disarmed Agrobacterium. Theor. Appl. Genet. 73: 744–750, 1987.

    Article  CAS  Google Scholar 

  74. Otten L, et al: Mendelian transmission of genes introduced into plants by the Ti-plasmid of Agrobacterium tumefaciens. Mol. Gen. Genet. 183: 209–213, 1981.

    Article  PubMed  CAS  Google Scholar 

  75. Parson TJ, VP Sinkar, RF Stettier, EW Nester and MP Gordon: Transformation of poplar by Agrobacterium tumefaciens. Bio/ Technology 4: 533–536, 1986.

    Google Scholar 

  76. Pijnakar LP, MA Ferwerda, KJ Puite and S Roest: Elimination of Solanum phureja nucleolar chromosomes in S. tuberosum + S. phureja somatic hybrids. Theor. Appl. Genet. 73: 878–882, 1987.

    Article  Google Scholar 

  77. Potrykus I, RD Shillito, M Saul and J Paszkowski: Direct gene transfer-state of the art and future potential. Plant Molec. Biol. Rep. 3: 117–128, 1985.

    Article  CAS  Google Scholar 

  78. Potrykus I, M Saul, I Petruska, J. Paszkowski and RD Schillito: Direct gene transfer to cells of monocots. Mol. Gen. Genet. 199: 183–188, 1985.

    Article  CAS  Google Scholar 

  79. Riemenschneider DE ae al.: Expression of an herbicide tolerance gene in young plants of a transgenic hybrid poplar clone. This volume.

    Google Scholar 

  80. Saylor LC and HA Simons: Karyology of Sequoia sempervirens: karyotype and accessory chromosomes. Cytologia 35: 294–303,

    Google Scholar 

  81. Sears ER: The transfer of leaf-rust resistance from Aegi-lops umbellulata to wheat. Brookhaven Symp. Biol. 9: 1–22, 1956.

    Google Scholar 

  82. Sederoff R, A Stomp, WC Chilton and LW Moore: Gene transfer into loblally pine by Agrovacterium tumefaciens. Bio/ Technology 4: 647–649, 1986.

    CAS  Google Scholar 

  83. Sederoff R, et al: Application of recombinant DNA techniques to pines: a molecular approach to genetic engineering in forestry. In Cell and Tissue Culture in Forestry, vol. 1, JM Bonga and DJ Durzan (eds), Martinus Nijhoff Publishers, Dordrecht, pp. 314–329, 1987.

    Google Scholar 

  84. Schaeffer GW and HH Smith: Auxin-Kinetin interaction in tissue culture of Nicotiana species and tumor conditioned hybrids. Plant Physiol 38: 291–297, 1983.

    Article  Google Scholar 

  85. Schell J, et al: Transfer of foreign genes to plants and its use to study developmental processes. In Cell Fusion, Gene Transfer and Transformation, RF Beers and EG Bassett (eds), Raven Press, New York, pp. 113–128, 1984.

    Google Scholar 

  86. Russel JA and BH McCown: Culture and regeneration of Populus leaf protoplasts isolated from non-seedling tissue. Plant Sci. 46: 133–142, 1986.

    Article  Google Scholar 

  87. Schilperoort RA: Integration, expression and stable transmission through seeds of foreigns in plants. In Genetic Manipulation in Plant Breeding, W Horn, CJ Jensen, W Odenbach and O Schieder (eds), Walter de Gruyter and Co., Berlin, pp. 837–858, 1986.

    Google Scholar 

  88. Schlarbaum SE and T Tsuchiya: A chromosome study of coast redwood, Sequoia sempervirens (D.Don. Endl.). Silvae Genet. 33: 56–62, 1984.

    Google Scholar 

  89. Schroder G et al.: The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Euro. J. Biochem. 138: 387–391, 1983.

    Google Scholar 

  90. Shepard JF et Al.: Genetic transfer in plants through interspecific protoplasts fusion. Science 219: 683–688, 1983.

    Article  PubMed  CAS  Google Scholar 

  91. Smith HH: Plant genetic tumors. Progr. Exptl. Tumor Res. 15: 138–164, 1972.

    CAS  Google Scholar 

  92. Stachel SC, B Timmermann and P Zambryski: Generation of single standed T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens. Nature 322: 706–712, 1985.

    Article  Google Scholar 

  93. Stebbins GL: The Chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95–98, 1948.

    Article  PubMed  Google Scholar 

  94. Stebbins GL: Variation and Evolution in Plants. Columbia Univ. Press, New York, 1950.

    Google Scholar 

  95. Thomashow LS, Reeves S and Thomashow MF: Crown gall oncogenesis: evidence that a T-DNA gene from the Agrobacterium Ti plasmid pTiAG encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Scie. USA, 81: 5071–5075, 1984.

    Article  CAS  Google Scholar 

  96. Thomashow MF, Hugly S, Buchholz W and Thomashow LS: Molecular basis for the auxin independent phenotype of crown gall tumor tissues. Science 231: 616–618, 1986.

    Article  PubMed  CAS  Google Scholar 

  97. Uchimiya H et al.: Expression of foreign gene in callus derived from DNA-treated protoplasts of rice (Oryza sativa L). Molec. Gen. Genet. 204: 204–207, 1986.

    Article  CAS  Google Scholar 

  98. Vaeck M et al.: Transgenic plants protected from insect attack. Nature 328: 33–37, 1987.

    Article  CAS  Google Scholar 

  99. Wicker M: Tumors. In: Cell and Tissue Culture in Forestry, vol. 2, JM Bonga and DJ Durzan (eds), Martinus Nijhoff Publishers, Dordrecht, pp. 374–389, 1987.

    Google Scholar 

  100. Yamada Y, Y Zhi-Qi and T Ding-Tai: Plant regeneration from protoplasts-derived callus of rice (Oryza sativa L.) Plant Cell Rep. 5: 85–88, 1986.

    Article  Google Scholar 

  101. Zymbryski P et al.: Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2: 2143–2150, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ahuja, M.R. (1988). Gene Transfer in Woody Plants: Perspectives and Limitations. In: Ahuja, M.R. (eds) Somatic Cell Genetics of Woody Plants. Forestry Sciences, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2811-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2811-4_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7765-1

  • Online ISBN: 978-94-009-2811-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics