Skip to main content

Cytochrome P450 Evolution and Nomenclature

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

The evolution of cytochromes P450 has been thoroughly discussed in a number of reviews (Nebert and Gonzalez 1987; Nelson and Strobel 1987; Gonzalez and Nebert 1990). All cytochrome P450 proteins possess a non-covalently bound heme (protoporphyrin IX) and segment of 26 amino acids surrounding a cysteine that is highly conserved. This cysteine donates the thiolate fifth ligand to the heme iron. The amino acid environment surrounding the heme results in a typical cytochrome P450 Soret absorption band at around 450 nm when the iron is reduced by electrons and complexed with carbon monoxide. Any enzyme having these properties would be a “card-holding” member of the cytochrome P450 superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bale AE, Mitchell AL, Gonzalez FJ, McBride OW (1991) Localization of the CYP2F1 gene by multi-point linkage analysis and pulsed field gel electrophoresis. Genomics 10: 284–286

    Article  PubMed  CAS  Google Scholar 

  • Brooks B, McBride OW, Dolphin CT, Farrall M, Scambler P, Gonzalez FJ, Idle JR (1988) The gene CYP3 encoding P450PCN1 (nifedipine oxidase) is tightly linked to the gene COLIA2 encoding collagen type I alpha on 7q21–q22.1. Am J Hum Genet 43: 280–284

    PubMed  CAS  Google Scholar 

  • Caporaso N, Landi MT, Vineis P (1991) Relevance of metabolic polymorphisms to human carcinogenesis: evolution of epidemiological evidence. Pharmacogenetics 1: 4–19

    Article  PubMed  CAS  Google Scholar 

  • Dayhoff MO (1979) Atlas of protein sequence and structure, vol 5, suppl 3. National Biomedical Research Foundation, Silver Spring

    Google Scholar 

  • Dover GA (1987) DNA turnover and the molecular clock. J Mol Evol 26: 47–58

    Article  PubMed  CAS  Google Scholar 

  • Dover GA (1989) Slips, strings and species. Trends Genet 5: 100–102

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Gross AS (1990) The genetic polymorphism of debrisoquine/sparteine metabolism - clinical aspects. Pharmacol Ther 46: 377–394

    Article  PubMed  CAS  Google Scholar 

  • Evans DAP (1989) N-acetyltransferase. Pharmacol Ther 47: 152–234

    Google Scholar 

  • Gonzalez FJ (1991) Cytochrome P-450. In: Dulbecco R (ed) Encyclopedia of human biology, vol 2. Academic, New York, p 737

    Google Scholar 

  • Gonzalez FJ, Nebert DW (1990) Evolution of the P450 gene superfamily: animal plant “warfare”, molecular drive and human genetic differences in drug oxidation. Trends Genet 6: 182–186

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Matsunaga T, Nagata K, Meyer UA, Nebert DW, Pastekwa J, Kozak CA, Gillette J, Gelboin HV, Hardwick JP (1987) Debrisoquine 4-hydroxylase: characterization of a new P450 gene subfamily, regulation, chromosome mapping, and molecular analysis of the DA rat polymorphism. DNA 6: 149–161

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez FJ, Crespi CL, Gelboin HV (1991) cDNA-expressed human cytochrome P450: a new age of molecular toxicology and human risk assessment. Mutat Res 247: 113–127

    Google Scholar 

  • Matsunaga E, Zeugin T, Zanger UM, Aoyama T, Meyer UA, Gonzalez FJ (1990) Sequence requirements for cytochrome P450IID1 catalytic activity: a single amino acid change (IIe380 → Phe) specifically decreases Vmax of the enzyme for bufuralol but not debrisoquine hydroxylation. J Biol Chem 265: 17197–17201

    PubMed  CAS  Google Scholar 

  • Motulsky AG (1964) Pharmacogenetics. Prog Med Genet 3: 49–100

    CAS  Google Scholar 

  • Nebert DW (1991) Proposed role of drug-metabolizing enzymes: regulation of steady-state levels of the ligands that effect growth, homeostasis, differentiation and neuroendocrine functions. Mol Endocrinol 5: 1203–1214

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Gonzalez FJ (1985) Cytochrome P-450 gene expression and regulation. Trends Pharmacol Sci 6: 160–164

    Article  Google Scholar 

  • Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution and regulation. Annu Rev Biochem 56: 945–993

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Nelson DR (1991) P450 gene nomenclature based on evolution. Methods Enzymol 206: 3–11

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Weber WW (1990) Pharmacogenetics. In: Pratt WB, Taylor P (eds) Principles of drug action. The basis of pharmacology, 3rd edn. Churchill Livingstone, New York, pp 469–531

    Google Scholar 

  • Nebert DW, Nelson DR, Feyereisen R (1989) Evolution of the cytochrome P450 genes. Xenobiotica 19: 1149–1160

    Article  PubMed  CAS  Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Strobel HW (1987) Evolution of cytochrome P-450 proteins. Mol Biol Evol 4: 572–593

    PubMed  CAS  Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12: 1–70

    Article  PubMed  CAS  Google Scholar 

  • Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5′ regulatory and deduced amino acid sequences of P-450BM3, a single peptide cytochrome P-450: NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264: 10987–10995

    PubMed  CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San Francisco.

    Google Scholar 

  • Van Etten HD, Mathews DE, Mathews PS (1989) Phytoalexin detoxification: importance for the pathogenicity and practical implications. Annu Rev Phytopathol 27: 143–164.

    Article  Google Scholar 

  • Williams RT (1974) Inter-species variations on the metabolism of xenobiotics. Biochem Soc Trans 2: 359–377

    CAS  Google Scholar 

  • Yamano S, Aoyama T, McBride OW, Hardwick JP, Gelboin HV, Gonzalez FJ (1989) Human NADPH-P450 oxidoreductase: complementary DNA cloning, sequence and vaccinia virus-mediated expression and localization of the CYPOR gene to chromosome 7. Mol Pharmacol 35: 83–88

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gonzalez, F.J. (1993). Cytochrome P450 Evolution and Nomenclature. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics