Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Although precise data are difficult to obtain, it is worthwhile to attempt to quantify the safety experience so far obtained with MRI. Using market research data it can be inferred that more than 100 000 000 diagnostic MR studies have been performed worldwide between the introduction of clinical MRI in the early 1980s and the end of 1996. The number of reported serious complications resulting from these studies is relatively small. A brief literature review finds reports of seven deaths attributed to MR scanning — one during examination for cerebral infarction (Gangarosa et al. 1987), one involving a ferromagnetic cerebral aneurysm clip (Klucznik et al. 1993; Kanal and Shellock 1993) and five related to inadvertent scanning of patients with cardiac pacemakers (Gimbel et al. 1996a). Anaphylactoid reactions to intravenous MR contrast agents have been estimated to occur in the range of 1:100 000 to 1:500 000 (Shellock and Kanal 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abele MG, Jensen JH, Rusinek H (1995) Open permanent magnet for surgical applications, (abstract) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1154

    Google Scholar 

  • Bakker CJG, Bhagwandien R, Moerland MA (1993) 3D analysis of susceptibility artifacts in spin-echo and gradient-echo magnetic resonance imaging, (abstract) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 746

    Google Scholar 

  • Barold SS, Zipes DP (1997) Cardiac pacemakers and antiarrhythmic devices. In: Braunwald E (ed) Heart disease: a textbook of cardiovascular medicine. Saunders, Philadelphia, pp 705

    Google Scholar 

  • Barold SS, Zipes DP (1997) Cardiac pacemakers and antiarrhythmic devices. In: Braunwald E (ed) Heart disease: a textbook of cardiovascular medicine. Saunders, Philadelphia, pp 741

    Google Scholar 

  • Becker RL, Norfray JF, Teitelbaum GP, Bradley WG Jr, Jacobs JB, Wacaser L, Rieman RL (1988) MR imaging in patients with intracranial aneurysm clips. Am J Neuroradiol 9:885–889

    PubMed  CAS  Google Scholar 

  • Bhagwandien R (1994) Object induced geometry and intensity distortions in magnetic resonance imaging. PhD thesis, University of Utrecht, Utrecht, The Netherlands

    Google Scholar 

  • Bhagwandien R, Van Ee R, Beermsa R, Bakker CJG, Moerland MA, Lagendijk JJW (1992) Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distributions in 2D. Magn Reson Imaging 10:299–313

    Article  PubMed  CAS  Google Scholar 

  • Bhagwandien R, Moerland MA, Bakker CJG, Beermsa R, Lagendijk JJW (1994) Numerical analysis of the magnetic field for arbitrary magnetic susceptibility distribution in 3D. Magn Reson Imaging 12:101–107

    Article  PubMed  CAS  Google Scholar 

  • Buef O, Crémillieux Y, Briguet A, Lissac M, Coudert JL (1993) Correlation between magnetic susceptibility and image disturbances caused by prosthetic materials, (abstract) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 805

    Google Scholar 

  • Budinger TF (1979) Threshold for physiological effects due to rf and magnetic fields used in NMR imaging. IEEE Trans Nucl Sci 26:2821–2825

    Article  Google Scholar 

  • Budinger TF (1981) Nuclear magnetic resonance (NR) in vitro studies: known thresholds for health effects. J Comput Assist Tomogr 5:800–811

    Article  PubMed  CAS  Google Scholar 

  • Camacho CR, Plewes DB, Henkelman RM (1995) Nonsusceptibility artifacts due to metallic objects in MR imaging. J Magn Reson Imaging 5:75–78

    Article  PubMed  CAS  Google Scholar 

  • Chang H, Fitzpatrick JM (1992) A technique for accurate magnetic resonance imaging in the presence of field inhomo-geneities. IEEE Trans Med Imaging 11:319–329

    Article  PubMed  CAS  Google Scholar 

  • Chou C-K, McDougall JA, Chan KW (1997) RF heating of implanted spinal fusion stimulator during magnetic resonance imaging. IEEE Trans Biomed Eng 44:367–373

    Article  PubMed  CAS  Google Scholar 

  • Clayman DA, Murakami ME, Vines FS (1990) Compatibility of cervical spine braces with MR imaging: a study of nine nonferrous devices. Am J Neuroradiol 11:385–390

    PubMed  CAS  Google Scholar 

  • Condon B, Hadley D (1997) Errors in MRI stereotaxy due to undetected extraneous metal objects, (abstracts) Proceedings of International Society for Magnetic Resonance in Medicine, Berkeley, Calif., p 260

    Google Scholar 

  • Derosier C, Delegue G, Munier T, Pharboz C, Cosnard G (1991) IRM, distorsion géométrique de l’image et stéréotaxic (MRI, geometric distortion of the image and stereotaxy). J Radiol 72:349–353

    PubMed  CAS  Google Scholar 

  • Erhard P, Chen W, Lee J-H, Ugurbil K (1995) A study of effects reported by subjects at high magnetic fields, (abstracts) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1219

    Google Scholar 

  • Gangarosa RE, Minnis JE, Nobbe J, Praschan D, Genberg RW (1987) Operational safety issues in MRI. Magn Reson Imaging 5:287–292

    Article  PubMed  CAS  Google Scholar 

  • Geddes LA, Baker LE (1989) Principles of applied biomedical instrumentation, 3rd edn. Wiley, New York, pp 848–872

    Google Scholar 

  • Gehl H-B, Frahm C, Melchert UH, Weiss H-D (1995) Suitability of different MR-compatible needles and magnet designs for MR-guided punctures, (abstracts) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1156

    Google Scholar 

  • Gimbel JR, Lorig RJ, Wilkoff BL (1996a) Survey of magnetic resonance imaging in pacemaker patients. HeartWeb 1(1) http://webaxis.com/heartweb/

    Google Scholar 

    Google Scholar 

  • Gimbel JR, Johnson D, Levine PA, Wilkoff BL (1996b) Safe performance of magnetic resonance imaging on five patients with permanent cardiac pacemakers. PACE Pacing Clin Electrophysiol 19:913–919

    Article  PubMed  CAS  Google Scholar 

  • Goyan JE (1980) Medical devices: procedures for investigational device exemptions. Fed Regist 45:3732–3759

    Google Scholar 

  • Greenwald RA, Ryan MK, Mulvihill JE (1982) Human subjects research: a handbook for institutional review boards. Plenum, New York

    Google Scholar 

  • Gundaker WE (1982) Guidelines for evaluating electromagnetic risks for trials of clinical NMR systems. US Food and Drug Administration, Rockville, Md.

    Google Scholar 

  • Haramati N, Penrod B, Staron RB, Barax CN (1994) Surgical sutures: MR artifacts and sequence dependence. J Magn Reson Imaging 4:209–211

    Article  PubMed  CAS  Google Scholar 

  • International Electrotechnical Commission (1995) International standard. Part 2, Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. CEI/IEC 601-2-33. International Electrotechnical Commission, Geneva, Switzerland

    Google Scholar 

  • Inbar S, Larson J, Burt T, Mafee M, Ezri MD (1993) Case report: nuclear magnetic resonance imaging in a patient with a pacemaker. Am J Med Sci 305:174–175

    Article  PubMed  CAS  Google Scholar 

  • Jin JM, Chen J, Chew WC, Gan H, Magin RL, Dimbylow PJ (1996) Computation of electromagnetic fields for high-frequency magnetic resonance imaging applications. Phys Med Biol 41:2719–2738

    Article  PubMed  CAS  Google Scholar 

  • Jolesz FA, Shtern F (1992) The operating room of the future: report of the National Cancer Institute Workshop — imaging-guided stereotactic tumor diagnosis and treatment. Invest Radiol 27:326–328

    Article  PubMed  CAS  Google Scholar 

  • Kagetsu NJ, Litt AW (1991) Important considerations in measurement of attractive force on metallic implants in MR imagers. Radiology 179:505–508

    PubMed  CAS  Google Scholar 

  • Kanal E, Shellock F (1993) MR imaging of patients with intracranial aneurysm clips. Radiology 187:612–614

    PubMed  CAS  Google Scholar 

  • Kanal E, Shellock FG, Lewin JS (1996) Aneurysm clip testing for ferromagnetic properties: clip variability issues. Radiology 200:576–578

    PubMed  CAS  Google Scholar 

  • Karlik SJ, Heatherley T, Pavan F, Stein J, Lebron F, Rutt B, Carey L, Wexler R, Gelb A (1988) Patient anesthesia and monitoring at a 1.5-T MRI installation. Magn Reson Med 7:210–221

    Article  PubMed  CAS  Google Scholar 

  • Klucznik PA, Carrier DA, Pyka R, Haid RW (1993) Placement of a ferromagnetic intracerebral aneurysm clip in a magnetic field with a fatal outcome. Radiology 187:855–856

    PubMed  CAS  Google Scholar 

  • Knopp MV, Essig M, Debus J, Zabel H-J, van Kaick G (1996) Unusual burns of the lower extremities caused by a closed conducting loop in a patient at MR imaging. Radiology 200:572–575

    PubMed  CAS  Google Scholar 

  • Kondziolka D, Dempsey PK, Lunsford LD, Kestle JRW, Dolan EJ, Kanal E, Tasker RW (1992) A comparison between magnetic resonance imaging and computed tomography for stereotactic coordinate determination. Neurosurgery 30:402–407

    Article  PubMed  CAS  Google Scholar 

  • Lenz G, Dewey C (1995) Study of new titanium alloys for interventional MRI procedures, (abstracts) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1159

    Google Scholar 

  • Lewin JS, Duerck JL, Haaga JR (1995) Needle localization in MR guided therapy: effect of field strength, sequence design, and magnetic field orientation, (abstracts) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1155

    Google Scholar 

  • Lüdeke KM, Röschmann P, Tischler R (1985) Susceptibility artifacts in MR imaging. Magn Reson Imaging 3:329–343

    Article  PubMed  Google Scholar 

  • Lufkin R, Teresi L, Chiu L, Hanfee W (1988) A technique for MR-guided needle placement. Am J Roentgenol 151:193–196

    CAS  Google Scholar 

  • Miller G (1987) Exposure guidelines for magnetic fields. Am Ind Hyg Assoc J 48:957–968

    Article  PubMed  CAS  Google Scholar 

  • National Radiological Protection Board (NRPB) (1980) Exposure to nuclear magnetic resonance clinical imaging. Radiography 47:258–260

    Google Scholar 

  • National Radiological Protection Board (NRPB) (1982) Revised guidance on acceptable limits of exposure during nuclear magnetic resonance clinical imaging. Br J Radiol 56:974–977

    Google Scholar 

  • New PFJ, Rosen BR, Brady TJ, Buonanno FS, Kistler JP, Burt CT, Hinshaw WS, Newhouse JH, Pohost GM,Traveras JM (1983) Potential hazards and artifacts of ferromagnetic and non-ferromagnetic surgical and dental materials and devices in nuclear magnetic resonance imaging. Radiology 147: 139–148

    PubMed  CAS  Google Scholar 

  • Parker JE, Bettman MA (1996) Angiographic contrast media. In: Taveras M, Ferrucci JT (eds) Radiology: diagnosis-imaging-intervention. (Vascular Radiology, vol 2) Lippincott-Raven, Philadelphia

    Google Scholar 

  • Pavlicek W, Geisinger M, Castle L, Borkowski GP, Meaney TF, Bream BL, Gallagher JH (1983) The effects of nuclear magnetic resonance on patients with cardiac pacemakers. Radiology 147:149–153

    PubMed  CAS  Google Scholar 

  • Peden CJ, Collins AG, Butson PC, Whitwam JG, Young IR (1993) Induction of microcurrents in critically ill patients in magnetic resonance systems. Crit Care Med 21:1923–1928

    Article  PubMed  CAS  Google Scholar 

  • Phillips ML (1990) Industrial hygiene investigation of static magnetic fields in nuclear magnetic resonance facilities. Appl Occup Environ Hyg 5:353–358

    Google Scholar 

  • Pohost GM, Blackwell GG, Shellock FG (1992) Safety of patients with medical devices during application of magnetic resonance methods. In: Magin RL, Liburdy RP, Persson B (eds) Biological and safety aspects of nuclear magnetic resonance imaging and spectroscopy. (Proceedings of the New York Academy of Science, vol 649) New York Academy of Sciences, New York, pp 302–312

    Google Scholar 

  • Randolph WF (1982) Guidelines for evaluating electromagnetic exposure risk for trials of clinical NMR systems: availability. Fed Regist 47:11972–11973

    Google Scholar 

  • Richmond JB (1981) Final regulations amending basic HHS policy for the protection of human research subjects. Fed Regist 46:8366–8392

    Google Scholar 

  • Saunders RD, Smith H (1984) Safety aspects of NMR clinical imaging. Br Med Bull 40:148–154

    PubMed  CAS  Google Scholar 

  • Schaefer DJ (1988) Safety aspects of magnetic resonance imaging. In: Wehrli FW, Shaw D, Kneeland JB (eds) Biomedical magnetic resonance imaging: principles, methodology, and applications. VCH Verlagsgesellschaft, Weinheim, pp 553–578

    Google Scholar 

  • Schenck JF (1992) Health and physiological effects of human exposure to whole-body four-tesla fields during MRI. In: Magin RL, Liburdy RP, Persson B (eds) Biological and safety aspects of nuclear magnetic resonance imaging and spectroscopy. (Proceedings of the New York Academy of Sciences, vol 649) New York Academy of Science, New York, pp 285–301

    Google Scholar 

  • Schenck, JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: magnetic field compatibility of the first and second kinds. Med Phys 23:815–850

    Article  PubMed  CAS  Google Scholar 

  • Schenck JF, Dumoulin CL, Redington RW, Kressel HY, Elliott RT, McDougall IL (1992) Human exposure to 4.0 tesla magnetic fields in a whole-body scanner. Med Phys 19:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Schenck JF, Jolesz FA, Roemer PB, et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195:805–814

    PubMed  CAS  Google Scholar 

  • Shellock FG (1988) MR imaging of metallic implants and materials: a compilation of the literature. Am J Radiol 151:811–814

    CAS  Google Scholar 

  • Shellock FG, Curtis JS (1990) MR imaging and biomedical implants. Materials, and devices: an updated review. Radiology 180, 541–550

    Google Scholar 

  • Shellock FG, Kanal E (1993) Re: metallic foreign bodies in the orbits of patients undergoing MR imaging: prevalence and value of radiography and CT before MR. Am J Radiol 162:985–986

    Google Scholar 

  • Shellock FG, Kanal E (1996) Magnetic resonance: bioeffects, patient safety, and patient management, 2nd edn. Lippincott-Raven, Philadelphia, pp 102–11

    Google Scholar 

  • Shellock FG, Morisoli S, Kanal E (1993) MR procedures and biomedical implants, materials, and devices: 1993 update. Radiology 189:587–599

    PubMed  CAS  Google Scholar 

  • Smith AS, Hurst GC, Duerk JL, Diaz PJ (1991) MR of ballistic materials — imaging artifacts and potential hazards. Am J Neuroradiol 12:567–572

    PubMed  CAS  Google Scholar 

  • Sumanaweera T, Napel S, Glover G, Song S (1993) A new method to quantify the geometric accuracy of MRI in tissue using MRI itself, (abstract) Proceedings of Magnetic Resonance, Berkeley, Calif., p 745

    Google Scholar 

  • Sumanaweera T, Glover G, Song S, Adler J, Napel S (1994) Quantifying MRI geometric distortion in tissue. J Magn Reson 31:40–47

    Article  CAS  Google Scholar 

  • Sumanaweera TS, Glover GH, Hemler PF, van den Elsen PA, Martin D, Adler JR, Napel S (1995) Geometric distortion correction for improved frame-based stereotaxic target localization accuracy. Magn Reson Med 34:106–114

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum GP, Bradley WG Jr, Klein BD (1988) MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents, and coils. Radiology 166:657–664

    PubMed  CAS  Google Scholar 

  • US Food and Drug Administration (1988) Guidance for content and review of a magnetic resonance diagnostic device 510(k) application. Silver Spring, Md.

    Google Scholar 

  • Villforth JC (1982) Guidelines for evaluating electromagnetic exposure risk for trials of clinical NMR systems. US Food and Drug Administration, Rockville, Md.

    Google Scholar 

  • Vogl TJ, Mack MG, Müller P, et al (1995) Recurrent nasopharyngeal tumors: preliminary clinical results with interventional MR imaging-controlled laser-induced thermotherapy. Radiology 196:725–733

    PubMed  CAS  Google Scholar 

  • Wildermuth S, Debatin JF, Leung DA, et al. (1995) MR-guided percutaneous intravascular interventions: in vivo assessment of potential applications, (abstracts) Proceedings of Society of Magnetic Resonance, Berkeley, Calif., p 1161

    Google Scholar 

  • Williamson MR, Espinosa MC, Boutin RD, Orrison WW Jr, Hart BL, Kelsey CA (1994) Metallic foreign bodies in the orbits of patients undergoing MR imaging: prevalence and value of radiography and CT before MR. Am J Radiol 162:981–983

    CAS  Google Scholar 

  • Young FE (1988) Magnetic resonance diagnostic device: panel recommendation and report on petitions for MR reclassification. Fed Regist 53:7575–7579

    Google Scholar 

  • Yuh WTC, Hanigan MT, Nerad JA, Ehrhardt JC, Carter KD, Kardon RH, Shellock FG (1991) Extrusion of eye socket magnetic implant after MR imaging: potential hazard to patient with eye prosthesis. Magn Reson Imaging 1:711–713

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schenck, J.F. (1998). Safety Issues in the MR Environment. In: Debatin, J.F., Adam, G. (eds) Interventional Magnetic Resonance Imaging. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60272-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60272-6_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-64329-3

  • Online ISBN: 978-3-642-60272-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics