Skip to main content

Dynamic Effects in Real-Time Responses of Motion Sensitive Neurones

  • Chapter
Motion Vision
  • 185 Accesses

Abstract

Bialek et al. (1991) put the theme of the present part on encoding dynamic information very succinctly: “Traditional approaches to neural coding characterize the encoding of known stimuli in average neural responses. Organisms face nearly the opposite task-extracting information about an unknown time-dependent stimulus from short segments of a spike train”. Warzecha and Egelhaaf review their elegant experiments dealing with these difficult and topical issues. This article is intended to complement their efforts by reviewing literature and ideas that their work has made important again with a particular focus on adaptive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D (1991) Reading a neural code. Science 252: 1854–1857

    Article  PubMed  CAS  Google Scholar 

  • Borst A, Egelhaaf M (1987) Temporal modulation of luminance adapts time constant of fly movement detectors. Biol Cybem 56: 209–215

    Article  Google Scholar 

  • Bruckstein AM, Morf M, Zeevi YY (1983) Demodulation methods for an adaptive neural encoder model. Biol Cybem 49: 45–53

    Article  CAS  Google Scholar 

  • Collett TS, Blest AD (1966) Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature 212: 1330–3

    Article  PubMed  CAS  Google Scholar 

  • de Ruyter van Steveninick RR, Zaagman WH, Mastebroek HAK (1986) Adaptation of transient responses of a motion-sensitive neuron in the visual system of the blowflyCalliphora erythrocephala.Biol Cybem 54: 223–236

    Article  Google Scholar 

  • Dubois R (1993) Visual processing of motion in the medulla of the butterflyPapilio aegeus.PhD, Australian National University

    Google Scholar 

  • Dunstan G, McRuer D (1961) Analysis of nonlinear control systems. Wiley, New York

    Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6: 116–127

    Article  PubMed  CAS  Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybem 56: 69–87

    Article  Google Scholar 

  • Emerson RC, Bergen JR, Adelson EH (1992) Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Res 32: 203–218

    Article  PubMed  CAS  Google Scholar 

  • Gabor D (1946) Theory of communication. J IEE 93: 429–457

    Google Scholar 

  • Gestri G, Masebroek HAK, Zaagman WH (1980) Stochastic constancy, variability and adaptation of spike generation: performance of a giant neuron in the visual system of the fly. Biol Cybem 38: 31–40

    Article  Google Scholar 

  • Giaschi D, Marlin RDS, Cynader M (1993) The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. J Neurophysiol 70: 2024–2034

    PubMed  CAS  Google Scholar 

  • Harris RA, Otarroll DC, Laughlin SB (1999) Adaptation and the temporal delay filter of fly motion detectors. Vision Res 39: 2603–2613

    Article  PubMed  CAS  Google Scholar 

  • Howard J, Dubs A, Payne R (1984) The dynamics of phototransduction in insects. J Comp Physiol A 154: 707–718

    Article  Google Scholar 

  • Ibbotson MR, Clifford CW, Mark RF (1998) Adaptation to visual motion in directional neurons of the nucleus of the optic tract. J Neurophysiol 79: 1481–1493

    PubMed  CAS  Google Scholar 

  • Ibbotson MR, Maddess T (1994) Temporalfrequencyand binocularity govern adaptation of the human oculomotor system. Exp Brain Res 99: 148–154

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson MR, Maddess T, Dubois RA (1991) A system of insect neurons sensitive to horizontal and vertical image motion connects the medulla and midbrain. J Comp Physiol 169: 355–367

    Article  Google Scholar 

  • James AC (1992) Nonlinear operator network models of processing in the fly lamina. In: Pinter RB, Nabet V (eds) Nonlinear Vision. CRC Press, Boca Raton, pp 39–73

    Google Scholar 

  • Kirschfeld K (1989) Automatic gain control in the movement detection of the fly. Naturwiss 76: 378–380

    Article  Google Scholar 

  • Lorenceau J (1987) Recovery from contrast adaptation: effects of spatial and temporal frequency. Vision Res 27: 2185–2191

    Article  PubMed  CAS  Google Scholar 

  • Maddess T (1985) Adaptive processes affecting the response of the motion sensitive neuron H1. Proc Int Conf Cybern and Society, Tucson, pp 862–866

    Google Scholar 

  • Maddess T (1986) Afterimage-like effects in the motion-sensitive neuron H1. Proc Roy Soc Lond B 228: 433–459

    Article  CAS  Google Scholar 

  • Maddess T, Dubois RA, Ibbotson M (1991) Response properties and adaptation of neurons sensitive to image motion in the butterflyPapillio aegeus.J Exp Biol 161: 171–199

    Google Scholar 

  • Maddess T, Ibbotson MR (1992) Human ocular following responses are plastic: evidence for control by temporal frequency-dependent cortical adaptation. Exp Brain Res 91: 525–538

    Article  PubMed  CAS  Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc Roy Soc Lond B 225: 251–275

    Article  Google Scholar 

  • Maddess T, McCourt ME, Blakeslee B, Cunningham RB (1988) Factors governing the adapta-tion of cells in Area-17 of the cat visual cortex. Biol Cybern 59: 229–236

    Article  PubMed  CAS  Google Scholar 

  • Maddess T, Vidyasagar TR (1992) Evidence that the adaptive gain control exhibited by neurons of the striate visual cortex is a co-operative network property. Proc Aus Conf Neural Net 3: 84–87

    Google Scholar 

  • Marmarelis PZ, McCann GD (1973) Development and application of white-noise modeling techniques for studies of insect visual nervous system. Kybernetik 12: 74–89

    Article  PubMed  CAS  Google Scholar 

  • Mastebroek H (1974) Stochastic structure of neural activity in the visual system of the blowfly. Doctorate, University of Groningen

    Google Scholar 

  • McCann GD (1974) Nonlinear identification theory models for successive stages of visual nervous systems of flies. J Neurophysiol 37: 869–895

    PubMed  CAS  Google Scholar 

  • McKee SP, Silverman GH, Nakayama K (1986) Precise velocity discrimination despite random variations in temporal frequency and contrast. Vision Res 26: 609–619

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Principles of sensory communication. Wiley, New York, pp 303–307

    Google Scholar 

  • Shi J, Horridge GA (1991) The Hl neuron measures change in velocity irrespective of contrast frequency, mean velocity or velocity modulation frequency. Proc Roy Soc Lond B 331: 205–211

    Google Scholar 

  • Vandenbussche E, Orban GA, Maes H (1986) Velocity discrimination in the cat. Vision Res 26:1835–1849

    Article  PubMed  CAS  Google Scholar 

  • Victor JD (1988) The dynamics of the cat retinal Y cell subunit. J Physiol 405: 289–320

    PubMed  CAS  Google Scholar 

  • Zaagman WH, Mastebroek HAK, de Ruyter van Steveninck R (1983) Adaptive strategies in fly vision: on their image-processing qualities. IEEE Trans Sys Man Cybern 13: 900–906

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maddess, T. (2001). Dynamic Effects in Real-Time Responses of Motion Sensitive Neurones. In: Zanker, J.M., Zeil, J. (eds) Motion Vision. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56550-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56550-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62979-2

  • Online ISBN: 978-3-642-56550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics