Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

The classical Ornstein–Uhlenbeck process \(\{X_t,t\ge 0\}\), starting from \(x\in R^d\), is a solution of linear equation.

$$\begin{aligned} X_t=x+B_t-c\int \limits ^{t}_{0}X_s\text{d}s, \quad t\ge 0, \end{aligned}$$
(5.1)

where \(c>0\) and \(\{B_t,t\ge 0\}\) is a standard d-dimensional Brownian motion. It is uniquely solved by

$$\begin{aligned} X_t=e^{-ct}x+\int \limits ^{t}_{0}e^{-c(t-s)}\text{d}B_s, \quad t\ge 0, \end{aligned}$$

where the last integral is a Wiener stochastic integral. We easily find that

$$\begin{aligned} \fancyscript{L}(X_t)=G_{e^{-ct}x,\frac{1}{2c}\left(1-e^{-2ct}\right)I_{d}} \Rightarrow G_{0,\frac{1}{2c}I_d}, \end{aligned}$$

as \(t\rightarrow \infty \), where \(I_d\) is an identity \(d\times d\) matrix.

If we replace \(\{B_t,t\ge 0\}\) in (5.1) by an arbitrary Lévy process \(\{Z_t,t\ge 0\}\) with the triplet \((a,A,\Pi )\) of Lévy characteristics and the characteristic exponent \(\varphi (z)=-\log Ee^{i\langle z,X_1\rangle }\), the solution

$$\begin{aligned} X_t=e^{-ct}x+\int \limits ^{t}_{0}e^{-c(t-s)}\text{d}Z_s, \quad t\ge 0 \end{aligned}$$
(5.2)

is called the starting from \(x\in R^d\) Ornstein–Uhlenbeck type process generated by \((a,A,\Pi ,c)\).

The integral in (5.2) is defined analogously to the Wiener integral through converging in probability integral sums (see, e.g., [1]).

If we write

$$\begin{aligned} P_t(x,B)=\mathrm P \left\{ X_t\in B\right\} , \quad x\in R^d, \quad B\in \fancyscript{B}(R^d), \quad t\ge 0, \end{aligned}$$

it can be proved (see [2]) that

$$\begin{aligned} \int \limits _{R^d}e^{i\langle z,y\rangle }P_t(x,\text{d}y)=\exp \left\{ ie^{-ct}\langle x,z\rangle -\int \limits ^{t}_{0}\varphi (e^{-cs}z)\text{d}s\right\} , \quad x,z\in R^d, \quad t\ge 0, \end{aligned}$$

implying that \(P_t(x,\cdot )\) is an infinitely divisible probability measure with the triplet \((a_{t,x},A_t,\Pi _t)\) of Lévy characteristics given by the formulas:

$$\begin{aligned} A_t=\int \limits ^{t}_{0}e^{-2cs}\text{d}sA, \quad t\ge 0 \end{aligned}$$
$$\begin{aligned} \Pi _t(B)=\int \limits _{R^d_0}\int \limits ^{t}_{0}1_B(e^{-cs}y)\text{d}s\Pi (\text{d}y), \quad B\in \fancyscript{B}(R^d_0), \quad t\ge 0, \end{aligned}$$

and

$$\begin{aligned} \begin{array}{ll} a_{t,x}&=e^{-ct}x+\int \limits ^{t}_{0}e^{-cs}\text{d}s\\&\quad +\int \limits _{R^d_0}\int ^{t}_{0}e^{-cs}y\left(1_{\{e^{-cs}|y|\le 1\}}-1_{\{|y|\le 1\}}\right)\text{d}s\Pi (\text{d}y), \quad t\ge 0, \quad x\in R^d. \end{array} \end{aligned}$$

Because

$$\begin{aligned}&\int \limits _{R^d}\int \limits _{R^d}e^{i\langle z,w\rangle }P_s(y,\text{d}w)P_t(x,\text{d}y)\\&\qquad =\int \limits _{R^d}\exp \left\{ i\langle y,e^{-cs}z\rangle -\int \limits ^{s}_{0}\varphi (e^{-cr}z)\text{d}r\right\} P_t(x,\text{d}y)\\&\qquad =\exp \left\{ i\langle x, e^{-c(t+s)}z\rangle -\int \limits ^{s}_{0}\varphi (e^{-c(r+s)}z)\text{d}r-\int \limits ^{t}_{0}\varphi (e^{-cr}z)\text{d}r\right\} \\&\qquad =\int \limits _{R^d}e^{i\langle z,w\rangle }P_{t+s}(x,\text{d}w), \end{aligned}$$

\(P_t(x,B)\), \(t\ge 0\), \(x\in R^d\), \(B\in \fancyscript{B}(R^d)\), satisfies the Chapman–Kolmogorov identity

$$\begin{aligned} \int \limits _{R^d}P_t(x,\text{d}y)P_s(y,B)=P_{t+s}(x,B) \end{aligned}$$

as the transition probability function of the time homogeneous Markov process \(X\).

It is known (see [26]) that, as \(t\rightarrow \infty \), for each \(x\in R^d\)

$$\begin{aligned} P_t(x,\cdot )\Rightarrow \tilde{\mu }_c \end{aligned}$$

if and only if

$$\begin{aligned} \int \limits _{\{|y|>2\}}\log |y|\Pi (\text{d}y)<\infty , \end{aligned}$$
(5.3)

where the limit distribution \(\tilde{\mu }_c\) satisfies

$$\begin{aligned} \int \limits _{R^d}e^{i\langle z,y\rangle }\tilde{\mu }_c(\text{d}y)=\exp \left\{ -\int \limits ^{\infty }_{0}\varphi (e^{-cs}z)\text{d}s\right\} , \quad z\in R^d. \end{aligned}$$
(5.4)

The distribution \(\tilde{\mu }_c\) is self-decomposable with the triplet of Lévy characteristics \((\tilde{a}_c,\tilde{A}_c,\tilde{\Pi }_c)\), where

$$\begin{aligned} \tilde{a}_c=\frac{1}{c}a+\frac{1}{c}\int \limits _{\{|y|>1\}}\frac{y}{|y|}\Pi (\text{d}y), \end{aligned}$$
$$\begin{aligned} \tilde{A}_c=\frac{1}{2c}A \end{aligned}$$

and

$$\begin{aligned} \tilde{\Pi }_c(B)=\frac{1}{c}\int \limits _{R^d}\int \limits ^{\infty }_{0}1_B\left(e^{-s}y\right)\text{d}s\Pi (\text{d}y), \quad B\in \fancyscript{B}(R^d_0). \end{aligned}$$

There is one-to-one continuous in the topology of weak convergence correspondence between the class \(ID_{\log }(R^d)\) of infinitely divisible distributions, satisfying the integrability assumption (5.3), and the class of self-decomposable distributions \(L(R^d)\). It is given by the mapping

$$\begin{aligned} ID_{\log }(R^d)\ni \mu =\fancyscript{L}(Z_1)\leftrightarrow \fancyscript{L}\left(\int \limits ^{\infty }_{0}e^{-t}\text{d}Z_t\right)=\tilde{\mu }\in L(R^d). \end{aligned}$$
(5.5)

The correspondence (5.5) imply that for the triplet \((\tilde{a},\tilde{A},\tilde{\Pi })\) of Lévy characteristics for \(\tilde{\mu }\) the following equalities hold true:

$$\begin{aligned} \tilde{a}=a+\int \limits _{\{|y|>1\}}\frac{y}{|y|}\Pi (\text{d}y) \end{aligned}$$
$$\begin{aligned} \tilde{A}=\frac{1}{2}A \end{aligned}$$

and

$$\begin{aligned} \tilde{\Pi }(B)=\int \limits _{R^d}\int \limits ^{\infty }_{0}1_B(e^{-s}y)\text{d}s\Pi (\text{d}y), \quad B\in \fancyscript{B}(R^d_0). \end{aligned}$$

Vice versa, if

$$\begin{aligned} \tilde{\Pi }(B)=\int \limits _{S^{d-1}}\lambda (\text{d}\xi )\int \limits ^{\infty }_{0}1_B(r\xi )\frac{k_{\xi }(r)}{r}\text{d}r, \quad B\in \fancyscript{B}(R_0), \end{aligned}$$

then

$$\begin{aligned} a=\tilde{a}-\int \limits _{\{|y|>1\}}\frac{y}{|y|}\Pi (\text{d}y), \end{aligned}$$
$$\begin{aligned} A=2\tilde{A} \end{aligned}$$
(5.6)

and

$$\begin{aligned} \Pi (B)=-\int \limits _{S^{d-1}}\lambda (\text{d}\xi )\int \limits ^{\infty }_{0}1_B(r\xi )\text{d}k_{\xi }(r). \end{aligned}$$

The process \(\{Z_t,t\ge 0\}\), is called the background driving Lévy process (BDLP for short).

FormalPara Definition 5.1

The subclass of the Ornstein–Uhlenbeck type processes, obtained by the correspondence (5.5) with the Student \(t\)-distribution \(\tilde{\mu }\), is called the class of the Ornstein–Uhlenbeck type Student processes (Student OU-type processes for short).

FormalPara Definition 5.2

The subclass of the Ornstein–Uhlenbeck type processes, obtained by the correspondence (5.5) with the noncentral Student \(t\)-distributions \(\tilde{\mu }\), satisfying self-decomposability condition (iii) of Proposition 4.6, is called the class of the noncentral Ornstein–Uhlenbeck type Student processes (noncentral Student OU-type processes for short).

We shall describe the BGDP, generating the Student OU-type processes.

FormalPara Proposition 5.3
  1. (i)

    The Student OU-type processes are generated by the BDLP\({\rm Z}=\{{\rm Z}_t,t\ge 0\}\)with the triplets of Lévy characteristics\((\gamma _0,0,\Pi _0)\), where

    $$\begin{aligned}&\gamma _0=\int \limits _{\{|x|\le 1\}}x\pi _0(x)\text{d}x+\alpha , \quad \alpha \in R^d,\\&\Pi _0(B)=\int \limits _{B}\pi _0(x)\text{d}x, \quad B\in \fancyscript{B}(R^d_0),\\&\pi _0(x)=-\frac{\text{d}}{\text{d}r}\left(r^dl_0(r\xi )\right)|_{r\xi =x} \end{aligned}$$

    and

    $$\begin{aligned} l_0(x)=\frac{\nu 2^{\frac{\text{d}}{4}+1}\left(\langle x\Sigma ^{-1},x\rangle \right)^{-\frac{\text{d}}{4}}}{\sqrt{|\Sigma |}(2\pi )^{\frac{\text{d}}{2}}}\int \limits ^{\infty }_{0}u^{\frac{\text{d}}{4}}K_{\frac{\text{d}}{2}}\left((2t\langle x\Sigma ^{-1},x\rangle )^{\frac{1}{2}}\right)g_{\frac{\nu }{2}}(2\nu t)\text{d}t, \end{aligned}$$

    \(\nu >0\), \(\Sigma \)is a symmetric positive definite\(d\times d\)matrix.

  2. (ii)

    The Student OU-type process\(X\), generated by the BDLP\(\rm Z\)with the triplet of Lévy characteristics\((\gamma _0,0,\Pi _0)\)and\(\mathcal L (X_0)=T_d(\nu ,\Sigma ,\alpha )\)is strictly stationary Markov process.

FormalPara Proof
  1. (i)

    Follows directly from the Definition 5.1, the above stated properties of BGDP and the Proposition 4.5.

  2. (ii)

    It is well-known property of time homogeneous Markov processes.\(\square \)

FormalPara Proposition 5.4
  1. (i)

    The noncentral Student OU-type processes are generated by the BDLP\({\rm Z}=\{{\rm Z}_t,t\ge 0\}\)with the triples of Lévy characteristics\((\gamma _a,0,\Pi _a)\), where

    $$\begin{aligned}&\gamma _a=\int \limits _{\{|x|\le 1\}}x\pi _a(x)\text{d}x+\alpha , \quad \alpha ,a\in R^d, \\&\Pi _a(B)=\int \limits _{B}\pi _a(x)dx, \quad B\in \fancyscript{B}(R^d_0),\\&\pi _a(x)=-\frac{\text{d}}{\text{d}r}\left(r^dl_a(r\xi )\right)|_{r\xi =x} \end{aligned}$$

    and

    $$\begin{aligned} l_a(x)=&\frac{2\nu \exp \left\{ \langle a\Sigma ^{-1},x\rangle \right\} }{\sqrt{|\Sigma |}(2\pi )^{\frac{\text{d}}{2}}\left(\langle x\Sigma ^{-1},x\rangle \right)^{\frac{\text{d}}{4}}}\int \limits ^{\infty }_{0}\left(\langle a\Sigma ^{-1},a\rangle +2t\right)^{\frac{\text{d}}{4}}\\&\times K_{\frac{\text{d}}{2}}\left(\left((\langle a\Sigma ^{-1},a\rangle +2t)\langle x\Sigma ^{-1},x\rangle \right)^{\frac{1}{2}}\right)g_{\frac{\nu }{2}}(2\nu t). \end{aligned}$$
  2. (ii)

    The noncentral Student OU-type process\(X^{(a)}\), generated by the BDLP\(\rm Z\)with the triplet of Lévy characteristics\((\gamma _a,0,\Pi _a)\)and\(\mathcal L (X_0)=T_d(\nu ,\Sigma ,\alpha ,a)\)is strictly stationary Markov process.

FormalPara Proof
  1. (i)

    Follows directly from the Definition 5.2, the above stated properties of BDLP and the Proposition 4.5.

  2. (ii)

    It is well-known property of time homogeneous Markov processes.\(\square \)