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Preface

Stochastic processes with heavy-tailed marginal distributions, including Student’s
t-distribution, are used commonly for modelling in communication networks,
econometrics, insurance, logarithmic stock returns and stochastic volatility in
finance, electric activity of neurons, turbulence, etc.

The aim of this short book is the survey of recent result on the Student–Lévy
processes as a subclass of Thorin subordinated Gaussian–Lévy processes. Criteria
of self-decomposability of such processes are discussed in detail and related
Ornstein–Uhlenbeck-type processes are constructed.

The univariate Student diffusion processes are considered in the framework of
the H-diffusions, i.e., stationary ergodic diffusions with the predetermined mar-
ginal distribution H. Asymptotic distributions of the normalised extreme values of
these diffusions are given. Special attention is paid to the statistically tractable case
of the Kolmogorov–Pearson diffusions.

Using the independently scattered random measures, defined by means of the
bivariate Student–Lévy processes, strictly stationary Student processes with the
arbitrary correlation function are defined. Further, via the Lamperti’s transform,
the self-similar Student–Lamperti processes are introduced.

As a promising direction for future work in constructing and investigating of
new multivariate Student–Lévy-type processes, the notion of Lévy copulas and the
related analogue of Sklar’s theorem is briefly explained.

Statistical inference problems as well as general studentised statistics and self-
normalised processes are not considered at all. List of references is far from to be
complete.

The author is grateful to the colleagues Algimantas Bikelis, Kęstutis Kubilius,
Kazimieras Padvelskis and Pranas Vaitkus for friendly support and Rimant _e
Baltutyt _e for excellent typing.

Vilnius, September 2011 Bronius Grigelionis
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Abstract and Keywords

Abstract This brief monograph contains a deep study of infinite divisibility and
self-decomposability properties of central and non-central Student’s distributions,
represented as variance and mean-variance mixtures of multivariate Gaussian
distributions with the reciprocal gamma mixing distribution, respectively. These
results permit to define and analyse Student–Lévy processes as Thorin subordi-
nated Gaussian–Lévy processes. Analogously, Student–Ornstein–Uhlenbeck-type
processes are described. A wide class of one-dimensional strictly stationary
diffusions with the Student’s t marginal distribution is defined as the unique weak
solution for the stochastic differential equation. Extreme value theory for such
diffusions is developed. A flexible and statistically tractable Kolmogorov–Pearson
diffusions are also described. Using the independently scattered random measures,
generated by the bivariate centered Student–Lévy process, and stochastic
integration theory with respect to them, it is defined as an univariate strictly
stationary process with the centered Student’s t marginals and the arbitrary
correlation structure. As a promising direction for future work in constructing and
analysing of new multivariate Student–Lévy-type processes, the notion of Lévy
copulas and the related analogue of Sklar’s theorem is explained.

Keywords Bessel function � Gaussian Lévy process � H-diffusion � Self-decompos-
ability � Stationary Student process � Student–Lévy process � Student’s t-distribution �
Thorin subordinator � Tweedie class
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Chapter 1
Introduction

Considering a sample of independent observations X1, . . . , Xn from the normal
population with mean α and variance σ 2 for testing the null hypothesis H0 : α = α0
against the alternative H1 : α = α1, Gosset (“Student”) in 1908 [1] suggested the
test statistic

tn =
√

n(X̄n − α0)

sn
, n ≥ 2,

where X̄n = 1
n

n∑

j=1
X j , s2

n = 1
n−1

n∑

j=1
(X j − X̄n)

2. He derived that the distribution

law
L (tn) = T1(n − 1, 1, 0),

where T1(ν, σ
2, α) denotes the univariate Student’s t-distribution with ν > 0 degrees

of freedom, a scaling parameter σ 2 > 0 and a location parameter α ∈ R1, defined
by its probability density function (pdf for short) fν,σ 2(x − α), where

fν,σ 2(x) = �(ν+1
2 )√

πνσ�(ν2 )

[

1 + 1

ν

( x

σ

)2
]− ν+1

2

, x ∈ R1,

and �(z) is the Euler’s gamma function (see [2]).
Having in mind that the statistics X̄n and s2

n are independent, L (X̄n) = N (α0,
σ 2

n )

and L (σ−2s2
n ) = � n−1

2 , n−1
2

, we easily find that

fν,σ 2(x) =
∞∫

0

1
√

2πyσ 2
e− 1

2y (
x
σ )

2

hν(y)dy,

where �β,γ is the gamma distribution with the pdf

B. Grigelionis, Student’s t-Distribution and Related Stochastic Processes, 1
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2 1 Introduction

pβ,γ (x) =

⎧
⎪⎨

⎪⎩

βγ

�(γ )
xγ−1e−βx , if x > 0,

0, x ≤ 0,

and

hν(y) = ( ν2 )
ν
2

�(ν2 )
y− ν

2 −1e− ν
2y , y > 0,

is the pdf of the inverse (reciprocal) gamma distribution I�ν
2 ,
ν
2
.

In 1931 [3] Fisher introduced the univariate noncentral t-distribution with the pdf
fν,σ 2,a(x − α) as a mean–variance mixture of normal distributions with the inverse
gamma mixing distribution, i.e.

fν,σ 2,a(x) =
∞∫

0

1
√

2πyσ 2
e
− 1

2y

(
x−ay
σ

)2

hν(y)dy

= ( ν2 )
ν
2

�(ν2 )

2 exp{ xa
σ 2 }√

2πσ 2

(
a2

νσ 2 + x2

) ν+d
4

K ν+1
2

(
σ−2[a2(νσ 2 + x2)] 1

2

)
, x ∈ R1,

where Kν(z) is the modified Bessel function of the third kind (see Appendix).
There are unlimited possibilities to introduce classes of multivariate extensions

of Student’s t-distributions with the univariate Student’s marginals. An excellent
survey of such useful generalizations are given by Kotz and Nadarajah in [4] (see
also [5]). Further we shall mainly restrict ourselves to the cases of variance mixtures
and mean–variance mixtures of multivariate Gaussian distributions with the inverse
gamma mixing distribution hν .

Let

ga,	(x) = 1
√|	|(2π) d

2

exp

{

−1

2
〈(x − a)	−1, x − a〉

}

, x ∈ Rd ,

be a Gaussian pdf, where a ∈ Rd , 	 is a symmetric positive definite d × d matrix,
|	| := det	, 〈·, ·〉 signs the scalar product in Rd .

Definition 1.1 We say that Td(ν,	, α) is a multivariate Student’s t-distribution with
ν > 0 degrees of freedom, a scaling matrix 	 and a location vector α ∈ Rd , if its
pdf is fν,	(x − α), x ∈ Rd , where

fν,	(x) =
∞∫

0

g0,u	(x)hν(u)du



1 Introduction 3

= ( ν2 )
ν
2

�(ν2 )
√|	|(2π) d

2

∞∫

0

u− d
2 e− 1

2u 〈x	−1,x〉u− ν
2 −1e− ν

2u du

= �(ν+d
2 )

(νπ)
d
2 �(ν2 )

√|	|

(

1 + 〈x	−1, x〉
ν

)− ν+d
2

, x ∈ Rd . (1.1)

Definition 1.2 We say that Td(ν,	, α, a) is a noncentral multivariate Student’s t-
distribution with ν > 0 degrees of freedom, a scaling matrix 	, a location vector
α ∈ Rd , and a noncentrality vector a ∈ Rd\{0}, if its pdf is fν,	,a(x − α), x ∈ Rd ,
where

fν,	,a(x) =
∞∫

0

gua,u	(x)hν(u)du

= ( ν2 )
ν
2

�(ν2 )
√|	|(2π) d

2

∞∫

0

u− d
2 e− 1

2u 〈(x−ua)	−1,x−ua〉u− ν
2 −1e− ν

2u du

= 2( ν2 )
ν
2 exp

{〈x	−1, a〉}

�(ν2 )
√|	|(2π) d

2

( 〈a	−1, a〉
ν + 〈x	−1, x〉

) ν+d
4

× K ν+d
2

([
〈a	−1, a〉(ν + 〈x	−1, x〉)

] 1
2
)

, x ∈ Rd . (1.2)

Relating Student’s t-distributions to the Lévy processes or to the Ornstein–Uhlenbeck
type processes the crucial role are paid the properties of infinite divisibility or self-
decomposability (for used terminology see [6] or Chap. 3 below). Intensive studies
of new criteria for such properties began in 1970s of last century (see, e.g., [7–11]).
In this sense two results are of the key importance.

From the one hand, in 1976 [7] Grosswald proved that the univariate Student’s
t-distribution of any degree of freedom is infinitely divisible, deriving the following
formula:

Kν−1(x) = x Kν(x)

∞∫

0

gν(u)

x2 + u
du, ν ≥ −1, x > 0, (1.3)

where

gν(x) = 2
{
π2x(J 2

ν (
√

x)+ Y 2
ν (

√
x))

}−1
, x > 0,

Jν(z) and Yν(z) are the Bessel functions of the first kind and the second kind, respec-
tively (see Appendix).

http://dx.doi.org/10.1007/978-3-642-31146-8_3


4 1 Introduction

From the second hand, in 1977 [11] Thorin defined the class of generalized gamma
convolutions (GGC or T1(R+) for short) as the minimal class of probability distribu-
tions on R+ := [0,∞) containing all gamma distributions, closed under convolutions
and weak limits. He proved that τ ∈ T1(R+) if and only if the Laplace transform of
τ has the form:

∞∫

0

e−θuτ(du) = exp

⎧
⎨

⎩
−β0θ +

∞∫

0

(e−θu − 1)
1

u

∞∫

0

e−vu Q1(dv)du

⎫
⎬

⎭

= exp

⎧
⎨

⎩
−β0θ +

∞∫

0

log

(
v

θ + v

)

Q1(dv)

⎫
⎬

⎭
, θ > 0, (1.4)

where β0 ≥ 0 and Q1 is a Radon measure on R+ such that Q1({0}) = 0,

1∫

0

log

(
1

u

)

Q1(du) < ∞ and

∞∫

1

u−1 Q1(du) < ∞.

(see [11–14]).
All distributions in T1(R+) are self-decomposable.
For example, generalized inverse (GIG for short) Gaussian distributions, defined

by the pdf

gig(x; λ, χ,ψ) = (
ψ
χ
)
λ
2

2Kλ(
√
χψ)

xλ−1 exp

{

−1

2
(χx−1 + ψx)

}

, x > 0,

where λ ∈ R1, (χ,ψ) ∈ �λ,

�λ =
⎧
⎨

⎩

{(χ,ψ) : χ ≥ 0, ψ > 0}, if λ > 0,
{(χ,ψ) : χ > 0, ψ > 0}, if λ = 0,
{(χ,ψ) : χ > 0, ψ ≥ 0}, if λ < 0,

are in class T1(R+), because it is easy to check that

∞∫

0

e−θu gig(u; λ, χ,ψ)du =
(

ψ

ψ + 2θ

) λ
2 Kλ(

√
χ(ψ + 2θ))

Kλ(
√
χψ)

and, using Grosswald’s formula (3), to derive that

∞∫

0

e−θu gig(u; λ, χ,ψ)du = exp

⎧
⎨

⎩

∞∫

0

(e−θu − 1)
1

u

∞∫

0

e−vu Q1(dv)du

⎫
⎬

⎭
, θ > 0,
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with Q1(dv) = λεψ
2
(dv) for χ = 0, λ > 0, and

Q1(dv) = max(0, λ)εψ
2
(dv)+ 1

(
ψ
2 ,∞)

χg|λ|(χ(2t − ψ))dt (1.5)

for χ > 0 (see, e.g., [15]). Here ε� is the Dirac measure and 1B is the indicator
function .

Observe that

gig(x; λ, 0, ψ) = (
ψ
2 )
λ

�(λ)
xλ−1e−ψ

2 x , λ > 0, ψ > 0,

and

gig(x; λ, χ, 0) = 1

�(−λ)
(

2

χ

)λ
xλ−1e− χ

2 x−1
, λ < 0, χ > 0.

Thus, the mixing distribution hν in (1.1) and (1.2) is from the Thorin class.
Infinite divisible distributions on R+ correspond one-to-one with the Lévy

processes, starting at zero and having nondecreasing trajectories called the subordi-
nators. In particular, Thorin distributions define the class of Thorin subordinators.

At last, exploiting the Bochner’s idea of subordination and using the multivariate
Gaussian Lévy processes as subordinands and GIG subordinators, we shall obtain
the important class of generalized hyperbolic processes, introduced by Barndorff-
Nielsen (see, e.g., [15]), which contain the Student-Lévy processes, generated by the
mixtures (1.1) and (1.2).

These types of stochastic processes as well as stochastic processes with heavy-
tailed marginals like Student’s t-distributions are commonly used for modeling in
various fields of applications (see, e.g., [16–22] and references therein).

In Chap. 2 of this brief monograph there are presented asymptotics of Student’s t
pdf as a degree of freedom ν or arguments |x | tend to infinity. In the one-dimensional
case asymptotic distributions for extremal and record values in i.i.d. sequences of
random variables with common Student’s t-distribution are described.

In Chap. 3 via Lévy-Itô decomposition the structure of d-dimensional Lévy
processes is explained including the celebrated Lévy-Khinchine formula for charac-
teristic functions of infinitely divisible laws in Rd . Criteria of their self-
decomposability are derived. Extending the Thorin class T1(R+) and related Lévy
subordinators the scale of Thorin classes Tκ(R+), 0 < κ ≤ ∞, is defined and
characterized as generalized convolutions of the famous Tweedie distributions.

Subordination of Lévy processes as a tool for construction and investigation of
new Lévy processes with the desirable distributional properties is also discussed.

In Chap. 4 there are characterized the Thorin subordinated Gaussian-Lévy
processes, including Student-Lévy processes. Criteria of their self-decomposability
are derived.

In Chap. 5 the Student Ornstein–Uhlenbeck type processes are studied.

http://dx.doi.org/10.1007/978-3-642-31146-8_2
http://dx.doi.org/10.1007/978-3-642-31146-8_3
http://dx.doi.org/10.1007/978-3-642-31146-8_4
http://dx.doi.org/10.1007/978-3-642-31146-8_5


6 1 Introduction

In Chap. 6 the strictly stationary regular positive recurrent diffusion processes
on an open interval (l, r) ⊆ R1 with inaccessible end points and predetermined
1D distributions H are considered and named H-diffusions. The class of Student
diffusions as H-diffusions on R1 with H equal to the univariate Student distribution
is investigated in detail. Asymptotic distributions of extreme values of H-diffusions,
including the Student ones, are derived. Conditions of vague convergence of time
normalized point measures of ε-upcrossings of such diffusions to the Poisson point
measures are discussed.

As the flexible and statistically tractable stochastic processes, the Kolmogorov-
Pearson diffusions are described.

In the final Chap. 7 it is presented extended Isserlis theorem, giving formulas for
mixed moments of mixtures of Gaussian distributions and, as a special case, for
Student’s distributions.

Using the independently scattered random measures there are constructed strictly
stationary real stochastic processes X = {Xt , t ∈ R1} such that

L (Xt ) ≡ T1(ν, σ
2, α), ν > 2

and related self-similar processes, obtained by means of the Lamperti’s transform.
Following [23], as a promising direction for the future work a notion of Lévy

copulas and analog of well-known Sklar’s theorem are explained.
Appendix contains used notions and formulas from the theory of Bessel functions

(see, e.g., [24, 25]).
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Chapter 2
Asymptotics

2.1 Asymptotic Behavior of Student’s Pdf

Proposition 2.1 For each x ∈ Rd, as ν → ∞,

fν,�,a(x) → ga,�(x). (2.1)

Proof Let a = 0. Using the well-known formula that

�(z) =
√

2π

z
e−z zz

(

1 + O

(
1

z

))

, as z → ∞, (2.2)

we find that, as ν → ∞,

�(ν+d
2 )

(νπ)
d
2 �(ν2 )

∼
√

4π
ν+d e− ν+d

2 ( ν+d
2 )

ν+d
2

(νπ)
d
2

√
4π
ν

e− ν
2 ( ν2 )

ν
2

→ 1

(2π)
d
2

(2.3)

and, obviously,
(

1 + 〈x�−1, x〉
ν

)− ν+d
2

→ e− 1
2 〈x�−1,x〉. (2.4)

Here and below “∼” is the equivalence sign.
The statement (2.1) with a = 0 follows from (1.1), (2.2), (2.3) and (2.4).
Let now a �= 0 and

yν = 2

ν + d

[
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
.
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Because, as ν → ∞, uniformly in y (see Appendix)

Kν(νy) ∼
√
π

2ν

exp {−ν√1 + y2}
(1 + y2)

1
4

(
y

1 + √
1 + y2

)−ν

and

√
1 + y2

ν ∼ 1 + 1

2
y2
ν ,

we shall have that

K ν+d
2

([
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
)

= K ν+d
2

(
ν + d

2
yν

)

∼
√

π

ν + d
exp

{

−ν + d

2

(

1 + 1

2
y2
ν

)} (
yν

2 + 1
2 y2
ν

)− ν+d
2

∼
√

π

ν + d
e− ν+d

2 exp

{

− 1

ν + d
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)}(
yν

2 + 1
2 y2
ν

)− ν+d
2

.

(2.5)

From (1.2) and (2.5) we elementarily find that

fν,�,a(x) ∼ ( ν2 )
ν
2

�(ν2 )

2 exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

( 〈a�−1, a〉
ν+〈x�−1, x

) ν+d
4

√
π

ν + d
e− ν+d

2

× exp

{

− 1

ν + d
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)} (
yν

2 + 1
2 y2
ν

)− ν+d
2

∼ exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

e−〈a�−1,a〉e− d
2

(
ν + 〈x�−1, x〉

2 + 1
2 y2
ν

)− ν+d
2

∼ exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

e−〈a�−1,a〉e− d
2

× exp

{

−1

2
(〈x�−1, x〉 − d)

} (

1 + 1

4
y2
ν

) ν+d
2

. (2.6)

But

(

1 + 1

4
y2
ν

) ν+d
2 =

(

1 + 1

(ν + d)2

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)]) ν+d
2

http://dx.doi.org/10.1007/978-3-642-31146-8_1
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→ exp

{
1

2
〈a�−1, a〉

}

. (2.7)

Thus, (2.6) and (2.7) imply that, for each x ∈ Rd , as ν → ∞,

fν,�,a(x) → exp
{〈x�−1, a

}

(2π)
d
2
√|�|

exp

{

−1

2

(
〈a�−1, a〉 + 〈x�−1, x〉

)}

= ga,�(x). �

Proposition 2.2 For each fixed xεRd and ν > 0, as |a| → 0,

fν,�,a(x) → fν,�(x).

Proof Indeed, as |a| → 0,

K ν+d
2

([
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
)

∼ �

(
ν + d

2

)

2
ν+d

2 −1
[
〈a�−1, a〉(ν + 〈x�−1, x〉)

]− ν+d
4

(see Appendix) and, having in mind formulas (1.1), (1.2),

fν,�,a(x) → ( ν2 )
ν
2

�(ν2 )

2
ν+d

2 �(ν+d
2 )

(2π)
d
2
√|�|

(
ν + 〈x�−1, x〉

)− ν+d
2 = fν,�(x). �

Proposition 2.3 (i) As |x | → ∞,

fν,�(x) ∼ cν,�
(
〈x�−1, x〉

)− ν+d
2
,

where

cν,� = �
( d+ν

2

)

π
d
2 �(ν2 )

√|�|
.

(ii) As |x | → ∞, a �= 0,

fν,�,a(x) ∼ cν,�,a
(
〈x�−1, x〉

)− ν+d+1
4

http://dx.doi.org/10.1007/978-3-642-31146-8_1
http://dx.doi.org/10.1007/978-3-642-31146-8_1
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× exp

{

−
[
〈a�−1, a〉〈x�−1, x〉

] 1
2 + 〈x�−1, a〉

}

,

where

cν,�,a = ( ν2 )
ν
2
(〈a�−1, a〉) ν+d+1

4

�(ν2 )(2π)
d−1

2
√|�|

.

Proof (i) Obviously follows from (1.1).
(ii) Because, as |x | → ∞,

K ν+d
2

([
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
)

∼
√
π

2

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)]− 1
4

× exp

{

−
[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
}

,

from (1.2) we find that, as |x | → ∞,

fν,�,a(x) ∼ ( ν2 )
ν
2
(〈a�−1, a〉) ν+d−1

4

�(ν2 )(2π)
d−1

2
√|�|

exp
{〈x�−1, a〉}

(
ν + 〈x�−1, x〉) ν+d+1

4

× exp

{

−
[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
}

∼ cν,�,a
(
〈x�−1, x〉

)− ν+d+1
4

× exp

{

−
[
〈a�−1, a〉〈x�−1, x〉

] 1
2 + 〈x�−1, a〉

}

.

�

Corollary 2.4 Let d=1.

(i) If a > 0, x → ∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν2 )

( νa

2σ

) ν
2

x− ν
2 −1. (2.8)

(ii) If a > 0, x → −∞, then

http://dx.doi.org/10.1007/978-3-642-31146-8_1
http://dx.doi.org/10.1007/978-3-642-31146-8_1
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fν,σ 2,a(x) ∼ 1

σ�(ν2 )

( νa

2σ

) ν
2 |x |− ν

2 −1 exp

{

−2a|x |
σ 2

}

. (2.9)

(iii) If a < 0, x → ∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν2 )

(
ν|a|
2σ

) ν
2

x− ν
2 −1 exp

{

−2|a|x
σ 2

}

. (2.10)

(iv) If a < 0, x → −∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν2 )

(
ν|a|
2σ

) ν
2 |x |− ν

2 −1. (2.11)

2.2 Asymptotic Distributions for Extremal and Record Values

Let now d = 1 and {Xn, n ≥ 1} a sequence of i.i.d. random variables with common
Student’s t-distribution function and let Mn = max

1≤ j≤n
X j .

Proposition 2.5 (i) If pdf of L (X1) is fν,σ 2 , then, as n → ∞,

L
(
(K1n)−

1
ν Mn

)
⇒ �ν,

where “⇒” means weak convergence of probability laws, �ν is the Fréchet
distribution

�ν(x) =
{

exp
{−x−ν}, if x > 0

0, if x ≤ 0,

and

K1 = �(ν+1
2 )σ ν

ν
√
π�(ν2 )

.

(ii) If pdf of L (X1) is fν,σ 2,a, a > 0, then, as n → ∞,

L
(
(K2n)−

2
ν Mn

)
⇒ �ν

2
,

where
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K2 = 2( νa
2σ )

ν
2

νσ�(ν2 )
.

(iii) If pdf of L (X1) is fν,a,σ 2 , a < 0, then, as n → ∞,

L

(
2|a|
σ 2 Mn − ln n −

(ν

2
+ 1

)
ln ln n + ln K3

)

⇒ 	,

where 	 is the Gumbel distribution

	(x) = e−e−x
, x ∈ R1,

and

K3 = ν
ν
2 σ

ν
2 +3

2ν+2�(ν2 )
.

Proof (i) From Proposition 2.3 (i) with d = 1 and the l’Hospital’s rule we have,
as x → ∞,

∞∫

x

fν,σ 2(u)du ∼ cν,σ
νσ

( x

σ

)−ν = K1x−ν, (2.12)

where

cν,σ = �
(
ν+1

2

)

√
π�

(
ν
2

)
σ
.

The statement (i) is standard for Pareto-like distributions (see, e.g., [1, 2]).
(ii) From Corollary 2.4 (i) and the l’Hospital’s rule we have that, as x → ∞,

∞∫

x

fν,σ 2,a(u)du ∼ K2x− ν
2 (2.13)

and the conclusion is analogs to (i).
(iii) From Corollary 2.4 (iii) and the l’Hospital’s rule we find that, as x → ∞,

∞∫

x

fν,σ 2,a(u)du ∼ σ

2|a|�(ν2 )
(
ν|a|
2σ

) ν
2

x− ν
2 −1 exp

{

−2|a|x
σ 2

}

. (2.14)

The statement (iii) is standard for gamma-like distributions (see, e.g., [1, 2]).

�
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Now let us recall main results on limit theorems for record values in the sequences
of i.i.d. random variables {Xn, n ≥ 1} with a common continuous distribution func-
tion F which will be applied to the case of Student’s t-distributions.

The record times are L1 = 1, Ln+1 = min
{
k : k > n, Xk > X Ln

}
for n =

1, 2, . . ., and the record values are Rn = X Ln , n = 1, 2, . . .. Let W (x) =
− log(1 − F(x)) be the integrated hazard function and the associate distribution
function A(x) = 1 − e−√

W (x), x ∈ R1. Let la,b(x) = ax + b, a > 0, b ∈ R1, be a
group of affine homeomorphisms of R1 with the composition law

la1,b1 ∗ la2,b2 = la1a2,a1b2+b1 ,

the unit element l1,0 and the inverse l−1
a,b = la−1,a−1b.

The domain of attraction problem for record values using linear normalization
was solved by Resnick (see [3] also [4]). It was proved that the class of all possible
non-degenerated weak limit laws Q such that for suitable constants an > 0, bn ∈ R1,
as n → ∞,

L
(

l−1
an ,bn

(Rn)
)

⇒ Q

coincide with the class of laws�(− log(− log G(·))), where� is a standard normal
distribution and G is a l-max stable law, i. e. a non-degenerated distribution on R1

such that for any n ≥ 2 there exist constants an > 0, bn ∈ R1 satisfying

Gn(x) = G
(
lan ,bn (x)

)
, x ∈ R1.

As in the classical extreme value theory this class can be factorized into three
linear types, saying that probability distributions F1 and F2 are of the same linear
type it there exist constants a > 0, b ∈ R1 such that

F1(x) = F2
(
la,b(x)

)
, x ∈ R1.

In the classical case these types are generated by the Fréchet distribution�γ , the
Gumbel distribution 	 and the Weibull distribution

�γ (x) =
{

1, if x ≥ 0,
exp {−(−x)γ } , if x < 0, γ > 0,

which correspond to generators of three types of the limiting laws for L
(
lan ,bn (Rn)

)
:

�̃γ (x) =
{

0, if x ≤ 0,
�(log xγ ), if x > 0, γ > 0,
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�̃γ (x) =
{
�(log(−x)γ ), if x < 0,
1, if x ≥ 0, γ > 0,

and the standard normal distribution �(x), x ∈ R1.
We say that F belongs to the record domain of attraction under linear normaliza-

tion of the non-degenerated distribution Q (F ∈ RDAl(Q) for short) if there exist
constants an > 0 and bn ∈ R1 such that L (l−1

an ,bn
(Rn)) ⇒ Q, as n → ∞.

Duality theorem of Resnick says that F ∈ RDAl(�̃γ ) ⇔ A ∈ MDAl(�γ
2
),

F ∈ RDAl(�̃γ ) ⇔ A ∈ MDAl(�γ
2
) and F ∈ RDAl(�) ⇔ A ∈ MDAl(	), where

MDAl(Q) denotes the maximum domain of attraction under linear normalization of
the non-degenerated distribution Q (see, e.g., [3]). As a corollary we find that in the
case of heavy-tailed distributions F the record values cannot have non-degenerate
limiting distributions if we use linear normalization. Indeed, for the Pareto-like dis-
tributions F , satisfying, as x → ∞,

1 − F(x) ∼ K x−δ, δ > 0,

the associate distributions A satisfy, as x → ∞,

1 − A(x) ∼ e−√
δ log x .

In this case A∈̄MDAl(�γ
2
) ∪ MDAl(�γ

2
) ∪ MDAl(	). This fact is an argument to

consider limit theorems for the record values using power normalization.
Let

pα,β(x) = α|x |βsignx, α > 0, β > 0, x ∈ R1.

Observe that this class of functions form a group of homeomorphisms of R1 with
the composition law

pα1,β1 ∗ pα2,β2 = p
α1α

β1
2 ,β1β2

,

the unit element p1,1 and the inverse

p−1
α,β = p

α−β−1
,β−1 .

We say that F belongs to the record domain of attraction under power normalization of
the non-degenerate distribution Q (F ∈ RDAp(Q) for short) if there exist constants

αn > 0, βn > 0 such that, as n → ∞, L
(

p−1
αn ,βn

(Rn)
)

⇒ Q.

A non-degenerate distribution function G̃ on R1 is called p-max stable if for any
n ≥ 2 there exist constants α̃n > 0, β̃n > 0 such that

G̃n(x) = G̃(pα̃n ,β̃n
(x)), x ∈ R1.
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Probability distributions F1 and F2 are of the same power type if there exist
constants α > 0, β > 0 such that F1(x) = F2(pα,β(x)), x ∈ R1.

The class of non-degenerated limiting distributions for L (p−1
αn ,βn

(Rn)), as n →
∞, is equal to the class of law �̂(− log(− log Ĝ(·))), where G̃ is a p-max stable law
K, and is factorized to the six power types, generated by the distribution functions
(see [5, 6]):

�̂1,γ (x) =
{

0, if x ≤ 1,
�(γ log log x), if x > 1, γ > 0,

�̂2,γ (x) =
⎧
⎨

⎩

0, if x ≤ 0,
�(−γ log | log x |), if 0 < x < 1,
1, if x ≥ 1, γ > 0,

�̂3,γ (x) =
⎧
⎨

⎩

0, if x ≤ −1,
�(−γ log | log |x ||), if − 1 < x < 0,
1, if x ≥ 0, γ > 0,

�̂4,γ (x) =
{
�(−γ log log |x |), if x < −1,
1, if x ≥ −1, γ > 0,

�̂5(x) =
{

0, if x ≤ 0,
�(log x), if x > 0,

and

�̂6(x) =
{
�(− log |x |), if x < 0,
1, if x ≥ 0.

There are the valid analog of Resnick’s duality theorem and the principle of
equivalent tails, which says that if continuous distribution functions F1 and F2 are
such that r(F1) = r(F2) and 1 − F1(x) ∼ 1 − F2(x), as x ↑ r(F1), then F1 ∈
RDAp(Q) if and only if F2 ∈ RDAp(Q) with the same normalizing constants,
where r(F) = sup{x : F(x) < 1} and Q is a non-degenerate limiting distribution
for record values using power normalization.

The following analog of classical R. von Mises theorem [7] holds true.

Theorem 2.6 [8]. Assume that the integrated hazard function W (x) is differentiable
in some neighborhood of r(F). Then:

(i) if r(F) = ∞ and

lim
x→∞

W ′(x)x log x√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂1,γ );
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(ii) if 0 < r(F) < ∞ and

lim
x↑r(F)

W ′(x)x log
(

r(F)
x

)

√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂2,γ );
(iii) if r(F) = 0 and

lim
x↑0

W ′(x)x log |x |√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂3,γ );
(iv) if r(F) < 0 and

lim
x↑r(F)

W ′(x)|x | log
(

x
r(F)

)

√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂4,γ );
(v) if W is twice differentiable in some neighborhood of r(F) and

lim
x↑r(F)

W (x)

(
W ′′(x)
(W ′(x))2

+ 1

xW ′(x)

)

= 0, (2.15)

then for 0 < r(F) ≤ ∞ F ∈ RDAp(�̂5) and for r(F) ≤ 0 F ∈ RDAp(�̂6).

Proposition 2.7

(i) If pdf of F is fν,σ 2 , then F ∈ RDAp(�̂5).

(ii) If pdf of F is fν,σ 2,a, a > 0, then F ∈ RDAp(�̂5).
(iii) If pdf of F is fν,σ 2,a, a < 0, then F ∈ RDAl(�).

Proof

(i) From the principle of equivalent tails and (2.12) it is enough to check (2.15)
with r(F) = ∞ and the integrated hazard function

W (x) = ν ln x − ln K1.

Indeed,

W ′′(x)
(W ′(x))2

+ 1

xW ′(x)
= − ν

x2
(
ν
x

)2 + 1

ν
≡ 0.
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(ii) From the principle of equivalent tails and (2.13) it is enough to check (2.15)
with r(F) = ∞ and the integrated hazard function

W (x) = ν

2
ln x − ln K2.

Again we find that

W ′′(x)
(W ′(x))2

+ 1

xW ′(x)
= − ν

2x2
(
ν

2x

)2 + 2

ν
≡ 0.

(iii) From (2.14) and the principle of equivalent tails it is enough to consider the
integrated hazard function

W (x) =
(ν

2
+ 1

)
ln x + 2|a|

σ 2 x − ln K3,

where

K3 = σ

2|a|� (
ν
2

)

(
ν|a|
2σ

) ν
2

.

The corresponding associated distribution

1 − A(x) = exp

{

−
√(ν

2
+ 1

)
ln x + 2|a|

σ 2 x − ln K3

}

∼ exp

{

−
√

2|a|
σ 2 x

}

, as x → ∞.

Using again the principle of equivalent tails, Resnick’s duality theorem and cri-
teria from the classical extreme value theory we easily find that A ∈ MDAl(	)

and thus F ∈ RDAl(�). �

References

1. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events for Insurance and
Finance. Springer, Berlin (1997)

2. Leadbetter, M.R., Lindgren, G., Rootzen, H.: Extremes and Related Properties of Random
Sequences and Processes. Springer, Berlin (1983)

3. Resnik, S.I.: Limit laws for record values. Stoch. Processes Appl. 1, 67–82 (1973)
4. Tata, M.N.: On outstanding values in a sequence of random variables. Z. Wahrscheinlichkeit-

stheor. vewr. Geb. 12(1), 9–20 (1969)



20 2 Asymptotics

5. Mohan, N.R., Ravi, S.: Max domains of attraction of univariate and multivariate p-max stable
laws. Teor. Veroyatnost. i Primenen, 37(4), 709–721 (1992)

6. Pantcheva, E.: Limit theorems for extreme order statistics under nonlinear normalization. In:
Lecture Notes in Math., vol. 1155, pp. 284–309. Springer, Berlin, (1985)

7. von Mises, R.: La distribution de la plus grande de n valeurs. Revue Mathématique de l’Union
Interbalkanique (Athens) 1, 141–160 (1936)

8. Grigelionis, B.: Limit theorems for record values using power normalization. Lith. Math. J.
46(4), 398–405 (2006)



Chapter 3
Preliminaries of Lévy Processes

3.1 Lévy-Itô Decomposition

Let (�,F ,P) be a probability space and (Rd ,B(Rd), 〈·, ·〉) be a d-dimensional
Euclidean space Rd with the σ -algebra of Borel subsets B(Rd), the scalar product
〈x, y〉 = ∑d

j=1 x j y j for row vectors x = (x1, . . . , xd), y = (y1, . . . , yd), and the
norm |x | = √〈x, x〉.

We are assuming that the reader is familiar with the foundations of probability
theory based on the measure theory.

A mapping X : R+ × � → Rd such that for each B ∈ B(Rd) and t ≥ 0
{ω : X (t, ω) ∈ B} ∈ F is called a d-dimensional stochastic process.

For fixed ω ∈ � a function X (·, ω) is called a sample path of X . Later we shall
use the notation X = {Xt , t ≥ 0}.

If for each t ≥ 0 and ε > 0

lim
h→0

P {|Xt+h − Xt | > ε} = 0,

a process X = {Xt , t ≥ 0} is called stochastically continuous.

Definition 3.1 A d-dimensional stochastic process X = {Xt , t ≥ 0} is an additive
process if the following conditions are satisfied:

(1) for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn , increments Xt0 , Xt1 − Xt0 , . . . , Xtn −
Xtn−1 are independent;

(2) X0 = 0 P-a.e.;
(3) X is stochastically continuous;
(4) P-a.e. sample paths are right-continuous in t ≥ 0 and have left limits in t > 0.

An additive process in law is a stochastic process satisfying (1)–(3).
Let X = {Xt , t ≥ 0} be a d-dimensional additive process.
Let Uε = {x ∈ Rd : |x | > ε

}
, ε > 0, Bε(Rd) = B(Rd) ∩ Uε.
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For B ∈ Bε(Rd) define

p(t, B) =
∑

0≤s≤t

1B(Xs − Xs−)

and
X B

t =
∑

0≤s≤t

(Xs − Xs−)1B(Xs − Xs−), t ≥ 0.

The following properties hold true (see, e.g., [1–3]).

(i) For each B ∈ Bε(Rd), t > 0, the function

E p(t, B) := �(t, B) < ∞.

and is continuous in t .
The stochastic process p(t, B), t ≥ 0 is a Poisson additive process with mean
function �(t, B), t ≥ 0, i. e. it satisfies the assumptions (1)–(4) and for each
t > 0, k = 0, 1, . . .

P {p(t, B) = k} = e−�(t,B) (�(t, B))k

k! .

Moreover, ∫

Rd\{0}
|x |2 ∧ 1�(t, dx) < ∞.

(ii) For each B1, . . . , Bm ∈ Bε(Rd) such that B j ∩ Bk = ∅, j = k, stochastic
processes

{
X B1

t , t ≥ 0
}
, . . . ,

{
X Bm

t , t ≥ 0
}

and

⎧
⎨

⎩
Xt −

m∑

j=1

X
B j
j , t ≥ 0

⎫
⎬

⎭

are additive mutually independent processes and for each ε > 0, t > 0

E|Xt − XUε
t |2 < ∞.

(iii) Let 0 < εn ↓ 0, as n → ∞, and �k = {
x ∈ Rd : εk < |x | ≤ εk−1

}
, k =

2, 3, . . ., �1 = {x ∈ Rd : |x | > ε1
}
.

There exists a subsequence {nk, k = 1, 2, . . .} such that, as k → ∞, the
sequence
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X (k)t := Xt − X�1
t −

nk∑

j=2

(X
� j
t − E X

� j
t ), t ≥ 0,

converges uniformly on each finite time interval P-a.e. to the continuous
Gaussian additive process X0 = {X0

t , t ≥ 0
}

such that

Eei〈z,X0
t 〉 = exp

{

i〈z, a(t)〉 − 1

2
〈z A(t), z〉

}

, z ∈ Rd ,

where a(t), t ≥ 0, is a continuous d-dimensional function and A(t) is a con-
tinuous symmetric nonnegative definite d × d matrix valued function.

(iv) For each z ∈ Rd and t > 0

E exp {i〈z, Xt 〉} = exp

{

i〈z, a(t)〉 − 1

2
〈z A(t), z〉

+
∫

Rd\{0}

(
ei〈z,x〉 − 1 − i〈z, x〉1{|x |≤1}

)
�(t, dx)

}

, (3.1)

implying the Lévy-Khinchine formula as t = 1.

Definition 3.2 A d-dimensional additive process X = {Xt , t ≥ 0} is called a Lévy
process if it is temporally homogeneous, i.e., for each s, t > 0,

L (Xt+s − Xs) = L (Xt ).

Definition 3.3 A d-dimensional stochastic process X = {Xt , t ≥ 0} is called a Lévy
process in law if it is temporally homogeneous and satisfies the assumptions (1)–(3).

An additive process is a Lévy one if and only if the functions a(t), A(t) and
�(t, B), t ≥ 0, are linear in t , i.e., a(t) = at , A(t) = At and �(t, B) = �(B)t .
The triplet (a, A,�), where a ∈ Rd , A is a symmetric nonnegative definite d × d
matrix and �(B), B ∈ B(Rd

0 ), is a measure such that

∫

Rd
0

|x |2 ∧ 1�(dx) < ∞,

is called the triplet of Lévy characteristics; Rd
0 := Rd\{0}. This triplet uniquely

defines the finite dimensional distributions L
(
Xt1 , Xt2 , . . . , Xtn

)
, 0 ≤ t1 < t2 <

· · · < tn , n ≥ 1.
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The class of Lévy triplets corresponds one-to-one with the class of Lévy processes
in law.

A d-dimensional Lévy process X with the triplet of Lévy characteristics (0, Id , 0),
where Id is the d × d unit matrix, is called the standard d-dimensional Brownian
motion .

Definition 3.4 A probability distribution μ on Rd is called infinitely divisible if,
for any positive integer n, there exists a probability measure μn on Rd such that
μ = μn ∗ · · · ∗ μn︸ ︷︷ ︸

n times

. Here “∗” means the convolution of probability distributions.

We shall write that μ ∈ I D(Rd).
From the celebrated Lévy-Khinchine formula and (3.1) it follows that the class

of infinitely distributions μ corresponds one-to-one with the class of Lévy processes
in law by means of the equality

E exp {i〈z, X1〉}

= exp

⎧
⎪⎪⎨

⎪⎪⎩

i〈z, a〉 − 1

2
〈z A, z〉 +

∫

Rd
0

(
ei〈z,x〉 − 1 − i〈z, x〉1{|x |≤1}

)
�(dx)

⎫
⎪⎪⎬

⎪⎪⎭

=
∫

Rd

ei〈z,x〉μ(dx).

For each Lévy process in law X = {Xt , t ≥ 0} there exists a modification Y =
{Yt , t ≥ 0} with right-continuous sample paths in t ≥ 0, having left limits in t > 0
and satisfying P(Xt = Yt ) = 0, t ≥ 0.

3.2 Self-Decomposable Lévy Processes

Definition 3.5 A probability distribution μ on Rd is called self-decomposable, or
of class L(Rd), if, for any b > 1, there exists a probability measure ρb on Rd such
that

μ̂(z) = μ̂(b−1z)ρ̂b(z), z ∈ Rd , (3.2)

where μ̂ means the characteristic function of the probability distribution μ on Rd .

If μ is self-decomposable, then μ is infinitely divisible and, for any b > 1, ρb in
the decomposition (3.2) is uniquely determined and ρb is infinitely divisible.

Definition 3.6 A Lévy process X = {Xt , t ≥ 0} in law is said to be self-decompos-
able if the probability distribution L (X1) is self-decomposable.
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The Gaussian Lévy processes in law are, obviously, self-decomposable, because in
this case (3.2) is satisfied with

ρ̂b(z) = exp

{

i〈z, (1 − b−1)a〉 − 1

2
〈z(1 − b−2)A, z〉

}

.

A criterion of self-decomposability of non-Gaussianμ ∈ I D(Rd)with the triplet
(a, A,�) of Lévy characteristics will be formulated using the canonical polar decom-
position of a Lévy measure� (see Remark 16 in [4], Lemma 1 in [5] and Proposition 2
in [6]).

Write

Sd−1 =
{

x ∈ Rd : |x | = 1
}
, K =

∫

Rd
0

|x |2 ∧ 1�(dx) > 0.

Proposition 3.7 There exists a pair (λ,�ξ ), where λ is a probability measure on
Sd−1 and �ξ is a σ -finite measure on (0,∞) such that �ξ(C) is measurable in
ξ ∈ Sd−1 for every C ∈ B ((0,∞)),

∞∫

0

r2 ∧ 1�ξ(dr) ≡ K (3.3)

and

�(B) =
∫

Sd−1

λ(dξ)

∞∫

0

1B(rξ)�ξ (dr), B ∈ B(Bd
0 ). (3.4)

If a pair (λ′,�′
ξ ) satisfies (3.3) and (3.4), then λ′ = λ and �ξ = �′

ξ λ-a.e.

Proof Existence. Consider the probability space (Rd
0 ,B(R

d
0 ),P�), where

P�(B) = K −1
∫

B

|x |2 ∧ 1�(dx), B ∈ B(Rd
0 ).

Let N (x) = x , R(x) = |x |, �(x) = x
|x | , x ∈ Rd

0 , λ(B) = P�{� ∈ B}, B ∈
B(Sd−1), �0

ξ (C) = P�{R ∈ C |� = ξ} (a regular version of the conditional
distribution), and

�ξ(C) =
∫

C

K (r2 ∧ 1)−1�0
ξ (dr), C ∈ B ((0,∞)) , ξ ∈ Sd−1.
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The pair (λ,�ξ ) satisfies (3.3) and (3.4). Indeed,

∞∫

0

(r2 ∧ 1)�ξ (dr) = K

∞∫

0

�0
ξ (dr) ≡ K ,

and for every nonnegative measurable function f (x), x ∈ Rd
0 ,

∫

Sd−1

λ(dξ)

∞∫

0

f (rξ)�ξ (dr) =
∫

Sd−1

λ(dξ)

∞∫

0

K f (rξ)

r2 ∧ 1
�0
ξ (dr)

= E�

[

E�

(
K f (R�)

R2 ∧ 1
|�
)]

= E�

(
K f (N )

R2 ∧ 1

)

=
∫

Rd
0

f (x)�(dx).

It remains to take f (x) = 1B(x), B ∈ B(Rd
0 ).

Uniqueness. Let

�(B) =
∫

Sd−1

λ′(dξ)
∞∫

0

1B(rξ)�
′
ξ (dr) (3.5)

and ∞∫

0

(r2 ∧ 1)�′
ξ (dr) ≡ K . (3.6)

Then, for all B ∈ B(Sd−1), from (3.3)–(3.6) we find that

∫

Rd
0

1B

(
x

|x |
)

K −1(|x |2 ∧ 1)�(dx)

=
∫

Sd−1

λ(dξ)

∞∫

0

1B(ξ)K
−1(r2 ∧ 1)�ξ (dr) = λ(B)

and
∫

Rd
0

1B

(
x

|x |
)

K −1(|x |2 ∧ 1)�(dx)
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=
∫

Sd−1

λ′(dξ)
∞∫

0

1B(ξ)K
−1(r2 ∧ 1)�′

ξ (dr) = λ′(B),

proving that λ = λ′.
Finally, for every nonnegative measurable function h(r), r > 0,

∫

Rd
0

h(|x |)�(dx) =
∫

Sd−1

λ(dξ)

∞∫

0

h(r)�ξ (dr) =
∫

Sd−1

λ(dξ)

∞∫

0

h(r)�′
ξ (dr),

implying that �ξ = �′
ξ λ-a.e. �

Proposition 3.8 [7]. If

�(B) =
∫

B

g(x)dx, B ∈ B(Rd
0 ), (3.7)

then (3.3) and (3.4) hold with

λ(dξ) = c(ξ)dξ,

�ξ (dr) = rd−1g(rξ)c−1(ξ),

where

c(ξ) = K −1

∞∫

0

(r2 ∧ 1)rd−1g(rξ)dr,

assuming that

K :=
∫

Rd
0

(|x |2 ∧ 1)g(x)dx > 0.

Proof Write

x1 = r cosϕ1,

x2 = r sin ϕ1 cosϕ2,

· · · · · · · · · · · ·
xd−1 = r sin ϕ1 sin ϕ2 · · · sin ϕd−1 cosϕd−1,

xd = r sin ϕ1 sin ϕ2 · · · sin ϕd−2 sin ϕd−1,
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where r ≥ 0, 0 ≤ ϕ1 ≤ π, . . ., 0 ≤ ϕd−2 ≤ π , 0 ≤ ϕd−1 < 2π . It is well-known
that the Jacobian

J = D(x1, x2, . . . , xd)

D(r, ϕ1, ϕ2, . . . , ϕd−1)
= rd−1 sind−2 ϕ1 sind−3 ϕ2 · · · sin ϕd−2.

Denoting ξ = x
r and dξ = sind−2 ϕ1 sind−3 ϕ2 · · · sin ϕd−2dϕ1dϕ2 · · · dϕd−2dϕd−1,

for any Borel measurable and integrable with respect to the Lebesgue measure on
Rd function f (x), we find that

∫

Rd

f (x)dx =
∫

Sd−1

dξ

∞∫

0

f (rξ)rd−1dr =
∫

Sd−1

c(ξ)dξ

∞∫

0

f (rξ)rd−1c−1(ξ)dr

(3.8)
and apply formula (3.8) to the functions fB(x) = g(x)1B(x), x ∈ Rd , B ∈ B(Rd

0 ).
The identity (3.3) is trivially satisfied. �

The following criterion of self-decomposability of a probability distribution
μ ∈ I D(Rd) with the triplet of Lévy characteristics (a, A,�) is well-known (see
Theorem 15.10 of [2] and [8]).

Theorem 3.9 A probability distribution μ ∈ I D(Rd) or a Lévy process in law with
the triplet (a, A,�) of Lévy characteristics is self-decomposable if and only if in (3.4)

�ξ(dr) = kξ (r)

r
dr,

where a nonnegative function kξ (r) is measurable in ξ ∈ Sd−1 and decreasing in
r > 0 for λ-a.e. ξ .

Corollary 3.10 If (3.7) is satisfied, then μ ∈ I D(Rd) or a corresponding Lévy
process in law with the triplet (a, A,�) of Lévy characteristics is self-decomposable
if and only if the function kξ (r) := rd g(rξ) is decreasing in r > 0 for a.e. ξ ∈ Sd−1

with respect to the Lebesgue surface measure on Sd−1.

3.3 Lévy Subordinators

Definition 3.11 An univariate Lévy process with nonnegative increments is called
a Lévy subordinator.

The class of Lévy subordinators correspond one-to-one with the class I D(R+)
of infinitely divisible distributions on R+. It is well-known (see, e.g., [2, 3, 9, 10])
that for τ ∈ I D(R+) the Laplace exponent
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ψ(θ) := − log

⎛

⎝

∞∫

0

e−θuτ(du)

⎞

⎠ = β0θ +
∞∫

0

(
1 − e−τuρ(du)

)
, θ ≥ 0,

is defined uniquely by the characteristics (β0, ρ), where β0 ≥ 0 and ρ is a σ -finite
measure on (0,∞), satisfying

∞∫

0

(u ∧ 1)ρ(du) < ∞.

Extending the Thorin class and following Bondesson [11], we introduce the scale
of Thorin classes Tκ(R+), 0 < κ ≤ ∞, as increasing subclasses of I D(R+) such that
T∞(R+) = I D(R+), where T∞(R+) is the minimal class of probability distributions
on R+, closed under convolutions and weak limits, containing all classes Tκ(R+),
κ > 0.

Definition 3.12 An infinitely divisible distribution τ on R+ with the characteristics
(β0, ρ) is of the Thorin class Tκ(R+), κ > 0, if ρ(dt) = l(t)dt and kκ(t) :=
t2−κl(t), t ≥ 0, is completely monotone, i.e., kκ is infinitely differentiable and
(−1)nk(n)κ (t) ≥ 0 for all n ≥ 0 and t > 0.

Lévy subordinators corresponding to the distributions from Tκ(R+), 0 < κ < ∞,
are called the Thorin’s subordinators.

According to Bernstein’s theorem (see, e.g., [12]) there exists a unique positive
measure Qκ on R+ such that

kκ(t) =
∞∫

0

e−vt Qκ(dv), t > 0,

and

Qκ({0}) = lim
t→∞ kκ(t).

Write

aκ(t) = t−κ

t∫

0

vκ−1e−vdv + t−κ+1

∞∫

t

vκ−2e−vdv, t > 0,

and observe that, as t → ∞,

aκ(t) ∼ �(κ)t−κ,
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and

aκ(t) ∼

⎧
⎪⎨

⎪⎩

(κ(1 − κ))−1, if 0 < κ < 1,

log
1

t
, if κ = 1,

�(κ − 1)t1−κ, if κ > 1,

(3.9)

as t → 0.

Proposition 3.13 An infinitely divisible distribution τ on R+ with the characteristics
(β0, ρ) is of the Thorin class Tκ(R+), κ > 0, if and only if the Laplace exponent

ψκ(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

β0θ + �(κ − 1)
∞∫

0

(
v−κ+1 − (θ + v)−κ+1

)
Qκ(dv), if κ = 1,

β0θ +
∞∫

0
log
(
1 + θ

v

)
Q1(dv), if κ = 1,

(3.10)
where the measure Qκ, called the Thorin measure, satisfies

∞∫

0

aκ(v)Qκ(dv) < ∞, (3.11)

implying that Qκ({0}) = 0 for κ ≥ 1.

Proof We have that

∞∫

0

(t ∧ 1)l(t)dt =
∞∫

0

(t ∧ 1)tκ−2

∞∫

0

e−tv Qκ(dv)dt =
∞∫

0

aκ(v)Qκ(dv)

and

ψκ(θ) = β0θ +
∞∫

0

(
1 − e−θ t) tκ−2

∞∫

0

e−vt Qκ(dv)dt

= β0θ +
∞∫

0

⎛

⎝

∞∫

0

tκ−2 (1 − e−θ t) e−vt dt

⎞

⎠ Qκ(dv).

However, for 0 < κ < 1,

∞∫

0

tκ−2 (1 − e−θ t) e−vt dt = −
∞∫

0

e−vt tκ−2
∞∑

k=1

(−tθ)k

k! dt
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= −
∞∑

k=1

(−θ)k
k! v−k−θ+1�(k + κ − 1)

= −v−κ+1
∞∑

k=1

�(k + κ − 1)

k!
(

−θ
v

)k

= v−κ+1�(κ − 1)

(

1 −
(

1 + θ

v

)−κ+1
)

,

for κ = 1, as a Froullani integral,

∞∫

0

(
1 − e−θ t) t−1e−vt dt = log

(

1 + θ

v

)

and, for κ > 1,

∞∫

0

tκ−2 (1 − e−θ t) e−vt dt = 1

κ − 1

∞∫

0

(
1 − e−θ t) e−vt dtκ−1

= 1

κ − 1

∞∫

0

tκ−1
[
ve−vt − (θ + v)e−(θ+v)t

]
dt

= �(κ)

κ − 1

(
v−κ+1 − (θ + v)−κ+1

)

= �(κ − 1)
(

v−κ+1 − (θ + v)−κ+1
)
. �

Remark 3.14 Having in mind (3.9), inequality (3.11) is satisfied if and only if the
measure Qκ is a Radon measure such that for κ = 1

1∫

0

u0∧(1−κ)Qκ(du) < ∞ and

∞∫

1

u−κQκ(du) < ∞,

and for κ = 1

1∫

0

log

(
1

u

)

Q1(du) < ∞ and

∞∫

1

u−1 Q1(du) < ∞.

Recall now that the families of Tweedie or power-variance distributions

{
T wp(α, λ), α > 0, λ > 0

}
, p ∈ R1\[0, 1),
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are defined as exponential dispersion models (see [13–15]), satisfying the following
properties: for each α > 0, λ > 0 and given p

∫

R1

xT wp(α, λ)(dx) = α,

∫

R1

(x − α)2T wp(α, λ)(dx) = λ−1α p

and T w0(α, λ) := N (α, λ−1), α ∈ R1, λ > 0. It is known that for p ≥ 1
T wp(α, λ) ∈ I D(R+). Moreover, for p > 1, α > 0, λ > 0 T wp(α, λ) ∈ T 1

p−1
(R+),

because their characteristics are

(

0, cp,λt−2+ 1
p−1 exp

{

− α1−p

p − 1
λt

}

dt

)

,

where

cp,λ = λ
1

p−1

�
(

p
p−1

)
(p − 1)

p
p−1
,

and T w1(α, λ) ∈ I D(R+)with characteristics (0, αλελ−1(dt)). The Thorin measure
Q 1

p−1
of T wp(α, λ), p > 1, obviously, equals

cp,λε α1−p
p−1

(dt).

Theorem 3.15 [16].

(i) Thorin classes Tκ(R+), 0 < κ < ∞, are increasing, closed under convolu-
tions and weak limits;

(ii) T∞(R+) = I D(R+);
(iii) Thorin classes Tκ(R+), 0 < κ ≤ ∞, are generalized convolutions of Tweedie

distributions Tκ+1
κ

(α, λ), α > 0, λ > 0.

Proof Because for 0 < κ1 < κ2

kκ2(t) = tκ1−κ2 kκ2(t), t > 0,

t−γ , t > 0, γ > 0, are completely monotone functions and the complete monotonic-
ity is preserved under multiplication, from Definition 3.11 it follows that Tκ1(R+) ⊂
Tκ2(R+).
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Closedness of Tκ(R+) under convolutions and weak limits follows from the well-
known properties that the complete monotonicity is preserved under formation of
linear combinations and pointwise limits (see, e.g., [12]).

(ii) Observe that the characteristics and the Laplace exponent of T w κ+1
κ

(α, λ) are
equal

(

0,
λκ

κ
1+κ

�(1 + κ)
t−2+κe−κλα− 1

κ t dt

)

and

ψ 1+κ

κ
,α,λ(θ) = λκ

κ
1−κ(κ − 1)

[

α
κ−1

κ κ
1−κ −

(

κα− 1
κ + θ

λ

)1−κ

]

(3.12)

Because for each θ ≥ 0

lim
κ→∞ψ 1+κ

κ
,α,λ(θ) = lim

κ→∞
λκα

κ−1
κ

κ − 1

[

1 −
(
θ

κλ
α

1
κ

)]1−κ

= αλ
(

1 − e− θ
λ

)
, (3.13)

it follows that for allα > 0,λ > 0 the scaled Poisson distributions T w1(α, λ) ∈
T∞(R+).
Hawing in mind properties (i), we conclude from (3.13) that T∞(R+) =
I D(R+).

(iii) The case κ = ∞ is contained in (ii).

Let 0 < κ < ∞. The statement (iii) follows easily from the Proposition 3.13, the
formula (3.12) and the statement (i). �

Remark 3.16 Because

T w2(α, λ)(dt) = (λα−1)λ

�(λ)
tλ−1e−λα−1t 1(0,∞)dt, therefore T1(R+) = GGC.

Because

T w 3
2
(α, λ)(C) = e−2λ

√
αε0(C)+

∫

C

2λ√
u

e
−2 λ√

α
(u+α)

I1(4α
√

u)du, C ∈ B(R+),

where Iγ (z) is the modified Bessel function of the first kind (see Appendix), i.e.

Iγ (z) =
∞∑

k=0

( z
2

)2k+γ

k!�(γ + k + 1)
, γ ≥ −1,
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is the compound Poisson-exponential distribution, therefore T2(R+) is the class
of generalized convolutions of compound Poisson-exponential distributions, which
coincides with the generalized mixed exponential convolutions, studied by Goldie
[17], Steutel [18, 19] and Bondesson [11].

Example 3.17 (noncentral gamma distribution) Following Fisher [20] (see also [21,
22]) we say that �β,γ,λ is a noncentral gamma distribution with the shape parameter
β > 0, the scale parameter γ > 0 and the noncentrality parameter λ > 0 if its pdf
fβ,γ,λ is the Poisson mixture of the gamma densities:

fβ,γ,λ(x) = e−λ
∞∑

j=0

λ j

j !
βγ+ j xγ+ j−1

�(γ + j)
e−βx

= e−λ−βxβ

(
βx

λ

) γ−1
2

Iγ−1

(√
βλx

)
, x > 0.

Fisher in [20] derived that the probability law

L

⎛

⎝
n∑

j=1

X2
j

⎞

⎠ = � 1
2 ,

n
2 ,λ
,

where X1, . . . , Xn are independent, L (X j ) = N (α j , 1) and λ = 1
2

n∑

j=1
α2

j .

Let Bessβ,λ, β > 0, λ > 0, be a probability distribution on R+, defined by the
formula:

Bessβ,λ(dx) = e−λε0(dx)+ βe−λ−βx I1

(
2
√
βλx

)
dx .

Because

∞∫

0

e−θx fβ,γ,λ(x)dx = e−λβ(βλ)γ−1
∞∑

j=0

e−(β+θ)x (βλx) j

j !�(γ + j)

= e−λ
(

β

θ + β

)γ ∞∑

j=0

1

j !
(
βλ

θ + β

) j

=
(

β

θ + β

)γ
e

−λθ
θ+β (3.14)
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and

∞∫

0

e−θx Bessβ,λ(dx) = e−λ + λβe−λ
∞∑

k=0

∞∫

0

e−(θ+β)x (βλx)k

k!(k + 1)!dx

= e−λ + e−λ
∞∑

k=0

(
βλ

θ + β

)k+1 1

(k + 1)! = e
−λθ
θ+β ,

we find that

�β,γ,λ = �β,γ ∗ Bessβ,λ,

implying equalities:

�β,γ1,λ1 ∗ �β,γ2,λ2 = �β,γ1+γ2,λ1+λ2 ,

�β,γ1,λ ∗ �β,γ2 = �β,γ1+γ2,λ

and

�β,γ,λ1 ∗ Bessβ,λ2 = �β,γ,λ1+λ2 .

From (3.14) it follows that

∞∫

0

e−θx fβ,γ,λ(x)dx = exp

⎧
⎨

⎩

∞∫

0

(
e−θu − 1

) (γ

u
+ λ
)

e−βudu

⎫
⎬

⎭
,

proving that the noncentral gamma distributions are infinitely divisible on R+ with
characteristics (0, lβ,γ,λ(u)du), where

lβ,γ,λ(u) =
(γ

u
+ λ
)

e−βu, u > 0.

This function is completely monotone, implying that �β,γ,λ ∈ T2(R+).
Because the function

kβ,γ,λ(u) := ulβ,γ,λ(u) = (γ + λu)e−βu, u > 0 (3.15)

is not completely monotone, �β,γ,λ∈̄T1(R+). From (3.15) it follows that kβ,γ,λ is
nondecreasing if and only if λ ≤ βγ . Only in this case the noncentral gamma
distribution �β,γ,λ is self-decomposable.

Inverse noncentral gamma distribution

I�β,γ,λ(dx) := x−2 fβ,γ,λ(x
−1)dx
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permits to define noncentral Student’s t-distribution Td(ν,�, α, λ) with ν > 0
degrees of freedom, a scaling matrix�, a location vector α ∈ Rd , and a noncentrality
parameter λ > 0 by means of the pdf fν,�,λ(x − α), x ∈ Rd , where

fν,�,λ(x) =
∞∫

0

g0,u�(x)u
−2 f ν

2 ,
ν
2 ,λ

(
1

u

)

du

=
∞∫

0

g0,u�(x)e
−λ

∞∑

j=0

λ j

j !
(
ν
2

) ν
2 + j

�
(
ν
2 + j

)u− ν
2 − j−1e− ν

2u du

= e−λ ( ν
2

) ν
2

(2π)
d
2
√|�|

(
ν

2
+ 1

2
〈x�−1, x〉

)− ν+d
2

×
∞∑

j=0

�
(
ν+d

2 + j
)

j !� ( ν2 + j
)

(
λν

ν + 〈x�−1, x〉
) j

= e−λ

(νπ) d
2

√|�|
(
ν + 〈x�−1,x〉

ν

)− ν+d
2

×
∞∑

j=0

�
(
ν+d

2 + j
)

j !� ( ν2 + j
)

(
λν

ν + 〈x�−1, x〉
) j

.

Analogously we define doubly noncentral Student’s t-distributions Td(ν,�, α,

a, λ)with ν > 0 degrees of freedom, a scaling matrix�, a location vector α ∈ Rd , a
noncentrality vector a ∈ Rd , and parameter λ > 0 by means of pdf fν,�,a,λ(x − α),
x ∈ Rd , where

fν,�,a,λ(x) =
∞∫

0

gua,u�(x)u
−2 f ν

2 ,
ν
2 ,λ

(
1

u

)

du

=
∞∫

0

gua,u�(x)e
−λ

∞∑

j=0

λ j

j !
(
ν
2

) ν
2 + j

�
(
ν
2 + j

)u− ν
2 − j−1e− ν

2u du

= e−λ ( ν
2

) ν
2 2 exp

{〈x�−1, x〉}

(2π)
d
2
√|�|

( 〈a�−1, a〉
ν + 〈x�−1, x〉

) ν+d
4

×
∞∑

j=0

(
λν
2

) j

j !� ( ν2 + j
)

( 〈a�−1, a〉
ν + 〈x�−1, x〉

) j
2

× K ν+d
2 + j

([
〈a�−1, a〉

(
ν + 〈a�−1, x〉

)] 1
2
)

.
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Most likely, distributions I�β,γ,λ, Td(ν,�, α, λ) and Td(ν,�, α, a, λ) are not infi-
nitely divisible and do not correspond to any Lévy processes.

Example 3.18 (generalized gamma distribution). Recall that Bondesson introduced
and studied in [11] a remarkable subclass of GGC of pdf on (0,∞), called the
hyperbolically completely monotone pdf (HCM for short). It is said that f is HCM,
if for every u > 0, f (uv) f

( u
v

)
is the completely monotone function in w = v+v−1.

For instance, GIG densities are HCM, because

gig(uv; λ, χ,ψ)gig
(u

v
; λ, χ,ψ

)
=
(
ψ
χ

)λ
u2(λ−1)

(
2Kλ(

√
χψ)

)2 exp

{

−1

2

(
χu−1 + ψu

)
w

}

and the function e−ax , x > 0, a > 0, is, obviously, completely monotone.
The generalized gamma density functions gβ,γ,δ are defined by the formula (see,

e.g., [11]):

gβ,γ,δ(x) = |δ|
�(γ )

βγ xδγ−1 exp
{−βxδ

}
, x > 0, δ ∈ R1

0, β > 0, γ > 0.

It is proved in [11] that for 0 < |δ| ≤ 1 gβ,γ,δ are HCM, because

gβ,γ,δ(uv)gβ,γ,δ
(u

v

)
=
( |δ|βγ
�(γ )

)2

u2(δγ−1) exp
{−βuδ(vδ + v−δ)

}

and

d

dw

(
vδ + v−δ) = δ sin(δπ)

π

0∫

−∞

|t |δ
1 + t2 − tw

dt.

The statement now follows from the known properties of completely monotone
functions (see, e.g., [12]).

For δ > 1, pdf gβ,γ,δ are not infinitely divisible (see [11]) and, for δ < −1, it is
unknown whether or not gβ,γ,δ are infinitely divisible.

Following Definitions 1.1, 1.2 and using densities gβ,γ,δ , δ < 0, β > 0, γ > 0, it
is natural to define the generalized Student’s t-distributions with pdf as mixtures

∞∫

0

g0,u�(x − α)gβ,γ,δ(u)du, x ∈ Rd
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and the generalized noncentral Student’s t-distributions with pdf as mixtures

∞∫

0

gua,u�(x − α)gβ,γ,δ(u)du, x ∈ Rd .

In the case −1 ≤ δ < 0 their pdf are infinitely divisible, but, excepting δ = −1,
their Lévy measure had no tractable expressions.

3.4 Subordinated Lévy Processes

Subordination of Markov processes as a transformation through random time change
was introduced by Bochner in 1949 (see [23, 24]). In the context of Lévy processes
subordination give us possibility to construct and investigate statistical models with
desirable feature of the marginal distributions.

Let X = {Xt , t ≥ 0} be a Lévy process in Rd , X0 ≡ 0, with the triplet of Lévy
characteristics (a, A,�) and the characteristic exponent

ϕ(z) := − log Eei〈z,Xt 〉

= −i〈a, z〉 + 1

2
〈z A, z〉 −

∫

Rd
0

(
ei〈z,x〉 − 1 − i〈z, x〉1{|x |≤1}

)
�(dx), z ∈ Rd ,

called the subordinand process.
Let T = {Tt , t ≥ 0} be a Lévy subordinator, T0 ≡ 0, with the Laplace exponent

ψ(θ) := − log Ee−θT1 = β0θ +
∞∫

0

(
1 − e−θx) ρ(dx), θ ≥ 0,

and characteristics (β0, ρ), independent of X .
The subordinated process X̃ = {X̃t , t ≥ 0} is defined as a superposition

X̃t = XTt , t ≥ 0.

The following theorem is obtained by Zolotarev [25], Bochner [24], Ikeda and
Watanabe [28], and Rogozin [26]. It was treated by Feller [27] and Sato [2].
These ideas were extended to the multivariate subordination of Lévy processes by
Barndorff-Nielsen et al. in 2001 (see [5]).
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Let

μt (B) = P{Xt ∈ B}, B ∈ B(Rd), t ≥ 0,

τ t (C) = P{Tt ∈ C}, C ∈ B(R+), t ≥ 0

and

μ̃t (B) = P{X̃t ∈ B}, B ∈ B(Rd), t ≥ 0.

Theorem 3.19 (i) The subordinated process X̃ = {X̃t , t ≥ 0} is a Lévy process
with characteristic exponent ϕ̃(z) = ψ (ϕ(z)), z ∈ Rd, and triplet of Lévy
characteristics (ã, Ã, �̃), where

ã = β0a +
∫

(0,∞)

⎛

⎜
⎝

∫

|x |≤1

xμs(dx)

⎞

⎟
⎠ ρ(ds),

Ã = β0 A (3.16)

and

�̃(B) = β0�(B)+
∫

(0,∞)

μs(B)ρ(ds), B ∈ B(Rd
0 ).

(ii) For t ≥ 0, B ∈ B(Rd)

μ̃t (B) =
∫

R+

μs(B)τ t (ds). (3.17)

We refer the reader for proof to [2].
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Chapter 4
Student-Lévy Processes

Important classes of Lévy processes as statistical models arise as the
subordinated multivariate Gaussian Lévy process with a mean vector a ∈ Rd and a
non-degenerated covariance matrix A.

For instance, taking

μt (B) =
∫

B

gta,t A(x)dx, t ≥ 0, B ∈ B(Rd)

and
τ 1(dx) = gig(x; λ, χ,ψ)dx,

we shall obtain the famous class of generalized hyperbolic processes.
Having in mind Theorem 3.15, properties of Thorin subordinated multivariate

Gaussian Lévy processes are of fundamental importance investigating many statis-
tical models, including stochastic processes related to Student’s t-distribution.

Theorem 4.1 [1]. Let X = {Xt , t ≥ 0} be a Gaussian Lévy process in Rd with mean
vector a ∈ Rd and a non-degenerated covariance matrix A. Let T (κ) = {T (κ)t , t ≥
0} be an independent of X Thorin’s subordinator with Laplace exponent ψκ(θ),
defined by the formulas (3.10) and (3.11), and characteristics (βκ, ρκ), where

ρκ(dt) = tκ−2

∞∫

0

e−vt Qκ(dv)dt. (4.1)

Then:

(i) the triplet of Lévy characteristics of the subordinated process

X (κ) = {X (κ)t := X
T (κ )t

, t ≥ 0}
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equals (aκ, Aκ,	κ), where

aκ = βκa +
∫

{|x |≤1}
xlκ(x)dx,

Aκ = βκ A, (4.2)

	κ(B) =
∫

B

lκ(x)dx, B ∈ B(Rd
0 ),

lκ(x) = 2 exp{〈a A−1, x〉}
√|A|(2π) d

2 (〈x A−1, x〉) d
2 +1−κ

∞∫

0

(h(v, x))
d
2 +1−κK d

2 +1−κ
(h(v, x))Qκ(dv)

and
h(v, x) = [(〈a A−1, a〉 + 2v)〈x A−1, x〉] 1

2 ;

(ii) X (κ) is self-decomposable if and only if, for a.e. ξ ∈ Sd−1 with respect to the
surface Lebesgue measure on Sd−1, the function k(κ)ξ (r) := rdlκ(rξ), r > 0,
is decreasing;

(iii) if d = 1 or d ≥ 2 and a = 0, then X (1) is self-decomposable;
(iv) if d = 2, a 	= 0 and

∞∫

0

(1 + v)2 Q1(dv) < ∞ (4.3)

or d ≥ 3, a 	= 0, and
∞∫

0

(1 + v)Q1(dv) < ∞, (4.4)

then X (1) is not self-decomposable;
(v) if κ > 1, κ 	= d

2 , and
∞∫

0

(1 + v)Qκ(dv) < ∞, (4.5)

or κ > 1, κ = d
2 , and

∞∫

0

(1 + v)2 Qκ(dv) < ∞, (4.6)

then Xκ is not self-decomposable.
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Proof

(i) We shall use the following formulas:

∞∫

0

t−α−1e−γ t− δ
t dt = 2

(γ

δ

) α
2

Kα
(

2
√
γ δ

)
, (4.7)

α > 0, γ > 0, δ > 0 (see Appendix),

and

∞∫

0

gta,t A(x)t
−α−1e−γ t− δ

t dt

= exp{〈a A−1, x〉}
√|A|(2π) d

2

∞∫

0

t−α− d
2 −1

× exp

{

−
(

γ + 1

2
〈a A−1, a〉

)

t −
(

δ + 1

2
〈x A−1, x〉

)

t−1
}

dt

= 2 exp{〈a A−1, x〉}
√|A|(2π) d

2

(
2γ + 〈a A−1, a〉
2δ + 〈x A−1, x〉

) α
2 + d

4

× K
α+ d

2
([(2γ + 〈a A−1, a〉)(2δ + 〈x A−1, x〉)] 1

2 ),

γ ≥ 0, δ ≥ 0, |a| > 0, |x | > 0. (4.8)

From formulas (3.16), (4.1), (4.8) and Theorem 3.19 we find that the statement
(i) holds with the function

lκ(x) =
∞∫

0

gta,t A(x)t
κ−2

∞∫

0

e−vt Qκ(dv)dt

= exp{〈a A−1, x〉}
√|A|(2π) d

2

∞∫

0

∞∫

0

t−
d
2 −2+κ

× exp

{

− 1

2t
〈x A−1, x〉 − t

2
[〈a A−1, a〉 + 2v]

}

dt Qκ(dv)

= 2 exp{〈a A−1, x〉}
√|A|(2π) d

2

∞∫

0

∞∫

0

u− d
2 −2+κ

(
2

〈a A−1, a〉 + 2v

)− d
2 −1+κ

× exp

{

−h(v, x)

4u
− u

}

duQκ(dv)
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= 2 exp{〈a A−1, x〉}
√|A|(2π) d

2 〈x A−1, x〉 d
2 +1−κ

×
∞∫

0

(h(v, x))
d
2 +1−κK d

2 +1−κ
(h(v, x))Qκ(dv).

(ii) This statement follows directly from Proposition 3.8, Theorem 3.9 and (i).
(iii) Since

k(1)ξ (r) = r
d
2

2 exp{r〈a A−1, ξ 〉}
√|A|(2π) d

2 (〈ξ A−1, ξ 〉) d
2

∞∫

0

(h(v, ξ))
d
2 K d

2
(rh(v, ξ))Q1(dv)

and (see Appendix)

K ′
γ (z) = −

(

Kγ−1(z)+ γ

z
Kγ (z)

)

,

we have that

d

dr
k(1)ξ (r) = 2 exp{r〈a A−1, ξ 〉}

√|A|(2π) d
2 (〈ξ A−1, ξ 〉) d

2

r
d
2

∞∫

0

(h(v, ξ))
d
2

× [K d
2
(rh(v, ξ))〈a A−1, ξ 〉 − K d

2 −1 (rh(v, ξ)) h(v, ξ)]Q1(dv).

If a = 0, then, for all ξ ∈ Sd−1,

d

dr
k(1)ξ (r) = − 2r

d
2

√|A|(2π) d
2
(〈ξ A−1, ξ 〉) d

2

×
∞∫

0

(h(v, ξ))
d
2 +1 K d

2 −1 (rh(v, ξ)) Q1(dv) < 0,

proving that, for al ξ ∈ Sd−1, the function k(1)ξ (r), r > 0, is decreasing.
If d = 1, then, since

K 1
2
(z) = K− 1

2
(z),
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for ξ = ±1, we have that

d

dr
k(1)ξ (r) = −2 exp{r〈a A−1, ξ 〉}√

2π〈ξ A−1, ξ 〉

∞∫

0

√
rh(v, ξ)K 1

2
(rh(v, ξ))

×
{[(

〈a A−1, a〉 + 2v
)

〈ξ A−1, ξ 〉
] 1

2 − 〈a A−1, ξ 〉
}

Q1(dv) < 0

proving again that the function k(1)ξ (r), r > 0, is decreasing.
(iv) If d ≥ 3 and a 	= 0, since, for all γ 	= 0, as v ↓ 0

vγ Kγ (v) =
∞∫

v

wγ Kγ−1(w)dw ↑ �(|γ |)2|γ |−1, (4.9)

we find that

d

dr
k(1)ξ (r) = 2 exp

{
r〈a A−1, ξ 〉}

√|A|(2π) d
2 〈ξ A−1, ξ 〉

×
⎡

⎢
⎣〈a A−1, ξ 〉

∞∫

0

∫

rh(v,ξ)

w
d
2 K d

2 −1(w)dwQ1(dv)

− r

∞∫

0

h2(v, ξ)
∫

rh(v,ξ)

w
d
2 −1 K d

2 −2(w)dwQ1(dv)

⎤

⎥
⎦ . (4.10)

Under the assumption (4.4), for ξ ∈ Sd−1 ∩ {
ξ : 〈a A−1, ξ 〉 > 0

}
and suffi-

ciently small r , we have that

d

dr
k(1)ξ (r) > 0,

showing that k(1)ξ (r), r > 0, is nondecreasing in r for a subset on Sd−1 of
positive surface Lebesgue measure.
If d = 2 and a 	= 0, from Grosswald’s formula we find that

K0(v) = vK1(v)

∞∫

0

g1(u)

v2 + u
du,

where vK1(v) ↑ 1, as v ↓ 0.
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But (see [2])

g1(t) = 2[π2t (J 2
1 (

√
t)+ Y 2

1 (
√

t))]−1,

g1(t) ∼ t− 1
2 , as t → ∞, and g1(t) → 1, as t → 0,

implying that

K0(v) ≤
∞∫

1

g1(u)

u
du + max

0≤u≤1
g1(u) log

(
v2 + 1

v2

)

. (4.11)

Now from (4.9) and (4.10) derive that

d

dr
k(1)ξ (r) = 2 exp

{
r〈a A−1, ξ 〉}√|A|2π〈ξ A−1, ξ 〉

×
⎡

⎢
⎣〈a A−1, ξ 〉

∞∫

0

∫

rh(v,ξ)

wK0(w)dwQ1(dv)

−
∞∫

0

rh2(v, ξ)K0 (rh(v, ξ)) Q1(dv)

⎤

⎦ . (4.12)

Because log(v2 + 1) ≤ v2, from (4.6), (4.11), and (4.12) we again obtain that,
for ξ ∈ Sd−1 ∩ {

ξ : 〈a A−1, ξ 〉 > 0
}

and sufficiently small r ,

d

dr
k(1)ξ (r) > 0,

proving that X (1) is not self-decomposable.
(v) Since

k(κ)ξ (r) := rd gκ(rξ) = 2 exp
{
r〈a A−1, ξ 〉} r2κ−2

√|A|(2π) d
2
(〈ξ A−1, ξ 〉) d

2 +1−κ

×
∞∫

0

∫

rh(v,ξ)

w
d
2 +1−κK d

2 −κ
(w)dwQκ(dv),

d

dr
k(κ)ξ (r) = 2 exp

{
r〈a A−1, ξ 〉r2κ−2

}

√|A|(2π) d
2
(〈ξ A−1, ξ 〉) d

2 +1−κ
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×
⎡

⎢
⎣

∞∫

0

∫

rh(v,ξ)

u
d
2 +1−κK d

2 −κ
(u)Qκ(dv)

(

〈a A−1, ξ 〉 + 2κ − 2

r

)

−
∞∫

0

rh2(v, ξ)

∞∫

rh(v,ξ)

u
d
2 −κK d

2 −κ−1(u)duQκ(dv)

⎤

⎥
⎦ . (4.13)

Let κ > 1, κ 	= d
2 . Using (4.9),

∞∫

rh(v,ξ)

u
d
2 −κK d

2 −κ−1(u)du = (rh(v, ξ))
d
2 κ

× K d
2 −κ

(rh(v, ξ)) ↑ �
(∣

∣
∣
∣
d

2
− κ

∣
∣
∣
∣

)

2| d
2 −κ|−1, as r ↓ 0. (4.14)

In this case from (4.13) and (4.14) under the assumption (4.5), for all ξ ∈ Sd−1

and sufficiently small r , we get that

d

dr
k(κ)ξ (r) > 0,

implying that X (κ) is not self-decomposable. Finally, if κ > 1, κ = d
2 , from

(4.13) we have that

d

dr
k

(
d
2

)

ξ (r) = 2 exp
{
r〈a A−1, ξ 〉} rd−2

√|A|(2π) d
2 〈ξ A−1, ξ 〉

×
⎡

⎢
⎣

∞∫

0

∞∫

rh(v,ξ)

uK0(u)duQ d
2
(dv)

(

〈a A−1, ξ 〉 + d − 2

r

)

−
∞∫

0

rh2(v, ξ)K0 (rh(v, ξ)) Q d
2
(dv)

⎤

⎦ . (4.15)

Now from (4.6), (4.11) and (4.15) we obtain that for all ξ ∈ Sd−1 and suffi-
ciently small r

d

dr
k

(
d
2

)

ξ (r) > 0,

proving that X

(
d
2

)

is not self-decomposable. �



48 4 Student-Lévy Processes

Remark 4.2 The statement (iii) of Theorem 4.1 is contained in [3] and [4]. Some
related results are obtained in [5, 6].

Definition 4.3 A d-dimensional Lévy process X = {Xt , t ≥ 0} is called the Student-
Lévy process if

L (X1) = Td(ν,�, α).

Definition 4.4 A d-dimensional Lévy process X (a) = {X (a)t , t ≥ 0} is called the
noncentral Student-Lévy process with the noncentrality vector a ∈ Rd

0 if

L (X (a)1 ) = Td(ν,�, α, a).

Proposition 4.5

(i) The Student-Lévy process X = {Xt , t ≥ 0} has the following structure:

Xt = GTt + αt, t ≥ 0,

where G = {Gt , t ≥ 0} is a Gaussian Lévy process with the triplet (0, �, 0)
of Lévy characteristics and T = {Tt , t ≥ 0} is an independent of G Lévy
subordinator such that

L (T1) = G I G
(
−ν

2
, ν, 0

)
. (4.16)

(ii) The triplet of Lévy characteristics of X equals (γ0, 0,	0), where

γ0 =
∫

{|x |≤1}
xl0(x)dx + α,

	0(B) =
∫

B

l0(x)dx, B ∈ B(Rd
0 ),

and

l0(x) = ν2
d
4 +1(〈x�−1, x〉)− d

4

√|�|(2π) d
2

∞∫

0

u
d
4 K d

2

((
2t〈x�−1, x〉

) 1
2
)

g ν
2
(2νt)dt.

(iii) X is self-decomposable.
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Proof (i) It is enough to observe that from (4.16) it follows the equality

L (GT1 + α) = Td(ν,�, α).

(ii) From formulas (1.4) and (4.16) we have that G I G
(− ν

2 , ν, 0
) ∈ T1(R+) with

zero drift and the Thorin measure νg ν
2
(2νt)dt . Now from Theorem 4.1 we find

that X has the triplet of Lévy characteristics (γ0, 0,	0), where

γ0 =
∫

{|x |≤1}
xl0(x)dx,

	0(B) =
∫

B

l0(x)dx, B ∈ B(Rd
0 )

and

l0(x) = 2
(〈x�−1, x〉)− d

2

√|�|(2π) d
2

×
∞∫

0

(
2t〈x�−1, x〉

) d
4

K d
2

((
2t〈x�−1, x〉

) 1
2
)

νg ν
2
(2νt)dt

= ν2
ν
4 +1 (〈x�−1, x〉)− d

4

√|�|(2π) d
2

∞∫

0

t
d
4 K d

2

((
2t〈x�−1, x〉

) 1
2
)

g ν
2
(2νt)dt.

(iii) The statement following directly from Theorem 4.1 (iii). �

Proposition 4.6 (i) The noncentral Student-Lévy process X (a) = {X (a)t , t ≥ 0}
with the noncentrality vector a ∈ Rd

0 has the following structure:

X (a)t = G(a)
Tt

+ αt, t ≥ 0,

where G(a) =
{

G(a)
t , t ≥ 0

}
is a Gaussian Lévy process with the triplet

(a, �, 0) of Lévy characteristics and T = {Tt , t ≥ 0} is an independent of
G(a) Lévy subordinator such that

L (T1) = G I G
(
−ν

2
, ν, 0

)
.

(ii) The triplet of Lévy characteristics of X (a) equals (γa, 0,	a), where

http://dx.doi.org/10.1007/978-3-642-31146-8_1
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γa =
∫

{|x |≤1}
xla(x)dx,

	a(B) =
∫

B

la(x)dx, B ∈ B(Rd)

and

la(x) = 2ν exp
{〈a�−1, x〉}

√|�|(2π) d
2
(〈x�−1, x〉) d

4

∞∫

0

(
〈a�−1, a〉 + 2t

) d
4

× K d
2

((
〈a�−1, a〉 + 2t

)
〈x�−1, x〉

) 1
2

g ν
2
(2νt)dt.

(iii) X (a) is self-decomposable if and only if the function rdl(a)(rξ), r > 0, is
decreasing for a.e. ξ ∈ Sd−1 with respect to the surface Lebesgue measure on
Sd−1.

(iv) If d = 1, X (a) is self-decomposable.

Proof (i) It is enough to observe that from (4.16) it follows the equality

L (G(a)
T1

+ α) = Td(ν,�, α, a).

(ii) From formulas (1.4) and (4.16) we have that G I G
(− ν

2 , ν, 0
) ∈ T1(R+) with

zero drift and the Thorin’s measure νg ν
2
(2νt)dt . Now the statement follows

directly from the Theorem 4.1 (i).
(iii) The statement follows directly from Theorem 4.1 (ii).
(iv) The statement is the corollary of Theorem 4.1 (iii). �
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Chapter 5
Student OU-Type Processes

The classical Ornstein–Uhlenbeck process {Xt , t ≥ 0}, starting from x ∈ Rd , is a
solution of linear equation.

Xt = x + Bt − c

t∫

0

Xsds, t ≥ 0, (5.1)

where c > 0 and {Bt , t ≥ 0} is a standard d-dimensional Brownian motion. It is
uniquely solved by

Xt = e−ct x +
t∫

0

e−c(t−s)dBs, t ≥ 0,

where the last integral is a Wiener stochastic integral. We easily find that

L (Xt ) = Ge−ct x, 1
2c (1−e−2ct)Id

⇒ G0, 1
2c Id

,

as t → ∞, where Id is an identity d × d matrix.
If we replace {Bt , t ≥ 0} in (5.1) by an arbitrary Lévy process {Zt , t ≥ 0}

with the triplet (a, A,�) of Lévy characteristics and the characteristic exponent
ϕ(z) = − log Eei〈z,X1〉, the solution

Xt = e−ct x +
t∫

0

e−c(t−s)dZs, t ≥ 0 (5.2)

is called the starting from x ∈ Rd Ornstein–Uhlenbeck type process generated by
(a, A,�, c).
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The integral in (5.2) is defined analogously to the Wiener integral through con-
verging in probability integral sums (see, e.g., [1]).

If we write

Pt (x, B) = P {Xt ∈ B} , x ∈ Rd , B ∈ B(Rd), t ≥ 0,

it can be proved (see [2]) that

∫

Rd

ei〈z,y〉 Pt (x, dy) = exp

⎧
⎨

⎩
ie−ct 〈x, z〉 −

t∫

0

ϕ(e−cs z)ds

⎫
⎬

⎭
, x, z ∈ Rd , t ≥ 0,

implying that Pt (x, ·) is an infinitely divisible probability measure with the triplet
(at,x , At ,�t ) of Lévy characteristics given by the formulas:

At =
t∫

0

e−2csds A, t ≥ 0

�t (B) =
∫

Rd
0

t∫

0

1B(e
−cs y)ds�(dy), B ∈ B(Rd

0 ), t ≥ 0,

and

at,x = e−ct x +
t∫

0
e−csds

+ ∫

Rd
0

∫ t
0 e−cs y

(
1{e−cs |y|≤1} − 1{|y|≤1}

)
ds�(dy), t ≥ 0, x ∈ Rd .

Because
∫

Rd

∫

Rd

ei〈z,w〉 Ps(y, dw)Pt (x, dy)

=
∫

Rd

exp

⎧
⎨

⎩
i〈y, e−cs z〉 −

s∫

0

ϕ(e−cr z)dr

⎫
⎬

⎭
Pt (x, dy)

= exp

⎧
⎨

⎩
i〈x, e−c(t+s)z〉 −

s∫

0

ϕ(e−c(r+s)z)dr −
t∫

0

ϕ(e−cr z)dr

⎫
⎬

⎭
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=
∫

Rd

ei〈z,w〉 Pt+s(x, dw),

Pt (x, B), t ≥ 0, x ∈ Rd , B ∈ B(Rd), satisfies the Chapman–Kolmogorov identity

∫

Rd

Pt (x, dy)Ps(y, B) = Pt+s(x, B)

as the transition probability function of the time homogeneous Markov process X .
It is known (see [2–6]) that, as t → ∞, for each x ∈ Rd

Pt (x, ·) ⇒ μ̃c

if and only if ∫

{|y|>2}
log |y|�(dy) < ∞, (5.3)

where the limit distribution μ̃c satisfies

∫

Rd

ei〈z,y〉μ̃c(dy) = exp

⎧
⎨

⎩
−

∞∫

0

ϕ(e−cs z)ds

⎫
⎬

⎭
, z ∈ Rd . (5.4)

The distribution μ̃c is self-decomposable with the triplet of Lévy characteristics
(ãc, Ãc, �̃c), where

ãc = 1

c
a + 1

c

∫

{|y|>1}

y

|y|�(dy),

Ãc = 1

2c
A

and

�̃c(B) = 1

c

∫

Rd

∞∫

0

1B
(
e−s y

)
ds�(dy), B ∈ B(Rd

0 ).

There is one-to-one continuous in the topology of weak convergence correspondence
between the class I Dlog(Rd) of infinitely divisible distributions, satisfying the inte-
grability assumption (5.3), and the class of self-decomposable distributions L(Rd).
It is given by the mapping
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I Dlog(R
d) 
 μ = L (Z1) ↔ L

⎛

⎝

∞∫

0

e−t dZt

⎞

⎠ = μ̃ ∈ L(Rd). (5.5)

The correspondence (5.5) imply that for the triplet (ã, Ã, �̃) of Lévy characteristics
for μ̃ the following equalities hold true:

ã = a +
∫

{|y|>1}

y

|y|�(dy)

Ã = 1

2
A

and

�̃(B) =
∫

Rd

∞∫

0

1B(e
−s y)ds�(dy), B ∈ B(Rd

0 ).

Vice versa, if

�̃(B) =
∫

Sd−1

λ(dξ)

∞∫

0

1B(rξ)
kξ (r)

r
dr, B ∈ B(R0),

then

a = ã −
∫

{|y|>1}

y

|y|�(dy),

A = 2 Ã (5.6)

and

�(B) = −
∫

Sd−1

λ(dξ)

∞∫

0

1B(rξ)dkξ (r).

The process {Zt , t ≥ 0}, is called the background driving Lévy process (BDLP
for short).

Definition 5.1 The subclass of the Ornstein–Uhlenbeck type processes, obtained by
the correspondence (5.5) with the Student t-distribution μ̃, is called the class of the
Ornstein–Uhlenbeck type Student processes (Student OU-type processes for short).

Definition 5.2 The subclass of the Ornstein–Uhlenbeck type processes, obtained
by the correspondence (5.5) with the noncentral Student t-distributions μ̃, satisfying
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self-decomposability condition (iii) of Proposition 4.6, is called the class of the non-
central Ornstein–Uhlenbeck type Student processes (noncentral Student
OU-type processes for short).

We shall describe the BGDP, generating the Student OU-type processes.

Proposition 5.3 (i) The Student OU-type processes are generated by the BDLP
Z = {Zt , t ≥ 0} with the triplets of Lévy characteristics (γ0, 0,�0), where

γ0 =
∫

{|x |≤1}
xπ0(x)dx + α, α ∈ Rd ,

�0(B) =
∫

B

π0(x)dx, B ∈ B(Rd
0 ),

π0(x) = − d

dr

(
rdl0(rξ)

)
|rξ=x

and

l0(x) = ν2
d
4 +1 (〈x
−1, x〉)− d

4

√|
|(2π) d
2

∞∫

0

u
d
4 K d

2

(
(2t〈x
−1, x〉) 1

2

)
g ν

2
(2νt)dt,

ν > 0, 
 is a symmetric positive definite d × d matrix.
(ii) The Student OU-type process X , generated by the BDLP Z with the triplet of

Lévy characteristics (γ0, 0,�0) and L(X0) = Td(ν,
, α) is strictly stationary
Markov process.

Proof

(i) Follows directly from the Definition 5.1, the above stated properties of BGDP
and the Proposition 4.5.

(ii) It is well-known property of time homogeneous Markov processes. �

Proposition 5.4

(i) The noncentral Student OU-type processes are generated by the BDLP Z =
{Zt , t ≥ 0} with the triples of Lévy characteristics (γa, 0,�a), where

γa =
∫

{|x |≤1}
xπa(x)dx + α, α, a ∈ Rd ,

�a(B) =
∫

B

πa(x)dx, B ∈ B(Rd
0 ),
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πa(x) = − d

dr

(
rdla(rξ)

)
|rξ=x

and

la(x) = 2ν exp
{〈a
−1, x〉}

√|
|(2π) d
2
(〈x
−1, x〉) d

4

∞∫

0

(
〈a
−1, a〉 + 2t

) d
4

× K d
2

((
(〈a
−1, a〉 + 2t)〈x
−1, x〉

) 1
2
)

g ν
2
(2νt).

(ii) The noncentral Student OU-type process X (a), generated by the BDLP Z with
the triplet of Lévy characteristics (γa, 0,�a) and L(X0) = Td(ν,
, α, a) is
strictly stationary Markov process.

Proof

(i) Follows directly from the Definition 5.2, the above stated properties of BDLP
and the Proposition 4.5.

(ii) It is well-known property of time homogeneous Markov processes. �
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Chapter 6
Student Diffusion Processes

6.1 H-Diffusions

We shall consider the regular positive recurrent diffusion processes X = {Xt , t ≥ 0}
on an open interval (l, r) ⊆ R1 with the inaccessible end points and predetermined
one-dimensional distributions (for used terminology see, e.g., [1, 2]).

Let τa = inf{t > 0 : Xt = a}, a ∈ (l, r), and s(x), s ∈ (l, r) be the scale
function for the process X , i.e. a strictly increasing continuous function such that for
all l < a ≤ x ≤ b < r

Px {τa < τb} = s(b)− s(x)

s(b)− s(a)
,

where Px denotes the underlying probability measure of the process given X0 = x .
Let m be the speed measure for the process X , characterized by the properties that

m(I ) > 0 for every non-empty subinterval I of (l, r) and for l < a < x < b < r

Ex (τa ∧ τb) =
∫

(a,b)

gs(a),s(b) (s(x), s(y))m(dy)

where

ga,b(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

(b − u)(v − a)

b − a
, if v ≤ u,

(u − a)(b − v)

b − a
, if u ≤ v,

and the expectation Ex is taken with respect to the measure Px .
It is known (see [1–4]) that if s(x) → +∞, as x ↑ r , s(x) → −∞, as x ↓ l, and

|m| := m ((l, r)) < ∞,
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then the diffusion X is positive recurrent with the inaccessible end points. Moreover, if

L (X0) = m

|m| ,

the process X will be strictly stationary and ergodic.
Let G (l, r) be a class of strictly positive differentiable functions g(x), x ∈ (l, r),

such that for each x ∈ (l, r) there exists ε > 0, (x − ε, x + ε) ⊂ (l, r), satisfying

x+ε∫

x−ε
|g′(v)|dv < ∞,

for some x0 ∈ (l, r), as x ↑ r ,

G(x) :=
x∫

x0

g(v)dv → +∞,

and, as x ↓ l, G(x) → −∞.
Let h(x), x ∈ (l, r) be a strictly positive measurable function such that

r∫

l

h(x)dx = 1. (6.1)

Write H(dx) = h(x)dx ,

a(x) = −1

2

g′(x)
h(x)g2(x)

, x ∈ (l, r), (6.2)

and
σ 2(x) = (h(x)g(x))−1 , x ∈ (l, r). (6.3)

Theorem 6.1 [5] For each g ∈ G (l, r) and h, satisfying (6.1), there exists the unique
weak solution for the stochastic differential equation

{
dXt = a(Xt )dt + σ(Xt )dBt , t > 0

L (X0) = H,
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which is a regular positive recurrent diffusion with the scale function

s(x) =
x∫

x0

g(v)

g(x0)
dv, x ∈ (l, r),

and the speed measure m = g(x0)H.
Here and below B = {Bt , t ≥ 0} is the standard univariate Brownian motion.

The solution is a strictly stationary process with the one dimensional distribution H ,
called the H-diffusion (see [6]). The functions g and h are intrinsic characteristics of
the H-diffusions, in terms of which their properties should be formulated.

Example 6.2 Let (l, r) = (0, 1),

h(x) = Cxβ1−1(1 − x)β2−1eλx , x ∈ (0, 1),

g(x) = 1

Cσ 2

[
xα1+β1−1(1 − x)α2+β2−1e(χ+λ)x]−1

,

x ∈ (0, 1), α1, α2, λ, χ ∈ R1, σ 2 > 0, β1 > 0, β2 > 0.

Here and below C is the norming constant. It is easy to check that g ∈ G (0, 1) if and
only if α1 + β1 ≥ 2 and α2 + β2 ≥ 2.

In this case

a(x) = σ 2

2

[
(α1 + β1 − 1)xα1−1(1 − x)α2 − (α2 + β2 − 1)

× xα1(1 − x)α2−1(λ+ μ)xα1(1 − x)α2
]

eχx , x ∈ (0, 1),

and
σ 2(x) = σ 2xα1(1 − x)α2 eχx , x ∈ (0, 1).

Taking α1 = α2 = 1, χ = 0, we have the Wright–Fisher gene frequency model with
mutation and selection in the population genetics (see, e.g., [1, 7]).

Example 6.3 Let (l, r) = (0,∞),

h(x) = Cxλ−1 exp
{− (χx−β1 + ψxβ2

)}
, x > 0

g(x) = 1

Cσ 2 x−(λ+γ )+1 exp
{
χx−β1 + ψxβ2

}
, x > 0

where σ 2 > 0, β1 > 0, β2 > 0 and either

(i) λ, γ ∈ R1, χ > 0, ψ > 0, or
(ii) χ = 0, λ > 0, ψ > 0, λ+ γ > 2, or

(iii) ψ = 0, λ < 0, χ > 0, λ+ γ < 2.
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In all these cases g ∈ G (0,∞),

a(x) = σ 2

2

[
(γ + λ− 1)xγ−1 + χβ1xγ−β1−1 − ψβ2xγ+β2−1

]
, x > 0

and

σ 2(x) = σ 2xγ , x > 0.

If γ = 2, β2 = 1, χ = 0, λ > 0, we have that

a(x) = σ 2

2
(λ+ 1)x − ψx2, x > 0,

σ 2(x) = σ 2x2

and

h(x) = Cxλ−1e−ψx ,

giving us a diffusion version of the Pearl-Verhulst logistic population growth model
(see [1]). This class of diffusions also contains the Cox–Ingersoll–Ross model for
short interest rates in bond markets and its generalizations (see, e.g., [4, 8]).

Example 6.4 Let (l, r) = (−∞,+∞),

h(x) = C

(

1 +
(

x − α

δ

)2
)γ

exp

{

−κ arctan

(
x − α

δ

)}

, x ∈ R1,

g(x) = exp
{
κ arctan

( x−α
δ

)}

Cσ 2
(

1 + ( x−α
δ

)2
)λ+γ , x ∈ R1 α, λ,κ ∈ R1, λ < −1

2
,

λ+ γ ≤ 1

2
, δ > 0, σ 2 > 0.

In this case g ∈ G (−∞,+∞),

μ(x) = σ 2

δ

(

1 +
(

x − α

δ

)2
)γ−1 [

(λ+ γ )

(
x − α

δ

)

− κ

2

]

, x ∈ R1,

σ 2(x) = σ 2

(

1 +
(

x − α

δ

)2
)γ

, x ∈ R1.
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Taking γ = 1, we have the Johannesma diffusion model for the stochastic activity
of neurons (see [9–11]) and one of the Föllmer–Schweizer models for stock returns
(see [12], also [13]). The stationary distribution is the skew Student’s t-distribution
with the skewness coefficient κ. If κ = 0, we arrive to the univariate Student’s
t-distribution.

6.2 Student Diffusions

Definition 6.5 An H-diffusion process X on R1 is called a Student diffusion if
H = T1(ν, σ

2, α), ν > 0, σ 2 > 0, α ∈ R1.

From Theorem 6.1 it follows that for each g ∈ G (−∞,∞) there exists a Student
diffusion. For example, taking λ = − ν+1

2 , γ = 1, κ = 0, σ 2 = θ , we find from
Example 6.4 that the unique weak solution for the stochastic differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dXt = −θ(ν − 1)

2

(
Xt − α

δ

)

dt +
√
√
√
√θ

(

1 +
(

Xt − α

δ

)2
)

dBt , θ > 0,

L (X0) = T1(ν, δ
2ν−1, α)

is a Student diffusion.

Example 6.6 [8] The function g(x) ≡ σ−2 > 0, x ∈ R1, belongs to G (−∞,∞).
Thus for any strictly positive pdf h(x), x ∈ R1, the unique weak solution for the
stochastic differential equation

{

dXt = (σ 2h(Xt )
)− 1

2 dBt , t > 0
L (X0) = H,

is an H-diffusion.
If ν > 1, as the unique weak solution for the stochastic differential equation

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dXt = −θ Xt − α

δ
dt +
√
√
√
√ 2θδ2

ν − 1

(

1 +
(

Xt − α

δ

)2
)

dBt , t > 0,

L (X0) = T1(ν, δ
2ν−1, α),

the Student diffusion is a member of the family of Kolmogorov–Pearson diffusions
(see [14, 15]).

Now let us consider a Student diffusion X = {Xt , t ≥ 0}, corresponding to
the function g ∈ G (−∞,∞), and discuss the domain-of-attraction problem for the
maximum values



62 6 Student Diffusion Processes

MT = max
0≤t≤T

Xt , T > 0,

using linear normalization.
We shall see that the problem for H-diffusion reduces to the classical extreme

value theory and the criteria are expressed in the terms of functions g independently
of the marginal distribution H .

Definition 6.7 We say that an H-diffusion X = {Xt , t ≥ 0} belongs to the maximum
domain of attraction of the nondegenerate distribution Q (X ∈ M D Al(Q) for short)
if there exist constants aT > 0 and bT ∈ R1 such that, as T → ∞,

L (aT (MT − bT )) ⇒ Q.

Define γT from the equality G(γT ) = T .

Theorem 6.8 [6] Let an H-diffusion X corresponds to the function g ∈ G (l, r). The
following criteria hold true:

(i) X ∈ M D Al(�) if and only if there exists a function b(x) > 0, x ∈ (x0, r),
such that, for each x ∈ R1,

lim
y↑r

G(y)

G(y + b(y)x)
= e−x ;

(ii) X ∈ M D Al(�γ ) if and only if r = ∞ and, for each x > 0,

lim
y↑∞

G(y)

G(xy)
= x−γ , γ > 0;

(iii) X ∈ M D Al(�γ ) if and only if r < ∞ and, for each x > 0

lim
y↓0

G(r − y)

G(r − xy)
= xγ , γ > 0.

Moreover, in the case (i)

r∫

x0

(G(v))−1 dv < ∞
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and we can take

b(x) = G(x)

r∫

x

(G(v))−1 dv,

aT ∼ 1

T

⎛

⎝

r∫

γT

(G(v))−1 dv

⎞

⎠

−1

,

bT = γT + χT ,

where χT are any constants such that aTχT → 0, as T → ∞.
In the case (ii)

aT ∼ γ−1
T , bT = 0

and in the case (iii)

aT ∼ (r − γT )
−1, bT = r.

Proof Under the assumptions of Theorem from Davis [16] (see also [17, 18]) we
have that for any constants uT ↑ ∞, as T → ∞.

lim
T →∞

∣
∣
∣P{MT ≤ uT } − FT (uT )

∣
∣
∣ = 0,

where

F(x) = e−(G(x))−1
, x ∈ (l, r).

Let

F̂(x) =
{

0, for x < x̂0,

1 − (G(x))−1 1(x̂0,r), for x ≥ x̂0,

where G(x̂0) = 1.
Because 1 − F(x) ∼ 1 − F̂(x), as x ↑ r , the statement of Theorem 6.8, using

the principle of equivalent tails, now follows from the classical extreme value theory
(see, e.g., [19, 20]). �

Because, for x ∈ (x̂0, r),

f̂ (x) := F̂ ′(x) = g(x)

2G2(x)
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and

f̂ ′(x) = 1

2

g′(x)
G2(x)

− g2(x)

G3(x)
,

we shall have the following analogue of classical von Mises theorem (see, [19–22]).

Theorem 6.9 [21] Let an H-diffusion X correspond to the function g ∈ G (l, r).
The following sufficient conditions are valid:

(i) if

lim
x↑r

g′(x)G(x)
g2(x)

= 1,

then X ∈ M D Al(�);
(ii) if r = ∞ and

lim
x↑∞

xg(x)

G(x)
= γ > 0,

then X ∈ M D Al(�γ );
(iii) if r < ∞ and

lim
x↑r

(r − x)g(x)

G(x)
= γ > 0,

then X ∈ M D Al(�γ ).

Now the following Propositions are obvious.

Proposition 6.10 Let a Student diffusion X correspond to the function
g ∈ G (−∞,∞).

There are two possibilities:

(1) X ∈ M D Al(�) if and only if there exists a function b(x) > 0, x ∈ (x0,∞),
such that, for each x ∈ R1,

lim
y↑∞

G(y)

G (y + b(y)x)
= e−x ,

and
(2) X ∈ M D Al(�γ ) if and only if, for each x > 0,

lim
y↑∞

G(y)

G(xy)
= x−γ , γ > 0.
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In the case (1) we can take

b(x) = G(x)

⎛

⎝

∞∫

∞T

(G(v))−1 dv

⎞

⎠

−1

,

and the norming constants

aT ∼ 1

T

⎛

⎝

∞∫

γT

(G(v))−1 dv

⎞

⎠

−1

,

bT = γT + χT ,

where χT are any constants such that aTχT → 0, as T → ∞.
In the case (2) the norming constants are aT ∼ γ−1

T , bT = 0.

Proposition 6.11 Let a Student diffusion X correspond to the function
g ∈ G (−∞,∞).

Then, if

lim
x↑∞

g′(x)G(x)
g2(x)

= 1,

X ∈ M D Al(�),

and, if

lim
x↑∞

xg(x)

G(x)
= γ > 0,

X ∈ M D Al(�γ ).

Example 6.12 (continued Example 6.2) Let α1 + β1 > 2. Using Theorem 6.9 (iii),
because

lim
x↑1

(1 − x)g(x)

G(x)
= α1 + β1 − 2,

X ∈ M D Al(�α1+β1−2).

Example 6.13 (continued Example 6.3) In the both cases (i) and (ii)

lim
x→∞

g′(x)G(x)
g2(x)

= 1,

implying by Theorem 6.9 (i) that X ∈ M D Al(�).
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In the case (iii), assuming that λ+ γ < 2, we have that

lim
x↑∞

xg(x)

G(x)
= 2 − λ− γ,

implying by Theorem 6.9 (ii) that X ∈ M D Al(�2−λ−γ ).

Example 6.14 (continued Example 6.4) Assuming that λ+ γ < 1
2 , we have that

lim
x↑∞

xg(x)

G(x)
= 1 − 2(λ+ γ ),

implying by Theorem 6.9 (ii) that X ∈ M D Al(�1−2(λ+γ )).

Example 6.15 (continued Example 6.6) Taking x0 = 0, we find that G(x) = σ 2x ,
x ∈ R1, γT = σ−2T and

xg(x)

G(x)
≡ 1.

Thus, X ∈ M D Al(�1) and, as T → ∞,

L

(
σ 2

T
MT

)

⇒ �1.

6.3 Point Measures of ε-Upcrossings for Student Diffusions

Let ε > 0 be fixed. The process X = {Xt , t ≥ 0} is said to have an ε-upcrossing of
the level u at t0 if X (t) < u, for t ∈ (t0 − ε, t0), and X (t0) = u. Let T > 0 and
B ∈ B ((0, 1]). Then

NT (B) = � {ε − crossings of uT by X on the set T B}

is called the time normalized point measure of ε-upcrossings of the level uT by X .
The following statement is slightly weakened but essentially simplified version

of the Borkovec and Klüppelberg result in [8] (for used terminology see, e.g., [23]).

Theorem 6.16 [24] Let an H-diffusion X correspond to the function g ∈ G (l, r),
pdf h is continuous and there exists a constant K such that, for all x ∈ (l, r),

h(x)G2(x) log(|G(x)| + 1)

g(x)
≤ K . (6.4)
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If uT ↑ r , as T → ∞, and

lim
T →∞ T −1G(uT ) = (2τ)−1, τ > 0, (6.5)

then the point measure NT converges vaguely to the homogeneous Poisson point
measure on B ((0, 1)) with the intensity τ , as T → ∞.

Example 6.17 Let (l, r) = (−∞,∞), x0 = 0, h(x), x ∈ R1, be an arbitrary strictly
positive continuous pdf, g(x) ≡ σ−2 > 0.

If there exists a constant K such that, for all x ∈ R1

x2 log (|x | + 1) h(x) ≤ K , (6.6)

then the statement of Theorem 6.16 holds true with τ = σ 2

2 and uT = T .
Because for the skew Student’s t-distribution (see Example 6.4 and [13])

h(x) = Cν,δ,κ

(

1 +
(

x − α

δ

)2
)− ν+1

2

exp

{

−κ arctan

(
x − α

δ

)}

, x ∈ R1,

(6.7)
where

Cν,δ,κ = �
(
ν+1

2

)

δ
√
π�
(
ν
2

)
∞∏

k=0

[

1 + κ
2

(ν + 1 + 2k)2

]−1

,

we have that, as |x | → ∞,

h(x) ∼ Cν,δ,κδ
ν+1|x |−(ν+1). (6.8)

In this case the assumption (6.4) is satisfied if and only if ν > 1.

Example 6.18 Let X be a skew Student diffusion corresponding to the function

g(x) = exp
{
κ arctan

( x−α
δ

)}

Cν,δ,κ
(

1 + ( x−α
δ

)2
)− ν+1

2 +γ , x ∈ R1, α,κ ∈ R1, γ ≤ 1 + ν

2
.

Having in mind (6.8), because, as |x | → ∞,

g(x) ∼ |x |ν+1−2γ

Cν,δ,κδν+1−2γ
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and, using l’Hospital’s rule,

G(x) ∼ |x |ν+2−2γ

Cν,δ,κδν+1−2γ (ν + 2 − 2γ )
,

we find that the assumption (6.6) is satisfied if and only if 1 < γ ≤ 1 + ν
2 .

If 1 < γ < 1 + ν
2 , taking

uT =
(

T

2Cν,δ,κδν+1−2γ (ν + 2 − 2γ )

) 1
ν+2−2γ

,

then the point measure NT , as T → ∞, converge vaguely to the Poisson measure
with the intensity 1.

Example 6.19 (continued Example 6.3) In the case (i), using l’Hospital’s rule, we
have that, as x → ∞,

G(x) ∼ (ψβ1)
−1x1−β1 g(x) (6.9)

and, as x → 0,
G(x) ∼ −(χβ2)

−1x1+β2 g(x). (6.10)

Thus, the assumption (6.4) is satisfied if and only if

2 − 2β1 < γ < 2 + 2β2

and (6.5) holds with τ = 1 and

uT =
(

1

ψ
log T

) 1
β1 + 1

β1ψ

(
1

ψ
log T

) 1
β1

−1

×
[
β1 + γ + λ− 2

β1
log

(
1

ψ
log T

)

+ log

(

β1ψC
σ 2

2

)]

(6.11)

Here we used formulas for asymptotic solutions of equations like G(uT ) = T from
[19], Table 3.4.4.

In the case (ii) we analogously find that, as x → ∞, (6.10) holds, and, as x → 0,

G(x) ∼ x

2 − (λ+ γ )
g(x), (6.12)

implying that the assumption (6.4) is satisfied if and only if

2 < γ < 2β2 + 2.

The equality (6.5) holds with τ = 1 and uT , defind by (6.11).
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Finally, in the case (iii), as x → ∞, it holds (6.12) and, as x → 0, it holds (6.10),
implying that the assumption (6.4) is satisfied if and only if

2 − 2β1 < γ < 2.

The equality (6.5) holds with τ = 1 and

uT =
[

(2 − λ− γ )(
σ 2T

2
)

] 1
2−λ−γ

.

6.4 Kolmogorov–Pearson Diffusions

Definition 6.20 An H-diffusion X = {Xt , t ≥ 0} in the interval (l, r) is called the
Kolmogorov–Pearson diffusion if it is a weak solution for the stochastic differential
equation {

dXt = θ A(Xt )dt + √
θB(Xt )dBt , t > 0, θ > 0,

L (X0) = H,
(6.13)

where

A(x) = p0 + p1x, x ∈ (l, r),

and

B(x) = q0 + q1x + q2x2 > 0, x ∈ (l, r).

This class of diffusions was described by Kolmogorov in 1931 (see [25]). Ergodic
distributions of these diffusions are contained in the family of Pearson distributions,
satisfying the Pearson equation:

h′(x)
h(x)

= 2A(x)− B ′(x)
B(x)

, x ∈ (l, r). (6.14)

Last years this class of diffusions attracted attention of statisticians as a flexible
and statistically tractable stochastic processes (see, e.g., [13, 26–32]).

Let L2 ((l, r); H) be a Hilbert space of equivalency classes of measurable func-
tions f : (l, r) → R1 such that

|| f ||2H :=
r∫

l

f 2(x)h(x)dx < ∞
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and C2 ((l, r)) be a class of twice differentiable functions f : (l, r) → R1.
The generator

L = θ

2
B(x)

d2

dx2 + θ A(x)
d

dx

of the Kolmogorov–Pearson diffusion X , satisfying (6.13), is a map

L : L2 ((l, r); H) ∩ C2 ((l, r)) → L2 ((l, r); H) .

Let us recall the following classical results (see, e.g., [1, 33–35]).
Obviously, L maps polynomials to polynomials. If, for all n = 0, 1, . . .,

r∫

l

x2nh(x)dx < ∞,

there exists an orthonormal system of polynomials {Pn(x), x ∈ (l, r), n = 0, 1, . . .}
such that

L Pn(x)+ λn Pn(x) = 0, x ∈ (l, r),

where
λn = −nθ

(
p1 + q2

2
(n + 1)

)
, n = 0, 1, . . . , (6.15)

showing that the spectrum of—L is discrete with the eigenvalues, given by (6.15),
and the corresponding eigenfunctions {Pn(x), x ∈ (l, r), n = 0, 1, . . .}, which under
the additional assumption that

lim
x→l−0

h(x)B(x) = lim
x→r+0

h(x)B(x) = 0 (6.16)

are given by the generalized Rodrigues formula:

Pn(x) = cn

[
h(x)Bn(x)

](n)

h(x)
, x ∈ (l, r), n = 0, 1, . . . , (6.17)

where

c−2
n =

r∫

l

([
h(x)Bn(x)

](n)
)2

h(x)
dx .
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If, for some integer N ,
r∫

l

x2N h(x)dx < ∞, (6.18)

but

r∫

l

|x |2N+1h(x)dx = ∞,

the spectrum of—L consists of the continuous part and the finite number of discrete
eigenvalues

λn = −nθ
(

p1 + q2

2
(n + 1)

)
, n = 0, 1, . . . , N ,

corresponding to the eigenfunctions {Pn(x), x ∈ (l, r), n = 0, 1, . . . , N }, defined by
the formula (6.17).

Let

h j =
r∫

l

x j h(x)dx, j = 0, 1, 2, . . . ,

�n =

∣
∣
∣
∣
∣
∣
∣
∣

1 h1 . . . hn

h1 h2 . . . hn+1
. . . . . . . . . . . .

hn hn+1 . . . h2n

∣
∣
∣
∣
∣
∣
∣
∣

, �0 = 1,

and

Qn(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 h1 . . . hn

h1 h2 . . . hn+1
. . . . . . . . . . . .

hn−1 hn . . . h2n−1
1 x . . . xn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, Q0(x) ≡ 1.

Then

Pn(x) = Qn(x)√
�n−1�n

, x ∈ (l, r), n = 1, 2, . . . .

If h is a pdf of the skew Student’s t-distribution, given by (6.7), from Example 6.4
it follows that the corresponding H-diffusion is the Kolmogorov–Pearson diffusion
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with

A(x) = θ

δ

[

−ν − 1

2

(
x − α

δ

)

− κ

2

]

, (6.19)

and

B(x) = θ

(

1 +
(

x − α

δ

)2
)

, x ∈ R1, α,κ ∈ R1, ν, δ > 0. (6.20)

In this case from (6.8) it follows that (6.16) is satisfied if and only if ν > 1,
and (6.18) holds true with the largest integer N satisfying 2N < ν and denoted
N = ⌊ ν2

⌋
. The discrete eigenvalues for the skew Student diffusion, defined by (6.19)

and (6.20), are

λn = nθ

2δ2 (ν − n), n = 0, 1, . . . ,
⌊ν

2

⌋
.

The corresponding eigenfunctions are equal to

Pn(x) = cn

[
h(x)
(

1 + ( x−α
δ

)2
)n](n)

h(x)
, n = 0, 1, . . . ,

⌊ν

2

⌋
(6.21)

If κ = 0, h is the pdf of T1(ν, δ
2ν−1, α). Following [30], polynomials (6.21) are

called the Routh–Romanovsky polynomials (see [36, 37]).
If κ = α = 0, we have that, for j < ν,

h(0)j :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∞∫
−∞

x j h(x)dx = δ j

√
π�
(ν

2

)�

(
j

2
+ 1

2

)

�

(
ν

2
− j

2

)

, if j is even,

0, if j is odd,

and, for κ = 0, α �= 0, j < ν,

h(α)j :=
∞∫

−∞
x j h(x)dx =

j∑

k=0

(
j
k

)

h(0)k α j−k .

We refer the reader to [30] (see also [9, 15]) where a version of the Student
diffusion was considered with

A(x) = −x + α

δ
,
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B(x) = 2δ2

ν − 1

(

1 +
(

x − α

δ

)2
)

, α ∈ R1, ν > 1, δ > 0,

λn = θ

ν − 1
n(ν − n), n = 0, 1, . . . ,

⌊ν

2

⌋

and the Routh–Romanovsky polynomials as corresponding eigenfunctions. Most
important that in this paper the continuous part of spectrum is described in terms
of the hypergeometric functions, obtained the spectral representation of transition
probability density of X and applied to the statistical inference of the model.

The skew Student diffusion is known as the Johannesma diffusion model for the
stochastic activity of neurons (see [9–11]) and as one of the Föllmer–Schweizer
models for stock returns (see [12, 13]).

Classification of the Kolmogorov–Pearson diffusions to six types is given in
[14, 15]. The characteristics of these types are the following:

(1)

A(x) = −x + α, B(x) ≡ 2, (l, r) = (−∞,∞),

h(x) = 1√
2π

e− 1
2 (x−α)2 , x, α ∈ R1,

λn = n2θ, n = 0, 1, . . .

{
Pn(x), x ∈ R1, n = 0, 1, . . .

}
are the Hermite polynomials;

(2)

A(x) = −x + α, B(x) = 2x, (l, r) = (0,∞), α > 1,

h(x) = xα−1e−x

�(α)
, x > 0,

λn = nθ, n = 0, 1, . . . ,

{Pn(x), x > 0, n = 0, 1, . . .} are the Laguerre polynomials;
(3)

A(x) = −x + α, B(x) = 2ax2, (l, r) = (0,∞), a > 0, α > 0,

h(x) = Ca−1+1,1, αa

(
1 + x2

)− 1
2a −1

exp
{
−α

a
arctan (x − α)

}
, x > 0

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋

,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Routh-Romanovsky

polynomials;
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(4)

A(x) = −x + α, B(x) = 2ax2, (l, r) = (0,∞), a > 0, α > 0,

h(x) =
(
α
a

) 1
a +1

�
( 1

a + 1
) x− 1

a −2 exp
{
− α

ax

}
, x > 0,

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋

,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Bessel polynomials;

(5)

A(x) = −x + α, B(x) = 2ax(x + 1), (l, r) = (0,∞), α ≥ a > 0,

h(x) = 1

B
(
α
a ,

1
a + 1
) x

α
a −1(1 + x)−

α+1
a −1, x > 0,

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋

,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Fisher–Snedocor polynomials;

(6)

A(x) = −x + α, B(x) = 2ax(x − 1), (l, r) = (0, 1), −1 < a < 0,

1 + a ≤ α ≤ −a,

h(x) = 1

B
(−α

a ,− 1−α
a

) x− α
a −1(1 − x)−

α+1
a −1, 0 < x < 1,

λn = nθ (1 − 2a(n + 1)) , n = 0, 1, . . . ,

{Pn(x), x ∈ (0, 1), n = 0, 1, . . .} are Jacobi polynomials.

In the above formulas B(z1, z2) means the Euler’s beta function.
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Chapter 7
Miscellanea

7.1 Mixed Moments of Student’s t-Distributions

Let Md be the Euclidean space of symmetric d × d matrices with the scalar product
〈A1, A2〉 := tr(A1 A2), A1, A2 ∈ Md , M+

d ⊂ Md be the cone of nonnegative definite
matrices and P(M+

d ) be a class of probability measures on M+
d . Here tr A denotes

the trace of a matrix A.
The probability distribution of a d-dimensional random vector X is said to be the

mixture of centered Gaussian distributions with the mixing distribution U ∈ P(M+
d )

(U -mixture for short) if, for all z ∈ Rd ,

Eei〈z,X〉 =
∫

M+
d

e− 1
2 〈z A,z〉U (dA). (7.1)

The distributional properties of such mixtures are well studied (see, e.g., [1, 2]
and references therein).

Let c j = (c j1 , . . . , c jd ) ∈ Rd , j = 1, 2, . . . , 2n. We shall derive formulas evaluat-

ing E
(∏2n

j=1〈c j , X〉
)

for U -mixtures of Gaussian distributions, including Student’s

t-distribution.
Let�2n be the class of pairingsσ on the set I2n = {1, 2, . . . , 2n}, i.e. the partitions

of I2n into n disjoint pairs, implying that

card�2n = (2n)!
2nn! .

For each σ ∈ �2n , we define uniquely the subsets I2n\σ and integers σ( j),
j ∈ I2n\σ , by the equality

σ = {
( j, σ ( j)) , j ∈ I2n\σ

}
.

B. Grigelionis, Student’s t-Distribution and Related Stochastic Processes, 77
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-31146-8_7,
© The Author(s) 2013
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If U = ε� is a Dirac measure with fixed� ∈ M+
d , i.e. the Gaussian case, Isserlis

theorem (in mathematical physics known as Wick theorem) says (see, e.g., [3–5])
that

E

⎡

⎣
2n∏

j=1

〈c j , X〉
⎤

⎦ =
∑

σ∈�2n

∏

j∈I2n\σ
〈c j�, cσ( j)〉 := m2n(c, �). (7.2)

Write

φU (�) :=
∫

M+
d

e−tr(A�)U (dA), � ∈ M+
d . (7.3)

Theorem 7.1 [6] The following statements hold:

(i) The probability distribution of a d-dimensional random vector X is the U-
mixture of centered Gaussian distributions if and only if

Eei〈z,X〉 = φU

(
1

2
zT z

)

, (7.4)

where zT is the transposed vector z.
(ii) If the probability distribution of X is the U-mixture of centered Gaussian dis-

tributions and, for j = 1, 2, . . . , 2n,

∫

M+
d

〈c j A, c j 〉nU (dA) < ∞, (7.5)

then

E

⎡

⎣
2n∏

j=1

〈c j , X〉
⎤

⎦ =
∑

σ∈�2n

∫

M+
d

mσ
2n(c, A)U (dA), (7.6)

where
mσ

2n(c, A) =
∏

j∈I2n\σ
〈c j A, cσ( j)〉.

Proof (i) The statement follows from (7.1) and (7.3), because, obviously,

tr
(
(zT z)A

)
= 〈z A, z〉.

(ii) Observe that card I2n\σ = n and, for all σ ∈ �2n and A ∈ M+
d ,
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∏

j∈I2n\σ

∣
∣〈c j A, cσ( j)〉

∣
∣n ≤ n−n

⎛

⎝
∑

j∈I2n\σ

∣
∣〈c j A, cσ( j)〉

∣
∣

⎞

⎠

n

≤ n−1
∑

j∈I2n\σ

∣
∣〈c j A, cσ( j)〉

∣
∣n

≤ 2n−1

n

∑

j∈I2n\σ

[〈c j A, c j 〉n + 〈cσ( j)A, cσ( j)〉n]

= 2n−1

n

2n∑

j=1

〈c j A, c j 〉n . (7.7)

Using (7.5) and (7.7), we find that

E

⎡

⎣
2n∏

j=1

〈c j , X〉
⎤

⎦ =
∫

M+
d

m2n(c, A)U (dA)

=
∑

σ∈�2n

∫

M+
d

mσ
2n(c, A)U (dA).

�

Taking (see also [7])
U = L (Y�),

where � ∈ M+
d is fixed and

L (Y ) = G I G
(
−ν

2
, ν, 0

)

we have that

φU (�) = 2
(
ν
2

) ν
4 (tr(��))

ν
4

	
(
ν
2

) K ν
2

(√
2tr(��)

)
, (7.8)

L (X) = Td(ν,�, 0) (7.9)

and, for j = 1, 2, . . . , 2n

∫

M+
d

〈c j A, c j 〉nU (dA) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

	
(
ν
2 − n

)

(ν

2

)ν

2
−n

〈c j�, c j 〉n, if 2n < ν,

∞, if 2n ≥ ν.
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Thus, for 2n < ν,

∫

Rd

2n∏

j=1

〈c j , x〉Td (ν,�, 0) (dx) = 	
(
ν
2 − n

)

(
ν
2

) ν
2 −n

m2n(c, �), (7.10)

∫

Rd

2n∏

j=1

〈c j , x〉Td(ν,�, α)(dx) =
∫

Rd

2n∏

j=1

[〈c j , y〉 + 〈c j , α〉] Td(ν,�, 0)(dy)

and because of anti-symmetry, for 2k + 1 < ν,

∫

Rd

2k+1∏

j=1

〈c j , x〉Td(ν,�, 0)(dx) = 0.

Remark 7.2 Let ν ≥ d be an integer, Y1, . . . ,Yν be i.i.d. d-dimensional centered
Gaussian vectors with a covariance matrix �, |�| > 0, and U = L

(
ν�−1

ν

)
, where

the matrix

Wν =
ν∑

j=1

Y T
j Y j .

If ν ≥ d, the matrix Wν is invertible with probability 1, because it is well known
that the Wishart distribution

L (Wν) := Wd(�, ν)

has a density

Wd(�, ν, A) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

|A|
ν − d − 1

2 exp

{

−1

2
tr
(
�−1 A

)
}

(
2d |�|)

ν

2 π

d(d − 1)

4
d∏

j=1
	

(
k − j + 1

2

)
, if |A| > 0,

0, otherwise.

Because (see, e.g., [2, 8, 9])

∫

M+
d

e− 1
2 〈z A,z〉U (dA) =

∫

Rd

ei〈z,x〉Td(ν,�, 0)(dx)

= E[e− 1
2 〈z�,z〉Y ], z ∈ Rd , (7.11)
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taking z = tc, t ∈ R1, c ∈ Rd , we find that

∫

M+
d

e− t2
2 〈cA,c〉U (dA) = E

[

e− t2
2 〈c�,c〉Y

]

.

Thus, for all c ∈ Rd ,

L
(
ν〈cW −1, c〉

)
= L (〈c�, c〉Y ) ,

contradicting to the formula

L
(
〈cW −1

ν , c〉
)

= L

(

〈c�−1, c〉 1

χ2
ν−d+1

)

in [9].

Unfortunately, the last formula was used in [6], Example 3.
From (7.11) we easily find that

∫

Rd

ei〈z,x〉Td(ν,�, α)(dx) = ei〈z,α〉

2
ν
2 −1	

(
ν
2

) (ν〈z�, z〉) ν4

×K ν
2

(√
ν〈z�, z〉

)
, z ∈ Rd ,

(see [10, 11]).

7.2 Long-Range Dependent Stationary Student Processes

It is well known (see, e.g., [12]) that a real square integrable and continuous in
quadratic mean stochastic process X = {

Xt , t ∈ R1
}

is second order stationary if
and only if it has the following spectral decomposition:

Xt = α +
∞∫

−∞
cos (λt)v(dλ)+

∞∫

−∞
sin (λt)w(dλ), t ∈ R1,

where α = EX0, v(dλ) and w(dλ) are mean 0 and square integrable real random
measures such that, for each A, A1, A2 ∈ B(R1),

E [v(A1)v(A2)] = Ev2(A1 ∩ A2), (7.12)
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E [w(A1)w(A2)] = Ew2(A1 ∩ A2), (7.13)

E [v(A1)w(A2)] = 0, (7.14)

F̃(A) := Ev2(A) = Ew2(A). (7.15)

The correlation function r satisfies

r(t) =
∞∫

−∞
cos (λt)F(dλ),

where

F(A) = F̃(A)

F̃(R1)
, A ∈ B(R1).

Following [13], we shall construct a class of strictly stationary stochastic processes
X = {

Xt , t ∈ R1
}

such that

L (Xt ) ≡ T1

(
ν, σ 2, α

)
, ν > 2,

called the Student’s stationary processes.
Recall the notion and some properties of the independently scattered random

measures (i.s.r.m.) (see [13–15]).
Let T ∈ B(Rd), S be a σ -ring of subsets of T (i.e. countable unions of sets in S

belong to S and, if A, B ∈ S , A ⊂ B, then B\A ∈ S ). The σ algebra generated
by S is denoted σ(S ).

A collection of random variables v = {v(A), A ∈ S } defined on a probability
space (�,F ,P) is said to be an i.s.r.m. if, for every sequence {An, n ≥ 1} of disjoint
sets in S , the random variables v(An), n = 1, 2, . . ., are independent and

v

( ∞⋃

n=1

An

)

=
∞∑

n=1

v(An) a.s.,

whenever
⋃∞

n=1 An ∈ S .
Let v(A), A ∈ S , be infinitely divisible,

log Eeizv(A) = i zm0(A)− 1

2
z2m1(A)+

∫

R+
0

(
eizu − 1 − i zτ(u)

)
�(A, du),

where m0 is a signed measure, �(A, du) for fixed A is a measure on B(R1
0) such

that
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∫

R1
0

(
1 ∧ u2

)
�(A, du) < ∞;

τ(u) =
{

u, if |u| ≤ 1,
u

|u| , if |u| > 1.

Assume now that m0 = m1 = 0 and

�(A, du) = M(A)�(du),

where M(A) is some measure on T and �(du) is some Lévy measure on R1
0.

Integration of functions on T with respect to v is defined first for real simple
functions f = ∑n

j=1 x j 1A j , A j ∈ S , j = 1, . . . , n, by

∫

A

f (x)v(dx) =
n∑

j=1

x j v(A ∩ A j ),

where A is any subset of T , for which A ∈ σ(S ) and A ∩ A j ∈ S , j = 1, . . . , n.
In general, a function f : (T, σ (S )) → (

R1,B(R1)
)

is said to be v-integrable
if there exists a sequence { fn, n = 1, 2, . . .} of simple functions as above such
that fn → f M-a.e. and, for every A ∈ σ(S ), the sequence

{∫
A fn(x)v(dx),

n = 1, 2, . . .} converges in probability, as n → ∞. If f is v-integrable, we write

∫

A

f (x)v(dx) = p − lim
n→∞

∫

A

fn(x)v(dx).

The integrand
∫

A f (x)v(dx) does not depend on the approximating sequence.
A function f on T is v-integrable if and only if

∫

T

Z0 ( f (x))M(dx) < ∞

and ∫

T

|Z ( f (x))| M(dx) < ∞,

where

Z0(y) =
∫

R1
0

(
1 ∧ (uy)2

)
�(du),
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and

Z(y) =
∫

R1
0

(τ (uy)− yτ(u))�(du).

For such functions f

log E exp

⎧
⎨

⎩
iξ
∫

A

f (x)v(dx)

⎫
⎬

⎭
=
∫

A

κ (ξ f (x))M(dx),

where

κ(ξ) =
∫

R1
0

(
eiξu − 1 − iξτ(u)

)
�(du).

Let now Yt = (
Y 1

t ,Y 2
t

)
, t ≥ 0, be a bivariate Student-Lévy process such that

L (Y1) = T2(ν, σ
2 I2, 0), I2 =

(
1 0
0 1

)

,

and F be an arbitrary probability distribution on R1.
Let T = R1, S be the σ -ring of subsets A = ⋃∞

j=1

(
a j , b j

]
, where the intervals

(
a j , b j

]
, j = 1, 2, . . ., are disjoint. Define i.m.r.m. v and w by the equalities:

v(A) =
∞∑

j=1

(
Y 1

F(b j )
− Y 1

F(a j )

)

and

w(A) =
∞∑

j=1

(
Y 2

F(b j )
− Y 2

F(a j )

)
, A =

∞⋃

j=1

(
a j , b j

] ∈ S .

Because, for i = 1, 2, j = 1, 2, . . ., ν > 2,

E(Y i
F(b j )

− Y i
F(a j )

) = 0,

E(Y i
F(b j )

− Y i
F(a j )

)2 = σ 2ν

ν − 2

(
F(b j )− F(a j )

)

and ∞∑

j=1

E(Y i
F(b j )

− Y i
F(a j )

)2 ≤ σ 2ν

ν − 2
< ∞,

the definition of v and w is correct.
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From (7.10) it follows that v and w satisfies (7.12)–(7.15) with

F̃(A) = σ 2ν

ν − 2
F(A), A ∈ S .

Thus, the process

Xt = α +
∞∫

−∞
cos(ut)v(du)+

∞∫

−∞
sin (ut)w(du), t ∈ R1,

is well defined, strictly stationary,

L (Xt ) ≡ T1(ν, σ
2, α)

and the correlation function r satisfies

r(t) =
∞∫

−∞
cos (ut)F(du), t ∈ R1.

Strict stationarity of X follows from the formula (see [13]):

Ee
i

n∑

j=1
η j Xt j = e

iα
n∑

j=1
η j

× exp

⎧
⎨

⎩

∞∫

−∞
log ĥν,σ

⎛

⎝1

2

n∑

j,k=1

η jηk cos
(
u(t j − tk)

)
⎞

⎠ F(du)

⎫
⎬

⎭
,

η j , t j ∈ R1, j = 1, . . . , n,

where

ĥν,σ (θ) :=
∞∫

0

e−θu 1

σ 2 gig
( u

σ 2 ;−ν
2
, ν, 0

)
du

= 2

	
(
ν
2

)

(
θσ 2ν

2

) ν
4

K ν
2

(√
2σ 2θν

)
, θ > 0.

As it was checked in [16], if

F(du) = fβ,γ (u)du, 0 < β ≤ 1, γ ∈ R1,
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where

fβ,γ (u) = 1

2

[
fβ,0(u + γ )+ fβ,0(u − γ )

]
, u ∈ R1,

with

fβ,0(u) = 2
1−β

2

√
π	

(
β
2

)K1−β (|u|) |u| (1−β)
2 ,

then
r(t) = cos γ t

(1 + t2)
β
2

, t ∈ R1,

and ∞∫

−∞
|r(t)| dt = ∞,

implying long-range dependence of X (see also [17–20]).

Remark 7.3 Defining Student-Lamperti process X� as (see [21])

X�t = t H X log t , t > 0, X�0 = 0, H > 0.

we have that X� is H -self-similar, i.e., for each c > 0, processes
{

X�ct , t ≥ 0
}

and
{
cH X�t , t ≥ 0

}
have the same finite dimensional distributions, and (see [13])

Ee
i

n∑

j=1
η j X�t j = e

iα
n∑

j=1
t H

j η j

× exp

⎧
⎨

⎩

∞∫

−∞

⎡

⎣log ĥν,σ

⎛

⎝1

2

n∑

j,k=1

η jηk t H
j t H

k cos

(

u log
t j

tk

)
⎞

⎠

⎤

⎦F(du)

⎫
⎬

⎭
,

t j > 0, η j ∈ R1, j = 1, . . . , n.

In particular,

EeiηX�t = eiαt Hηĥν,σ

(

t2H η
2

2

)

, t > 0, η ∈ R1,

and

Eeiη(X�t −X�s ) = eiα
(
t H −s H

)
η exp

{ ∞∫

−∞

[

log ĥν,σ

(
1

2
η2
(

s2H + t2H

−2s H t H cos

(

u log
t

s

))]

F(du)

}

, s, t > 0, η ∈ R1.
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7.3 Lévy Copulas

Considering the probability distributions F on Rd with the 1-dimensional Student’s t
marginals Fj, j = 1, . . . , d, and having in mind their relationship with stochas-
tic processes, we restricted ourselves to the cases when F is a mixture of the
d-dimensional Gaussian distributions .

Denoting

C(u1, . . . , ud) := F
(

F−1
1 (u1), . . . , F−1

d (ud)
)
, u j ∈ [0, 1], j = 1, . . . , d,

it is obvious that this function is the probability distribution function on the d-cube
[0,1]d with uniform one-dimensional marginals, called the d-copula (see, e.g., [22]).
Trivially,

F(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd . (7.16)

Formula (7.16) with the arbitrary d-copula defines uniquely the probability distri-
butions on Rd with the given Student’s 1-dimensional marginals. These statements
are very special cases of well known Sklar’s theorem (see [23, 24]).

Thus, taking concrete d-copulas we shall obtain a wide class of multivariate gen-
eralizations of Student’s t-distributions.

For instance, the Archimedean copulas have the from

C(u1, . . . , ud) = ψ
(
ψ−1(u1)+ · + ψ−1(ud)

)
, u j ∈ [0, 1], j = 1, . . . , d,

where ψ is a d-monotone function on [0,∞), i.e., for each x ≥ 0 and k =
0, 1, . . . , d − 2,

(−1)k
dk

dxk
ψ(x) ≥ 0,

(−1)d−2ψ(d−2)(x), x ≥ 0, is nonincreasing and convex function.
In particular, if

ψ(x) = (1 + x)−
1
θ , θ ∈ (0,∞), x ≥ 0,

we have the Clayton’s copula

C(u1, . . . , ud) =
⎛

⎝
d∑

j=1

u−θ
j − d + 1

⎞

⎠

− 1
θ

, u j ∈ [0, 1], j = 1, . . . , d.

If φ(x) = exp
{
−x

1
θ

}
, θ ≥ 1, x ≥ 0, we obtain the Gumbel copula
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C(u1, . . . , ud) = exp

⎧
⎪⎨

⎪⎩
−
⎛

⎝
d∑

j=1

(− log u j
)θ

⎞

⎠

1
θ

⎫
⎪⎬

⎪⎭
, u j ∈ [0, 1], j = 1, . . . , d.

Unfortunately, it is difficult to describe if the copulation preserves such important for
us properties of marginal distributions as infinite divisibility or self-decomposability.

A promising direction for future work is a notion of Lévy copulas and, analo-
gously to the classical copulas, construction of new Lévy measures on Rd using
marginal ones (see [25–28]). Following [28], we briefly describe an analogue of
Sklar’s theorem in this context.

Let R̄ := (−∞,∞]. For a, b ∈ R̄d we write a ≤ b, if ak ≤ bk , k = 1, . . . , d
and, in this case, denote

(a, b] := (a1, b1] × . . .× (ad , bd ] .

Let F : S → R̄ for some subset S ⊂ R̄d . For a, b ∈ S with a ≤ b and (a, b] ⊂ S,
the F-volume of (a, b] is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad ,bd }
(−1)N (u)F(u),

where N (u) := �{k : uk = ak}.
A function F : S → R̄ is called d-increasing if VF ((a, b]) ≥ 0 for all a, b ∈ S

with a ≤ b and (a, b] ⊂ S.

Definition 7.4 Let F : R̄d → R̄ be a d-increasing function such that F(u1, . . . ,

ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d}. For any non-empty index set
I ⊂ {1, . . . , d} the I -marginal of F is the function FI : R̄|I | → R̄, defined by

F I ((u)i)i∈I ) := lim
a→∞

∑

(ui )i∈I c ∈{−a,∞}|I c |
F(u1, . . . , ud)

∏

i∈I c

sgnui ,

where I c = {1, . . . , d}\I , |I | := cardI , and

sgnx =
{

1, if x ≥ 0,
−1, if x < 0.

Definition 7.5 A function F : R̄d → R̄ is called a Lévy copula if

1. F(u1, . . . , ud) �= ∞ for (u1, . . . , ud) �= (∞, . . . ,∞),
2. F(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},
3. F is d-increasing,
4. F {i}(u) = u for any i ∈ {1, . . . , d}, u ∈ R1.
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Write

I (x) :=
{
(x,∞), if x ≤ 0,
(−∞, x], if x > 0.

Definition 7.6 Let X = (X1, . . . , Xd) be an Rd -valued Lévy process with the Lévy

measure �. The tail integral of X is the function V : (R1\{0})d → R1 defined by

V (x1, . . . , xd) :=
d∏

i=1

sgn(xi )� (I (x1)× · · · × I (xd))

and, for any non-empty I ⊂ {1, . . . , d} the I -marginal tail integral V I of X is the
tail integral of the process X I := (Xi )i∈I .

We denote one-dimensional margins by Vi := V {i}.
Observe, that marginal tail integrals {V I :I⊂{1, . . . , d} non-empty} are uniquely

determined by �. Conversely, � is uniquely determined by the set of its marginal
tail integral.

Relationship between Lévy copulas and Lévy processes are described by the
following analogue of Sklar’s theorem.

Theorem 7.7 [28]

1. Let X = (
X1, . . . , Xd

)
be an Rd-valued Lévy process. Then there exists a Lévy

copula F such that the tail integrals of X satisfy

V ((xi )i∈I ) = F I ((Vi (xi ))i∈I
)
, (7.17)

for any non-empty I ⊂ {1, . . . , d} and any (xi )i∈I ∈ (
R1\{0})|I |. The Lévy cop-

ula F is unique on RanV1 × · · · × RanVd.

2. Let F be a d-dimensional Lévy copula and Vi , i = 1, . . . , d, be tail integrals of
real-valued Lévy processes. Then there exists an Rd -valued Lévy process X whose
components have tail integrals V1, . . . , Vd and whose marginal tail integrals

satisfy (7.17) for any non-empty I ⊂ {1, . . . , d} and any (xi )i∈I ∈ (
R1\{0})|I |.

The Lévy measure � of X is uniquely determined by F and Vi , i = 1, . . . , d.

In the above formulation RanV means the range of V . The reader is referred for
proofs to [28].

An analogue of the Archimedean copulas is as follows (see [28]).
Let ϕ : [−1, 1] → [−∞,∞] be a strictly increasing continuous function with

ϕ(1) = ∞, ϕ(0) = 0, and ϕ(−1) = −∞, having derivatives of orders up to d on
(−1, 0) and (0, 1), and, for any k = 1, . . . , d, satisfying



90 7 Miscellanea

dkϕ(u)

duk
≥ 0, u ∈ (0, 1) and (−1)k

dkϕ(u)

duk
≤ 0, u ∈ (−1, 0).

Let
ϕ̃(u) := 2d−2 (ϕ(u)− ϕ(−u)) , u ∈ [−1, 1].

Then

F(u1, . . . , ud) := ϕ

(
d∏

i=1

ϕ̃−1(ui )

)

defines a Lévy copula.
In particular, if

ϕ(x) := η (− log |x |)− 1
ϑ 1{x>0} − (1 − η) (− log |x |)− 1

ϑ 1{x<0}

with ϑ > 0 and η ∈ (0, 1), then

ϕ̃(x) = 2d−2 (− log |x |)− 1
ϑ sgnx, x ∈ −1, 1],

and

F(u1, . . . , ud) = 22−d

(
d∑

i=1

|ui |−ϑ
)− 1

ϑ

(η1{u1...ud≥0} − (1 − η)1{u1...ud<0}),

resembling the ordinary Clayton copulas.
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Appendix A
Bessel Functions

Bessel functions of the first kind J�mðzÞ, of the second kindYmðzÞ and of the third

kind Hð1Þm ðzÞ and Hð2Þm ðzÞ are solutions of the differential equation:

z2 d2w

dz2
þ z

dw

dz
þ ðz2 � m2Þw ¼ 0:

The function JmðzÞ can be represented as the following series:

JmðzÞ ¼
X1

m¼0

ð�1Þm 1
2 z
� �mþ2m

m!Cðmþ mþ 1Þ ; jargzj\p;

YmðzÞ ¼
JmðzÞ cosðmpÞ � J�mðzÞ

sinðmpÞ ;

where the right-hand side of the last equation is replaced by its limiting value if m is
an integer or zero,

Hð1Þm ðzÞ ¼ JmðzÞ þ iYmðzÞ ¼
1

i sinðmpÞ J�mðzÞ � JmðzÞe�imp
� �

;

Hð2Þm ðzÞ ¼ JmðzÞ � iYmðzÞ ¼
1

sinðmpÞ JmðzÞeimp � J�mðzÞ
� �

:

Modified Bessel functions of the first kind

ImðzÞ ¼
e�imp

2Jm eip2z
� �

; �p\argz� p
2 ;

e�3imp
2Jm e�3ip2z
� �

; p
2 \argz� p;

(
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and of the third kind

KmðzÞ ¼
1
2

ipeipm
2Hð1Þm eip2z

� �

¼ � 1
2

ipe�ipm
2Hð2Þm e�ip2z

� �

and satisfies the formulas:

ImðzÞ ¼
X1

m¼0

1
2 z
� �mþ2m

m!Cðmþ mþ 1Þ ; m[ � 1;

KmðzÞ ¼
p
2

ImðzÞ � I�mðzÞ
sinðmpÞ ;

where the right hand side of the last equation is replaced by its limiting value if m is
an integer or zero.

When m ¼ nþ 1
2, n ¼ 0; 1; . . ., the Bessel functions are elementary:

Jnþ1
2
ðzÞ ¼

ffiffiffi
2
z

r
znþ1

2 � 1
z

d
dz

� �n
sin z

z
;

J�n�1
2
ðzÞ ¼

ffiffiffi
2
p

r
znþ1

2
1
z

d
dz

� �n
cos z

z
;

Ynþ1
2
ðzÞ ¼ ð�1Þnþ1J�n�1

2
ðzÞ;

Knþ1
2
ðzÞ ¼ ð�1Þn

ffiffiffiffiffi
p
2z

r
znþ1 d

zdz

� �ne�z

z
;

Inþ1
2
ðzÞ ¼

ffiffiffi
2
p

r
znþ1

2
d

zdz

� �n
sinh z

z
:

The following integral representations and useful formulas hold true:

KmðzÞ ¼ K�mðzÞ ¼
1
2

z

2

	 
m
Z1

0

t�m�1e�t�z2

4t dt

¼ 1
2

Z1

0

t�m�1 exp � 1
2

z t þ t�1
� �� �

dt; z [ 0;

Kmþ1ðzÞ ¼
2m
z

KmðzÞ þ Km�1ðzÞ;

Kmþ1ðzÞ þ Km�1ðzÞ ¼ �2K 0mðzÞ;

94 Appendix A: Bessel Functions



zmKmðzÞ ¼
Z1

z

tmKm�1ðtÞdt;

Km�1ðzÞ ¼ zKmðzÞ
Z1

0

gmðtÞ
z2 þ t

dt ðGrosswald’s formulaÞ;

where

gmðtÞ ¼ 2 p2t J2
m ð

ffiffi
t
p
Þ þ Y2

m ð
ffiffi
t
p
Þ

� � ��1
; t [ 0;

KmðzÞ�
ffiffiffiffiffi
p
2z

r
e�z; as z!1;

K0ðzÞ� ln
1
z
; as z! 0;

zjmjKmðzÞ " CðjmjÞ2jmj�1; as z # 0; ðm 6¼ 0Þ;

KmðmzÞ�
ffiffiffiffiffi
p
2m

r
e�m

ffiffiffiffiffiffiffiffi
1þz2
p

ð1þ z2Þ
1
4

z

1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2
p

� ��m

; as m!1;

uniformly with respect to real z.
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Index

r-ring q, 86

B
Brownian motion, 26

C
Class

ID(Rd), 60
ID(R+), 81
IDlog(Rd), 81
L(Rd), 26
Tj(R+), 30Q

2n, 56
G(l, r), 26
PðMþd Þ, 31
GGC, 4
HCM, 39

Cone ðMþd ÞF, 81
Copula

Archimedean, 92
Clayton, 92
Gumbel, 93
Lévy, 93
d-copula

D
Diffusion

H-diffusion, 61
Kolmogorov-Pearson, 72
Student, 63

domain of attraction, 64
scale function, 59
speed measure, 59

Distribution
Bessel Bessb,k, 36
Frchet Uc, 14
Gaussian, 2

U-mixtures, 81
generalized inverse GIG, 4
mean-variance mixture, 2
variance mixture, 2

Gumbel K, 15
Pareto-like, 17
Student’s t Td(m, R, a), 2

doubly noncentral Td(m, R, a, a, k), 3, 38
generalized, 39
noncentral Td(m, R, a, k), 36
noncentral Td(m, R, a, a), 38
skew, 63

Tweedie Twp(a, k), 33
Weibull Wc, 16
Wishart Wd(R, m), 84
associated, 16
compound Poisson-exponential, 36
gamma Cb,c, 1

generalized GCb,c,d, 40
inverse (reciprocal) ICb,c, 2
noncentral Cb,c,k

infinitely divisible, 26
self-decomposable, 26

Domain of attraction
MDAl(Q), 17
RDAl(Q), 17
RDAp(Q), 17
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E
Exponent

Laplace, 30
characteristic, 40

F
Formula

Grosswald, 3
Lévy-Khinchine, 26
generalized Rodrigues, 73

Function
Bessel

modified of the first kind
modified of the third kind
of the first kind
of the second kind

completely monotone, 31
d-increasing, 93
d-monotone, 92
hyperbolically completely

monotone, 39
integrated hazard, 16

I
Identity of Chapman-Kolmogorov, 55

L
Law

l-max stable, 16
p-max stable, 17

M
Measure

e-upcrossings, 68
Lévy, 27

polar decomposition, 27
Thorin, 32
independently scattered, 86

Model
Cox-Ingersoll-Ross, 62
Föllmer-Schweizer, 63
Johannesma, 63
Pearl-Verhulst, 62
Wright-Fisher, 61

N
Normalization

linear, 16
power, 17

O
Orthogonal polynomials

Bessel, 77
Fisher-Snedocor, 77
Hermite, 76
Jacobi, 77
Laguerre, 76
Routh-Romanovsky, 76

P
Pearson equation, 72
Principle of equivalent tails, 18

S
Space
ðRd; h�; �iÞ, 23
L2 ((l, r);H), 72
Md, 81
Rd

0, 25
Stochastic process

Lévy, 25
background driving, 56
in law, 25
subordinated, 40

Ornstein-Uhlenbeck, 53
Ornstein-Uhlenbeck type, 53
Poisson, 24
Student stationary, 89
Student-Lévy, 50

noncentral, 50
Student-Lamperti, 90
Student-OU type, 56

noncentral, 56
additive, 23

Gaussian, 25
Gaussian Thorin subordinated, 5
in law, 23

generalized hyperbolic, 43
self-decomposable, 26
stochastically continuous, 23
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Subordinator, 30
Lévy
Thorin, 31

T
Tail integral, 95

I-marginal, 95
Theorem

Bernstein, 31

Isserlis, 82
Sklar, 92

Triplet of Lévy characteristics, 40

V
Values

extremal, 14
record, 16
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