Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

2.1 Asymptotic Behavior of Student’s Pdf

Proposition 2.1

For each\(x\in R^d\), as\(\nu \rightarrow \infty \),

$$\begin{aligned} f_{\nu ,\Sigma ,a}(x)\rightarrow g_{a,\Sigma }(x). \end{aligned}$$
(2.1)

Proof

Let \(a=0\). Using the well-known formula that

$$\begin{aligned} \Gamma (z)=\sqrt{\frac{2\pi }{z}}e^{-z}z^z\left(1+O\left(\frac{1}{z}\right)\right), \quad \mathrm as \quad z\rightarrow \infty , \end{aligned}$$
(2.2)

we find that, as \(\nu \rightarrow \infty \),

$$\begin{aligned} \frac{\Gamma (\frac{\nu +d}{2})}{(\nu \pi )^{\frac{d}{2}}\Gamma (\frac{\nu }{2})}\sim \frac{\sqrt{\frac{4\pi }{\nu +d}}e^{-\frac{\nu +d}{2}}(\frac{\nu +d}{2})^{\frac{\nu +d}{2}}}{(\nu \pi )^{\frac{d}{2}}\sqrt{\frac{4\pi }{\nu }}e^{-\frac{\nu }{2}}(\frac{\nu }{2})^{\frac{\nu }{2}}}\rightarrow \frac{1}{(2\pi )^{\frac{d}{2}}} \end{aligned}$$
(2.3)

and, obviously,

$$\begin{aligned} \left(1+\frac{\langle x\Sigma ^{-1},x\rangle }{\nu }\right)^{-\frac{\nu +d}{2}}\rightarrow e^{-\frac{1}{2}\langle x\Sigma ^{-1},x\rangle }. \end{aligned}$$
(2.4)

Here and below “\(\sim \)” is the equivalence sign.

The statement (2.1) with \(a=0\) follows from (1.1), (2.2), (2.3) and (2.4).

Let now \(a\ne 0\) and

$$\begin{aligned} y_\nu =\frac{2}{\nu +d}\left[\langle a\Sigma ^{-1},a\rangle (\nu +\langle x\Sigma ^{-1},x\rangle )\right]^{\frac{1}{2}}. \end{aligned}$$

Because, as \(\nu \rightarrow \infty \), uniformly in \(y\) (see Appendix)

$$\begin{aligned} K_{\nu }(\nu y)\sim \sqrt{\frac{\pi }{2\nu }}\frac{\exp {\{-\nu \sqrt{1+y^2}\}}}{(1+y^2)^{\frac{1}{4}}}\left(\frac{y}{1+\sqrt{1+y^2}}\right)^{-\nu } \end{aligned}$$

and

$$\begin{aligned} \sqrt{1+y_{\nu }^2}\sim 1+\frac{1}{2}y_{\nu }^2, \end{aligned}$$

we shall have that

$$\begin{aligned}&K_{\frac{\nu +d}{2}}\left(\left[\langle a\Sigma ^{-1},a\rangle (\nu +\langle x\Sigma ^{-1},x\rangle )\right]^{\frac{1}{2}}\right) =K_{\frac{\nu +d}{2}}\left(\frac{\nu +d}{2}y_{\nu }\right) \nonumber \\&\sim \sqrt{\frac{\pi }{\nu +d}}\exp \left\{ -\frac{\nu +d}{2}\left(1+\frac{1}{2}y_{\nu }^2\right)\right\} \left(\frac{y_{\nu }}{2+\frac{1}{2}y_{\nu }^2}\right)^{-\frac{\nu +d}{2}} \nonumber \\&\sim \sqrt{\frac{\pi }{\nu +d}}e^{-\frac{\nu +d}{2}}\exp {\left\{ -\frac{1}{\nu +d}\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right\} }\left(\frac{y_{\nu }}{2+\frac{1}{2}y_{\nu }^2}\right)^{-\frac{\nu +d}{2}}.\nonumber \\ \end{aligned}$$
(2.5)

From (1.2) and (2.5) we elementarily find that

$$\begin{aligned} f_{\nu ,\Sigma ,a}(x)&\sim \frac{(\frac{\nu }{2})^{\frac{\nu }{2}}}{\Gamma (\frac{\nu }{2})}\frac{2\exp \left\{ \langle x \Sigma ^{-1},a\rangle \right\} }{(2\pi )^{\frac{d}{2}}\sqrt{|\Sigma |}}\left(\frac{\langle a\Sigma ^{-1},a\rangle }{\nu _+\langle x\Sigma ^{-1},x}\right)^{\frac{\nu +d}{4}}\sqrt{\frac{\pi }{\nu +d}}e^{-\frac{\nu +d}{2}} \nonumber \\&\quad \times \exp \left\{ -\frac{1}{\nu +d}\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right\} \left(\frac{y_{\nu }}{2+\frac{1}{2}y_{\nu }^2}\right)^{-\frac{\nu +d}{2}} \nonumber \\&\sim \frac{\exp \left\{ \langle x\Sigma ^{-1},a\rangle \right\} }{(2\pi )^{\frac{d}{2}}\sqrt{|\Sigma |}}e^{-\langle a\Sigma ^{-1},a\rangle }e^{-\frac{d}{2}}\left(\frac{\nu +\langle x\Sigma ^{-1},x\rangle }{2+\frac{1}{2}y_{\nu }^2}\right)^{-\frac{\nu +d}{2}} \nonumber \\&\sim \frac{\exp \left\{ \langle x\Sigma ^{-1},a\rangle \right\} }{(2\pi )^{\frac{d}{2}}\sqrt{|\Sigma |}}e^{-\langle a\Sigma ^{-1},a\rangle }e^{-\frac{d}{2}}\nonumber \\&\quad \times \exp \left\{ -\frac{1}{2}(\langle x\Sigma ^{-1},x\rangle -d)\right\} \left(1+\frac{1}{4}y_{\nu }^2\right)^{\frac{\nu +d}{2}}. \end{aligned}$$
(2.6)

But

$$\begin{aligned} \left(1+\frac{1}{4}y_{\nu }^2\right)^{\frac{\nu +d}{2}}&=\left(1+\frac{1}{(\nu +d)^2}\left[\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right]\right)^{\frac{\nu +d}{2}}\nonumber \\&\rightarrow \exp \left\{ \frac{1}{2}\langle a\Sigma ^{-1},a\rangle \right\} . \end{aligned}$$
(2.7)

Thus, (2.6) and (2.7) imply that, for each \(x\in R^d\), as \(\nu \rightarrow \infty \),

$$\begin{aligned} f_{\nu ,\Sigma ,a}(x)\rightarrow \frac{\exp \left\{ \langle x\Sigma ^{-1},a\right\} }{(2\pi )^{\frac{d}{2}}\sqrt{|\Sigma |}}\exp \left\{ -\frac{1}{2}\left(\langle a\Sigma ^{-1},a\rangle +\langle x\Sigma ^{-1},x\rangle \right)\right\} =g_{a,\Sigma }(x). \;\, \square \end{aligned}$$

Proposition 2.2

For each fixed\(x\epsilon R^d\)and\(\nu >0\), as\(|a|\rightarrow 0\),

$$\begin{aligned} f_{\nu ,\Sigma ,a}(x)\rightarrow f_{\nu ,\Sigma }(x). \end{aligned}$$

Proof

Indeed, as \(|a|\rightarrow 0\),

$$\begin{aligned}&K_{\frac{\nu +d}{2}}\left(\left[\langle a\Sigma ^{-1},a\rangle (\nu +\langle x\Sigma ^{-1},x\rangle )\right]^{\frac{1}{2}}\right)\\&\quad \sim \Gamma \left(\frac{\nu +d}{2}\right)2^{\frac{\nu +d}{2}-1}\left[\langle a\Sigma ^{-1},a\rangle (\nu +\langle x\Sigma ^{-1},x\rangle )\right]^{-\frac{\nu +d}{4}} \end{aligned}$$

(see Appendix) and, having in mind formulas (1.1), (1.2),

$$\begin{aligned} f_{\nu ,\Sigma ,a}(x)\rightarrow \frac{(\frac{\nu }{2})^{\frac{\nu }{2}}}{\Gamma (\frac{\nu }{2})}\frac{2^{\frac{\nu +d}{2}}\Gamma (\frac{\nu +d}{2})}{(2\pi )^{\frac{d}{2}}\sqrt{|\Sigma |}}\left(\nu +\langle x\Sigma ^{-1},x \rangle \right)^{-\frac{\nu +d}{2}}=f_{\nu ,\Sigma }(x).\qquad \qquad \qquad \quad \square \end{aligned}$$

Proposition 2.3

  1. (i)

    As\(|x|\rightarrow \infty \),

    $$\begin{aligned} f_{\nu ,\Sigma }(x)\sim c_{\nu ,\Sigma }\left(\langle x\Sigma ^{-1},x\rangle \right)^{-\frac{\nu +d}{2}}, \end{aligned}$$

    where

    $$\begin{aligned} c_{\nu ,\Sigma }=\frac{\Gamma \left(\frac{d+\nu }{2}\right)}{\pi ^{\frac{d}{2}}\Gamma (\frac{\nu }{2})\sqrt{|\Sigma |}}. \end{aligned}$$
  2. (ii)

    As\(|x|\rightarrow \infty \), \(a\ne 0\),

    $$\begin{aligned} f_{\nu ,\Sigma ,a}(x)&\sim c_{\nu ,\Sigma ,a}\left(\langle x\Sigma ^{-1},x\rangle \right)^{-\frac{\nu +d+1}{4}}\\&\quad \times \exp {\left\{ -\left[\langle a\Sigma ^{-1},a\rangle \langle x\Sigma ^{-1},x\rangle \right]^{\frac{1}{2}}+\langle x\Sigma ^{-1},a\rangle \right\} }, \end{aligned}$$

    where

    $$\begin{aligned} c_{\nu ,\Sigma ,a}=\frac{(\frac{\nu }{2})^{\frac{\nu }{2}}\left(\langle a\Sigma ^{-1},a\rangle \right)^{\frac{\nu +d+1}{4}}}{\Gamma (\frac{\nu }{2})(2\pi )^{\frac{d-1}{2}}\sqrt{|\Sigma |}}. \end{aligned}$$

Proof

  1. (i)

    Obviously follows from (1.1).

  2. (ii)

    Because, as \(|x|\rightarrow \infty \),

    $$\begin{aligned}&K_{\frac{\nu +d}{2}}\left(\left[\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right]^{\frac{1}{2}}\right) \nonumber \\&\quad \sim \sqrt{\frac{\pi }{2}}\left[\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right]^{-\frac{1}{4}}\nonumber \\&\qquad \times \exp \left\{ -\left[\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right]^{\frac{1}{2}}\right\} , \end{aligned}$$

    from (1.2) we find that, as \(|x|\rightarrow \infty \),

    $$\begin{aligned} f_{\nu ,\Sigma ,a}(x)&\sim \frac{(\frac{\nu }{2})^{\frac{\nu }{2}}\left(\langle a\Sigma ^{-1},a\rangle \right)^{\frac{\nu +d-1}{4}}}{\Gamma (\frac{\nu }{2})(2\pi )^{\frac{d-1}{2}}\sqrt{|\Sigma |}}\frac{\exp {\left\{ \langle x\Sigma ^{-1},a\rangle \right\} }}{\left(\nu +\langle x\Sigma ^{-1},x\rangle \right)^{\frac{\nu +d+1}{4}}} \nonumber \\&\quad \times \exp \left\{ -\left[\langle a\Sigma ^{-1},a\rangle \left(\nu +\langle x\Sigma ^{-1},x\rangle \right)\right]^{\frac{1}{2}}\right\} \nonumber \\&\sim c_{\nu ,\Sigma ,a}\left(\langle x\Sigma ^{-1},x\rangle \right)^{-\frac{\nu +d+1}{4}}\nonumber \\&\quad \times \exp {\left\{ -\left[\langle a\Sigma ^{-1},a\rangle \langle x\Sigma ^{-1},x\rangle \right]^{\frac{1}{2}}+\langle x\Sigma ^{-1},a\rangle \right\} }.\qquad \qquad \qquad \quad \end{aligned}$$

    \(\square \)

Corollary 2.4

Let d=1.

  1. (i)

    If\(a>0\), \(x\rightarrow \infty \), then

    $$\begin{aligned} f_{\nu ,\sigma ^2,a}(x)\sim \frac{1}{\sigma \Gamma (\frac{\nu }{2})}\left(\frac{\nu a}{2\sigma }\right)^{\frac{\nu }{2}}x^{-\frac{\nu }{2}-1}. \end{aligned}$$
    (2.8)
  2. (ii)

    If\(a>0\), \(x\rightarrow -\infty \), then

    $$\begin{aligned} f_{\nu ,\sigma ^2,a}(x)\sim \frac{1}{\sigma \Gamma (\frac{\nu }{2})}\left(\frac{\nu a}{2\sigma }\right)^{\frac{\nu }{2}}|x|^{-\frac{\nu }{2}-1}\exp \left\{ -\frac{2a|x|}{\sigma ^2}\right\} . \end{aligned}$$
    (2.9)
  3. (iii)

    If\(a<0\), \(x\rightarrow \infty \), then

    $$\begin{aligned} f_{\nu ,\sigma ^2,a}(x)\sim \frac{1}{\sigma \Gamma (\frac{\nu }{2})}\left(\frac{\nu |a|}{2\sigma }\right)^{\frac{\nu }{2}}x^{-\frac{\nu }{2}-1}\exp \left\{ -\frac{2|a|x}{\sigma ^2}\right\} . \end{aligned}$$
    (2.10)
  4. (iv)

    If\(a<0\), \(x\rightarrow -\infty \), then

    $$\begin{aligned} f_{\nu ,\sigma ^2,a}(x)\sim \frac{1}{\sigma \Gamma (\frac{\nu }{2})}\left(\frac{\nu |a|}{2\sigma }\right)^{\frac{\nu }{2}}|x|^{-\frac{\nu }{2}-1}. \end{aligned}$$
    (2.11)

2.2 Asymptotic Distributions for Extremal and Record Values

Let now \(d=1\) and \(\{X_n, n\ge 1\}\) a sequence of i.i.d. random variables with common Student’s \(t\)-distribution function and let \(M_n=\max \limits _{1\le j\le n}X_j\).

Proposition 2.5

  1. (i)

    If pdf of\(\fancyscript{L}(X_1)\)is\(f_{\nu ,\sigma ^2}\), then, as\(n\rightarrow \infty \),

    $$\begin{aligned} \fancyscript{L}\left((K_1n)^{-\frac{1}{\nu }}M_n\right)\Rightarrow \Phi _{\nu }, \end{aligned}$$

    where\(\Rightarrow \)means weak convergence of probability laws, \(\Phi _{\nu }\) is the Fréchet distribution

    $$\begin{aligned} \Phi _{\nu }(x)=\left\{ \begin{array}{l} \exp {\left\{ -x^{-\nu }\right\} }, \quad \mathrm if \quad x>0 \\ 0, \quad \mathrm if \quad x\le 0, \end{array} \right. \end{aligned}$$

    and

    $$\begin{aligned} K_1=\frac{\Gamma (\frac{\nu +1}{2})\sigma ^{\nu }}{\nu \sqrt{\pi }\Gamma (\frac{\nu }{2})}. \end{aligned}$$
  2. (ii)

    If pdf of\(\fancyscript{L}(X_1)\)is\(f_{\nu ,\sigma ^2,a}\), \(a>0\), then, as\(n\rightarrow \infty \),

    $$\begin{aligned} \fancyscript{L}\left((K_2n)^{-\frac{2}{\nu }}M_n\right)\Rightarrow \Phi _{\frac{\nu }{2}}, \end{aligned}$$

    where

    $$\begin{aligned} K_2=\frac{2(\frac{\nu a}{2\sigma })^{\frac{\nu }{2}}}{\nu \sigma \Gamma (\frac{\nu }{2})}. \end{aligned}$$
  3. (iii)

    If pdf of\(\fancyscript{L}(X_1)\)is\(f_{\nu ,a,\sigma ^2}\), \(a<0\), then, as\(n\rightarrow \infty \),

    $$\begin{aligned} \fancyscript{L}\left(\frac{2|a|}{\sigma ^2}M_n-\ln {n}-\left(\frac{\nu }{2}+1\right)\ln {\ln {n}}+\ln {K_3}\right)\Rightarrow \Lambda , \end{aligned}$$

    where\(\Lambda \)is the Gumbeldistribution

    $$\begin{aligned} \Lambda (x)=e^{-e^{-x}}, \quad x\in R^{1}, \end{aligned}$$

    and

    $$\begin{aligned} K_3=\frac{\nu ^{\frac{\nu }{2}}\sigma ^{\frac{\nu }{2}+3}}{2^{\nu +2}\Gamma (\frac{\nu }{2})}. \end{aligned}$$

Proof

  1. (i)

    From Proposition 2.3 (i) with \(d=1\) and the l’Hospital’s rule we have, as \(x\rightarrow \infty \),

    $$\begin{aligned} \int \limits ^{\infty }_{x}f_{\nu ,\sigma ^2}(u)\text{ d}u\sim \frac{c_{\nu ,\sigma }}{\nu \sigma }\left(\frac{x}{\sigma }\right)^{-\nu }=K_1x^{-\nu }, \end{aligned}$$
    (2.12)

    where

    $$\begin{aligned} c_{\nu ,\sigma }=\frac{\Gamma \left(\frac{\nu +1}{2}\right)}{\sqrt{\pi }\Gamma \left(\frac{\nu }{2}\right)\sigma }. \end{aligned}$$

    The statement (i) is standard for Pareto-like distributions (see, e.g., [1, 2]).

  2. (ii)

    From Corollary 2.4 (i) and the l’Hospital’s rule we have that, as \(x\rightarrow \infty \),

    $$\begin{aligned} \int \limits ^{\infty }_{x}f_{\nu ,\sigma ^2,a}(u)\text{ d}u\sim K_2x^{-\frac{\nu }{2}} \end{aligned}$$
    (2.13)

    and the conclusion is analogs to (i).

  3. (iii)

    From Corollary 2.4 (iii) and the l’Hospital’s rule we find that, as \(x\rightarrow \infty \),

    $$\begin{aligned} \int \limits ^{\infty }_{x}f_{\nu ,\sigma ^2,a}(u)\text{ d}u\sim \frac{\sigma }{2|a|\Gamma (\frac{\nu }{2})}\left(\frac{\nu |a|}{2\sigma }\right)^{\frac{\nu }{2}}x^{-\frac{\nu }{2}-1}\exp \left\{ -\frac{2|a|x}{\sigma ^2}\right\} . \end{aligned}$$
    (2.14)

    The statement (iii) is standard for gamma-like distributions (see, e.g., [1, 2]). \(\square \)

Now let us recall main results on limit theorems for record values in the sequences of i.i.d. random variables \(\{X_n,n\ge 1\}\) with a common continuous distribution function \(F\) which will be applied to the case of Student’s \(t\)-distributions.

The record times are \(L_1=1\), \(L_{n+1}=\min \left\{ k:k>n,X_k>X_{L_n}\right\} \) for \(n=1,2,\ldots \), and the record values are \(R_n=X_{L_n}\), \(n=1,2,\ldots \). Let \(W(x)=-\log (1-F(x))\) be the integrated hazard function and the associate distribution function \(A(x)=1-e^{-\sqrt{W(x)}}\), \(x\in R^1\). Let \(l_{a,b}(x)=ax+b\), \(a>0\), \(b\in R^1\), be a group of affine homeomorphisms of \(R^1\) with the composition law

$$\begin{aligned} l_{a_1,b_1}*l_{a_2,b_2}=l_{a_1a_2,a_1b_2+b_1}, \end{aligned}$$

the unit element \(l_{1,0}\) and the inverse \(l^{-1}_{a,b}=l_{a^{-1},a^{-1}b}\).

The domain of attraction problem for record values using linear normalization was solved by Resnick (see [3] also [4]). It was proved that the class of all possible non-degenerated weak limit laws \(Q\) such that for suitable constants \(a_n>0\), \(b_n\in R^1\), as \(n\rightarrow \infty \),

$$\begin{aligned} \fancyscript{L}\left(l^{-1}_{a_n,b_n}(R_n)\right)\Rightarrow Q \end{aligned}$$

coincide with the class of laws \(\Phi \left(-\log (-\log {G(\cdot )})\right)\), where \(\Phi \) is a standard normal distribution and \(G\) is a \(l\)-max stable law, i. e. a non-degenerated distribution on \(R^1\) such that for any \(n\ge 2\) there exist constants \(a_n>0\), \(b_n\in R^1\) satisfying

$$\begin{aligned} G^n(x)=G\left(l_{a_n,b_n}(x)\right), \quad x\in R^1. \end{aligned}$$

As in the classical extreme value theory this class can be factorized into three linear types, saying that probability distributions \(F_1\) and \(F_2\) are of the same linear type it there exist constants \(a>0\), \(b\in R^1\) such that

$$\begin{aligned} F_1(x)=F_2\left(l_{a,b}(x)\right), \quad x\in R^1. \end{aligned}$$

In the classical case these types are generated by the Fréchet distribution \(\Phi _\gamma \), the Gumbel distribution \(\Lambda \) and the Weibull distribution

$$\begin{aligned} \Psi _{\gamma }(x)=\left\{ \begin{array}{l} 1, \quad \mathrm if \quad x\ge 0, \\ \exp \left\{ -(-x)^{\gamma }\right\} , \quad \mathrm if \quad x<0, \quad \gamma >0, \end{array} \right. \end{aligned}$$

which correspond to generators of three types of the limiting laws for \(\fancyscript{L}\left(l_{a_n,b_n}(R_n)\right)\):

$$\begin{aligned} \tilde{\Phi }_{\gamma }(x)=\left\{ \begin{array}{l} 0,\quad \mathrm if \quad x\le 0, \\ \Phi (\log {x^{\gamma }}), \quad \mathrm if \quad x>0, \quad \gamma >0, \end{array} \right. \end{aligned}$$
$$\begin{aligned} \tilde{\Psi }_{\gamma }(x)=\left\{ \begin{array}{l} \Phi (\log (-x)^{\gamma }), \quad \mathrm if \quad x<0, \\ 1,\quad \mathrm if \quad x\ge 0, \quad \gamma >0, \end{array} \right. \end{aligned}$$

and the standard normal distribution \(\Phi (x)\), \(x\in R^1\).

We say that \(F\) belongs to the record domain of attraction under linear normalization of the non-degenerated distribution \(Q\) (\(F\in \text{ RDA}_l(Q)\) for short) if there exist constants \(a_n>0\) and \(b_n\in R^1\) such that \(\fancyscript{L}(l^{-1}_{a_n,b_n}(R_n))\Rightarrow Q\), as \(n\rightarrow \infty \).

Duality theorem of Resnick says that \(F\in \text{ RDA}_l(\tilde{\Phi }_{\gamma })\Leftrightarrow A\in \text{ MDA}_l(\Phi _{\frac{\gamma }{2}})\), \(F\in \text{ RDA}_l(\tilde{\Psi }_{\gamma })\Leftrightarrow A \in \text{ MDA}_l(\Psi _{\frac{\gamma }{2}})\) and \(F\in \text{ RDA}_l(\Phi )\Leftrightarrow A\in \text{ MDA}_l(\Lambda )\), where \(\text{ MDA}_l(Q)\) denotes the maximum domain of attraction under linear normalization of the non-degenerated distribution \(Q\) (see, e.g., [3]). As a corollary we find that in the case of heavy-tailed distributions \(F\) the record values cannot have non-degenerate limiting distributions if we use linear normalization. Indeed, for the Pareto-like distributions \(F\), satisfying, as \(x\rightarrow \infty \),

$$\begin{aligned} 1-F(x)\sim Kx^{-\delta }, \quad \delta >0, \end{aligned}$$

the associate distributions \(A\) satisfy, as \(x\rightarrow \infty \),

$$\begin{aligned} 1-A(x)\sim e^{-\sqrt{\delta \log {x}}}. \end{aligned}$$

In this case \(A\bar{\in }\text{ MDA}_l(\Phi _{\frac{\gamma }{2}})\cup \text{ MDA}_l(\Psi _{\frac{\gamma }{2}})\cup \text{ MDA}_l(\Lambda )\). This fact is an argument to consider limit theorems for the record values using power normalization.

Let

$$\begin{aligned} p_{\alpha ,\beta }(x)=\alpha |x|^{\beta }\mathrm sign {x}, \quad \alpha >0, \quad \beta >0, \quad x\in R^1. \end{aligned}$$

Observe that this class of functions form a group of homeomorphisms of \(R^1\) with the composition law

$$\begin{aligned} p_{\alpha _1,\beta _1}*p_{\alpha _2,\beta _2}=p_{\alpha _1\alpha _2^{\beta _1},\beta _1\beta _2}, \end{aligned}$$

the unit element \(p_{1,1}\) and the inverse

$$\begin{aligned} p_{\alpha ,\beta }^{-1}=p_{\alpha ^{-\beta ^{-1}},\beta ^{-1}}. \end{aligned}$$

We say that \(F\) belongs to the record domain of attraction under power normalization of the non-degenerate distribution \(Q\) (\(F\in \text{ RDA}_p(Q)\) for short) if there exist constants \(\alpha _n>0\), \(\beta _n>0\) such that, as \(n\rightarrow \infty \), \(\fancyscript{L}\left(p^{-1}_{\alpha _n,\beta _n}(R_n)\right)\Rightarrow Q\).

A non-degenerate distribution function \(\tilde{G}\) on \(R^1\) is called \(p\)-max stable if for any \(n\ge 2\) there exist constants \(\tilde{\alpha }_n>0\), \(\tilde{\beta }_n>0\) such that

$$\begin{aligned} \tilde{G}^n(x)=\tilde{G}(p_{\tilde{\alpha }_n,\tilde{\beta }_n}(x)), \quad x\in R^1. \end{aligned}$$

Probability distributions \(F_1\) and \(F_2\) are of the same power type if there exist constants \(\alpha >0\), \(\beta >0\) such that \(F_1(x)=F_2(p_{\alpha ,\beta }(x))\), \(x\in R^1\).

The class of non-degenerated limiting distributions for \(\fancyscript{L}(p^{-1}_{\alpha _n,\beta _n}(R_n))\), as \(n\rightarrow \infty \), is equal to the class of laws \(\hat{\Phi} (-\log (-\log \tilde{G}(\cdot)))\), where \(\tilde{G}\) is a \(p\)-max stable law K, and is factorized to the six power types, generated by the distribution functions (see [5, 6]):

$$\begin{aligned} \hat{\Phi }_{1,\gamma }(x)&=\left\{ \begin{array}{l} 0, \quad \mathrm if \quad x\le 1, \\ \Phi (\gamma \log {\log {x}}), \quad \mathrm if \quad x>1, \quad \gamma >0, \end{array} \right.\\ \hat{\Phi }_{2,\gamma }(x)&=\left\{ \begin{array}{l} 0, \quad \mathrm if \quad x\le 0,\\ \Phi (-\gamma \log |\log {x}|), \quad \mathrm if \quad 0<x<1,\\ 1, \quad \mathrm if \quad x\ge 1, \quad \gamma >0, \end{array} \right.\\ \hat{\Phi }_{3,\gamma }(x)&=\left\{ \begin{array}{l} 0, \quad \mathrm if \quad x\le -1,\\ \Phi (-\gamma \log {|\log {|x|}|}), \quad \mathrm if \quad -1<x<0,\\ 1, \quad \mathrm if \quad x\ge 0, \quad \gamma >0, \end{array}\right. \\ \hat{\Phi }_{4,\gamma }(x)&=\left\{ \begin{array}{l} \Phi (-\gamma \log {\log {|x|}}), \quad \mathrm if \quad x<-1,\\ 1, \quad \mathrm if \quad x\ge -1, \quad \gamma >0, \end{array} \right. \\ \hat{\Phi }_5(x)&=\left\{ \begin{array}{l} 0, \quad \mathrm if \quad x\le 0,\\ \Phi (\log {x}), \quad \mathrm if \quad x>0, \end{array} \right. \end{aligned}$$

and

$$\begin{aligned} \hat{\Phi }_6(x)&=\left\{ \begin{array}{l} \Phi (-\log {|x|}), \quad \mathrm if \quad x<0,\\ 1, \quad \mathrm if \quad x\ge 0. \end{array} \right. \end{aligned}$$

There are the valid analog of Resnick’s duality theorem and the principle of equivalent tails, which says that if continuous distribution functions \(F_1\) and \(F_2\) are such that \(r(F_1)=r(F_2)\) and \(1-F_1(x)\sim 1-F_2(x)\), as \(x\uparrow r(F_1)\), then \(F_1\in \text{ RDA}_p(Q)\) if and only if \(F_2\in \text{ RDA}_p(Q)\) with the same normalizing constants, where \(r(F)=\sup \{x:F(x)<1\}\) and \(Q\) is a non-degenerate limiting distribution for record values using power normalization.

The following analog of classical R. von Mises theorem [7] holds true.

Theorem 2.6

[8]. Assume that the integrated hazard function \(W(x)\) is differentiable in some neighborhood of \(r(F)\). Then:

  1. (i)

    if\(r(F)=\infty \)and

    $$\begin{aligned} \lim \limits _{x\rightarrow \infty }\frac{W^{\prime }(x)x\log {x}}{\sqrt{W(x)}}=\gamma , \quad \gamma >0, \end{aligned}$$

    then\(F\in \text{ RDA}_p(\hat{\Phi }_{1,\gamma })\);

  2. (ii)

    if\(0<r(F)<\infty \)and

    $$\begin{aligned} \lim \limits _{x\uparrow r(F)}\frac{W^{\prime }(x)x\log \left(\frac{r(F)}{x}\right)}{\sqrt{W(x)}}=\gamma , \quad \gamma >0, \end{aligned}$$

    then\(F\in \text{ RDA}_p(\hat{\Phi }_{2,\gamma })\);

  3. (iii)

    if\(r(F)=0\)and

    $$\begin{aligned} \lim \limits _{x\uparrow 0}\frac{W^{\prime }(x)x\log |x|}{\sqrt{W(x)}}=\gamma , \quad \gamma >0, \end{aligned}$$

    then\(F\in \text{ RDA}_p(\hat{\Phi }_{3,\gamma })\);

  4. (iv)

    if\(r(F)<0\) and

    $$\begin{aligned} \lim \limits _{x\uparrow r(F)}\frac{W^{\prime }(x)|x|\log \left(\frac{x}{r(F)}\right)}{\sqrt{W(x)}}=\gamma , \quad \gamma >0, \end{aligned}$$

    then\(F\in \text{ RDA}_p(\hat{\Phi }_{4,\gamma })\);

  5. (v)

    if\(W\)is twice differentiable in some neighborhood of\(r(F)\)and

    $$\begin{aligned} \lim \limits _{x\uparrow r(F)}W(x)\left(\frac{W^{\prime \prime }(x)}{\left(W^{\prime }(x)\right)^2}+\frac{1}{xW^{\prime }(x)}\right)=0, \end{aligned}$$
    (2.15)

    then for\(0<r(F)\le \infty \)\(F\in \text{ RDA}_p(\hat{\Phi }_5)\)and for\(r(F)\le 0\)\(F\in \text{ RDA}_p(\hat{\Phi }_6)\).

Proposition 2.7

  1. (i)

    If pdf of\(F\)is\(f_{\nu ,\sigma ^2}\), then\(F\in \text{ RDA}_p(\hat{\Phi }_5)\).

  2. (ii)

    If pdf of\(F\)is\(f_{\nu ,\sigma ^2,a}\), \(a>0\), then\(F\in \text{ RDA}_p(\hat{\Phi }_5)\).

  3. (iii)

    If pdf of\(F\)is\(f_{\nu ,\sigma ^2,a}\), \(a<0\), then\(F\in \text{ RDA}_l(\Phi )\).

Proof

  1. (i)

    From the principle of equivalent tails and (2.12) it is enough to check (2.15) with \(r(F)=\infty \) and the integrated hazard function

    $$\begin{aligned} W(x)=\nu \ln {x}-\ln {K_1}. \end{aligned}$$

    Indeed,

    $$\begin{aligned} \frac{W^{\prime \prime }(x)}{\left(W^{\prime }(x)\right)^2}+\frac{1}{xW^{\prime }(x)}=\frac{-\frac{\nu }{x^2}}{\left(\frac{\nu }{x}\right)^2}+\frac{1}{\nu }\equiv 0. \end{aligned}$$
  2. (ii)

    From the principle of equivalent tails and (2.13) it is enough to check (2.15) with \(r(F)=\infty \) and the integrated hazard function

    $$\begin{aligned} W(x)=\frac{\nu }{2}\ln {x}-\ln {K_2}. \end{aligned}$$

    Again we find that

    $$\begin{aligned} \frac{W^{\prime \prime }(x)}{\left(W^{\prime }(x)\right)^2}+\frac{1}{xW^{\prime }(x)}=\frac{-\frac{\nu }{2x^2}}{\left(\frac{\nu }{2x}\right)^2}+\frac{2}{\nu }\equiv 0. \end{aligned}$$
  3. (iii)

    From (2.14) and the principle of equivalent tails it is enough to consider the integrated hazard function

    $$\begin{aligned} W(x)=\left(\frac{\nu }{2}+1\right)\ln {x}+\frac{2|a|}{\sigma ^2}x-\ln {K_3}, \end{aligned}$$

    where

    $$\begin{aligned} K_3=\frac{\sigma }{2|a|\Gamma \left(\frac{\nu }{2}\right)}\left(\frac{\nu |a|}{2\sigma }\right)^{\frac{\nu }{2}}. \end{aligned}$$

    The corresponding associated distribution

    $$\begin{aligned} 1-A(x)&=\exp \left\{ -\sqrt{\left(\frac{\nu }{2}+1\right)\ln {x}+\frac{2|a|}{\sigma ^2}x-\ln {K_3}}\right\} \\&\sim \exp \left\{ -\sqrt{\frac{2|a|}{\sigma ^2}x}\right\} , \quad \mathrm as \quad x\rightarrow \infty . \end{aligned}$$

    Using again the principle of equivalent tails, Resnick’s duality theorem and criteria from the classical extreme value theory we easily find that \(A\in \text{ MDA}_l(\Lambda )\) and thus \(F\in \text{ RDA}_l(\Phi )\).\( \square \)