Skip to main content

Stochastic Models and Monte Carlo Algorithms for Boltzmann Type Equations

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2002

Summary

In this paper we are concerned with three typical aspects of the Monte Carlo approach. First there is a certain field of application, namely physical systems described by the Boltzmann equation. Then some class of stochastic models is introduced and its relation to the equation is studied using probability theory. Finally Monte Carlo algorithms based on those models are constructed. Here numerical issues like efficiency and error estimates are taken into account. In Section 1 we recall some basic facts from the kinetic theory of gases, introduce the Boltzmann equation and discuss some applications. Section 2 is devoted to the study of stochastic particle systems related to the Boltzmann equation. The main interest is in the convergence of the system (when the number of particles increases) to the solution of the equation in an appropriate sense. In Section 3 we introduce a modification of the standard “direct simulation Monte Carlo” method, which allows us to tackle the problem of variance reduction. Results of some numerical experiments are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. F. J. Alexander, A. L. Garcia, and B. J. Alder. A consistent Boltzmann algorithm.Phys. Rev. Lett., 74(26):5212–5215, 1995.

    Article  Google Scholar 

  2. F. J. Alexander, A. L. Garcia, and B. J. Alder. The consistent Boltzmann algorithm for the van der Waals equation of state. Phys. A, 240:196–201, 1997.

    Article  Google Scholar 

  3. A. A. Arsenev. Approximation of the solution of the Boltzmann equation by solutions of Ito stochastic differential equations. Zh. Vychisl. Mat. i Mat. Fiz., 27(3):400–410, 1987. In Russian.

    MathSciNet  Google Scholar 

  4. A. A. Arsenev. Approximation of the Boltzmann equation by stochastic equations. Zh. Vychisl. Mat. i Mat. Fiz., 28(4):560–567, 1988. In Russian.

    MathSciNet  Google Scholar 

  5. H. Babovsky. On a simulation scheme for the Boltzmann equation. Math. Methods Appl. Sci., 8:223–233, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Babovsky. A convergence proof for Nanbu’s Boltzmann simulation scheme. European J. Mech. B Fluids, 8(l):41–55, 1989.

    MathSciNet  MATH  Google Scholar 

  7. H. Babovsky. Die Boltzmann-Gleichung: Modellbildung—Numerik-Anwendungen. B. G. Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

  8. P. H. Béz andry, R. Ferland, G. Giroux, and J.-C. Roberge. Une approche probabiliste de résolution d’équations non linéaires. In Measure-Valued Processes, Stochastic Partial Differential Equations, and Interacting Systems (Montreal, PQ, 1992), volume 5 of CRM Proc. Lecture Notes, pages 17-33. Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  9. H. Babovsky and R. Illner. A convergence proof for Nanbu’s simulation method for the full Boltzmann equation. SIAM J. Numer. Anal., 26(l):45-65, 1989.

    Google Scholar 

  10. G. A. Bird. Approach to translational equilibrium in a rigid sphere gas. Phys. Fluids, 6:1518-1519, 1963.

    Google Scholar 

  11. G. A. Bird. Shock wave structure in a rigid sphere gas. In J.H. de Leeuw, editor, Rarefied Gas Dynamics, volume 1, pages 216-222. Academic Press, New York, 1965.

    Google Scholar 

  12. G. A. Bird. Molecular Gas Dynamics. Clarendon Press, Oxford, 1976.

    Google Scholar 

  13. G. A. Bird. Perception of numerical methods in rarefied gas dynamics. Progr. Astronaut. Aeronaut., 118:211-226, 1989.

    Google Scholar 

  14. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.

    Google Scholar 

  15. L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsber. Akad. Wiss. Wien, 66:275-370, 1872.

    Google Scholar 

  16. I. D. Boyd. Conservative species weighting scheme for the direct simulation Monte Carlo method. J. of Thermophysics and Heat Transfer, 10(4):579-585, 1996.

    Google Scholar 

  17. O. M. Belotserkovskij and V. E. Yanitskij. Statistical particle in cell method for problems in rarefied gas dynamics. I. Construction of the method. Zh. Vychisl. Mat. i Mat. Fiz., 15(5):1195-1209, 1975. In Russian.

    Google Scholar 

  18. O. M. Belotserkovskij and V. E. Yanitskij. Statistical particle in cell method for problems in rarefied gas dynamics. II. Numerical aspects of the method. Zh. Vychisl. Mat i Mat. Fiz., 15:1553-1567, 1975. In Russian.

    Google Scholar 

  19. C. Cercignani. The Grad limit for a system of soft spheres. Comm. Pure Appl. Math., 36(4):479-494, 1983.

    Google Scholar 

  20. C. Cercignani. The Boltzmann Equation and Its Applications. Springer, New York, 1988.

    Google Scholar 

  21. C. Cercignani. Ludwig Boltzmann. The Man who Trusted Atoms. Oxford University Press, Oxford, 1998.

    Google Scholar 

  22. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994.

    Google Scholar 

  23. S. Caprino and M. Pulvirenti. A cluster expansion approach to a onedimensional Boltzmann equation: a validity result. Comm. Math. Phys., 166:603-631, 1995.

    Google Scholar 

  24. S. Caprino, M. Pulvirenti, and W. Wagner. Stationary particle systems approximating stationary solutions to the Boltzmann equation. SIAM J. Math. Anal., 29(4):913-934, 1998.

    Google Scholar 

  25. M. H. A. Davis. Markov Models and Optimization. Chapman & Hall, London, 1993.

    Google Scholar 

  26. S. N. Ethier and T. G. Kurtz. Markov Processes, Characterization and Convergence. Wiley, New York, 1986.

    Google Scholar 

  27. S. M. Ermakov and N. M. Moskaleva. Branching processes and the Boltzmann equation. Numerical aspects. Vestnik Leningrad Univ. Ser. 1, 3:38-43, 1987. In Russian.

    Google Scholar 

  28. S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin. Sluchainye protsessy dlya resheniya klassicheskikh uravnenii matematicheskoi fiziki. Nauka, Moscow, 1984. English translation: [ENS89].

    Google Scholar 

  29. S. M. Ermakov, V. V. Nekrutkin, and A. S. Sipin. Random Processes for Classical Equations of Mathematical Physics, volume 34 of Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers Group, Dordrecht, 1989.

    Google Scholar 

  30. T. Funaki. Construction of stochastic processes associated with the Boltzmann equation and its applications. In K. Ito and T. Hida, editors, Stochastic Processes and Their Applications, volume 1203 of Lecture Notes in Mathematics, pages 51-65. Springer, Berlin/Heidelberg, 1986. [GM97] C. Graham and S. Méléard. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. Ann. Probab., 25(1):115-132, 1997.

    Google Scholar 

  31. F. A. Grün baum. Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal., 42(5):323–345, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. L. Garcia and W. Wagner. The limiting kinetic equation of the consistent Boltzmann algorithm for dense gases. J. Statist. Phys., 101(5-6):1065-1086, 2000.

    Google Scholar 

  33. J. Horowitz and R. L. Karandikar. Martingale problems associated with the Boltzmann equation. In Seminar on Stochastic Processes, 1989, volume 18 of Progress in Probability, pages 75-122. Birkhäuser, Boston/Basel/Berlin,1990.

    Google Scholar 

  34. R. Illner and H. Neunzert. On simulation methods for the Boltzmann equation.Transport Theory Statist. Phys., 16(2&3):141-154, 1987.

    Google Scholar 

  35. M. S. Ivanov and S. V. Rogazinskij. Comparative analysis of algorithms of the direct statistical modeling method in rarefied gas dynamics. Zh. Vychisl. Mat. i Mat. Fiz., 28(7):1058-1070, 1988. In Russian.

    Google Scholar 

  36. M. S. Ivanov and S. V. Rogazinskij. Efficient schemes for direct statistical modeling of rarefied gas flows. Mat. Model., l(7):130–145, 1989. In Russian.

    Google Scholar 

  37. M. S. Ivanov and S. V. Rogasinsky. Statistical modelling of rarefied gas flows on the basis of the majorant frequency principle. Dokl. Akad. Nauk SSSR. Ser. Aerodynamics, 312(2):315-320, 1990. In Russian.

    Google Scholar 

  38. M. Kac. Foundations of kinetic theory. In Third Berkeley Symposium on Mathematical Statistics and Probability Theory, volume 3, pages 171–197, 1956.

    Google Scholar 

  39. M. Kac. Some Stochastic Problems in Physics and Mathematics. Magnolia Petroleum Co., 1956. [Kac59] M. Kac. Probability and Related Topics in Physical Sciences. Interscience, London, 1959.

    Google Scholar 

  40. A. I. Khisamutdinov. A simulation method for statistical modeling of rarefied gases. Dokl. Akad. Nauk SSSR, 291(6):1300–1304, 1986. In Russian. [Kon86] Yu. N. Kondyurin. A statistical approach to the solution of the Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz., 26(10):1527-1534, 1986. In Russian.

    Google Scholar 

  41. K. Koura. Null—collision technique in the direct—simulation Monte Carlo method. Phys. Fluids, 29(ll):3509–3511, 1986.

    Article  Google Scholar 

  42. M. A. Leontovich. Basic equations of the kinetic gas theory from the point of view of the theory of random processes. Zhurnal Teoret. Ehksper. Fiziki, 5(3-4):211–231, 1935. In Russian.

    MATH  Google Scholar 

  43. M. Lachowicz and M. Pulvirenti. A stochastic system of particles modelling the Euler equation. Arch. Rational Mech. Anal., 109(l):81–93, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. V. Lukshin and S. N. Smirnov. An efficient stochastic algorithm for solving the Boltzmann equation. Zh. Vychisl. Mat. i Mat. Fiz., 29(1):118-124, 1989. In Russian.

    Google Scholar 

  45. A. V. Lukshin. Stochastic algorithms of the mathematical theory of the spatially inhomogeneous Boltzmann equation. Mat. Model., 1(7):146–159, 1989. In Russian.

    MathSciNet  MATH  Google Scholar 

  46. H. P. McKean. Speed of approach to equilibrium for Kac’s caricature of a Maxwellian gas. Arch. Rational Mech. Anal., 21:343-367, 1966.

    Google Scholar 

  47. H. P. McKean. Fluctuations in the kinetic theory of gases. Comm. Pure Appl. Math., 28(4):435–455, 1975.

    Article  MathSciNet  Google Scholar 

  48. S. Meleard. Stochastic approximations of the solution of a full Boltzmann equation with small initial data. ESAIM Probab. Statist., 2:23-40 (electronic), 1998.

    Google Scholar 

  49. D. Morgenstern. Analytical studies related to the Maxwell—Boltzmann equation. J. Rational Mech. Anal., 4:533–555, 1955.

    MathSciNet  MATH  Google Scholar 

  50. H. Murata. Propagation of chaos for Boltzmann-like equations of noncutoff-type in the plane. Hiroshima Math. J., 7:479–515, 1977.

    MathSciNet  MATH  Google Scholar 

  51. I. Matheis and W. Wagner. Convergence of the stochastic weighted particle method for the Boltzmann equation. SIAM J. Sci. Comput., 24(5):1589–1609, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Nanbu. Direct simulation scheme derived from the Boltzmann equation. I. Monocomponent gases. J. Phys. Soc. Japan, 49(5):2042–2049, 1980.

    Article  Google Scholar 

  53. K. Nanbu. Interrelations between various direct simulation methods for solving the Boltzmann equation. J. Phys. Soc. Japan, 52(10):3382-3388, 1983.

    Google Scholar 

  54. K. Nanbu. Theoretical basis of the direct simulation Monte Carlo method. In V. Boffi and C. Cercignani, editors, Rarefied Gas Dynamics, volume 1, pages 369-383. Teubner, Stuttgart, 1986.

    Google Scholar 

  55. H. Neunzert, F. Gropengiesser, and J. Struckmeier. Computational methods for the Boltzmann equation. In Applied and Industrial Mathematics (Venice, 1989), volume 56 of Math. Appl., pages 111-140. Kluwer Acad. Publ., Dordrecht, 1991.

    Google Scholar 

  56. H. Neunzert, A. Klar, and J. Struckmeier. Particle methods: theory and applications. In ICI AM 95 (Hamburg, 1995), pages 281-306. Akademie Verlag, Berlin, 1996.

    Google Scholar 

  57. A. Nordsieck, W. E. Lamb, Jr., and G. E. Uhlenbeck. On the theory of cosmic—ray showers. I. The furry model and the fluctuation problem. Physica, 7(4):344–360, 1940.

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Neunzert and J. Struckmeier. Particle methods for the Boltzmann equation. In Acta Numerica 1995, pages 417-457. Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  59. V. V. Nekrutkin and N. I. Tur. On the justification of a scheme of direct modelling of flows of rarefied gases. Zh. Vychisl. Mat. i Mat. Fiz., 29(9):1380–1392, 1989. In Russian.

    MathSciNet  Google Scholar 

  60. G. Pichon. Sur la propagation du chaos moléculaire. C. R. Acad. Sci. Paris Sér. A, 274:1667–1670, 1972.

    MathSciNet  Google Scholar 

  61. H. Ploss. On simulation methods for solving the Boltzmann equation. Computing, 38:101–115, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  62. F. Rezakhanlou. Kinetic limits for a class of interacting particle systems. Probab. Theory Related Fields, 104(l):97–146, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  63. F. Rezakhanlou. Propagation of chaos for particle systems associated with discrete Boltzmann equation. Stochastic Process. Appl., 64(1):55–72, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  64. Rarefied Gas Dynamics: Proceedings of the First International Symposium held at Nice, International Series on Aeronautical Sciences and Space Flight, Division IX, Vol. 3, Pergamon Press, New York, 1960.

    Google Scholar 

  65. Rarefied Gas Dynamics, Proceedings of the 22nd International Symposium (Sydney, Australia, 9-14 July 2000), eds. Bartel, T. J. and Gallis, M. A., volume 585 of AIP Conference Proceedings, AIP Publishing Center, New York, 2001.

    Google Scholar 

  66. S. Rjasanow, T. Schreiber, and W. Wagner. Reduction of the number of particles in the stochastic weighted particle method for the Boltzmann equation. J. Comput. Phys., 145(l):382–405, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  67. F. Rezakhanlou and J. E. Tarver. Boltzmann-Grad limit for a particle system in continuum. Ann. Inst. H. Poincaré Probab. Statist., 33(6):753-796, 1997.

    Google Scholar 

  68. S. Rjasanow and W. Wagner. A stochastic weighted particle method for the Boltzmann equation. J. Comput. Phys., 124(2):243–253, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  69. S. Rjasanow and W. Wagner. A generalized collision mechanism for stochastic particle schemes approximating Boltzmann-type equations. Comput. Math. Appl., 35(1/2):165-178, 1998.

    Google Scholar 

  70. S. Rjasanow and W. Wagner. Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation. Math. Comput. Modelling, 33(8-9):907-926, 2001.

    Google Scholar 

  71. M. Schreiner. Weighted particles in the finite pointset method. Transport Theory Statist. Phys., 22(6):793–817, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  72. A. V. Skorokhod. Stokhasticheskie uravneniya dlya slozhnykh sistem. Nauka, Moscow, 1983. English translation: [Sko88].

    Google Scholar 

  73. A. V. Skorokhod. Stochastic Equations for Complex Systems, volume 13 of Mathematics and Its Applications (Soviet Series). D. Reidel Publishing Co., Dordrecht, 1988.

    Google Scholar 

  74. S. N. Smirnov. On the justification of a stochastic method for solving the Boltzmann equation. Zh. Vychisl. Mat. i Mat Fiz., 29(2):270-276, 1989. In Russian.

    Google Scholar 

  75. A.-S. Sznitman. Équations de type de Boltzmann, spatialement homogènes. C. R. Acad. Sci. Paris Sér. I Math., 295:363-366, 1982.

    Google Scholar 

  76. A. S. Sznitman. Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete, 66(4):559–592, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  77. A. S. Sznitman. Topics in propagation of chaos. In Lecture Notes in Mathematics, volume 1464, pages 165-251. Springer, Berlin, 1991.

    Google Scholar 

  78. H. Tanaka. On Markov processes corresponding to the Boltzmann equation of Maxwellian gas. In Lecture Notes in Mathematics, volume 330, pages 478-489. Springer, Berlin, 1973.

    Google Scholar 

  79. H. Tanaka. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete, 46(l):67–105, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  80. H. Tanaka. Some probabilistic problems in the spatially homogeneous Boltzmann equation. In G. Kallianpur, editor, Theory and Applications of Random Fields, volume 49 of Lecture Notes in Control and Inform. Sci., pages 258-267, Springer, Berlin, 1983.

    Google Scholar 

  81. K. Uchiyama. Fluctuations in population dynamics. In M. Kimura, G. Kallianpur, and T. Hida, editors, Stochastic Methods in Biology, volume 70 of Lecture Notes in Biomathematics, pages 222-229, Springer, Berlin, 1987.

    Google Scholar 

  82. W. Wagner. A convergence proof for Bird’s direct simulation Monte Carlo method for the Boltzmann equation. J. Statist. Phys., 66(3/4):1011-1044, 1992.

    Google Scholar 

  83. W. Wagner. A stochastic particle system associated with the spatially inhomogeneous Boltzmann equation. Transport Theory Statist. Phys., 23(4):455-477, 1994.

    Google Scholar 

  84. W. Wagner. Stochastic systems of particles with weights and approximation of the Boltzmann equation. The Markov process in the spatially homogeneous case. Stochastic Anal. Appl., 12(5):639–659, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  85. W. Wagner. A functional law of large numbers for Boltzmann type stochastic particle systems.Stochastic Anal. Appl., 14(5):591–636, 1996.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wagner, W. (2004). Stochastic Models and Monte Carlo Algorithms for Boltzmann Type Equations. In: Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18743-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18743-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20466-4

  • Online ISBN: 978-3-642-18743-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics