Skip to main content

Genomic Basis of Breast Cancer

  • Chapter
Molecular Basis of Breast Cancer

Abstract

The Human Genome Project (HGP) is having a significant impact on the way that we are studying the biology and pathology of breast cancer and in turn it will have a significant impact in the way that medicine will be practiced in this century. The final objective of the HGP is to identify the genes and their function as a physical unit of heredity that passes from parents to offspring. These pieces of DNA contain information for making specific protein that is the following challenge in our understanding of the biologic process under discussion. To find a gene, and its function it was first needed to define the DNA sequence that determines the gene and how many genes make up the human genome. Whereas approximately 3 billion DNA base pairs have been sequenced, only 3% of the human genome DNA is used to make proteins. Therefore, 97% of the human genome is in excess of DNA accumulated from viral infections, erroneous duplications, and other events. At the present time, it is not clear how many genes are contained in the 3 billion DNA bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pillutla, R.C., Goldstein, N.I., Blume, A.J., Fisher, P.B. Target validation and drug discovery using genomic and proteinprotein interaction technologies. Expert Opin. Ther. Targets 6(4): 517–531, 2002.

    Article  PubMed  CAS  Google Scholar 

  2. Voit, E.O. Metabolic modeling: a tool of drug discovery in the post-genomic era G. Discov. Today 7(11): 621–628, 2002.

    Article  CAS  Google Scholar 

  3. Inoue, K., Lupski, J.R. Molecular mechanisms for genomic disorders. Annu. Rev. Genomics Hum. Genet. 3:199–203, 2002.

    Article  PubMed  CAS  Google Scholar 

  4. Bieche, I., Lidereau, R. Genetic alterations in breast cancer. Genes Chromosomes Cancer 14:227–251, 1995.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman, W.B., Tsongalis, G.J. Multiple mechanisms account for genomic instability and molecular mutation in neoplastic transformation. Clin. Chem. 41:644–657, 1995.

    PubMed  CAS  Google Scholar 

  6. Eshleman, J.R., Markowitz, S.D. Microsatellite instability in inherited and sporadic neoplasms. Current Opin. Oncol. 7:83–89, 1995.

    CAS  Google Scholar 

  7. Aldaz, C.M., Chen, T., Sahin, A., Cunningham, J., Bondy, M. Comparative allelotype of in situ and invasive human breast cancer: High frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 55:3976–3981, 1995.

    PubMed  CAS  Google Scholar 

  8. Karnik, P., Plummer, S., Casey, G., et al. Microsatellite instability at a single locus (D11S988) on chromosome 11 pl5.5 as a late event in mammary tumorigenesis. Hum. Mol. Genet. 4:1889–1894, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Lakhani, S.R., Slack, D.N., Hamoudi, R.A., Collins, N., Stratton, M.R., Sloane, J.P. Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab. Invest. 74:129–135, 1996.

    PubMed  CAS  Google Scholar 

  10. Shaw, J.A., Walsh, T., Chappell, S., Carey, N., Johnson, K., Walker, R.A. Microsatellite instability in early sporadic breast cancer. Br. J. Cancer 73:1393–1397, 1996.

    Article  PubMed  CAS  Google Scholar 

  11. Yang, X., Russo, I.H., Huang, Y., Russo, J. Microsatellite instability of D17S513 on chromosome 17 is associated with progression of breast cancer. Int. J. Oncol. 11:41–46, 1997.

    PubMed  CAS  Google Scholar 

  12. Ionov, Y, Peinado, M.A, Malkhosyan, S., Shibata, D., Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 363:558–561, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Boyer, J.C., Umar, A., Risinger, J., et al. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res. 55:6063–6070, 1995.

    PubMed  CAS  Google Scholar 

  14. Boland, C.R. Roles of the DNA mismatch repair genes in colorectal tumorigenesis. Int. J. Cancer 69:47–49, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Eshleman, J.R., Markowitz, S.D. Mismatch repair defects in human carcinogenesis. Hum. Mol. Genet. 5:1489–1494, 1996.

    PubMed  CAS  Google Scholar 

  16. Mellon, I, Rajpal, D.K., Koi, M., Boiand, C.R., Champe, G.N. Transcription-coupled repair deficiency and mutations in human mismatch repair genes. Science 272:557–560, 1996.

    Article  PubMed  CAS  Google Scholar 

  17. Sia, E.A., Links-Robertson, S., Petes, T.D. Genetic control of microsatellite stability. Mutat. Res. 383:61–70, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Loeb, L.A. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res. 51:3075–3079, 1991.

    PubMed  CAS  Google Scholar 

  19. Loeb, L.A. Many mutations in cancer. Cancer Surv. 28:329–342, 1996.

    PubMed  CAS  Google Scholar 

  20. Loeb, L.A. Cancer cells exhibit a mutator phenotype. Adv. Cancer Res. 72:25–56, 1998.

    Article  PubMed  CAS  Google Scholar 

  21. Callahan, R., Cropp, C., Merlo, G.R., et al. Genetic and molecular heterogeneity of breast cancer cells. Clin. Chem. Acta 217:63–73, 1993.

    Article  CAS  Google Scholar 

  22. Devilee, P., Cornelisse, C.J. Somatic genetic changes in human breast cancer. Biochem. Biophys. Acta 1198:113–130, 1994.

    PubMed  Google Scholar 

  23. Tsuda, H., Hirohashi, S. Identification of multiple breast cancer of multicentric origin by histological observations and distribution of allele loss on chromosome 16q. Cancer Res. 55:3395–3398, 1995.

    PubMed  CAS  Google Scholar 

  24. Radford DM, Fair KL, Phillips, N.J., et al. Allelotyping of ductal carcinoma in situ of the breast: Deletion of loci on 8p, 13q, 16p, 17p and 17q. Cancer Res. 55:3399–3405, 1995.

    PubMed  CAS  Google Scholar 

  25. Devilee, P., Hermans, J., Eyfjord, J., et al. Loss of heterozygosity at 7q31 in breast cancer: Results from an international collaborative study group. Genes Chromosomes Cancer 18:193–199, 1997.

    PubMed  CAS  Google Scholar 

  26. Pandis, N., Bardi, G., Mitelman, F., Heim, S. Deletions of short arm of chromosome 3 in breast tumors. Genes Chromosomes Cancer 18:241–245, 1997.

    Article  PubMed  CAS  Google Scholar 

  27. Knudson, A.G., Jr. Genetics and etiology of human cancer. Adv. Hum. Genet. 8:1–66, 1977.

    PubMed  CAS  Google Scholar 

  28. Soule, H.D., Maloney, T.M., Wolman, S.R., Peterson, W.D., Brenz, R., McGrath, C.M., Russo, J., Pauley, R.J., Jones, R.R and Brooks, S.C. Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res. 50:607–086, 1990.

    Google Scholar 

  29. Calaf, G., Russo, J. Transformation of human breast epithelial cells by chemical carcinogens. Carcinogenesis 14:483–492, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Russo, J., Barnabas, N., Zhang, P.L., Adesina, K. Mini review: Molecular basis of breast cell transformation. Radiat. Oncol. Investig. 3:424–429, 1996.

    Article  Google Scholar 

  31. Russo, J., Barnabas, N., Higgy, N., Salicioni, A.M., Wu, Y.L., Russo, I.H. Molecular basis of human breast epithelial cell transformation. In: Calvo, R, Crepin, M., Magdelenat, H., Editors. Breast cancer. Advances in biology and therapeutics, Paris, John Libbey Eurotext; 1996. pp. 33–43.

    Google Scholar 

  32. Barnabas, N., Moraes, R., Calaf, G., Estrada, S., Russo, J. Role of p53 in MCF-10F cell immortalization and chemically induced neoplastic transformation. Int. J. Oncol. 7:1289–1296, 1995.

    PubMed  CAS  Google Scholar 

  33. Donehower, L.A. Effects of p53 mutation on tumor progression: Recent insights from mouse tumor models. Biochem. Biophys.Acta 1996;1242(3):171–176.

    PubMed  Google Scholar 

  34. Zhang, P-L, Calaf, G., Russo, J. Allele loss and point mutation in codons 12 and 61 of the c-Ha-ras oncogene in carcinogen transformed human breast epithelial cells. Mol. Carcinog. 9:46–56, 1994.

    Article  PubMed  CAS  Google Scholar 

  35. Zhang, P.L., Chai, Y.L., Ho, T.H., Calaf, G., Russo, J. Activation of c-myc, c-neUy and int-2 oncogenes in the transformation of HBEC MCFF treated with chemical carcinogens in vitro. Int. J. Oncol. 6:963–968, 1995.

    PubMed  CAS  Google Scholar 

  36. Risinger, J.I., Umar, A., Boyer, J., et al. Microsatellite instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines defective in mismatch repair activity. Cancer Res. 55:5664–5669, 1995.

    PubMed  CAS  Google Scholar 

  37. Murray, J.C., Buetow, K.H., Waber, J.L., et al. A comprehensive human linkage map with centimorgan density. Science 265:2049–2054, 1994.

    Article  PubMed  CAS  Google Scholar 

  38. Wu, Y.L., Barnabas, N., Russo, I.H., Yang, X., Russo, J. Microsatellite instability and loss of heterozygosity in chromosomes 9 and 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997.

    Article  PubMed  CAS  Google Scholar 

  39. Habuchi, T., Ogawa, O., Kakehi, et al. Accumulated allelic losses in the development of invasive urothelial cancer. Int. J. Cancer 53:579–584, 1993.

    Article  PubMed  CAS  Google Scholar 

  40. Vertino, P.M., Spillare, E.A., Harris, C.C., Baylin, S.B. Altered chromosomal methylation patterns accompany oncogeneinduced transformation of human bronchial epithelial cells. Cancer Res. 53:1684–1689, 1993.

    PubMed  CAS  Google Scholar 

  41. Coles, C., Thompson, A.M., Elder, P.A., et al. Evidence implicating at least two genes on chromosomes 17p in breast carcinogenesis. Lancet 336:761–763, 1990.

    Article  PubMed  CAS  Google Scholar 

  42. Sato, T., Tanigami, A., Yamakawa, K., et al. Allelotype of breast cancer: Cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res. 50:7184–7189, 1990.

    PubMed  CAS  Google Scholar 

  43. Anderson, T.I., Gaustad, A., Ottestad, L, et al. Genetics alterations of the tumor suppressor gene regions 3p, 11 p, 13q, 17p, and 17q in human breast carcinomas. Genes Chromosomes Cancer 4:113–121, 1992.

    Article  Google Scholar 

  44. Isomura, M., Tanigami, A., Saito, H., et al. Detailed analysis of loss of heterozygosity on chromosome band 17pl 3 in breast carcinoma on the basis of a high-resolution physical map with 29 markers. Genes Chromosomes Cancer 9:173–179, 1994.

    Article  PubMed  CAS  Google Scholar 

  45. Kirchweger, R., Zeillinger, R., Schneeberger, C., Speiser, P., Louason, G., Theillet, C. Patterns of allele losses suggest the existence of five distinct regions of LOH on chromosome 17 in breast cancer. Int. J. Cancer 56:193–199, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Theile, M., Hartmann, S., Scherthan, H., et al. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes. Oncogene 10:439–447, 1995.

    PubMed  CAS  Google Scholar 

  47. Gabra, H., Watson, J.E.V., Taylor, K.J., et al. Definition and refinement of region of loss of heterozygosity at 11q23.3-q24.3 in epithelial ovarian cancer associated with poor prognosis. Cancer Res. 56:950–954, 1996.

    PubMed  CAS  Google Scholar 

  48. Tahin, Q., Russo, I.H., Russo, J. Genomic imbalance found in chromosome 11 of pre-invasive and invasive human breast cancer. Proceedings of the American Association for Cancer Research 39:341a, 1998.

    Google Scholar 

  49. Hamann, U., Herbold, C., Costa, S., et al. Allelic imbalance on chromosome 13q:Evidence for the involvement of BRCA2 and RB1 in sporadic breast cancer. Cancer Res. 56:1988–1990, 1996.

    PubMed  CAS  Google Scholar 

  50. Bechmann, M.W., Picard, R, An, H.X., et al. Clinical impact of detection of loss of heterozygosity of BRCA1 and BRCA2 markers in sporadic breast cancer. Br. J. Cancer 73:1220–1226, 1996.

    Article  Google Scholar 

  51. Gudmundsson, J., Johannesdottir, G., Bergthorsson, J.T., et al. Different tumor types from BRCA2 carriers show wildtype chromosome deletions on 13q12-13. Cancer Res. 55:4830–4832, 1995.

    PubMed  CAS  Google Scholar 

  52. Wooster, R., Bignel, G., Lancaster, J., et al. Identification of the breast cancer susceptibility gene BRCA2. Nature 378: 789–792, 1995.

    Article  PubMed  CAS  Google Scholar 

  53. Wooster, R., Cleton-Jansen, A.M., Collins, N., et al. Instability of short tandem repeats (microsatellites) in human cancers. Nat. Genet. 6:152–156, 1994.

    Article  PubMed  CAS  Google Scholar 

  54. Tavtigian, S.V., Simard, J., Rommens, J., et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat. Genet. 12:333–337, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Russo, I.H., Tahin, Q., Huang, Y. and Russo, J. Cellular and molecular changes induced by the chemical carcinogen benz (a) pyrene in human breast epithelial cells in association with smoking and breast cancer. J. of Women’s Cancer 3:29–36, 2001.

    Google Scholar 

  56. Huang, Y., Bove, B., Wu, Y., Russo, I.H., Tahin, Q., Yang, X., Zekri, A., Russo, J. Microsatellite instability during the immortalization and transformation of human breast epithelial cells in vitro. Mol. Carcinog. 24:118–127, 1999.

    Article  PubMed  CAS  Google Scholar 

  57. Yee, C.J., Roodi, N., Verner, C.S., Pari, F.F. Micro satellite instability and loss of heterozygosity in breast cancer. Cancer Res. 54:1641–1644, 1994.

    PubMed  CAS  Google Scholar 

  58. Toyama, T., Iwase, H., Iwata, H., et al. Microsatellite instability in in situ and invasive sporadic breast cancers of Japanese women. Cancer Lett. 108:205–209, 1996.

    Article  PubMed  CAS  Google Scholar 

  59. Toyama T, Iwase H, Yamashita H, et al. Microsatellite instability in sporadic human breast cancers. Int. J. Cancer 68: 447–451, 1996.

    Article  PubMed  CAS  Google Scholar 

  60. Souvinos, G., Kiaris, H., Tsikkinis, A., Vassilaros, S., Spandidos, D.A. Microsatellite instability and loss of heterozygosity in primary breast tumours. Tumor Biol. 18:157–166, 1997.

    Article  Google Scholar 

  61. Nelson, D.L., Warren, S.T. Trinucleotide repeat instability: When and where? Nat. Genet. 4:107–108, 1993.

    Article  PubMed  CAS  Google Scholar 

  62. Richards, R.I., Sutherland, G.R. Simple repeat DNA is not replicated simply. Nat. Genet. 6:114–116, 1994.

    Article  PubMed  CAS  Google Scholar 

  63. Ouyang, H., Shiwakum, H.O., Hagiwara, H., et al. The insulin-like growth factor II receptor gene is mutated in genetically unstable cancers of the endometrium, stomach and colorectum. Cancer Res. 57:1851–1854, 1997.

    PubMed  CAS  Google Scholar 

  64. Thomas DC, Roberts JD, Kunkel TA. Measurement of hetero-duplex repair in human cell extracts. Methods 7:187–197, 1995.

    Article  CAS  Google Scholar 

  65. Band, V., Dalai, S., Delmolino, L, Androphy, E. J. Enhanced degradation of p53 protein in HPV-6 and HPV-I-E6-immortalized human mammary epithelial cells. EMBO J. 12:1847–1852, 1993.

    PubMed  CAS  Google Scholar 

  66. Shay, J. W, Tomlinson, G., Paityszek, M. A., Gollohoin, L. S. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li Fraumeni syndrome. Mol. Cell Biol. 15:425–432, 1995.

    PubMed  CAS  Google Scholar 

  67. Chang, E, Syrjanen, S., Syrjanen, K. Implications of the p53 tumor-suppressor gene in clinical oncology. Clin. Oncol. 13:1009–22, 1995.

    CAS  Google Scholar 

  68. Barbacid, M. ras genes. Ann. Rev. Biochem. 56:779–827, 1987.

    Article  PubMed  CAS  Google Scholar 

  69. Rochlitz, C.F., Scott, G.K., Dodson, J.M., Liu, E., Dolibaum, C., Smith, H.S., Benz, C.C. Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res. 49:357–360, 1989.

    PubMed  CAS  Google Scholar 

  70. Krontiris TG, DiMartino NA, Colb M, Parkinson DR. Unique allelic restriction fragments of the human Ha-ras locus in leukocyte and tumor-DNAs of cancer patients. Nature 313:369–74, 1985.

    Article  PubMed  CAS  Google Scholar 

  71. Peters G, Brookers S, Smith R, Dickson C. Tumorigenesis by mouse mammary tumor virus: Evidence for common region for provirus integration in mammary tumors. Cell 33:369–77, 1983.

    Article  PubMed  CAS  Google Scholar 

  72. Guerin M, Barrois M, Terrier MJ: Overexpression of either c-myc or c-erbB-2 (neu) proto-oncogenes in human breast carcinomas: Correlation with poor prognosis. Oncogene Res 1988; 3:21–31.

    PubMed  CAS  Google Scholar 

  73. Bartek, J., Iggo, R., Gannon, J., Lane, D.P. Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5:893–9, 1990.

    PubMed  CAS  Google Scholar 

  74. Callahan, R., and Campbell, A. Mutations in human breast cancer: an overview. J. Natl. Cancer Inst. 81:1780–1786, 1989.

    Article  PubMed  CAS  Google Scholar 

  75. Devilee, P., Cornelisse, C.J. Genetics of human breast cancer. Cancer Survey 9:605–30, 1990.

    CAS  Google Scholar 

  76. Kirchwerger, R., Zellinger, R., Schneeberger, C., Speiser, P., Lovason, G., Theillet, C. Patterns of allele losses suggest the existence of five distinct regions of LOH on chromosome 17 in breast cancer. Int. J. Cancer 6:193–199, 1994.

    Article  Google Scholar 

  77. Barnabas, N., Bell, D., Calaf, G., Moraes, R.C.B., Testa, J., Russo, J. Loss of heterozygosity on chromosome 17p loci in transformed in vitro human breast epithelial cells treated with chemical carcinogens. Proc Am Assoc Cancer Res. 34:649a, 1993.

    Google Scholar 

  78. Yang, X., Huang, Y., Russo, I.H., Balsara, B.R., Barret, J.C., Russo, J. Functional roles of chromosomes 11 and 17 in the transformation of human breast epithelial cells in vitro. Int. J. Oncology 15: 629–638, 1999.

    CAS  Google Scholar 

  79. Negrini, M., Sabbioni, S., Haldar, S., Possati, L., Castagnoli, A., Corallini, A., Barbanti-Brodano, G., and Croce, C.M. Tumor and growth suppression of breast cancer cells by chromosome 17associated functions. Cancer Res. 54:1818–1824, 1994.

    PubMed  CAS  Google Scholar 

  80. Koi, M., Johnson, L.A., Kalikin, L.M., Little, P.F.R., Nakamura, Y, and Feinberg, A.P. Tumor cells growth arrest caused by subchromosomal transferable DNA fragments from chromosome 11. Science 260:361–364, 1993.

    Article  PubMed  CAS  Google Scholar 

  81. Oshimura, M., Shimizu, M. and Kugoh, H. Genetic regulation of telomerase in a multiple pathways model to cellular senescence. Hum, Cell 9:301–308, 1996.

    CAS  Google Scholar 

  82. Theile, M., Hartmann, S., Scherthan, H., Arnold, W., Deppert, W., Frege, R., Glaab, F., Hamsch, W, and Schemeck, S. Suppression of tumorigenicity of breast cancer cells by transfer of human chromosome 17 does not require transferred BRCA1 and p53 genes. Oncogene 10:439–447, 1995.

    PubMed  CAS  Google Scholar 

  83. Plummer, S.J., Adams, L., Simmons, J.A., and Casey, G. Localization of a growth suppressor activity in MCF7 breast cancer cells to chromosome 17q24-q25. Oncogene 14:2339–2345, 1997.

    Article  PubMed  CAS  Google Scholar 

  84. Levine, A.J., Momand, J., and Finlay, C.A. The p53 tumor suppressor gene. Nature 351:453–456, 1991.

    Article  PubMed  CAS  Google Scholar 

  85. Albertsen, H., Plaetke, R., Ballard, L., Gufimoto, E., Connolly, J., Lawrence, E., Rodriguez, P., Robertson, M., Bradley, P., Miliner, B., Fuhrman, D., Marks, A., Sargent, R., Cartwright, P., Matsunami, N. and White, R. Genetic mapping of the BRCA1 region on chromosome 17q21. Am. J. Hum. Genet. 54:516–525, 1994.

    PubMed  CAS  Google Scholar 

  86. Coles, C., Thompson, A.M., Elder, P.A., Cohen, B.B., Mackenzie, I.M., Granston, G., Ghetty, U., MacKay, J., MacDonald, M., Nakamura, Y., Hoyheim, B. and Steel, C.M. Evidence implicating at least two genes on chromosome 17p in breast carcinogenesis. Lancet 336:761–763, 1990.

    Article  PubMed  CAS  Google Scholar 

  87. Sato, T., Tanigami, A., Yamakawa, K., Akiyama, F., Kasumi, F., Sakamoto, G. and Kakamura, Y. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res. 50:7184–7189, 1990.

    PubMed  CAS  Google Scholar 

  88. Andersenmm T,I, Gaustadm A, Ottestadm L, Farrants, G.W., Nesland, J.M., Tveit, K.M. and Borresen, A.L. Genetic alterations of the tumour suppressor gene regions 3p,llp, 13q, 17p and 17q in human breast carcinomas. Genes Chromosomes Cancer 4:113–121, 1992.

    Article  Google Scholar 

  89. Isomura, M., Tanigami, A., Saito, H., Harada, Y., Katagiri, L., Ledbetter, D.H. and Nakamura, Y. Detailed analysis of loss of heterozygosity on chromosome band 17pq3 in breast carcinoma on the basis of a high-resolution physical map with 29 markers. Genes Chromosomes Cancer 9:173–179, 1994.

    Article  PubMed  CAS  Google Scholar 

  90. Harley, C.B. Telomere loss: mitotic clock or genetic time bomb? Mutat Res. 256:271–282, 1991.

    Article  PubMed  CAS  Google Scholar 

  91. Hopfer, U., Jacobberger, J.W., Gaenert, D.C., Eckert, R.L., Jat, R.S., Whitsett, J.A. Immortalization of epithelial cells. Am. J. Physiol. 270:CI–CII, 1996.

    Google Scholar 

  92. Blackburn, E. Telomerase. Annu. Rev. Biochem. 61: 113–129, 1992.

    Article  PubMed  CAS  Google Scholar 

  93. Shay, J.W., Wright, W.E., Werbin, H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res. Treat. 25:83–94, 1993.

    Article  PubMed  CAS  Google Scholar 

  94. Bacchetti, S., Counter, C.M. Telomeres and telomerase in human cancer. Int. J. Oncol. 7:423–432, 1995.

    PubMed  CAS  Google Scholar 

  95. Avilion, A.A., Piatyszek, M.A., Gupta, J., Shay, J.W., Bacchetti, S., Greder, C.W. Human telomerase RNA and telomerase activity in immortal cells lines and tumor tissues. Cancer Res. 56:645–650, 1996.

    PubMed  CAS  Google Scholar 

  96. Hu, Y-F, Russo, I.H., Slater, C.M., Russo, J. Down regulation of telomerase activity by extracellular calcium in normal human breast epithelial cells. Proc. Am. Assoc. Cancer Res. 40:1745a, 1999.

    Google Scholar 

  97. Russo, J., Calaf, G., Sohi N, Tahin, Q., Zhang, P.L., Alvarado, M.E., Estrada, S., Russo, I.H. Critical steps in breast carcinogenesis. The New York Academy of Sciences 698:1–20, 1993.

    Article  CAS  Google Scholar 

  98. Russo, J., Reina, D., Frederick, J., Russo, I.H. Expression of phenotypical changes by human breast epithelial cells treated with carcinogens in vitro. Cancer Res. 48:2837–2857, 1988.

    PubMed  CAS  Google Scholar 

  99. Russo, J., Russo, I.H. Role of differentiation on transformation on human breast epithelial cells. Medina, D., Kidwell, W., Heppner, G., Anderson, E. (eds.) Cellular, Molecular Biology of Mammary Cancer. New York: Plenum Publishing Co; pp 399–417, 1987.

    Chapter  Google Scholar 

  100. Wu, Y., Barnabas, N., Russo, I.H., Xang, X., Russo, J. Micro-satellite Instability, Loss of heterozygosity in chromosomes 9, 16 in human breast epithelial cells transformed by chemical carcinogens. Carcinogenesis 18:1069–1074, 1997.

    Article  PubMed  CAS  Google Scholar 

  101. Benjamin, C.W., Hiebsch, R.R., Jones, D.A. Caspase activation in MCF7 cells responding to etoposide treatment. Molecular Pharmacology. 53:446–450, 1998.

    PubMed  CAS  Google Scholar 

  102. Mor, G., Kohen, E, Garcia-Velasco, J., Nilsen, J., Brown, W., Song, J., Naftolin, F. Regulation of fas ligand expression in breast cancer cells by estrogen: functional differences between estradiol, tamoxifen. J. Steroid Biochem. Molec. Biol. 73:185–194, 2000.

    Article  PubMed  CAS  Google Scholar 

  103. Mullauer, L., Mosberger, I., Grusch, M., Rudas, M., Chott, A. Fas ligand is expressed in normal breast epithelial cells, is frequently up-regulated in breast cancer. J. of Pathol. 190:20–30, 2000.

    Article  CAS  Google Scholar 

  104. Shinoura, N., Muramatsu, Y., Yoshida, Y., Asai, A., Kirino, T., Hamada, H. Adenovirus-mediated transfer of caspase-3 with Fas ligand induces drastic apoptosis in U-373MG glioma cells. Experimental Cell Res. 256:423–433, 2000.

    Article  CAS  Google Scholar 

  105. Buglioni, S., Bracalenti, C., Cardarelli, M.A., Ciabocco, L., Giannarelli, D., Botti, C., Natali, P.G., Concetti, A., Venanzi, F.M. Prognostic relevance of altered Fas (CD95)-system in human. Int. J. Cancer. 89:127–132, 2000.

    Article  PubMed  Google Scholar 

  106. Ueno, T., Toi, M., Tominaga, T. Circulating soluble Fas concentration in breast cancer patients. Clin. Cancer Res. 5:3529–3533, 1999.

    PubMed  CAS  Google Scholar 

  107. Rubinchik, S., Ding, R., Qiu, A.J., Zhang, F., Dong, J. Adenoviral vector which delivers FasL-GFP fusion protein regulated by the tet-inducible expression system. Gene Therapy 7:875–885, 2000.

    Article  PubMed  CAS  Google Scholar 

  108. Chu, Z.L., Pio, F., Xie, Z., Welsh, K., Krajewska, M., Krajewski, S., Godzik, A., Reed, J.C A novel enhancer of the Apafl apoptosome involved in cytochrome c-dependent caspase activation, apoptosis. J. Biol. Chem. 276:9239–9245, 2001.

    Article  PubMed  CAS  Google Scholar 

  109. Munday, N.A., Vaillancourt, J.P., Ali, A., Casano, F.J., Miler, D.K., Molineaux, S.M., Yamin, T.T., Yu, V.L., Nicholson, D.W. Molecular cloning, pro-apoptotic activity of ICEreIII, ICEreIIII, members of the ICE/CED-3 family of cysteine proteases. J. Biol. Chem. 270:15870–15876, 1995.

    Article  PubMed  CAS  Google Scholar 

  110. Digby, M.R., Kimpton, W.G., York, J.J., Connick, T.E., Lowenthal, J.W. ITA A vertebrate homologue of IAP that is in T lymphocytes. DNA Cell Biol. 15:981–988, 1996.

    Article  PubMed  CAS  Google Scholar 

  111. Yuan, J., Horvitz, H.R. The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116:309–320, 1992.

    PubMed  CAS  Google Scholar 

  112. Tanaka, K., Iwanto, S., Gon, G., Nohara, T., Iwamoto, M., Tanigawa, N. Expression of survivin, its relationship to loss of apoptosis in breast carcinomas. Clinical Can. Res. 6:127–134, 2000.

    CAS  Google Scholar 

  113. Bond, J.A., Willie, ES., Wynford-Thomas, D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene 7:1885–1888, 1994.

    Google Scholar 

  114. Soussi, T., Legros, Y., Lubin, R., Ory, K., Schlichtholz, B. Multifactorial analysis of p53 alterations in human cancer: a review. Int. J. Cancer 57:1–9, 1994.

    Article  PubMed  CAS  Google Scholar 

  115. Higgy, N.A., Salicioni, A.M., Russo, I.H., Zhang, P.L., and Russo, J. Differential expression of human ferritin H chain gene in immortal human breast epithelial MCF-10F cells. Molecular Carcinogenesis 20:332–339, 1997.

    Article  PubMed  CAS  Google Scholar 

  116. Suzuki, K., Hirooka, Y., Tsujitani, S., Yamane, Y., Ikeguechi, M., Kaibara, N. Relationship between loss of heterozygosity at microsatellite loci and computerized nuclear morphometry in hepatocellular carcinoma. Anti Cancer Res. 20:1257–1262, 2000.

    CAS  Google Scholar 

  117. Schultz, D.C., Vanderveer, L., Berman, D.B., Hamilton, T.C., Wong, A.J., Godwin, A.K. Identification of two candidate tumor suppressor genes on chromosome 17pl3.3. Cancer Res. 56:1997–2002, 1996.

    PubMed  CAS  Google Scholar 

  118. Cornelis, R.S., van Vliet, M., Vos, C.B.J., Cleto-Jansen, A.M., van der Vijver, M.J., Peterse, J.L., Khan, P.M., Borresen, A.L., Cornelisse, C.J., Devilee, P. Evidence for a gene on 17p13.3, distal to p53, as a target for allele loss in breast tumors without p53 mutations. Cancer Res. 54:4200–4206, 1994.

    PubMed  CAS  Google Scholar 

  119. Lakhani, S.R., Collins, N., Stratton, M.R., Sloane, J.P. Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q, 17p. J. Clin. Pathol. 48:611–615, 1995.

    Article  PubMed  CAS  Google Scholar 

  120. Kasami, M., Vnencak-Jones, C., Manning, S., Dupont, W., Page, D. Loss of heterozygosity and microsatellite instability in breast hyperplasia. No obligate correlation of these genetic alterations with subsequent malignancy. Am. J. Path. 150:1925–1932, 1997.

    PubMed  CAS  Google Scholar 

  121. Owen-Schaub, L., Chan, H., Cusack, J.C., Roth, J., Hill, L.L. Fas, Fas ligand interactions in malignant disease. Intl. J. Oncol. 17:5–12, 2000.

    CAS  Google Scholar 

  122. Gutierrez, L., Eliza, M., Niven-Fairchild, T., Mor, G. Fas/Fas-Ligand system induced apoptosis in human breast carcinoma: A mechanism for immune evasion. Breast Cancer Research and Treatment 54:245–253, 1999.

    Article  PubMed  CAS  Google Scholar 

  123. Fan, L., Freeman, K.W., Khan, T., Pham, E., Spencer, D.M. Improved artificial death switches based on caspases, FADD. Human Gene Therapy 10:2273–2285, 1999.

    Article  PubMed  CAS  Google Scholar 

  124. Song, J., Sapi, E., Brown, WD., Nilsen, J., Naftolin, F., Mor, G. Mammary Gland Remodeling: Expression and Role of the Fas/Fas Ligand System during Pregnancy, Lactation and Involution. Journal of Clinical Investigation. 106:1209–1224, 2000.

    Article  PubMed  CAS  Google Scholar 

  125. Thomson, T.A. Her-2/neu in breast cancer, inter-observer variability performance of immunohistochemistry with 4 antibodies compared with fluorescent in situ hybridization. Mod. Pathol. 14:1079–1086, 2001.

    Article  PubMed  CAS  Google Scholar 

  126. Gudmundsdottir, K., Tryggvadottir, L. Eyfjord, J.E. GSTM1, GSTT1, GSTP1 Genotypes in Relation to Breast Cancer Risk Frequency of Mutations in the p53 Gene. Cancer Epidemiol Biomarkers Prev. 10:1169–1173, 2001.

    PubMed  CAS  Google Scholar 

  127. Yee, C.J., Roodi, N., Verrier, C.S., Pari, F.F. Microsatellite instability loss of heterozygosity in breast cancer. Cancer. Res. 54:1641–1644, 1994.

    PubMed  CAS  Google Scholar 

  128. Shaw, J.A., Walsh, T., Chappell, S.A., Carey, N., Johnson, K., Walker, R.A. Microsatellite instability in early sporadic breast cancer. Br. J. Cancer 73:1393–1397, 1996.

    Article  PubMed  CAS  Google Scholar 

  129. Loeb, L.A. Microsatellite instability, Marker of a mutator phenotype in cancer. Cancer Res. 54:5059–5063, 1994.

    PubMed  CAS  Google Scholar 

  130. Strand, M., Prolla, TA., Liskay, R.M., Petes, T.D. Destabilization of tracts of simple repetitive DNA in yeast by mutation affecting DNA mismatch repair. Nature 365:274–276, 1993.

    Article  PubMed  CAS  Google Scholar 

  131. Liu, B., et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nature Gen. 9:48–55, 1995.

    Article  CAS  Google Scholar 

  132. Glaab, W.E., Risinger, J.I., Umar, A., Kunkel, T.A., Barrett, J.C., Tindall, K.R. Characterization of distinct human endometrial carcinoma cell lines deficient in mismatch repair that originated from a single tumor. J. Biol. Chem. 273:26662–26669, 1998.

    Article  PubMed  CAS  Google Scholar 

  133. Peltomaki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10:735–740, 2001.

    Article  PubMed  CAS  Google Scholar 

  134. Augenlicht, L.H., Richards, C., Corner, G., Pretlow, T.P. Evidence for genomic instability in human colonic aberrant crypt foci. Oncogene 12:1767–1772, 1996.

    PubMed  CAS  Google Scholar 

  135. Toyama, T et al. Microsatellite instability in sporadic human breast cancers. Int. J. Cancer 68:447–451, 1996.

    Article  PubMed  CAS  Google Scholar 

  136. Walker, R.A., Jones, J.L., Chappell, S., Walsh, T., Shaw, J.A. Molecular pathology of breast cancer and its application to clinical management. Cancer Metastasis Reviews 16:5–27, 1997.

    Article  PubMed  CAS  Google Scholar 

  137. Souvinos, G., Kiaris, H., Tsikkinis, A., Vassilaros, S., Spandidos, D.A. Microsatellite instability and loss of heterozygosity in primary breast tumors. Tumor Biol. 18:157–166, 1997.

    Article  Google Scholar 

  138. Fishel, R. Signaling mismatch repair in cancer. Nature Medicine 5:1239–1241, 1999.

    Article  PubMed  CAS  Google Scholar 

  139. Nicholaides, NC et al. Mutations of two PMS homologues in hereditary non-polyposis colon cancer. Nature 371:75–80, 1994.

    Article  Google Scholar 

  140. Papadopoulos, N., Lindblom, A. Molecular basis of HN-PCC, Mutations MMR genes. Human Mutation 10:89–99, 1997.

    Article  PubMed  CAS  Google Scholar 

  141. Fleisher, A. S., et al. Hyper-methylation of the hMLHl gene promoter in human gastric cancers with microsatellite instability. Cancer Res. 59:1090–1095, 1999.

    PubMed  CAS  Google Scholar 

  142. Charames, G.S., Millar, A.L., Pal, T., Narod, S., Bapat, B. Do MSH6 mutations contribute to double primary cancers of the colo-rectum and endometrium? Hum. Genet. 107:623–629, 2000.

    Article  PubMed  CAS  Google Scholar 

  143. Kolodner, R.D. et al. Germ-line msh6 mutations in colorectal cancer families. Cancer Res. 59:5068–5074, 1999.

    PubMed  CAS  Google Scholar 

  144. Xu, X.S., Narayanan, L., Dunklee, B., Liskay, R.M., Glazer. P.M. Hyper-mutability to ionizing radiation in mismatch repair-deficient, Pms2 knockout mice. Cancer Res. 61:3775–3780, 2001.

    PubMed  CAS  Google Scholar 

  145. Ionov, Y., Peinado, M., Malkhosyan, S., Shibata, D. Perucho, M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 263:556–558, 1993.

    Google Scholar 

  146. Eshleman, J.R. Markowitz, S.D. Microsatellite instability in inherited and sporadic neoplasms. Current Opinion in Oncology 7:83–89, 1995.

    PubMed  CAS  Google Scholar 

  147. Bock, N., Meden, H., Regenbrecht, M., Junemann, B., Wangerin, J. Marx, D. Expression of the mismatch repair protein hMSH2 in carcinoma in situ and invasive cancer of the breast. Anti Cancer Res. 20:119–124, 2000.

    CAS  Google Scholar 

  148. Yeh, C.C., Lee, C., Dahiya, R. DNA mismatch repair enzyme activity and gene expression in prostate cancer. Biochem. Biophys. Res. Commun. 285:409–413, 2001.

    Article  PubMed  CAS  Google Scholar 

  149. Winter, T. Altered spectra of hyper-mutation in antibodies from mice deficient for the DNA mismatch repair protein PMS2. Proc. Natl. Acad. Sci. USA. 95:69536–69538, 1998.

    Article  Google Scholar 

  150. Liu, T. The Role of hPMS1 and hPMS2 in Predisposing to Colorectal Cancer. Cancer Res. 61:7798–7802, 2001.

    PubMed  CAS  Google Scholar 

  151. Caluseriu, O. Four novel MSH2 and MLH1 frame-shift mutations and occurrence of a breast cancer phenocopy in hereditary nonpolyposis colorectal cancer. Hum. Mutat. 17:521, 2001.

    Article  PubMed  CAS  Google Scholar 

  152. Plaschke, J., Commer, T., Jacobi, C., Schackert, H.K., Chang-Claude, J. BRCA2 germline mutations among early onset breast cancer patients unselected for family history of the disease. J. Med. Genet. 37:E17, 2000.

    Article  PubMed  CAS  Google Scholar 

  153. Yeh, C.C., Lee, C., Huang, M.C., Dahiya, R. Loss of mismatch repair activity in simian virus 40 large T antigen-immortalized BPH-1 human prostatic epithelial cell line. Mol. Carcinog. 31:145–51, 2001.

    Article  PubMed  CAS  Google Scholar 

  154. Scott, et al. Hereditary nonpolyposis colorectal cancer in 95 families: differences and similarities between mutation-positive and mutation-negative kindreds. Am. J. Hum. Genet. 68:118–127, 2001.

    Article  PubMed  CAS  Google Scholar 

  155. Leach, ES. et al. Mutations of a muts homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225, 1993.

    Article  PubMed  CAS  Google Scholar 

  156. Sud, R., Wells, D., Talbot, I.C., Delhanty, J.D. Genetic alterations in gastric cancers from British patients. Cancer Genet. Cytogenet. 126:111–119, 2001.

    Article  PubMed  CAS  Google Scholar 

  157. Bock, N., Meden, H., Regenbrecht, M., Junemann, B., Wangerin, J., Marx, D. Expression of the mismatch repair protein hMSH2 in carcinoma in situ and invasive cancer of the breast. Anti-Cancer Res. 20:119–124, 2000.

    CAS  Google Scholar 

  158. Ma, A.H. Somatic mutation of hPMS2 as a possible cause of sporadic human colon cancer with microsatellite instability. Oncogene 19:2249–2256, 2000.

    Article  PubMed  CAS  Google Scholar 

  159. Thomson, T.A. et al. Her-2/neu in breast cancer, inter-observer variability performance of immunohistochemistry with 4 antibodies compared with fluorescent in situ hybridization. Mod. Pathol. 14:1079–1086, 2001.

    Article  PubMed  CAS  Google Scholar 

  160. Nicholaides, N.C. Mutations of two PMS homologues in hereditary non-polyposis colon cancer. Nature 371:75–80, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russo, J., Russo, I.H. (2004). Genomic Basis of Breast Cancer. In: Molecular Basis of Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18736-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18736-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62270-0

  • Online ISBN: 978-3-642-18736-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics