Skip to main content

Auszug

Die komplexen Funktionen von höheren Lebewesen sind nur durch das koordinierte Zusammenspiel von hochspezialisierten Geweben und Zellen möglich. Im ausgereiften menschlichen Organismus lassen sich ca. 200 verschiedene Zelltypen unterscheiden, die sich in einem vielstufigen Entwicklungsprozess alle aus einer einzigen befruchteten Eizelle entwickeln. Es ist bemerkenswert, dass trotz ihrer vielfältigen Erscheinungsformen und spezialisierten Funktionen alle Zellen (mit Ausnahme der kernlosen Erythrozyten) die gleiche genetische Information behalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

21.10 Literatur

  1. Delorme, B., Chateauvieux, S., Charbord, P., The concept of mesenchymal stem cells. Regen Med, 1(4), 2006, S. 497–509

    Article  CAS  Google Scholar 

  2. Hiyama, E., Hiyama, K., Telomere and telomerase in stem cells. Br J Cancer, 96(7), 2007, S. 1020–4

    Article  CAS  Google Scholar 

  3. Dominici, M., Le Blanc, K., Mueller, I., et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 2006, S. 315–7

    Article  CAS  Google Scholar 

  4. Lindl, T., Zell-und Gewebekultur. 3. Auflage, Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin

    Google Scholar 

  5. Fuchs, E., Tumbar, T., Guasch, G., Socializing with the neighbors: stem cells and their niche. Cell, 116(6), 2004, S. 769–78

    Article  CAS  Google Scholar 

  6. Crittenden, S.L., Leonhard, K.A., Byrd, D.T., et al., Cellular analyses of the mitotic region in the Caenorhabditis elegans adult germ line. Mol Biol Cell, 17(7), 2006, S. 3051–61

    Article  CAS  Google Scholar 

  7. Yamashita, Y.M., Fuller, M.T., Asymmetric stem cell division and function of the niche in the Drosophila male germ line. Int J Hematol, 82(5), 2005, S. 377–80

    Article  CAS  Google Scholar 

  8. Ho, A.D., Wagner, W., The beauty of asymmetry: asymmetric divisions and self-renewal in the haematopoietic system. Curr Opin Hematol, 14(4), 2007, S. 330–6

    Article  Google Scholar 

  9. Lechler, T., Fuchs, E., Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature, 437(7056), 2005, S. 275–80

    Article  CAS  Google Scholar 

  10. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 78(12), 1981, S. 7634–8

    Article  CAS  Google Scholar 

  11. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1998, S. 1145–7

    Article  CAS  Google Scholar 

  12. Friedenstein, A.J., Petrakova, K.V., Kurolesova, A.I., et al., Heterotopic of bone marrow.Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation, 6(2), 1968, S. 230–47

    Article  CAS  Google Scholar 

  13. Zvaifler, N.J., Marinova-Mutafchieva, L., Adams, G., et al., Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res, 2(6), 2000, S. 477–88

    Article  CAS  Google Scholar 

  14. Zuk, P.A., Zhu, M., Mizuno, H., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7(2), 2001, S. 211–28

    Article  CAS  Google Scholar 

  15. Young, H.E., Steele, T.A., Bray, R.A., et al., Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 264(1), 2001, S. 51–62

    Article  CAS  Google Scholar 

  16. De Bari, C., Dell’Accio, F., Tylzanowski, P., et al., Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum, 44(8), 2001, S. 1928–42

    Article  Google Scholar 

  17. Wada, M.R., Inagawa-Ogashiwa, M., Shimizu, S., et al., Generation of different fates from multipotent muscle stem cells. Development, 129(12), 2002, S. 2987–95

    CAS  Google Scholar 

  18. Romanov, Y.A., Svintsitskaya, V.A., Smirnov, V.N., Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 21(1), 2003, S. 105–10

    Article  Google Scholar 

  19. Shi, S., Gronthos, S., Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 18(4), 2003, S. 696–704

    Article  Google Scholar 

  20. Sabatini, F., Petecchia, L., Tavian, M., et al., Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Invest, 85(8), 2005, S. 962–71

    Article  CAS  Google Scholar 

  21. Neuss, S., Becher, E., Woltje, M., et al., Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing. Stem Cells, 22(3), 2004, S. 405–14

    Article  CAS  Google Scholar 

  22. Pittenger, M.F., Mackay, A.M., Beck, S.C., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 1999, S. 143–7

    Article  CAS  Google Scholar 

  23. Tsai, M.S., Hwang, S.M., Chen, K.D., et al., Functional Network Analysis on the Transcrip-tomes of Mesenchymal Stem Cells Derived from Amniotic Fluid, Amniotic Membrane, Cord Blood, and Bone Marrow. Stem Cells, 2007

    Google Scholar 

  24. Horwitz, E.M., Le Blanc, K., Dominici, M., et al., Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy, 7(5), 2005, S. 393–5

    Article  CAS  Google Scholar 

  25. Blanpain, C., Horsley, V., Fuchs, E., Epithelial stem cells: turning over new leaves. Cell, 128(3), 2007, S. 445–58

    Article  CAS  Google Scholar 

  26. Moore, K.A., Lemischka, I.R., Stem cells and their niches. Science, 311(5769), 2006, S. 1880–5

    Article  CAS  Google Scholar 

  27. Mitchell, K.E., Weiss, M.L., Mitchell, B.M., et al., Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21(1), 2003, S. 50–60

    CAS  Google Scholar 

  28. Weiss, M.L., Troyer, D.L., Stem cells in the umbilical cord. Stem Cell Rev, 2(2), 2006, S. 155–62

    Article  CAS  Google Scholar 

  29. Rocha, V., Gluckman, E., Clinical use of umbilical cord blood hematopoietic stem cells. Biol Blood Marrow Transplant, 12(1 Suppl 1), 2006, S. 34–41

    Article  Google Scholar 

  30. Jacobs, V.R., Niemeyer, M., Gottschalk, N., et al., [The STEMMAT-project as part of health initiative BayernAktiv: adult stem cells from umbilical cord and cord blood as alternative to embryonic stem cell research]. Zentralbl Gynakol, 127(6), 2005, S. 368–72

    Article  CAS  Google Scholar 

  31. Eblenkamp, M., Aigner, J., Hintermair, J., et al., [Umbilical cord stromal cells (UCSC). Cells featuring osteogenic differentiation potential]. Orthopade, 33(12), 2004, S. 1338–45

    Article  CAS  Google Scholar 

  32. Schmidt, D., Mol, A., Odermatt, B., et al., Engineering of biologically active living heart valve leaflets using human umbilical cord-derived progenitor cells. Tissue Eng, 12(11), 2006, S. 3223–32

    Article  CAS  Google Scholar 

  33. Anderson, D.G., Levenberg, S., Langer, R., Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat Biotechnol, 22(7), 2004, S. 863–6

    Article  CAS  Google Scholar 

  34. Anderson, D.G., Putnam, D., Lavik, E.B., et al., Biomaterial microarrays: rapid, microscale screening of polymer-cell interaction. Biomaterials, 26(23), 2005, S. 4892–7

    Article  CAS  Google Scholar 

  35. Flaim, C.J., Chien, S., Bhatia, S.N., An extracellular matrix microarray for probing cellular differentiation. Nat Methods, 2(2), 2005, S. 119–25

    Article  CAS  Google Scholar 

  36. Hersel, U., Dahmen, C., Kessler, H., RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials, 24(24), 2003, S. 4385–415

    Article  CAS  Google Scholar 

  37. Hosseinkhani, H., Hosseinkhani, M., Tian, F., et al., Osteogenic differentiation of mesenchymal stem cells in self-assembled peptide-amphiphile nanofibers. Biomaterials, 27(22), 2006, S. 4079–86

    Article  CAS  Google Scholar 

  38. Connelly, J.T., Garcia, A.J., Levenston, M.E., Inhibition of in vitro chondrogenesis in RGD-modified three-dimensional alginate gels. Biomaterials, 28(6), 2007, S. 1071–83

    Article  CAS  Google Scholar 

  39. Discher, D.E., Janmey, P., Wang, Y.L., Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 2005, S. 1139–43

    Article  CAS  Google Scholar 

  40. Vogel, V., Sheetz, M., Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol, 7(4), 2006, S. 265–75

    Article  CAS  Google Scholar 

  41. Engler, A.J., Sen, S., Sweeney, H.L., et al., Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 2006, S. 677–89

    Article  CAS  Google Scholar 

  42. Even-Ram, S., Artym, V., Yamada, K.M., Matrix control of stem cell fate. Cell, 126(4), 2006, S. 645–7

    Article  CAS  Google Scholar 

  43. Kapur, S., Baylink, D.J., Lau, K.H., Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone, 32(3), 2003, S. 241–51

    Article  CAS  Google Scholar 

  44. Fitzgerald, J., Hughes-Fulford, M., Mechanically induced c-fos expression is mediated by cAMP in MC3T3-E1 osteoblasts. Faseb J, 13(3), 1999, S. 553–7

    CAS  Google Scholar 

  45. Peake, M.A., El Haj, A.J., Preliminary characterisation of mechanoresponsive regions of the c-fos promoter in bone cells. FEBS Lett, 537(1–3), 2003, S. 117–20

    Article  CAS  Google Scholar 

  46. Matsuda, N., Morita, N., Matsuda, K., et al., Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stress in vitro. Biochem Biophys Res Commun, 249(2), 1998, S. 350–4

    Article  CAS  Google Scholar 

  47. Charras, G.T., Lehenkari, P.P., Horton, M.A., Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy, 86(1–2), 2001, S. 85–95

    Article  CAS  Google Scholar 

  48. Banes AJ, W.M., Garvin J, Archambault J, Functional Tissue Engineering. In: Guilak F B.D., Goldstein SA, Mooney DJ (Hrsg.), Springer, 2003, S.

    Google Scholar 

  49. Vunjak-Novakovic, G., In: Culture of Cells for Tissue Engineering, Vunjak-Novakovic G., Freshney R.I. (Hrsg.), Wiley-Liss., 2006, S.

    Google Scholar 

  50. Raghavan, S., Chen, C.S., Micropatterned environment in cell biology. Adv. Mater., 16(15), 2004, S. 1303–13

    Article  CAS  Google Scholar 

  51. Zimmermann, W.H., Schneiderbanger, K., Schubert, P., et al., Tissue engineering of a differentiated cardiac muscle construct. Circ Res, 90(2), 2002, S. 223–30

    Article  CAS  Google Scholar 

  52. Stamm, C., Liebold, A., Steinhoff, G., et al., Stem cell therapy for ischemic heart disease: beginning or end of the road? Cell Transplant, 15Suppl 1, 2006, S. S47–56

    Google Scholar 

  53. Steinhoff, G., [Stem cell therapy for the regeneration of heart muscle]. Internist (Berl), 47(5), 2006, S. 479–80, 482–4, 486–7

    Article  CAS  Google Scholar 

  54. Tögel, F., Lange, C., Zander, A.R., et al., Regenerative Medizin mit adulten Stammzellen aus dem Knochenmark. Deutsches Ärzteblatt, 23, 2007

    Google Scholar 

  55. Le Blanc, K., Mesenchymal stromal cells: Tissue repair and immune modulation. Cytotherapy, 8(6), 2006, S. 559–61

    Article  CAS  Google Scholar 

  56. Rasmusson, I., Immune modulation by mesenchymal stem cells. Exp Cell Res, 312(12), 2006, S. 2169–79

    Article  CAS  Google Scholar 

  57. Uccelli, A., Moretta, L., Pistoia, V., Immunoregulatory function of mesenchymal stem cells. Eur J Immunol, 36(10), 2006, S. 2566–73

    Article  CAS  Google Scholar 

  58. Giordano, A., Galderisi, U., Marino, I.R., From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol, 211(1), 2007, S. 27–35

    Article  CAS  Google Scholar 

  59. Cebotari, S., Lichtenberg, A., Tudorache, I., et al., Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation, 114(1 Suppl), 2006, S. I132–7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Eblenkamp, M., Neuss-Stein, S., Salber, S., Jacobs, V., Wintermantel, E. (2008). Stammzellen. In: Medizintechnik Life Science Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74925-7_21

Download citation

Publish with us

Policies and ethics