Skip to main content

Lectins of the ER Quality Control Machinery

  • Chapter
Mammalian Carbohydrate Recognition Systems

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 33))

Abstract

Calnexin was first identified as a type I transmembrane phosphoprotein located in the endoplasmic reticulum (ER; Wada et al. 1991). In subsequent work, this protein has been shown to belong to a new family of chaperones or proteins with lectin-like properties with orthologs present in all eukaryotes so far studied (Wada et al. 1991; Hebert et al. 1995). Calnexin and calreticulin, an ER luminal homologue, share extensive sequence similarity and both bind calcium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

CNX:

calnexin

CRT:

calreticulin

CPY:

carboxypeptidase Y

CK2:

casein kinase 2

ER:

endoplasmic reticulum

UGGT:

UDP-glucose glycoprotein glucosyltransferase

References

  • Arar C, Carpentier V, Le-Caer JP, Monsigny M, Legrand A, Roche AC (1995) ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells. J Biol Chem 270: 3551–3553

    Article  PubMed  CAS  Google Scholar 

  • Arunachalam B, Cresswell P (1995) Molecular requirements for the interaction of class II major histocompatibility complex molecules and invariant chain with calnexin. J Biol Chem 270: 2784–2790

    Article  PubMed  CAS  Google Scholar 

  • Bergeron JJM, Zapun A, Ou WJ, Hemming R, Parlati F, Cameron PH, Thomas DY (1998) The role of the lectin calnexin in conformation independent binding to N-linked glycoproteins and quality control. Adv Exp Med Biol 435: 105–116

    Article  PubMed  CAS  Google Scholar 

  • Bourdi M, Demady D, Martin JL, Jabbour SK, Martin BM, George JW, Pohl LR (1995) cDNA cloning and baculovirus expression of the human liver endoplasmic reticulum P58: characterization as a protein disulfide isomerase isoform, but not as a protease or a carnitine acyltransferase. Arch Biochem Biophys 323: 397–403

    Google Scholar 

  • Cala SE, Ulbright C, Kelley JS, Jones LR (1993) Purification of a 90kDa protein (vol VII) from cardiac sarcoplasmic reticulum. Identification as calnexin and localization of casein kinase II phosphorylation sites. J Biol Chem 268: 2969–2975

    Google Scholar 

  • Cannon KS, Hebert DN, Helenius A (1996) Glycan-dependent and -independent association of vesicular stomatitis virus G protein with calnexin. J Biol Chem 271: 14280–14284

    Article  PubMed  CAS  Google Scholar 

  • Capps GG, Zuniga MC (1994) Class I histocompatibility molecule association with phosphorylated calnexin. Implications for rates of intracellular transport. J Biol Chem 269: 1163411639

    Google Scholar 

  • Carreno BM, Solheim JC, Harris M, Stroynowski I, Connolly JM, Hansen TH (1995) TAP associates with a unique class I conformation, whereas calnexin associates with multiple class I forms in mouse and man. J Immunol 155: 4726–4733

    PubMed  CAS  Google Scholar 

  • Chevet E, Wong HN, Gerber D, Cochet C, Fazel A, Cameron PH, Gushue JN, Thomas DY, Bergeron JJM (1999) Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J 18: 3655–3666

    CAS  Google Scholar 

  • Elliott JG, Oliver JD, High S (1997) The thiol-dependent reductase ERp57 interacts specifically with N-glycosylated integral membrane proteins. J Biol Chem 272: 13849–13855

    Article  PubMed  CAS  Google Scholar 

  • Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 91: 913–917

    Article  PubMed  CAS  Google Scholar 

  • Hawn TR, Strand M (1994) Developmentally regulated localization and phosphorylation of SmIrV1, a Schistosoma mansoni antigen with similarity to calnexin. J Biol Chem 269: 20083–20089

    PubMed  CAS  Google Scholar 

  • Hebert DN, Foellmer B, Helenius A (1996) Calnexin and calreticulin promote folding, delay oligomerization and suppress degradation of influenza hemagglutinin in microsomes. EMBO J 15: 2961–2968

    CAS  Google Scholar 

  • Hebert DN, Simons JF, Peterson JR, Helenius A (1995) Calnexin, calreticulin, and Bip/Kar2p in protein folding. Cold Spring Harb Symp Quant Biol 60: 405–415

    Article  PubMed  CAS  Google Scholar 

  • Hebert DN, Zhang JX, Chen W, Foellmer B, Helenius A (1997) The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. J Cell Biol 139: 613–623

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Trombetta ES, Hebert DN, Simons JF (1997) Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol 7: 193–200

    Article  CAS  Google Scholar 

  • Hughes EA, Cresswell P (1998) The thiol oxidoreductase ERp57 is a component of the MHC class I peptide-loading complex. Curr Biol 8: 709–712

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB (1999) Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 4: 331–341

    Article  PubMed  CAS  Google Scholar 

  • Itin C, Roche AC, Monsigny M, Hauri HP (1996) ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol Biol Cell 7: 483–493

    PubMed  CAS  Google Scholar 

  • Jakob CA, Burda P, Roth J, Aebi M (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142: 1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Kim PS, Aryan P (1995) Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol 128: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Knop M, Hauser N, Wolf DH (1996) N-glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase Yscy in yeast. Yeast 12: 1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Choudhury P, Cabral CM, Sifers RN (1997) Intracellular disposal of incompletely folded human alphal-antitrypsin involves release from calnexin and post-translational trimming of asparagine-linked oligosaccharides. J Biol Chem 272: 7946–7951

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Choudhury P, Cabral CM, Sifers RN (1999) Oligosaccharide modification in the early secretory pathway directs the selection of a misfolded glycoprotein for degradation by the proteasome. J Biol Chem 274: 5861–5867

    Article  PubMed  CAS  Google Scholar 

  • Loo TW, Clarke DM (1995) P-glycoprotein. Associations between domains and between domains and molecular chaperones. J Biol Chem 270: 21839–21844

    Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132: 291–298

    Article  PubMed  CAS  Google Scholar 

  • Moremen KW, Trimble RB, Herscovics A (1994) Glycosidases of the asparagine-linked oligosaccharide processing pathway. Glycobiology 4: 113–125

    Article  PubMed  CAS  Google Scholar 

  • Ohsako S, Hayashi Y, Bunick D (1994) Molecular cloning and sequencing of calnexin-t. An abundant male germ cell-specific calcium-binding protein of the endoplasmic reticulum. J Biol Chem 269: 14140–14148

    Google Scholar 

  • Ora A, Helenius A (1995) Calnexin fails to associate with substrate proteins in glucosidase II-deficient cell lines. J Biol Chem 270: 26060–26062

    Article  PubMed  CAS  Google Scholar 

  • Otteken A, Moss B (1996) Calreticulin interacts with newly synthesized human immunodeficiency virus type 1 envelope glycoprotein, suggesting a chaperone function similar to that of calnexin. J Biol Chem 271: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Ou WJ, Bergeron JJM, Li Y, Kang CY, Thomas DY (1995) Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2`. J Biol Chem 270: 18051–18059

    Article  PubMed  CAS  Google Scholar 

  • Ou WJ, Cameron PH, Thomas DY, Bergeron JJM (1993) Association of folding intermediates of glycoproteins with calnexin during protein maturation. Nature 364: 771–776

    Article  PubMed  CAS  Google Scholar 

  • Ou WJ, Thomas DY, Bell AW, Bergeron JJ (1992) Casein kinase II phosphorylation of signal sequence receptor alpha and the associated membrane chaperone calnexin. J Biol Chem 267: 23789–23796

    PubMed  CAS  Google Scholar 

  • Pamer E, Cresswell P (1998) Mechanisms of MHC class I-restricted antigen processing.Annu Rev Immunol 16: 323–358

    CAS  Google Scholar 

  • Parodi AJ (1999) Reglucosylation of glycoproteins and quality control of glycoprotein folding in the endoplasmic reticulum of yeast cells. Biochim Biophys Acta 1426: 287–295

    Article  PubMed  CAS  Google Scholar 

  • Rodan AR, Simons JF, Trombetta ES, Helenius A (1996) N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. EMBO J 15: 6921–6930

    CAS  Google Scholar 

  • Roderick HL, Lechleiter JD, Camacho P (1998) Calnexin/Calmegin phosphorylation regulates Ca’ wavee activity in Xenopus oocytes. Mol Biol Cell 9S: 494–495

    Google Scholar 

  • Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls Intracellular Ca’ oscillations via an interaction with SERCA2b. J Cell Biol 149: 1235–1248

    Article  PubMed  CAS  Google Scholar 

  • Roth J (1995) Biosynthesis: compartmentation of glycoprotein biosynthesis. In: Montreuil J, Schachter H, Vliegenthart JFG (eds) Glycoproteins. Elsevier, New York, pp 287–312

    Google Scholar 

  • Saito Y, Ihara Y, Leach MR, Cohen-Doyle MF, Williams DB (1999) Galreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18: 6718–6729

    CAS  Google Scholar 

  • Sambrook JF (1990) The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell 61: 197–199

    Article  PubMed  CAS  Google Scholar 

  • Schue V, Green GA, Girardot R, Monteil H (1994) Hyperphosphorylation of calnexin, a chaperone protein, induced by Clostridium difficile cytotoxin. Biochem Biophys Res Commun 203: 22–28

    Article  PubMed  CAS  Google Scholar 

  • Sousa MC, Ferrero Garcia MA, Parodi AJ (1992) Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoptroteins glucosyltransferase. Biochemistry 31: 97–105

    Article  PubMed  CAS  Google Scholar 

  • Spiro RG, Zhu Q, Bhoyroo V, Soling HD (1996) Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J Biol Chem 271: 11588–11594

    Article  PubMed  CAS  Google Scholar 

  • Su K, Stoller T, Rocco J, Zemsky J, Green R (1993) Pre-Golgi degradation of yeast prepro-alphafactor expressed in a mammalian cell. Influence of cell type-specific oligosaccharide processing on intracellular fate. J Biol Chem 268: 14301–14309

    Google Scholar 

  • Tatu U, Hammond C, Helenius A (1995) Folding and oligomerization of influenza hemagglutinin in the ER and the intermediate compartment. EMBO J 14: 1340–1348

    CAS  Google Scholar 

  • Tector M, Zhang Q, Salter RD (1994) Phosphatase inhibitors block in vivo binding of peptides to class I major histocompatibility complex molecules. J Biol Chem 269: 25816–25822

    PubMed  CAS  Google Scholar 

  • Trombetta ES, Helenius A (1998) Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol 8: 587–592

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen JE, Kearse KP (1996) Deglucosylation of N-linked glycans is an important step in the dissociation of calreticulin-class I-TAP complexes. Proc Natl Acad Sci USA 93: 13997–14001

    Article  PubMed  Google Scholar 

  • Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: 97–130

    Article  PubMed  CAS  Google Scholar 

  • Vassilakos A, Cohen DM, Peterson PA, Jackson MR, Williams DB (1996) The molecular chaperone calnexin facilitates folding and assembly of class I histocompatibility molecules. EMBO J 15: 1495–1506

    CAS  Google Scholar 

  • Wada I, Imai S, Kai M, Sakane F, Kanoh H (1995) Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. J Biol Chem 270: 20298–20304

    Article  PubMed  CAS  Google Scholar 

  • Wada I, Rindress D, Cameron PH, Ou WJ, Doherty JJd, Louvard D, Bell AW, Dignard D, Thomas DY, Bergeron JJ (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266: 19599–19610

    PubMed  CAS  Google Scholar 

  • Ware FE, Vassilakos A, Peterson PA, Jackson MR, Lehrman MA, Williams DB (1995) The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J Biol Chem 270: 4697–4704

    Article  PubMed  CAS  Google Scholar 

  • Watanabe D, Yamada K, Nishina Y, Tajima Y, Koshimizu U, Nagata A, Nishimune Y (1994) Molecular cloning of a novel Ca(’)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 269: 7744–7749

    PubMed  CAS  Google Scholar 

  • Williams DB, Watts TH (1995) Molecular chaperones in antigen presentation. Curr Opin Immunol 7: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Wiuff C, Houen G (1996) Cation-dependent interactions of calreticulin with denatured and native proteins. Acta Chem Scand 50: 788–795

    Article  PubMed  CAS  Google Scholar 

  • Wong HN, Ward MA, Bell AW, Chevet E, Bains S, Blackstock WP, Solari R, Thomas DY, Bergeron JJM (1998) Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a protein kinase C/proline-directed kinase site. J Biol Chem 273: 17227–17235

    Article  PubMed  CAS  Google Scholar 

  • Yang M, Oemura S, Bonifacino JS, Weissman AM (1998) Novel aspects of degradation of T cell receptor subunits from the endoplasmic reticulum (ER) in T cells: importance of oligosaccharide processing, ubiquitination, and proteasome-dependent removal from ER membranes. J Exp Med 187: 835–846

    Article  PubMed  CAS  Google Scholar 

  • Zapun A, Darby NJ, Tessier DC, Michalak M, Bergeron JJ, Thomas DY (1998) Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273: 6009–6012

    Article  PubMed  CAS  Google Scholar 

  • Zapun A, Petrescu SM, Rudd PM, Dwek RA, Thomas DY, Bergeron JJM (1997) Conformationindependent binding of monoglucosylated ribonuclease B to calnexin. Cell 88: 29–38

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Tector M, Salter RD (1995) Calnexin recognizes carbohydrate and protein determinants of class I major histocompatibility complex molecules. J Biol Chem 270: 3944–3948

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jakob, C.A., Chevet, E., Thomas, D.Y., Bergeron, J.J.M. (2001). Lectins of the ER Quality Control Machinery. In: Crocker, P.R. (eds) Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46410-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46410-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53670-0

  • Online ISBN: 978-3-540-46410-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics