Skip to main content

Improving the 3D Perception of the Pepper Robot Using Depth Prediction from Monocular Frames

  • Conference paper
  • First Online:
Advances in Physical Agents (WAF 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 855))

Included in the following conference series:

Abstract

The robot Pepper provides a bad depth estimation. In this paper, we present a method for improving that 3D estimation. The method is based on using the RGB image to predict monocular depth. As it will be shown, the combination of both, monocular and 3D depth, provides a better 3D data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://doc.aldebaran.com/2-7/family/pepper_technical/video_3D_pep.html.

References

  1. Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks, May 2016

    Google Scholar 

  2. Castanedo, F.: A review of data fusion techniques. Sci. World J. 2013, 19 (2013)

    Article  Google Scholar 

  3. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to generate chairs, tables and cars with convolutional networks. arXiv e-prints, November 2014

    Google Scholar 

  4. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS 2014, pp. 2366–2374. MIT Press, Cambridge (2014). http://dl.acm.org/citation.cfm?id=2969033.2969091

  5. Elmenreich, W.: An introduction to sensor fusion. Research Report 47/2001, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria (2001)

    Google Scholar 

  6. Engelhard, N., Endres, F., Hess, J., Sturm, J., Burgard, W.: Real-time 3D visual SLAM with a hand-held RGB-D camera. In: Proceedings of the RGB-D Workshop on 3D Perception in Robotics at the European Robotics Forum, Vasteras, Sweden, April 2011

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). https://doi.org/10.1145/358669.358692

    Article  MathSciNet  Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv e-prints, December 2015

    Google Scholar 

  9. Karsch, K., Liu, C., Kang, S.B.: Depth extraction from video using non-parametric sampling. In: Proceedings of the 12th European Conference on Computer Vision - Volume Part V. ECCV 2012, pp. 775–788. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_56

    Chapter  Google Scholar 

  10. Kim, P., Chen, J., Cho, Y.K.: SLAM-driven robotic mapping and registration of 3D point clouds. Autom. Constr. 89, 38–48 (2018). http://www.sciencedirect.com/science/article/pii/S0926580517303990

    Article  Google Scholar 

  11. Kim, P., Chen, J., Kim, J., Cho, Y.K.: SLAM-driven intelligent autonomous mobile robot navigation for construction applications. In: Smith, I.F.C., Domer, B. (eds.) Advanced Computing Strategies for Engineering, pp. 254–269. Springer, Cham (2018)

    Chapter  Google Scholar 

  12. Konrad, J., Wang, M., Ishwar, P.: 2D-to-3D image conversion by learning depth from examples. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 16–22 (2012)

    Google Scholar 

  13. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. CoRR abs/1606.00373 (2016). http://arxiv.org/abs/1606.00373

  14. Li, B., Shen, C., Dai, Y., van den Hengel, A., He, M.: Depth and surface normal estimation from monocular images using regression on deep features and hierarchical CRFs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015) (2015)

    Google Scholar 

  15. Li, B., Dai, Y., Chen, H., He, M.: Single image depth estimation by dilated deep residual convolutional neural network and soft-weight-sum inference. CoRR arxiv:abs/1705.00534 (2017)

  16. Li, J., Klein, R., Yao, A.: Learning fine-scaled depth maps from single RGB images. CoRR abs/1607.00730 (2016). http://arxiv.org/abs/abs/1607.00730

  17. Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  18. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (2015). http://arxiv.org/abs/1411.6387

  19. Liu, M., Salzmann, M., He, X.: Discrete-continuous depth estimation from a single image. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 716–723. IEEE Computer Society, Washington, DC (2014). https://doi.org/10.1109/CVPR.2014.97

  20. Mallick, T., Das, P.P., Majumdar, A.K.: Characterizations of noise in kinect depth images: a review. IEEE Sens. J. 14(6), 1731–1740 (2014)

    Article  Google Scholar 

  21. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: ECCV (2012)

    Google Scholar 

  22. Nguyen, C.V., Izadi, S., Lovell, D.: Modeling kinect sensor noise for improved 3D reconstruction and tracking. In: 2012 Second International Conference on 3D Imaging, Modeling, Processing, Visualization Transmission, pp. 524–530, October 2012

    Google Scholar 

  23. Roy, A., Todorovic, S.: Monocular depth estimation using neural regression forest. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5506–5514 (2016)

    Google Scholar 

  24. Saxena, A., Chung, S.H., Ng, A.Y.: Learning depth from single monocular images. In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems 18, pp. 1161–1168. MIT Press (2006). http://papers.nips.cc/paper/2921-learning-depth-from-single-monocular-images.pdf

  25. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Proceedings of the 12th European Conference on Computer Vision - Volume Part V, ECCV 2012, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  26. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.: Towards unified depth and semantic prediction from a single image. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2800–2809, June 2015. https://doi.org/10.1109/CVPR.2015.7298897

  27. Yu, Y., Song, Y., Zhang, Y., Wen, S.: A shadow repair approach for kinect depth maps. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) Computer Vision - ACCV 2012, pp. 615–626. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Government TIN2016-76515R Grant, supported with Feder funds. Edmanuel Cruz is funded by Panamenian grant for PhD studies IFARHU & SENACYT 270-2016-207. This work has also been supported by a Spanish grant for PhD studies ACIF/2017/243 and FPU16/00887. Thanks to Nvidia also for the generous donation of a Titan Xp and a Quadro P6000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Escalona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bauer, Z., Escalona, F., Cruz, E., Cazorla, M., Gomez-Donoso, F. (2019). Improving the 3D Perception of the Pepper Robot Using Depth Prediction from Monocular Frames. In: Fuentetaja Pizán, R., García Olaya, Á., Sesmero Lorente, M., Iglesias Martínez, J., Ledezma Espino, A. (eds) Advances in Physical Agents. WAF 2018. Advances in Intelligent Systems and Computing, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-99885-5_10

Download citation

Publish with us

Policies and ethics