Keywords

2010 Mathematics Subject Classification

1 Introduction

Consider the semilinear partial differential equation

$$\displaystyle \begin{aligned} \frac{\partial u(t,x)}{\partial t} =\frac{1}{2}\frac{\partial^{2} u(t,x)}{\partial x^{2}} +\frac{\varphi'\left(x\right)}{\varphi\left(x\right)}\frac{\partial u(t,x)}{\partial x} +u^{1+\beta}\left(t,x\right), \quad t>0, \quad x\in\mathbb{R}, \end{aligned} $$
(1)

where β > 0, \(\varphi \in C^2(\mathbb {R})\) is a square-integrable, strictly positive function, and the initial value is of the form u(0, x) = h(x)∕φ(x) with \(h\in L^2(\mathbb {R},\mathrm {d} x)\) and φ(x) = (x)∕dx. Setting \(\varphi (x)=e^{-x^2/2}\) in (1) it becomes

$$\displaystyle \begin{aligned} \frac{\partial u(t,x)}{\partial t} =L^{\varphi}u(t,x) +u^{1+\beta}\left(t,x\right), \quad t>0, \quad x\in\mathbb{R}, \end{aligned}$$

where \(L^{\varphi }:= \frac {1}{2}\frac {\partial ^{2} }{\partial x^{2}}-x\frac {\partial }{\partial x}\) is the infinitesimal generator of the Ornstein-Uhlenbeck semigroup {T t , t ≥ 0}. Using essentially Jensen’s inequality and the fact that the measure μ(dx) = φ 2(x) dx is invariant for {T t , t ≥ 0}, in [8] we were able to prove that Eq. (1) exhibits blow up in finite time for any nontrivial initial value of the form u(0, x) = h(x)∕φ(x), \(x\in \mathbb {R}\).

Motivated by this example, in this note we provide a criterion for explosion in finite time of positive mild solutions of the 1-dimensional semilinear system

$$\displaystyle \begin{aligned} \begin{array}{rcl} \frac{\partial u_{1}(t,x)}{\partial t} &\displaystyle =&\displaystyle \frac{1}{2}\frac{\partial^{2} u_{1}(t,x)}{\partial x^{2}} +\frac{\varphi^{\prime}_{1}\left(x\right)}{\varphi_{1}\left(x\right)}\frac{\partial u_{1}(t,x)}{\partial x} +u_{2}^{1+\beta_{1}}\left(t,x\right), \quad t>0, \quad x\in\mathbb{R},\\ {} \frac{\partial u_{2}(t,x)}{\partial t} &\displaystyle =&\displaystyle \frac{1}{2}\frac{\partial^{2} u_{2}(t,x)}{\partial x^{2}} +\frac{\varphi^{\prime}_{2}\left(x\right)}{\varphi_{2}\left(x\right)}\frac{\partial u_{2}(t,x)}{\partial x} +u_{1}^{1+\beta_{2}}\left(t,x\right), \quad t>0, \quad x\in\mathbb{R},\\ u_{i}(0,x) &\displaystyle = &\displaystyle f_{i}(x),\quad x\in\mathbb{R},\quad i=1,2, \end{array} \end{aligned} $$
(2)

where β 1, β 2 > 0 are constants, f 1, f 2 are nonnegative functions and \(\varphi _1,\varphi _2\in C^2(\mathbb {R})\cap L^2(\mathbb {R},\mathrm {d} x)\) are strictly positive. Semilinear systems of this type have been investigated intensively in last years, starting with the pioneering work of Galaktionov et al. [4] (see also [2, 3, 5, 7, 9] and the review papers [1, 6]). This kind of systems arise as simplified models of the process of diffusion of heat and burning in a two-component continuous media, where u 1 and u 2 represent the temperatures of the two reactant components.

Recall that a pair (u 1, u 2) of measurable functions is termed mild solution of system (2) if it solves the system of integral equations

$$\displaystyle \begin{aligned} u_i(t,x)=T^{i}_t\left(f_i(x)\right)+\int_0^t T^{i}_{t-s}\left(u_j^{1+\beta_i}(s,x)\right)\,\mathrm{d} s,\quad t\ge0,\quad x\in\mathbb{R}, \end{aligned} $$
(3)

where i = 1, 2, j = 3 − i and \(\{T^i_t\), t ≥ 0} is the semigroup of continuous linear operators on \(L^{\infty }(\mathbb {R},\mathrm {d} x)\) having infinitesimal generator

$$\displaystyle \begin{aligned} L^{\varphi_i}=\frac{1}{2}\frac{\partial^2}{\partial x^2} + \frac{\varphi^{\prime}_i}{\varphi_i}\frac{\partial}{\partial x};\quad i=1,2. \end{aligned}$$

If there exists \(T\,{\in }\,\left (0,\infty \right )\) such that \(\left \Vert u_{1}\left (t,\cdot \right )\right \Vert _{L^{\infty }\left (\mathbb {R},\mathrm {d} x\right )}\,{=}\,\infty \) or \(\left \Vert u_{2}\left (t,\cdot \right )\right \Vert _{L^{\infty }\left (\mathbb {R},\mathrm {d} x\right )}=\infty \) for all t ≥ T, then it is said that \(\left (u_{1},u_{2}\right )\) blows up (or explodes) in finite time, and in this case the infimum of such T’s is called the blow up time (or the explosion time) of \(\left (u_{1},u_{2}\right )\).

Notice that for any \(g\in L^{\infty }(\mathbb {R},\mathrm {d} x)\) and i = 1, 2,

$$\displaystyle \begin{aligned} T^i_t(g(x))=\mathbb{E}\left[g\left(X_t^{x,i}\right)\right] ,\quad t\ge0,\quad x\in\mathbb{R}, \end{aligned}$$

where \(\{X_t^{x,i}\), t ≥ 0} is the unique strong solution of the stochastic differential equation

$$\displaystyle \begin{aligned} Y_t=x+B_t+\int_0^t\frac{\varphi^{\prime}_i}{\varphi_i}\left(Y_s\right)\,\mathrm{d} s,\quad t\ge0,\quad x\in\mathbb{R}; \end{aligned}$$

here {B t , t ≥ 0} is a standard 1-dimensional Brownian motion. It turns out that under our assumptions both processes \(\{X_t^{x,i}\), t ≥ 0}, i = 1, 2, are recurrent and, moreover, possess corresponding invariant measures

$$\displaystyle \begin{aligned} \mu_i(\mathrm{d} x)=\varphi_i^2(x)\,\mathrm{d} x,\quad i=1,2. \end{aligned} $$
(4)

The intuitive explanation of the blow up phenomenon in non-linear heat equations of the archetype

$$\displaystyle \begin{aligned} \frac{\partial u}{\partial t} = {\mathcal{A}}u + u^{1+\beta};\quad u(0)=f\ge0, \end{aligned}$$

where β > 0 and \({\mathcal {A}}\) is the generator of a strong Markov process on a locally compact space, is that if the initial value f is “small” then the tendency of the solution to blow up (which it would do if u 1+β were the only term in the left-hand side of the equation) can be inhibited by the dissipative effect of the migration with generator \({\mathcal {A}}\); see e.g. [6, 9] or [10]. In view of the ergodicity of the processes \(\{X_t^{x,i}\), t ≥ 0}, i = 1, 2, the mild solution of (2) should therefore blow up in finite time, at least for certain non-trivial positive initial values f i , i = 1, 2.

In this work we give conditions which imply blow up in finite time of system (2) under the assumption that φ 1φ 2 is a strictly positive bounded function such that \(\displaystyle \inf _{x\in \mathbb {R}}\{\varphi _{1}\left (x\right )/\varphi _{2}\left (x\right )\}>0\), and the initial values are of the form f i  = h i φ i , where \(h_{i}\in L^{2}\left (\mathbb {R},\mathrm {d} x\right )\), i = 1, 2. We distinguish two cases: if β 1 = β 2 we show that any non-trivial positive mild solution of (2) blows up in finite time. If β 1 ≠ β 2 we prove that a condition on the “sizes” of f 1 and f 2 and on the measures μ 1, μ 2 of the form

$$\displaystyle \begin{aligned} \int f_1\,\mathrm{d}\mu_1+\int f_2\,\mathrm{d}\mu_2 > c_0, \end{aligned}$$

(where the constant c 0 > 0 is determined by the system parameters) already implies finite time explosion of (2); see Theorem 2 below. Moreover, we find an upper bound T for the blowup time of system (2) which depends both on the initial values f 1, f 2, and the invariant measures (4). Our setting allows us to consider a wide range of choices for φ 1 and φ 2, for instance

$$\displaystyle \begin{aligned}\varphi_{1}\left(x\right)=\left(\sin\left(x\right)+2\right)\varphi_{2}\left(x\right) \mbox{ with }\varphi_{2}\left(x\right)=e^{-x^{2}/2}, \end{aligned}$$

or else

$$\displaystyle \begin{aligned}\varphi_{1}\left(x\right)=\left(e^{-x^{2}/2}+1\right)\varphi_{2}\left(x\right) \mbox{ with } \varphi_{2}\left(x\right)={1}/{(1+x^{2})}. \end{aligned}$$

In these two cases the functions h i , i = 1, 2, can be chosen of the form \(h_{i}\left (x\right )={P_{i}\left (\left |x\right |\right )}/{Q_{i}\left (\left |x\right |\right )}\), where P i , Q i are polynomial functions with non-negative coefficients such that their degrees satisfy \(2\leq \mathrm {deg}\left (Q_{i}\right )-\mathrm {deg}\left (P_{i}\right )\), and \(Q_{i}\left (0\right )>0\).

In the next section we prove existence and uniqueness of local mild solutions of (2) using the classical fixed-point argument, adapted to our context. Our main result, Theorem 2, is stated and proved in Sect. 3.

2 Local Existence and Uniqueness of Mild Solutions

Our proof of existence, uniqueness and positiveness of mild solutions of system (2) is based on [14, Theorem 2.1], (see also [12, Theorem 2.1], [15, Theorem 3], [7, Theorem 2] or [11, Theorem 1]).

For each \(\tau \in \left (0,\infty \right )\) we define the set

$$\displaystyle \begin{aligned} E_{\tau}:=\left\{\left(u_{1},u_{2}\right)|u_{1},u_{2}: \left[0,\tau\right]\to L^{\infty}\left(\mathbb{R},\mathrm{d} x\right), \left|\left|\left| \left(u_{1},u_{2}\right)\right| \right|\right|<\infty\right\}, \end{aligned}$$

where

$$\displaystyle \begin{aligned} \left|\left|\left| \left(u_{1},u_{2}\right)\right| \right|\right|:=\sup_{t\in\left[0,\tau\right]}\left\{ \left\Vert u_{1}\left(t,\cdot\right)\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}+ \left\Vert u_{2}\left(t,\cdot\right)\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right\}. \end{aligned}$$

Then \(\left (E_{\tau },\left |\left |\left | \cdot \right | \right |\right |\right )\) is a Banach space and the sets

$$\displaystyle \begin{aligned} &P_{\tau}:=\left\{\left(u_{1},u_{2}\right)\in E_{\tau}:u_{1}\geq0,u_{2}\geq 0\right\} \quad \mbox{and}\\ & B_{R}:=\left\{\left(u_{1},u_{2}\right)\in E_{\tau}:\left|\left|\left|\left(u_{1},u_{2}\right)\right|\right|\right|\leq R\right\} \end{aligned} $$

are closed subsets of E τ for any \(R\in \left (0,\infty \right )\). Therefore \(\left (P_{\tau }\cap B_{R},\left |\left |\left | \cdot \right | \right |\right |\right )\) is a Banach space for all \(\tau , R\in \left (0,\infty \right )\).

Theorem 1

There exist \(\tau ,R\in \left (0,\infty \right )\) such that system (2) has a unique positive mild solution in P τ  ∩ B R .

Proof

We will prove that the operator Ψ : P τ  ∩ B R  → P τ  ∩ B R defined by

$$\displaystyle \begin{aligned} \begin{array}{rcl} \Psi\left(\left(u_{1}\left(t,x\right),u_{2}\left(t,x\right)\right)\right) &\displaystyle =&\displaystyle \left(T_{t}^{1}\left(f_{1}\left(x\right)\right)+ \int_{0}^{t}T_{t-s}^{1}\left(u_{2}^{1+\beta_{1}}\left(s,x\right)\right)\mathrm{d} s,\right.\\ &\displaystyle &\displaystyle \left.T_{t}^{2}\left(f_{2}\left(x\right)\right) + \int_{0}^{t}T_{t-s}^{2}\left(u_{1}^{1+\beta_{2}}\left(s,x\right)\right) \mathrm{d} s\right), \end{array} \end{aligned} $$

is a contraction for certain \(\tau ,R\in \left (0,\infty \right )\). We start by verifying that Ψ is in fact an operator from P τ  ∩ B R onto P τ  ∩ B R for suitably chosen \(\tau ,R\in \left (0,\infty \right )\). Let \(\tau _{0},R_{0}\in \left (0,\infty \right )\) be such that

$$\displaystyle \begin{aligned} &R_{0}>\left(\left\Vert f_{1}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}+ \left\Vert f_{2}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right)\;\mbox{and}\\ &\tau_{0}\leq\frac{R_{0}-\left(\left\Vert f_{1}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}+ \left\Vert f_{2}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right)}{R_{0}^{1+\beta_{1}}+R_{0}^{1+\beta_{2}}}. \end{aligned} $$

If \(\left (u_{1},u_{2}\right )\in P_{\tau _{0}}\cap B_{R_{0}}\) then \(\Psi \left (\left (u_{1},u_{2}\right )\right )\) has positive components due to the definition of Ψ and the fact that u 1, u 2 ≥ 0. Hence

$$\displaystyle \begin{aligned} \begin{array}{rcl} \left|\left|\left| \Psi\left(\left(u_{1},u_{2}\right)\right)\right| \right|\right| &\displaystyle =&\displaystyle \sup_{t\in\left[0,\tau_{0}\right]}\left\{\left\Vert T_{t}^{1}\left(f_{1} \left(\cdot\right)\right) + \int_{0}^{t}T_{t-s}^{1}\left(u_{2}^{1+\beta_{1}}\left(s,\cdot\right)\right) \mathrm{d} s\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right.\\ &\displaystyle &\displaystyle +\left.\left\Vert T_{t}^{2}\left(f_{2}\left(\cdot\right)\right) + \int_{0}^{t}T_{t-s}^{2}\left(u_{1}^{1+\beta_{2}}\left(s,\cdot\right)\right) \mathrm{d} s\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right\}\\ &\displaystyle \leq&\displaystyle \left\Vert f_{1}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}+\left\Vert f_{2}\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}+ \tau_{0}\left(R_{0}^{1+\beta_{1}}+R_{0}^{1+\beta_{2}}\right), \end{array} \end{aligned} $$

where we have used the contraction property of the operators \(T^i_t\), i = 1, 2, to obtain the last inequality. It follows that \(\left |\left |\left | \Psi \left (\left (u_{1},u_{2}\right )\right )\right | \right |\right |\leq R_{0}\), i.e., Ψ is an operator from \(P_{\tau _{0}}\cap B_{R_{0}}\) onto itself.

In order to prove the contraction property of Ψ we choose τ 0 as above in such a way that

$$\displaystyle \begin{aligned} \displaystyle\max_{i\in\left\{1,2\right\}}\left\{\left(1+\beta_{i}\right)R_{0}^{\beta_{i}}\right\}\tau_{0} \in\left(0,1\right). \end{aligned} $$
(5)

Let \(\left (u_{1},u_{2}\right ),\left (\hat {u}_{1},\hat {u}_{2}\right )\in P_{\tau _{0}}\cap B_{R_{0}}\). Using again the contraction property of the operators \(T^i_t\), i = 1, 2, and the well-known inequality \(\left |a^{p}- b^{p}\right |\leq p\left (a\vee b\right )^{p-1}\left |a-b\right |\), which holds for all a, b > 0 and p ≥ 1, we obtain

$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \left|\left|\left| \Psi\left(\left(u_{1},u_{2}\right)\right)-\Psi\left(\left(\hat{u}_{1},\hat{u}_{2}\right)\right)\right| \right|\right|\\ &\displaystyle =&\displaystyle \sup_{t\in\left[0,\tau_{0}\right]}\left\{\left\Vert \int_{0}^{t}T^{1}_{t-s} \left(u_{2}^{1+\beta_{1}}\left(s,\cdot\right)- \hat{u}_{2}^{1+\beta_{1}}\left(s,\cdot\right)\right)\mathrm{d} s\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right.\\ &\displaystyle &\displaystyle +\left.\left\Vert \int_{0}^{t}T^{2}_{t-s}\left(u_{1}^{1+\beta_{2}}\left(s,\cdot\right)- \hat{u}_{1}^{1+\beta_{2}}\left(s,\cdot\right)\right)\mathrm{d} s\right\Vert _{L^{\infty}\left(\mathbb{R},\mathrm{d} x\right)}\right\}\\ &\displaystyle \leq&\displaystyle \sup_{t\in\left[0,\tau_{0}\right]} \int_{0}^{t}\left\Vert u_{2}^{1+\beta_{1}}\left(s,\cdot\right)-\hat{u}_{2}^{1+\beta_{1}}\left(s,\cdot\right)\right\Vert _{ L^\infty\left(\mathbb{R},\mathrm{d} x\right)}\mathrm{d} s\\ &\displaystyle &\displaystyle +\sup_{t\in\left[0,\tau_{0}\right]} \int_{0}^{t}\left\Vert u_{1}^{1+\beta_{2}}\left(s,\cdot\right)-\hat{u}_{1}^{1+\beta_{2}}\left(s,\cdot\right)\right\Vert _{ L^\infty\left(\mathbb{R},\mathrm{d} x\right)}\mathrm{d} s\\ &\displaystyle \leq&\displaystyle \left(1+\beta_{1}\right)R_{0}^{\beta_{1}} \int_{0}^{\tau_{0}}\left\Vert u_{2}\left(s,\cdot\right)-\hat{u}_{2}\left(s,\cdot\right)\right\Vert _{L^\infty\left(\mathbb{R},\mathrm{d} x\right)}\mathrm{d} s\\ &\displaystyle &\displaystyle +\left(1+\beta_{2}\right)R_{0}^{\beta_{2}} \int_{0}^{\tau_{0}}\left\Vert u_{1}\left(s,\cdot\right)- \hat{u}_{1}\left(s,\cdot\right)\right\Vert _{L^\infty\left(\mathbb{R},\mathrm{d} x\right)}\mathrm{d} s\\ &\displaystyle \leq&\displaystyle \max_{i\in\left\{1,2\right\}}\left\{\left(1+\beta_{i}\right)R_{0}^{\beta_{i}}\right\}\tau_{0} \left|\left|\left| \left(u_{1},u_{2}\right)-\left(\hat{u}_{1},\hat{u}_{2}\right)\right| \right|\right|. \end{array} \end{aligned} $$

From the last inequality we conclude, due to (5), that Ψ is a contraction in \(P_{\tau _{0}}\cap B_{R_{0}}\). It follows from the Banach fixed-point theorem that Ψ has a unique fixed point in \(P_{\tau _{0}}\cap B_{R_{0}}\), which is the unique mild solution of system (2). □

3 A Condition for Blowup in Finite Time

Our main result is the following

Theorem 2

Let \(\varphi _{i}\in L^{2}\left (\mathbb {R},\mathrm {d} x\right )\cap C^{2}\left (\mathbb {R}\right )\) be a strictly positive function and assume that the initial value f i admits the representation

$$\displaystyle \begin{aligned} f_{i}\left(x\right):=\frac{h_{i}\left(x\right)}{\varphi_{i}\left(x\right)}\geq 0,\quad x\in\mathbb{R}, \end{aligned} $$
(6)

for some positive nontrivial \(h_{i}\in L^{2}\left (\mathbb {R},\mathrm {d} x\right )\) , i = 1, 2. Suppose in addition that there exist strictly positive constants k 1, k 2 such that

$$\displaystyle \begin{aligned} k_{1}\leq\frac{\varphi_{1}\left(x\right)}{\varphi_{2}\left(x\right)}\leq k_{2},\quad x\in\mathbb{R}.\end{aligned} $$
(7)
  1. 1.

    Assume that β 1 = β 2. Then any non-trivial positive mild solution \(\left (u_{1},u_{2}\right )\) of system (2) blows up in finite time.

  2. 2.

    Assume that β 1 > β 2. Let \(A_{0}:=\left (\frac {1+\beta _{2}}{1+\beta _{1}}\right )^ {\frac {1+\beta _{2}}{\beta _{1}-\beta _{2}}}\frac {\beta _{1}-\beta _{2}}{1+\beta _{1}}\) and suppose that

    $$\displaystyle \begin{aligned} \int_{\mathbb{R}}f_{1}\left(x\right)\mu_{1}\left(\mathrm{d} x\right) +\int_{\mathbb{R}}f_{2}\left(x\right)\mu_{2}\left(\mathrm{d} x\right)> 2^{\frac{\beta_{2}}{1+\beta_{2}}}A^{\frac{1}{1+\beta_{2}}}_{0}. \end{aligned} $$
    (8)

    Then any mild solution \(\left (u_{1},u_{2}\right )\) of system (2) blows up in finite time.

Proof

Let \(\left (u_{1},u_{2}\right )\) be a mild solution of system (2). We denote

$$\displaystyle \begin{aligned} w_{i}\left(t,x\right):=\varphi_{i}\left(x\right)u_{i}\left(t,x\right), \quad t\geq0, \quad x\in\mathbb{R}. \end{aligned}$$

Multiplying both sides of (3) by φ i yields

$$\displaystyle \begin{aligned} w_{i}\left(t,x\right)=\varphi_{i}\left(x\right)T_{t}^{i}\left(\frac{h_{i}}{\varphi_{i}}\left(x\right)\right)+ \int_{0}^{t}\varphi_{i}\left(x\right)T_{t-s}^{i}\left( w_{3-i}^{1+\beta_{i}}\left(s,x\right)\varphi_{3-i}^{-\left(1+\beta_{i}\right)}\left(x\right)\right)\mathrm{d} s. \end{aligned} $$
(9)

Since the function \(g_{i}\left (x\right ):=\varphi _{i}^{2}\left (x\right )\) satisfies the differential equation

$$\displaystyle \begin{aligned} \frac{1}{2}\frac{\partial^{2}}{\partial x^{2}}g_{i}\left(x\right)-\frac{\partial}{\partial x} \left(g_{i}\left(x\right)\frac{\varphi^{\prime}_{i}\left(x\right)}{\varphi_{i}\left(x\right)}\right)=0,\quad x\in\mathbb{R}, \end{aligned}$$

it follows that \(\mu _{i}\left (\mathrm {d} x\right )= \varphi _{i}^{2}\left (x\right )\mathrm {d} x\) is invariant for the semigroup \(\left \{T_{t}^{i},\ t\geq 0\right \}\). Let us write \(\mathbb {E}^{i}\left [f\right ]:=\int _{\mathbb {R}}f\left (x\right )\varphi _{i}\left (x\right )\mathrm {d} x\). Due to (9) this implies that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \mathbb{E}^{i}\left[w_{i}\left(t,\cdot\right)\right] &\displaystyle =&\displaystyle \mathbb{E}^{i}\left[h_{i}\left(\cdot\right)\right]+ \int_{0}^{t}\mathbb{E}^{i}\left[w_{3-i}^{1+\beta_{i}}\left(s,\cdot\right)\varphi_{i}\left(\cdot\right) \varphi_{3-i}^{-\left(1+\beta_{i}\right)}\left(\cdot\right)\right]\mathrm{d} s.{} \end{array} \end{aligned} $$
(10)

Define \(\displaystyle a:=\min \left \{k_{1}^{2},\frac {1}{k_{2}^{2}}\right \}\). From assumption (7) we get \(\frac {\displaystyle \varphi _{i}^{2}\left (x\right )}{\displaystyle \varphi _{3-i}^{2}\left (x\right )}\geq a\) for all \(x\in \mathbb {R}\) and i = 1, 2. Therefore

$$\displaystyle \begin{aligned} & \mathbb{E}^{i}\left[w_{3-i}^{1+\beta_{i}}\left(s,\cdot\right)\varphi_{i}\left(\cdot\right) \varphi_{3-i}^{-\left(1+\beta_{i}\right)}\left(\cdot\right)\right]\\ &\quad =\int_{\mathbb{R}}\left(\frac{w_{3-i}\left(s,x\right)}{\varphi_{3-i}\left(x\right)}\right)^{1+\beta_{i}} \varphi_{i}^{2}\left(x\right)\mathrm{d} x\\ &\quad \geq a\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{2} \int_{\mathbb{R}}\left(\frac{w_{3-i}\left(s,x\right)}{\varphi_{3-i}\left(x\right)}\right)^{1+\beta_{i}} \frac{\varphi_{3-i}^{2}\left(x\right)}{\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{2}}\mathrm{d} x \\\noalign{} &\quad \geq a\frac{\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{2}} {\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{2+2\beta_{i}}} \left(\int_{\mathbb{R}}\frac{w_{3-i}\left(s,x\right)}{\varphi_{3-i}\left(x\right)} \varphi_{3-i}^{2}\left(x\right)\mathrm{d} x\right) ^{1+\beta_{i}}\\ {} &\quad = a\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{-2\beta_{i}} \left(\mathbb{E}^{3-i}\left[w_{3-i}\left(s,\cdot\right)\right]\right)^{1+\beta_{i}}, \end{aligned} $$
(11)

where we have used Jensen’s inequality to obtain the last inequality. Plugging (11) into (10) renders

$$\displaystyle \begin{aligned} \mathbb{E}^{i}\left[w_{i}\left(t,\cdot\right)\right]\geq\mathbb{E}^{i}\left[h_{i}\left(\cdot\right)\right]+ a\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{-2\beta_{i}}\int_{0}^{t} \left(\mathbb{E}^{3-i}\left[w_{3-i}\left(s,\cdot\right)\right]\right)^{1+\beta_{i}}\mathrm{d} s. \end{aligned} $$
(12)

Let \(y_{i}\left (t\right )\) be the solution of the system

$$\displaystyle \begin{aligned} \begin{array}{rcl} y^{\prime}_{i}\left(t\right) &\displaystyle =&\displaystyle a\left\Vert \varphi_{3-i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{-2\beta_{i}}y_{3-i}^{1+\beta_{i}}\left(t\right),\quad t>0,\\ y_{i}\left(0\right)&\displaystyle =&\displaystyle \mathbb{E}^{i}\left[h_{i}\left(\cdot\right)\right],\quad i=1,2. \end{array} \end{aligned} $$

Putting \(b:=a\min \left \{\left \Vert \varphi _{1}\right \Vert _{L^{2}\left (\mathbb {R},\mathrm {d} x\right )}^{-2\beta _{2}}, \left \Vert \varphi _{2}\right \Vert _{L^{2}\left (\mathbb {R},\mathrm {d} x\right )}^{-2\beta _{1}}\right \}\) we get the system of differential inequalities

$$\displaystyle \begin{aligned} \begin{array}{rcl} y^{\prime}_{i}\left(t\right) &\displaystyle \geq &\displaystyle b y_{3-i}^{1+\beta_{i}}\left(t\right),\quad t>0,\\ y_{i}\left(0\right)&\displaystyle =&\displaystyle \mathbb{E}^{i}\left[h_{i}\left(\cdot\right)\right],\quad i=1,2. \end{array} \end{aligned} $$

Let \(\left (z_{1}\left (t\right ),z_{2}\left (t\right )\right )\) be the solution of the system of ordinary differential equations

$$\displaystyle \begin{aligned} \begin{array}{rcl} z^{\prime}_{i}\left(t\right) &\displaystyle =&\displaystyle b z_{j}^{1+\beta_{i}}\left(t\right),\quad t>0,\\ z_{i}\left(0\right)&\displaystyle =&\displaystyle \mathbb{E}^{i}\left[h_{i}\left(\cdot\right)\right],\quad i=1,2,\quad j=3-i. \end{array} \end{aligned} $$

By the Picard-Lindelöf theorem, this system with \(\left (z_{1}\left (0\right ),z_{2}\left (0\right )\right )=\left (0,0\right )\) has a unique local solution \(\left (w_{1}\left (t\right ),w_{2}\left (t\right )\right )\equiv \left (0,0\right )\) for all \(t\in \left [0,\tau \right )\), for some \(\tau \in \left (0,\infty \right ]\). In our case \(\mathbb {E}^{i}\left [h_{i}\left (\cdot \right )\right ]\geq 0\). Therefore by a classical comparison theorem, \(z_{1}\left (t\right ),z_{2}\left (t\right )\geq 0\) for all \(t\in \left [0,\tau \right )\).

Consider the new function

$$\displaystyle \begin{aligned} E\left(t\right):=z_{1}\left(t\right)+z_{2}\left(t\right),\quad t\geq 0. \end{aligned}$$

We deal separately with the two cases in the statement of the theorem:

  1. 1.

    Case β 1 = β 2. Using the fact that

    $$\displaystyle \begin{aligned} x^{1+\beta_{1}}+y^{1+\beta_{1}}\geq 2^{-\beta_{1}}\left(x+y\right)^ {1+\beta_{1}},\quad x\geq0,\quad y\geq0, \end{aligned} $$
    (13)

    we get

    $$\displaystyle \begin{aligned} \begin{array}{rcl} E'\left(t\right) &\displaystyle =&\displaystyle z^{\prime}_{1}\left(t\right)+z^{\prime}_{2}\left(t\right)\\ &\displaystyle =&\displaystyle b\left( z_{1}^{1+\beta_{1}}\left(t\right)+ z_{2}^{1+\beta_{1}}\left(t\right)\right)\\ &\displaystyle \geq&\displaystyle 2^{-\beta_{1}}bE^{1+\beta_{1}}\left(t\right),\quad t>0,\\ E\left(0\right)&\displaystyle =&\displaystyle \mathbb{E}^{1}\left[h_{1}\left(\cdot\right)\right]+\mathbb{E}^{2}\left[h_{2}\left(\cdot\right)\right]. \end{array} \end{aligned} $$

    Let \(I\left (t\right )\) be the solution of the ordinary differential equation

    $$\displaystyle \begin{aligned} \begin{array}{rcl} I'\left(t\right) &\displaystyle =&\displaystyle 2^{-\beta_{1}}bI^{1+\beta_{1}}\left(t\right),\quad t>0,\\ I\left(0\right)&\displaystyle =&\displaystyle \mathbb{E}^{1}\left[h_{1}\left(\cdot\right)\right]+\mathbb{E}^{2}\left[h_{2}\left(\cdot\right)\right]. \end{array} \end{aligned} $$

    Since I is a subsolution of E (see [13], Lemma 1.2.) and I explodes at time

    $$\displaystyle \begin{aligned} T^{*}=\frac{2^{\beta_{1}}} {b\beta_{1}\left(\mathbb{E}^{1}\left[h_{1}\left(\cdot\right)\right]+ \mathbb{E}^{2}\left[h_{2}\left(\cdot\right)\right]\right)^{\beta_{1}}} \in\left(0,\infty\right), \end{aligned}$$

    it follows that E explodes at some time t E  ≤ T , and therefore, by a classical comparison theorem we get that

    $$\displaystyle \begin{aligned} & \mathbb{E}^{1}\left[w_{1}\left(t,\cdot\right)\right]=\left\Vert u_{1}\left(t,\cdot\right)\right\Vert _{L^{1}\left(\mathbb{R},\mu_{1}\right)}= \infty\quad \mbox{ or }\\ &\mathbb{E}^{2}\left[w_{2}\left(t,\cdot\right)\right]=\left\Vert u_{2} \left(t,\cdot\right)\right\Vert _{L^{1}\left(\mathbb{R},\mu_{2}\right)}=\infty \end{aligned} $$

    for all t ≥ T . Since \(\left \Vert u_{i}\left (t,\cdot \right )\right \Vert _{L^{1}\left (\mathbb {R},\mu _{i}\right )}\leq \left \Vert u_{i}\left (t,\cdot \right )\right \Vert _{L^{\infty }\left (\mathbb {R},\mathrm {d} x\right )}\left \Vert \varphi _{i}\right \Vert _{L^{2}\left (\mathbb {R},\mathrm {d} x\right )}^2\) for all \(t\in \left [0,\infty \right )\), i = 1, 2, we conclude that the mild solution \(\left (u_{1},u_{2}\right )\) of system (2) blows up in finite time.

  2. 2.

    Case β 1 > β 2. Recall that for all x, y ≥ 0, δ > 0 and \(p,q\in \left (1,\infty \right )\) such that p −1 + q −1 = 1 we have Young’s inequality

    $$\displaystyle \begin{aligned} xy \ \leq \ \frac{\delta^{-p}x^p}{p}+\frac{\delta^{q}y^q}{q}. \end{aligned} $$
    (14)

    From the definition of A 0 it follows that

    $$\displaystyle \begin{aligned} z_{2}^{1+\beta_{1}}\left(t\right)\geq z_{2}^{1+\beta_{2}}\left(t\right)-A_{0},\quad \text{for all }t\geq 0. \end{aligned}$$

    In fact, it suffices to choose in (14)

    $$\displaystyle \begin{aligned} x=1,\quad y=z^{1+\beta_{2}}_{2}\left(t\right),\quad \delta=\left(\frac{1+\beta_{1}}{1+\beta_{2}}\right)^{\frac{1+\beta_{2}}{1+\beta_{1}}}\quad \mbox{and}\quad q=\frac{1+\beta_{1}}{1+\beta_{2}}. \end{aligned}$$

    Therefore we have

    $$\displaystyle \begin{aligned} E'\left(t\right) \geq b\left(z_{1}^{1+\beta_{2}}\left(t\right)+ z_{2}^{1+\beta_{2}}\left(t\right)-A_{0}\right). \end{aligned} $$

    Using again inequality (13) we conclude that

    $$\displaystyle \begin{aligned} z_{1}^{1+\beta_{2}}\left(t\right)+z_{2}^{1+\beta_{2}}\left(t\right) \geq2^{-\beta_{2}}E^{1+\beta_{2}}\left(t\right), \end{aligned}$$

    hence

    $$\displaystyle \begin{aligned} E'\left(t\right)\geq b\left(2^{-\beta_{2}}E^{1+\beta_{2}}\left(t\right)-A_{0}\right). \end{aligned}$$

    Let \(I\left (t\right )\) solve the ordinary differential equation

    $$\displaystyle \begin{aligned} I'\left(t\right)&=b\left(2^{-\beta_{2}}I^{1+\beta_{2}}\left(t\right)-A_{0}\right),\quad t>0,\\ I\left(0\right)&=\mathbb{E}^{1}\left[h_{1}\left(\cdot\right)\right]+\mathbb{E}^{2}\left[h_{2}\left(\cdot\right)\right]. \end{aligned} $$

    It follows from the same comparison theorem as above that I is a subsolution of E. Using separation of variables we get, for \(t\in \left (0,\infty \right )\),

    $$\displaystyle \begin{aligned} t=\int_{E\left(0\right)}^{I\left(t\right)}\frac{\mathrm{d} x}{b\left(2^{-\beta_{2}}x^{1+\beta_{2}}-A_{0}\right)}\leq \int_{E\left(0\right)}^{\infty}\frac{\mathrm{d} x}{b\left(2^{-\beta_{2}}x^{1+\beta_{2}}-A_{0}\right)}=:T^{*}. \end{aligned} $$
    (15)

    But the hypothesis (8) implies that T  < . Hence (15) cannot hold for sufficiently large t, which yields that I explodes at a finite time \(T^{**}\in \left (0,T^{*}\right ]\). Therefore E explodes no later than T as well. From here we proceed as in the case β 1 = β 2 to conclude that the mild solution \(\left (u_{1},u_{2}\right )\) of system (2) blows up in finite time also in this case.

The following result is an immediate consequence of the previous theorem. Recall that \(E\left (0\right )=\int _{\mathbb {R}}f_{1}\,\mathrm {d}\mu _1+\int _{\mathbb {R}}f_{2}\,\mathrm {d}\mu _2\) and

$$\displaystyle \begin{aligned} A_{0}=\left(\frac{1+\beta_{2}}{1+\beta_{1}}\right)^{\frac{1+\beta_{2}}{\beta_{1}- \beta_{2}}}\frac{\beta_{1}-\beta_{2}}{1+\beta_{1}},\quad b=\min\left\{k_{1}^{2},\frac{1}{k_{2}^{2}}\right\} \min_{i\in\left\{1,2\right\}}\left\{\left\Vert \varphi_{i}\right\Vert _{L^{2}\left(\mathbb{R},\mathrm{d} x\right)}^{-2\beta_{i}}\right\} .\end{aligned}$$

Corollary 3

Under the assumptions of Theorem 2 , if β 1 = β 2 then the explosion time of any non-trivial positive solution of (2) is bounded above by

$$\displaystyle \begin{aligned} T^{*}=\frac{2^{\beta_{1}}} {b\beta_{1}\left(E\left(0\right)\right)^{\beta_{1}}}. \end{aligned}$$

If β 1 > β 2 and (8) holds, then the time of explosion of (2) is bounded above by

$$\displaystyle \begin{aligned} T^{*}=\int_{E\left(0\right)}^{\infty}\frac{\mathrm{d} x}{b\left(2^{-\beta_{2}}x^{1+\beta_{2}}-A_{0}\right)}. \end{aligned}$$

Remark

Theorem 2 and Corollary 3 remain valid when β 2 > β 1, with the obvious changes in the correspondent statements.