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Introduction

The present volume contains contributions and lecture notes of the XII Symposium
on Probability and Stochastic Processes, held at the Universidad Autónoma de
Yucatán (UAdY), Mexico in November 16–20, 2015.

The traces of this symposium reach back to December 1988 at CIMAT, when it
was held for the first time. The symposium is one of the main events in the field,
and it takes place every 2 years at different academic institutions in Mexico. During
these 27 years and up until today, this series of symposia has readily accomplished
its main goal of exchanging ideas and discussing the latest developments in the field
by gathering both national and international researchers as well as graduate students.

The symposium in 2015 gathered scholars from over seven countries and covered
a wide range of topics that highlight the interaction between applied and theoretical
probability. The scientific programme included two courses: Optimality of two-
parameter strategies in stochastic control organized by Kazutoshi Yamazaki, and
Scaling limits of large random trees organized by Bénédicte Haas. The event
also benefited from nine plenary talks that were delivered by José Blanchet, Loïc
Chaumont, Alex Cox, Takis Konstantopoulos, Andreas Kyprianou, Hubert Lacoin,
Mihai Sirbu, Gerónimo Uribe and Hasnaa Zidani. Another four thematic sessions
and fourteen contributed talks completed the outline of the symposium.

This volume is split into two main parts: first the lectures notes of the two
courses provided by Bénédicte Haas and Kazutoshi Yamazaki, followed by research
contributions of some of the participants. The lecture notes of Bénédicte Haas
and Kazutoshi Yamazaki give an overview of the recent progress on describing
the large-scale structure of random trees, and on stochastic control problems
where the optimal strategies are described by two parameters under a setting
that is driven by a spectrally one-sided Lévy process, respectively. The research
contributions start with an illustrative article written by Ekaterina Kolkovska and
Ehyter Martín-González, in which they investigate a classical risk process with two-
sided jumps that is perturbed by a spectrally negative α-stable process, where the
gain size distribution has a rational Laplace transform. The contribution of Daniel
Hernández-Hernández and Leonel Pérez-Hernández analyses the minimality of the
penalty function associated with a convex risk measure. By considering dynamic
programming, Laurent series and the study of sensitive discount optimality, Beatris
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viii Introduction

Escobedo-Trujillo, Héctor Jasso-Fuentes and José Daniel López-Barrientos analyse
Blackwell-Nash equilibria for a general class of zero-sum stochastic differential
games. �-convergence of monotone functionals is discussed in the contribution
written by Erick Treviño-Aguilar, where a criterion is presented under which a
functional that is defined on vectors of non-decreasing functions is the �-limit
of a functional that is defined on vectors of continuous non-decreasing functions.
A criterion for the blow-up of a system of one-dimensional reaction-diffusion
equations in a finite time is proposed by Eugenio Guerrero and José Alfredo
López-Mimbela, where the criterion depends on the drift terms of the system of
partial differential equations and on some measures which turn out to be invariant
distributions of some diffusions that are associated with the system. Finally, Arno
Siri-Jégousse and Linglong Yuan study the asymptotic behaviour, for small times,
of the largest block size of Beta-n-coalescents as n increases.

In summary, the high quality and variety of these contributions give a broad
panorama of the rich academic programme of the symposium and of its impact.
It is worth noting that all papers, including the lecture notes of the invited courses,
were subject to a strict peer review process with high international standards. We are
very grateful to the referees, many of whom are leading experts in their fields, for
their diligent and useful reports. Their comments were implemented by the authors
and considerably improve the material presented herein.

We would also like to express our gratitude to all the authors whose original
contributions are published in this book, as well as to all the speakers and session
organizers of the symposium for their stimulating talks and support. Their valuable
contributions show the interest and activity in the area of probability and stochastic
processes in Mexico.

We hold in high regard the editors of the book series Progress in Probability,
Steffen Dereich, Davar Khoshnevisan, Andreas E. Kyprianou and Sidney I. Resnick,
for giving us the opportunity to publish the symposium volume in this prestigious
series.

Special thanks to the symposium venue Universidad Autónoma de Yucatán and
its staff for their great hospitality and for providing excellent conference facilities.
We are also indebted to Rosy Davalos, whose outstanding organizational work
permitted us to focus on the academic aspects of the conference.

The symposium as well as this volume would not have been possible without
the generous support of our sponsors: Centro de Investigación en Matemáticas,
RED-CONACYT Matemáticas y Desarrollo, Laboratorio Internacional Solomon
Lefschetz CNRS-CONACYT, Instituto de Investigaciones en Matemáticas Apli-
cadas y en Sistemas and Instituto de Matemáticas at UNAM as well as Universidad
Autónoma de Yucatán.

Finally, we hope that the reader of this volume will enjoy learning about the
various topics that are treated therein, as much as we did editing it.

Guanajuato, Mexico Daniel Hernández-Hernández
Guanajuato, Mexico Juan Carlos Pardo
Guanajuato, Mexico Victor Rivero
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Scaling Limits of Markov-Branching
Trees and Applications

Lecture Notes of the XII Simposio de Probabilidad y
Procesos Estocásticos 16–20 Novembre 2015, Mérida,
Yucatán

Bénédicte Haas

Abstract The goal of these lecture notes is to survey some of the recent progress
on the description of large-scale structure of random trees. We use the framework
of Markov-Branching sequences of trees and discuss several applications.

Keywords Random trees · Scaling limits · Self-similar fragmentations ·
self-similar Markov processes

Mathematics Subject Classification 05C05, 60F17, 60J05, 60J25, 60J80

1 Introduction

The goal of these lecture notes is to survey some of the recent progress on the
description of large-scale structure of random trees. Describing the structure of large
(random) trees, and more generally large graphs, is an important goal of modern
probabilities and combinatorics. Beyond the purely probabilistic or combinatorial
aspects, motivations come from the study of models from biology, theoretical
computer science or mathematical physics.

The question we will typically be interested in is the following. For (Tn, n ≥ 1) a
sequence of random unordered (i.e. non-planar) trees, where, for each n, Tn is a tree
of size n (the size of a tree may be its number of vertices or its number of leaves, for
example): does there exist a deterministic sequence (an, n ≥ 1) and a continuous

B. Haas (�)
Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse, France
e-mail: haas@math.univ-paris13.fr

© Springer International Publishing AG, part of Springer Nature 2018
D. Hernández-Hernández et al. (eds.), XII Symposium of Probability
and Stochastic Processes, Progress in Probability 73,
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4 B. Haas

random tree T such that

Tn

an
−→
n→∞ T ?

To make sense of this question, we will view Tn as a metric space by “replacing”
its edges with segments of length 1, and then use the notion of Gromov-Hausdorff
distance to compare compact metric spaces. When such a convergence holds, the
continuous limit highlights some properties of the discrete objects that approximate
it, and vice-versa.

As a first example, consider Tn a tree picked uniformly at random in the set of
trees with n vertices labelled by {1, . . . , n}. The tree Tn has to be understood as a
typical element of this set of trees. In this case the answer to the previous question
dates back to a series of works by Aldous in the beginning of the 1990s [8–10]:
Aldous showed that

Tn

2
√
n

(d)−→
n→∞ TBr (1)

where the limiting tree is called the Brownian Continuum Random Tree (CRT),
and can be constructed from a standard Brownian excursion. This result has various
interesting consequences, e.g. it gives the asymptotics in distribution of the diameter,
the height (if we consider rooted versions of the trees) and several other statistics
related to the tree Tn. Consequently it also gives the asymptotic proportion of trees
with n labelled vertices that have a diameter larger than x

√
n or/and a height larger

than y
√
n, etc. Some of these questions on statistics of uniform trees were already

treated in previous works, the strength of Aldous’s result is that it describes the
asymptotics of the whole tree Tn.

Aldous has actually established a version of the convergence (1) in a much
broader context, that of conditioned Galton–Watson trees with finite variance. In this
situation, to fit to our context, Tn is an unordered version of the genealogical tree
of a Galton–Watson process (with a given, fixed offspring distribution with mean
one and finite variance) conditioned on having a total number of vertices equal to
n, n ≥ 1. Multiplied by 1/

√
n, this tree converges in distribution to the Brownian

CRT multiplied by a constant that only depends on the variance of the offspring
distribution. This should be compared with (and is related to) the convergence of
rescaled sums of i.i.d. random variables towards the normal distribution and its
functional analog, the convergence of rescaled random walks towards the Brownian
motion. It turns out that the above sequence of uniform labelled trees can be seen as
a sequence of conditioned Galton–Watson trees (when the offspring distribution is a
Poisson distribution) and more generally that several sequences of combinatorial
trees reduce to conditioned Galton–Watson trees. In the early 2000s, Duquesne
[44] extended Aldous’s result to conditioned Galton–Watson trees with offspring
distributions in the domain of attraction of a stable law. We also refer to [46, 70] for
related results. In most of these cases the scaling sequences (an) are asymptotically
much smaller, i.e. an � √

n, and other continuous trees arise in the limit, the so-
called family of stable Lévy trees. All these results on conditioned Galton–Watson
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trees are now well established, and have a lot of applications in the study of large
random graphs (see e.g. Miermont’s book [78] for the connections with random
maps and Addario-Berry et al. [4] for connections with Erdős–Rényi random graphs
in the critical window).

The classical proofs to establish the scaling limits of Galton–Watson trees consist
in considering specific ordered versions of the trees and rely on a careful study of
their so-called contour functions. It is indeed a common approach to encode trees
into functions (similarly to the encoding of the Brownian tree by the Brownian
excursion), which are more familiar objects. It turns out that for Galton–Watson
trees, the contour functions are closely related to random walks, whose scaling
limits are well known. Let us also mention that another common approach to study
large random combinatorial structures is to use technics of analytic combinatorics,
see [54] for a complete overview of the topic. None of these two methods will be
used here.

In these lecture notes, we will focus on another point of view, that of sequences
of random trees that satisfy a certain Markov-Branching property, which appears
naturally in a large set of models and includes conditioned Galton–Watson trees.
This property is a sort of discrete fragmentation property which roughly says that
in each tree of the sequence, the subtrees above a given height are independent
with a law that depends only on their total size. Under appropriate assumptions, we
will see that Markov-Branching sequences of trees, suitably rescaled, converge to a
family of continuous fractal trees, called the self-similar fragmentation trees. These
continuous trees are related to the self-similar fragmentation processes studied by
Bertoin in the 2000s [14], which are models used to describe the evolution of
objects that randomly split as time passes. The main results on Markov-Branching
trees presented here were developed in the paper [59], which has its roots in the
earlier paper [63]. Several applications have been developed in these two papers,
and in more recent works [15, 60, 89]: to Galton–Watson trees with arbitrary degree
constraints, to several combinatorial trees families, including the Pólya trees (i.e.
trees uniformly distributed in the set of rooted, unlabelled, unordered trees with n

vertices, n ≥ 1), to several examples of dynamical models of tree growth and to
sequence of cut-trees, which describe the genealogy of some deletion procedure of
edges in trees. The objective of these notes is to survey and gather these results, as
well as further related results.

In Sect. 2 below, we will start with a series of definitions related to discrete
trees and then present several classical examples of sequences of random trees.
We will also introduce there the Markov-Branching property. In Sect. 3 we set
up the topological framework in which we will work, by introducing the notions
of real trees and Gromov–Hausdorff topology. We also recall there the classical
results of Aldous [9] and Duquesne [44] on large conditioned Galton–Watson trees.
Section 4 is the core of these lecture notes. We present there the results on scaling
limits of Markov-Branching trees, and give the main ideas of the proofs. The key
ingredient is the study of an integer-valued Markov chain describing the sizes of the
subtrees containing a typical leaf of the tree. Section 5 is devoted to the applications
mentioned above. Last, Sect. 6 concerns further perspectives and related models
(multi-type trees, local limits, applications to other random graphs).
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All the sequences of trees we will encounter here have a power growth. There is
however a large set of random trees that naturally arise in applications that do not
have such a behavior. In particular, many models of trees arising in the analysis of
algorithms have a logarithmic growth. See e.g. Drmota’s book [42] for an overview
of the most classical models. These examples do not fit into our framework.

2 Discrete Trees, Examples and Motivations

2.1 Discrete Trees

Our objective is mainly to work with unordered trees. We give below a precise
definition of these objects and mention nevertheless the notions of ordered or/and
labelled trees to which we will sometimes refer.

A discrete tree (or graph-theoretic tree) is a finite or countable graph (V ,E) that
is connected and has no cycle. Here V denotes the set of vertices of the graph and E

its set of edges. Note that two vertices are then connected by exactly one path and
that #V = #E + 1 when the tree is finite.

In the following, we will often denote a (discrete) tree by the letter t, and for
t = (V ,E) we will use the slight abuse of notation v ∈ t to mean v ∈ V .

A tree t can be seen as a metric space, when endowed with the graph distance
dgr: given two vertices u, v ∈ t, dgr(u, v) is defined as the number of edges of the
unique path from u to v.

A rooted tree (t, ρ) is an ordered pair where t is a tree and ρ ∈ t. The vertex ρ

is then called the root of t. This gives a genealogical structure to the tree. The root
corresponds to the generation 0, its neighbors can be interpreted as its children and
form the generation 1, the children of its children form the generation 2, etc. We will
usually call the height of a vertex its generation, and denote it by ht(v) (the height
of a vertex is therefore its distance to the root). The height of the tree is then

ht(t) = sup
v∈t

ht(v)

and its diameter

diam(t) = sup
u,v∈t

dgr(u, v).

The degree of a vertex v ∈ t is the number of connected components obtained
when removing v (in other words, it is the number of neighbors of v). A vertex
v different from the root and of degree 1 is called a leaf. In a rooted tree, the
out-degree of a vertex v is the number of children of v. Otherwise said, out-
degree(v)=degree(v)-1{v �=root}. A (full) binary tree is a rooted tree where all
vertices but the leaves have out-degree 2. A branch-point is a vertex of degree
at least 3.
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In these lecture notes, we will mainly work with rooted trees. Moreover we will
consider, unless specifically mentioned, that two isomorphic trees are equal, or,
when the trees are rooted, that two root-preserving isomorphic trees are equal.
Such trees can be considered as unordered unlabelled trees, in opposition to the
following definitions.

Ordered or/and Labelled Trees In the context of rooted trees, it may happen that
one needs to order the children of the root, and then, recursively, the children of each
vertex in the tree. This gives an ordered (or planar) tree. Formally, we generally see
such a tree as a subset of the infinite Ulam–Harris tree

U =
∞⋃

n=0

N
n

where N := {1, 2, . . .} and N
0 = {∅}. The element ∅ is the root of the Ulam–Harris

tree, and any other u = u1u2 . . . un ∈ U\{∅} is connected to the root via the unique
shortest path

∅→ u1 → u1u2 → . . . → u1 . . . un.

The height (or generation) of such a sequence u is therefore its length, n. We then
say that t ⊂ U is a (finite or infinite) rooted ordered tree if:

• ∅ ∈ t
• if u = u1 . . . un ∈ t\{∅}, then u = u1 . . . un−1 ∈ t (the parent of an individual in

t that is not the root is also in t)
• if u = u1 . . . un ∈ t, there exists an integer cu(t) ≥ 0 such that the element

u1 . . . unj ∈ t if and only if 1 ≤ j ≤ cu(t).

The number cu(t) corresponds to the number of children of u in t, i.e., its out-degree.
We will also sometimes consider labelled trees. In these cases, the vertices are

labelled in a bijective way, typically by {1, . . . , n} if there are n vertices (whereas in
an unlabelled tree, the vertices but the root are indistinguishable). Partial labelling
is also possible, e.g. by labelling only the leaves of the tree.

In the following we will always specify when a tree is ordered or/and
labelled. When not specified, it is implicitly unlabelled, unordered.

Counting Trees It is sometimes possible, but not always, to have explicit formulæ
for the number of trees of a specific structure. For example, it is known that the
number of trees with n labelled vertices is

nn−2 (Cayley formula),

and consequently, the number of rooted trees with n labelled vertices is

nn−1.
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The number of rooted ordered binary trees with n+ 1 leaves is

1

n+ 1

(
2n

n

)

(this number is called the nth Catalan number) and the number of rooted ordered
trees with n vertices is

1

n

(
2n− 2

n− 1

)
.

On the other hand, there is no explicit formula for the number of rooted (unlabelled,
unordered) trees. Otter [79] shows that this number is asymptotically proportional
to

cκnn−3/2

where c ∼ 0.4399 and κ ∼ 2.9557. This should be compared to the asymptotic
expansion of the nth Catalan number, which is proportional (by Stirling’s formula)
to π−1/24nn−3/2.

We refer to the book of Drmota [42] for more details and technics, essentially
based on generating functions.

2.2 First Examples

We now present a first series of classical families of random trees. Our goal will be
to describe their scaling limits when the sizes of the trees grow, as discussed in the
Introduction. This will be done in Sect. 5. Most of these families (but not all) share
a common property, the Markov-Branching property that will be introduced in the
next section.

Combinatorial Trees Let Tn denote a finite set of trees with n vertices, all sharing
some structural properties. E.g. Tn may be the set of all rooted trees with n vertices,
or the set of all rooted ordered trees with n vertices, or the set of all binary trees with
n vertices, etc. We are interested in the asymptotic behavior of a “typical element”
of Tn as n →∞. That is, we pick a tree uniformly at random in Tn, denote it by Tn

and study its scaling limit. The global behavior of Tn as n →∞will represent some
of the features shared by most of the trees. For example, if the probability that the

height of Tn is larger than n
1
2+ε tends to 0 as n →∞, this means that the proportion

of trees in the set that have a height larger than n
1
2+ε is asymptotically negligible,

etc. We will more specifically be interested in the following cases:

• Tn is a uniform rooted tree with n vertices
• Tn is a uniform rooted ordered tree with n vertices
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• Tn is a uniform tree with n labelled vertices
• Tn is a uniform rooted ordered binary tree with n vertices (n odd)
• Tn is a uniform rooted binary tree with n vertices (n odd),

etc. Many variations are of course possible, in particular one may consider trees
picked uniformly amongst sets of trees with a given structure and n leaves, or more
general degree constraints. Some of these uniform trees will appear again in the next
example.

Galton–Watson Trees Galton–Watson trees are random trees describing the
genealogical structure of Galton–Watson processes. These are simple mathematical
models for the evolution of a population that continue to play an important role in
probability theory and in applications. Let η be a probability on Z+ (η is called
the offspring distribution) and let m := ∑

i≥1 iη(i) ∈ [0,∞] denote its mean.
Informally, in a Galton–Watson tree with offspring distribution η, each vertex has
a random number of children distributed according to η, independently. We will
always assume that η(1) < 1 in order to avoid the trivial case where each individual
has a unique child. Formally, an η-Galton–Watson tree T η is usually seen as an
ordered rooted tree and defined as follows (recall the Ulam–Harris notation U):

• c∅(T η) is distributed according to η

• conditionally on c∅(T η) = p, the p ordered subtrees τi = {u ∈ U : iu ∈ T η}
descending from i = 1, . . . , p are independent and distributed as T η.

From this construction, one sees that the distribution of T η is given by:

P
(
T η = t

) =
∏

v∈t
ηcv(t) (2)

for all rooted ordered tree t. This definition of Galton–Watson trees as ordered trees
is the simplest, avoiding any symmetry problems. However in the following we will
mainly see these trees up to isomorphism, which roughly means that we can “forget
the order”.

Clearly, if we call Zk the number of individuals at height k, then (Zk, k ≥ 1) is
a Galton–Watson process starting from Z0 = 1. It is well known that the extinction
time of this process,

inf{k ≥ 0 : Zk = 0}

if finite with probability 1 when m ≤ 1 and with a probability ∈ [0, 1) when m > 1.
The offspring distribution η and the tree T η are said to be subcritical when m < 1,
critical when m = 1 and supercritical when m > 1. From now on, we assume that

m = 1

and for integers n such that P(#T η = n) > 0, we let T
η,v
n denote a non-ordered

version of the Galton–Watson tree T η conditioned to have n vertices. Sometimes, we
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will need to keep the order and we will let T η,v,ord
n denote this ordered conditioned

version. We point out that in most cases, but not all, a subcritical or a supercritical
Galton–Watson tree conditioned to have n vertices is distributed as a critical Galton–
Watson tree conditioned to have n vertices with a different offspring distribution. So
the assumption m = 1 is not too restrictive. We refer to [66] for details on that point.

It turns out that conditioned Galton–Watson trees are closely related to combina-
torial trees. Indeed, one can easily check with (2) that:

• if η = Geo(1/2), T η,v,ord
n is uniform amongst the set of rooted ordered trees with

n vertices
• if η = Poisson(1), T η,v

n is uniform amongst the set of rooted trees with n labelled
vertices

• if η = 1
2 (δ0 + δ2), T

η,v,ord
n is uniform amongst the set of rooted ordered binary

trees with n vertices.

We refer e.g. to Aldous [9] for additional examples.
Hence, studying the large-scale structure of conditioned Galton–Watson trees

will also lead to results in the context of combinatorial trees. As mentioned in the
Introduction, the scaling limits of large conditioned Galton–Watson trees are now
well known. Their study has been initiated by Aldous [8–10] and then expanded by
Duquesne [44]. This will be reviewed in Sect. 3. However, there are some sequences
of combinatorial trees that cannot be reinterpreted as Galton–Watson trees, starting
with the example of the uniform rooted tree with n vertices or the uniform rooted
binary tree with n vertices. Studying the scaling limits of these trees remained open
for a while, because of the absence of symmetry properties. These scaling limits are
presented in Sect. 5.2.

In another direction, one may also wonder what happens when considering
versions of Galton–Watson trees conditioned to have n leaves, instead of n vertices,
or more general degree constraints. This is discussed in Sect. 5.1.2.

Dynamical Models of Tree Growth We now turn to several sequences of finite
rooted random trees that are built recursively by adding at each step new edges
on the pre-existing tree. We start with a well known algorithm that Rémy [88]
introduced to generate uniform binary trees with n leaves.

Rémy’s Algorithm The sequence (Tn(R), n ≥ 1) is constructed recursively as
follows:

• Step 1: T1(R) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(R), choose uniformly at random one of its edges and graft on

“its middle” one new edge-leaf. By this we mean that the selected edge is split
into two so as to obtain two edges separated by a new vertex, and then a new
edge-leaf is glued on the new vertex. This gives Tn(R).

It turns out (see e.g. [88]) that the tree Tn(R), to which has been subtracted the
edge between the root and the first branch point, is distributed as a binary critical
Galton–Watson tree conditioned to have 2n − 1 vertices, or equivalently n leaves
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(after forgetting the order in the GW-tree). As so, we deduce its asymptotic behavior
from that of Galton–Watson trees. However this model can be extended in several
directions, most of which are not related to Galton–Watson trees. We detail three of
them.

Ford’s α-Model [55] Let α ∈ [0, 1]. We construct a sequence (Tn(α), n ≥ 1) by
modifying Rémy’s algorithm as follows:

• Step 1: T1(α) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(α), give a weight 1− α to each edge connected to a leaf, and

α to all other edges (the internal edges). The total weight is n − 1 − α. Now, if
n �= 2 or α �= 1, choose an edge at random with a probability proportional to
its weight and graft on “its middle” one new edge-leaf. This gives Tn(α). When
n = 2 and α = 1 the total weight is 0 and we decide to graft anyway on the
middle of the edge of T1 one new edge-leaf.

Note that when α = 1/2 the weights are the same on all edges and we recover
Rémy’s algorithm. When α = 0, the new edge is always grafted uniformly on an
edge-leaf, which gives a tree Tn(0) known as the Yule tree with n leaves. When
α = 1, we obtain a deterministic tree called the comb tree. This family of trees
indexed by α ∈ [0, 1] was introduced by Ford [55] in order to interpolate between
the Yule, the uniform and the comb models. His goal was to propose new models
for phylogenetic trees.

k-Ary Growing Trees [60] This is another extension of Rémy’s algorithm, where
now several edges are added at each step. Consider an integer k ≥ 2. The sequence
(Tn(k), n ≥ 1) is constructed recursively as follows:

• Step 1: T1(k) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(k), choose uniformly at random one of its edges and graft on

“its middle” k − 1 new edges-leaf. This gives Tn(k).

When k = 2, we recover Rémy’s algorithm. For larger k, there is no connection
with Galton–Watson trees.

Marginals of Stable Trees: Marchal’s Algorithm In [73], Marchal considered the
following algorithm, that attributes weights also to the vertices. Fix a parameter
β ∈ (1, 2] and construct the sequence (Tn(β), n ≥ 1) as follows:

• Step 1: T1(β) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(β), attribute the weight

– β − 1 on each edge
– d − 1 − β on each vertex of degree d ≥ 3.

The total weight is nβ − 1. Then select at random an edge or vertex with a
probability proportional to its weight and graft on it a new edge-leaf. This gives
Tn(β).
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The reason why Marchal introduced this algorithm is that Tn(β) is actually
distributed as the shape of a tree with edge-lengths that is obtained by sampling n

leaves at random in the stable Lévy tree with index β. The class of stable Lévy trees
plays in important role in the theory of random trees. It is introduced in Sect. 3.2
below.

Note that when β = 2, vertices of degree 3 are never selected (their weight is 0).
So the trees Tn(β), n ≥ 1 are all binary, and we recover Rémy’s algorithm.

Of course, several other extensions of trees built by adding edges recursively may
be considered, some of which are mentioned in Sects. 5.3.3 and 6.1.

Remark In these dynamical models of tree growth, we build on a same probability
space the sequence of trees, contrary to the examples of Galton–Watson trees or
combinatorial trees that give sequences of distributions of trees. In this situation,
one may expect to have more than a convergence in distribution for the rescaled
sequences of trees. We will see in Sect. 5.3 that it is indeed the case.

2.3 The Markov-Branching Property

Markov-Branching trees were introduced by Aldous [11] as a class of random binary
trees for phylogenetic models and later extended to non-binary cases in Broutin et
al. [30], and Haas et al. [63]. It turns out that many natural models of sequence of
trees satisfy the Markov-Branching property (MB-property for short), starting
with the example of conditioned Galton–Watson trees and most of the examples of
the previous section.

Consider

(
Tn, n ≥ 1

)

a sequence of trees where Tn is a rooted (unordered, unlabelled) tree with n leaves.
The MB-property is a property of the sequence of distributions of Tn, n ≥ 1.
Informally, the MB-property says that for each tree Tn, given that

the root of Tn splits it in p subtrees with respectively λ1 ≥ . . . ≥ λp leaves,

then Tn is distributed as the tree obtained by gluing on a common root p independent
trees with respective distributions those of Tλ1, . . . , Tλp . The way the leaves are
distributed in the sub-trees above the root, in each Tn, for n ≥ 1, will then allow to
fully describe the distributions of the Tn, n ≥ 1.

We now explain rigorously how to build such sequences of trees. We start with a
sequence of probabilities (qn, n ≥ 1), where for each n, qn is a probability on the
set of partitions of the integer n. If n ≥ 2, this set is defined by

Pn :=
{
λ = (λ1, . . . , λp), λi ∈ N, λ1 ≥ . . . ≥ λp ≥ 1 :

p∑

i=1

λi = n

}
,
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whereas if n = 1, P1 := {(1),∅} (we need to have a cemetery point). For a partition
λ ∈ Pn, we denote by p(λ) its length, i.e. the number of terms in the sequence λ.
The probability qn will determine how the n leaves of Tn are distributed into the
subtrees above its root. We call such a probability a splitting distribution. In order
that effective splittings occur, we will always assume that

qn((n)) < 1, ∀n ≥ 1.

We need to define a notion of gluing of trees. Consider t1, . . . , tp , p discrete rooted
(unordered) trees. Informally, we want to glue them on a same common root in
order to form a tree 〈t1, . . . , tp〉 whose root splits into the p subtrees t1, . . . , tp.
Formally, this can e.g. be done as follows. Consider first ordered versions of the
trees tord

1 , . . . , tord
p seen as subsets of the Ulam–Harris tree U and then define a new

ordered tree by

〈tord
1 , . . . , tord

p 〉 := {∅} ∪p
i=1 itord

i .

The tree 〈t1, . . . , tp〉 is then defined as the unordered version of 〈tord
1 , . . . , tord

p 〉.
Definition 2.1 For each n ≥ 1, let qn be a probability on Pn such that qn((n)) <

1. From the sequence q = (qn, n ≥ 1) we construct recursively a sequence of
distributions (Lq

n) such that for all n ≥ 1, Lq
n is carried by the set of rooted trees

with n leaves, as follows:

• Lq
1 is the distribution of a line-tree with G+ 1 vertices and G edges where G is

a geometric distribution:

P(G = k) = q1(∅)(1 − q1(∅))k, k ≥ 0,

• for n ≥ 2, Lq
n is the distribution of

〈T1, . . . , Tp(
)〉

where 
 is a partition of n distributed according to qn, and given 
, the trees
T1, . . . , Tp(
) are independent with respective distributions Lq


1
, . . . , Lq


p(
)
.

A sequence (Tn, n ≥ 1) of random rooted trees such that Tn ∼ Lq
n for each n ∈ N is

called a MB-sequence of trees indexed by the leaves, with splitting distributions
(qn, n ≥ 1).

This construction may be re-interpreted as follows: we start from a collection of
n indistinguishable balls, and with probability qn(λ1, . . . , λp), split the collection
into p sub-collections with λ1, . . . , λp balls. Note that there is a chance qn((n)) < 1
that the collection remains unchanged during this step of the procedure. Then, re-
iterate the splitting operation independently for each sub-collection using this time
the probability distributions qλ1, . . . , qλp . If a sub-collection consists of a single
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Fig. 1 A sample tree T11. The first splitting arises with probability q11(4, 4, 3)

ball, it can remain single with probability q1((1)) or get wiped out with probability
q1(∅). We continue the procedure until all the balls are wiped out. The tree Tn is then
the genealogical tree associated with this process: it is rooted at the initial collection
of n balls and its n leaves correspond to the n isolated balls just before they are
wiped out, See Fig. 1 for an illustration.

We can define similarly MB-sequences of (distributions of) trees indexed by
their number of vertices. Consider here a sequence (pn, n ≥ 1) such that pn is a
probability on Pn with no restriction but

p1((1)) = 1.

Mimicking the previous balls construction and starting from a collection of n

indistinguishable balls, we first remove a ball, split the n−1 remaining balls in sub-
collections with λ1, . . . , λp balls with probability pn−1((λ1, . . . , λp)), and iterate
independently on sub-collections until no ball remains. Formally, this gives:

Definition 2.2 For each n ≥ 1, let pn be a probability on Pn, such that p1((1)) = 1.
From the sequence (pn, n ≥ 1) we construct recursively a sequence of distributions
(Vp

n ) such that for all n ≥ 1, Vp
n is carried by the set of trees with n vertices, as

follows:

• Vp
1 is the deterministic distribution of the tree reduced to one vertex,

• for n ≥ 2, Vp
n is the distribution of

〈T1, . . . , Tp(
)〉
where 
 is a partition of n − 1 distributed according to pn−1, and given

, the trees T1, . . . , Tp(
) are independent with respective distributions
Vp

1

, . . . ,Vp

p(
)

.
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A sequence (Tn, n ≥ 1) of random rooted trees such that Tn ∼ Vp
n for each n ∈ N is

called a MB-sequence of trees indexed by the vertices, with splitting distributions
(pn, n ≥ 1).

More generally, the MB-property can be extended to sequences of trees (Tn, n ≥
1) with arbitrary degree constraints, i.e. such that for all n, Tn has n vertices in
A, where A is a given subset of Z+. We will not develop this here and refer the
interested reader to [89] for more details.

Some Examples

1. A deterministic example. Consider the splitting distributions on Pn

qn(�n/2�, �n/2�) = 1, n ≥ 2,

as well as q1(∅) = 1. Let (Tn, n ≥ 1) the corresponding MB-sequence indexed
by leaves. Then Tn is a deterministic discrete binary tree, whose root splits in
two subtrees with both n/2 leaves when n is even, and respectively (n + 1)/2,
(n−1)/2 leaves when n is odd. Clearly, when n = 2k, the height of Tn is exactly
k, and more generally for large n, ht(Tn) ∼ ln(n)/ ln(2).

2. A basic example. For n ≥ 2, let qn be the probability on Pn defined by

qn((n)) = 1 − 1

nα
and qn(�n/2�, �n/2�) = 1

nα
for some α > 0,

and let q1(∅) = 1. Let (Tn, n ≥ 1) be an MB-sequence indexed by leaves
with splitting distributions (qn). Then Tn is a discrete tree with vertices with
degrees ∈ {1, 2, 3} where the distance between the root and the first branch
point (i.e. the first vertex of degree 3) is a Geometric distribution on Z+ with
success parameter n−α . The two subtrees above this branch point are independent
subtrees, independent of the Geometric r.v. just mentioned, and whose respective
distances between the root and first branch point are Geometric distributions
with respectively (�n/2�)−α and (�n/2�)−α parameters. Noticing the weak
convergence

Geo(n−α)

nα

(d)−→
n→∞ Exp(1)

one may expect that n−αTn has a limit in distribution. We will later see that it is
indeed the case.

3. Conditioned Galton–Watson trees. Let T
η,l
n be a Galton–Watson tree with

offspring distribution η, conditioned on having n leaves, for integers n for which
this is possible. The branching property is then preserved by conditioning and
the sequence (T

η,l
n , n : P(#leavesT

η) > 0) is Markov-Branching, with splitting
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distributions

qGW,η
n (λ) = η(p)× p!

∏p

i=1 mi(λ)!
×
∏p

i=1 P(#leavesT
η = λi)

P(#leavesT η = n)

for all λ ∈ Pn, n ≥ 2, where #leavesT
η is the number of leaves of the

unconditioned Galton–Watson tree T η, and mi(λ) = #{1 ≤ j ≤ p : λj = i}.
The probability q

GW,η
1 is given by q

GW,η
1 ((1)) = η(1).

Similarly, if T η,v
n denotes a Galton–Watson tree with offspring distribution η,

conditioned on having n vertices, the sequence (T
η,v
n ,P(#verticesT

η) > 0) is MB,
with splitting distributions

p
GW,η
n−1 (λ) = η(p)× p!

∏p

i=1 mi(λ)!
×
∏p

i=1 P(#verticesT
η = λi)

P(#verticesT η = n)
(3)

for all λ ∈ Pn−1, n ≥ 3 where #verticesT
η is the number of leaves of the

unconditioned GW-tree T η. Details can be found in [59, Section 5].
4. Dynamical models of tree growth. Rémy’s, Ford’s, Marchal’s and the k-ary

algorithms all lead to MB-sequences of trees indexed by leaves. To be precise,
we have to remove in each of these trees the edge adjacent to the root to obtain
MB-sequences of trees (the roots have all a unique child). The MB-property can
be proved by induction on n. By construction, the distribution of the leaves in
the subtrees above the root is closely connected to urns models. We have the
following expressions for the splitting distributions:

Ford’s α-Model For k ≥ n
2 , n ≥ 2,

qFord,α
n (k, n− k)

=
(

1 + 1k �= n
2

) �(k − α)�(n − k − α)

�(n− α)�(1 − α)

(
α

2

(
n

k

)
+ (1 − 2α)

(
n− 2

k − 1

))
,

and q1(∅) = 1. See [55] for details. In particular, taking α = 1/2 one sees that

q
Rémy
n (k, n− k)

= 1

4

(
1 + 1k �= n

2

) �(k − 1/2)�(n− k − 1/2)

�(n− 1/2)�(1 − 1/2)

(
n

k

)
, k ≥ n

2
, n ≥ 2.

k-Ary Growing Trees Note that in these models, there are 1+(k−1)(n−1) leaves
in the tree Tn(k), so that the indices do not exactly correspond to the definitions
of the Markov-Branching properties seen in the previous section. However, by
relabelling, defining for m = 1 + (k − 1)(n − 1) the tree T m(k) to be the tree
Tn(k) to which the edge adjacent to the root has been removed, we obtain an
MB-sequence (T m(k),m ∈ (k − 1)N + 2 − k). The splitting distributions are
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defined for m = 1+ (k− 1)(n− 1), n ≥ 2 and λ = (λ1, . . . , λk) ∈ Pm such that
λi = 1 + (k − 1)�i, for some �i ∈ Z+ for all i (note that

∑k
i=1 �i = n− 2) by

qk
m(λ) =

∑

n=(n1,...,nk)∈Nk:n↓=λ

qm(n)

where n↓ is the decreasing rearrangement of the elements of n and

qm(n) = 1

k(�( 1
k
))k−1

(
k∏

i=1

�( 1
k
+ ni)

ni !

)

× (n− 2)!
�( 1

k
+ n− 1)

⎛

⎝
n1+1∑

j=1

n1!
(n1 − j + 1)!

(n− j − 1)!
(n− 2)!

⎞

⎠ .

See [60, Section 3].

Marchal’s Algorithm For λ = (λ1, . . . , λp) ∈ Pn, n ≥ 2,

qMarchal,β
n (λ)

= n!
λ1! . . . λp !m1(λ)! . . . mn(λ)!

β2−p�(2 − β−1)�(p − β)

�(n − β−1)�(2 − β)

p∏

i=1

�(λj − β−1)

�(1 − β−1)

where mi(λ) = #{1 ≤ j ≤ p : λj = i}. This is a consequence of [46, Theorem
3.2.1] and [75, Lemma 5].

5. Cut-trees. Cut-tree of a uniform Cayley tree. Consider Cn a uniform Cayley
tree of size n, i.e. a tree picked uniformly at random amongst the set of rooted
tree with n labelled vertices. This tree has the following recursive property (see
Pitman [85, Theorem 5]): removing an edge uniformly at random in Cn gives
two trees, which given their numbers of vertices, k, n − k say, are independent
uniform Cayley trees of respective sizes k, n − k. Now, consider the following
deletion procedure: remove in Cn one edge uniformly at random, then remove
another edge in the remaining set of n− 2 edges uniformly at random and so on
until all edges have been removed. It was shown by Janson [65] and Panholzer
[83] that the number of steps needed to isolate the root divided by

√
n converges

in distribution to a Rayleigh distribution (i.e. with density x exp(−x2/2) on R+).
Bertoin [15] was more generally interested in the number of steps needed to
isolate � distinguished vertices, and in that aim he introduced the cut-tree T cut

n

of Cn. The tree T cut
n is the genealogical tree of the above deletion procedure,

i.e. it describes the genealogy of the connected components, see Fig. 2 for an
illustration and [15] for a precise construction of T cut

n . Let us just mention here
that T cut

n is a rooted binary tree with n leaves, and that Pitman’s recursive property
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Fig. 2 On the left, a version of the tree C7, with edges labelled in order of deletion. On the right
the associated cut-tree T cut

7 , whose vertices are the different connected components arising in the
deletion procedure

implies that (T cut
n , n ≥ 1) is MB. The corresponding splitting probabilities are:

q
Cut,Cayley
n (k, n− k) = (n− k)n−k−1

(n− k)!
kk−1

k!
(n− 2)!
nn−3 , n/2 < k ≤ n− 1,

the calculations are detailed in [15, 84].

Cut-tree of a uniform recursive tree. A recursive tree with n vertices is a tree with
vertices labelled by 1, . . . , n, rooted at 1, such that the sequence of labels of vertices
along any branch from the root to a leaf is increasing. It turns out that the cut-tree
of a uniform recursive tree is also MB and with splitting probabilities

qCut,Recursive
n (k, n− k)

= n

(n− 1)

(
1

k(k + 1)
+ 1

(n− k)(n− k + 1)

)
n/2 < k ≤ n− 1,

see [16].

Remark The first example is a simple example of models where macroscopic
branchings are frequent, unlike the second example where macroscopic branchings
are rare (they occur with probability n−α → 0). By macroscopic branchings, we
mean that the way that the n leaves (or vertices) are distributed above the root gives
at least two subtrees with a size proportional to n. Although it is not completely
obvious yet, nearly all other examples above have rare macroscopic branchings (in
a sense that will be specified later) and this is typically the context in which we
will study the scaling limits of MB-trees. Typically the tree Tn will then grow as
a power of n. When macroscopic branchings are frequent, there is no scaling limit
in general for the Gromov–Hausdorff topology, a topology introduced in the next
section. However it is known that the height of the tree Tn is then often of order
c ln(n). This case has been studied in [30].
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3 The Example of Galton–Watson Trees and Topological
Framework

We start with an informal version of the prototype result of Aldous on the description
of the scaling limits of conditioned Galton–Watson trees. Let η be a critical offspring
distribution with finite variance σ 2 ∈ (0,∞), and let T η,v

n denote a Galton–Watson
tree with offspring distribution η, conditioned to have n vertices (in the following it
is implicit that we only consider integers n such that this conditioning is possible).
Aldous [10] showed that

σ

2
× T

η,v
n√
n

(d)−→
n→∞ TBr (4)

where the continuous tree TBr arising in the limit is the Brownian Continuum
Random Tree, sometimes simply called the Brownian tree. Note that the limit only
depends on η via its variance σ 2.

This result by Aldous was a breakthrough in the study of large random trees,
since it was the first to describe the behavior of the tree as a whole. We will discuss
this in more details in Sect. 3.2. Let us first introduce the topological framework in
order to make sense of this convergence.

3.1 Real Trees and the Gromov–Hausdorff Topology

Since the pioneering works of Evans et al. [52] in 2003 and Duquesne and Le
Gall [47] in 2005, the theory of real trees (or R-trees) has been intensively used
in probability. These trees are metric spaces having a “tree property” (roughly, this
means that for each pair of points x, y in the metric space, there is a unique path
going from x to y—see below for a precise definition). This point of view allows
behavior such as infinite total length of the tree, vertices with infinite degree, and
density of the set of leaves.

In these lecture notes, all the real trees we will consider are compact metric
spaces. For this reason, we restrict ourselves to the theory of compact real trees.
We now briefly recall background on real trees and the Gromov–Hausdorff and
Gromov–Hausdorff–Prokhorov distances, and refer to [51, 71] for more details on
this topic.

Real Trees A real tree is a metric space (T , d) such that, for any points x and y in
T ,

• there is an isometry ϕx,y : [0, d(x, y)] → T such that ϕx,y(0) = x and
ϕx,y(d(x, y)) = y

• for every continuous, injective function c : [0, 1] → T with c(0) = x, c(1) = y,
one has c([0, 1]) = ϕx,y([0, d(x, y)]).
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Note that a discrete tree may be seen as a real tree by “replacing” its edges by
line segments. Unless specified, it will be implicit throughout these notes that these
line segments are all of length 1.

We denote by [[x, y]] the line segment ϕx,y([0, d(x, y)]) between x and y. A
rooted real tree is an ordered pair ((T , d), ρ) such that (T , d) is a real tree and
ρ ∈ T . This distinguished point ρ is called the root. The height of a point x ∈ T is
defined by

ht(x) = d(ρ, x)

and the height of the tree itself is the supremum of the heights of its points, while
the diameter is the supremum of the distance between two points:

ht(T ) = sup
x∈T

d(ρ, x) diam(T ) = sup
x,y∈T

d(x, y).

The degree of a point x is the number of connected components of T \{x}. We call
leaves of T all the points of T \{ρ} which have degree 1. Given two points x and y,
we define x ∧ y as the unique point of T such that [[ρ, x]] ∩ [[ρ, y]] = [[ρ, x ∧ y]].
It is called the branch point of x and y if its degree is larger than or equal to 3. For
a > 0, we define the rescaled tree aT as (T , ad) (the metric d thus being implicit
and dropped from the notation).

As mentioned above, we will only consider compact real trees. We now want to
measure how close two such metric spaces are. We start by recalling the definition
of Hausdorff distance between compact subsets of a metric space.

Hausdorff Distance If A and B are two nonempty compact subsets of a metric
space (E, d), the Hausdorff distance between A and B is defined by

dE,H(A,B) = inf
{
ε > 0 ; A ⊂ Bε and B ⊂ Aε

}
,

where Aε and Bε are the closed ε-enlargements of A and B, i.e. Aε = {x ∈ E :
d(x,A) ≤ ε} and similarly for Bε .

The Gromov–Hausdorff extends this concept to compact real trees (or more
generally compact metric spaces) that are not necessarily compact subsets of a single
metric space, by considering embeddings in an arbitrary common metric space.

Gromov–Hausdorff Distance Given two compact rooted trees (T , d, ρ) and
(T ′, d ′, ρ′), let

dGH(T ,T ′) = inf
{

max
(
dZ,H(φ(T ), φ′(T ′)), dZ (φ(ρ), φ′(ρ′))

)}
,

where the infimum is taken over all pairs of isometric embeddings φ and φ′ of T
and T ′ in the same metric space (Z, dZ), for all choices of metric spaces (Z, dZ ).
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We will also be concerned with measured trees, that are real trees equipped
with a probability measure on their Borel sigma-field. To this effect, recall first the
definition of the Prokhorov distance between two probability measures μ and μ′ on
a metric space (E, d):

dE,P(μ,μ′) = inf
{
ε > 0 ; ∀A ∈ B(E), μ(A) ≤ μ′(Aε)+ ε and μ′(A) ≤ μ(Aε)+ ε

}
.

This distance metrizes the weak convergence on the set of probability measures on
(E, d).

Gromov–Hausdorff–Prokhorov Distance Given two measured compact rooted
trees (T , d, ρ, μ) and (T ′, d ′, ρ′, μ′), we let

dGHP(T , T ′) = inf
{

max
(
dZ,H(φ(T ), φ′(T ′)), dZ (φ(ρ), φ′(ρ ′)), dZ,P(φ∗μ, φ′∗μ′)

)}
,

where the infimum is taken on the same space as before and φ∗μ, φ′∗μ′ are the
push-forwards of μ, μ′ by φ, φ′.

The Gromov–Hausdorff distance dGH indeed defines a distance on the set of
compact rooted real trees taken up to root-preserving isomorphisms. Similarly, The
Gromov–Hausdorff–Prokhorov distance dGHP is a distance on the set of compact
measured rooted real trees taken up to root-preserving and measure-preserving
isomorphisms. Moreover these two metric spaces are Polish, see [52] and [3]. We
will always identify two (measured) rooted R-trees when they are isometric and still
use the notation (T , d) (or T when the choice of the metric is clear) to design their
isometry class.

Statistics It is easy to check that the function that associates with a compact rooted
tree its diameter is continuous (with respect to the GH-topology on the set of
compact rooted real trees and the usual topology on R). Similarly, the function
that associates with a compact rooted tree its height is continuous. The function
that associates with a compact rooted measured tree the distribution of the height
of a leaf chosen according to the probability on the tree is continuous as well (with
respect to the GHP-topology on the set of compact rooted measured real trees and
the weak topology on the set of probability measures on R). Consequently, the
existence of scaling limits with respect to the GHP-topology will directly imply
scaling limits for the height, the diameter and the height of a typical vertex of the
trees.

3.2 Scaling Limits of Conditioned Galton–Watson Trees

We can now turn to rigorous statements on the scaling limits of conditioned Galton–
Watson trees. We reformulate the above result (4) by Aldous in the finite variance
case and also present the result by Duquesne [44] when the offspring distribution η

is heavy tailed, in the domain of attraction of a stable distribution. In the following,
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η always denotes a critical offspring distribution, T η,v
n is an η-GW tree conditioned

to have n vertices, and μ
η,v
n is the uniform probability on its vertices. The following

convergences hold for the Gromov–Hausdorff–Prokhorov topology.

Theorem 3.1

(i) (Aldous [10]) Assume that η has a finite variance σ 2. Then, there exists a
random compact real tree, called the Brownian tree and denoted TBr, endowed
with a probability measure μBr supported by its set of leaves, such that as
n →∞

(
σT

η,v
n

2
√
n

,μη,v
n

)
(d)−→

GHP
(TBr, μBr) .

(ii) (Duquesne [44]) If ηk ∼ κk−1−α as k → ∞ for α ∈ (1, 2), then there
exists a random compact real tree Tα , called the stable Lévy tree with index α,
endowed with a probability measure μα supported by its set of leaves, such that
as n →∞

(
T

η,v
n

n1−1/α , μη,v
n

)
(d)−→

GHP

((
α(α − 1)

κ�(2 − α)

)1/α

α1/α−1 · Tα, μα

)
.

The result by Duquesne actually extends to cases where the offspring distribution
η is in the domain of attraction of a stable distribution with index α ∈ (1, 2]. See
[44] for details.

The Brownian tree was first introduced by Aldous in the early 1990s in the series
of papers [8–10]. This tree can be constructed in several ways, the most common
being the following. Let (e(t), t ∈ [0, 1]) be a normalized Brownian excursion,
which, formally, can be defined from a standard Brownian motion B by letting

e(t) =
∣∣Bg+t (d−g)

∣∣
√
d − g

, 0 ≤ t ≤ 1,

where g := sup{s ≤ 1 : Bs = 0} and d = inf{s ≥ 1 : Bs = 0} (note that d − g > 0
a.s. since B1 �= 0 a.s.). Then consider for x, y ∈ [0, 1], x ≤ y, the non-negative
quantity

de(x, y) = e(x)+ e(y)− 2 inf
z∈[x,y]{e(z)},

and then the equivalent relation x ∼e y ⇔ de(x, y) = 0. It turns out that the
quotient space [0, 1]/ ∼e endowed with the metric induced by de (which indeed
gives a true metric) is a compact real tree. The Brownian excursion e is called the
contour function of this tree. Equipped with the measure μe, which is the push-
forward of the Lebesgue measure on [0, 1], this gives a version ([0, 1]/ ∼e, de, μe)

of the measured tree (TBr , μBr ). To get a better intuition of what this means, as well
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as more details and other constructions of the Brownian tree, we refer to the three
papers by Aldous [8–10] and to the survey by Le Gall [71].

In the early 2000s, the family of stable Lévy trees (Tα, α ∈ (1, 2)]—where by
convention T2 is

√
2 ·TBr—was introduced by Duquesne and Le Gall [46, 47] in the

more general framework of Lévy trees, building on earlier work of Le Gall and Le
Jan [72]. These trees can be constructed in a way similar as above from continuous
functions built from the stable Lévy processes. This construction is complex and we
will not detail it here. Others constructions are possible, see e.g. [50, 56]. The stable
trees are important objects of the theory of random trees. They are intimately related
to continuous state branching processes, fragmentation and coalescence processes.
They appear as scaling limits of various models of trees and graphs, starting with
the Galton–Watson examples above and some other examples discussed in Sect. 5.
In particular, it is noted that it was only proved recently that Galton–Watson trees
conditioned by their number of leaves or more general arbitrary degree restrictions
also converge in the scaling limit to stable trees, see Sect. 5.1.2 and the references
therein.

In the last few years, the geometric and fractal aspects of stable trees have been
studied in great detail: Hausdorff and packing dimensions and measures [45, 47, 48,
57]; spectral dimension [34]; spinal decompositions and invariance under uniform
re-rooting [49, 64]; fragmentation into subtrees [75, 76]; and embeddings of stable
trees into each other [35]. We simply point out it here that the Brownian tree is
binary, in the sense that all its points have their degree in {1, 2, 3} almost surely,
whereas the stable trees Tα, α ∈ (1, 2) have only points with degree in {1, 2,∞}
almost surely (every branch point has an infinite number of “children”).

Applications to Combinatorial Trees Using the connections between some fam-
ilies of combinatorial trees and Galton–Watson trees mentioned in Sect. 2.1, we
obtain the following scaling limits (in all cases, μn denotes the uniform probability
on the vertices of the tree Tn):

• If Tn is uniform amongst the set of rooted ordered trees with n vertices,

(
Tn√
n
,μn

)
(d)−→

GHP

(
TBr , μBr

)
.

• If Tn is uniform amongst the set of rooted trees with n labelled vertices,

(
Tn√
n
,μn

)
(d)−→

GHP

(
2TBr , μBr

)
.

• If Tn is uniform amongst the set of rooted binary ordered trees with n vertices,

(
Tn√
n
,μn

)
(d)−→

GHP

(
2TBr , μBr

)
.

As a consequence, this provides the behavior of several statistics of the trees, that
first interested combinatorists.
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We will not present the original proofs by Aldous [10] and Duquesne [44], but
will rather focus on the fact that they may be recovered by using the MB-property.
This is the goal of the next two sections, where we will present in a general setting
some results on the scaling limits for MB-sequences of trees. As already mentioned,
the main idea of the proofs of Aldous [10] and Duquesne [44] is rather based on
the study of the so-called contour functions of the trees. We refer to Aldous and
Duquesne papers, as well as Le Gall’s survey [71] for details. See also Duquesne
and Le Gall [46] and Kortchemski [69, 70] for further related results.

4 Scaling Limits of Markov-Branching Trees

Our goal is to set up an asymptotic criterion on the splitting probabilities (qn) of
an MB-sequence of trees so that this sequence, suitably normalized, converges to
a non-trivial continuous limit. We follow here the approach of the paper [59] that
found its roots in the previous work [63] were similar results where proved under
stronger assumptions. A remark on these previous results is made at the end of this
section.

The splitting probability qn corresponds to a “discrete” fragmentation of the
integer n into smaller integers. To set up the desired criterion, we first need to
introduce a continuous counterpart for these partitions of integers, namely

S↓ =
⎧
⎨

⎩s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0 and
∑

i≥1

si = 1

⎫
⎬

⎭

which is endowed with the distance dS↓(s, s′) = supi≥1 |si − s′i |. Our main
hypothesis on (qn) then reads:

Hypothesis (H) There exist γ > 0 and ν a non-trivial σ -finite measure on S↓
satisfying

∫
S↓(1 − s1)ν(ds) < ∞ and ν(1, 0, . . .) = 0, such that

nγ
∑

λ∈Pn

qn (λ)

(
1 − λ1

n

)
f
(λ1

n
, . . . ,

λp

n
, 0, . . .

)
−→
n→∞

∫

S↓
(1 − s1)f (s)ν(ds).

for all continuous f : S↓ → R.

We will see in Sect. 5 that most of the examples of splitting probabilities
introduced in Sect. 2.3 satisfy this hypothesis. As a first, easy, example, consider
the “basic example” introduced there (Example 2): qn((n)) = 1 − n−α and
qn(�n/2�, �n/2�) = n−α , α > 0. Then, clearly, (H) is satisfied with

γ = α and ν(ds) = δ( 1
2 ,

1
2 ,0,...

).



Scaling Limits of Markov-Branching Trees and Applications 25

The interpretation of the hypothesis (H) is that macroscopic branchings are rare, in
the sense that the macroscopic splitting events n �→ ns, s ∈ S↓ with s1 < 1 − ε

occur with a probability asymptotically proportional to n−γ1{s1<1−ε}ν(ds), for a.e.
fixed ε ∈ (0, 1).

The main result on the scaling limits of MB-trees indexed by the leaves is the
following.

Theorem 4.1 ([59]) Let (Tn, n ≥ 1) be a MB-sequence indexed by the leaves
and assume that its splitting probabilities satisfy (H). Then there exists a compact,
measured real tree (Tγ,ν, μγ,ν) such that

(
Tn

nγ
, μn

)
(d)−→

GHP

(
Tγ,ν, μγ,ν

)
,

where μn is the uniform probability on the leaves of Tn.

The goal of this section is to detail the main steps of the proof of this result and to
discuss some properties of the limiting measured tree, which belongs to the so-called
family of self-similar fragmentation trees (the distribution of such a tree is entirely
characterized by the parameters γ and ν). In that aim we will first study how the
height of a leaf chosen uniformly at random in Tn grows (Sects. 4.1 and 4.2). Then
we will review some results on self-similar fragmentation trees (Sect. 4.3). Last we
will explain how one can use the scaling limit of the height of a leaf chosen at
random to obtain, by induction, the scaling limit of the subtree spanned by k leaves
chosen independently, for all k, and then finish the proof of Theorem 4.1 with a
tightness criterion (Sect. 4.4).

There is a similar result for MB-sequences indexed by the vertices.

Theorem 4.2 ([59]) Let (Tn, n ≥ 1) be a MB-sequence indexed by the vertices
and assume that its splitting probabilities satisfy (H) for some 0 < γ < 1. Then
there exists a compact, measured real tree (Tγ,ν, μγ,ν) such that

(
Tn

nγ
, μn

)
(d)−→

GHP

(
Tγ,ν, μγ,ν

)
,

where μn is the uniform probability on the vertices of Tn.

Theorem 4.2 is actually a direct corollary of Theorem 4.1, for the following rea-
son. Consider an MB-sequence indexed by the vertices with splitting probabilities
(pn) and for all n, branch on each internal vertex of the tree Tn an edge with a
leaf. This gives a tree T n with n leaves. It is then obvious that (T n, n ≥ 1) is an
MB-sequence indexed by the leaves, with splitting probabilities (qn) defined by

qn(λ1, . . . , λp, 1) = pn−1(λ1, . . . , λp), for all (λ1, . . . , λp) ∈ Pn−1

(and qn(λ) = 0 for all other λ ∈ Pn). It is moreover easy to see that (qn) satisfies
(H) with parameters (γ, ν), 0 < γ < 1, if and only if (pn) does. Hence Theorem 4.1
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implies Theorem 4.2, since T n, endowed with the uniform probability, is at distance
less than one from (Tn, μn) for the GHP-distance.

We will present in Sect. 5 several applications of these two theorems. Let us
just consider here the “basic example” of Sect. 2.3 (Example 2). We have already
noticed that its splitting probabilities satisfy Hypothesis (H), with parameters α

and δ(1/2,1/2,0,...). Hence in this case, the corresponding sequence of MB-trees
Tn divided by nα and endowed with the uniform probability measure on its
leaves converges for the GHP-topology towards a (α, δ(1/2,1/2,0,...))-self-similar
fragmentation tree.

Remark These two statements are also valid when replacing in (H) and in the
theorems the power sequence nγ by any regularly varying sequence with index γ >

0. We recall that a sequence (an) is said to vary regularly with index γ > 0 if for all
c > 0,

a�cn�
an

−→
n→∞ cγ .

We refer to [24] for backgrounds on that topic. For simplicity, in the following we
will only works with power sequences, but the reader should have in mind that
everything holds similarly for regularly varying sequences.

Convergence in Probability In [63], scaling limits are established for some MB-
sequences that moreover satisfy a property of sampling consistency, namely that for
all n, Tn is distributed as the tree with n leaves obtained by removing a leaf picked
uniformly at random in Tn+1, as well as the adjacent edge. This consistency property
is demanding and the approach developed in [59] allows to do without it. However
we note that if the MB-sequence is strongly sampling consistent, one can actually
establish under suitable conditions a convergence in probability of the rescaled trees,
which is of course an improvement. By strongly sampling consistent, we mean that
versions of the trees can be built on a same probability space so that if T ◦

n denotes
the tree with n leaves obtained by removing an edge-leaf picked uniformly in Tn+1,
then (Tn, Tn+1) is distributed as (T ◦

n , Tn+1). We refer to [63] for details.

4.1 A Markov Chain in the Markov-Branching Sequence of
Trees

Consider (Tn, n ≥ 1) an MB-sequence of trees indexed by the leaves, with splitting
distribution (qn, n ≥ 1). Before studying the scaling limit of the trees in their whole,
we start by studying the scaling limit of a typical leaf. For example, in each Tn, we
mark one of the n leaves uniformly at random and we want to determine how the
height of the marked leaf behaves as n →∞. In that aim, let �n denote this marked
leaf and let �n(k) denote its ancestor at generation k, 0 ≤ k ≤ ht(�n) (so that �n(0)
is the root of Tn and �n(ht(�n)) = �n). Let also T �

n (k) be the subtree composed of
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R R R R R

Fig. 3 A Markov chain in the Markov-Branching trees. Here n = 9, the marked leaf is circled and
the subtrees of descendants of �9(k) for 0 ≤ k ≤ 4 are dotted. Moreover X9(0) = 9, X9(1) = 5,
X9(2) = 3, X9(3) = 2, X9(4) = 1 and X9(i) = 0,∀i ≥ 5

the descendants of �n(k) in Tn, formally,

T �
n (k) := {v ∈ Tn : �n(k) ∈ [[ρ, v]]} , k ≤ ht(�n)

and T �
n (k) := ∅ if k > ht(�n). We then set

Xn(k) := #
{
leaves of T �

n (k)
}
, ∀k ∈ Z+ (5)

with the convention that Xn(k) = 0 for k > ht(�n) (Fig. 3).

Proposition 4.3 The process (Xn(k), k ≥ 0) is a Z+-valued non-increasing
Markov chain starting from Xn(0) = n, with transition probabilities

p(i, j) =
∑

λ∈Pi

qi(λ)mj (λ)
j

i
for all 1 ≤ j ≤ i, with i ≥ 1 (6)

and p(1, 0) = q1(∅) = 1 − p(1, 1).

Proof The Markov property is a direct consequence of the Markov branching
property. Indeed, given Xn(1) = i1, . . . , Xn(k − 1) = ik−1, the tree T �

n (k − 1)
is distributed as Tik−1 if ik−1 ≥ 1 and is the emptyset otherwise. In particular,
when ik−1 = 0, the conditional distribution of Xn(k) is the Dirac mass at 0. When
ik−1 ≥ 1, we use the fact that �n is in T �

n (k − 1), hence, still conditioning on the
same event, we have that �n is uniformly distributed amongst the ik−1 leaves of
Tik−1 . Otherwise said, given Xn(1) = i1, . . . , Xn(k − 1) = ik−1 with ik−1 ≥ 1,
(T �

n (k− 1), �n) is distributed as (Tik−1, �ik−1 ) and consequently Xn(k) is distributed
as Xik−1(1). Hence the Markov property of the chain (Xn(k), k ≥ 0). It remains to
compute the transition probabilities:

p(n, k) = P(Xn(1) = k) =
∑

λ∈Pn

qn(λ)P (Xn(1) = k|
n = λ)

where 
n denotes the partition of n corresponding to the distribution of the leaves
in the subtrees of Tn above the root. Since �n is chosen uniformly amongst the set
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of leaves, we clearly have that

P (Xn(1) = k|
n = λ) = k

n
× #{j : λj = k}, ∀k ≥ 1.

��
Hence studying the scaling limit of the height of the marked leaf in the tree Tn

reduces to studying the scaling limit of the absorption time An of the Markov chain
(Xn(k), k ≥ 0) at 0:

An := inf
{
k ≥ 0 : Xn(k) = 0

}

(to be precise, this absorption time is equal to the height of the marked leaf+1). The
study of the scaling limit of ((Xn(k), k ≥ 1), An) as n →∞ is the goal of the next
section. Before getting in there, let us notice that the Hypothesis (H) on the splitting
probabilities (qn, n ≥ 1) of (Tn, n ≥ 1), together with (6), implies the following
behavior of the transition probabilities (p(n, k), k ≤ n):

nγ
n∑

k=0

p(n, k)

(
1 − k

n

)
g

(
k

n

)
−→
n→∞

∫

[0,1]
g(x)μ(dx) (7)

for all continuous functions g : [0, 1] → R, where the measure μ in the limit is a
finite, non-zero measure on [0, 1] defined by

∫

[0,1]
g(x)μ(dx) =

∫

S↓

∑

i≥1

si (1 − si )g(si )ν(ds). (8)

To see this, apply (H) to the continuous function defined by

f (s) =
∑

i≥1 si (1 − si )g(si )

1 − s1
for s �= (1, 0, . . .)

and f (1, 0, . . .) = g(1)+ g(0).

4.2 Scaling Limits of Non-increasing Markov Chains

As discussed in the previous section, studying the height of a typical leaf in MB-
trees amounts to studying the absorption time at 0 of a Z+-valued non-increasing
Markov chain. In this section, we study in a general framework the scaling limits
of Z+-valued non-increasing Markov chains, under appropriate assumptions on the
transition probabilities. At the end of the section we will see how this applies to the
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height of a typical leaf in an MB-sequence. In the following,

(Xn(k), k ≥ 0)

denotes a non-increasing Z+-valued Markov chain starting from n (Xn(0) = n),
with transition probabilities (p(i, j), 0 ≤ j ≤ i) such that

Hypothesis (H′) ∃ γ > 0 and μ a non-trivial finite measure on [0, 1] such that

nγ

n∑

k=0

p(n, k)

(
1 − k

n

)
f

(
k

n

)
−→
n→∞

∫

[0,1]
f (x)μ(dx)

for all continuous functions f : [0, 1] → R.

This hypothesis implies that starting from n, macroscopic jumps (i.e. with size
proportional to n) are rare, since for a.e. 0 < ε ≤ 1, the probability to do a jump
larger than εn is of order cεn−γ where cε =

∫
[0,1−ε](1 − x)−1μ(dx) (note that this

may tend to ∞ when ε tends to 0).
Now, let

An := inf
{
k ≥ 0 : Xn(i) = Xn(k), ∀i ≥ k

}

be the first time at which the chain enters an absorption state (note that An <

∞ a.s. since the chain is non-increasing and Z+-valued). In the next theorem,
D([0,∞), [0,∞)) denotes the set of non-negative càdlàg processes, endowed with
the Skorokhod topology.

Theorem 4.4 ([58]) Assume (H′).

(i) Then, in D([0,∞), [0,∞)),

(
Xn (�nγ t�)

n
, t ≥ 0

)
(d)−→

n→∞
(
exp(−ξτ(t)), t ≥ 0

)
,

where ξ is a subordinator, i.e. a non-decreasing Lévy process, and τ is the time-
change (acceleration of time)

τ (t) := inf

{
u ≥ 0 :

∫ u

0
exp(−γ ξr )dr ≥ t

}
, t ≥ 0.

The distribution of ξ is characterized by its Laplace transform E[exp(−λξt )] =
exp(−tφ(λ)), with

φ(λ) = μ({0})+ μ({1})λ+
∫

(0,1)
(1 − xλ)

μ(dx)

1 − x
, λ ≥ 0.
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(ii) Moreover, jointly with the above convergence,

An

nγ

(d)−→
n→∞

∫ ∞

0
exp(−γ ξr)dr = inf

{
t ≥ 0 : exp(−ξτ(t)) = 0

}
.

Comments For background on Lévy processes, we refer to [12]. Let us simply
recall here that the law of a subordinator is characterized by three parameters:
a measure on (0,∞) that codes its jumps (which here is the push-forward of
μ(dx)(1− x)1{x∈(0,1)} by the application x �→ − ln(x)), a linear drift (here μ({1}))
and a killing rate at which the process jumps to +∞ (here μ({0})).
Main Ideas of the Proof of Theorem 4.4

(i) Let Yn(t) := n−1Xn(�nγ t�), for t ≥ 0, n ∈ N. First, using Aldous’ tightness
criterion [23, Theorem 16.10] and (H′), one can check that the sequence
(Yn, n ≥ 1) is tight. It is then sufficient to prove that every possible limit in
distribution of subsequences of (Yn) are distributed as exp(−ξτ ). Let Y ′ be such
a limit and (nk, k ≥ 1) a sequence such that Ynk converges to Y ′ in distribution.
In the limit, we actually prefer to deal with ξ than with ξτ , and for this reason
we start by changing time in Yn by setting

τYn(t) := inf

{
u ≥ 0 :

∫ u

0
Y
−γ
n (r)dr > t

}
and Zn(t) := Yn

(
τYn(t)

)
, t ≥ 0.

One can then easily check that (Znk ) converges in distribution to Z′ where
Z′ = Y ′ ◦ τY ′ , with τY ′(t) := inf

{
u ≥ 0 : ∫ u

0 (Y ′(r))−γ dr > t
}
. It is also easy

to reverse the time-change and get that

Y ′(t) = Z′(τ−1
Y ′ (t)

) = Z′
(

inf

{
u ≥ 0 :

∫ u

0
Z′γ (r)dr > t

})
, t ≥ 0.

With this last equality, we see that it just remains to prove that Z′ is distributed
as exp(−ξ). This can be done in three steps:

(a) Observe the following (easy!) fact: if P is the transition function of a
Markov chain M with countable state space ⊂ R, then for any positive
function f such that f−1({0}) is absorbing,

f (M(k))

k−1∏

i=0

f (M(i))

Pf (M(i))
, k ≥ 0
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is a martingale. As a consequence: for all λ ≥ 0 and n ≥ 1, if we let
Gn(λ) := E

[
(Xn(1)/n)λ

]
, then,

M
(λ)
n (t) := Zλ

n(t)

⎛

⎝
�nγ τYn (t)�−1∏

i=0

GXn(i)(λ)

⎞

⎠
−1

, t ≥ 0

is a martingale.
(b) Under (H′), 1 − Gn(λ) ∼

n→∞ n−γ φ(λ). Together with the convergence

in distribution of (Znk ) to Z′ and the definition of M
(λ)
n , this leads to the

convergence (this is the most technical part)

M(λ)
nk

(d)−→
k→∞ (Z′)λ exp(φ(λ)·),

and the martingale property passes to the limit.
(c) Hence (Z′)λ exp(φ(λ)·) is a martingale for all λ ≥ 0. Using Laplace

transforms, it is then easy to see that this implies in turn that − lnZ′ is a
non-decreasing process with independent and stationary increments (hence
a subordinator), with Laplace exponent φ.

Hence Z′ (d)= exp(−ξ).
(ii) We do not detail this part and refer to [58, Section 4.3]. Let us simply point out

that it is not a direct consequence of the convergence of (Yn) to exp(−ξτ ) since
convergence of functions in D([0,∞), [0,∞)) does not lead, in general, to the
convergence of their absorption times (when they exist). ��

This result leads to the following corollary.

Corollary 4.5 Let (Tn, n ≥ 1) be a MB-sequence indexed by the leaves, with
splitting probabilities satisfying (H) with parameters (γ, ν). For each n, let �n be a
leaf chosen uniformly amongst the n leaves of Tn. Then,

ht(�n)
nγ

(d)−→
n→∞

∫ ∞

0
exp(−γ ξr )dr

where ξ is a subordinator with Laplace exponentφ(λ)= ∫
S↓
∑

i≥1

(
1− sλi

)
siν(ds),

λ ≥ 0.

Proof As seen at the end of the previous section, under (H) the transition probabili-
ties of the Markov chain (5) satisfy assumption (H′) with parameters γ and μ, with
μ defined by (8). The conclusion follows with Theorem 4.4 (ii). ��
Further Reading Apart from applications to Markov-Branching trees, Theo-
rem 4.4 can be used to describe the scaling limits of various stochastic processes,
e.g. random walks with a barrier or the number of collisions in 
-coalescent
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processes, see [58]. Recently, Bertoin and Kortchemski [18] set up results similar
to Theorem 4.4 for non-monotone Markov chains and develop several applications,
to random walks conditioned to stay positive, to the number of particles in some
coagulation-fragmentations processes, to random planar maps (see [20] for this
last point). Also in [61] similar convergences for bivariate Markov chains towards
time-changed Markov additive processes are studied. This will have applications
to dynamical models of tree growth in a broader context than the one presented in
Sect. 5.3, and more generally to multi-type MB-trees.

4.3 Self-Similar Fragmentation Trees

Self-similar fragmentation trees are random compact measured real trees that
describe the genealogical structure of self-similar fragmentation processes with a
negative index. It turns out that this set of trees is closely related to the set of
trees arising as scaling limits of MB-trees. We start by introducing the self-similar
fragmentation processes, following Bertoin [14], and then turn to the description of
their genealogical trees, which were first introduced in [57] and then in [91] in a
broader context.

4.3.1 Self-Similar Fragmentation Processes

Fragmentation processes are continuous-time processes that describe the evolution
of an object that splits repeatedly and randomly as time passes. In the models
we are interested in, the fragments are characterized by their mass alone, other
characteristics, such as their shape, do not come into account. Many researchers
have been working on such models. From a historical perspective, it seems that
Kolmogorov [68] was the first in 1941. Since the early 2000s, there has been a full
treatment of fragmentation processes satisfying a self-similarity property. We refer
to Bertoin’s book [14] for an overview of work in this area and a deepening of the
results presented here.

We will work on the space of masses

S↓− =
⎧
⎨

⎩s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0 and
∑

i≥1

si ≤ 1

⎫
⎬

⎭,

which contains the set S↓, and which is equipped with the same metric dS↓ .

Definition 4.6 Let α ∈ R. An α-self-similar fragmentation process is an S↓−-valued
Markov process (F (t), t ≥ 0) which is continuous in probability and such that,
for all t0 ≥ 0, given that F(t0) = (s1, s2, . . .), the process (F (t0 + t), t ≥ 0) is
distributed as the process G obtained by considering a sequence (F (i), i ≥ 1) of
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i.i.d. copies of F and then defining G(t) to be the decreasing rearrangement of the
sequences siF

(i)(sαi t), i ≥ 1, for all t ≥ 0.

In the following, we will always consider processes starting from a unique mass
equal to 1, i.e. F(0) = (1, 0, . . .). At time t , the sequence F(t) should be understood
as the decreasing sequence of the masses of fragments present at that time.

It turns out that such processes indeed exist and that their distributions are
characterized by three parameters: the index of self-similarity α ∈ R, an erosion
coefficient c ≥ 0 that codes a continuous melt of the fragment (when c = 0 there
is no erosion) and a dislocation measure ν, which is a measure ν on S↓− such that∫
S↓
−
(1 − s1)ν(ds) < ∞. The role of the parameters α and ν can be specified as

follows when c = 0 and ν is finite: then, each fragment with mass m waits a random
time with exponential distribution with parameter ν(S↓−) and then splits in fragments

with masses mS, where S is distributed according to ν/ν(S↓−), independently of the
splitting time. When ν is infinite, the fragments split immediately, see [14, Chapter
3] for further details.

The index α has an enormous influence on the behavior of the process: when
α = 0, all fragments split at the same rate, whereas when α > 0 fragments with
small masses split slower and when α < 0 fragments with small masses split faster.
In this last case the fragments split so quickly that the whole initial object is reduced
to “dust” in finite time, almost surely, i.e. inf{t ≥ 0 : F(t) = (0, . . .)} < ∞ a.s.

The Tagged Fragment Process We turn to a connection with the results seen in the
previous section. Pick a point uniformly at random in the initial object (this object
can be seen as an interval of length 1, for example), independently of the evolution
of the process and let F∗(t) be the mass of the fragment containing this marked point
at time t . The process F∗(t) is non-increasing and more precisely,

Theorem 4.7 (Bertoin [14], Theorem 3.2 and Corollary 3.1) The process F∗ can
be written as

F∗(t) = exp(−ξτ(t)), ∀t ≥ 0,

where ξ is a subordinator with Laplace exponent

φ(λ) = c +
∫

S↓
−

(
1 −

∑

i≥1

si

)
ν(ds)+ cλ+

∫

S↓
−

∑

i≥1

(1 − sλi )siν(ds), λ ≥ 0

and τ is a time-change depending on the parameter α, τ (t) = inf
{
u ≥ 0 : ∫ u

0
exp(αξt )dr > t}.
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4.3.2 Self-Similar Fragmentation Trees

It was shown in [57] that to every self-similar fragmentation process with a negative
index α = −γ < 0, no erosion (c = 0) and a dislocation measure ν satisfying
ν(
∑

i≥1 si < 1) = 0 (we say that ν is conservative), there is an associated
compact rooted measured tree that describes its genealogy. We denote such a tree
by (Tγ,ν, μγ,ν) and precise that the measure μγ,ν is fully supported by the set of
leaves of Tγ,ν and non-atomic. In [91], Stephenson more generally constructed and
studied compact rooted measured trees that describe the genealogy of any self-
similar fragmentation process with a negative index. However in this survey, we
restrict ourselves to the family of trees (Tγ,ν, μγ,ν), with γ > 0 and ν conservative.

The connection between a tree (Tγ,ν, μγ,ν) and the fragmentation process it is
related to can be summarized as follows: for all t ≥ 0, consider the connected
components of {v ∈ Tγ,ν : ht(v) > t}, the set of points in Tγ,ν that have a height
strictly larger than t , and let F(t) denote the decreasing rearrangement of the μγ,ν-
masses of these components. Then F is a fragmentation process, with index of self-
similarly −γ , dislocation measure ν and no erosion. Besides, we note that Tγ,ν

possesses a fractal property, in the sense that if we fix a t ≥ 0 (deterministic) and
consider a point x at height t , then any subtree of Tγ,ν descending from this point
x (i.e. any connected component of {v ∈ Tγ,ν : x ∈ [[ρ, v]]}), having, say, a μγ,ν-
mass m, is distributed as mγ Tγ,ν .

First Examples The Brownian tree and the α-stable trees that arise as scaling limits
of Galton–Watson trees all belong to the family of self-similar fragmentation trees.
More precisely,

• Bertoin [13] notices that the Brownian tree (TBr, μBr) is a self-similar fragmen-
tation tree and calculates its characteristics: γ = 1/2 and νBr(s1 + s2 < 1) = 0
and

νBr(s1 ∈ dx) =
√

2√
πx3/2(1 − x)3/2

, 1/2 < x < 1.

The fact that νBr(s1+s2 < 1) = 0 corresponds to the fact the tree is binary: every
branch point has two descendants trees, and in the corresponding fragmentation,
every splitting events gives two fragments.

• Miermont [75] proves that each stable tree Tα is self-similar and calculates its
characteristics when α ∈ (1, 2): γ = 1 − 1/α and

∫

S↓
f (s)να(ds) = CαE

[
T1f

(
�i

T1
, i ≥ 1

)]
,

where

Cα = α(α − 1)�(1 − 1/α)

�(2 − α)
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and (�i, i ≥ 1) is the sequence of lengths, ranked in decreasing order, of intervals
between successive atoms of a Poisson measure on R+ with intensity (α�(1 −
1/α))−1dr/r1+1/α, and T1 =∑

i �i .

Hausdorff Dimension We first quickly recall the definition of Hausdorff dimen-
sion, which is a quantity that measures the “size” of metric spaces. We refer to the
book of Falconer [53] for more details on that topic and for an introduction to fractal
geometry in general. For all r > 0, the r-dimensional Hausdorff measure of a metric
space (Z, dZ) is defined by

Mr (Z) := lim
ε→0

inf{(Ci)i∈N:diamCi≤ε}

⎧
⎨

⎩
∑

i≥1

diam(Ci)
r : Z ⊂ ∪i≥1Ci

⎫
⎬

⎭ .

where the infimum is taken over all coverings of Z by countable families of subsets
Ci ⊂ Z, i ∈ N, all with a diameter smaller than ε. The function r > 0 �→Mr (Z) ∈
[0,∞] is finite, non-zero at most one point. The Hausdorff dimension of Z is then
given by

dimH(Z) = inf
{
r > 0 : Mr (Z) = 0

} = sup
{
r > 0 : Mr (Z) = ∞}

.

The Hausdorff dimension of a fragmentation tree depends mainly on its index of
self-similarity. Let L(Tγ,ν) denote the set of leaves of Tγ,ν . Then we know that,

Theorem 4.8 ([57]) If
∫
S↓(s−1

1 − 1)ν(ds) < ∞, then almost surely

dimH(L
(
Tγ,ν)

) = 1

γ
and dimH(Tγ,ν) = max

(
1

γ
, 1

)
.

In particular, the Hausdorff dimension of the Brownian tree is 2, and more generally
the Hausdorff dimension of the α-stable tree, α ∈ (1, 2), is α/(α−1). This recovers
a result of Duquesne and Le Gall [47] proved in the framework of Lévy trees (we
note that the intersection between the set of Lévy trees and that of self-similar
fragmentation trees is exactly the set of stable Lévy trees).

Height of a Typical Leaf The measured tree (Tγ,ν, μγ,ν) has been constructed
in such a way that if we pick a leaf L at random in Tγ,ν according to μγ,ν and
we consider for each t ≥ 0 the μγ,ν-mass of the connected component of

{
v ∈

Tγ,ν : ht(v) > t
}

that contains this marked leaf (with the convention that this mass
is 0 if ht(L) ≤ t), then we obtain a process which is distributed as the tagged
fragment of the corresponding fragmentation process, as defined in the previous
section. In particular, the height of L is distributed as the absorption time of the
process exp(−ξτ ) introduced in Theorem 4.7, i.e.

ht(L)
(d)=
∫ ∞

0
exp(−γ ξr )dr (9)
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where ξ is a subordinator with Laplace exponent φ(λ) = ∫
S↓
∑

i≥1(1 −
sλi )siν(ds), λ ≥ 0. This is exactly the distribution of the limit appearing in
Corollary 4.5.

4.4 Scaling Limits of Markov-Branching Trees

We can now explain the main steps of the proof of Theorem 4.1. In that aim,
let (Tn, n ≥ 1) denote an MB-sequence indexed by the leaves with splitting
probabilities satisfying (H), with parameters (γ, ν) in the limit. We actually only
give here a hint of the proof of the convergence of the rescaled trees and refer to [59,
Section 4.4] to see how to incorporate the measures. The proof of the convergence
of the rescaled trees consists in three main steps:

First Step: Convergence of the Height of a Typical Leaf Keeping the notations
previously introduced, ht(�n) for the height of a typical leaf in Tn and ht(L) for
the height of a typical leaf in a fragmentation tree (Tγ,ν, μγ,ν), we get by (9) and
Corollary 4.5 that

ht(�n)
nγ

(d)−→
n→∞ ht(L).

Second Step: Convergence of Finite-Dimensional Marginals For all integers
k ≥ 2, let Tn(k) be the subtree of Tn spanned by the root and k (different) leaves
picked independently, uniformly at random. Similarly, let Tγ,ν(k) be the subtree of
Tγ,ν spanned by the root and k leaves picked independently at random according to
the measure μγ,ν . Then (under (H)),

Tn(k)

nγ

(d)−→
n→∞ Tγ,ν(k). (10)

This can be proved by induction on k. For k = 1, this is Step 1 above. For
k ≥ 2, we use the induction hypothesis and the MB-property. Here is the main
idea. Consider the decomposition of Tn into subtrees above its first branch point
in Tn(k) and take only into account the subtrees having marked leaves. We obtain
m ≥ 2 subtrees with, say, n1, . . . , nm leaves respectively (

∑m
i=1 ni ≤ n), and each

of these trees have k1 ≥ 1, . . . km ≥ 1 marked leaves (
∑m

i=1 ki = k). Given m,
n1, . . . , nm, k1, . . . km, the MB-property ensures that the m subtrees are independent
with respective distributions that of Tn1(k1), . . . , Tnm(km). An application of the
induction hypothesis to these subtrees leads to the expected result. We refer to [59,
Section 4.2] for details.

Third Step: A Tightness Criterion To get the convergence for the GH-topology,
the previous result must be completed with a tightness criterion. The idea is to use
the following well known result.
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Theorem 4.9 ([23], Theorem 3.2) If Xn,X,Xn(k),X(k) are r.v. in a metric space

(E, d) such that Xn(k)
(d)−→

n→∞ X(k), ∀k and X(k)
(d)−→

k→∞ X and for all ε > 0,

lim
k→∞ lim sup

n→∞
P (d(Xn,Xn(k)) > ε) = 0 (11)

then Xn
(d)−→

n→∞ X.

In our context, the finite-dimensional convergence (10) has already been checked.
Moreover, since μγ,ν is fully supported on the set of leaves of Tγ,ν , we see by
picking an infinite sequence of i.i.d. leaves according to μγ,ν , that there exist
versions of the Tγ,ν(k), k ≥ 1 that converge almost surely to Tγ,ν as k → ∞. It
remains to establish the tightness criterion (11) for Tn, Tn(k), with respect to the
distance dGH. The main tool is the following bounds:

Proposition 4.10 Under (H), for all p > 0, there exists a finite constant Cp such
that

P

(
ht(Tn)

nγ
≥ x

)
≤ Cp

xp
, ∀x > 0,∀n ≥ 1.

The proof holds by induction on n, using (H) and the MB-property. We refer to [59,
Section 4.3] for details and to see how, using again the MB-property, this helps to
control the distance between Tn and Tn(k), to get that for ε > 0:

lim
k→∞ lim sup

n→∞
P

(
dGH

(
Tn(k)

nγ
,
Tn

nγ

)
≥ ε

)
= 0

as required.

5 Applications

We now turn to the description of the scaling limits of various models of random
trees that are closely linked to the MB-property.

5.1 Galton–Watson Trees

5.1.1 Galton–Watson Trees with n Vertices

A first application of Theorem 4.2 is that it permits to recover the classical results
of Aldous and Duquesne (grouped together in Theorem 3.1) on the scaling limits
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of Galton–Watson trees conditioned to have n vertices. To see this, one just has to
check the two following lemmas, for η a critical offspring distribution, η(1) �= 1,
and (p

GW,η
n ) the associated splitting distributions defined in (3).

Lemma 5.1 If η has a finite variance σ 2, then (p
GW,η
n ) satisfies (H) with

γ = 1/2 and ν = σ

2
νBr .

Lemma 5.2 If η(k) ∼ κk−α−1 for some α ∈ (1, 2), then (p
GW,η
n ) satisfies (H) with

γ = 1 − 1/α and ν =
(
κ�(2 − α)α−1(α − 1)−1

)1/α
να.

The measures νBr and να are the dislocation measures of the Brownian and α-
stable tree, respectively, and are defined in Sect. 4.3.2. Together with the scaling
limit results on MB-trees, this gives Theorem 3.1 (i) and (ii) respectively. The proofs
of these lemmas are not completely obvious. We give here a rough idea of the main
steps of the proof of Lemma 5.1, and refer to [59, Section 5] for more details and
for the proof of Lemma 5.2.

Sketch of the Main Steps of the Proof of Lemma 5.1 Recall that T η denotes a
Galton–Watson tree with offspring distribution η. To simplify, we assume that the
support of η generates Z, so that P(#verticesT

η = n) > 0 for all n large enough. The
Otter-Dwass formula (or cyclic lemma) [86, Chapter 6] then implies that

P(#verticesT
η = n) = n−1

P(Sn = −1)

where Sn is a random walk with i.i.d. increments of law (η(i+1), i ≥ −1). Together
with the local limit Theorem, which ensures that P(Sn = −1) ∼

n→∞ (2πσ 2n)−1/2,

this leads to

P(#verticesT
η = n) ∼

n→∞ (2πσ 2)−1/2n−3/2.

(We note that this argument is also fundamental in the study of large Galton–Watson
trees via their contour functions). Then the idea is to use this approximation in the
definition of pGW,η

n to show that the two sums

√
n
∑

λ∈Pn

pGW,η
n (λ)

(
1 − λ1

n

)
f

(
λ

n

)
and

σ√
2π

1

n

n∑

λ1=�n/2�
f

(
λ1

n
,
n− λ1

n
, . . .

)(
λ1

n

)−3/2 (n− λ1

n

)−3/2
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are asymptotically equivalent (this is the technical part), for all continuous functions
f : S↓ → R. The conclusion follows, since the second sum is a Riemann sum that
converges to σ(

√
2π)−1

∫ 1
1/2 f (x, 1 − x, . . .)x−3/2(1 − x)−3/2dx.

5.1.2 Galton–Watson Trees with Arbitrary Degree Constraints

One may then naturally wonder if Theorem 4.1 could also be used to get the scaling
limits of Galton–Watson trees conditioned to have n leaves. The answer is yes,
and moreover this can be done in a larger context, using a simple generalization
of Theorems 4.1 and 4.2 to MB-trees with arbitrary degree constraints. This
generalization was done by Rizzolo [89] using an idea similar to the one presented
below Theorem 4.2 to get this theorem from Theorem 4.1. It is quite heavy to state
neatly, so we let the reader see the paper [89] and focus here on the applications
developed in this paper to Galton–Watson trees.

The classical theorems of Aldous and Duquesne on conditioned Galton–Watson
trees can be extended to Galton–Watson trees conditioned to have a number of
vertices with out-degree in a given set. To be more precise, fix A ⊂ Z+ and
consider an offspring distribution η with mean 1 and variance 0 < σ 2 < ∞. For
integers n for which such a conditioning is possible, let T

η,A
n denote a version of

a η-Galton–Watson tree conditioned to have exactly n vertices with out-degree in
A. For example, if A = Z+, this is the model of the previous section, whereas if
A = {0}, T η,A

n is a η-Galton–Watson tree conditioned to have n leaves.

Theorem 5.3 (Kortchemski [69] and Rizzolo [89]) As n →∞,

(
T

η,A
n√
n

,μη,A
n

)
(d)−→

GHP

(
2

σ
√
η(A)

TBr, μBr

)
.

The proof of Rizzolo [89] relies on his theorem on scaling limits of MB-trees
with arbitrary degree constraints. The most technical part is to evaluate the splitting
probabilities, which is done by generalizing the Otter-Dwass formula. The proof of
Kortchemski [69] is more in the spirit of the proofs of Aldous and Duquesne and
consists in studying the contour functions of the conditioned trees. We note that
[69] also includes cases where η has an infinite variance, and is in the domain of
attraction of a stable distribution (the limit is then a multiple of a stable tree). It
should be possible to recover this more general case via the approach of Rizzolo.

An Example of Application to Combinatorial Trees Indexed by the Number of
Leaves Let Tn be a tree uniformly distributed amongst the set of rooted ordered
trees with n leaves with no vertex with out-degree 1. One checks, using (2), that
Tn is distributed as an η-Galton–Watson tree conditioned to have n leaves, with η

defined by η(i) = (1 − 2−1/2)i−1, i ≥ 2, η(1) = 0 and η(0) = 2 − 21/2. The
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variance of η is 4(
√

2 − 1), so that finally,

(
Tn√
n
,μn

)
(d)−→

GHP

(
1

21/4(
√

2 − 1)
TBr, μBr

)

where μn is the uniform probability on the leaves of Tn.

5.2 Pólya Trees

The above results on conditioned Galton–Watson trees give the scaling limits of
several sequences of combinatorial trees, as already mentioned. There is however
a significant case which does not fall within the Galton–Watson framework, that of
uniform Pólya trees. By Pólya trees we simply mean rooted finite trees (non-ordered,
non-labelled). They are named after Pólya [87] who developed an analytical
treatment of this family of trees, based on generating functions. In this section, we
let Tn(P) be uniformly distributed amongst the set of Pólya trees with n vertices.

These trees are more complicated to study than uniform rooted trees with labelled
vertices, or uniform rooted, ordered trees, because of their lack of symmetry. In
this direction, Drmota and Gittenberger [43] showed that the shape of Tn(P) is
not a conditioned Galton–Watson tree. However Aldous [9] conjectured in 1991
that the scaling limit of (Tn(P)) should nevertheless be the Brownian tree, up
to a multiplicative constant. Quite recently, several papers studied the scaling
limits of Pólya trees, with different points of view. Using techniques of analytic
combinatorics, Broutin and Flajolet [26] studied the scaling limit of the height of
a uniform binary Pólya tree with n vertices, whereas Drmota and Gittenberger
[43] studied the profile of Tn(P) (the profile is the sequence of the sizes of each
generation of the tree) and showed that it converges after an appropriate rescaling
to the local time of a Brownian excursion. Marckert and Miermont [74] obtained
a full scaling limit picture of uniform binary Pólya trees: by appropriate trimming
procedures, they showed that rescaled by

√
n, they converge in distribution towards

a multiple of the Brownian tree.
More recently, with different methods, the following result was proved.

Theorem 5.4 (Haas–Miermont [59] and Panagiotou–Stufler [81]) As n →∞,

(
Tn(P)√

n
,μn(P)

)
(d)−→

GHP

(
cPTBr, μBr

)
, cP ∼ 1.491

where μn(P) denotes the uniform probability on the vertices of Tn(P).

The proof of [59] uses connections with MB-trees, whereas that of [81] uses, still,
connections with Galton–Watson trees. Let us first quickly discuss the MB point of
view. It is easy to check that the sequence (Tn(P)) is not Markov-Branching (this is
left as an exercise!), however it is not far from being so. It is actually possible to
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couple this sequence with a Markov-Branching sequence (T ′
n(P)) such that

E
[
dGHP(n

−εTn(P), n−εT ′
n(P))

] −→
n→∞ 0, ∀ε > 0

and (Tn(P)) and (T ′
n(P)) have the same splitting probabilities (pn) (by splitting

probabilities for trees that are not MB, we mean the distribution of the sizes of
the subtrees above the root). These splitting probabilities are given here by

pn−1(λ) =
∏n−1

j=1 #Fj (mj (λ))

#Tn
, for λ ∈ Pn−1

where mj(λ) = {i : λi = j }, #Tn is the number of rooted trees with n vertices
and Fj (k) denotes the set of multisets with k elements in Tj (with the convention
Fj (0) := {∅}). It remains to check that these splitting probabilities satisfy (H) with
appropriate parameters and to do this, we use the result of Otter [79]:

#Tn ∼
n→∞ c

κn

n3/2 , for some c > 0, κ > 1.

Very roughly, this allows to conclude that the two following sums

√
n
∑

λ∈Pn

pn(λ)

(
1 − λ1

n

)
f

(
λ

n

)
and

c

n

n−1∑

λ1=�(n−1)/2�
f

(
λ1

n
,
n− λ1

n
, 0, . . .

)(
λ1

n

)−3/2 (n− λ1

n

)−3/2

are asymptotically equivalent, so that finally, using that the second sum is a Riemann
sum, (H) holds with parameters γ = 1/2 and ν = νBr/cP , with cP =

√
2/(c

√
π).

The method of [81] is different. It consists in showing that asymptotically Tn(P)
can be seen as a large finite-variance critical Galton–Watson tree of random size
concentrated around a constant times n on which small subtrees of size O(log(n))
are attached. The conclusion then follows from the classical result by Aldous on
scaling limits of Galton–Watson trees.

Both methods can be adapted to Pólya trees with other degree constraints. In
[59] uniform Pólya trees with n vertices having out-degree in {0,m} for some fixed
integer m, or out-degree at most m, are considered. More generally, in [81], uniform
Pólya trees with n vertices having out-degree in a fixed set A (containing at least
0 and an integer larger than 2) are studied. In all cases, the trees rescaled by

√
n

converge in distribution towards a multiple of the Brownian tree.

Further Result To complete the picture on combinatorial trees asymptotics, we
mention a recent result by Stufler on unrooted trees, that was conjectured by Aldous,
but remained open for a while.
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Theorem 5.5 (Stufler [92]) Let T ∗
n (P) be uniform amongst the set of unrooted trees

with n vertices (unordered, unlabelled). Then,

T ∗
n (P)√
n

(d)−→
GH

cPTBr

(with the same cP as in Theorem 5.4).

The main idea to prove this scaling limit of unrooted uniform trees consists in
using a decomposition due to Bodirsky et al. [25] to approximate T ∗

n (P) by uniform
rooted Pólya trees and then use Theorem 5.4. This result more generally holds for
unrooted trees with very general degree constraints.

5.3 Dynamical Models of Tree Growth

As mentioned in Sect. 2.2, the prototype example of Rémy’s algorithm (Tn(R), n ≥
1) is strongly connected to Galton–Watson trees since the shape of Tn(R) (to
which has been subtracted the edge between the root and the first branch point)
is distributed as the shape of a binary critical Galton–Watson tree conditioned to
have 2n− 1 vertices. This implies that

(
Tn(R)√

n
,μn(R)

)
(d)−→

GHP

(
2
√

2TBr, μBr

)
.

Similar scaling limits results actually extends to most of the tree-growth models
seen in Sect. 2.2. To see this, it suffices to check that their splitting probabilities
satisfy Hypothesis (H). Technically, this mainly relies on Stirling’s formula and/or
balls in urns schemes. Note however that the convergence in distribution is not fully
satisfactory in these cases, since the trees are recursively built on a same probability
space, and we may hope to have convergence in a stronger sense. We will see below
that this is indeed the case.

5.3.1 Ford’s Alpha Model

For Ford’s α-model, with α ∈ (0, 1), it is easy to check (see [63]) that the splitting
probabilities q

Ford,α
n satisfy hypothesis (H) with γ = α and ν = νFord,α , where

νFord,α is a binary measure on S↓(νFord,α(s1 + s2 < 1) = 0) defined by

νFord,α(s1 ∈ dx) = 1{1/2≤x≤1}
�(1 − α)

(
α(x(1 − x))−α−1 + (2 − 4α)(x(1 − x))−α

)
dx.

This, together with Theorem 4.2 leads for α ∈ (0, 1) to the convergence:
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Theorem 5.6 ([63] and [59]) For all α ∈ (0, 1),

(
Tn(α)

nα
, μn(α)

)
(d)−→

GHP

(
Tα,νFord,α , μα,νFord,α

)
.

This result was actually first proved in [63], using the fact that the sequence
(Tn(α)) is Markov-Branching and consistent. Chen and Winkel [32] then improved
this result by showing that the convergence holds in probability.

For α = 1/2 (Rémy’s algorithm), note that we recover the result obtained via
the Galton–Watson approach. Note also that the case α = 1 is not included in the
hypotheses of the above theorem, however the trees Tn(α) are then deterministic
(comb trees) and it is clear that they converge after rescaling by n to a segment of
length 1, equipped with the Lebesgue measure. This tree is a general fragmentation
tree as introduced by Stephenson [91], with pure erosion (and no dislocation). When
α = 0, we observe a different regime, the height of a typical leaf in the tree growth
logarithmically, and there is no convergence in the GH-sense of the whole tree.

5.3.2 k-Ary Growing Trees

Observing the asymptotic behavior of the sequence of trees constructed via Rémy’s
algorithm, it is natural to wonder how this may change when deciding to branch
at each step k − 1 branches on the pre-existing tree, instead of one. For this k-ary
model, it was shown in [60] that qk

n satisfies (H) with γ = 1/k and ν = νk where

νk(ds) = (k − 1)!
k(�( 1

k
))k−1

k∏

i=1

s
−(1−1/k)
i

(
k∑

i=1

1

1 − si

)
1{s1≥s2≥...≥sk}ds,

is supported on the simplex of dimension k − 1. Together with Theorem 4.1 this
gives the limit in distribution of the sequence (Tn(k), n ≥ 1). Besides, using some
connections with the Chinese Restaurant Processes of Dubins and Pitman (see [86,
Chapter 3] for a definition) and more general urns schemes, it was shown that
these models converge in probability (however this second approach did not give
the distribution of the limiting tree.) Together, these two methods lead to:

Theorem 5.7 ([60]) Let μn(k) be the uniform measure on the leaves of Tn(k).
Then,

(
Tn(k)

n1/k , μn(k)

)
P−→

GHP
(Tk, μk)

where (Tk, μk) is a self-similar fragmentation tree, with index of self-similarity 1/k
and dislocation measure νk .
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Interestingly, using the approximation by discrete trees, it is possible to show that
randomized versions of the limiting trees Tk, k ≥ 2—note that T2 is the Brownian
tree up to a scaling factor—can be embedded into each other so as to form an
increasing (in k) sequence of trees [60, Section 5].

In Sect. 6.1 we will discuss a generalization of this model. Here, we glue at each
step star-trees with k−1 branches. However more general results are available when
deciding to glue more general tree structures, with possibly a random number of
leaves.

5.3.3 Marginals of Stable Trees

For β ∈ (1, 2], the sequence (Tn(β), n ≥ 1) built by Marchal’s algorithm provides,
for each n, a tree that is distributed as the shape of the subtree of the stable tree
Tβ spanned by n leaves taken independently according to μβ . Duquesne and Le
Gall [46] showed that Tn(β) is distributed as a Galton–Watson tree whose offspring
distribution has probability generating function z + β−1(1 − z)β , conditioned to
have n leaves. As so, it is not surprising that appropriately rescaled it should
converge to the β-stable tree. Marchal [73] proved an almost-sure finite-dimensional
convergence, whereas the results of [63] give the convergence in probability for the
GHP-topology. Additional manipulations even lead to an almost-sure convergence
for the GHP-topology:

Theorem 5.8 ([35]) Let μn(β) be the uniform measure on the leaves of Tn(β).
Then

(
Tn(β)

nβ
, μn(β)

)
a.s.−→

GHP

(
βTβ, μβ

)

Using this convergence, it was shown in [35] that randomized versions of the
stable trees Tβ, 1 < β ≤ 2 can be embedded into each other so as to form a
decreasing (in β) sequence of trees.

To complete these results, we mention that Chen et al. [33] propose a model that
interpolate between the α-model of Ford and Marchal’s recursive construction of the
marginals of stable trees, and determine there scaling limits, relying on the results
of [63].

5.4 Cut-Trees

The notion of the cut-trees was introduced in Example 5 of Sect. 2.3.

Cut-Tree of a Uniform Cayley Tree We use the notation of Example 5, Sect. 2.3
and let Cn be a uniform Cayley tree and T cut

n its cut-tree. Relying essentially on

Stirling’s formula, one gets that q
Cut,Cayley
n satisfies (H) with γ = 1/2 and ν =
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νBr/2, which shows that the rescaled cut-tree T cut
n /

√
n endowed with the uniform

measure on its leaves converges in distribution to (2TBr, μBr). This was noticed
in [15] and used to determine the scaling limits of the number of steps needed to
isolated by edges delation a fixed number of vertices in Cn. Actually, Bertoin and
Miermont [19] improve this result by showing the joint convergence

Theorem 5.9 (Bertoin–Miermont [19])

(
Cn√
n
,
T cut
n√
n

)
(d)−→

GHP

(
2TBr, 2TBr

)

where TBr is a tree constructed from TBr, that can be interpreted as its cut-tree, and
that is distributed as TBr.

Bertoin and Miermont [19] actually more generally extend this result to cut-trees of
Galton–Watson trees with a critical offspring distribution with finite variance. This
in turn was generalized by Dieuleveut [41] to Galton–Watson trees with a critical
offspring distribution in the domain of attraction of a stable law. See also [5, 28, 29]
for related results.

Cut-Tree of a Uniform Recursive Tree On the other hand, note that qCut,Recursive
n

does not satisfy (H). However, Bertoin showed in [17] that in this case, the cut-tree
Tn rescaled by n/ ln(n) converges for the GHP-topology to a segment of length 1,
equipped with the Lebesgue measure.

6 Further Perspectives

6.1 Multi-Type Markov-Branching Trees and Applications

It is possible to enrich trees with types, by deciding that each vertex of a tree carries
a type, which is an element of a finite or countable set. This multi-type setting is
often used in the context of branching processes, where individuals with different
types may evolve differently, and had been widely studied. For the trees point of
view, scaling limits of multi-type Galton–Watson trees conditioned to have a given
number of vertices have been studied by Miermont [77] when both the set of types
and the covariance matrix of the offspring distributions are finite, by Berzunza [21]
when the set of types is finite with offspring distributions in the domain of attraction
of a stable distribution and by de Raphélis [40] when the number of types is infinite,
under a finite variance-type assumption. The Brownian and stable trees appear in
the scaling limits.

One may more generally be interested in multi-type Markov-Branching trees,
which are sequences of trees with vertices carrying types, where, roughly, the
subtrees above the root are independent and with distributions that only depend
on their size and on the type of their root. In a work in progress [62], results similar
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to Theorems 4.1 and 4.2 are set up for multi-type MB-trees, when the set of types
is finite. Interestingly, different regimes appear in the scaling limits (multi-type or
standard fragmentation trees), according to whether the rate of type change is faster
than or equal to or slower than the rate of macroscopic branchings.

This should lead to new proofs of the results obtained in [21, 77]. This should
also lead to other interesting applications, in particular to dynamical models of tree
growth. In these growing models one starts from a finite alphabet of trees and then
glues recursively trees by choosing at each step one tree at random in the alphabet
and grafting it uniformly on an edge of the pre-existing tree. This generalizes the
k-ary construction studied in Sects. 2.2 and 5.3.2, and is connected to multi-type
MB-trees. In this general setting multi-type fragmentation trees will appear in the
scaling limits.

6.2 Local Limits

This survey deals with scaling limits of random trees. There is another classical
way to consider limits of sequences of trees (or graphs), that of local limits. This
approach is quite different and provides other information on the asymptotics of the
trees (e.g. on the limiting behavior of the degrees of vertices). Roughly, a sequence
of finite rooted trees (tn) is said to converge locally to a limit t if for all R > 0, the
restriction of tn to a ball of radius R centered at the root converges to the restriction
of t to a ball of radius R centered at the root. The trees are therefore not rescaled
and the limit is still a discrete object.

For results on the local limits of random models related to the ones considered
here, we refer to: Abraham and Delmas [1, 2] and the references therein for Galton–
Watson trees, Stefánsson [90] for Ford’s α-model and Pagnard [80] for general MB-
sequences and the study of the volume growth of their local limits. We also mention
the related work by Broutin and Mailler [27] that uses local limits of some models
of MB-trees to study asymptotics of And/Or trees, that code boolean functions.

6.3 Related Random Geometric Structures

The discrete trees form a subclass of graphs and are generally simpler to study.
There exist however several models of graphs (that are not trees) whose asymptotic
study can be conducted by using trees. Different approaches are possible and it is
not our purpose to present them here. However we still give some references that are
related to some models of trees presented here (in particular Galton–Watson trees)
to the interested reader (the list is not exhaustive):

• on random graphs converging to the Brownian tree: [7, 22, 31, 39, 67, 82, 93]
• on random graphs converging to tree-like structures: [36–38]
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• on the Erdős–Rényi random graph in the critical window and application to the
minimum spanning tree of the complete graph: [4, 6]

• on random maps (which are strongly connected to labeled trees): [78] and all the
references therein.

In most of these works the Brownian tree intervenes in the construction of the
continuous limit.
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Optimality of Two-Parameter Strategies
in Stochastic Control

Kazutoshi Yamazaki

Abstract In this note, we study a class of stochastic control problems where the
optimal strategies are described by two parameters. These include a subset of
singular control, impulse control, and two-player stochastic games. The parameters
are first chosen by the two continuous/smooth fit conditions, and then the optimality
of the corresponding strategy is shown by verification arguments. Under the setting
driven by a spectrally one-sided Lévy process, these procedures can be efficiently
performed owing to the recent developments of scale functions. In this note, we
illustrate these techniques using several examples where the optimal strategy and
the value function can be concisely expressed via scale functions.

Keywords Singular control · Impulse control · Zero-sum games ·
Optimal stopping · Spectrally one-sided Lévy processes · Scale functions

AMS 2010 Subject Classifications 60G51, 93E20, 49J40

1 Introduction

In stochastic control, the objective is to optimally control a stochastic process to
minimize or maximize the expected value of a given payoff, which is determined
by the paths of the control and/or controlled processes. In other words, we want
to identify an optimal strategy that attains the minimal or maximal expected
value, which is referred to the (optimal) value function. Essentially, all real-life
phenomena contain uncertainty. Consequently the problem of stochastic control
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arises everywhere. It is well studied in, among other fields, finance (e.g., portfolio
optimization, asset pricing, and risk management), economics (e.g., search, real
options, and games), insurance, inventory management, and queues.

Because stochastic control has a wide range of applications and is studied in a
variety of fields, there are many different possible modeling approaches. A model
can be categorized based on (1) a discrete/continuous time, (2) a discrete/continuous
state, and (3) a finite/infinite horizon.

In this note, we focus on a relatively simple class of stochastic control problems
where analytical solutions can be obtained. We assume the continuous-time, infinite-
horizon case with the state space given by R or its subset. In addition, we assume
randomness to be modeled by a one-dimensional spectrally one-sided Lévy process,
or a Lévy process with only one-sided jumps that does not have a monotone path
almost surely (a.s.). As the title of this note suggests, we are particularly interested
in cases where two parameters are sufficient to describe the optimal strategy. While
one-parameter optimal strategies are ubiquitous, to the best of our knowledge the
study of two-parameter strategies is rather rare.

1.1 One-Parameter Strategies

In most stochastic control problems that admit analytical solutions, an optimal
strategy can typically be described by one parameter.

In the continuous-time, infinite-horizon optimal stopping driven by a one-
dimensional Markov process, the stopping and waiting regions are separated by
free boundaries, and, in many cases, the boundary is a single point. In the
American/Russian perpetual (vanilla) options driven by a Lévy process, it is known,
as in [3] and [37], that it is optimal to exercise when the process itself or its
reflected process goes above or below a certain barrier for the first time. In the
quickest detection of a Wiener process [45] where we want to promptly detect the
unobservable sudden change of the drift of the process, it is optimal to stop when
the posterior probability process exceeds some level for the first time. There are a
number of other examples for which the first crossing time of a boundary is optimal.
See [17, 31, 33] and also the book by Peskir and Shiryaev [41].

In singular control, again, the controlling and waiting regions are typically
separated by a single point. Well-studied examples include de Finetti’s dividend
problem, in which we want to maximize the total expected dividends accumulated
until ruin [or the first time the (controlled) surplus process goes below zero]. A
majority of the existing literature focuses on the optimality of the barrier strategy
that pays dividends so that the surplus process is reflected at the barrier. In the
spectrally negative Lévy model, it has been shown by Loeffen [34] that a barrier
strategy is optimal on the condition that the Lévy measure has a completely mono-
tone density. On the other hand, for the spectrally positive Lévy case, optimality is
guaranteed as shown in [8]. Recently, these results have been extended to cases in
which a strategy is assumed to be absolutely continuous with respect to the Lebesgue
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measure: the optimal strategy can again be described by a single threshold, and the
so-called refraction strategy is optimal; see [32] and [50].

In the continuous-time inventory model (with the assumption that backorders
are allowed), one wants to find an optimal replenishment strategy that minimizes
the sum of the inventory and controlling costs. In the spectrally negative Lévy
case, under e.g. the convexity assumption regarding the inventory cost and with
the absence of a fixed cost, it has been shown to be optimal to replenish the item so
that the inventory does not drop below a certain level (see Section 7 of [49]). The
absolutely continuous case has been studied by Hernández-Hernández et al. [27], in
which they showed the optimality of a refraction strategy.

1.2 Two-Parameter Strategies

In view of the above examples of one-parameter strategies, it is not difficult to see
that by a simple modification to the problem setting, more parameters are needed to
describe the optimal strategy. Here, we list several examples where one additional
parameter is also needed.

1.2.1 Two-Sided Singular Control

In the above examples of singular control, we assumed control to be one-sided: we
can only decrease or increase the underlying process. However, there are versions
in which it is two-sided and we can both decrease and increase the process.

In the extension of de Finetti’s problem with capital injections, the surplus
process can also be increased by injecting capital. Typically, the problem requires
that capital be injected so that the surplus process never goes below zero. In
inventory control, we can think of a version in which the item can be replenished
and also sold so as to avoid a shortage or excess of an inventory, respectively.

1.2.2 Impulse Control

We can consider another extension from singular control by adding a fixed cost.
Namely, in addition to the cost (or reward) that is proportional to the amount of
modification, a fixed cost is incurred each time it is modified. In this case, it is clear
that one parameter is no longer sufficient to describe the optimal strategy. Instead,
we can expect that the (s, S)-strategy (more commonly called the (s, S)-policy) is a
reasonable candidate. In other words, given two threshold levels s and S, whenever
the process goes above (or below) s, it is pushed down (or up) to S. The optimality
of an (s, S)-strategy is often a primary objective in the impulse control literature.
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1.2.3 Zero-Sum Games Between Two Players

In a (stochastic) game, multiple players aim to maximize their own expected
payoffs. However, the payoff depends not only on the actions of one player but also
on those of the others. The primary objective of game theory is to identify, if any,
a Nash equilibrium (saddle point), which is a set of strategies such that no player
can increase her expected payoff by solely changing her strategy, unless the other
players also change their strategies.

Consider a case with two players in which a common payoff is maximized by one
player and is minimized by the other. Under settings similar to those described in
Sect. 1.1 above, each player’s strategy is described by one parameter. Consequently,
the equilibrium is described by two parameters.

1.3 Fluctuation Theory of Spectrally One-Sided Lévy Processes

In this note, we assume throughout that the underlying (uncontrolled) process is a
spectrally negative Lévy process. The spectrally positive Lévy process is its dual
and hence the case driven by this process is also covered. While spectrally one-
sided Lévy processes are not necessarily desirable for realistic models, at least
analytically, it has a great advantage to work with these sets of processes.

Over the last decade, significant developments in the fluctuation theory of
spectrally one-sided Lévy processes have been presented (see, e.g., the textbooks
by Bertoin [13], Doney [16], and Kyprianou [30]). Various fluctuation identities are
known to be written using the so-called scale functions, and these include essentially
all the expectations needed to compute the net present values (NPVs) of the payoffs
under the one- and two-parameter strategies described above.

The scale function is defined by its Laplace transform written in terms of the
Laplace exponent of the process. We see in this note that, despite its concise
characterization, it still contains sufficient information to solve the problem.

1.4 Solution Procedures

Using the expected NPVs of payoffs under each two-parameter strategy, written
explicitly in terms of the scale function, the classical “guess and verify” approach
can be performed in a straightforward manner. Here, we briefly illustrate each step
below.
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1.4.1 Selection of the Two Parameters

As the form of the candidate strategy is already conjectured, the guessing part
essentially is to decide on the values of the two parameters. Because we need to
identify two values, naturally, we need two equations.

Before discussing the two-parameter case, we start with the one-parameter case
to gain some intuition. As reviewed above in Sect. 1.1, the parameter usually
corresponds to the value of a barrier. Here, we temporarily use ua(x) for the
expected NPV when the parameter/barrier is a and the starting value of the process
is x.

In this case, the most intuitive and straightforward approach is to use the first-
order condition. Namely, we first obtain the parameter, say a∗, that minimizes or
maximizes a �→ ua(x). Naturally, we expect (given that the barrier is in the interior
of the state space) the derivative ∂ua(x)/∂a|a=a∗ to vanish. This can be easily
accomplished because ua(x) is written using the scale function, whose smoothness
has been well studied (see Remark 2.1 below).

Alternatively, we can apply what is known as continuous/smooth fit, which
basically chooses the barrier a∗ so that the degree of smoothness of ua(·) at a

increases by one by setting a = a∗. The smoothness at the barrier is in general
dependent on the regularity (see Sect. 2.1 below for its definition). In optimal
stopping and impulse control, we expect the value function to be continuous (resp.
continuously differentiable) at the barrier when it is irregular (resp. regular) for the
controlling/stopping region. On the other hand, for singular control, we expect it to
be continuously differentiable (resp. twice continuously differentiable) at the barrier
when it is irregular (resp. regular).

At least for the Lévy case, these two methods tend to lead to the same condition,
i.e., some function, say a �→ g(a), of the barrier level a (and not x) vanishes; see
Fig. 1. In addition, under a suitable assumption, it is typically a strictly monotone
function. Hence, the candidate barrier can be defined as its unique root. Detailed
discussion of the equivalence of these two methods for optimal stopping problems
is presented in [18].

We now discuss the two-parameter case. Let us temporarily use va,b(x) for the
expected NPV under the strategy parametrized by (a, b) when the starting value of
the process is x.

Again, the first approach is to use the first-order condition. This time, we apply
it with respect to the two parameters (a, b), or equivalently, we compute the partial
derivatives ∂va,b(x)/∂a and ∂va,b(x)/∂b and choose parameters so that both vanish
simultaneously. The second approach is to use continuous/smooth fit at the barriers
(with an additional condition for the case of impulse control). Again, we end up
having the same two equations, e.g., 
(a, b) = 0 and λ(a, b) = 0.

The difficulty here is that this time we need to show the existence of solutions
to the two equations, which are typically nonlinear functions. However, the two
equations tend to be related in that one is the partial derivative of the other, i.e.,
λ(a, b) = ∂
(a, b)/∂b. In other words, we want to obtain the curve b �→ 
(a∗, b)
that touches and becomes tangent to the x-axis at b∗ (see Fig. 2).
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Fig. 1 (One-parameter case) Typical function a �→ g(a) obtained when the first-order or
continuous/smooth fit condition is applied. The desired parameter becomes its unique root

Fig. 2 (Two-parameter case) Typical function obtained when the first-order or continuous/smooth
fit condition is applied. The plot is the curve b �→ 
(a, b) on [a,∞) for different values of a.
Typically the desired values (a∗, b∗) become those for which λ(a∗, b∗) = ∂
(a∗, b)/∂b|b=b∗ = 0.
In other words, we must determine the starting point a∗ such that the curve becomes tangent to the
x-axis at b∗, as in the solid curve in the plot
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1.4.2 Verification of Optimality

After we select the values of the two parameters, say (a∗, b∗), we must verify the
optimality of the corresponding strategy. The so-called verification lemma gives a
sufficient condition for optimality that commonly requires:

(1) the smoothness of va∗,b∗ ,
(2) that va∗,b∗ solves the variational inequalities.

The imposed conditions must be sufficient so that the discounted process of va∗,b∗(·)
(killed upon exiting the state space), driven by any controlled process, is a local
sub/super-martingale. In general, the forms of the variational inequalities are well
known (see e.g. [39]). However, its technical details must be customized, and, in
particular, we need to take care of the tails of va∗,b∗ and the Lévy measure. Because
of the localizing arguments needed to apply Itô’s formula, at the end, we must take
a limit and interchange it over integrals.

Regarding condition (1), we choose the values of (a∗, b∗) at the guessing step so
that va∗,b∗ is “sufficiently smooth,” although the smoothness at the boundary may
not be sufficient to apply the usual version of Itô’s formula (so we may need the
Meyer-Itô version). For stochastic calculus for Lévy processes, see [44] and [1].

Showing (2) is usually the hardest part and sometimes it fails. The variational
inequalities must hold at each point in the state space, which is separated into the
waiting and controlling regions. In our examples when the state space is R, except
for the impulse control case, the waiting region is given by (a∗, b∗), whereas the
controlling region is (−∞, a∗)∪ (b∗,∞). At a point in the waiting region (a∗, b∗),
the proof is normally simple because the discounted process of va∗,b∗(·) driven by
the underlying process is a martingale (see Sect. 2.7.3). On the other hand, the proof
for the point in (b∗,∞) (resp. (−∞, a∗)) tends to be difficult for the spectrally
negative (resp. positive) Lévy case. Intuitively, this is because the process can jump
from one region to the other, where the form of va∗,b∗ changes.

1.5 Comparison with Other Approaches

The classical approach to the stochastic control of Lévy processes involves integro-
differential equations (IDEs).

First, we identify the candidate value function as the solution to an IDE with
its boundary conditions given by the desired continuity/smoothness at the barriers.
Except for special cases, this cannot be solved analytically, and hence verification
arguments must be made using this implicit representation of the candidate value
function. This is especially difficult when the Lévy measure is infinite.

A clear advantage of using the fluctuation theory approach described above is
that, if the function va∗,b∗ can be computed using the scale function, computation
is much more direct and simple. While the scale function in general does not admit
analytically closed expression, solution methods do not require details of its form.
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Typically, the selection of parameters can be performed by its asymptotic property at
zero (see Sect. 2.3 below) and, for verification, we can use some general properties
of the scale function.

Another advantage is that it can deal with cases with jumps of infinite activ-
ity/variation without any additional work. The IDE approach must often assume
that the jump part of the underlying process is a compound Poisson process.
However, there are a number of important examples with infinite Lévy measures,
such as variance gamma, CGMY, and normal inverse Gaussian processes, as well as
classical ones, such as the gamma process and a subset of stable processes.

1.6 Computation

Using these approaches, the value function and the selected parameters are written in
terms of the scale function. Hence, their computation is essentially equivalent to that
of the scale function. Because the scale function is defined by its Laplace transform
written in terms of the Laplace exponent, it must be inverted either analytically or
numerically.

Some classes of Lévy processes have rational forms of Laplace exponents. For
these processes, analytical forms of scale functions can be easily obtained by
partial fraction decomposition. Among them, the case with i.i.d. phase-type jumps
[2] is particularly important, because at least in principle it can approximate any
Lévy process. This means that any scale function can be approximated by the
scale function of this process. Egami and Yamazaki [19] conducted a sequence of
numerical experiments to confirm the accuracy of this approximation.

Alternatively, the scale function can always be directly computed via numerical
Laplace inversion. As discussed in [29], the scale function can be written as the
difference between an exponential function (whose parameter is defined by �(q) in
the current note) and the resolvent (potential) term (see the third equation in (2.8)
below). Hence, the computation is reduced to that of the resolvent term. This is
a bounded function that asymptotically converges to zero, and hence, numerical
Laplace inversion can be quickly and accurately conducted. For more details, we
refer readers to Section 5 of [29].

In this note, we review these techniques, using several examples of two-sided
singular control, impulse control and games, as reviewed in Sect. 1.2 above. Our aim
is not to offer rigorous arguments. Instead, we present a guide on how we can apply
the existing results in the fluctuation theory and scale function to solve stochastic
control problems. For more technical details, we refer readers to the original works
we cite throughout the note.

The rest of this note is organized as follows:
In Sect. 2, we review the spectrally negative Lévy process and the scale function.

In particular, we review the fluctuation identities as well as some important
properties of the scale function that we use later in the note.
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In Sect. 3, we examine two-sided singular control, which we introduced in
Sect. 1.2.1. First, we give the formulation and review several examples. Then,
we discuss how to choose the two parameters via continuous/smooth fit and
demonstrate its optimality via verification arguments. In particular, we focus on
the problems considered in Bayraktar et al. [8] and Baurdoux and Yamazaki [6] and
illustrate how to follow these solution procedures.

In Sect. 4, we consider impulse control, as addressed in Sect. 1.2.2. While the
techniques used are similar to those used for singular control, there are several major
differences and new challenges in the solution. In particular, we use the case in
Yamazaki [49] to illustrate the steps necessary to solve the problem.

In Sect. 5, we discuss two-player optimal stopping games, as introduced in
Sect. 1.2.3, with a special focus on the problem studied by Egami et al. [20]. We
also make some remarks regarding other forms of two-player zero-sum games.

Throughout this study, we use f (x+) := limy↓x f (y) and f (x−) :=
limy↑x f (y) to indicate the right- and left-hand limits, respectively, for any function
f whenever they exist. We let �ξt := ξt − ξt−, for any process with left limits ξ .
Finally, for any interval I ⊂ R, let I := supI, I := inf I, and Io be the interior
of I.

2 Spectrally Negative Lévy Processes and Scale Functions

In this section, we review the spectrally negative Lévy process and its fluctuation
theory. We shall also review the scale function and list the fluctuation identities as
well as some important properties that are frequently used in stochastic control.
Note that the spectrally positive Lévy process is its dual, and the results introduced
here can be directly applied as well.

Defined on a probability space (�,F ,P), let X be a spectrally negative Lévy
process with its Laplace exponent X given by

ψ(s) := logE
[
esX1

]
= γ s + 1

2
σ 2s2 +

∫

(−∞,0)
(esz − 1 − sz1{z>−1})ν(dz), s ≥ 0,

(2.1)

where ν is a Lévy measure with the support (−∞, 0) that satisfies the integrability
condition

∫
(−∞,0)(1 ∧ |z|2)ν(dz) < ∞. For every x ∈ R, let Px be the conditional

probability under which X0 = x (in particular, we let P ≡ P0), and Ex and E be the
corresponding expectation operators. Let F be the filtration generated by X.

The path variation of the process is particularly important in stochastic control,
especially when we apply continuous/smooth fit as we shall see in later sections.
For the case of a Lévy process, it has paths of bounded variation a.s. or otherwise
it has paths of unbounded variation a.s. The former holds if and only if σ = 0 and



60 K. Yamazaki

∫
(−1,0) |z| ν(dz) < ∞; in this case, the expression (2.1) can be simplified to

ψ(s) = δs +
∫

(−∞,0)
(esz − 1)ν(dz), s ≥ 0,

with δ := γ − ∫
(−1,0) z ν(dz).

Throughout the note, we exclude the case in which X is the negative of a
subordinator (i.e., X is monotonically decreasing a.s.). This assumption implies that
δ > 0 when X is of bounded variation.

2.1 Path Variations and Regularity

As defined in Definition 6.4 of [30], we call a point x regular for an open or closed
set B if Px{TB = 0} = 1 where

TB := inf{t > 0 : Xt ∈ B},

and irregular if Px{TB = 0} = 0; here and throughout the note, let inf∅ = ∞. By
Blumenthal’s zero-one law, the probability Px{TB = 0} is either 0 or 1, and hence
any point is either regular or irregular.

As summarized in Section 8 of [30], for any spectrally negative Lévy process X,
the point 0 is regular for (0,∞), meaning that, if the process starts at 0, it enters
(0,∞) immediately. On the other hand, 0 is regular for (−∞, 0) if and only if the
process has paths of unbounded variation.

We shall see in later sections that the smoothness of the value function at (free)
boundaries depends on their regularity.

2.2 Scale Functions

Fix q ≥ 0. For any spectrally negative Lévy process X, its q-scale function

W(q) : R→ [0,∞)

is a function that is zero on (−∞, 0), continuous and strictly increasing on [0,∞),
and is characterized by the Laplace transform:

∫ ∞

0
e−sxW(q)(x)dx = 1

ψ(s) − q
, s > �(q), (2.2)
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where

�(q) := sup{λ ≥ 0 : ψ(λ) = q}.

Here, the Laplace exponent ψ in (2.1) is known to be zero at the origin and convex
on [0,∞). We also define, for x ∈ R,

W
(q)

(x) :=
∫ x

0
W(q)(y)dy,

Z(q)(x) := 1 + qW
(q)

(x),

Z
(q)

(x) :=
∫ x

0
Z(q)(z)dz = x + q

∫ x

0

∫ z

0
W(q)(w)dwdz.

Because W(q)(x) = 0 for −∞ < x < 0, we have

W
(q)

(x) = 0, Z(q)(x) = 1 and Z
(q)

(x) = x, x ≤ 0. (2.3)

We shall also define, when ψ ′(0+) > −∞,

R(q)(x) := Z
(q)

(x)+ ψ ′(0+)

q
, x ∈ R.

In Fig. 3, we show sample plots of the scale function W(q) on [0,∞) for the
cases of bounded and unbounded variation. Its behaviors as x ↓ 0 and x ↑ ∞ are
reviewed later in this section.

2.3 Smoothness of Scale Functions

A particularly important property of the scale function, which is helpful in applying
continuous/smooth fit, is its behaviors around zero: as in Lemmas 3.1 and 3.2
of [29],

W(q)(0) =
{

0, if X is of unbounded variation,
1
δ
, if X is of bounded variation,

(2.4)

W(q)′(0+) := lim
x↓0

W(q)′(x) =

⎧
⎪⎨

⎪⎩

2
σ 2 , if σ > 0,
∞, if σ = 0 and ν(−∞, 0) = ∞,
q+ν(−∞,0)

δ2 , if σ = 0 and ν(−∞, 0) < ∞.

(2.5)

Note that these can be confirmed in Fig. 3.
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Fig. 3 Plots of the scale function W(q) on [0,∞). The solid red curve is for the case of bounded
variation; the dotted blue curve is for the case of unbounded variation (with σ > 0). As reviewed
in (2.4), its behaviors around zero depend on the path variation of the process. In addition, as
in (2.13), it increases exponentially as x →∞

As we shall see in later sections, when considering continuity/smoothness at
the lower barrier, the difference between the right-hand and left-hand limits often
becomes the product of W(q)(0) and some function, say 
(a, b), of the two
parameters (barriers) (a, b) to be selected: for these to match, the parameters (a, b)

must be chosen so that 
(a, b) vanishes if W(a)(0) > 0.
When W(q)(0) = 0 (or equivalently X is of unbounded variation), then the value

function is expected to be smoother. Repeating the same procedure for its derivative,
one gets that the difference between the right-hand and left-hand limits becomes
the product of W(q)′(0+) and 
(a, b); in this case, (a, b) must be chosen so that

(a, b) = 0.

At the upper boundary, the smoothness tends to be the same for both bounded and
unbounded variation cases: this gives another equation λ(a, b) = 0 where λ(a, b) is
the partial derivative of 
(a, b) with respect to b.

Regarding the smoothness of the scale function on R\{0}, we have the following;
see [15] for more comprehensive results. These smoothness results are important in
order to apply Itô’s formula where the (candidate) value function must be C2 (resp.
C1) for the case of unbounded (resp. bounded) variation.
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Remark 2.1 If X is of unbounded variation or the Lévy measure does not have an
atom, then it is known that W(q) is C1(R\{0}). Hence,

(1) Z(q) is C1(R\{0}) and C0(R) for the bounded variation case, while it is
C2(R\{0}) and C1(R) for the unbounded variation case,

(2) Z
(q)

is C2(R\{0}) and C1(R) for the bounded variation case, while it is
C3(R\{0}) and C2(R) for the unbounded variation case.

In addition, if σ > 0, then W(q) is C2(R\{0}).

2.4 Fluctuation Identities for Spectrally Negative Lévy
Processes

Here we shall list some fluctuation identities for the spectrally negative Lévy
process X.

2.4.1 Two-Sided Exit

The most well-known application of the scale function is as follows. Let us define
the first down- and up-crossing times, respectively, of X by

T −
b := inf {t > 0 : Xt < b} and T +

b := inf {t > 0 : Xt > b} , b ∈ R.

(2.6)

Then, for any b > 0 and x ≤ b,

Ex

[
e−qT +

b 1{T +
b <T −

0

}
]
= W(q)(x)

W(q)(b)
,

Ex

[
e−qT −

0 1{T +
b >T −

0

}
]
= Z(q)(x)− Z(q)(b)

W(q)(x)

W(q)(b)
,

Ex

[
e−qT −

0

]
= Z(q)(x)− q

�(q)
W(q)(x).

(2.7)

2.4.2 Resolvent Measures

The scale function can express concisely the q-resolvent (potential) measure. As
summarized in Theorem 8.7 and Corollaries 8.8 and 8.9 of [30] (see also Bertoin



64 K. Yamazaki

[14], Emery [22], and Suprun [46]), we have

Ex

[ ∫ T −
0 ∧T +

b

0
e−qt 1{Xt∈dy}dt

]
=
[W(q)(x)W(q)(b − y)

W(q)(b)
−W(q)(x − y)

]
dy, b > 0, x ≤ b,

Ex

[ ∫ T −
0

0
e−qt 1{Xt∈dy}dt

]
=
[
e−�(q)yW(q)(x)−W(q)(x − y)

]
dy, (2.8)

Ex

[ ∫ ∞

0
e−qt 1{Xt∈dy}dt

]
=
[
e�(q)(x−y)

ψ ′(�(q))
−W(q)(x − y)

]
dy.

Now define, for any measurable function h and s ∈ R,

�(s; h) :=
∫ ∞

0
e−�(q)yh(y + s)dy =

∫ ∞

s

e−�(q)(y−s)h(y)dy,

ϕs(x; h) :=
∫ x

s

W(q)(x − y)h(y)dy, x ∈ R.

Here ϕs(x; h) = 0 for any x ≤ s because W(q) is uniformly zero on (−∞, 0). Then
it is clear that

Ex

[ ∫ T −
a ∧T +

b

0
e−qth(Xt )dt

]
= W(q)(x − a)

W(q)(b − a)
ϕa(b; h)− ϕa(x; h), b > a, x ≤ b,

Ex

[ ∫ T −
a

0
e−qth(Xt )dt

]
= �(a; h)W(q)(x − a)− ϕa(x; h), x, a ∈ R,

where we assume for the latter that �(a; h) is well-defined and finite.

2.5 Fluctuation Identities for the Infimum and Reflected
Processes

Let us define the running infimum and supremum processes

Xt := inf
0≤t ′≤t

Xt ′ and Xt := sup
0≤t ′≤t

Xt ′, t ≥ 0.

Then, the processes reflected from above at b and below at a are given, respectively,
by

Ȳ b
t := Xt −Db

t and Ya
t := Xt + Ua

t , t ≥ 0,
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where

Db
t := (Xt − b)∨ 0 and Ua

t := (a − Xt) ∨ 0, t ≥ 0,

are the cumulative amounts of reflections that push the processes downward and
upward, respectively.

2.5.1 Fluctuation Identities for the Infimum Process

By Corollary 2.2 of [29],

E

[ ∫ ∞

0
e−qt1{−Xt∈dy}dt

]
= 1

�(q)
W(q)(dy)−W(q)(y)dy

= 1

�(q)
[�(q)(y)dy +W(q)(0)δ0(dy)],

where W(q)(dy) is the measure such that W(q)(y) = ∫
[0,y]W

(q)(dz) (see [30,
(8.20)]) and δ0 is the Dirac measure at zero. Here, for all y > 0,

�(q)(y) := W(q)′(y+)−�(q)W(q)(y) > 0. (2.9)

See another probabilistic interpretation of this function in Section 3.3 in [47]. This
function often appears in stochastic control. See in particular Sects. 4 and 5.1.1
below and also [47].

2.5.2 Fluctuation Identities for Ȳ b
t

Fix a < b. Define the first down-crossing time of Ȳ b
t as:

τa,b := inf{t > 0 : Ȳ b
t < a}.

First, the Laplace transform of τa,b is given, as in Proposition 2(ii) of [43], by

Ex [e−qτa,b ] = Z(q)(x − a)− qW(q)(b − a)
W(q)(x − a)

W(q)′((b − a)+)
, x ≤ b.

Second, using its resolvent given in Theorem 1(ii) of [43], we have, for x ≤ b,

Ex

[ ∫ τa,b

0
e−qth(Ȳ b

t )dt
]

= W(q)(x − a)

W(q)′((b − a)+)

[
W(q)(0)h(b)+

∫ b

a

h(y)W(q)′(b − y)dy

]
− ϕa(x; h).
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Finally, as in Proposition 1 of [4], the discounted cumulative amount of reflection
from above is given by

Ex

[ ∫

[0,τ a,b]
e−qtdDb

t

]
= W(q)(x − a)

W(q)′((b − a)+)
, x ≤ b.

2.5.3 Fluctuation Identities for Ya
t

Fix a < b. Define the first up-crossing time of Y a
t as:

τa,b := inf{t > 0 : Y a
t > b}.

First, as in page 228 of [30], its Laplace transform is concisely given by

Ex[e−qτa,b ] = Z(q)(x − a)

Z(q)(b − a)
, x ≤ b.

Second, by Theorem 1(i) of [43], for any x ≤ b,

Ex

[ ∫ τa,b

0
e−qth(Y a

t )dt
]
= Z(q)(x − a)

Z(q)(b − a)
ϕa(b; h)− ϕa(x; h).

Finally, as in the proof of Theorem 1 of [4], the discounted cumulative amount of
reflection from below, given ψ ′(0+) > −∞, is

Ex

[ ∫ τa,b

0
e−qtdUa

t

]
= −R(q)(x − a)+ Z(q)(x − a)

R(q)(b − a)

Z(q)(b − a)
, x ≤ b.

2.6 Fluctuation Identities for Doubly Reflected Lévy Processes

Fix a < b. As a variant of the reflected processes addressed above, the doubly
reflected Lévy process is given by

Y
a,b
t := Xt + U

a,b
t −D

a,b
t , t ≥ 0. (2.10)

This process is reflected at the two barriers a and b so as to stay on the interval
[a, b]; see page 165 of [4] for the construction of the processes Ua,b, Da,b, and
Y a,b. To put it simply, Ua,b is activated whenever Y a,b attempts to downcross a so
that Y a,b stays at or above a; similarly, Da,b is activated so that Y a,b stays at or
below b.
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First, as in Theorem 1 of [4], for x ≤ b,

Ex

[∫

[0,∞)

e−qtdDa,b
t

]
= Z(q)(x − a)

qW(q)(b − a)
,

Ex

[∫

[0,∞)

e−qtdUa,b
t

]
= −R(q)(x − a)+ Z(q)(b − a)

qW(q)(b − a)
Z(q)(x − a),

(2.11)

where we assume ψ ′(0+) > −∞ for the latter.
Second, using the q-resolvent density of Y a,b given in Theorem 1 of [42], we

have, for x ≤ b,

Ex

[∫

[0,∞)

e−qth(Y
a,b
t )dt

]
=
∫ b

a

h(y)

[
Z(q)(x − a)W(q)′(b − y)

qW(q)(b − a)
−W(q)(x − y)

]
dy

+ h(b)
[
Z(q)(x − a)

W(q)(0)

qW(q)(b − a)

]
. (2.12)

2.7 Other Properties of the Scale Function

Here we list some other properties of the scale function that are often useful in
solving stochastic control problems.

2.7.1 Asymptotics as x → ∞

Suppose q > 0. It is known that the scale function W(q) increases exponentially:
we have

W(q)(x)/e�(q)x x→∞−−−→ ψ ′(�(q))−1. (2.13)

By this, the following limits are also immediate:

lim
x→∞

W(q)′(x+)

W(q)(x)
= �(q), lim

x→∞
Z(q)(x)

W(q)(x)
= q

�(q)
and lim

x→∞
Z

(q)
(x)

W(q)(x)
= q

�2(q)
.

Note also that, for s ∈ R and any measurable function h such that �(s; h) is well-
defined,

lim
x→∞

ϕs(x; h)
W(q)(x − s)

= �(s; h). (2.14)
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2.7.2 Log-Concavity

The scale function W(q) is known to be log-concave: as in (8.18) and Lemma 8.2 of
[30],

W(q)′(y+)

W(q)(y)
≤ W(q)′(x+)

W(q)(x)
, y > x > 0.

In addition, W(q)′(x−) ≥ W(q)′(x+) for all x > 0. These properties are sometimes
needed for the monotonicity of related functions; see Sects. 4.3.2 and 5.2.1 below.

2.7.3 Martingale Properties

Let L be the infinitesimal generator associated with the process X applied to a
sufficiently smooth function h (i.e. C1 [resp. C2] for the case X is of bounded [resp.
unbounded] variation): for x ∈ R,

Lh(x) := γ h′(x)+ 1

2
σ 2h′′(x)

+
∫

(−∞,0)

[
h(x + z)− h(x)− h′(x)z1{−1<z<0}

]
ν(dz),

(resp. Lh(x) := δh′(x)+
∫

(−∞,0)
[h(x + z)− h(x)] ν(dz)).

(2.15)

The variational inequalities are written using this generator with h replaced with
the candidate value function. Typically, it makes sense (except at the selected
boundaries), thanks to its smoothness that can be confirmed by that of the scale
function as in Remark 2.1. At the boundaries, for optimal stopping and impulse
control, the function may not be smooth enough and hence (2.15) is not well-
defined, although its right and left limits normally exist and are finite. In such cases,
the Meyer-Itô formula (see, e.g., Theorem 71 of Protter [44]) is used in the proof of
verification lemma.

One useful known fact regarding the generator (2.15) is as follows. By Proposi-
tion 2 of [4] and as in the proof of Theorem 8.10 of [30], the processes

e−q(t∧T−0 ∧T +
B )Z(q)(Xt∧T −

0 ∧T +
B
) and e−q(t∧T−0 ∧T +

B )R(q)(Xt∧T −
0 ∧T +

B
), t ≥ 0,

for any B > 0 are martingales, where we assume ψ ′(0+) > −∞ for the latter.

Thanks to the smoothness of Z(q) and Z
(q)

on (0,∞) as in Remark 2.1, we obtain

(L− q)Z(q)(y) = (L− q)R(q)(y) = 0, y > 0. (2.16)
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The same result holds for W(q) and

(L− q)W(q)(y) = 0, y > 0, (2.17)

on condition that it is sufficiently smooth.
Another useful known fact is that, as in the proof of Lemma 4.5 of [17], if h is

continuous,

(L− q)ϕs(x; h) = h(x), x > s. (2.18)

These properties are often sufficient to prove that the candidate value function is
harmonic in the waiting (non-controlling) region.

2.8 Some Further Notations

Before closing this section, we shall define, if they exist, the following threshold
levels.

Definition 2.1 Given a closed interval I ⊂ R and a measurable function h, let
a = a(h) ∈ I be such that h(x) < 0 for x ∈ (−∞, a) ∩ I, and h(x) > 0 for
x ∈ (a,∞) ∩ I, if such a value exists. If h(x) < 0 for all x ∈ I, then we set
a = a(h) = I . If h(x) > 0 for x ∈ I, then we set a = a(h) = I.

Definition 2.2 Given a closed interval I ⊂ R and a measurable function h such
that �(x; h) is well-defined and finite for all x ∈ I, let a = a(h) ∈ I be such
that �(x; h) < 0 for x ∈ (−∞, a) ∩ I, and �(x; h) > 0 for x ∈ (a,∞) ∩ I, if
such a value exists. If �(x; h) < 0 for all x ∈ I, then we set a = a(h) = I . If
�(x; h) > 0 for x ∈ I, then we set a = a(h) = I.

These values for a suitably chosen (often monotone) function h give us particu-
larly important information. Typically, as in the examples shown in later sections,
the values of a and a can act as upper or lower bounds of the two parameters (a∗, b∗)
to be chosen. See, in particular, Sects. 3.3.3, 4.2.1 and 5.1.1 and also Tables 1, 2,
and 3.

In addition, the value a can be understood as the optimal parameter a∗ when the
other parameter is b∗ = ∞. We will also see that the value a is important in the
verification step; see Lemmas 3.1(2), 4.1(2), and 5.2(2).

3 Two-Sided Singular Control

In this section, we consider the singular control problem where one can
increase and also decrease the underlying process. An admissible strategy
π := {

(Uπ
t ,Dπ

t ); t ≥ 0
}

is given by a pair of nondecreasing, right-continuous,
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and F-adapted processes with Uπ
0− = Dπ

0− = 0 such that the controlled process

Yπ
t := Xt + Uπ

t −Dπ
t , t ≥ 0,

stays in some given closed interval I uniformly in time. Let � be the set of all
admissible strategies.

We consider the sum of the running and controlling costs; its expected NPV is
given by

vπ (x) := Ex

[ ∫ ∞

0
e−qtf (Y π

t )dt +
∫

[0,∞)

e−qt
(
CUdUπ

t + CDdDπ
t

) ]
, x ∈ R,

for q > 0, some continuous and piecewise continuously differentiable function f

on I and fixed constants CU,CD ∈ R satisfying

CU + CD > 0. (3.1)

Here, if x < I (resp. x > I), then Uπ
0 = �Uπ

0 = I−x (resp. Dπ
0 = �Dπ

0 = x−I)
so that Yπ

0 ∈ I.
The problem is to compute the value function given by

v(x) := inf
π∈�vπ (x), x ∈ R,

and the optimal strategy that attains it, if such a strategy exists.
Throughout this and next sections, let us also use the slope-changed version of f

given by

f̃ (x) := f (x)+ CUqx, x ∈ R. (3.2)

The roles and significance of this function will be clear shortly. We also assume the
following so that the expected NPV associated with Uπ

t is finite.

Assumption 3.1 We assume EX1 = ψ ′(0+) > −∞.

Example 3.1 In the optimal dividend problem with capital injections driven by
a spectrally negative Lévy process, it is required that the controlled risk process
stay nonnegative uniformly in time (i.e. I = [0,∞)). One wants to maximize the
expected NPV of dividends minus that for capital injections. This is a maximization
problem with Uπ

t and Dπ
t being, respectively, the cumulative amounts of capital

injections and dividends until t ≥ 0. We can formulate this as a minimization
problem as above by setting CD = −1 and CU = β where β > 1 is the unit
cost of capital injection. Here f is assumed to be uniformly zero. This problem has
been solved by Avram et al. [4] for a general spectrally negative Lévy process.
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Example 3.2 In the dual model of Example 3.1, it is assumed that the underlying
process is a spectrally positive Lévy process. By flipping the processes with respect
to the origin, it is easy to see that the problem is equivalent to the above formulation
driven by a spectrally negative Lévy process with I = (−∞, 0], CD = β and CU =
−1. This problem has been solved by Bayraktar et al. [8] for a general spectrally
positive Lévy process.

Example 3.3 A version of continuous-time inventory control considers the case
where inventory can be increased (replenished) and decreased (sold). With the
absence of fixed costs and if backorders are allowed, the problem can be formulated
as above with I = R. Currency rate control (see, e.g., [28, 38]), where a central
bank controls the currency rate so as to prevent it from going too high or too low,
can also be modeled in the same way. The classical Brownian motion and continuous
diffusion models have been solved by Harrison and Taksar [24] and Matomäki
[36], respectively. In Baurdoux and Yamazaki [6], it has been solved for a general
spectrally negative Lévy process. In this note, we assume that f is convex for this
example.

3.1 The Double Reflection Strategy

In all the examples above, the optimal strategy is shown to be a double barrier
strategy πa,b := {Ua,b,Da,b} with the resulting controlled process being the doubly
reflected Lévy process given in (2.10).

By (2.11) and (2.12), we can directly compute, for a < b,

va,b(x) := Ex

[ ∫ ∞

0
e−qtf (Y

a,b
t )dt +

∫

[0,∞)

e−qt (CUdUa,b
t + CDdDa,b

t )
]
, x ∈ R.

For x ≤ b, it is given by

va,b(x) = 
(a, b)

qW(q)(b − a)
Z(q)(x − a)− CUR(q)(x − a)

+ f (a)

q
Z(q)(x − a)− ϕa(x; f ) (3.3)

where


(a, b) := CD + CU + ϕa(b; f̃ ′), b ≥ a. (3.4)

For x > b, we have va,b(x) = va,b(b)+ CD(x − b).
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Remark 3.1 In particular, when f ≡ 0 (as in Examples 3.1 and 3.2 above), for
a < b,


(a, b) = CD + CUZ(q)(b − a),

va,b(x) = CD + CUZ(q)(b − a)

qW(q)(b − a)
Z(q)(x − a)− CUR(q)(x − a), x ≤ b;

see [4] and [8].

3.2 Smoothness of the Value Function

Focusing on the set of double barrier strategies, the first step is to narrow down
to a candidate optimal strategy by deciding on the threshold values, say a∗ and
b∗. Because the spectrally negative Lévy process can reach any point with positive
probability, we must have that [a∗, b∗] ⊂ I.

As we have discussed in Sect. 1.4.1, the two parameters can be identified by
the first-order condition or the smooth fit condition. The first approach uses the
first-order conditions at a∗ and b∗; because a∗ and b∗ must minimize va,b over a

and b, partial derivatives ∂va,b(x)/∂a|a=a∗,b=b∗ and ∂va,b(x)/∂b|a=a∗,b=b∗ must
vanish, at least when the minimizers are in the interior of I. The second approach
uses the condition that the value function is smooth. Here, we focus on the second
smoothness approach because the computation is slightly easier, and we need to
confirm the smoothness of va∗,b∗ after all when we verify its optimality.

In singular control, the value function normally admits twice continuous differ-
entiability (resp. continuous differentiability) at each interior point in I when it
is regular (resp. irregular). Thanks to the smoothness of the scale function as in
Remark 2.1, the only points of va∗,b∗ we need to pay attention are a∗ and b∗ where
the functions are pasted together. Due to the asymmetry of the spectrally negative
Lévy process, what we observe at these two points will be different. Here, recall
the definition of regularity and its relation with the path variation of the process as
reviewed in Sect. 2.1.

Regarding the smoothness of the value function at the lower barrier a∗,

(1) if a∗ is regular for (−∞, a∗) (or equivalently X is of unbounded variation), then
the twice continuous differentiability at a∗ is expected;

(2) if a∗ is irregular for (−∞, a∗) (or equivalently X is of bounded variation), then
the continuous differentiability at a∗ is expected.

Regarding the smoothness at the upper barrier b∗, because it is always regular for
(b∗,∞), twice-differentiability is expected at b∗ regardless of the path variation
of X.

These procedures can be carried out in a straightforward fashion by using the
expression (3.3) in terms of the scale function. By taking derivatives in (3.3) and
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using (3.2),

v′a,b(x) =

(a, b)

W(q)(b − a)
W(q)(x − a)− CU − ϕa(x; f̃ ′), a < x < b,

v′′a,b(x+) = 
(a, b)

W(q)(b − a)
W(q)′((x − a)+)

−
∫ x

a

W(q)′(x − y)f̃ ′(y)dy − f̃ ′(x+)W(q)(0), a < x < b.

(3.5)

In view of the former of (3.5), by (3.4),

v′a,b(b−) = CD = v′a,b(b+),

v′a,b(a+) = 
(a, b)

W(q)(b − a)
W(q)(0)− CU = 
(a, b)

W(q)(b − a)
W(q)(0)+ v′a,b(a−).

(3.6)

In other words, the continuous differentiability of va,b holds at b regardless of the
path variation. On the other hand, in view of (2.5), while the differentiability at a
holds for the case of unbounded variation, it only holds if

Ca : 
(a, b)

W(q)(b − a)
= 0 (3.7)

for the case of bounded variation. Here, the case b = ∞ is understood as
limb→∞
(a, b)/W(q)(b − a) = 0 where by (2.14) we can show that

lim
b→∞


(a, b)

W(q)(b − a)
= �(a; f̃ ′). (3.8)

In view of the latter of (3.5),

v′′a,b(b−) = 
(a, b)

W(q)(b − a)
W(q)′((b − a)−)− λ(a, b),

v′′a,b(a+) = 
(a, b)

W(q)(b − a)
W(q)′(0+)− f̃ ′(a+)W(q)(0),

where

λ(a, b) := ∂

∂b

(a, b−) =

∫ b

a

W(q)′(b − y)f̃ ′(y)dy + f̃ ′(b−)W(q)(0), b > a.

(3.9)
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For the unbounded variation case where the continuous differentiability at a

automatically holds, again by (2.5), its twice continuous differentiability holds on
condition that Ca holds. Now, for both the bounded and unbounded variation cases,
the twice continuous differentiability at b holds if

Cb : 
(a, b)

W(q)(b − a)
W(q)′((b − a)−)− λ(a, b) = 0. (3.10)

In particular, on condition that Ca holds, the condition Cb can be simplified to

C′b : λ(a, b) = 0. (3.11)

Remark 3.2 When f ≡ 0, the conditions Ca and Cb, respectively, are simplified to

C0
a :

CD + CUZ(q)(b − a)

W(q)(b − a)
= 0, (3.12)

C0
b :

CD + CUZ(q)(b − a)

W(q)(b − a)
W(q)′((b − a)−)− qCUW(q)(b − a) = 0. (3.13)

These conditions on a and b can be used to identify the pairs (a∗, b∗). However,
these do not necessarily hold unless a∗, b∗ ∈ Io. Here, we give examples where a∗
and/or b∗ become boundaries of I.

Remark 3.3

(1) In Example 3.1, it is expected, because β > 1 (the unit cost of capital injection
is higher than the unit reward of dividend), that capital is injected only when it
is necessary to make the company alive, and hence a∗ = 0.

(2) Similarly, under the formulation with the underlying spectrally negative Lévy
process described in Example 3.2, it is expected that b∗ = 0.

(3) In Example 3.3, if the increment of f as |x| → ∞ is at most linear and small in
comparison to the unit controlling costs CU and CD , it may not be desirable to
activate at all the processes Uπ and/or Dπ . Hence, a∗ = −∞ and/or b∗ = ∞.

3.3 Existence of (a∗, b∗)

The first challenge is to show the existence of such (a∗, b∗). Here, we assume the
following.

Assumption 3.2 We assume that a ≡ a(f̃ ′) (see Definition 2.1) exists and is finite,
where f̃ ′ is understood as its right-hand derivative if not differentiable.

We shall see that a is a point such that a∗ lies on the left of a and b∗ lies on its
right; see Table 1.
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Table 1 Summary of the key functions and parameters in Examples 3.2 and 3.3

Example 3.2


(a, b) := CD + CUZ(q)(b − a)

f̃ ′(b) := CUq

a∗ := a of (a, 0) such that C0
a holds

< a := 0 = a(f̃ ′)
= b∗ := 0 = I
Example 3.3


(a, b) := CD + CU + ϕa(b; f̃ ′)
f̃ ′(b) := f ′(b) + CUq

a := a(f̃ ′)
≤ a∗ := a of (a, b) such that Ca and Cb hold simultaneously

< a := a(f̃ ′)
< b∗ := b of (a, b) such that Ca and Cb hold simultaneously

For Example 3.3, when b∗ = ∞, a∗ = a

3.3.1 The Case of Example 3.1

It is clear that Assumption 3.2 is satisfied with a = 0. As in Remark 3.3(1), a∗ =
0 = a = I . Therefore, the condition C0

a has no effect and we only require C0
b which

reduces to

CD + CUZ(q)(b)

W(q)(b)
W(q)′(b−)− qCUW(q)(b) = 0. (3.14)

Hence, b∗ > 0 = a = I can be chosen as the smallest value of b such that (3.14)
holds. This matches the condition given in (5.6) of [4].

3.3.2 The Case of Example 3.2

Again, Assumption 3.2 is satisfied with a = 0. Because CD = β and CU = −1,
there is a unique a∗ < 0 = a that satisfies C0

a or equivalently that

CD + CUZ(q)(−a∗) = 0. (3.15)

Hence, the candidate optimal strategy is given by a∗ = −(Z(q))−1(−CD/CU) =
−(Z(q))−1(β) and b∗ = 0. This matches the result in [8].
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3.3.3 The Case of Example 3.3

For Example 3.3, we want a pair (a∗, b∗) such that (3.7) and (3.10) hold simultane-
ously. Equivalently, we want (a∗, b∗) such that the function b �→ 
(a∗, b) attains a
(local) minimum 0 at b∗ (if b∗ < ∞). Note that, for any a ∈ R, b �→ 
(a, b) starts
at 
(a, a) = CD + CU > 0.

In this case, a always exists by the assumption that f is convex. In addition,
Assumption 3.2 requires that it is finite. Recall now Definition 2.2. The convexity
assumption and Assumption 3.2 guarantee that a = a(f̃ ′) also exists and is finite
(with the understanding that f̃ ′ is the right-hand derivative if it is not differentiable).
Note that necessarily a < a.

Figure 4 shows some sample plots of b �→ 
(a, b) and b �→ λ(a, b). As
observed in these plots, we shall show that a∗ must lie on [a, a).

To see this, when a ≥ a, then 
(a, ·) is uniformly positive because λ(a, b) ≥ 0
for b > a in view of (3.9). In addition, by the convergence (3.8) and how a is chosen,
limb→∞
(a, b) = ∞ if a > a, limb→∞
(a, b) = −∞ if a < a, and (3.8)
becomes zero if a = a. On the other hand, for any a < a and a < b,

∂

∂a

(a+, b) = −f̃ ′(a+)W(q)(b − a) > 0. (3.16)

This implies that the infimum a �→ infb>a 
(a, b) is monotonically increasing.
Hence, the desired a∗ such that 
(a∗, ·) touches the x-axis, if it exists, must lie on
(a, a).

Fig. 4 Existence of (a∗, b∗) for Example 3.3. Plots of b �→ 
(a, b) on [a,∞) for the starting
values a = a, (a + a∗)/2, a∗, (a∗ + a)/2, a are shown. The solid curve in red corresponds to the
one for a = a∗; the point at which 
(a∗, ·) is tangent to the x-axis (or λ(a∗, ·) vanishes) becomes
b∗. The function 
(a, ·) is monotonically decreasing while 
(a, ·) is monotonically increasing.
Equivalently, λ(a, ·) is uniformly negative while λ(a, ·) is uniformly positive
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By these observations, one can attempt to decrease the value of a starting at a
until we arrive at (1) a point a∗ such that infb>a∗ 
(a∗, b) = 0 or (2) the point a,
whichever comes first. For each case, we set (a∗, b∗) as follows.

(1) We set (a∗, b∗) such that 0 = infb>a∗ 
(a∗, b) = 
(a∗, b∗). Hence, Ca holds.
If in addition, b �→ λ(a∗, b) is continuous at b∗, then C′b also holds as well.

(2) We set a∗ = a and b∗ = ∞. By (3.8), limb→∞
(a∗, b)/W(q)(b− a∗) = 0, or
equivalently Ca holds.

Remark 3.4 In Examples 3.2 and 3.3, by construction, 
(a∗, x) ≥ 0 for x ∈
[a∗, b∗].

3.4 Variational Inequalities and Verification

Below, we shall focus on the case a∗ ∈ Io and hence Ca is satisfied (this excludes
Example 3.1): the value function becomes, by (3.3), for all x ≤ b∗,

va∗,b∗(x) = −CUR(q)(x − a∗)+ f (a∗)
q

Z(q)(x − a∗)− ϕa∗(x; f )

= −CU

(ψ ′(0+)

q
+ x

)
+ f̃ (a∗)

q
Z(q)(x − a∗)− ϕa∗(x; f̃ ).

(3.17)

By (3.4) and (3.5),

v′a∗,b∗(x) = −
(a∗, x)+ CD, a∗ ≤ x ≤ b∗. (3.18)

The verification of optimality asks that our candidate value function va∗,b∗ solves
the variational inequalities:

(L− q)va∗,b∗(x)+ f (x) ≥ 0, x ∈ Io,

min(v′a∗,b∗(x)+ CU,CD − v′a∗,b∗(x)) ≥ 0, x ∈ (−∞,I],
[(L− q)va∗,b∗(x)+ f (x)]min(v′a∗,b∗(x)+ CU ,CD − v′a∗,b∗(x)) = 0, x ∈ Io.

(3.19)

Notice that, when I > −∞, the middle condition is required to hold for the
extended set (−∞,I] because X can jump instantaneously to the region (−∞,I)
(and then immediately pushed up to I). Here, the generator Lva∗,b∗ makes sense
due to the smoothness obtained above of va∗,b∗ and because va∗,b∗ is linear below
a∗ and Assumption 3.1 is given.

In order to show that these are sufficient conditions for optimality, in general
we need additional assumptions on the tail property of f and the Lévy measure.
This is necessary because verification arguments first localize in order to use Itô’s
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Fig. 5 A sample plot of the value function for Example 3.3 when X is of unbounded variation.
The up-pointing and down-pointing triangles show the points at a∗ and b∗, respectively. It can be
confirmed that it is twice differentiable at a∗ and b∗

formula. After the localization arguments, one needs to interchange the limits over
expectations. To this end, it is typically required that |f | only increases moderately
and/or the Lévy measure does not have a heavy tail.

Showing (3.19) is the main challenge and the proof needs to be customized for
each problem. However, some inequalities of (3.19) are easily shown without strong
assumptions on the function f (Fig. 5).

Lemma 3.1 Suppose Ca holds.

(1) We have (L− q)va∗,b∗(x)+ f (x) = 0 for a∗ < x < b∗.
(2) If Assumption 3.2 holds with a∗ ≤ a, then (L − q)va∗,b∗(x) + f (x) ≥ 0 on

(−∞, a∗).
(3) If 
(a∗, x) ≥ 0 for x ∈ [a∗, b∗], then v′a∗,b∗(x) ≤ CD on (−∞,I].
Proof

(1) This is immediate by the results summarized in Sect. 2.7.3 in view of the first
equality of (3.17).

(2) By the second equality of (3.17), va∗,b∗(x) = [−CUψ ′(0+)+ f̃ (a∗)]/q−CUx,
for x < a∗, and hence (L−q)va∗,b∗(x)+f (x) = f̃ (x)−f̃ (a∗). This is positive
by x ≤ a∗ < a and by how a is chosen.
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(3) In view of (3.18), this inequality holds for x ∈ [a∗, b∗]. For x ∈ (−∞, a∗),
we have v′a∗,b∗(x) = −CU , which is smaller than CD by (3.1). Finally, for
x ∈ (b∗,∞) ∩ I, we have v′a∗,b∗(x) = CD . ��

For Examples 3.2 and 3.3, by the fact that a∗ < a as discussed in Sects. 3.3.1
and 3.3.2, and also by Remark 3.4, the conditions in Lemma 3.1 hold. Hence, the
only pieces left to show in (3.19) are

(1’) −CU ≤ v′a∗,b∗(x) for all x ∈ (a∗, b∗),
(2’) (L− q)va∗,b∗(x)+ f (x) ≥ 0 for x ∈ (b∗,∞) ∩ Io.

These conditions unfortunately do not hold generally and must be checked individ-
ually. Here we give brief illustrations on how these hold for Examples 3.2 and 3.3.

In Example 3.2, (1’) holds immediately because, with CU = −1 < 0,

v′a∗,b∗(x) = −CUZ(q)(x − a∗) ≥ −CU .

In addition, (2’) holds trivially because (b∗,∞) ∩ Io = ∅.
In Example 3.3, thanks to the assumption that f is convex, x �→ 
(a∗, x) is first

decreasing and decreasing (see Fig. 4). This together with (3.18) and the smoothness
at a∗ and b∗, the function va∗,b∗ is convex on R and hence (1’) holds.

The hardest part for Example 3.3 is to show (2’); the difficulty comes from the
fact that the process can jump from (b∗,∞) to the regions (−∞, a∗) and (a∗, b∗)
where the form of va∗,b∗ changes. In [6] under the convexity assumption, they use
contradiction arguments similar to [25, 34], where they show, for x > b∗,

(L− q)(va∗,b∗ − va(x),x)(x−) := lim
y↑x(L− q)(va∗,b∗ − va(x),x)(y) ≥ 0, (3.20)

where a(x) is the unique value of a such that 
(a, x) = 0. This implies (2’) because
if both (3.20) and (L− q)va∗,b∗(x)+ f (x) < 0 hold simultaneously, then

0 > (L− q)va∗,b∗(x)+ f (x) ≥ (L− q)va(x),x(x−)+ f (x),

which contradicts with (L− q)va(x),x(x−)+ f (x) = 0 that can be shown similarly
to Lemma 3.1(1). The proof depends heavily on the convexity of f , with which the
function y �→ 
(x, y) is first decreasing and then increasing. We refer the reader to
[6] for more careful analysis.

We conclude this section with a summary of the functions and parameters that
played key roles in Examples 3.2 and 3.3. Some similarities and differences with
the problems to be considered in later sections can be seen by comparing this with
Tables 2 and 3 below.
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Table 2 Summary of the key functions and parameters in Example 4.3


(a, b) := �(q)�(s; f̃ )W
(q)

(S − s)+K − ϕs(S; f̃ )

f̃ ′(b) := f ′(b) + CUq

s∗ := s of (s, S) such that Cs and CS hold simultaneously

< a := a(f̃ ′)
< S∗ := S of (s, S) such that Cs and CS hold simultaneously

It can be shown that s∗, S∗ → a as K ↓ 0

4 Impulse Control

In impulse control, a strategy π := {
Uπ

t ; t ≥ 0
}

is given by Uπ
t = ∑

i:T π
i ≤t u

π
i ,

t ≥ 0, where {T π
i ; i ≥ 1} is an increasing sequence of F-stopping times and uπ

i ,
for i ≥ 1, is an FT π

i
-measurable random variable such that uπ

i ∈ A, i ≥ 1, a.s. for
some A ⊂ R.

The corresponding controlled process is given by Yπ = {Yπ
t ; t ≥ 0} where

Yπ
0− = 0 and

Yπ
t := Xt + Uπ

t , t ≥ 0.

The time horizon is given by T π
Ic := inf{t > 0 : Yπ

t /∈ I} for some given closed
interval I and Uπ must be such that

Yπ
t ∈ I, 0 ≤ t ≤ T π

Ic at which �Uπ
t > 0 a.s. (4.1)

Let � be the set of all admissible strategies.
With f , some continuous and piecewise continuously differentiable function on

I, and q > 0, the problem is to compute the value function

v(x) := inf
π∈�vπ (x)

where

vπ (x) := Ex

[ ∫ T π
Ic

0
e−qtf (Y π

t )dt +
∑

0≤t≤T π
Ic

e−qt [CU |�Uπ
t | +K]1{|�Uπ

t |>0}
]
, x ∈ R,

and to obtain an admissible strategy that minimizes it, if such a strategy exists. The
constant CU is the proportional cost, which is not necessarily restricted to be a
positive value. On the other hand, K is the fixed cost and must be strictly positive.
Again in this section, we assume Assumption 3.1 (note that this is not necessarily
needed for Example 4.1 below).

Example 4.1 In the optimal dividend problem with fixed costs driven by a spectrally
negative Lévy process, each time dividend is paid, a fixed cost K is incurred. In
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addition, the problem is terminated at ruin (i.e. I = [0,∞)). The condition (4.1)
means that one cannot pay more than the remaining surplus.

The objective is to maximize the total expected discounted dividends minus that
for fixed costs. We can formulate this as a minimization problem as above by setting
CU = −1, Uπ

t being the negative of the cumulative amount of dividends until
t ≥ 0, and A = (−∞, 0). Here, f is assumed to be zero. This problem has been
solved by Loeffen [35] for a spectrally negative Lévy process under a log-convexity
assumption on the Lévy density.

Example 4.2 In the dual model of Example 4.1, it is assumed that the underlying
process is a spectrally positive Lévy process. By flipping the processes with respect
to the origin, it is easy to see that it is equivalent to the above formulation driven by
a spectrally negative Lévy process with A = (0,∞), I = (−∞, 0] and CU = −1.
This problem has been solved by Bayraktar et al. [9] for a general spectrally positive
Lévy process.

Example 4.3 Continuous-time inventory control often uses this model. Here, the
function f corresponds to the cost of holding and shortage when x > 0 and
x < 0, respectively. With the assumption that backorders are allowed, the problem
is infinite-horizon (I = R). Bensoussan et al. [10, 12] considered the case of a
spectrally negative compound Poisson process perturbed by a Brownian motion
with A = (0,∞). It has been generalized by Yamazaki [49] to a general spectrally
negative Lévy model. As in Example 3.3, we assume that f is convex. Assume also
that ψ ′(0+) > −∞.

4.1 The (s, S)-Strategy

With the fixed cost K > 0 incurred each time the control Uπ is activated, it is
clear that the reflection strategy is no longer feasible; instead one needs to solve the
tradeoff between controlling the process and minimizing the number of activation of
Uπ . In this sense, the (s, S)-strategy is a natural candidate for an optimal strategy:
whenever the process goes below (resp. above) a level s, it pushes the process up
(resp. down) to S when s < S (resp. S < s).

Suppose πs,S := {Us,S
t ; t ≥ 0} is the (s, S)-strategy, and Y s,S and T

s,S
Ic are

the corresponding controlled process and the termination time, respectively. By
using the results summarized in Sect. 2.4, it is a simple exercise to compute the
corresponding expected NPV of costs:

vs,S(x) := Ex

[∫ T
s,S

Ic

0
e−qtf (Y

s,S
t )dt

+
∑

0≤t≤T
s,S

Ic

e−qt [CU |�U
s,S
t | +K]1{|�U

s,S
t |>0}

⎤

⎥⎦ , x ∈ R. (4.2)
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To see this, for the case s < S, it is noted (from the construction of the process Y s,S)
that Px-a.s., Y s,S

t = Xt for 0 ≤ t < T −
s and �U

s,S

T −
s
= S − XT −

s
on {T −

s < T
s,S
Ic }.

By these and the strong Markov property of Y s,S, the expectation (4.2) must satisfy,
for every x > s,

vs,S (x) = Ex

[ ∫ T−
s ∧T

s,S

Ic

0
e−qtf (Xt )dt

]
+ Ex

[
e−qT−

s (CU (S −XT −
s
)+K)1{T −

s <T
s,S

Ic }
]

+ Ex

[
e−qT−

s 1{T −
s <T

s,S

Ic }
]
vs,S (S). (4.3)

Here the expectations on the right hand side can be computed by the identities
given in Sect. 2. By setting x = S on both sides, we can solve for vs,S(S);
substituting this back in, we obtain vs,S(x) for x ∈ R. In particular, for the
computation when I = R, see (4.13) below.

The case s > S is even simpler because then there is no overshoot at the time it
reaches s: we have, for x < s,

vs,S(x) = Ex

[ ∫ T +
s ∧T

s,S
Ic

0
e−qtf (Xt)dt

]

+ Ex

[
e−qT +

s 1{T +
s <T

s,S

Ic }
]
[vs,S(S)+ CU(s − S)+K].

We can similarly obtain first vs,S(S) and then, by substituting this back in, vs,S(x),
for x ∈ R. See, e.g., [35] for explicit expressions when f ≡ 0.

Remark 4.1 The same technique can be used to compute also the two-sided
extension (i.e. A = R\{0}) of the (s, S)-strategy: in this case, the strategy is
specified by four parameters, say, (d,D,U, u). The controller pushes the process
up to D as soon as it goes below d and pushes down to U as soon as it goes above
u, while he does not intervene whenever it is within the set (d, u). See [48] for the
fluctuation identities.

4.2 Smoothness of the Value Function

Focusing on the set of (s, S)-strategies, the first step again is to narrow down to
a candidate optimal strategy by deciding on the values of s and S, which we call
s∗ and S∗. Again, as there are two values to be identified, naturally we need two
equations to identify these.

(1) As is clear from what we have seen in the previous section, the value function is
expected to satisfy some continuity/smoothness at the point s∗. In comparison
to the case of singular control, the degree of smoothness is decreased by one in
the case of impulse control. This can be summarized as follows:
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When s∗ < S∗ (where vs∗,S∗ is linear below s∗ and hence v′s∗,S∗(s∗−) =
−CU ),

(a) if s∗ is regular for (−∞, s∗) (or equivalently X is of unbounded variation),
then the continuous differentiability at s∗ is expected;

(b) if s∗ is irregular for (−∞, s∗) (or equivalently X is of bounded variation),
then the continuity at s∗ is expected.

When s∗ > S∗ (where vs∗,S∗ is linear above s∗ and hence v′s∗,S∗(s∗+) =
CU ), because s∗ is regular for (s∗,∞) for any spectrally negative Lévy process,
the continuous differentiability at s∗ is expected.

It is noted that alternatively one can use the first-order condition on s∗ so
that ∂vs,S/∂s|s=s∗,S=S∗ vanishes: we typically arrive at the same equation.

(2) The other equation can be obtained by what we postulate at the point S∗. This is
less intuitive than (1). However, if we consider the first-order condition at S∗ so
that ∂vs,S/∂S|s=s∗,S=S∗ vanishes, easy computation derives that it tends to be
equivalent to the condition v′s∗,S∗(S∗) = −CU (resp. v′s∗,S∗(S∗) = CU ) when
s∗ < S∗ (resp. s∗ > S∗).

From the above discussions, when s∗ < S∗, except for the case X is of bounded
variation, we arrive at the function that satisfies

v′s∗,S∗(s∗) = v′s∗,S∗(S∗) = −CU .

Due to this fact, it is often easier if we deal with a modified function

ṽs,S(x) := vs,S(x)+ CUx; (4.4)

by this, some terms tend to disappear and computation gets simplified. When S∗ <

s∗, then the sign of the coefficient of CU is flipped.
In impulse control, while the two equations that identify the two unknown

parameters (s∗, S∗) are slightly different from the singular control case for (a∗, b∗)
as in Sect. 3.2, we shall see that these two equations possess a similar relation to
those obtained for (a∗, b∗). Namely, the desired pair (s∗, S∗) is such that a function
of two variables and its partial derivative with respect to one of the parameters vanish
simultaneously.

4.2.1 The Case of Example 4.3

For Example 4.3, we shall see that the desired (s∗, S∗) are those (s, S) such that

Cs : 
(s, S)

�
(q)

(S − s)
= 0, (4.5)

CS : �
(q)(S − s)

�
(q)

(S − s)

(s, S) − λ(s, S) = 0, (4.6)
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where �(q) is as defined in (2.9) with its antiderivative �
(q)

given by

�
(q)

(x) := W(q)(x)−�(q)W
(q)

(x) > 0,

and


(s, x) := �(q)�(s; f̃ )W
(q)

(x − s)+K − ϕs(x; f̃ ), x, s ∈ R, (4.7)

λ(s, x) := ∂

∂x

(s, x), x > s. (4.8)

Here, we shall confirm briefly how this is so. Note that when Cs is satisfied, then
CS is equivalent to the condition:

C′S : λ(s, S) = 0. (4.9)

Remark 4.2 We note the similarity between Cs and CS (or C′S) with the conditions
Ca and Cb (or C′b) as in (3.7), (3.10) (or (3.11)) in the two-sided singular control
case.

First, by using the technique (using Eq. (4.3)) discussed above, we can com-
pute (4.4): for all s < S,

ṽs,S(S) = �(q)

q�
(q)

(S − s)

[
�

(q)
(S − s)

[
�(s; f̃ )− q

�(q)

(
K + CUψ ′(0+)

q

)]
+
(s, S)

]
,

ṽs,S(x) =
⎧
⎨

⎩
−�

(q)
(x−s)

�
(q)

(S−s)

(s, S) +
(s, x)+ ṽs,S(S), x ≥ s,

K + ṽs,S(S), x < s.

(4.10)

Differentiating (4.10),

ṽ′s,S(x) = −�(q)(x − s)

�
(q)

(S − s)

(s, S)+ λ(s, x), s < x < S. (4.11)

From these expressions, we shall see that the conditions Cs and CS as in (4.5)
and (4.6) guarantee the desired smoothness/slope conditions described above:
namely,

(1) ṽs∗,S∗(·) is continuous (resp. differentiable) at s∗ when X is of bounded (resp.
unbounded) variation,

(2) ṽ′s∗,S∗(S∗) = 0.
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(1) Regarding the continuity at s, by (4.10),

ṽs,S(s+) = − �
(q)

(0)

�
(q)

(S − s)

(s, S) +K + ṽs,S(S)

= − �
(q)

(0)

�
(q)

(S − s)

(s, S) + ṽs,S(s−),

where �
(q)

(0) = 0 if and only if X is of unbounded variation in view of (2.4).
Hence, the continuity at x = s holds if and only if Cs holds for the case of
bounded variation. On the other hand, it holds automatically for the unbounded
variation case.

For the case of unbounded variation, we further pursue the differentiability

at x = s. Equation (4.11) gives ṽ′s,S(s+) = − �(q)(0)

�
(q)

(S−s)

(s, S), and hence Cs

leads to the differentiability at s.

(2) Regarding the slope condition at S, we have ṽ′s,S(S) = −�(q)(S−s)

�
(q)

(S−s)

(s, S) +

λ(s, S). Hence, given Cs , the condition CS guarantees ṽ′s,S(S) = 0 as desired.

Existence of (s∗, S∗) We now illustrate how the existence of (s∗, S∗) guar-
anteeing Cs and CS can be shown. Here, as in Example 3.3, we shall assume
Assumption 3.2: then,

a ≡ a(f̃ ′) and a ≡ a(f̃ ′)

are well-defined and finite as in the discussion given in Sect. 3.3.3.
We shall see that the desired s∗ lies on the left of a while S∗ lies on its

right. As K decreases, the distance between s∗ and S∗ is expected to shrink and
converge to a, which is the optimal barrier in Example 3.3 for the case b∗ = ∞.

To show the existence of (s∗, S∗), we shall first write


(s, S) =
∫ S

s

�(y; f̃ ′)�(q)
(S − y)dy +K, s, S ∈ R,

λ(s, S) = �(S; f̃ ′)W(q)(0)+
∫ S

s

�(y; f̃ ′)�(q)(S − y)dy, S > s.

(4.12)

In Fig. 6, we show sample plots of the functions S �→ 
(s, S) and S �→ λ(s, S)

for several values of starting points s, including a and a∗.

As can be confirmed in the figure and also clear from (4.12), by how a is chosen,
we have the following properties:

(1) When s > a, λ(s, S) > 0 for S > s and hence S �→ 
(s, S) is monotonically
increasing on [s,∞).
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Fig. 6 Existence of (s∗, S∗) for Example 4.3. Plots of S �→ 
(s, S) and S �→ λ(s, S) on [s,∞)

for five values of s are shown. The line in red corresponds to the one for s = s∗; the point at which

(s∗, ·) is tangent to the x-axis becomes S∗. The rightmost curve corresponds to the one with
s = a; it is confirmed that 
(a, ·) is monotonically increasing and λ(a, ·) is uniformly positive

(2) When s < a, ∂
(s, S)/∂s = −�(s; f̃ ′)�(q)
(S − s) ≥ 0 by how a is chosen.

(3) For every fixed s ∈ R, limS↑∞
(s, S) = ∞.
(4) For every fixed S ∈ R, lims↓−∞
(s, S) = −∞.
(5) For any s ∈ R, 
(s, s) = K > 0.

It is now clear how to obtain the desired (s∗, S∗). Similarly to Example 3.3,
starting at s = a, we decrease the value of s until we arrive at s∗ such that
infS>s∗ 
(s∗, S) = 0. This exists because the function s �→ infS>s 
(s, S), s < a,
is increasing by the property (2) above and goes to −∞ as s ↓ −∞ by the property
(4). Note that, because (4.12) implies λ(s∗, S) < 0 for S ∈ (s∗, a), we must have
S∗ > a. Because infS>s∗ 
(s∗, S) = 0 attains a local minimum at S = S∗, we must
have λ(s∗, S∗) = 
(s∗, S∗) = 0, as desired.

4.2.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

In [35] and [9], they use the first-order conditions to obtain (s∗, S∗) in Examples 4.1
and 4.2, respectively. To this end, they used the argument that the surface (s, S) �→
vs,S(x) has a global minimum (if formulated as a minimization problem).

The difficulty in their case is that because I has a boundary 0, it can happen that
S∗ (or both s∗ and S∗) is zero. This means that the (s∗, S∗)-strategy, once activated,
moves the controlled process to the default boundary. In Example 4.2 where 0 is
regular for Ic = (0,∞), ruin then occurs immediately. On the other hand, in
Example 4.1, it is regular for Ic = (−∞, 0) if and only if X is of unbounded
variation. Hence, while ruin occurs immediately for the unbounded variation case,
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it stays above 0 for a positive amount of time a.s. This suggests one difficulty in
solving the spectrally negative Lévy case.

If S∗ �= 0, the slope condition v′s∗,S∗(S∗) = −CU = 1 (resp. v′s∗,S∗(S∗) = CU =
−1) is satisfied for Example 4.2 (resp. Example 4.1). Similarly, if s∗ �= 0, then the
smoothness condition v′s∗,S∗(s∗) = −CU = 1 (resp. v′s∗,S∗(s∗) = CU = −1) is
satisfied for Example 4.2 (resp. Example 4.1).

4.3 Quasi-Variational Inequalities and Verification

The verification of optimality asks that the candidate value function vs∗,S∗ satisfies
the QVI (quasi-variational inequalities):

(L− q)vs∗,S∗(x)+ f (x) ≥ 0, x ∈ Io\{s∗},
vs∗,S∗(x) ≤ K + inf

u∈A,x+u∈I
[
CU |u| + vs∗,S∗(x + u)

]
, x ∈ (−∞,I],

[(L− q)vs∗,S∗(x)+ f (x)][vs∗,S∗(x) −K − inf
u∈A,x+u∈I

[
CU |u| + vs∗,S∗(x + u)

] ] = 0,

x ∈ Io\{s∗}.
(4.13)

Here, in the middle equality, if it is assumed for the case {u : u ∈ A, x + u ∈ I} is
empty, the right hand side is ∞.

For its proof, see [11, 12]. Similarly to the singular control case, in general
we need additional assumptions on the tail growth of f and the Lévy measure.
In particular, in [12, 49], it is assumed that the growth of f in the tail is at most
polynomial.

4.3.1 The Case of Example 4.3

With (s∗, S∗) that satisfy Cs , the function (4.10) simplifies to, for x ∈ R,

ṽs∗,S∗(S∗) = �(q)

q
�(s∗; f̃ )−K − CUψ ′(0+)

q
, (4.14)

ṽs∗,S∗(x) = 
(s∗, x)+ ṽs∗,S∗(S∗), (4.15)

or equivalently

vs∗,S∗(x) =
(
�(q)

q
�(s∗; f )+ CU

�(q)

)
Z(q)(x − s∗)− CUR(q)(x − s∗)− ϕs∗(x; f ).

(4.16)

See Fig. 7 for a sample plot of vs∗,S∗ .
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Fig. 7 A sample plot of the value function vs∗,S∗ for Example 4.3 when X is of unbounded
variation. The up-pointing and down-pointing triangles show the points at s∗ and S∗, respectively

Similarly to the singular control case (see Lemma 3.1), some inequalities
of (4.13) are easily shown with minor assumptions on the function f .

Lemma 4.1 Suppose Cs holds.

(1) We have (L− q)vs∗,S∗(x)+ f (x) = 0 for x > s∗.
(2) If Assumption 3.2 holds and a is well-defined and finite with s∗ ≤ a < a, then

(L− q)vs∗,S∗(x)+ f (x) ≥ 0 on (−∞, s∗).

Proof

(1) In view of (4.16), this is immediate by the results summarized in Sect. 2.7.3.
(2) Because ṽs∗,S∗(x) = K + ṽs∗,S∗(S∗) for x < s∗ and by (4.14),

(L− q)vs∗,S∗(x)+ f (x) = −q(K + ṽs∗,S∗(S
∗))− CUψ ′(0+)+ CUqx + f (x)

= f̃ (x)− f̃ (s∗)−�(s∗; f̃ ′).

This is positive by x < s∗ < a ≤ a and how a and a are chosen. ��
In view of Lemma 4.1, the remaining task is to show that

vs∗,S∗(x) = K + inf
u≥0

[
CUu+ vs∗,S∗(x + u)

]
, x ≤ s∗,

vs∗,S∗(x) ≤ K + inf
u≥0

[
CUu+ vs∗,S∗(x + u)

]
, x > s∗,

(4.17)
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or equivalently

ṽs∗,S∗(x) = K + inf
u≥0

ṽs∗,S∗(x + u), x ≤ s∗,

ṽs∗,S∗(x) ≤ K + inf
u≥0

ṽs∗,S∗(x + u), x > s∗.

These can be shown for x ≤ a easily as follows. For x ≤ s∗, in view of (4.15) and
because S∗ minimizes 
(s∗, x) over x ∈ R, we must have

ṽs∗,S∗(S∗) = inf
x∈R

ṽs∗,S∗(x). (4.18)

Hence,

ṽs∗,S∗(x) = ṽs∗,S∗(s∗) = ṽs∗,S∗(S∗)+K = K + inf
u≥0

ṽs∗,S∗(x + u), x ≤ s∗.

(4.19)

The case s∗ ≤ x ≤ a also holds by (4.18) and because ṽ′s∗,S∗(x) = λ(s∗, x) < 0 on
[s∗, a] in view of how a is chosen and (4.12).

Unfortunately, the proof of (4.17) for x > a is difficult and, we need a
nonstandard technique. As the fluctuation theory and scale function do not simplify
the proof to our best knowledge, it is out of scope of this note. We refer the reader
to the proof of Theorem 1(iii) of Benkherouf and Bensoussan [10].

Below, we summarize the functions and parameters that played important roles
in characterizing the optimal solution in Examples 4.3.

4.3.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

As in the singular control case, verification is in general harder for the spectrally
negative case than for the spectrally positive case.

For Example 4.2, the variational inequalities (4.13) can be shown without much
difficulty. Similarly to Example 4.3 above, the generator part of (4.13) holds
trivially; this is due to the fact that in this case the controlling region is (−∞, s∗)
and the waiting region is (s∗, 0]; the process does not jump from the former
to the latter and hence the results similar to Lemma 4.1 hold. The other parts
of (4.13) can be shown using the log-concavity of the scale function as in Sect. 2.7.2,
which essentially shows that −v′s∗,S∗(x) < −CU if and only if x ∈ (s∗, S∗); see
Lemma 5.3 of [9].

On the other hand, the verification for Example 4.1 can only be done for a subset
of spectrally negative Lévy processes. This is again due to the fact, in this case, that
the controlling region is (s∗,∞) and the waiting region is [0, s∗); the process can
jump from the former to the latter, where the form of vs∗,S∗ changes.
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5 Zero-Sum Games Between Two-Players

In this section, we consider optimal stopping games between two players: the inf
player and the sup player, whose strategies are given by stopping times θ and τ ,
respectively. Here, a common expected payoff is minimized by the former and is
maximized by the latter. The problem is terminated at the time either of the two
players decides to stop or at the first exit time from some closed interval I:

TIc := inf{t > 0 : Xt /∈ I }.

Without loss of generality, these can be assumed to satisfy

θ, τ ≤ TIc , a.s. (5.1)

Let q > 0 be the discount factor and the terminal payoff be given by

(1) gI : when the inf player stops first,
(2) gS : when the sup player stops first,
(3) g: when both players stop simultaneously (including the case θ = τ = TIc ),

such that g(x) = 0 for x /∈ I. Then given any pair of strategies (θ, τ ), the expected
cost (resp. reward) for the inf (resp. sup) player is

v(x; θ, τ ) := Ex

[
1{θ<τ }e−qθ gI (Xθ )+ 1{τ<θ}e−qτ gS(Xτ )+ 1{τ=θ<∞}e−qτ g(Xτ )

]
.

(5.2)

The objective is to determine, if it exists, a pair of stopping times (θ∗, τ ∗) ⊂ S,
called the saddle point, that constitutes the Nash equilibrium:

v(x; θ∗, τ ) ≤ v(x; θ∗, τ ∗) ≤ v(x; θ, τ ∗), ∀ θ, τ ∈ S, (5.3)

where S is the set of stopping times satisfying (5.1).

Example 5.1 Egami et al. [20] considered several games in the setting of a
credit default swap (CDS) contract as extensions to the optimal stopping problem
considered in Leung and Yamazaki [33].

As in a usual perpetual CDS contract, the sup player (protection buyer) pays
premium continuously and whenever the default event {X < 0} happens, the sup
player receives from the inf player (seller) a fixed default payment 1, and the contract
is terminated.

In their cancellation game, they added a feature that the sup player and inf player
both have an option to cancel the contract before default for a fee, whoever cancels
first. Specifically,

(1) the sup player begins by paying premium at rate p over time for a notional
amount 1 to be paid at default;
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(2) prior to default, the sup player and the inf player can select a time to cancel the
contract;

(3) when the sup player cancels, he is incurred the fee γS to be paid to the inf player;
when the inf player cancels, he is incurred γI to be paid to the sup player;

(4) if the sup player and the inf player exercise simultaneously, then both pay the
fee upon exercise.

For the game to make sense, these parameters are assumed to satisfy

1 > γI ≥ 0, p > 0, γS + γI > 0. (5.4)

Namely, the inf player wants to minimize while the sup player wants to maximize
the common expectation:

V (x; θ, τ ) := Ex

[
−
∫ τ∧θ

0
e−qtp dt

+1{τ∧θ<∞}
(
e−qT(−∞,0) 1{τ=θ=T(−∞,0)} + 1{τ∧θ<T(−∞,0)}e−q(τ∧θ)

(−γS1{τ≤θ} + γI 1{τ≥θ}
) )]

,

(5.5)

by choosing stopping times θ and τ , respectively.
Let

C(x;p) := Ex

[
−
∫ T(−∞,0)

0
e−qtp dt + e−qT(−∞,0)

]
=
(
p

q
+ 1

)
ζ(x)− p

q
, x > 0,

(5.6)

where, by (2.6),

ζ(x) := Ex

[
e−qT(−∞,0)

]
= Z(q)(x)− q

�(q)
W(q)(x), x ∈ R.

Then, by the strong Markov property, (5.5) can be written

V (x; θ, τ ) = C(x;p)+ v(x; θ, τ ), x > 0,

where

v(x; θ, τ) := Ex

[
e−q(τ∧θ)

(
gS(Xτ )1{τ<θ } + gI (Xθ )1{τ>θ } + g(Xτ )1{τ=θ }

)
1{τ∧θ<∞}

]
,

(5.7)

with, for x ∈ R,

gS(x) := 1{x>0}
[(p

q
− γS

)
−
(p
q
+ 1

)
ζ(x)

]
, (5.8)
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gI (x) := 1{x>0}
[(p

q
+ γI

)
−
(p
q
+ 1

)
ζ(x)

]
, (5.9)

g(x) := 1{x>0}
[(p

q
− γS + γI

)
−
(p
q
+ 1

)
ζ(x)

]
. (5.10)

In other words, the problem is to identify the pair of strategies (θ∗, τ ∗) such
that (5.3) holds.

5.1 Threshold Strategies

If the (common) payoff functions have some monotonicity with respect to the
position of X as in the examples given in Sect. 1.1, it is expected that both implement
threshold strategies where one of them stops when X is sufficiently high while the
other stops when it is sufficiently low. Hence, it is a reasonable conjecture that the
equilibrium is characterized by two boundaries: α < β or β < α.

We shall now consider a pair of strategies (θα, τβ) such that

(1) if α < β, then θα := inf{t > 0 : Xt < α} and τβ := inf{t > 0 : Xt > β},
(2) if β < α, then θα := inf{t > 0 : Xt > α} and τβ := inf{t > 0 : Xt < β}.
In order to satisfy the condition (5.1), we must have I ≤ α < β ≤ I and I ≤ β <

α ≤ I for (1) and (2), respectively.
In this case, the players’ expected NPVs of reward/cost (5.2) becomes

vα,β(x) := Ex

[
1{θα<τβ }e−qθαgI (Xθα)+ 1{τβ<θα}e−qτβ gS(Xτβ )

]
.

By the reviewed results in Sect. 2.4, this can be computed by the scale function and
the Lévy measure.

Focusing on the strategy pairs given by (θα, τβ), the first step again is to choose
a candidate barrier pair (α∗, β∗) using two equations. The expected degree of
smoothness is the same as the impulse control case (see Sect. 4.2) and is one less
than the singular control case (see Sect. 3.2). More precisely, we have the following
for the case α∗ < β∗ (the case β∗ < α∗ holds in the same way by swapping the
roles of α∗ and β∗):

(1) Regarding the smoothness of the value function at the lower barrier α∗,

(a) if α∗ is regular for (−∞, α∗) (or equivalently X is of unbounded variation),
then the continuous differentiability at α∗ is expected;

(b) if α∗ is irregular for (−∞, α∗) (or equivalently X is of bounded variation),
then the continuity at α∗ is expected.

(2) Regarding the smoothness at the upper barrier β∗, because it is always regular
for (β∗,∞), continuous differentiability is expected at β∗ regardless of the path
variation.
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5.1.1 The Case of Example 5.1

In the cancellation game, the sup player has an incentive to cancel the contract when
default is less likely, or equivalently when X is sufficiently high. On the other hand,
the inf player tends to cancel it when default is likely to occur, or equivalently when
X is sufficiently small. Because I = [0,∞), we can conjecture that the sup player
and the inf player choose the strategies τβ∗ and θα∗ for some values 0 ≤ α∗ <

β∗ ≤ ∞. Regarding the cases α∗ = 0 and β∗ = ∞, see the interpretations given in
Remark 5.2.

For 0 < α < x < β < ∞, it is straightforward to write

vα,β(x)− gS(x) = ϒ(x; α, β)− p

q
+ γS,

vα,β(x)− gI (x) = ϒ(x; α, β)− p

q
− γI ,

(5.11)

where

ϒ(x;α, β) := −γSEx

[
e−q(θα∧τβ )1{τβ<θα }

]
+ γIEx

[
e−q(θα∧τβ )1{τβ>θα or θα=τβ=T(−∞,0)}

]

− γIEx

[
e−q(θα∧τβ )1{θα=τβ=T(−∞,0)}

]
. (5.12)

By the results in Sect. 2.4 together with the compensation formula (see Theorem 4.4
of [30]), we can write

ϒ(x; α, β) = W(q)(x − α)

(α, β)

W(q)(β − α)
−
(α, x)+ p

q
− γS, β > x > α > 0,

(5.13)

where, for 0 < α < β < ∞,


(α, β) := p

q
− γS −

(p
q
+ γI

)
Z(q)(β − α)

+ 1 − γI

q

∫

(−∞,−α)

(
Z(q)(β − α)− Z(q)(β + u)

)
ν(du). (5.14)

We also define the derivative of (5.14) as, for 0 < α < β < ∞,

λ(α, β) := ∂

∂β

(α, β) = − (p + γI q)W

(q)(β − α)

+ (1 − γI )

∫

(−∞,−α)

(
W(q)(β − α)−W(q)(β + u)

)
ν(du).
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We begin with establishing the continuous fit condition. First, by taking limits
in (5.11), we have, for 0 < α < β < ∞

vα,β(β−)− gS(β) = ϒ(β−; α, β)+ γS = 0, (5.15)

vα,β(α+)− gI (α) = W(q)(0)

(α, β)

W(q)(β − α)
. (5.16)

This means that continuous fit holds automatically at β. On the other hand, at α,
while continuous fit holds automatically for the case of unbounded variation, it holds
if and only if

Cα : 
(α, β)

W(q)(β − α)
= 0 (5.17)

for the bounded variation case.
Now, by taking the derivative of (5.13), we obtain, for α < x < β,

v′α,β(x+)− g′S(x) = v′α,β(x+)− g′I (x)

= ϒ ′(x+; α, β) = W(q)′((x − α)+)

(α, β)

W(q)(β − α)
− λ(α, x).

Hence, the smooth fit at β holds if and only if

Cβ : W(q)′((β − α)−)

(α, β)

W(q)(β − α)
− λ(α, β) = 0.

Assuming that it has paths of unbounded variation (W(q)(0) = 0), then we obtain

v′α,β(α+)− g′(α) = W(q)′(0+)

(α, β)

W(q)(β − α)
, 0 < α < β.

Therefore, Cα is also a sufficient condition for smooth fit at α for the unbounded
variation case. In addition, if Cα holds, then Cβ simplifies to

C′β : λ(α, β) = 0.

We conclude that

(1) if (α∗, β∗) satisfy Cα , then continuous fit at α∗ holds for the bounded variation
case and both continuous and smooth fit at α∗ holds for the unbounded variation
case;

(2) if (α∗, β∗) satisfy Cβ , then both continuous and smooth fit conditions at β∗ hold
for all cases.
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Remark 5.1 Note that, except that the form of 
 is different, the conditions Cα and
Cβ (or C′β ) are the same as Ca and Cb (or C′b) as in (3.7) and (3.10) (or (3.11)) in
the two-sided singular control case and are similar to Cs and CS (or C′S) as in (4.5)
and (4.6) (or (4.9)) in the impulse control case.

In order to show the existence of a pair that satisfy Cα and Cβ , consider the
function, for 0 < α < β,

λ̂(α, β) := λ(α, β)

W(q)(β − α)
= − (p + qγI )+

(
1 − γI

) ∫

(−∞,−α)

(
1 − W(q)(β + u)

W(q)(β − α)

)
ν(du).

By using the log-concavity of the scale function as in Sect. 2.7.2, the following can
be easily derived.

Lemma 5.1

(1) For fixed 0 < β < ∞, α �→ λ̂(α, β) is decreasing on (0, β).
(2) For fixed α > 0, β �→ λ̂(α, β) is decreasing on (α,∞).

Using Lemma 5.1(2) and (2.13), for α > 0, we can extend λ̂(α, β) to the cases
β = α and β = ∞ with

λ̂(α) ≡ λ̂(α, α+) := lim
β↓α λ̂(α, β) = − (p + qγI )+ (1 − γI )ν̄(α),

λ̂(α,∞) := lim
β→∞ λ̂(α, β) = − (p + qγI )+ (1 − γI )�(q)�(α; ν̄) = �(q)�(α; λ̂),

where

ν̄(x) := ν(−∞,−x), x > 0.

We shall see that the function λ̂(·) plays the same role as f̃ ′(·) in Examples 3.3
and 4.3. Because λ̂(·) and �(·; λ̂) are monotonically decreasing, we can define α :=
a(−̂λ) and α := a(−̂λ) as in Definitions 2.1 and 2.2, respectively. These will serve
as bounds on α∗ and we will have α ≤ α∗ < α.

Egami et al. [20] show that there always exists a pair (α∗, β∗) belonging to one
of the following four cases:

case 1: 0 < α∗ < β∗ < ∞;
case 2: 0 < α∗ < β∗ = ∞;
case 3: 0 = α∗ < β∗ < ∞;
case 4: 0 = α∗ < β∗ = ∞;

which satisfy Cα when α∗ > 0 and Cβ when β∗ < ∞.
Here, we only give a brief sketch of the proof that if

α > 0 and sup
β>α


(α, β) > 0, (5.18)
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then case 1 holds. (If these are violated, α∗ = 0 and/or β∗ = ∞; see Remark 5.2
below.) To this end, observe that

∂

∂α

(α, β) = −W(q)(β − α)̂λ(α) (5.19)

is negative for every α ∈ (0, α) by how α is chosen as in Definition 2.1. Hence,
the function α �→ supβ>α 
(α, β) is monotonically decreasing on (0, α). Thanks
to the continuity of 
(α, β) and (5.18), if we can show that supβ>α 
(α, β) < 0,
then there must exist α∗ ∈ (α, α) such that supβ>α∗ 
(α∗, β) = 0 with its local
maximum attained at β∗. Indeed, by Lemma 5.1(2) and how α is chosen, λ̂(α, β) ≤
0 or equivalently λ(α, β) ≤ 0 for β ∈ (α,∞) and hence supβ>α 
(α, β) =

(α, α+) = −(γI + γS) < 0.

These properties of the shapes of λ and 
 can be confirmed by the numerical
plots given in Fig. 8.

Remark 5.2 While the details are omitted in this note, when (5.18) does not hold,
necessarily α∗ = 0 and/or β∗ = ∞. In the latter case, it can be shown that the sup
player never stops in the equilibrium.

In the case α∗ = 0, it may not yield the Nash equilibrium for the unbounded
variation case. To see this, we notice that a default happens as soon as X goes below
zero. Therefore, in the event that X continuously passes (creeps) through zero, the
inf player would optimally seek to exercise at a level as close to zero as possible.
Nevertheless, this timing strategy is not admissible, though it can be approximated
arbitrarily closely by admissible stopping times. It can be shown that α∗ = 0 is
possible only if the jump part Xd of X is of bounded variation.

Fig. 8 Existence of (α∗, β∗) for Example 5.1. Plots of β �→ 
(α, β) on [α,∞) for the starting
values α = α, (α + α∗)/2, α∗, (α∗ + α)/2, α. The solid curve in red corresponds to the one
for α = α∗; the point at which 
(α∗, ·) is tangent to the x-axis (or λ(α∗, ·) vanishes) becomes
β∗. The function 
(α, ·) is monotonically increasing while 
(α, ·) is monotonically decreasing.
Equivalently, λ(α, ·) is uniformly positive while λ(α, ·) is uniformly negative
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5.2 Variational Inequalities and Verification

The verification of optimality (for both players) require that, when α∗ < β∗,

gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ I,

(L− q)vα∗,β∗(x) ≥ 0, x ∈ (−∞, α∗) ∩ Io,

(L− q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗) ∩ Io,

(L− q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞) ∩ Io.

(5.20)

On the other hand, when α∗ > β∗, it requires that

gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ I,

(L− q)vα∗,β∗(x) ≤ 0, x ∈ (−∞, β∗) ∩ Io,

(L− q)vα∗,β∗(x) = 0, x ∈ (β∗, α∗) ∩ Io,

(L− q)vα∗,β∗(x) ≥ 0, x ∈ (α∗,∞) ∩ Io.

Suppose α∗ < β∗. From the inf player’s perspective, assuming that the sup
player’s strategy is given by τβ∗ (so that the state space for the inf player is
Iβ∗ := (−∞, β∗) ∩ I), the above variational inequalities satisfy those for the
minimization problem for the inf player that

vα∗,β∗(x) ≤ gI (x), x ∈ Iβ∗,

(L− q)vα∗,β∗(x) ≥ 0, x ∈ (−∞, α∗) ∩ Io
β∗,

(L− q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗).

Similarly, from the sup player’s perspective, assuming that the inf player’s strategy
is given by θα∗ (so that the state space of the sup player is Iα∗ := (α∗,∞) ∩ I),
the above variational inequalities satisfy those for the maximization problem for the
sup player that

vα∗,β∗(x) ≥ gS(x), x ∈ Iα∗,

(L− q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞) ∩ Io
α∗,

(L− q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗).

The case α∗ > β∗ is similar, and hence we omit the details.
This is a rough illustration on why these conditions are imposed for verification.

We refer the reader to [20] and also [21, 40] for more rigorous arguments. In
general, if vα∗,β∗ is unbounded or I has a finite boundary at which vα∗,β∗ fails
to be smooth/continuous, some localizing arguments are necessary.
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5.2.1 Verification for Example 5.1

Here we shall illustrate a proof technique on how the candidate value function vα∗,β∗
solves the variational inequalities, focusing on Example 5.1 in the case 0 < α∗ <

β∗ < ∞.
By (5.11), we can write

vα∗,β∗ (x) =

⎧
⎪⎨

⎪⎩

gS(x), x ≥ β∗

gS(x)+ (vα∗,β∗ (x)− gS(x)), α
∗ < x < β∗

gI (x), x ≤ α∗

⎫
⎪⎬

⎪⎭
= −

(p
q
+ 1

)
ζ(x)+ J (x)

(5.21)

where

J (x) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
q
− γS, x ≥ β∗,

ϒ(x; α∗, β∗), α∗ ≤ x < β∗,
p
q
+ γI , 0 ≤ x < α∗,

p
q
+ 1 x < 0.

(5.22)

Here, by (5.17),

ϒ(x; α∗, β∗) =
(p
q
+ γI

)
Z(q)(x − α∗)

− 1 − γI

q

∫

(−∞,−α∗)

(
Z(q)(x − α∗)− Z(q)(x + u)

)
ν(du). (5.23)

See Fig. 9 for a sample plot of the value function along with the stopping values.
Below, we show briefly that vα∗,β∗ solves (5.20) when 0 < α∗ < β∗ < ∞.

Lemma 5.2 Suppose W(q) is sufficiently smooth on (0,∞) (i.e. C1 when X is of
bounded variation and C2 when it is of unbounded variation). Then we have the
following:

(1) gS(x) ≤ vα∗,β∗(x) ≤ gI (x), x ∈ [0,∞),
(2) (L− q)vα∗,β∗(x) ≥ 0, x ∈ (0, α∗),
(3) (L− q)vα∗,β∗(x) = 0, x ∈ (α∗, β∗),
(4) (L− q)vα∗,β∗(x) ≤ 0, x ∈ (β∗,∞).

Brief sketch of proof

(1) We show for x ∈ (α∗, β∗); the other cases are immediate.
The proof is relatively straightforward by the log-concavity of the scale

function as in Sect. 2.7.2 and the shapes of 
 and λ given by


(α∗, β) ≤ 0 and λ(α∗, β) ≥ 0, α∗ < β < β∗. (5.24)
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Fig. 9 A sample plot of the value function vα∗,β∗ (solid red line) for Example 5.1 when X is of
unbounded variation. The up-pointing and down-pointing triangles show the points at α∗ and β∗,
respectively. The two dotted lines show the stopping values gS and gI

Here (5.24) holds because, by Lemma 5.1, β �→ 
(α∗, β) increases on (α∗, β∗)
and decreases on (β∗,∞) with its peak given at 
(α∗, β∗) = 0 (see Fig. 8).

Now, with the help of (5.19) and the log-concavity,

∂+
∂+α

(vα,β∗(x)− gI (x)) =
[ ∂+
∂+α

W(q)(x − α)

W(q)(β∗ − α)

]

(α, β∗) > 0, α∗ < α < x < β∗.

Hence, by this, (5.16) and (5.24), 0 ≥ W(q)(0)
(x, β∗)/W(q)(β∗ − x) =
vx,β∗(x+)− gI (x) ≥ vα∗,β∗(x)− gI (x) for α∗ < x < β∗.

On the other hand, by (5.24),

∂+
∂+β

(vα∗,β(x)− gS(x)) = W(q)(x − α∗)
(W(q)(β − α∗))2

[
λ(α∗, β)W(q)(β − α∗)

−
(α∗, β)W(q)′((β − α∗)+)
]
> 0, α∗ < x < β < β∗.

Therefore, by this and (5.15), 0 = vα∗,x(x−)− gS(x) ≤ vα∗,β∗(x)− gS(x) for
α∗ < x < β∗.
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(2) By the assumption that W(q) is sufficiently smooth, the identity (2.17) holds,
and therefore

(L− q)ζ(x) = 0, x > 0. (5.25)

Hence,

(L− q)vα∗,β∗(x) = (1 − γI )ν̄(x)− (qγI + p) = λ̂(x). (5.26)

Because x < α∗ < α, this must be positive by how α is chosen.
(3) In view of (5.21), (5.22), and (5.23), it is immediate by (2.16) together

with (5.25).
(4) This is as usual the hardest part because the process can jump from the stopping

region of the sup player (β∗,∞) to the other two regions (−∞, α∗) and
(α∗, β∗), where the form of vα∗,β∗ changes. However, it is more straightforward
than the two-sided singular control case that we studied in Sect. 3.

In Egami et al. [20], they first show that (L − q)vα∗,β∗(β∗+) ≤ (L −
q)vα∗,β∗(β∗−) = 0 using how α∗ and β∗ are chosen so that vα∗,β∗ gets
smooth/continuous at β∗. It then remains to show that x �→ (L − q)vα∗,β∗(x)
is decreasing on (β∗,∞). In view of the decomposition (5.21) and also (5.25),
it is equivalent to showing that (L− q)J (x) is decreasing on (β∗,∞). Indeed,
because J ′ = J ′′ = 0 on x > β∗,

(L − q)J (x) =
∫

(−∞,β∗−x)

[
J (x + u)−

(p
q
− γS

)]
ν(du)− (p − qγS), x > β∗,

where the integrand is nonnegative and monotonically decreasing in x and the
set (−∞, β∗ − x) is decreasing in x as well. ��

In Table 3, we summarize the functions and parameters that played major roles
in the above analysis for Examples 5.1.

Table 3 Summary of the key functions and parameters in Example 5.1


(α, β) := p
q
−γS−

(
p
q
+γI

)
Z(q)(β−α)+ 1−γI

q

∫
(−∞,−α)

[
Z(q)(β − α)− Z(q)(β + u)

]
ν(du)

λ̂(α) := −(p + qγI )+ (1 − γI )ν̄(α)

α := a(−λ̂)

≤ α∗ := α of (α, β) such that Cα and Cβ hold simultaneously

< α := a(−λ̂)

< β∗ := β of (α, β) such that Cα and Cβ hold simultaneously

It can be shown that α∗ = α when β∗ = ∞
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5.3 Other Optimal Stopping Games

There are many other existing games studied for a spectrally one-sided Lévy
process. The following problems can be formulated as (5.3). However, there are
clear differences with the problem considered above.

Example 5.2 The McKean optimal stopping game corresponds to the case I = R

with gS(x) = g(x) = (K − ex)∨ 0 and gI = (K − ex)∨ 0+ δ for some K, δ > 0.
In other words, this is an extension of the American put option where the seller
(inf player) can also exercise with an additional fee δ. This problem was solved by
Baurdoux and Kyprianou [5] for a spectrally negative Lévy process. It is required
that 0 ≤ ψ(1) ≤ q for the solution to be nontrivial.

Example 5.3 As a way to model a version of the convertible bond, Gapeev and
Kühn [23] and Baurdoux et al. [7] considered the problem where the cost (resp.
reward) for the inf (resp. sup) player is given by

V (x; θ, τ ) := Ex

[ ∫ τ∧θ

0
e−qt

(
C1 + C2e

Xt
)
dt + 1{θ≤τ }e−qθ (eXθ ∨K)+ 1{τ<θ }e−qτ+Xτ

]
,

for C1 ≥ 0 and C2,K > 0. This can be easily transformed to the formulation given
in the beginning of this section. Indeed, by the strong Markov property, we can write
V (x; θ, τ ) = v(x; θ, τ )+ F(x) where

F(x) := Ex

[ ∫ ∞

0
e−rt (C1 + C2e

Xt )dt
]
,

v(x; θ, τ ) := Ex

[
1{θ≤τ }e−qθ

(
eXθ ∨K − F(Xθ )

)+ 1{τ<θ}e−qτ (eXτ − F(Xτ ))
]
.

Hence, solving this is equivalent to solving (5.2) with gI (x) = g(x) = ex ∨ K −
F(x), gS(x) = ex − F(x), and I = R.

Gapeev and Kühn [23] considered the case of a Brownian motion plus i.i.d.
exponential jumps. Baurdoux et al. [7] studied for a spectrally positive Lévy process.

In these examples, while the fluctuation theory and scale function can be used as
main tools, the above techniques described in this section may not be directly used.

In Example 5.2, Baurdoux and Kyprianou [5] showed that the equilibrium is
given by either τ ∗ := inf{t > 0 : Xt < k∗} and σ ∗ = ∞, or τ ∗ := inf{t > 0 : Xt <

x∗} and σ ∗ := inf{t > 0 : Xt ∈ [logK, y∗]} for some thresholds k∗, x∗ and y∗.
While continuous/smooth fit can be used to identify these values, due to the critical
barrier logK , one does not observe the dependency between the two parameters that
we have seen in this section.

In Example 5.3, as shown in [23] and [7], the equilibrium is given by two up-
crossing times where at least one of them is the first time X goes above the critical
barrier logK . Therefore, again one does not observe the dependency between the
two parameters.
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5.4 When a Stopper Is Replaced with a Controller

One can naturally consider the case where the stopper(s) are replaced with singular
controller(s).

The game between a controller and a stopper has been studied by Hernández-
Hernández et al. [26] for the case driven by a diffusion process, where they
obtained general results on the verification lemma and gave some explicitly solvable
examples.

The case driven by a spectrally one-sided Lévy process is studied by Hernández-
Hernández and Yamazaki [25], where they considered the problem where a stopper
maximizes and a controller minimizes the expected value of some monotone payoff.
They considered both the spectrally negative and positive cases. Not surprisingly,
the solution procedures are similar to the ones illustrated in this note: the candidate
barriers (a∗, b∗), which separate the state space into the stopping, waiting, and
controlling regions, are chosen by continuous/smooth fit so that

(1) the value function at the boundary for the controller is continuously differen-
tiable (resp. twice continuously differentiable) if it is irregular (resp. regular)
for the controlling region;

(2) the value function at the boundary for the stopper is continuous (resp. continu-
ously differentiable) if it is irregular (resp. regular) for the stopping region.

The verification of optimality can be carried out by showing the verification lemma
as in the one given in Sect. 5.2. As we have seen, many parts of the verification
can be carried out without much effort. However, the difficulty is again to show
the sub/super harmonicity at the region where the process can jump instantaneously
to the other regions. To deal with this, Hernández-Hernández and Yamazaki [25]
applied similar techniques as the ones discussed in Sects. 3.4 and 5.2.1.

The game between two singular controllers is also of great interest. Under a
certain monotonicity assumption on the payoff function, it is expected that the
optimally controlled process becomes the doubly reflected Lévy process similarly
to the two-sided singular control case we studied in Sect. 3. Hence, the candidate
value function can be computed again using the scale function and is expected to
preserve the same smoothness as those observed in Sect. 3. Consequently, the two
boundaries can be chosen in essentially the same way. The verification lemma can
be easily obtained by modifying (3.19). It is expected that many of the techniques
used in Sect. 3 can be recycled.
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Asymptotic Results for the Severity
and Surplus Before Ruin for a Class
of Lévy Insurance Processes

Ekaterina T. Kolkovska and Ehyter M. Martín-González

Abstract We investigate a classical two-sided jumps risk process perturbed by a
spectrally negative α-stable process, in which the gain size distribution has a rational
Laplace transform. We consider three classes of light- and heavy-tailed claim size
distributions. We obtain the asymptotic behaviors of the ruin probability and of the
joint tail of the surplus prior to ruin and the severity of ruin, for large values of
the initial capital. We also show that our asymptotic results are sharp. This extends
our previous work (Kolkovska and Martín-González, Gerber-Shiu functionals for
classical risk processes perturbed by an α-stable motion. Insur Math Econ 66:22–
28, 2016).

Keywords Two-sided risk process · Stable process · Ruin probability · Severity
of ruin · Surplus before ruin · Asymptotic ruin probability
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1 Introduction

For a given risk process X = {X(t), t ≥ 0}, the expected discounted penalty
function, named also the Gerber-Shiu functional, is defined by

φ(u) = E
[
e−δτ0ω (|X(τ0)|,X(τ0−)) 1{τ0<∞}

∣∣X(0) = u
]
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where τ0 = inf{t ≥ 0 : X(t) < 0} is the ruin time, δ ≥ 0 is a constant representing
a discounting factor, and ω : R+ × R+ → R+ is a nonnegative penalty function.
The random variables |X(τ0)| and X(τ0−) are known respectively as the severity
of ruin and the surplus immediately before ruin. The functional φ was introduced
in [12] as a generalization of the concept of ruin probability, which is obtained as a
particular case when δ = 0 and ω ≡ 1, and has been investigated intensively since
then. Many other important risk measures arise as particular cases of the Gerber-
Shiu functional, including the distribution of the claim that causes the ruin given
that τ0 < ∞, the joint Laplace transform of the severity of ruin and the surplus prior
to ruin, the Laplace transform of the time to ruin and the joint tail distribution of the
severity of ruin and the surplus prior to ruin.

The classical two-sided jumps risk process is given by

X(t) = u+ ct +
N1(t)∑

j=1

Yj1 −
N2(t)∑

j=1

Yj2 := u+ ct + Z1(t)− Z2(t), (1.1)

where u ≥ 0 and c > 0 are constants representing, respectively, the initial capital of
the insurance company and the prime per unit time that the company receives, and
Z1 = {Z1(t), t ≥ 0}, Z2 = {Z2(t), t ≥ 0} are two independent compound Poisson
processes with respective intensities and jump distributions, λi and Fi, i = 1, 2,
where λi ≥ 0 for i = 1, 2. Here Z1(t) and Z2(t) model respectively the accumulated
random gains and random claims at time t . In the case when λ1 = 0 the resulting
process is called the classical risk process.

In a previous paper [15] we investigated a perturbed two-sided jumps classical
risk process Vα = {Vα(t), t ≥ 0}, given by

Vα(t) = X(t)− ηWα(t), η > 0, t ≥ 0, (1.2)

where X is the risk process defined in (1.1) and {Wα(t), t ≥ 0} is an independent
standard α-stable process with index of stability 1 < α < 2 and skewness parameter
β = 1. Moreover,F1 possesses a density f1 whose Laplace transform f̂1 is a rational
function of the form

f̂1(r) = Q(r)
∏N

i=1(qi + r)mi

, r ≥ 0, (1.3)

where N,mi ∈ N with m1 + m2 + · · · + mN = m, 0 < q1 < q2 <

· · · < qm and Q is a polynomial function of degree at most m − 1. The family
of distributions satisfying (1.3) is widely used in probability applications. This
is a wide class of light-tailed distributions which includes Coxian distributions,
combinations of exponential distribution, phase-type distributions, combinations of
Erlang distributions and many others. It is dense in the class of general nonnegative
distributions (see e.g. [7] and [16, Theorem 8.2.8].) and this property allows for
numerical approximations for φ in the case of general gain distributions. Under
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some additional assumptions on the claim size distribution function F2 and the
penalty function ω, in [15] we obtained a formula for the Laplace transform of
φ and an expression for φ as an infinite series of convolutions of given functions.
However, such infinite sums of convolutions are hard to work with in practice, and
therefore, it is of interest to study the asymptotic behavior of such expressions.

In this paper we investigate the same model as in [15], to which we refer the
reader for motivation and explanations about the meaning of the model parameters.
Based upon the results obtained in [15], here we obtain an asymptotic formula for
the ruin probability ψ(u) := P[τ0 < ∞|Vα(0) = u] as u → ∞, see Theorem 1
below. In Theorem 2 we obtain an asymptotic formula, as u → ∞, of the joint tail
distribution

ϒa,b(u) := P[|Vα(τ0)| > a,Vα(τ0−) > b, τ0 < ∞|V (0) = u], a > 0, b > 0.

(1.4)

In Theorem 3 we show that such asymptotic formula holds uniformly in the
parameters a and b. These results extend our previous work [14], where we
investigated similar behaviors for the classical risk process perturbed by Wα . Other
asymptotic results for the ruin probability and the asymptotic distribution of the
overshoot of the process about high levels are obtained by Klüppelberg et al. [13] in
the case when the Lévy risk process is spectrally positive or spectrally negative. In
Doney et al. [6] asymptotic results for the time of ruin, the surplus before the time
of ruin and the overshoot at ruin time are obtained for Lévy risk processes under the
assumptions that the positive part of the Lévy measure of the process is heavy tailed,
and the renewal measure of the descending ladder process is of regular variation. In
the case we study here the risk process Vα has two-sided jumps distribution, such
that the upward-jump distribution is light-tailed. Therefore, our results complement
the investigation in [13] and [6].

We remark that expressions for Gerber-Shiu functionals of a more general class
of Lévy risk processes than the one we treat here are given in Biffis and Morales
[2] in terms of infinite series of convolutions of integral functions. However,
the integrals involved in such convolution formula are not easy to calculate in
general, since they are integrals with respect to pure jumps measures and require
Laplace transform inversion techniques. In [1] the authors give an expression for a
generalized version of the Gerber-Shiu functional for spectrally negative Lévy risk
processes in terms of integrals of the associated scale functions of the processes.
However, in most cases the scale functions are difficult to obtain explicitly.

The paper is organized as follows: in Sect. 2 we give additional assumptions on
the process Vα that we need, as well as several definitions and preliminary results
that we use in the sequel. In Sect. 3 we obtain asymptotics for the ruin probability of
the process Vα, using Karamata’s theorem combined with certain results from [8].
The final Sect. 4 contains our main results, Theorems 2 and 3, and their proofs.
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2 Definitions and Preliminary Results

In what follows we consider the process Vα and denote by ψ the corresponding ruin
probability ψ(u) = P[τ0 < ∞|Vα(0) = u] starting with an initial capital u ≥ 0.
As above, we write ϒa,b(u) = P[|Vα(τ0)| > a,Vα(τ0−) > b, τ0 < ∞|V (0) = u],
u ≥ 0, for the joint tail of the severity of ruin and surplus prior to ruin, where a and
b are fixed positive numbers. These two functions ψ and ϒa,b are particular cases
of φ respectively, when ω(x, y) = 1 and when ω(x, y) = 1{x>a,y>b}. We recall that
the survival probability �(u) = 1 − ψ(u), u ∈ R, is a distribution function.

We consider the Generalized Lundberg equation

L(r) := cr + ηαrα + λ1F̂1(−r)+ λ2F̂2(r)− (λ1 + λ2) = 0.

In [15, Proposition 3.6] it is proved that L has exactly m + 1 roots in the right-
half complex plane C+ = {z ∈ C : Re(z) ≥ 0}, and when δ = 0, 0 is a root of the
above equation with multiplicity 1. We denote the roots of L by ρ1, . . . , ρm+1, with
ρ1 = 0 when δ = 0. We assume that the following conditions hold.

(a) The upward distribution F1 has a density f1, whose Laplace transform has the
form (1.3).

(b) The Net Profit Condition E[Vα(1)− u] = c + λ1μ1 − λ2μ2 > 0 holds, where
μj = E[X1j ] < ∞, j = 1, 2.

(c) The roots ρ1, . . . , ρm+1, are all different.

Notice that assumption (b) implies that limt→∞ Vα(t) = +∞ with probability 1.
For a > 0 we denote by zα,a the density of the extremal stable distribution ζα,a ;
see e.g. [15, page 376] for the definition of ζα,a . It is known [11, Lemma 1] that the
Laplace transform of zα,a exists for all r ≥ 0 and is given by ẑα,a(r) = a

a+rα−1 . We

set E(ρj ) =
∏N

l=1(ql−ρj )
ml∏

l �=j (ρl−ρj )
and denote by Tr the Dickson-Hipp operator introduced

in [5], which is defined by Trf (x) = ∫∞
x e−r(y−x)f (y) dy for any x ≥ 0, all

complex number r = r1 + ir2 with r1 ≥ 0, and all integrable nonnegative functions
f. We define the function

g0(x) = λ2

m+1∑

j=1

E(ρj )Tρj f2(x), x > 0,

and for α < 2 and u > 0 we denote lα(u) = (α−1)u−α

�(2−α)
and fα(u) =

∑m+1
j=2 E(ρj )ρjTρj lα(u). It is easily shown that f̂α(r) =∑m+1

j=2 E(ρj )ρj
ρα−1
j −rα−1

ρj−r
.

From [15, Lemma 5.3] it follows that fα and g0 are real valued functions. In the
sequel we will assume that these two functions are nonnegative. This assumption
holds at least in the case when F2 is a convex sum of exponential distribution
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functions with positive coefficients, since in this case it follows similarly as in
[4] that the roots ρj , j = 1, . . . ,m + 1, of the Lundberg equation L(r) = 0 are
nonnegative real numbers. This implies, due to the definition of E(ρj ), that also
E(ρj ) are nonnegative numbers.

Now we define the distribution functions

Fα(x) = 1

CF

x∫

0+
fα(y)dy, G0(x) = 1

CG

x∫

0+
g0(y)dy,

Uα(x) = 1

CU

x∫

0+
να(y)dy, x > 0, (2.1)

and F2,I (x) = 1
μ2

∫ x

0 F 2(y) dy, x ≥ 0. Here CF = ∫∞
0+ fα(x) dx, CG =∫∞

0+ g0(x) dx and CU = ∫∞
0+ να(x) dx. The functions ν : R+ → R+ and Wα :

R+ → R+ are defined by their Laplace transforms

ν̂α(r)

(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= ẑα,θ (r), (2.2)

where θ = c/ηα + κ and κ = 1
ηα ĝ0(0)+ f̂α(0), and

Ŵα(r) =
1

ηαθ
ν̂α(r)

1 − 1
θ

[
κν̂α(r)+ 1

ηα ĝ0(r)̂να(r)
] . (2.3)

In [15, Proposition 5.6] we give representations of ν and Wα as series of convolu-
tions of given functions.

We recall [15, Proposition 5.4 b)] that the Laplace transform of the ruin
probability ψ satisfies the equality

ψ̂(r) = 1

r
− (c + λ1μ1 − λ2μ2)

r

∏N
j=1 q

mj

j∏m+1
j=2 ρj

Ŵα(r), r > 0. (2.4)

Notice that the roots of Lundberg’s equation appear in conjugate pairs because the

equation coefficients are real, hence
∏N

j=1 q
mj
j∏m+1

j=2 ρj

> 0.

We also recall the following definitions: Let F be a distribution function such that
F(0) = 0 with tail F = 1 − F. If there exist numbers c1, c2 > 0 such that F(x) ≤
c1e

−c2x for all x > 0, then F is called light-tailed distribution function. Otherwise
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F is a heavy-tailed distribution function and in such a case we write F ∈ H. In case
that limx→∞ F ∗2(x)/F (x) = 2 we say that F belongs to the class of subexponential
distributions and write F ∈ S. The distribution function F belongs to the class L if
for any y ≥ 0 there holds limx→∞ F(x − y)/F (x) = 1. Finally, F belongs to the
class Rc for c ≥ 0 if F has a density f such that limx→∞ f (x)/F (x) = c. We say
that f : R+ → R+ is a regularly varying function of x at ∞, with order a ∈ R,
if limx→∞ f (xt)/f (x) = ta for t > 0, and write f ∈ RVa . In the particular case
when a = 0, we say that f is a slowly varying function of x at ∞. If f is regularly
varying of order a, then it can be written as f (x) = xaL(x), where L is a slowly
varying function. We define f ∼ g if limx→∞ f (x)/g(x) = 1. We write F ∈ RV a

if F is such that F(x) ∼ xaL(x). The following inclusions hold (see [9]):

RV a ⊂ S ⊂ L ⊂ H and R0 ⊂ L. (2.5)

Lemma 1 Let F1, F2 be two distribution functions such that Fi(0) = 0, i = 1, 2,
and let H = F1 ∗ F2 be their convolution.

a) If F2 ∈ S and F 1(x) = o(F 2(x)) as x → ∞, then H ∈ S. Moreover, H(x) ∼
F 2(x).

b) If F i(x) ∼ x−δLi(x) for i = 1, 2, where L1 and L2 are slowly varying
functions, then H(x) ∼ x−δ (L1(x)+ L2(x)) as x →∞.

c) If F 2(x) ∼ cF 1(x) for some c ∈ (0,∞), then F1 ∈ S if and only if F2 ∈ S and
H ∼ (1 + c)F 2(x).

d) If β ∈ (0, 1) and K(x) = (1 − β)
∑∞

n=0 βnF ∗n
1 (x) then the following three

conditions are equivalent:

K ∈ S, F1 ∈ S, K(x) ∼ β
1−β

F 1(x).

Proof For a) and d) see, respectively, [8, Proposition 1a) and Theorem 3]. For b)
see [10, page 278]. The proof of c) is given in [16, lemmas 2.5.2 and 2.5.4].

3 Asymptotic Behavior of the Ruin Probability

In what follows we will use the elementary identities

F̂ (r) = f̂ (r)

r
and F̂ (r) = 1 − f̂ (r)

r
, r > 0, (3.1)

valid for any distribution function F with F(0) = 0 and having density f . First we
state the following auxiliary result.
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Proposition 1 The following asymptotics hold:

a) lim
x→∞

Fα(x)

x1−α

�(2−α)

= 1

CF

(
1 −

∏N
i=1 q

mi

i∏m+1
j=2 ρj

)
, hence Fα ∈ S.

b) If F2 ∈ R0, then lim
x→∞

G0(x)

F 2,I (x)
= λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

. If in addition F2,I ∈ S, then

G0 ∈ S.
c) If F 2(x) = o(x−α), then G0(x) = o(x1−α).

d) lim
x→∞

Uα(x)

ζα,θ (x)
= CU

∏N
i=1 q

mi

i∏m+1
j=2 ρj

, hence Uα ∈ S.

Proof

a) Let us define F ∗(u) = ∫ u

0 Fα(x)dx. From (3.1) we obtain F̂ ∗(r) =
(1 − 1

CF
f̂α(r))/r

2, hence lim
r↓0

rF̂ ∗(r)
rα−2 = lim

r↓0

1 − 1
CF

f̂α(r)

rα−1 . From the definition

of CF it follows that 1 − 1
CF

f̂α(0) = 0. Using L’Hospital’s rule gives

lim
r↓0

1− 1
CF

f̂α(r)

rα−1
= lim

r↓0

1 + 1

CF
∑m+1

j=2 E(ρj )ρj

ρα−1
j − rα−1

ρj − r

rα−1

= lim
r↓0

1

CF
∑m+1

j=2 E(ρj )ρj

(
ρα−1
j − rα−1

(ρj − r)2
− (α − 1)rα−2

ρj − r

)

(α − 1)rα−2

= − 1

CF

m+1∑

j=2

E(ρj ) = 1

CF

(
1 −

∏N
i=1 q

mi

i∏m+1
j=2 ρj

)
, (3.2)

where the last equality follows by [15, Lemma 5.3]. From [10, Theorem 1, page
443] we obtain the limit in part a), which implies that Fα is regularly varying.
Using (2.5) we also obtain that Fα ∈ S.

b) Notice that

lim
x→∞

∣∣∣∣∣

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣∣∣∣∣

≤ lim
x→∞

∫∞
x

∫∞
y e−Re(ρj )(z−y)f2(z)dzdy

F 2,I (x)
, j = 2, 3, . . . ,m+ 1. (3.3)
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Taking limits when x →∞ in the right-hand side of (3.3) yields

lim
x→∞

∫∞
x

eRe(ρj )y
∫∞
y

e−Re(ρj )zf2(z)dzdy

F 2,I (x)
= lim

x→∞

∫∞
x

e−Re(ρj )zf2(z)dzdy

e−Re(ρj )xF 2(x)

= lim
x→∞

e−Re(ρj )xf2(x)

Re(ρj )e
−Re(ρj )xF 2(x)+ e−Re(ρj )xf2(x)

= lim
x→∞

f2(x)

F 2(x)

Re(ρj )+ f2(x)

F 2(x)

,

(3.4)

where the first and second equalities follow by L’Hospital’s rule. Using the
assumption that F2 ∈ R0, we obtain from (3.4) and (3.3) that

lim
x→∞

∣∣∣∣∣

∫∞
x Tρj f2(y) dy

F 2,I (x)

∣∣∣∣∣ = 0. (3.5)

Since
∫∞
x g0(y)dy = λ2

∏N
i=1 q

mi
i∏m+1

j=2 ρj

μ2F 2,I (x)−λ2
∑m+1

j=2 E(ρj )
∫∞
x Tρj f2(y), the

triangle inequality yields

λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

−
∣∣∣∣∣
− λ2

CG

∑m+1
j=2 E(ρj )

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣∣∣∣∣ ≤
∣∣∣∣∣
G0(x)

F 2,I (x)

∣∣∣∣∣ ,

(3.6)

and

∣∣∣∣∣
G0(x)

F 2,I (x)

∣∣∣∣∣ ≤
λ2μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

+
∣∣∣∣∣
− λ2

CG

∑m+1
j=2 E(ρj )

∫∞
x Tρj f2(y)dy

F 2,I (x)

∣∣∣∣∣ .

(3.7)

The limit in part b) follows from letting x →∞ in (3.6) and (3.7) and using (3.5).
Assuming that F2,I ∈ S, the relation G0 ∈ S follows from part c) of Lemma 1.

c) Let us assume that F 2(x) = o(x−α), hence L’Hospital’s rule implies that

lim
x→∞

F 2,I (x)

x1−α
= 0. (3.8)

This yields

lim
x→∞

∫∞
x

∫∞
y e−Re(ρj )(z−y)f2(z)dzdy

x1−α
≤ lim

x→∞

∫∞
x

∫∞
y f2(z)dzdy

x1−α

= μ2 lim
x→∞

F 2,I (x)

x1−α
= 0,
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and from (3.8) we obtain

lim
x→∞

∣∣∣∣∣

∫∞
x

Tρj f2(y)dy

x1−α

∣∣∣∣∣ = 0. (3.9)

Using (3.6) and (3.7) we obtain the inequalities

μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x)

x1−α
−
∣∣∣∣∣
− 1

CG

∑m+1
j=2 E(ρj )

∫∞
x

Tρj f2(y)dy

x1−α

∣∣∣∣∣ ≤
∣∣∣∣∣
G0(x)

x1−α

∣∣∣∣∣
(3.10)

and

∣∣∣∣∣
G0(x)

x1−α

∣∣∣∣∣ ≤
μ2

CG

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x)

x1−α
+
∣∣∣∣∣
− 1

CG

∑m+1
j=2 E(ρj )

∫∞
x

Tρj f2(y)dy

x1−α

∣∣∣∣∣ .

(3.11)

The result now follows by letting x → ∞ in (3.10) and (3.11), and using (3.8)
and (3.9).

d) Putting r = 0 in (2.2) gives CU = (1 + CF

θ
)−1. Dividing both sides of (2.2) by

CU yields
ν̂α(r)

CU

(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= ẑα,θ (r)

CU
, hence:

(
1 − ν̂α(r)

CU

)(
1 + 1

θ
f̂α(r)̂zα,θ (r)

)
= 1 + 1

θ
f̂α(r)̂zα,θ (r) − ẑα,θ (r)

CU

= 1 + 1

θ
f̂α(r)̂zα,θ (r) −

(
1 + CF

θ

)
ẑα,θ (r)

= 1 − ẑα,θ (r)− CF
θ

ẑα,θ (r)

(
1 − 1

CF
f̂α(r)

)
.

(3.12)

We define the function U∗
α(x) =

∫ x

0 Uα(y)dy, x > 0. From (3.1) we get

Û∗
α(r) =

Ûα(r)

r
= 1 − ν̂α(r)

CU

r2
. (3.13)

It follows from (3.12) that

rÛ∗
α(r)

rα−2 =
1 − ẑα,θ (r)

rα−1 − CF
θ

ẑα,θ (r)
(

1 − 1
CF

f̂α(r)
)

rα−1

1 + 1
θ
f̂α(r)̂zα,θ (r)

. (3.14)
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Since ẑα,θ (r) = θ
θ+rα−1 we obtain lim

r↓0

1 − ẑα,θ (r)

rα−1 = 1

θ
. Using this equality

together with (3.2) and letting r ↓ 0 in (3.14), we obtain

lim
r↓0

rÛ∗
α(r)

rα−2 =
1
θ
− 1

θ
+ 1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

1 + CF

θ

= CU
θ

∏N
i=1 q

mi

i∏m+1
j=2 ρj

, (3.15)

where in the last equality we used that CU = (1 + CF

θ
)−1. Since U∗

α has the
monotone density Uα, Theorem 1 (page 443) in [10] gives the limit in part d).
This implies that the tail of Uα is asymptotically regularly varying with index
1 − α, hence from (2.5) we conclude that Uα ∈ S.

Now we are ready to obtain the main result in this section.

Theorem 1 Consider the following three cases for the claim size distribution F2.
As x →∞,

Case 1 : F 2(x) = o(x−α),

Case 2 : F 2(x) ∼ κx−α for some κ > 0,
Case 3 : F2,I ∈ S, F2 ∈ R0 and x−α = o

(
F 2(x)

)
.

(3.16)

Then, as u →∞, we have:

a) In case 1:

ψ(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
u1−α, (3.17)

b) In case 2:

ψ(u) ∼ 1

c+ λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
u1−α, (3.18)

c) In case 3:

ψ(u) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u), (3.19)

and in all cases � ∈ S.
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Proof

Case 1. We define the function G∗
0(x) =

∫ x

0 G0(y)dy, x > 0. Due to (3.1) we have

Ĝ∗
0(r) = 1−ĝ0(r)

r2 . From Proposition 1 c) and the assumption that F 2(x) =
o(x−α) we obtain G0(x) = o

(
x1−α

)
, hence Theorem 1 (page 443) in [10]

and the equality Ĝ∗
0(r) = 1−ĝ0(r)

r2 imply

0 = lim
r↓0

rĜ∗
α(r)

rα−2 = lim
r↓0

1 − ĝ0(r)C−1
G

rα−1 . (3.20)

Using that 0 = ψ(∞) = lim
u→∞ψ(u), the final value theorem for

Laplace transforms ψ(∞) = lim
r↓0

rψ̂(r) and (2.4) we obtain Ŵα(0) =
(
(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi
i

)−1

. Setting r = 0 in (2.3) yields

1

(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi
i

=
1

ηαθ
ν̂α(0)

1− 1
θ

[
κν̂α(0)+ 1

ηα ĝ0(0)̂να(0)
]

=
1

ηαθ
CU

1− 1
θ

[
κCU + 1

ηα CGCU
] ,

or equivalently

(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi

i

=
1 − 1

θ

[
κCU + 1

ηα CGCU
]

1
ηαθ

CU
. (3.21)

Now we set ψ∗(u) = ∫ u

0 ψ(y)dy. Due to (3.1), (2.4), (2.3) and (3.21) we
have

ψ̂∗(r) =
1 −

[
1− 1

θ

[
κCU+ 1

ηα
CGCU

]

1
ηαθ

CU

]
1

ηαθ
ν̂α(r)

1− 1
θ

[
κν̂α(r)+ 1

ηα
ĝ0(r )̂να(r)

]

r2

=
1 − 1

θ

[
κν̂α(r)+ 1

ηα ĝ0(r)̂να(r)
]
−
[

1− 1
θ

[
κCU+ 1

ηα
CGCU

]

CU

]
ν̂α(r)

r2
(

1 − 1
θ

[
κν̂α(r)+ 1

ηα ĝ0(r)̂να(r)
]) .
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It follows that

lim
r↓0

rψ̂∗(r)
rα−2 = lim

r↓0

1

rα−1

⎛

⎜⎜⎝

1 − ν̂α(r)

CU
+ CG

ηαθ

[
1 − ĝ0(r)

CG

]
ν̂α(r)

1 − 1
θ

[
κν̂α(r)+ η−αĝ0(r)̂να(r)

]

⎞

⎟⎟⎠

=
1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

1 − 1
θ

[
κCU + η−αCGCU

] , (3.22)

where the last equality follows from (3.13), (3.15) and (3.20). From (3.21)
we obtain

1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU
c + λ1μ1 − λ2μ2

ηαθ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU
= ηα

c + λ1μ1 − λ2
,

hence from (3.22), lim
r↓0

rψ̂∗(r)
rα−2 = ηα

c + λ1μ1 − λ2
. The asymptotic for-

mula (3.17) now follows from [10, Theorem 1, page 443]. Since (3.17)
implies that � has a regularly varying tail, from (2.5) we conclude � ∈ S.

Case 2. We work again with the functions ψ∗ and G∗
0 defined before. Due to

F2 ∈ RV −α and F2 ∈ R0, from part b) of Proposition 1 we obtain

G0(x) ∼ λ2μ2

CG

∏N
i=1 q

mi
i∏m+1

j=2 ρj

F 2,I (x). Since F 2(x) ∼ κx−α, an application

of L’ Hospital’s rule to lim
x→∞

F 2,I (x)

x1−α yields F 2,I (x) ∼ κ x1−α

(α−1)μ2
. Hence

G0(x) ∼ λ2κ

CG(α − 1)

∏N
i=1 q

mi
i∏m+1

j=2 ρj

x1−α. Applying [10, Theorem 1, page 443]

to G∗
0(x) gives

λ2μ2κ

CG(α − 1)

∏N
i=1 q

mi

i∏m+1
j=2 ρj

= lim
r↓0

rĜ∗
α(r)

rα−2 = lim
r↓0

1 − ĝ0(r)C−1
G

rα−1 . (3.23)

From the last equality we see, as in case 1, that the limit (3.22) remains
valid also in this case. Therefore

lim
r↓0

rψ̂∗(r)
rα−2

= lim
r↓0

1

rα−1

⎛

⎜⎜⎝

1 − ν̂α(r)

CU
+ CG

ηαθ

[
1 − ĝ0(r)

CG

]
ν̂α(r)

1 − 1
θ

[
κν̂α(r)+ η−αĝ0(r)̂να(r)

]

⎞

⎟⎟⎠ ,
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hence, substituting (3.13), (3.15) and (3.23) in the above equality gives

lim
r↓0

rψ̂∗(r)
rα−2 =

1

θ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

1 − 1
θ

[
κCU + η−αCGCU

]
[

1 + λ2κ�(2 − α)

ηα(α − 1)

]

= ηα(α − 1)+ λ2κ�(2 − α)

(c + λ1μ1 − λ2μ2)(α − 1)
.

The asymptotic formula (3.18) follows from [10, Theorem 1, page 443].
Since the right-hand side of (3.18) is a regularly varying function, it follows
that � has a regularly varying tail. This finishes the proof of case 2.

Case 3. The equality Wα(x) = 1
ηαθ

να ∗ ∑∞
n=0

1
θn

[
κνα + 1

ηα g0 ∗ να

]∗n
(x) is

proved in [15, Proposition 5.6]. From (2.4) we note that (c + λ1μ1 − λ2μ2)∏m+1
j=2 ρj

∏N
i=1 q

mi
i

Wα is the density function of the probability of survival �, hence

using the above equality and the definitions of Uα and G0 in (2.1), it follows
that

�(x) = 1

ηαθ
(c + λ1μ1 − λ2μ2)

∏m+1
j=2 ρj

∏N
i=1 q

mi

i

CUUα

∗
∞∑

n=0

1

θn

(
κCUUα + 1

ηα
CGCUG0 ∗ Uα

)∗n
(x).

Now we define β = 1
θ

[
κCU + η−αCGCU

]
. Using (3.21), we obtain from

the last equality that

�(x) = (1 − β)Uα ∗
∞∑

n=0

βn

θn

[
1

β

(
κCUUα + 1

ηα
CGCUG0 ∗ Uα

)]∗n
(x)

= Uα ∗K(x), (3.24)

where K(x) = (1 − β)
∑∞

n=0 βnK∗n
0 (x) with K0(x) =

(
1
θβ

[
κCUUα +

η−αCGCUG0∗Uα

])
(x), x > 0. Since Uα and G0 are distribution functions,

using the definition of β we see that K0 and K are distribution functions as
well, and � is the convolution of the distribution functions Uα and K . In
view of this, we need to study the asymptotic behaviour of K .

The assumption that x−α = o(F 2(x)), together with an application of
L’Hospital’s rule, imply that x1−α = o

(
F 2,I (x)

)
. Since by assumption

F2 ∈ R0, part b) of Proposition 1 yields G0(x) ∼ λ2μ2

CG

∏N
i=1 q

mi
i∏m+1

j=2 ρj

F 2,I (x),

hence x1−α = o
(
G0(x)

)
, and due to part d) of Proposition 1 we get
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Uα(x) = o
(
G0(x)

)
. It follows from the definition of K0 and Lemma 1

a) that 1 −K0(x) ∼ η−αCGCU

θβ
G0(x). Since by assumption F2,I ∈ S, from

part b) of Proposition 1 we obtain G0 ∈ S. It follows from Lemma 1 d)
that

K(x) ∼ β

1 − β

η−αCGCU
θβ

G0(x)

∼ λ2μ2

c + λ1μ1 − λ2μ2

ηαθ

∏N
i=1 q

mi
i∏m+1

j=2 ρj

CU

CU
ηαθ

∏N
i=1 q

mi

i∏m+1
j=2 ρj

F 2,I (x),

which reduces to K(x) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (x) after simplifying the

coefficient in the right-hand side of the asymptotic expression above. From
here we obtain (3.19) using (3.24), Lemma 1 a) and the relation Uα(x) =
o(F 2,I (x)) as x →∞. Hence � ∈ S.

Corollary 1 For the three cases in (3.16) the ruin probability ψ(u) admits the
asymptotic expression

ψ(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
u1−α + λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u) as u →∞.

(3.25)

In particular, if F 2(u) ∼ L1(u)u
−α for some slowly varying function L1 and F 2

belongs to any of the cases in (3.16), then

ψ(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2

α − 1
L1(u)

]
u1−α. (3.26)

Proof The estimate (3.25) follows directly from Theorem 1. To obtain (3.26) we
consider the three cases in (3.16).

Case 1. We have lim
u→∞

L1(u)u
−α

u−α = lim
u→∞

F 2(u)
u−α

L1(u)u
−α

F 2(u)
= 0. Hence

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1 L1(u)
]
u1−α

= lim
u→∞

ψ(u)

u1−α

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1
L1(u)u1−α

u1−α

] = 1,

where we used (3.17) to obtain the last equality.
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Case 2. We set C = 1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2κ

α−1

]
.

Using the equality lim
u→∞L1(u) = κ and (3.18) we obtain that

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2

α−1L1(u)
]
u1−α

= lim
u→∞

ψ(u)

Cu1−α

1
C

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2

α−1
L1(u)u1−α

u1−α

] = 1.

Case 3. Notice that u−α = o
(
F 2(u)

)
implies u1−α = o

(
F 2,I (u)

)
. Using now

Karamata’s theorem (see e.g. [3, Proposition 1.5.10]) we obtain that

lim
u→∞

F 2,I (u)

L1(u)u1−α = α−1
μ2

. Hence

lim
u→∞

ψ(u)

1
c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2μ2

α−1 L1(u)
]
u1−α

= lim
u→∞

ψ(u)
λ2μ2

c+λ1μ1−λ2μ2
F 2,I (u)

ηα

�(2−α)
u1−α

λ2μ2F 2,I (u)
+ 1

α−1
L1(u)u1−α

F 2,I (u)

= 1.

4 Asymptotic Behavior of the Joint Tail of the Severity of
Ruin and the Surplus Prior to Ruin

For fixed β > 0 and a ≥ 0, we define the function

B(x; β, a) :=
∫ ∞

x

e−β(y−x)

(
λ2F 2(y + a)+ ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy, x ≥ 0.

(4.1)

In order to obtain asymptotic expressions for ϒa,b(u) as u →∞ in such a way that
� := max{u, b} → ∞, we establish some preliminary lemmas.

Lemma 2

a) For all x ≥ 0 and β > 0, B(x; β, a) ≤ λ2μ2 + ηα

�(2−α)
a1−α for any a ≥ 0.

b) The asymptotic relation B(x; β, a) = o(ψ(x + a)) as x → ∞, holds in any of
the cases in (3.16).
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Proof

a) Since e−β(y−x) ≤ 1 when y ≥ x, and F 2(y + a) ≤ F 2(y), we have

B(x; β, a)

≤
∫ ∞

x

(
λ2F 2(y + a)+ ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy

≤
∫ ∞

0

(
λ2F 2(y)+ ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy,

which implies a).
b) Using that F 2(y + a) ≤ F 2(x + a) and (y + a)−α ≤ (x + a)−α for all y ≥ x,

we see that

B(x;β, a) ≤
∫ ∞

x

e−β(y−x)

(
λ2F 2(x + a) + ηα(α − 1)

�(2− α)
(x + a)−α

)
dy

= 1

β

(
λ2F 2(x + a)+ ηα(α − 1)

�(2− α)
(x + a)−α

)
. (4.2)

For the first two cases in (3.16), the limit lim
x→∞

F 2(x)
x−α exists and is finite, hence

in any of these two cases we obtain

lim
x→∞

1
β

(
λ2F 2(x + a)+ ηα(α−1)

�(2−α)
(x + a)−α

)

(x + a)1−α

= lim
x→∞

1
β

(
λ2

F 2(x + a)

(x + a)−α
+ ηα(α−1)

�(2−α)

)

x + a
= 0. (4.3)

Due to (3.17) and (3.18) we obtain, again in cases 1 and 2 of (3.16), that ψ(u) ∼
Au1−α for some constant A > 0. This and (4.3) imply

lim
x→∞

1
β

(
λ2F 2(x + a)+ ηα(α−1)

�(2−α)
(x + a)−α

)

ψ(x + a)

= lim
x→∞

1
β

(
λ2F 2(x + a)+ ηα(α−1)

�(2−α)
(x + a)−α

)

(x + a)1−α

ψ(x + a)

(x + a)1−α

= 0.

Hence we obtain the result in these two cases by dividing by ψ(x+a) both sides
of (4.2) and making x →∞ afterwards.
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In the remaining case 3, the assumption that F2 ∈ R0 and L’Hospital’s rule
imply that F 2,I ∈ R0. From (3.19) we obtain that ψ(u) ∼ A2F 2,I (u) for some
constant A2 > 0. Moreover, from the proof of Theorem 1 c) we see that x1−α =
o(F 2,I (x)). Using these two results together with F 2,I ∈ R0, it follows that

lim
x→∞

1
β

(
λ2F 2(x + a)+ ηα(α−1)

�(2−α)
(x + a)−α

)

ψ(x + a)

= lim
x→∞

1
β

(
λ2F 2(x + a)+ ηα(α−1)

�(2−α)
(x + a)−α

)

F 2,I (x + a)

ψ(x + a)

F 2,I (x + a)

= 0.

Again, the result follows dividing both sides of (4.2) by ψ(x + a) and making
x →∞.

Recall the definition of the joint tail distribution ϒa,b given in (1.4).

Lemma 3 The joint tail distribution admits the representation

ϒa,b(u) = hα ∗Wα(u), u > 0, (4.4)

where

hα(u) =
∏N

i=1 q
mi

i∏m+1
j=2 ρj

∫ ∞

u

[
λ2F 2(a + z)+ ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b}dz+ Ia,b(u),

and Ia,b(x) = ∑m+1
j=2 E(ρj )

∫∞
x

e−ρj (y−x)
(
λ2F 2(y + a)+ ηα(α−1)

�(2−α)
(y + a)−α

)

1{y>b}dy. Moreover, if F2 belongs to any of the cases in (3.16), then for fixed
a, b > 0,

∫ u

0
Ia,b(u− y)�(dy) = o(ψ(u)) as u →∞, (4.5)

and the following limit holds:

lim
u→∞

∫ u

0
Ia,b(u− y)�(dy) = 0, (4.6)

uniformly on the sets {a ≥ ξ, b ≥ η} for all fixed ξ, η > 0.
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Proof Formula (4.4) follows directly from [15, Corollary 5.1]. To prove (4.5) we
first note that

∣∣Ia,b(x)
∣∣

≤
m+1∑

j=2

|E(ρj )|
∫ ∞

x

e−Re(ρj )(y−x)

(
λ2F 2(y + a)+ ηα(α − 1)

�(2 − α)
(y + a)−α

)
dy,

which due to (4.1) is equivalent to

∣∣Ia,b(x)
∣∣ ≤

m+1∑

j=2

|E(ρj )|B
[
x;Re(ρj ), a

]
. (4.7)

Let ε > 0 be given. From Lemma 2 b) there exists u0 > 0 such that∑m+1
j=2 |E(ρj )|B

[
u;Re(ρj ), a

]
< εψ(u) for all u > u0. It follows from (4.7)

that
∣∣∣∣∣

∫ u

0 Ia,b(u− y)�(dy)

ψ(u)

∣∣∣∣∣ <
ε
∫ u−u0

0 (1 −�(u− y))�(dy)

ψ(u)
+
∫ u

u−u0
|Ia,b(u− y)|�(dy)

ψ(u)

≤
ε

u∫

0
(1 −�(u− y))�(dy)

ψ(u)
+

u∫
u−u0

|Ia,b(u− y)|�(dy)

ψ(u)

≤
m+1∑

j=2

|E(ρj )|
(
λ2μ2 + ηα

�(2 − α)
a1−α

)
:= c0,

where in the last equality we used Lemma 2 a). Hence

∣∣∣∣∣

∫ u

0 Ia,b(u− y)�(dy)

ψ(u)

∣∣∣∣∣ <
ε (�(u)−� ∗�(u))

ψ(u)
+ c0

�(u)−�(u− u0)

ψ(u)

= ε (1 −� ∗�(u))− ψ(u))

ψ(u)
+ c0

ψ(u− u0)− ψ(u)

ψ(u)
.

The estimate in (4.5) follows from the last inequality and the fact that � ∈ S. Since
Ia,b is, by its definition, nonincreasing in a and b, it follows that

∫ u

0
Ia,b(u− y)�(dy) ≤

∫ u

0
Iξ,η(u− y)�(dy), (4.8)

for all a ≥ ξ and b ≥ η.
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Since lim
u→∞ψ(u) = 0, using (4.5) we obtain that limu→∞

∫ u

0 Ia,b(u −
y)�(dy) = 0. Hence the result follows from (4.8) by making u →∞.

We now obtain the main results of this section.

Theorem 2 Let F2 belong to any of the three cases given in (3.16). Then, for fixed
a > 0, the joint tail of the severity of ruin and the surplus prior to ruin, ϒa,b,
admits the following asymptotic expressions as u → ∞ in such a way that � =
max{u, b} → ∞ :
a) in case 1, ϒa,b(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
(a +�)1−α,

b) in case 2, ϒa,b(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a +�)1−α,

c) in case 3, ϒa,b(u) ∼ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a +�).

Proof From (4.4) and [15, Corollary 5.5] it follows that

ϒa,b(u) = 1

c + λ1μ1 − λ2μ2

×
∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z)+ ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz�(dy)

+

∏N
i=1 q

mi
i∏m+1

j=2 ρj

c + λ1μ1 − λ2μ2

∫ u

0
Ia,b(u− y)�(dy). (4.9)

In view of (4.5) we need only to study the asymptotic behavior of

ϒ∗(u, a, b) := 1

c + λ1μ1 − λ2μ2

×
∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z)+ ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz�(dy)

as u → ∞ in such a way that � = max{u, b} → ∞. First we suppose that � = u

and define

ϒ0(u, a)

:= 1

c + λ1μ1 − λ2μ2

∫ u

0

[
λ2μ2F 2,I (a + u− y)+ ηα

�(2 − α)
(a + u− y)1−α

]
�(dy).

(4.10)
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Therefore

ϒ∗(u, a, b)

≤ 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞
u−y

[
λ2F 2(a + z)+ ηα(α − 1)

�(2− α)
(a + z)−α

]
dz�(dy)

= ϒ0(u, a) (4.11)

and

ϒ∗(u, a, b)

≥ 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞
u

[
λ2F 2(a + z)+ ηα(α − 1)

�(2 − α)
(a + z)−α

]
dz�(dy)

=
λ2μ2F 2,I (a + u)+ ηα

�(2−α)
(a + u)1−α

c + λ1μ1 − λ2μ2
�(u). (4.12)

The above inequality and Corollary 1 imply that

lim inf
u→∞

ϒ∗(u, a, b)
ψ(u+ a)

≥ 1 (4.13)

because lim
u→∞�(u) = 1. To finish the proof it suffices to show that

lim
u→∞

ϒ0(u, a)

ψ(u + a)
= 1 (4.14)

for any of the claim size distributions in (3.16). Indeed, the asymptotics in the three
cases follow from (4.14) together with (4.11), (4.13), (4.9) and (4.5).

We note that

ϒ0(u, a) = 1

c+ λ1μ1 − λ2μ2

×
[
λ2μ2F 2,I (a)

∫ u

0

(
1 − Fa,I (u− y)

)
�(dy)+ a1−αηα

�(2− α)

∫ u

0

(
1 − Pa,α(u− y)

)
�(dy)

]
,
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where we define for a > 0 the functions Fa,I (u) = 1− F 2,I (u+ a)

F 2,I (a)
and Pa,α(u) =

1 −
(

au

a + u

)α−1

u1−α, u ≥ 0. Hence,

ϒ0(u, a) = 1

c + λ1μ1 − λ2μ2

×
[
λ2μ2F 2,I (a)

(
�(u)− Fa,I ∗�(u)

)+ a1−αηα

�(2 − α)

(
�(u)− Pa,α ∗�(u)

)
]

= 1

c + λ1μ1 − λ2μ2

(
λ2μ2F 2,I (a)

[
�(u)− 1 + 1 − Fa,I ∗�(u)

]

+ a1−αηα

�(2 − α)

[
�(u)− 1+ 1 − Pa,α ∗�(u)

] )

= 1

c + λ1μ1 − λ2μ2

× (
λ2μ2F 2,I (a)

[
1 − Fa,I ∗�(u)−�(u)

]

+ a1−αηα

�(2 − α)

[
1− Pa,α ∗�(u)−�(u)

]
)
. (4.15)

Case 1. Due to Theorem 1 a) we have � ∈ S and ψ(u) ∼
ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
u1−α, hence Lemma 1 c) and the assumption

F 2,I (u) = o(u1−α) as u →∞, imply

1 − Fa,I ∗�(u) ∼ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
u1−α.

This shows that

λ2μ2F 2,I (a)

c + λ1μ1 − λ2μ2

[
1 − Fa,I ∗�(u)− ψ(u)

] = o(u1−α) as u →∞.

(4.16)

From Lemma 1 b), as u →∞,

1−Pa,α ∗�(u) ∼
[(

au

a + u

)α−1

+ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)

]
u1−α,
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which due to (3.17) implies

1 − Pa,α ∗�(u)− ψ(u) ∼
(

a

a + u

)α−1

. (4.17)

Using the expression for ϒ0(u, a) given in (4.15), together with (4.16)

and (4.17) we obtain ϒ0(u, a) ∼ 1

c + λ1μ1 − λ2μ2

[
λ2μ2F 2,I (a + �) +

ηα

�(2−α)
(a +�)1−α

]
, and (4.14) follows.

Case 2. Since by assumption F 2(u) ∼ κu1−α, L’Hospital’s rule gives F 2,I (u) ∼
κ

μ2(α−1)u
1−α. Hence Fa,I (u) ∼ κ

μ2(α−1)F2,I (a)
u1−α . From (3.18) we

have �(u) ∼ Cu1−α, where the constant C is given by C =
1

c+λ1μ1−λ2μ2

[
ηα

�(2−α)
+ λ2κ

α−1

]
. Using this and Lemma 1 b) gives 1−Fa,I ∗

�(u) ∼
[
C + κ

μ2(α−1)

]
u1−α . It follows that

1 − Fa,I ∗�(u)− ψ(u) ∼ κ

μ2(α − 1)
u1−α ∼ κ

μ2(α − 1)
(a + u)1−α.

(4.18)

From Lemma 1 b) and (3.18),

1 − Pa,α ∗�(u)

∼
[(

au

a + u

)α−1

+ ηα

(c + λ1μ1 − λ2μ2)�(2 − α)
+ λ2κ

c + λ1μ1 − λ2μ2

]
u1−α.

This together with (3.18) yields

1 − Pa,α ∗�(u)− ψ(u) ∼
(

a

a + u

)α−1

. (4.19)

Now using (4.18) and (4.19), we obtain

ϒ0(u, a) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a + u)1−α.

Case 3. Using the assumption u−α = o
(
F 2(u)

)
and L’Hospital’s rule we

get u1−α = o
(
F 2,I (u)

)
. Since Pa,α(u) =

(
au
a+u

)α−1
u1−α and

lim
u→∞

(
auy
a+uy

)α−1

(
au
a+u

)α−1 = 1 for all y > 0, we have Pa,α(u) ∼ u1−α. Hence

P a,α(u) = o
(
F 2,I (u)

)
, and from Corollary 1 and (3.19) we obtain

1 − Pa,α ∗ �(u) ∼ λ2μ2
c+λ1μ1−λ2μ2

F 2,I (u). Using (3.19) again we conclude
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that 1 − Pa,α ∗�(u)− ψ(u) = o(F 2,I (u)). Due to Lemma 1 b),

1 − Fa,I ∗�(u) ∼
(

1

F 2,I (a)
+ λ2μ2

c + λ1μ1 − λ2μ2

)
F 2,I (a + u),

which implies 1 − Fa,I ∗ �(u) − ψ(u) ∼ F 2,I (u+a)

F 2,I (a)
. In this way we

obtain (4.14).

In the case of � = b we have

ϒ∗(u, a, b)

= 1

c + λ1μ1 − λ2μ2

∫ u

0

∫ ∞

u−y

[
λ2F 2(a + z)+ ηα(α − 1)

�(2 − α)
(a + z)−α

]
1{z>b} dz�(dy)

= 1

c + λ1μ1 − λ2μ2

∫ u

0

[
λ2μ2F 2,I (a + b)+ ηα

�(2 − α)
(a + b)1−α

]
�(dy)

= λ2μ2F 2,I (a + b) + ηα

�(2−α)
(a + b)1−α

c + λ1μ1 − λ2μ2
�(u).

The asymptotics for ϒa,b follow by dividing ϒa,b(u) by
λ2μ2F 2,I (a + b)+ ηα

�(2−α)
(a + b)1−α

c + λ1μ1 − λ2μ2
, letting afterward u → ∞, and proceeding

as in the cases 1, 2 and 3 above with u replaced by b.

Corollary 2 For any of the cases in (3.16), the joint tail ϒa,b has the asymptotic
expression when u →∞ and � = max{u, b} → ∞ :

ϒa,b(u) ∼ ηα

(c + λ1μ1 − λ2μ2) �(2− α)
(a +�)1−α + λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a +�).

In particular, if F 2(u) ∼ L1(u)u
−α for some slowly varying function L1, and F 2

satisfies any of the cases in (3.16), it follows

ϒa,b(u) ∼ 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2

α − 1
L1(a +�)

]
(a +�)1−α.

We have the following sharper result, which shows that the asymptotics of ϒa,b

given in Theorem 2, hold uniformly on the parameters a and b.

Theorem 3 Let F2 belong to any of the three cases given in (3.16). The following
limits hold, when u → ∞, uniformly on the sets Aξ,η = {a ≥ ξ, b ≥ η}, for fixed
ξ, η > 0.
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1. In case 1:

lim
u→∞

∣∣∣∣ϒa,b(u)− ηα

(c + λ1μ1 − λ2μ2) �(2 − α)
(a + u)1−α

∣∣∣∣ = 0.

2. In case 2:

lim
u→∞

∣∣∣∣ϒa,b(u)− 1

c + λ1μ1 − λ2μ2

[
ηα

�(2 − α)
+ λ2κ

α − 1

]
(a + u)1−α

∣∣∣∣ = 0.

3. In case 3:

lim
u→∞

∣∣∣∣ϒa,b(u)− λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (a + u)

∣∣∣∣ = 0.

Proof By (4.9) and (4.6), we only need to study the uniform convergence

of ϒ∗(u, a, b) = 1

c + λ1μ1 − λ2μ2

u∫

0

∞∫
u−y

[
λ2F 2(a + z)+ ηα(α−1)

�(2−α)
(a + z)−α

]

1{z>b}dz�(dy) on the sets Aξ,η.
Using (4.12) we obtain

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≥ ηα(a + u)1−α (�(u)− 1)

(c + λ1μ1 − λ2μ2)�(2 − α)

+λ2μ2F 2,I (a + u)�(u)

c + λ1μ1 − λ2μ2

≥ ηα(a + u)1−α (�(u)− 1)

(c + λ1μ1 − λ2μ2)�(2 − α)
.

Since (a + u)1−α (�(u)− 1) is nonincreasing as a function of a, we have

(a + u)1−α (�(u)− 1) ≤ (ξ + u)1−α (�(u)− 1) ,

and since lim
u→∞(ξ + u)1−α (�(u)− 1) = 0, the convergence

lim
u→∞(a + u)1−α (�(u)− 1) = 0 (4.20)

is uniform on {a ≥ ξ}. Hence for all ε > 0 and ξ > 0 there exists A > 0 such that
for u ≥ A we have

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≥ −ε. (4.21)
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We will use that, by the definition (4.10) and the equivalent formula (4.15),

F 2,I (a)
(
1 − Fa,I ∗�(u)− ψ(u)

) =
∫ u

0
F 2,I (a + u− y)�(dy)

and

a1−α
(
1 − Pa,α ∗�(u)− ψ(u)

) =
∫ u

0
(a + u− y)1−α�(dy),

hence

F 2,I (a)
(
1 − Fa,I ∗�(u)− ψ(u)

)
and

a1−α
(
1 − Pa,α ∗�(u)− ψ(u)

)
are nonincreasing in a. (4.22)

Case 1: We have, by (4.12):

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2− α)
≤ ϒ0(a, b) − ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
.

Hence, from the definition of ϒ0(a, b) in (4.10) and the equality (4.15) we obtain:

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)

≤ 1

c + λ1μ1 − λ2μ2

[
λ2μ2F 2,I (a)

(
1 − Fa,I ∗�(u)− ψ(u)

)

+ ηαa1−α

�(2 − α)

(
1 − Pa,α ∗�(u)− ψ(u)−

(
a + u

a

)1−α
)]

. (4.23)

We know from (4.22) that 1 − Pa,α ∗ �(u) − ψ(u) nonincreasing in a. Since
(
a+u
a

)1−α =
(

1
1+u/a

)α−1
and 1+u/a is decreasing in a, it follows that− (

a+u
a

)1−α

is decreasing in a. Hence 1 − Pa,α ∗�(u)− ψ(u)− (
a+u
a

)1−α is decreasing in a.
From this and (4.17) we obtain, similarly as in (4.20), that

lim
u→∞

a1−αηα

�(2 − α)

∣∣∣∣∣1 − Pa,α ∗�(u)− ψ(u)−
(
a + u

a

)1−α
∣∣∣∣∣ = 0, (4.24)

uniformly on {a ≥ ξ}.
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For the remaining term in (4.23), from (4.16) and (4.22) we obtain using the same
argument

lim
u→∞λ2μ2F 2,I (a)

∣∣1− Fa,I ∗�(u)− ψ(u)
∣∣ = 0, (4.25)

uniformly on {a ≥ ξ}. Due to (4.23), (4.24) and (4.25) it follows that, for all ε >

0, ξ > 0 and η > 0 there exists A > 0 such that for all u > A and a > ξ, b > η we
have

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≤ ε. (4.26)

Hence, the result follows from (4.21) and (4.26).
Case 2: Similarly as in the previous case, we obtain from (4.22) and (4.19)

lim
u→∞

∣∣∣∣∣
a1−αηα

�(2 − α)

(
1 − Pa,α ∗�(u)− ψ(u)−

(
a + u

a

)1−α
)∣∣∣∣∣ = 0, (4.27)

uniformly in {a ≥ ξ}. It also follows from (4.18) that

lim
u→∞

∣∣F 2(a)
(
1 − Fa,I ∗�(u)− ψ(u)

)∣∣ = 0, (4.28)

uniformly in {a ≥ ξ}. Hence, for all ε, ξ, η > 0 there exists an A > 0 such that for
all u > A and a > ξ, b > η we have

ϒ∗(u, a, b)− ηα(a + u)1−α

(c + λ1μ1 − λ2μ2)�(2 − α)
≤ ε. (4.29)

The result follows now from (4.21) and (4.29).
Case 3: By (4.12) it holds

ϒ∗(u, a, b)− λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u+ a)

≥ λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u+ a) (�(u)− 1)

+ ηα

�(2 − α)
(a + u)1−α�(u).

As in the above cases we obtain that, for all ε, ξ, η > 0 there exists an A > 0 such
that for all u > A and a > ξ, b > η we have

ϒ∗(u, a, b)− λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u+ a) ≥ −ε. (4.30)
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On the other hand,

ϒ∗(u, a, b) − λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u+ a) ≤ ϒ0(u, a) − λ2μ2

c + λ1μ1 − λ2μ2
F 2(a + u)

= 1

c + λ1μ1 − λ2μ2

{
λ2μ2

[
F 2,I (a)

(
1 − Fa,I ∗�(u)− ψ(u)

) − F 2,I (a + u)
]

+ a1−αηα

�(2 − α)

(
1 − Pa,α ∗�(u)− ψ(u)

) }
. (4.31)

Since in this case we have lim
u→∞(1 − Pa,α ∗ �(u) − ψ(u)) = 0, using that 1 −

Pa,α ∗�(u) is decreasing in a, it follows that

lim
u→∞

∣∣∣∣
a1−αηα

�(2 − α)

(
1 − Pa,α ∗�(u)− ψ(u)

)∣∣∣∣ = 0, (4.32)

uniformly on {a ≥ ξ}, for any ξ > 0. For the remaining term in (4.31), there holds

F 2,I (a)
(
1 − Fa,I ∗�(u)− ψ(u)

)

= F 2,I (a)
[
�(u)− Fa,I ∗�(u)

] = F 2,I (a)

∫ u

0

(
1 − Fa,I (u− y)

)
�(dy)

= F 2,I (a)

∫ u

0
Fa,I (u− y)�(dy) = F 2,I (a)

∫ u

0

F 2,I (a + u− y)

F 2,I (a)
�(dy)

= (F 2,I (a + ·) ∗�)(u). (4.33)

Hence lim
u→∞

(
F 2,I (a + ·) ∗�

)
(u) = 0 uniformly on {a ≥ ξ} for ξ > 0. Since

F 2,I (a)
∣∣1 − Fa,I ∗�(u)− ψ(u)− F 2,I (a + u)

∣∣

≤ [
(F 2,I (a + ·) ∗�)(u)+ F 2,I (a)F 2,I (a + u)

]
,

and lim
u→∞

[
(F 2,I (a + ·) ∗�)(u)+ F 2,I (a)F 2,I (a + u)

] = 0 uniformly on {a ≥
ξ} for ξ > 0, we obtain that

lim
u→∞F 2,I (a)

∣∣1 − Fa,I ∗�(u)− ψ(u)− F 2,I (a + u)
∣∣ = 0, (4.34)

uniformly on {a ≥ ξ}, ξ > 0. Using (4.31), (4.32) and (4.34) we obtain that, for all
ε, ξ, η > 0 there exists A > 0 such that for all u > A and a > ξ, b > η, it follows

ϒ∗(u, a, b)− λ2μ2

c + λ1μ1 − λ2μ2
F 2,I (u+ a) ≤ ε. (4.35)

The result follows now from (4.30) and (4.35).
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Characterization of the Minimal Penalty
of a Convex Risk Measure with
Applications to Robust Utility
Maximization for Lévy Models

Daniel Hernández-Hernández and Leonel Pérez-Hernández

Abstract The minimality of the penalty function associated with a convex risk
measure is analyzed in this paper. First, in a general static framework, we provide
necessary and sufficient conditions for a penalty function defined in a convex and
closed subset of the absolutely continuous measures with respect to some reference
measure P to be minimal on this set. When the probability space supports a Lévy
process, we establish results that guarantee the minimality property of a penalty
function described in terms of the coefficients associated with the density processes.
These results are applied in the solution of the robust utility maximization problem
for a market model based on Lévy processes.

Keywords Convex risk measures · Fenchel-Legendre transformation · Minimal
penalization · Lévy process · Robust utility maximization

Mathematics Subject Classification 91B30, 46E30

1 Introduction

The definition of coherent risk measure was introduced by Artzner et al. in
their fundamental works [1, 2] for finite probability spaces, giving an axiomatic
characterization that was extended later by Delbaen [3] to general probability
spaces. In the papers mentioned above one of the fundamental axioms was the
positive homogeneity, and in further works it was removed, defining the concept of
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convex risk measure introduced by Föllmer and Schied [4, 5], Frittelli and Rosazza
Gianin [7, 8] and Heath [10].

This is a rich area that has received a lot of attention and much work has been
developed. There exists by now a well established theory in the static and dynamic
cases, but there are still many questions unanswered in the static framework that
need to be analyzed carefully. The one we focus on in this paper is the charac-
terization of the penalty functions that are minimal for the corresponding static
risk measure. Up to now, there are mainly two ways to deal with minimal penalty
functions, namely the definition or the biduality relation. With the results presented
in this paper we can start with a penalty function, which essentially discriminate
models within a convex closed subset of absolutely continuous probability measures
with respect to (w.r.t.) the market measure, and then guarantee that it corresponds
to the minimal penalty of the corresponding convex risk measure on this subset.
This property is, as we will see, closely related with the lower semicontinuity of
the penalty function, and the complications to prove this property depend on the
structure of the probability space.

We first provide a general framework, within a measurable space with a
reference probability measure P, and show necessary and sufficient conditions
for a penalty function defined in a convex and closed subset of the absolutely
continuous measures with respect to the reference measure to be minimal within
this subset. The characterization of the form of the penalty functions that are
minimal when the probability space supports a Lévy process is then studied.
This requires to characterize the set of absolutely continuous measures for this
space, and it is done using results that describe the density process for spaces
which support semimartingales with the weak predictable representation property.
Roughly speaking, using the weak representation property, every density process
splits in two parts, one is related with the continuous local martingale part of
the decomposition and the other with the corresponding discontinuous one. It is
shown some kind of continuity property for the quadratic variation of a sequence of
densities converging in L1. From this characterization of the densities, a family of
penalty functions is proposed, which turned out to be minimal for the risk measures
generated by duality.

The previous results are applied to the solution of the robust utility maximization
problem. The formulation of this problem, described formally in Sect. 6, is justified
by the axiomatic system proposed by Maccheroni et al. [17], which led to utility
functionals of the form

X −→ inf
Q∈Q′

{
EQ [U (X)] + ϑ (Q)

}
. (1.1)

The elements of this display will be described in detail in the last section. For
previous works on this direction we refer the interested reader to the works
of Quenez [18], Schied [19] and Hernández-Hernández and Schied [11], and
references therein.
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The paper is organized as follows. Section 2 contains the description of the
minimal penalty functions for a general probability space, providing necessary and
sufficient conditions, the last one restricted to a subset of equivalent probability
measures. Section 3 reports the structure of the densities for a probability space
that supports a Lévy processes and the convergence properties needed to prove the
lower semicontinuity of the set of penalty functions defined in Sect. 4. In this section
we show that these penalty functions are minimal. The description of the market
model is presented in Sect. 5, together with the characterization of the equivalent
martingale measures and, finally, in the last section we solve the robust utility
maximization problem using duality theory.

2 Minimal Penalty Function of Risk Measures
Concentrated in Q� (P)

Given a penalty function ψ , it is possible to induce a convex risk measure ρ, which
in turn has a representation by means of a minimal penalty function ψ∗

ρ . Starting
with a penalty function ψ , we give in this section necessary and sufficient conditions
in order to guarantee that it is the minimal penalty within the set of absolutely
continuous probability measures. We begin recalling briefly some known results
from the theory of static risk measures, and then a characterization for minimal
penalties is presented.

2.1 Preliminaries from Static Measures of Risk

Let X : � → R be a mapping from a set � of possible market scenarios,
representing the discounted net worth of the position. Uncertainty is represented
by the measurable space (�,F), and we denote by X the linear space of bounded
financial positions, including constant functions.

Definition 2.1

(i) The function ρ : X → R, quantifying the risk of X, is a monetary risk measure
if it satisfies the following properties:

Monotonicity: If X ≤ Y then ρ (X) ≥ ρ (Y ) ∀X,Y ∈ X . (2.1)

Translation Invariance: ρ (X + a) = ρ (X)− a ∀a ∈ R ∀X ∈ X . (2.2)

(ii) When this function satisfies also the convexity property

ρ (λX + (1 − λ) Y ) ≤ λρ (X)+ (1 − λ) ρ (Y ) ∀λ ∈ [0, 1] ∀X,Y ∈ X ,

(2.3)

it is said that ρ is a convex risk measure.
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(iii) The function ρ is called normalized if ρ (0) = 0, and sensitive, with respect
to a measure P, when for each X ∈ L∞+ (P) with P [X > 0] > 0 we have that
ρ (−X) > ρ (0) .

We say that a set function Q : F → [0, 1] is a probability content if it is finitely
additive and Q (�) = 1. The set of probability contents on this measurable space
is denoted by Qcont . From the general theory of static convex risk measures [6], we
know that any map ψ : Qcont → R ∪ {+∞}, with infQ∈Qcont

ψ(Q) ∈ R, induces a
static convex measure of risk as a mapping ρ : Mb → R given by

ρ(X) := sup
Q∈Qcont

{
EQ [−X] − ψ(Q)

}
. (2.4)

Here M denotes the class of measurable functions and Mb the subclass of bounded
measurable functions. The function ψ will be referred as a penalty function. Föllmer
and Schied [5, Theorem 3.2] and Frittelli and Rosazza Gianin [7, Corollary 7]
proved that any convex risk measure is essentially of this form.

More precisely, a convex risk measure ρ on the space Mb (�,F) has the
representation

ρ(X) = sup
Q∈Qcont

{
EQ [−X] − ψ∗

ρ (Q)
}
, (2.5)

where

ψ∗
ρ (Q) := sup

X∈Aρ

EQ [−X] , (2.6)

and Aρ := {X ∈Mb : ρ(X) ≤ 0} is the acceptance set of ρ.

Remark 2.1 The penalty ψ∗
ρ is called the minimal penalty function associated to ρ

because, for any other penalty function ψ fulfilling (2.4) , ψ (Q) ≥ ψ∗
ρ (Q), for

all Q ∈ Qcont . Furthermore, for the minimal penalty function, the next biduality
relation is satisfied

ψ∗
ρ (Q) = sup

X∈Mb(�,F)

{
EQ [−X] − ρ (X)

}
, ∀Q ∈Qcont . (2.7)

Let Q (�,F) be the family of probability measures on the measurable space
(�,F) . Among the measures of risk, the class of them which representation
in (2.5) is concentrated on the set of probability measures Q ⊂ Qcont are of special
interest. Recall that a function I : E ⊂ R

� → R is sequentially continuous
from below (above) when {Xn}n∈N ↑ X ⇒ limn→∞ I (Xn) = I (X) (respectively
{Xn}n∈N ↓ X ⇒ limn→∞ I (Xn) = I (X)). Föllmer and Schied [6] proved that
any sequentially continuous from below convex measure of risk is concentrated on
the set Q. Later, Krätschmer [15, Prop. 3 p. 601] established that the sequential
continuity from below is not only a sufficient but also a necessary condition in
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order to have a representation, by means of the minimal penalty function in terms
of probability measures.

We denote by Q�(P) the subclass of absolutely continuous probability measure
with respect to P and by Q≈ (P) the subclass of equivalent probability measure. Of
course, Q≈ (P) ⊂ Q�(P) ⊂ Q (�,F).

Remark 2.2 When a convex risk measures in X := L∞ (P) satisfies the property

ρ (X) = ρ (Y ) if X = Y P-a.s. (2.8)

and is represented by a penalty function ψ as in (2.4), we have that

Q ∈ Qcont \Q�
cont '⇒ ψ (Q) = +∞, (2.9)

where Q�
cont is the set of contents absolutely continuous with respect to P; see [6,

Lemma 4.30 p. 172].

2.2 Minimal Penalty Functions

In the next sections we will show some of the difficulties that appear to prove the
minimality of the penalty function when the probability space (�,F ,P) supports a
Lévy process. We will also clarify the relevance of this property to get an optimal
solution to the robust utility maximization problem in Sect. 6.

In order to establish the results of this section we only need to fix a probability
space (�,F ,P). When we deal with a set of absolutely continuous probability
measures K ⊂ Q�(P) it is necessary to make reference to some topological
concepts, meaning that we are considering the corresponding set of densities and
the strong topology in L1 (P) . Recall that within a locally convex space, a convex
set K is weakly closed if and only if K is closed in the original topology [6, Thm
A.59].

Lemma 2.1 Let ψ : K ⊂ Q�(P) → R∪{+∞} be a function with infQ∈K ψ(Q) ∈
R, and define the extension ψ(Q) := ∞ for each Q ∈ Qcont \ K, with K a convex
closed set. Also, define the function � , with domain in L1(P), as

� (D) :=
{
ψ (Q) if D = dQ/dP for Q ∈ K

∞ otherwise.

Then, for the convex measure of risk ρ(X) := sup
Q∈Qcont

{
EQ [−X] − ψ (Q)

}

associated with ψ the following assertions hold:

(a) If ρ has as minimal penalty ψ∗
ρ the function ψ (i.e. ψ = ψ∗

ρ ), then � is a proper

convex function and lower semicontinuous w.r.t. the (strong) L1-topology or
equivalently w.r.t. the weak topology σ

(
L1, L∞

)
.
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(b) If � is convex and lower semicontinuous w.r.t. the (strong) L1-topology or
equivalently w.r.t. the weak topology σ

(
L1, L∞

)
, then

ψ1Q�(P) = ψ∗
ρ1Q�(P). (2.10)

Proof

(a) Recall that σ
(
L1, L∞

)
is the coarsest topology on L1 (P) under which every

linear operator is continuous, and hence �X
0 (Z) := EP [Z (−X)], with Z ∈

L1, is a continuous function for each X ∈ Mb (�,F) fixed. For δ (K) :=
{Z : Z = dQ/dP with Q ∈ K} we have that

�X
1 (Z) := �X

0 (Z) 1δ(K) (Z)+∞× 1L1\δ(K) (Z)

is clearly lower semicontinuous on δ (K) . For Z′ ∈ L1 (P) \ δ (K) arbi-
trary fixed we have from Hahn-Banach’s Theorem that there is a contin-
uous lineal functional l (Z) with l

(
Z′) < infZ∈δ(K) l (Z). Taking ε :=

1
2

{
infZ∈δ(K) l (Z)− l

(
Z′)} we have that the weak open ball B

(
Z′, ε

) :={
Z ∈ L1 (P) : ∣∣l (Z′)− l (Z)

∣∣ < ε
}

satisfies B
(
Z′, ε

)∩ δ (K) = ∅. Therefore,
�X

1 (Z) is weak lower semicontinuous on L1 (P) , as well as �X
2 (Z) :=

�X
1 (Z)− ρ (X) . If

ψ (Q) = ψ∗
ρ (Q) = sup

X∈Mb(�,F)

{∫
Z (−X) dP− ρ (X)

}
,

where Z := dQ/dP, we have that � (Z) = supX∈Mb(�,F)

{
�X

2 (Z)
}

is the
supremum of a family of convex lower semicontinuous functions with respect
to the topology σ

(
L1, L∞

)
, and � (Z) preserves both properties.

(b) For the Fenchel–Legendre transform (conjugate function) �∗ : L∞ (P) −→ R

for each U ∈ L∞ (P)

�∗ (U) = sup
Z∈δ(K)

{∫
ZUdP−� (Z)

}
= sup

Q∈Qcont

{
EQ [U ]−ψ (Q)

} ≡ ρ (−U) .

From the lower semicontinuity of � w.r.t. the weak topology σ
(
L1, L∞

)
that

� = �∗∗. Considering the weak∗-topology σ
(
L∞ (P) , L1 (P)

)
for Z =

dQ/dP we have that

ψ (Q) = � (Z) = �∗∗ (Z) = sup
U∈L∞(P)

{∫
Z (−U) dP−�∗ (−U)

}
= ψ∗

ρ (Q) .

��
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Remark 2.3

1. As it was pointed out in Remark 2.2, we have that

Q ∈ Qcont \Q�
cont '⇒ ψ∗

ρ (Q) = +∞ = ψ (Q) .

Therefore, under the conditions of Lemma 2.1 (b) the penalty function ψ might
differ from ψ∗

ρ on Q�
cont \ Q�. For instance, the penalty function defined as

ψ (Q) := ∞ × 1Qcont\Q�(P) (Q) leads to the worst case risk measure ρ(X) :=
sup

Q∈Q�(P) EQ [−X], which has as minimal penalty the function

ψ∗
ρ (Q) = ∞× 1Qcont\Q�

cont
(Q) .

2. Note that the total variation distance dTV

(
Q

1,Q2
) := supA∈F

∣∣Q1

[A] −Q
2 [A]

∣∣, with Q
1, Q

2 ∈ Q�, fulfills that dT V

(
Q

1,Q2
) ≤∥∥dQ1/dP− dQ2/dP

∥∥
L1 . Therefore, the minimal penalty function is lower

semicontinuous in the total variation topology; see Remark 4.16 (b) p. 163
in [6].

3 Fundamentals of Lévy and Semimartingales Processes

Let (�,F ,P) be a probability space. We say that L := {Lt }t∈R+ is a Lévy process
for this probability space if it is an adapted càdlàg process with independent sta-
tionary increments starting at zero. The filtration considered is F := {

FP

t (L)
}
t∈R+ ,

the completion of its natural filtration, i.e. FP

t (L) := σ {Ls : s ≤ t} ∨ N where
N is the σ -algebra generated by all P-null sets. The jump measure of L is denoted
by μ : � × (B (R+)⊗ B (R0)) → N where R0 := R \ {0}. The dual predictable
projection of this measure, also known as its Lévy system, satisfies the relation
μP (dt, dx) = dt×ν (dx), where ν (·) := E [μ ([0, 1]× ·)] is the intensity or Lévy
measure of L.

The Lévy-Itô decomposition of L is given by

Lt = bt +Wt +
∫

[0,t ]×{0<|x|≤1}
xd

{
μ− μP

}
+

∫

[0,t ]×{|x|>1}
xμ (ds, dx) . (3.1)

It implies that Lc = W is the Wiener process, and hence [Lc]t = t , where (·)c and
[ · ] denote the continuous martingale part and the process of quadratic variation of
any semimartingale, respectively. For the predictable quadratic variation we use the
notation 〈 · 〉.

Denote by V the set of càdlàg, adapted processes with finite variation, and let
V+ ⊂ V be the subset of non-decreasing processes in V starting at zero. Let A ⊂ V
be the class of processes with integrable variation, i.e. A ∈ A if and only if

∨∞
0 A ∈
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L1 (P), where
∨t

0 A denotes the variation of A over the finite interval [0, t]. The
subset A+ = A ∩ V+ represents those processes which are also increasing i.e.
with non-negative right-continuous increasing trajectories. Furthermore,Aloc (resp.
A+

loc) is the collection of adapted processes with locally integrable variation (resp.
adapted locally integrable increasing processes). For a càdlàg process X we denote
by X− := (Xt−) the left hand limit process, where X0− := X0 by convention, and
by )X = ()Xt) the jump process )Xt := Xt −Xt−.

Given an adapted càdlàg semimartingale U , the jump measure and its dual
predictable projection (or compensator) are denoted by μU ([0, t] ×A) :=∑

s≤t 1A ()Us) and μP
U , respectively. Further, we denote by P ⊂ F ⊗ B (R+)

the predictable σ -algebra and by P̃ := P ⊗ B (R0) . With some abuse of notation,
we write θ1 ∈ P̃ when the function θ1 : � × R+ × R0 → R is P̃-measurable and
θ ∈ P for predictable processes.

Let

L (Uc) := {
θ ∈ P : ∃ {τn}n∈N sequence of stopping times with τn ↑ ∞

and E

[
τn∫

0
θ2d [Uc]

]
< ∞ ∀n ∈ N

}

(3.2)

be the class of predictable processes θ ∈ P integrable with respect to Uc in the
sense of local martingale, and by



(
Uc
) :=

{∫
θ0dU

c : θ0 ∈ L
(
Uc
)}

the linear space of processes which admits a representation as the stochastic integral
with respect to Uc. For an integer valued random measure μ′ we denote by G

(
μ′
)

the class of functions θ1 : �×R+ × R0 → R satisfying the following conditions:

(i) θ1 ∈ P̃,

(ii)
∫

R0

|θ1 (t, x)| (μ′)P ({t} , dx) < ∞ ∀t > 0,

(iii) The process

⎧
⎨

⎩

√√√√∑
s≤t

{
∫

R0

θ1 (s, x) μ′ ({s} , dx) − ∫

R0

θ1 (s, x) (μ′)P ({s} , dx)
}2
⎫
⎬

⎭
t∈R+

∈ A+
loc.

The set G
(
μ′
)

represents the domain of the functional θ1 →
∫
θ1d

(
μ′ − (

μ′
)P)

,

which assign to θ1 the unique purely discontinuous local martingale M with

)Mt =
∫

R0

θ1 (t, x) μ′ ({t} , dx)−
∫

R0

θ1 (t, x)
(
μ′
)P

({t} , dx) .
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We use the notation
∫
θ1d

(
μ′ − (

μ′
)P) to write the value of this functional in

θ1. It is important to point out that this functional is not, in general, the integral with
respect to the difference of two measures. For a detailed exposition on these topics
see He et al. [9] or Jacod and Shiryaev [12], which are our basic references.

In particular, for the Lévy process L with jump measure μ,

G (μ) ≡

⎧
⎪⎨

⎪⎩
θ1 ∈ P̃ :

⎧
⎨

⎩

√∑

s≤t

{θ1 (s,)Ls)}2 1R0 ()Ls)

⎫
⎬

⎭
t∈R+

∈ A+
loc

⎫
⎪⎬

⎪⎭
, (3.3)

since μP ({t} × A) = 0, for any Borel set A of R0.
We say that the semimartingale U has the weak property of predictable represen-

tation when

Mloc,0 = 

(
Uc
)+

{∫
θ1d

(
μU − μP

U

)
: θ1 ∈ G (μU)

}
, (3.4)

where the previous sum is the linear sum of the vector spaces, and Mloc,0 is the
linear space of local martingales starting at zero.

Let M and M∞ denote the class of càdlàg and càdlàg uniformly integrable
martingale respectively. The following lemma is interesting by itself to understand
the continuity properties of the quadratic variation for a given convergent sequence
of uniformly integrable martingale . It will play a central role in the proof of the
lower semicontinuity of the penalization function introduced in Sect. 4. Observe
that the assertion of this lemma is valid in a general filtered probability space and
not only for the completed natural filtration of the Lévy process introduced above.

Lemma 3.1 For
{
M(n)

}
n∈N ⊂ M∞ and M ∈ M∞ the following implication

holds

M(n)∞
L1−→

n→∞ M∞ '⇒
[
M(n) −M

]

∞
P−→ 0.

Moreover,

M(n)∞
L1−→

n→∞ M∞ '⇒
[
M(n) −M

]

t

P−→
n→∞ 0 ∀t .

Proof From the L1 convergence of M(n)∞ to M∞, we have that {M(n)∞ }n∈N∪{M∞} is
uniformly integrable, which is equivalent to the existence of a convex and increasing
function G : [0,+∞) → [0,+∞) such that

(i) lim
x→∞

G(x)

x
= ∞,
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and

(ii) sup
n∈N

E

[
G
(∣∣∣M(n)∞

∣∣∣
)]

∨ E [G(|M∞|)] < ∞.

Now, define the stopping times

τn
k := inf

{
u > 0 : sup

t≤u

∣∣∣M(n)
t −Mt

∣∣∣ ≥ k

}
.

Observe that the estimation supn∈N E

[
G
(∣∣∣M(n)

τn
k

∣∣∣
)]

≤ supn∈N E

[
G
(∣∣∣M(n)∞

∣∣∣
)]

implies the uniformly integrability of
{
M

(n)

τn
k

}

n∈N for each k fixed. Since any uni-

formly integrable càdlàg martingale is of class D, follows the uniform integrability

of
{
Mτn

k

}

n∈N for all k ∈ N, and hence
{

supt≤τn
k

∣∣∣M(n)
t −Mt

∣∣∣
}

n∈N is uniformly

integrable. This and the maximal inequality for supermartingales

P

[
sup
t∈R+

∣∣∣M(n)
t −Mt

∣∣∣ ≥ ε

]
≤ 1

ε

{
sup
t∈R+

E

[∣∣∣M(n)
t −Mt

∣∣∣
]}

≤ 1

ε
E

[∣∣∣M(n)∞ −M∞
∣∣∣
]
−→ 0,

yields the convergence of
{

supt≤τn
k

∣∣∣M(n)
t −Mt

∣∣∣
}

n∈N in L1 to 0. The second Davis’

inequality [9, Thm. 10.28] guarantees that, for some constant C,

E

[√[
M(n) −M

]
τn
k

]
≤ CE

[
sup
t≤τn

k

∣∣∣M(n)
t −Mt

∣∣∣

]
−→
n→∞ 0 ∀k ∈ N,

and hence
[
M(n) −M

]
τn
k

P−→
n→∞ 0 for all k ∈ N.

Finally, to prove that
[
M(n) −M

]
∞

P→ 0 we assume that it is not true, and then
[
M(n) −M

]
∞

P
� 0 implies that there exist ε > 0 and {nk}k∈N ⊂ N with

d
([

M(nk) −M
]

∞ , 0
)
≥ ε

for all k ∈ N,where d (X, Y ) := inf {ε > 0 : P [|X − Y | > ε] ≤ ε} is the Ky Fan
metric. We shall denote the subsequence as the original sequence, trying to keep the
notation as simple as possible. Using a diagonal argument, a subsequence {ni}i∈N ⊂
N can be chosen, with the property that d

([
M(ni) −M

]
τ
ni
k

, 0
)

< 1
k

for all i ≥ k.
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Since

lim
k→∞

[
M(ni) −M

]

τ
ni
k

=
[
M(ni) −M

]

∞ P− a.s.,

we can find some k (ni) ≥ i such that

d

([
M(ni) −M

]

τ
ni
k(ni )

,
[
M(ni) −M

]

∞

)
<

1

k
.

Then, using the estimation

P

[∣∣∣∣∣

[
M(nk) −M

]

τ
nk
k(nk)

−
[
M(nk) −M

]

τ
nk
k

∣∣∣∣∣ > ε

]

≤ P

[{
sup
t∈R+

∣∣∣M(nk)
t −Mt

∣∣∣ ≥ k

}]
,

it follows that

d

([
M(nk) −M

]

τ
nk
k(nk)

,
[
M(nk) −M

]

τ
nk
k

)
−→
k→∞ 0,

which yields a contradiction with ε ≤ d
([
M(nk) −M

]
∞ , 0

)
. Thus,

[
M(n) −M

]
∞

P→ 0. The last part of the this lemma follows immediately from the first
statement. ��

Using the Doob’s stopping theorem we can conclude that for M ∈ M∞ and
an stopping time τ , that Mτ ∈ M∞, and therefore it follows as a corollary the
following result.

Corollary 3.1 For
{
M(n)

}
n∈N ⊂ M∞, M ∈ M∞ and τ any stopping time holds

M(n)
τ

L1→ Mτ '⇒
[
M(n) −M

]

τ

P−→ 0.

Proof
[(

M(n)
)τ −Mτ

]

∞ = [
M(n) −M

]τ
∞ = [

M(n) −M
]
τ

P−→ 0. ��

3.1 Density Processes

Given an absolutely continuous probability measure Q � P in a filtered probability
space, where a semimartingale with the weak predictable representation property
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is defined, the structure of the density process has been studied extensively by
several authors; see Theorem 14.41 in He et al. [9] or Theorem III.5.19 in Jacod
and Shiryaev [12].

Denote by Dt := E

[
dQ
dP

∣∣∣Ft

]
the càdlàg version of the density process. For

the increasing sequence of stopping times τn := inf
{
t ≥ 0 : Dt <

1
n

}
n ≥ 1 and

τ0 := supn τn we have Dt (ω) = 0 ∀t ≥ τ0 (ω) and Dt (ω) > 0 ∀t < τ0 (ω) , i.e.

D = D1[[0,τ0[[, (3.5)

and the process

1

Ds−
1[[D−�=0]] is integrable w.r.t. D, (3.6)

where we abuse of the notation by setting [[D− �= 0]] := {(ω, t) ∈ �×R+ :
Dt− (ω) �= 0} . Both conditions (3.5) and (3.6) are necessary and sufficient in
order that a semimartingale to be an exponential semimartigale [9, Thm. 9.41], i.e.
D = E (Z) the Doléans-Dade exponential of another semimartingale Z. In that case
we have

τ0 = inf {t > 0 : Dt− = 0 or Dt = 0} = inf {t > 0 : )Zt = −1} . (3.7)

It is well known that the Lévy-processes satisfy the weak property of predictable
representation [9], when the completed natural filtration is considered. In the
following lemma we present the characterization of the density processes for the
case of these processes.

Lemma 3.2 Given an absolutely continuous probability measure Q � P, there
exist coefficients θ0 ∈ L (W) and θ1 ∈ G (μ) such that

dQt

dPt

= dQt

dPt

1[[0,τ0[[ = E
(
Zθ
)
(t) , (3.8)

where Zθ
t ∈Mloc is the local martingale given by

Zθ
t :=

∫

]0,t ]
θ0dW +

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ds ν (dx)) , (3.9)

and E represents the Doleans-Dade exponential of a semimartingale. The coeffi-
cients θ0 and θ1 are dt-a.s and μP

P
(ds, dx)-a.s. unique on [[0, τ0]] and [[0, τ0]]×R0

respectively for P-almost all ω. Furthermore, the coefficients can be chosen with
θ0 = 0 on ]]τ0,∞[[ and θ1 = 0 on ]]τ0,∞[[×R .
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Proof We only address the uniqueness of the coefficients θ0 and θ1, because the
representation follows from (3.5) and (3.6). Let assume, that we have two possible
vectors θ := (θ0, θ1) and θ ′ := (

θ ′0, θ ′1
)

satisfying the representation, i.e.

Du1[[0,τ0[[ =
∫
Dt−d{

∫

]0,t ]
θ0 (s) dWs +

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ds ν (dx))}
= ∫

Dt−d{
∫

]0,t ]
θ ′0 (s) dWs +

∫

]0,t ]×R0

θ ′1 (s, x) (μ (ds, dx)− ds ν (dx))},

and thus

)Dt = Dt−)
⎛
⎜⎝

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ds ν (dx))

⎞
⎟⎠

= Dt−)
⎛
⎜⎝

∫

]0,t ]×R0

θ ′1 (s, x) (μ (ds, dx)− ds ν (dx))

⎞
⎟⎠ .

Since Dt− > 0 on [[0, τ0[[, it follows that

)
⎛

⎜⎝
∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟⎠ = )
⎛

⎜⎝
∫

]0,t ]×R0

θ ′1 (s, x) (μ (ds, dx) − ds ν (dx))

⎞

⎟⎠ .

Since two purely discontinuous local martingales with the same jumps are equal, it
follows

∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ds ν (dx))

=
∫

]0,t ]×R0

θ̂1 (s, x) (μ (ds, dx)− ds ν (dx))

and thus
∫

Dt−d{
∫

]0,t ]
θ0 (s) dWs} =

∫
Dt−d{

∫

]0,t ]
θ ′0 (s) dWs}.

Then,

0 =
[∫

Ds−d
{∫

]0,s]
(
θ ′0 (u)− θ0 (u)

)
dWu

}]

t

=
∫

]0,t ]
(Ds−)2 {θ ′0 (s)− θ0 (s)

}2
ds

and thus θ ′0 = θ0 dt-a.s on [[0, τ0]] for P-almost all ω.
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On the other hand,

0 =
〈∫ {

θ ′1 (s, x)− θ1 (s, x)
}
(μ (ds, dx)− ds ν (dx))

〉

t

=
∫

]0,t ]×R0

{
θ ′1 (s, x)− θ1 (s, x)

}2
ν (dx) ds,

implies that θ1 (s, x) = θ ′1 (s, x) μP
P

(ds, dx)-a.s. on [[0, τ0]] × R0 for P-almost
all ω. ��

For Q� P the function θ1 (ω, t, x) described in Lemma 3.2 determines the den-
sity of the predictable projection μP

Q
(dt, dx) with respect to μP

P
(dt, dx) (see He

et al. [9] or Jacod and Shiryaev [12]). More precisely, for B ∈ (B (R+)⊗ B (R0))

we have

μP
Q

(ω,B) =
∫

B

(1 + θ1 (ω, t, x))μP
P

(dt, dx) . (3.10)

In what follows we restrict ourself to the time interval [0, T ] , for some T >

0 fixed, and we take F = FT . The corresponding classes of density processes
associated to Q�(P) and Q≈ (P) are denoted by D� (P) and D≈ (P), respectively.
For instance, in the former case

D� (P) :=
{
D = {Dt }t∈[0,T ] : ∃Q ∈ Q� (P) with Dt = dQ

dP

∣∣∣∣
Ft

}
, (3.11)

and the processes in this set are of the form

Dt = exp

{
∫

]0,t ]
θ0dW + ∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ν (dx) ds)

− 1
2

∫

]0,t ]
(θ0)

2 ds

}
×

× exp

{
∫

]0,t ]×R0

{ln (1 + θ1 (s, x))− θ1 (s, x)}μ (ds, dx)

}
(3.12)

for θ0 ∈ L (W) and θ1 ∈ G (μ).
The set D� (P) is characterized as follow.

Corollary 3.2 The process D belongs to D� (P) if and only if there are θ0 ∈ L (W)

and θ1 ∈ G (μ) with θ1 ≥ −1 such that Dt = E
(
Zθ
)
(t) P-a.s. ∀t ∈ [0, T ] and

EP

[
E
(
Zθ
)
(t)
] = 1 ∀t ≥ 0, where Zθ (t) is defined by (3.9) .
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Proof The necessity follows from Lemma 3.2. Conversely, let θ0 ∈ L (W) and θ1 ∈
G (μ) be arbitrarily chosen. Since Dt =

∫
Ds−dZθ

s ∈ Mloc is a nonnegative local
martingale, it is a supermartingale, with constant expectation from our assumptions.
Therefore, it is a martingale, and hence the density process of an absolutely
continuous probability measure. ��

Since density processes are essentially uniformly integrable martingales, using
Lemma 3.1 and Corollary 3.1 the following proposition follows immediately.

Proposition 3.1 Let
{
Q(n)

}
n∈N be a sequence in Q�(P), with D

(n)
T := dQ(n)

dP

∣∣∣
FT

converging to DT := dQ
dP

∣∣∣
FT

in L1 (P). For the corresponding density processes

D
(n)
t := EP

[
D

(n)
T |Ft

]
and Dt := EP [DT |Ft ], for t ∈ [0, T ], we have

[
D(n) −D

]

T

P→ 0.

4 Penalty Functions for Densities

Now, we shall introduce a family of penalty functions for the density processes
described in Sect. 3.1, for the absolutely continuous measures Q ∈ Q� (P).

Let h : R+→ R+ and h0, h1 : R→ R+ be convex functions with 0 = h (0) =
h0 (0) = h1 (0). Define the penalty function, with τ0 as in (3.7), by

ϑ (Q) := EQ

[
T∧τ0∫

0
h
(
h0 (θ0 (t))+ ∫

R0
δ (t, x) h1 (θ1 (t, x)) ν (dx)

)
dt

]
1Q� (Q)

+∞× 1Qcont\Q� (Q) ,

(4.1)

where θ0, θ1 are the processes associated to Q from Lemma 3.2 and δ (t, x) : R+ ×
R0 → R+ is an arbitrary fixed nonnegative function δ (t, x) ∈ G (μ). Since θ0 ≡ 0
on [[τ0,∞[[ and θ1 ≡ 0 on [[τ0,∞[[×R0 we have from the conditions imposed to
h, h0, and h1

ϑ (Q) = EQ

[
T∫

0
h
(
h0 (θ0 (t))+ ∫

R0
δ (t, x) h1 (θ1 (t, x)) ν (dx)

)
dt

]
1Q� (Q)

+∞× 1Qcont\Q� (Q) .

(4.2)

Further, define the convex measure of risk

ρ (X) := sup
Q∈Q�(P)

{
EQ [−X] − ϑ (Q)

}
. (4.3)
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Notice that ρ is a normalized and sensitive measure of risk. For each class of
probability measures introduced so far, the subclass of those measures with a
finite penalization is considered. We will denote by Qϑ , Qϑ�(P) and Qϑ≈(P) the
corresponding subclasses, i.e.

Qϑ := {Q ∈ Q : ϑ (Q) < ∞} , Qϑ�(P) := Qϑ ∩Q�(P) and

Qϑ≈(P) := Qϑ ∩Q≈(P). (4.4)

Notice that Qϑ≈(P) �= ∅.

Next theorem establishes the minimality on Q� (P) of the penalty function
introduced above for the risk measure ρ, its proof is based on the sufficient
conditions given in Theorem 2.1. This result is relevant to obtain one of the main
results of this paper, namely Theorem 6.1.

Theorem 4.1 The penalty function ϑ defined in (4.2) is equal to the minimal
penalty function of the convex risk measure ρ, given by (4.3), on Q� (P), i.e.

ϑ1Q�(P) = ψ∗
ρ1Q�(P).

Proof From Lemma 2.1 (b), we need to show that the penalization ϑ is proper,
convex and that the corresponding identification, defined as �(Z) := ϑ (Q) if
Z∈δ (Q� (P)

) := {
Z ∈ L1 (P) : Z = dQ/dP with Q ∈ Q� (P)

}
and �(Z) := ∞

on L1 \ δ
(
Q� (P)

)
, is lower semicontinuous with respect to the strong topology.

First, observe that the function ϑ is proper, since ϑ (P) = 0. To verify the
convexity of ϑ , chooseQ, Q̃ ∈ Qϑ� and defineQλ := λQ+(1 − λ) Q̃, for λ ∈ [0, 1].

Notice that the corresponding density process can be written as Dλ := dQλ

dP
=

λD + (1 − λ) D̃ P-a.s. .
Now, from Lemma 3.2, let (θ0, θ1) and (θ̃0, θ̃1) be the processes associated to Q

and Q̃, respectively, and observe that from

Dt = 1 +
∫

[0,t ]

Ds−θ0 (s) dWs +
∫

[0,t ]×R0

Ds−θ1 (s, x) d (μ (ds, dx)− dsν (dx)))

and the corresponding expression for D̃ we have for τλ
n := inf

{
t ≥ 0 : Dλ

t ≤ 1
n

}

t∧τλ
n∫

0

(
Dλ

s−
)−1

dDλ
s =

t∧τλ
n∫

0

λDs−θ0(s)+(1−λ)D̃s− θ̃0(s)

(λDs−+(1−λ)D̃s−)
dWs +

∫

[0,t∧τλ
n ]×R0

λDs−θ1(s,x)+(1−λ)D̃s− θ̃1(s,x)

(λDs−+(1−λ)D̃s−)
d
(
μ− μP

P

)
.
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The weak predictable representation property of the local martingale
∫ t∧τλ

n

0

(
Dλ

s−
)−1

dDλ
s , yield on the other hand

t∧τλ
n∫

0

(
Dλ

s−
)−1

dDλ
s =

t∧τλ
n∫

0

θλ
0 (s) dWs +

∫

[0,t∧τλ
n ]×R0

θλ
1 (s, x) d

(
μ− μP

P

)
,

where identification

θλ
0 (s) = λDs−θ0 (s)+ (1 − λ) D̃s−θ̃0 (s)(

λDs− + (1 − λ) D̃s−
) ,

and

θλ
1 (s, x) = λDs−θ1 (s, x)+ (1 − λ) D̃s−θ̃1 (s, x)(

λDs− + (1 − λ) D̃s−
) .

This is possible thanks to the uniqueness of the representation in Lemma 3.2. The
convexity follows now from the convexity of h, h0 and h1, using the fact that any
convex function is continuous in the interior of its domain. More specifically,

ϑ
(
Q

λ
) ≤ E

Qλ

[
∫

[0,T ]

λDs

(λDs+(1−λ)D̃s)
h

(
h0 (θ0 (s))

+ ∫

R0

δ (s, x) h1 (θ1 (s, x)) ν (dx)

)
ds

]

+E
Qλ

[
∫

[0,T ]

(1−λ)D̃s

(λDs+(1−λ)D̃s)
h

(
h0
(
θ̃0 (s)

)

+ ∫

R0

δ (s, x) h1(θ̃1 (s, x))ν (dx)

)
ds

]

= ∫

[0,T ]

∫

�

λDs(
λDs + (1 − λ) D̃s

)h
(
h0 (θ0 (s))

+ ∫

R0

δ (s, x) h1 (θ1 (s, x)) ν (dx)

)

× (
λDs + (1 − λ) D̃s

)
1{λDs+(1−λ)D̃s>0}dPds

+ ∫

[0,T ]

∫

�

(1 − λ) D̃s(
λDs + (1 − λ) D̃s

)h
(
h0
(
θ̃0 (s)

)
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+ ∫

R0

δ (s, x) h1(θ̃1 (s, x))ν (dx)

)

× (
λDs + (1 − λ) D̃s

)
1{λDs+(1−λ)D̃s>0}dPds

= λϑ (Q)+ (1 − λ) ϑ
(
Q̃
)
,

where we used that
{∫

R0

δ (t, x) h1 (θ1 (t, x)) ν (dx)

}

t∈R+
and

{∫

R0

δ (t, x) h1(θ̃1 (t, x))ν (dx)

}

t∈R+

are predictable processes.
It remains to prove the lower semicontinuity of �. As pointed out earlier, it is

enough to consider a sequence of densities Z(n) := dQ(n)

dP
∈ δ

(
Q� (P)

)
converging

in L1 (P) to Z := dQ
dP

. Denote the corresponding density processes by D(n) and D,
respectively. In Proposition 3.1 it was verified the convergence in probability to zero
of the quadratic variation process

[
D(n) −D

]

T
=

T∫

0

{
D

(n)
s−θ

(n)
0 (s)−Ds−θ0 (s)

}2
ds

+
∫

[0,T ]×R0

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2
μ (ds, dx) .

This implies that

∫ T

0

{
D

(n)
s− θ

(n)
0 (s)−Ds−θ0 (s)

}2
ds

P→ 0,

and
∫

[0,T ]×R0

{
D

(n)
s− θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2
μ (ds, dx)

P→ 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4.5)

Then, for an arbitrary but fixed subsequence, there exists a sub-subsequence such
that P-a.s.

{
D

(n)
s−θ

(n)
0 (s)−Ds−θ0 (s)

}2 L1(λ)−→ 0

and

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2 L1(μ)−→ 0,
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where for simplicity we have denoted the sub-subsequence as the original sequence.
Now, we claim that for the former sub-subsequence it also holds that

⎧
⎪⎨

⎪⎩

D
(n)
s−θ

(n)
0 (s)

λ×P-a.s.−→ Ds−θ0 (s) ,

D
(n)
s−θ

(n)
1 (s, x)

μ×P-a.s.−→ Ds−θ1 (s, x) .

(4.6)

We present first the arguments for the proof of the second assertion in (4.6).
Assuming the opposite, there exists C ∈ B ([0, T ])⊗B (R0)⊗FT , with μ×P [C] >

0, and such that for each (s, x, ω) ∈ C

lim
n→∞

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2 = c �= 0,

or the limit does not exist.
Let C (ω) := {(t, x) ∈ [0, T ] × R0 : (t, x, ω) ∈ C} be the ω-section of C.

Observe that B := {ω ∈ � : μ [C (ω)] > 0} has positive probability: P [B] > 0.
From (4.5), any arbitrary but fixed subsequence has a sub-subsequence converg-

ing P-a.s. Denoting such a sub-subsequence simply by n, we can fix ω ∈ B with

∫

C(ω)

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2
dμ (s, x)

≤
∫

[0,T ]×R0

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2
dμ (s, x) −→

n→∞ 0,

and hence
{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2
converges in μ-measure to 0 on

C (ω) . Again, for any subsequence there is a sub-subsequence converging μ-a.s.
to 0. Furthermore, for an arbitrary but fixed (s, x) ∈ C (ω), when the limit does not
exist

a := lim inf
n→∞

{
D

(n)
s− θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2

�= lim sup
n→∞

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2 =: b,

and we can choose converging subsequences n (i) and n (j) with

lim
i→∞

{
D

n(i)
s− θ

n(i)
1 (s, x)−Ds−θ1 (s, x)

}2 = a

lim
j→∞

{
D

n(j)
s− θ

n(j)

1 (s, x)−Ds−θ1 (s, x)

}2 = b.
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From the above argument, there are sub-subsequences n (i (k)) and n (j (k)) such
that

a = lim
k→∞

{
D

n(i(k))
s− θ

n(i(k))
1 (s, x)−Ds−θ1 (s, x)

}2 = 0

b = lim
k→∞

{
D

n(j(k))
s− θ

n(j(k))

1 (s, x)−Ds−θ1 (s, x)

}2 = 0,

which is clearly a contradiction.
For the case when

lim
n→∞

{
D

(n)
s−θ

(n)
1 (s, x)−Ds−θ1 (s, x)

}2 = c �= 0,

the same argument can be used, and get a subsequence converging to 0, having a
contradiction again. Therefore, the second part of our claim in (4.6) holds.

Since D
(n)
s−θ

(n)
1 (s, x) , Ds−θ1 (s, x) ∈ G (μ), we have, in particular, that

D
(n)
s−θ

(n)
1 (s, x) ∈ P̃ and Ds−θ1 (s, x) ∈ P̃ and hence C ∈ P̃ . From the definition of

the predictable projection it follows that

0 = μ× P [C]=
∫

�

∫

[0,T ]×R0

1C (s, ω) dμdP =
∫

�

∫

[0,T ]×R0

1C (s, ω) dμP
P
dP

=
∫

�

∫

R0

∫

[0,T ]

1C (s, ω) dsdνdP =λ× ν × P [C] ,

and thus

D
(n)
s−θ

(n)
1 (s, x)

λ×ν×P-a.s.−→ Ds−θ1 (s, x) .

Since
∫

�×[0,T ]

∣∣∣D(n)
t− −Dt−

∣∣∣ dP× dt=
∫

�×[0,T ]

∣∣∣D(n)
t −Dt

∣∣∣ dP× dt −→ 0,

we have that

{
D

(n)
t−
}

t∈[0,T ]

L1(λ×P)−→ {Dt−}t∈[0,T ] and
{
D

(n)
t

}

t∈[0,T ]

L1(λ×P)−→ {Dt }t∈[0,T ] .
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Then, for an arbitrary but fixed subsequence {nk}k∈N ⊂ N, there is a sub-
subsequence

{
nki

}
i∈N ⊂ N such that

D

(
nki

)

t− θ

(
nki

)

1 (t, x)
λ×ν×P-a.s.−→ Dt−θ1 (t, x) ,

D

(
nki

)

t−
λ×P-a.s.−→ Dt−,

D

(
nki

)

t

λ×P-a.s.−→ Dt .

Furthermore, Q � P implies that λ× ν ×Q � λ× ν × P, and then

D

(
nki

)

t− θ

(
nki

)

1 (t, x)
λ×ν×Q-a.s.−→ Dt−θ1 (t, x) ,

D

(
nki

)

t−
λ×ν×Q-a.s.−→ Dt−,

and

D

(
nki

)

t

λ×ν×Q-a.s.−→ Dt. (4.7)

Finally, noting that inf Dt > 0 Q-a.s.

θ

(
nki

)

1 (t, x)
λ×ν×Q-a.s.−→ θ1 (t, x) . (4.8)

The first assertion in (4.6) can be proved using essentially the same kind of ideas
used above for the proof of the second part, concluding that for an arbitrary but fixed
subsequence {nk}k∈N ⊂ N, there is a sub-subsequence

{
nki

}
i∈N ⊂ N such that

{
D

(
nki

)

t

}

t∈[0,T ]

λ×Q-a.s.−→ {Dt }t∈[0,T ] (4.9)

and
{
θ

(
nki

)

0 (t)

}

t∈[0,T ]

λ×Q-a.s.−→ {θ0 (t)}t∈[0,T ] . (4.10)

We are now ready to finish the proof of the theorem, observing that

lim inf
n→∞ ϑ

(
Q

(n)
)
= lim inf

n→∞

∫

�×[0,T ]

{
h

(
h0

(
θ
(n)
0 (t)

)
+
∫

R0

δ (t, x)

×h1

(
θ
(n)
1 (t, x)

)
ν (dx)

)} D
(n)
t

Dt

d (λ×Q) .
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Let {nk}k∈N ⊂ N be a subsequence for which the limit inferior is realized.
Using (4.7)–(4.10) we can pass to a sub-subsequence

{
nki

}
i∈N ⊂ N and, from the

continuity of h, h0 andh1, it follows

lim inf
n→∞ ϑ

(
Q

(n)
)

≥
∫

�×[0,T ]

lim inf
i→∞

⎛

⎜⎝

⎧
⎪⎨

⎪⎩
h

⎛

⎜⎝h0

(
θ

(
nki

)

0 (t)

)
+
∫

R0

δ (t, x) h1

(
θ

(
nki

)

1 (t, x)

)
ν (dx)

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
D

(
nki

)

t

Dt

⎞

⎟⎠ d (λ×Q)

≥
∫

�×[0,T ]

h

(
h0 (θ0 (t))+

∫

R0

h1 (θ1 (t, x)) ν (dx)

)
d (λ×Q)

= ϑ (Q) . ��

5 The Market Model: General Description and Martingale
Measures

Let us now consider the stochastic process Yt with dynamics given by

Yt :=
∫

]0,t ]
αsds+

∫

]0,t ]
βsdWs+

∫

]0,t ]×R0

γ (s, x) (μ (ds, dx)− ν (dx) ds) , (5.1)

where α is an adapted process with left continuous paths (càg), β is càdlàg with
β ∈ L (W) , and γ ∈ G (μ). Throughout we assume that the coefficients α, β and γ

fulfill the following conditions:

(A 1) 0 < c ≤ |βt | ∀t ∈ R+ P-a.s. .

(A 2)
∫ T

0

(
αu

βu

)2
du ∈Mb i.e. bounded.

(A 3) γ (t,)Lt )× 1R0 ()Lt) ≥ −1 ∀t ∈ R+ P-a.s. .

(A 4)
{
γ (t,)Lt ) 1R0 ()Lt )

}
t∈R+ is a locally bounded process.

(5.2)

The market model consists of two assets, one of them is the numéraire, having
a strictly positive price. The dynamics of the other risky asset will be modeled as a
function of the process Yt defined above. More specifically, since we are interested
in the analysis of problem of robust utility maximization, presented in the next
section, the discounted capital process can be written in terms of the wealth invested
in this asset, and hence the problem can be written using only the dynamics of the
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discounted price of this asset. For this reason, throughout we will be concentrated
in the dynamics of this price.

The dynamic of the discounted price process S is determined by the process Y as
its Doleans-Dade exponential

St = S0E (Yt ) , (5.3)

where E represents the Doleans-Dade exponential of a semimartingale; condition
(A 3) ensures that the price process is non-negative. This process is an exponential
semimartingale if and only if the following two conditions are fulfilled:

(i) S = S1[[0,τ [[, for τ := inf {t > 0 : St = 0 or St− = 0} ,

(ii) 1
St− 1[[S−�=0]] is integrable w.r.t. S,

(5.4)

where [[S− �= 0]] := {(ω, t) ∈ �×R+ : St− (ω) �= 0} . The first property in (5.4)
is conceptually very appropriate when we are interested in modelling the dynamics
of a price process. Recall that a stochastically continuous semimartingale has
independent increments if and only if its predictable triplet is non-random. There-
fore, in general, the price process S is not a Lévy exponential model, because
[Y c]t =

∫ t

0 (βu)
2 du does not need to be deterministic. However, observe that the

price dynamics (5.3) includes Lévy exponential models, for Lévy processes with
|)Lt | ≤ 1.

For the model (5.3) the price process can be written explicitly as

St = S0 exp

{
∫

]0,t ]
αsds +

∫

]0,t ]
βsdWs +

∫

]0,t ]×R0

γ (s, x) (μ (ds, dx)− ν (dx) ds)

− 1
2

∫

]0,t ]
(βs)

2 ds

}

× exp

{
∫

]0,t ]×R0

{ln (1 + γ (s, x))− γ (s, x)}μ (ds, dx)

}
.

(5.5)

The predictable cádlág process {πt }t∈R+ , satisfying the integrability condition∫ t

0 (πs)
2 ds < ∞ P-a.s. for all t ∈ R+, shall denote the proportion of wealth at time

t invested in the risky asset S. For an initial capital x, the discounted wealth X
x,π
t

associated with a self-financing investment strategy (x, π) fulfills the equation

X
x,π
t = x +

∫ t

0

X
x,π
u− πu

Su−
1[[S−�=0]]dSu. (5.6)

We say that a self-financing strategy (x, π) is admissible if the wealth process
X

x,π
t > 0 for all t > 0. The class of admissible wealth processes with initial wealth
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less than or equal to x is denoted by X (x) . In what follows we restrict ourself to
the time interval [0, T ] , for some T > 0 fixed, and take F = FT .

Let us recall briefly the notation introduced in Sect. 3.1. Denote by Q�(P) the
subclass of absolutely continuous probability measures with respect to P and by
Q≈ (P) the subclass of equivalent probability measures. The corresponding classes
of density processes associated to Q�(P) and Q≈ (P) are denoted by D� (P) and
D≈ (P), respectively. The processes in the class D� (P) are of the form

Dt = exp

{
∫

]0,t ]
θ0dW + ∫

]0,t ]×R0

θ1 (s, x) (μ (ds, dx)− ν (dx) ds)

− 1
2

∫
]0,t ] (θ0)

2 ds
}
×

× exp

{
∫

]0,t ]×R0

{ln (1 + θ1 (s, x))− θ1 (s, x)}μ (ds, dx)

}
,

(5.7)

for θ0 ∈ L (W) and θ1 ∈ G (μ). If
∫
θ1 (s, x) μ (ds, dx) ∈ Aloc (P) the previous

formula can be written as

Dt = exp

⎧
⎪⎨

⎪⎩

∫

]0,t ]
θ0dW − 1

2

∫

]0,t ]
(θ0 (s))2 ds (5.8)

+
∫

]0,t ]×R0

ln (1 + θ1 (s, x)) μ (ds, dx)−
∫

]0,t ]×R0

θ1 (s, x) ν (dx) ds

⎫
⎪⎬

⎪⎭
.

Next result characterizes the class of equivalent local martingale measures
defined as

Qelmm ≡ {Q ∈ Q≈(P) : X (1) ⊂Mloc (Q)} = {Q ∈ Q≈(P) : S ∈ Mloc (Q)}.
(5.9)

Observe that (A 4) is a necessary and sufficient condition for S to be a locally
bounded process. This property is crucial in order to obtain the former equality
in (5.9). The class of density processes associated with Qelmm is denoted by
Delmm (P) . Kunita [16] gave conditions on the parameters (θ0, θ1) of a measure
Q ∈ Q≈ in order that it is a local martingale measure for a Lévy exponential model
i.e. when S = E (L). Observe that in this case Qelmm (S) = Qelmm (L) . Next
proposition extends this result, giving conditions on the parameters (θ0, θ1) under
which an equivalent measure is a local martingale measure for the price model (5.3).

Proposition 5.1 Given Q ∈ Q≈, let θ0 ∈ L (W) and θ1 ∈ G (μ) be the
corresponding processes describing the density processes found in Lemma 3.2.
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Then, the following equivalence holds:

Q ∈ Qelmm ⇐⇒ αt + βtθ0 (t)+
∫

R0

γ (t, x) θ1 (t, x) ν (dx) = 0 ∀t ≥ 0 P-a.s.

(5.10)

6 Robust Utility Maximization

The goal of the economic agent, with an initial capital x > 0, will be now to
maximize the penalized expected utility from a terminal wealth in the worst case
model. Given a penalty function ϑ , this means that the agent seeks to solve the
associated robust expected utility problem with value function

u (x) := sup
X∈X (x)

inf
Q∈Qϑ�(P)

{
EQ [U (XT )] + ϑ (Q)

}
, (6.1)

where Qϑ� := {Q� P : ϑ (Q) < ∞} for a fixed reference measure P; see (4.2).
A utility function U : (0,∞) −→ R will be hereafter a strictly increasing,
strictly concave, continuously differentiable real function, which satisfies the Inada
conditions, namely U ′ (0+) = +∞ and U ′ (∞−) = 0.

The Fenchel-Legendre transformation of the function −U (−x) is defined by

V (y) = sup
x>0

{U (x)− xy} , y > 0. (6.2)

This function V is continuously differentiable, decreasing, and strictly convex,
satisfying: V ′ (0+) = −∞, V ′ (∞) = 0, V (0+) = U (∞) , V (∞) = U (0+).
Further, the biconjugate of U is again U itself, i.e.

U (x) = inf
y>0

{V (y)+ xy} , x > 0.

For a fixed prior measure Q, in Kramkov and Schachermayer [13] the dual problem
was formulated in terms of the value function

vQ (y) := inf
Y∈YQ(y)

{
EQ [V (YT )]

}
, (6.3)

where

YQ (y) := {Y ≥ 0 : Y0 = y, YX Q-supermartingale ∀X ∈ X (1)} . (6.4)

A similar problem was studied in [11] for diffusion processes and the logarithmic
utility function.
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Remark 6.1 To guarantee that the Q-expectations in (6.1) and (6.3) are well defined,
we extend the operator EQ [U (·)] to L0, as in Schied [19, p. 111], in the following
way

EQ [X] := sup
n∈N

EQ [X ∧ n] = lim
n→∞EQ [X ∧ n] X ∈ L0 (�,F) . (6.5)

The corresponding dual value function, in the robust setting, is defined by

v (y) := inf
Q∈Qϑ�

{
vQ (y)+ ϑ (Q)

}
. (6.6)

In the rest of this section the connection between the penalty functions (4.1) and
the existence of solutions to the penalized robust expected utility problem (6.1) is
established. The first step in this direction is to notice that given Theorem 4.1, where
the minimality of the penalty function was proved, it is possible to write the primal
problem (6.1) as

u (x) = inf
Q∈Qϑ�(P)

sup
X∈X (x)

{
EQ [U (XT )] + ϑ (Q)

}
.

See Schied [19, Theorem 2.3]. Then, based on the duality theory for solving the
classical optimal investment problem, the dual problem (6.6) is solved using the
analogous sufficient conditions introduced by Kramkov and Schachermayer [13].
More precisely, for the class of utility functions described at the beginning of this
section, when

vQ (y) < ∞ for all Q ∈Qϑ≈ and y > 0, (6.7)

where Qϑ≈ := {Q ≈ P : ϑ (Q) < ∞} and ϑ is the minimal penalty function of the
associated convex measure of risk, we are able to conclude that there exists an
optimal solution to the dual problem (6.6), from which we can obtain an optimal
solution to (6.1), using Schied [19, Theorems 2.3 and 2.5]. For the proof of the
main result of this section, namely Theorem 6.1, we shall verify that these sufficient
conditions are satisfied.

6.1 Penalties and Solvability

Let us now introduce the class

C :=
⎧
⎨

⎩E
(
Zξ
) :

ξ := (
ξ(0), ξ (1)

)
, ξ (0) ∈ L (W) , ξ(1) ∈ G (μ) , with

αt + βt ξ
(0)
t + ∫

R0

γ (t, x) ξ(1) (t, x) ν (dx) = 0 Lebesgue ∀t

⎫
⎬

⎭ ,

(6.8)
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where

Z
ξ
t :=

∫

]0,t ]
ξ(0)dW +

∫

]0,t ]×R0

ξ(1) (s, x) (μ (ds, dx)− ds ν (dx)) .

Observe that Delmm (P) ⊂ C ⊂ YP (1); see (6.4) for the definition of YP (1). This
relation between these three sets plays a crucial role in the formulation of the dual
problem, even in the non-robust case.

Theorem 6.1 For q ∈ (−∞, 1) \ {0}, let U (x) := 1
q
xq be the power utility

function, and consider the functions h, h0 and h1 as in Sect. 4, satisfying the
following conditions:

h (x) ≥ exp
(
κ1x

2
)− 1 where κ1 := 1 ∨ 2

(
2p2 + p

)
T and p := q

1−q
,

h0 (x) ≥ |x| ,
h1 (x) ≥ |x|

c
, for c as in assumption (A 1) .

Then, for the penalty function

ϑxq (Q) := EQ

⎡

⎣
T∫

0

h

(
h0 (θ0 (t))+

∫

R0

|γ (t, x)| h1 (θ1 (t, x)) ν (dx)

)
dt

⎤

⎦ ,

the penalized robust utility maximization problem (6.1) has a solution.

Proof The penalty function ϑxq is bounded from below, and by Theorem 4.1
equals on Q�(P) the minimal penalty function of the normalized and sensitive
convex measure of risk defined in (4.3). Therefore, we only need to prove that
condition (6.7) holds. In order to prove that, fix an arbitrary probability measure
Q ∈ Qϑxq≈ = {Q ≈ P : ϑxq (Q) < ∞} and let θ = (θ0, θ1) be the corresponding
coefficients obtained in Lemma 3.2.

(1) In Lemma 4.2, Schied [19] establishes that even for Q ∈ Q�, with density
process D, the next equivalence holds

Y ∈ YQ (y) ⇔ YD ∈ YP (y) .

Therefore, for Q ∈ Qϑxq� , with coefficient θ = (θ0, θ1), it follows that

vQ (y) = inf
Y∈YP(1)

{
EQ

[
V

(
y
YT

D
Q

T

)]}
≤ inf

ξ∈C

{
EQ

[
V

(
y
E
(
Zξ
)
T

E
(
Zθ
)
T

)]}
.
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(2) Define

εt := αt + βtθ0 (t)+
∫

R0

γ (t, x) θ1 (t, x) ν (dx) ,

the process involved in the definition of the class C in (6.8).
When εt is identically zero for all t > 0, Proposition 5.1 implies that

Q ∈ Qelmm. However, for Q ∈ Qelmm the constant process Y ≡ y belongs
to YQ (y), and it follows that vQ (y) < ∞, for all y > 0. In this case the proof
is concluded.

If ε is not identically zero, consider ξ(0)
t := θ0 (t)− εt

βt
and ξ(1) := θ1. Since

{
1

βt

∫

R0

γ (t, x) θ1 (t, x) ν (dx)

}

t∈[0,T ]

∈ P

and

∞ > ϑxq (Q) ≥ EQ

⎡

⎣
T∫

0

(
1

βt

∫

R0

γ (t, x) θ1 (t, x) ν (dx)

)2

dt

⎤

⎦− T ,

it follows that
{

1
βt

∫
R0

γ (t, x) θ1 (t, x) ν (dx)
}

t∈[0,T ]
∈ L

(
W ′) for W ′ a Q-

Wiener process and thus also ξ(0) ∈ L
(
W ′) . Moreover, for ξ = (

ξ(0), ξ (1)
)

we
have that E

(
Zξ
) ∈ C.

Using Girsanov’s theorem, we obtain further

E
(
Zξ
)
t

E
(
Zθ
)
t

= exp

{∫

]0,t ]

(
− εu

βu

)
dW ′

u −
1

2

∫

]0,t ]

(
εu

βu

)2

du

}
.

(3) The Cauchy-Bunyakovsky-Schwarz inequality yields

EQ

[
V

(
y
E
(
Zξ

)
T

E(Zθ)T

)]

= 1
p
y−p

EQ

[
exp

{
p

∫

]0,T ]

(
εt
βt

)
dW ′ + p

2

∫

]0,T ]

(
εt
βt

)2
dt

}]

≤ 1
p
y−p

EQ

[
exp

{
2p

∫

]0,T ]

(
εt
βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt
βt

)2
dt

}] 1
2

×EQ

[
exp

{(
4p2

2 + p
) ∫

]0,T ]

(
εt
βt

)2
dt

}] 1
2

.

(6.9)
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On the other hand, the process

exp

⎧
⎪⎨

⎪⎩
2p

∫

]0,T ]

(
εt

βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt

βt

)2

dt

⎫
⎪⎬

⎪⎭
∈Mloc (Q)

is a local Q-martingale and, since it is positive, is a supermartingale. Hence,

EQ

⎡

⎢⎣exp

⎧
⎪⎨

⎪⎩
2p

∫

]0,T ]

(
εt

βt

)
dW ′ − 4p2

2

∫

]0,T ]

(
εt

βt

)2

dt

⎫
⎪⎬

⎪⎭

⎤

⎥⎦ ≤ 1.

Therefore we need only to take care about EQ

[
exp

{(
4p2

2 + p
) ∫

]0,T ]
(

εt
βt

)2

dt

}]
in order to have the desired integrability. From assumption (A 2) we have

EQ

[
exp

{(
2p2 + p

)
2
∫

]0,T ]

(∣∣∣αt

βt

∣∣∣
)2

dt

}]
< C,

and thus

EQ

[
exp

{(
4p2

2 + p
) ∫

]0,T ]

(
εt
βt

)2
dt

}]
≤ CEQ

[
exp

{
2
(

2p2 + p
)

×
T∫

0

(
|θ0 (t)| + 1

|βt |
∣∣∣∣
∫

R0

γ (t, x) θ1 (t, x) ν (dx)

∣∣∣∣

)2

dt

⎫
⎬

⎭

⎤

⎦ .

Finally, observe that for Q ∈ Qϑxq≈ , using that it has finite penalization
ϑxq (Q) < ∞ and Jensen’s inequality, we have

∞ > EQ

⎡

⎢⎣exp

⎧
⎪⎨

⎪⎩
κ1

T

T∫

0

⎛

⎜⎝h0 (θ0 (t))+
∫

R0

|γ (t, x)| h1 (θ1 (t, x)) ν (dx)

⎞

⎟⎠

2

dt

⎫
⎪⎬

⎪⎭

⎤

⎥⎦

≥ EQ

⎡

⎣exp

⎧
⎨

⎩2
(

2p2 + p
) T∫

0

(
|θ0 (t)| + 1

|βt |
∣∣∣∣
∫

R0

γ (t, x)

θ1 (t, x) ν (dx)|)2 dt
}]

.
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From the last two displays it follows that the r.h.s. of (6.9) is finite and the
theorem follows. ��

Next theorem establishes a sufficient condition for the existence of solution to
the robust utility maximization problem (6.1) for an arbitrary utility function.

Theorem 6.2 Suppose that the utility function Ũ is bounded above by a power
utility U , with penalty function ϑxq associated to U as in Theorem 6.1. Then, the
robust utility maximization problem (6.1) for Ũ with penalty ϑxq has an optimal
solution.

Proof Since U (x) := 1
q
x−q ≥ Ũ (x) for all x > 0, for some q ∈ (−∞, 1) \ {0} the

corresponding convex conjugate functions satisfy V (y) ≥ Ṽ (y) for each y > 0. As
it was pointed out in Remark 6.2, we can restrict ourself to the positive part Ṽ+ (y) .

From Proposition 6.1, we can fix some Y ∈ YQ (y) such that EQ [V (YT )] < ∞ for

any Q ∈Qϑxq≈ and y > 0, arbitrary, but fixed. Furthermore, the inequality V (y) ≥
Ṽ (y) implies that their inverse functions satisfy

(
V +)(−1)

(n) ≥ (
Ṽ+)(−1)

(n) for
all n ∈ N, and hence

∞∑

n=1

Q

[
YT ≤ (

Ṽ+)(−1)
(n)

]
≤

∞∑

n=1

Q

[
YT ≤ (

V +)(−1)
(n)

]
< ∞.

The Moments Lemma (EQ [|X|] < ∞ ⇔ ∑∞
n=1 Q [|X| ≥ n] < ∞) yields

EQ

[
Ṽ + (YT )

]
< ∞, and the assertion follows. ��

From the proof of Theorem 6.2 it is clear that the behavior of the convex
conjugate function in a neighborhood of zero is fundamental. From this observation
we conclude the following.

Corollary 6.1 Let U be a utility function with convex conjugate V , and ϑ a
penalization function such that the robust utility maximization problem (6.1) has
a solution. For a utility function Ũ such that their convex conjugate function
Ṽ is majorized in an ε-neighborhood of zero by V , the corresponding utility
maximization problem (6.1) has a solution.

Remark 6.2 When the conjugate convex function V is bounded from above it
follows immediately that the penalized robust utility maximization problem (6.1)
has a solution for any proper penalty function ϑ . This is the case, for instance, of the
power utility function U (x) := 1

q
xq , for q ∈ (−∞, 0), where the convex conjugate

function V (x) = 1
p
x−p ≤ 0, with p := q

1−q
.

Next we give an alternative representation of the robust dual value function,
introduced in (6.6), in terms of the family C of stochastic processes.
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Theorem 6.3 For a utility function U satisfying condition (6.7), the dual value
function can be written as

v (y) = inf
Q∈Qϑ≈

{
infξ∈C

{
EQ

[
V

(
y
E
(
Zξ

)
T

D
Q

T

)]}
+ ϑ (Q)

}

= inf
Q∈Q�

{
infξ∈C

{
EQ

[
V

(
y
E
(
Zξ
)
T

D
Q

T

)]}
+ ϑ (Q)

}
.

(6.10)

Proof Condition (6.7), together with Lemma 4.4 in [19] and Theorem 2 in [14] ,
imply the following identity

v (y) = inf
Q∈Qϑ≈

{
inf

Q̃∈Qelmm(Q)

{
EQ

[
V
(
ydQ̃/dQ

)]}+ ϑ (Q)

}
.

Since Delmm (P) ⊂ C, we get

v (y) ≥ inf
Q∈Qϑ≈

{
inf
ξ∈C

{
EQ

[
V

(
y
E
(
Zξ
)
T

D
Q

T

)]}
+ ϑ (Q)

}

≥ inf
Q∈Q�

{
infξ∈C

{
EQ

[
V

(
y
E
(
Zξ
)
T

D
Q

T

)]}
+ ϑ (Q)

}
.

(6.11)

Finally, from Lemma 4.2 in Schied [19] and C ⊂ YP (1) follows

vQ (y) ≤ inf
ξ∈C

{
EQ

[
V

(
y
E
(
Zξ
)
T

D
Q

T

)]}
,

and we have the inequalities (6.11) in the other direction, and the result follows. ��

6.2 The Logarithmic Utility Case

The existence of solution to the robust problem for the logarithmic utility function
U (x) = log (x) can be obtain using the relation between this utility function and
the relative entropy function. Let h, h0 and h1 be as in Sect. 4, satisfying also the
following growth conditions:

h (x) ≥ x,

h0 (x) ≥ 1

2
x2,

h1 (x) ≥ {|x| ∨ x ln (1 + x)} 1(−1,0) (x)+ x (1 + x) 1R+ (x) .
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Now, define the penalization function

ϑlog (Q) := EQ

[
T∫

0
h
(
h0 (θ0 (t))+ ∫

R0
h1 (θ1 (t, x)) ν (dx)

)
dt

]
1Q� (Q)

+∞× 1Qcont\Q� (Q) .

(6.12)

Remark 6.3 Notice that when Q ∈ Qϑlog
� (P) with coefficient θ = (θ0, θ1) has a

finite penalization, the following Q-integrability properties hold:

(6.3.i)
∫

[0,T ]×R0

θ1 (t, x)μP
P

(dt, dx) ∈ L1 (Q)

(6.3.ii)
∫

[0,T ]×R0

{1 + θ1 (t, x)} ln (1 + θ1 (t, x)) μP
P

(dt, dx) ∈ L1 (Q)

(6.3.iii)
∫

[0,T ]×R0

ln (1 + θ1 (s, x))μ (ds, dx) ∈ L1 (Q)

(6.3.iv) EQ

[
∫

]0,T ]×R0

ln (1 + θ1) dμ

]
= EQ

[
∫

]0,T ]×R0

{ln (1 + θ1)} (1 + θ1) dμ
P
P

]

In addition, for Q ∈ Qϑlog
≈ (P) we have

(6.3.v)
∫

[0,T ]×R0

θ1 (s, x) μ (ds, dx) < ∞ P− a.s.

For Q ∈ Q�(P), the relative entropy function is defined as

H(Q|P) = E

[
D

Q

T log
(
D

Q

T

)]
.

Lemma 6.1 Given Q ∈Qϑlog
≈ (P), it follows that

H (Q |P ) ≤ ϑlog (Q) .

Proof For Q ∈Qϑlog
≈ (P) we have that θ0 is integrable w.r.t. W ′ a Q-Wiener process

as an square integrable martingale. Further Remark 6.3 implies that

H (Q |P) = EQ

⎡
⎢⎣

1

2

∫ T

0
(θ0)

2 ds +
∫

]0,T ]×R0

ln (1 + θ1 (s, x)) μ (ds, dx)

−
T∫

0

∫

R0

θ1 (s, x) ν (dx) ds

⎤

⎥⎦
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≤ EQ

⎡
⎢⎣

T∫

0

⎧
⎪⎨

⎪⎩
1

2
(θ0)

2 ds +
∫

R0

{ln (1 + θ1 (s, x))} θ1 (s, x) ν (dx)

⎫
⎪⎬

⎪⎭
ds

⎤
⎥⎦

≤ ϑlog (Q) .

��
Using the previous result, the existence of solution to the primal problem (6.1)

can be concluded.

Proposition 6.1 Let U (x) = log (x) and ϑlog be as in (6.12). Then the robust utility
maximization problem (6.1) has an optimal solution.

Proof Again, we only need to verify that condition (6.7) holds. Observe that, for

each Q ∈Qϑlog
≈ (P), we have that

vQ (y) ≤ inf
ξ∈C

{
E

[
D

Q

T log

(
D

Q

T

E
(
Zξ
)
T

)
− log (y)− 1

]}
.

Also, Proposition 5.1 and the Novikov condition yield for ξ̃ ∈ C, with ξ̃ (0) := −αs

βs

and ξ̃ (1) := 0, that Q̃ ∈ Qelmm, where dQ̃\dP = D
ξ̃
T := E

(
Zξ̃
)

T
. Further, from

Lemma 6.1 we conclude for Q ∈Qϑlog
≈ (P) that

E

[
D

Q

T log

(
D

Q

T

D
ξ̃
T

)]
= H (Q |P )+ EQ

⎡

⎣
T∫

0

αs

βs

θ(0)
s ds + 1

2

T∫

0

(
αs

βs

)2

ds

⎤

⎦ < ∞

and the claim follows. ��
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1 Introduction

Among the most common payoff functions existing in the literature in the general
theory of dynamic games we can mention the (finite-horizon) Bolza-type payoff and
the well-known (infinite-horizon) discounted and average payoffs. The key features
of these two last criteria is that, whereas the discounted payoff only focuses on
earlier revenues, the average reward ignores these and pays attention only to the
asymptotic behavior of the utilities. A drawback of these points of view is that
they do not consider what happens in the mid-run. For example, there can be N-
tuples of strategies (N represents the number of players in the game) that might
be “optimal” for all the players in the infinite-horizon average criterion, but in turn,
they provide low profits (and/or high costs) to the players at any finite period of time.
From another angle, there exist several applications in which the (infinite-horizon)
discounted payoff criterion is used to model the real or present value (at the current
time) of a company; the key ingredient is the use of a discount factor. However, in
some other situations, this criterion might be used for some other purposes; one of
them is to regard it as an estimate of criteria without discount.

To fix ideas, suppose we have a game such that π̄ = (π1 · · · , πN) represents
an N-tuple associated to some choices of the players (i.e., πi corresponds to the
strategy of player i), and denote by ri the associated payoff rate function of player
i (for illustrative purposes let us assume for the moment that all players have the
same reward rate; i.e., ri = r for all i = 1, · · ·N). The expected undiscounted and
discounted payoffs of π̄ for each player are defined, respectively, as

V (π̄) = E

∫ ∞

0
r(xπ̄ (t))dt, and Vα(π̄) = E

∫ ∞

0
e−αt r(xπ̄ (t))dt,

where xπ̄ (t) represents the state of the process under the policy π̄ at time t , and
α > 0 is a given constant. A very important property of Vα is that, under mild
assumptions, it is finite-valued; whereas the former requires very strong hypotheses
to possess this feature. In this sense, if one is interested in studying optimality under
the criterion V , one may regard such criterion as the limit of some sequence of Vα

in the following sense:

Vαn(π̄) → V (π̄) as {αn}n ↓ 0. (1.1)

However, even when one can provide optimality results (Nash equilibria) to Vα for
some fixed and of course positive and even small α, it turns out that this Vα , regarded
as an estimate of V , is acceptable at early periods of times, but it is very imprecise
in the long run.

An alternative approach that lies in the same direction of the limit (1.1) is the use
of Blackwell-Nash equilibria. This consists essentially in seeking Nash equilibria
that remain optimal for all the discounted payoffs Vα, 0 < α < α∗, for some fixed
α∗ > 0 (see Definition 8.1). Due to the nature of this class of equilibria, they turn
out to be good “optimizers”, when the payoff criterion under study is of type V .
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The purpose of this work is to analyze Blackwell-Nash equilibria for a general
class of zero-sum stochastic differential games; namely, we provide sufficient
conditions for ensuring the existence and characterizations of these equilibria.
This study is based on the analysis of the so-named sensitive discount equilibria
introduced in Definition 8.2. It is worth noting that Blackwell-Nash equilibria have
the property of being bias and overtaking equilibria too. In this sense, our present
analysis is more general than [5], because we use the same set of assumptions.
Finally, it is important to say that, due to the fact that our work studies only the
zero-sum case, here and in the sequel, we consider only to the case N = 2 players.

Another interesting application concerning Blackwell games goes in the spirit
of the so-named priority mean-payoff games, which are regarded as the limit of
special multi-discounted games. In this type of games, Blackwell equilibria play
an important role because of their stability property under small perturbations of
the discount factor—see [7–9]. The study of Blackwell-Nash equilibria in zero-sum
stochastic differential games also permits the extension to the theory of priority
mean-payoff games in the stochastic differential games setting.

Bias and overtaking criteria have been studied in the context of zero-sum
stochastic differential games; see, for example, [5, 17]. Nevertheless, to the best
of our knowledge, the only works dealing with sensitive discount and Blackwell
optimality, but in the context of controlled diffusions (i.e., the case of one player
only) are [12, 13] and [22]. It is worth mentioning, however, that there are
some works that are close to the present proposal. For instance, Arapostathis et
al. [3] study a zero-sum stochastic differential game under a slightly different
ergodicity assumption than ours. It states a parabolic Hamilton-Jacobi-Bellman
(HJB) equation, and finds risk-sensitive optimal selectors, in the sense that the
payoff form is “sensitive to higher moments of the running cost, and not merely
its mean”. This represents an alternative approach to ours, because while they deal
with the concept of risk-sensitivity (as introduced in [25]), we rather choose the
notion of sensitive discount in a Laurent series, as presented in [12] and [21]. Other
works that are related to the selective criteria we study for stochastic diffusions are
[5, 11–13, 17] and the references therein.

The rest of our work comprises eight short sections. In the next section we
introduce the notation that we use, our game model, the main hypotheses, and
the basic type of strategies we will deal with along our developments. Section 3
presents the long-run average optimality criterion, and a very well-known result
on the existence of the corresponding Nash equilibria. Section 4 is devoted to the
so called bias criterion. This is a first refinement of the criterion introduced in
Sect. 3, and we profit from it by quoting the concepts introduced in that part in
further sections. In Sect. 5 we extend the results from [21, Section 3] to the zero-sum
case. There, we use an exponential ergodicity condition to characterize a discounted
payoff in terms of a Laurent series. Sections 6–8 are extensions of the results from
[12] and represent the main contribution of this paper. In Sect. 6 we define the so-
called Poisson system and model its solution in terms of the criterion presented
before in Sect. 3. Section 7 shows a connection between the Poisson system and
the dynamic programming principle. There, we lay out the concept of canonical
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equilibria and represent it as the strategies for which certain HJB equations are met.
In Sect. 8 we exhibit Blackwell-Nash and sensitive discount equilibria and relate
them in some appropriated sense. We draw our conclusions in Sect. 9.

2 The Game Model and Main Assumptions

The Dynamic System Let us consider an n-dimensional diffusion process x(·)
controlled by two players and evolving according to the stochastic differential
equation

dx(t) = b(x(t), u1(t), u2(t))dt + σ(x(t))dW(t), x(0) = x0, t ≥ 0, (2.1)

where b : Rn×U1×U2 → R
n and σ : Rn → R

n×d are given functions, and W(·) is
a d-dimensional standard Brownian motion. The sets U1 ⊂ R

m1 and U2 ⊂ R
m2 are

given (Borel) sets. Moreover, for i = 1, 2, ui(·) is a Ui-valued stochastic process
representing the strategy of player i at each time t ≥ 0.

Notation For vectors x and matrices A we consider the usual Euclidean norms

|x|2 :=
∑

k

x2
k and |A|2 := Tr(AA′) =

∑

i,j

A2
i,j ,

where A′ and Tr(·) denote the transpose and the trace of a matrix, respectively.

Assumption 2.1

(a) The action sets U1 and U2 are compact.
(b) b(x, u1, u2) is continuous on R

n × U1 × U2, and x �→ b(x, u1, u2) satisfies
a Lipschitz condition uniformly in (u1, u2) ∈ U1 × U2; that is, there exists a
positive constant K1 such that

sup
(u1,u2)∈U1×U2

|b(x, u1, u2)− b(y, u1, u2)| ≤ K1|x − y| for all x, y ∈ R
n.

(c) There exists a positive constant K2 such that for all x, y ∈ R
n,

|σ(x)− σ(y)| ≤ K2|x − y|.

(d) (Uniform ellipticity.) The matrix a(x) := σ(x)σ ′(x) satisfies that, for some
constant K3 > 0,

x ′a(y)x ≥ K3|x|2 for all x, y ∈ R
n.
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For (u1, u2) ∈ U1 × U2, and ν in C2(Rn), p ≥ 1, let

Lu1,u2ν(x) :=
n∑

i=1

bi(x, u1, u2)∂iν(x)+ 1

2

n∑

i,j=1

aij (x)∂2
ij ν(x), (2.2)

where bi is the i-th component of b, and aij is the (i, j)-component of the matrix
a(·) defined in Assumption 2.1(d).

2.1 Strategies

Throughout this work, we will be interested in finding saddle points (see The-
orem 3.5 below). To ensure that our search leads us to this result, we use the
theory of relaxed controls—see for instance, [19, 24, 26]. The use of this class of
controls, along with the semi-continuity properties of the cost/reward function (see
Assumption 2.8(c) below) will give us the convex structure needed to guarantee the
existence of non-cooperative Nash equilibria.

For each k = 1, 2, let P(Uk) be the space of probability measures on Uk endowed
with the topology of weak convergence, and denote by B(Uk) the Borel σ -algebra
of Uk .

Definition 2.2 A randomized strategy for player k is a family πk := {πk
t , t > 0} of

stochastic kernels on B(Uk)×R
n satisfying:

(a) for each t ≥ 0 and x ∈ R
n, πk

t (·|x) is a probability measure on Uk such that
πk
t (Uk|x) = 1, and for each D ∈ B(Uk), πk

t (D|·) is a Borel function on R
n;

and
(b) for each D ∈ B(Uk) and x ∈ R

n, the mapping t �−→ πk
t (B|x) is Borel

measurable.

We now introduce the notion of stationary strategy.

Definition 2.3 For each k = 1, 2, we say that a randomized strategy is stationary
if and only if there is a probability measure πk(·|x) ∈ P(Uk) such that πk

t (·|x) =
πk(·|x) for all x ∈ R

n and t ≥ 0.

The set of randomized stationary strategies for player k = 1, 2 is denoted by �k .
It is important to state that we suppose the existence of a topology defined on �k ,
k = 1, 2, such that �k is compact—for more details see [14, Section 2].

For each pair of probability measures (φ,ψ) ∈ P(U1) × P(U2) we write the
drift coefficient b in (2.1) and the operator L in (2.2) in terms of these measures by
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means of the following expressions:

b(x, φ,ψ) :=
∫

U2

∫

U1

b(x, u1, u2)φ(du1)ψ(du2), (2.3)

Lφ,ψh(x) :=
∫

U2

∫

U1
Lu1,u2h(x)φ(du1)ψ(du2). (2.4)

The notation above is valid also when the strategies π1 ∈ �1 or/and π2 ∈ �2

in (2.3)–(2.4) are interpreted as probability measures for each fixed x ∈ R
n; that is,

πk(·|x) ∈ P(Uk). In this case, unless the context requires further clarification, we
shall simply write the “variable” πk in the left-hand side of (2.3)–(2.4), rather than
πk(·|x).
Remark 2.4 Assumption 2.1 ensures that, for each pair of strategies (π1, π2) ∈
�1 × �2 there exists an almost surely unique strong solution of (2.1) which is a
Markov-Feller process. Furthermore, for each pair of strategies (π1, π2) ∈ �1×�2,
the operatorLπ1,π2

ν in (2.4) becomes the infinitesimal generator of (2.1). (For more
details, see the arguments of [2, Theorem 2.2.12] or [6, Theorem 2.1].)

Sometimes we write x(·) as xπ1,π2
(·) to emphasize the dependence on (π1, π2) ∈

�1×�2. Also, we shall denote by P
π1,π2

(t, x, ·) the corresponding transition prob-
ability of the process xπ1,π2

(·), i.e., Pπ1,π2
(t, x, B) := P(xπ1,π2

(t) ∈ B|x(0) = x)

for every Borel set B ⊂ R
n and t ≥ 0. The symbol Eπ1,π2

x (·) stands for the
associated conditional expectation.

Remark 2.5 In later sections, we will restrict ourselves to the space of stationary
strategies within the class of randomized strategies. The reason is that the recurrence
and ergodicity properties of the state system (2.1) can be easily verified through the
use of such policies, but for a more general class of strategies (for instance, that of
the so-called non-anticipative strategies), the corresponding state system might be
time-inhomogeneous; which might present some technical difficulties. Thus even
when it is possible to work with non-anticipative policies, our hypotheses ensure
the existence of Nash equilibria in the class of stationary strategies for both players
(see, [2, 15, 16]).

Definition 2.6 Let O ⊂ R
n be an open set. We denote by Bw(O) the Banach space

of real-valued measurable functions v on O with finite w-norm defined as follows:

‖v‖w := sup
x∈O

|v(x)|
w(x)

.



Blackwell-Nash Equilibria in Stochastic Differential Games 175

2.2 Recurrence and Ergodicity

Assumption 2.7 There exists a function w ∈ C2(Rn), with w ≥ 1, and constants
d ≥ c > 0 such that

(i) lim|x|→∞w(x) = +∞, and

(ii) Lπ1,π2
w(x) ≤ −cw(x)+ d for each (π1, π2) ∈ �1 ×�2 and x ∈ R

n.

Assumption 2.7 ensures the existence of a unique invariant probability measure
μπ1,π2 for the Markov process xπ1,π2

(·), such that

μπ1,π2(w) :=
∫

Rn

w(x) μπ1,π2(dx) < ∞ for all (π1, π2) ∈ �1 ×�2. (2.5)

(See [2, 18] for details.) Moreover, for every (π1, π2) ∈ �1 × �2, x ∈ R
n, and

t ≥ 0, an application of Dynkin’s formula to the function v(t, x) := ectw(x), and
Assumption 2.7(ii) yield

E
π1,π2

x w(x(t)) ≤ e−ctw(x)+ d

c
(1 − e−ct ). (2.6)

Hence, integrating both sides of (2.6) with respect to the invariant measure μπ1,π2

leads to

μπ1,π2(w) ≤ d

c
. (2.7)

Assumption 2.8 The process xπ1,π2
(·) in (2.1) is uniformly w-exponentially

ergodic; that is, there exist constants C > 0 and δ > 0 such that

sup
(π1,π2)∈�1×�2

|Eπ1,π2

x [g(x(t))] − μπ1,π2(g)| ≤ Ce−δt ‖ g ‖w w(x) (2.8)

for all x ∈ R
n, t ≥ 0, and g ∈ Bw(Rn). In this case, μπ1,π1(g) equals the integral

in (2.5) with g rather than w.

Sufficient conditions for ensuring the w-exponential ergodicity of process xπ1,π2
(·)

are given in [11, Theorem 2.7].

2.3 The Payoff Rate

Let r : Rn × U1 × U2 → R be a measurable function, so-named the payoff (or
reward/cost) rate, which satisfies the following conditions:
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Assumption 2.9

(a) The function r(x, u1, u2) is continuous on R
n × U1 × U2 and locally Lipschitz

in x uniformly with respect to (u1, u2) ∈ U1×U2; that is, for each R > 0, there
exists a constant K(R) > 0 such that

sup
(u1,u2)∈U1×U2

|r(x, u1, u2)− r(y, u1, u2)| ≤ K(R)|x−y| for all |x|, |y| ≤ R.

(b) r(·, u1, u2) is in Bw(R
n) uniformly in (u1, u2); that is, there exists M > 0 such

that for all x ∈ R
n

sup
(u1,u2)∈U1×U2

|r(x, u1, u2)| ≤ Mw(x).

(c) r(x, u1, u2) is upper semicontinuous (u.s.c.) and concave in u1 ∈ U1 for every
(x, u2) ∈ R

n × U2, and lower semicontinuous (l.s.c.) and convex in u2 ∈ U2
for every (x, u1) ∈ R

n × U1.

Similar to (2.3)–(2.4), for each (φ,ψ) ∈ P(U1)× P(U2) we write

r(x, φ,ψ) :=
∫

U2

∫

U1

r(x, u1, u2)φ(du1)ψ(du2), x ∈ R
n. (2.9)

Note that this definition remains valid when the strategies π1 ∈ �1 or/and π2 ∈ �2

are applied in (2.9) as they are interpreted as probability measures, for each fixed
x ∈ R

n; that is, πk(·|x) ∈ P(Uk). As was agreed earlier, we shall simply write the
“variable” πk in the left-hand side of (2.9) rather than πk(·|x).
Remark 2.10 Under Assumptions 2.1 and 2.9, the payoff rate r(·, φ,ψ) and the
infinitesimal generator Lφ,ψh(·) (with h ∈ C2(Rn)

⋂
Bw(Rn)) are u.s.c. in φ ∈

P(U1) and l.s.c. in ψ ∈ P(U2). For further details see [5, Lemma 3.1].

3 Average Equilibria

We devote this section to the introduction of the basic optimality criterion we will
use—and refine—along this study. We present the material in the spirit of [5, 11, 12,
17], and [20].

Definition 3.1 The long-run average payoff (also known as the ergodic payoff )
when the players use the pair of strategies (π1, π2) ∈ �1 × �2 given the initial
state x is

J (x, π1, π2) := lim sup
T→∞

1

T
E

π1,π2

x

[ ∫ T

0
r(x(t), π1, π2)dt

]
. (3.1)
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Given (π1, π2) ∈ �1 ×�2, let us define the constant

J (π1, π2) := μπ1,π2(r(·, π1, π2)) =
∫

Rn

r(x, π1, π2)μπ1,π2(dx). (3.2)

with μπ1,π2 as in (2.5). Under our set of assumptions, it follows from (2.8)
and (3.2) that the average payoff (3.1) coincides with the constant J (π1, π2) for
every (π1, π2) ∈ �1 × �2—see [5, p. 669]. Moreover, by the definition (3.2) of
J (π1, π2), together with Assumption 2.9(b) and (2.7)

|J (π1, π2)| ≤
∫

Rn

| r(x, (π1, π2) | μπ1,π2(dx) ≤ M · d
c

∀(π1, π2) ∈ �1 ×�2,

(3.3)

so that the constant J (π1, π2) is uniformly bounded on �1 ×�2.

Value of the Game Let

L := sup
π1∈�1

inf
π2∈�2

J (π1, π2) and U := inf
π2∈�2

sup
π1∈�1

J (π1, π2)

The function L is said to be the game’s lower value whereas U is better known as
the game’s upper value. Clearly, we have L ≤ U. If the upper and lower values
coincide, then the game is said to have a value, which we will denote by V ; in other
words,

V = L = U. (3.4)

As a consequence of (3.3), L and U are finite; and hence, so is V if the second
equality in (3.4) holds.

Definition 3.2 We say that a pair of stationary strategies (π∗1, π∗2) ∈ �1 ×�2 is
an average Nash equilibrium (also known as an average saddle point) if

J (π1, π∗2) ≤ J (π∗1, π∗2) ≤ J (π∗1, π2) for every (π1, π2) ∈ �1 ×�2.

The set of average saddle points pairs is denoted by (�1 ×�2)ao.

Remark 3.3 Note that if (π∗1, π∗2) ∈ �1 × �2 is an average Nash equilibrium
(in case it does exist), then the game has a value J (π∗1, π∗2) =: V—see, for
instance, [10, Proposition 4.2]. However, the converse is not necessarily true.

The following definition is crucial for our developments.
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Definition 3.4 We say that a constant J ∈ R, a function h ∈ C2(Rn) ∩ Bw(Rn),
and a pair of strategies (π∗1, π∗2) ∈ �1 ×�2 verify the average payoff optimality
equations if, for every x ∈ R

n,

J = r(x, π∗1, π∗2)+ Lπ∗1,π∗2
h(x) (3.5)

= sup
φ∈P(U1)

{r(x, φ, π∗2)+ Lφ,π∗2
h(x)} (3.6)

= inf
ψ∈P(U2)

{r(x, π∗1, ψ) + Lπ∗1,ψh(x)} for all x ∈ R
n. (3.7)

In this case, the pair of strategies (π∗1, π∗2) ∈ �1 × �2 that satisfies (3.5)–(3.7)
is called a pair of canonical strategies. We denote by (�1 × �2)ca the family of
canonical strategies.

Equation (3.5) is sometimes referred to as Poisson equation. This is the reason for
which we call Eqs. (6.1)–(6.3) below, Poisson system.

The following result ensures the existence of solutions of Eqs. (3.5)–(3.7).
It also states the existence of average saddle points, and provides us with their
characterization. For a proof see [3, 5].

Theorem 3.5 If Assumptions 2.1, 2.7, 2.8, and 2.9 hold, then:

(i) There exist solutions (J, h, (π∗1, π∗2)) to the average payoff equations (3.5)–
(3.7). Moreover, the constant J coincides with V defined in (3.4), and the
function h is unique up to additive constants; in fact, h is unique under the
additional condition that h(0) = 0.

(ii) A pair of strategies is an average saddle point if, and only if, it is canonical,
that is, (�1 ×�2)ao = (�1 ×�2)ca .

Remark 3.6 One important aspect in the proof of the last result is that Remark 2.10
ensures that the mapping φ :→ r(x, φ,ψ) + Lφ,ψh(x) is u.s.c. on the compact
set P(U1) , whereas ψ :→ r(x, φ,ψ) + Lφ,ψh(x) is l.s.c. on the compact set
P(U2). Therefore, the existence of a canonical pair (π∗1, π∗2) as in (3.5)–(3.7) can
be easily obtained from standard measurable selection theorems —see, for instance
[23, Theorem 12.1].

4 Bias Equilibria

The first refinement of Definition 3.4 and Theorem 3.5 is presented in this section.
Here, we will note that the set of bias equilibria is a subset of that of average
equilibria. However, this section can be regarded as a list of some results that we
have obtained in past works (see, for instance [5] and [17]).
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Definition 4.1 Let (π1, π2) ∈ �1 × �2 . The bias of (π1, π2) is the function
hπ1,π2 ∈ Bw(Rn) given by

hπ1,π2(x) :=
∫ ∞

0
[Eπ1,π2

x r(x(t), π1, π2)− J (π1, π2)]dt for all x ∈ R
n.

(4.1)

Remark 4.2

(i) The w-exponential ergodicity of the process xπ1,π2
(·) (see (2.8)) and the

Assumption 2.9(b) ensure that the bias hπ1,π2 is a finite-valued function and, in
fact, it is in Bw(Rn). Moreover, its w-norm is uniformly bounded in (π1, π2) ∈
�1 ×�2.

(ii) By Escobedo-Trujillo et al. [5, Proposition 5.2] we can prove that if (π1, π2) ∈
�1 ×�2 is average optimal, then its bias hπ1,π2 and any function h satisfying
the average optimality equations (3.5)–(3.7) coincide up to an additive constant;
that is, for all x ∈ R

n,

hπ1,π2(x) = h(x)− μπ1,π2(h).

Definition 4.3 (Bias Equilibrium) We say that an average saddle point
(π∗1, π∗2) ∈ (�1 ×�2)ao is a bias saddle point if

hπ1,π∗2(x) ≤ hπ∗1,π∗2(x) ≤ hπ∗1,π2(x)

for every x ∈ R
n and every pair of strategies (π1, π2) ∈ �1 × �2. The function

hπ∗1,π∗2 is called the optimal bias function.

We denote by (�1 ×�2)bias the set of bias saddle points. By Definition 4.3, (�1 ×
�2)bias ⊂ (�1 ×�2)ao; that is,

Bias equilibrium '⇒ Average equilibrium.

Let (J, h) be a solution of the average payoff optimality equations (3.5)–(3.7). We
define for each x ∈ R

n the sets

�1
0(x) := {φ ∈ P(U1)| J = inf

ψ∈P(U2)
{r(x, φ,ψ) + Lφ,ψh(x)},

�2
0(x) := {ψ ∈ P(U2)| J = sup

φ∈P(U1)

{r(x, φ,ψ) + Lφ,ψh(x)}.

Definition 4.4 We say that the constant J ∈ R, the functions h, h̃ ∈ C2(Rn) ∩
Bw(Rn), and a pair (π∗1, π∗2) ∈ �1 × �2 verify the bias optimality equations if
and only if the triplet (J, h, (π∗1, π∗2)) satisfies the average optimality equations
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(3.5)–(3.7) together with the following equations

h(x) = Lπ∗1,π∗2
h̃(x) (4.2)

= sup
φ∈�1

0(x)

{Lφ,π∗2
h̃(x)} (4.3)

= inf
ψ∈�2

0(x)

{Lπ∗1,ψ h̃(x)}. (4.4)

The next result summarizes important results on the existence of bias equilibria. For
further details, see [5, Section 5] or [17, Theorem 7.7].

Proposition 4.5 Under Assumptions 2.1, 2.7, 2.8, and 2.9, the following holds:

(i) (�1 ×�2)bias is nonempty.
(ii) �1

0(x) and �2
0(x) are convex compact sets.

(iii) The triplet (J, hπ∗1,π∗2, h̃) consisting of the constant J in Definition 3.4,
the optimal bias function hπ∗1,π∗2 in Definition 4.3 and some other function

h̃ ∈ C2(Rn
⋂

Bw(Rn), form the unique solution satisfying the bias optimality
equations (3.5)–(3.7) and (4.2)–(4.4).

(iv) (π1, π2) ∈ �1 × �2 is a bias saddle point if and only if it verifies the bias
optimality equations (4.2)–(4.4).

5 The Laurent Series

This section presents an extension of the results shown in [12, Section 3] or in [21,
Section 3] to the zero-sum case. Here, we use the exponential ergodicity condition
from Assumption 2.8 to characterize a discounted payoff in terms of a Laurent
series. This will be very useful in our later developments. This is the essence of
Theorem 5.5, which is the main result of this part.

Recall the definition of w in Assumption 2.7 and let μπ1,π2 be the invariant
measure whose existence is ensured by Assumption 2.7.

Definition 5.1 Let Bw(Rn × U1 × U2) be the space of measurable functions v :
R

n × U1 × U2 → R such that

sup
(u1,u2)∈U1×U2

|v(x, u1, u2)| ≤ Mvw(x) ∀x ∈ R
n, (5.1)

where Mv is a positive constant depending of v.
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As in (2.9) for v ∈ Bw(Rn × U1 × U2) and (φ,ψ) ∈ P(U1)× P(U2), we write

v(x, φ,ψ) :=
∫

U2

∫

U1

v(x, u1, u2)φ(du1)ψ(du2) ∀x ∈ R
n.

Now use (π1, π2) ∈ �1 ×�2 in lieu of (φ,ψ) ∈ P(U1)× P(U2). Let us define

v(π1, π2) :=
∫

Rn

v(x, π1, π2)μπ1,π2(dx), and

Z
π1,π2

t v(x) := E
π1,π2

x v(x(t), π1, π2)− v(π1, π2).

With these ingredients, we define the v-bias operator Gπ1,π2 : Bw(Rn×U1×U2) →
Bw(Rn) as follows

Gπ1,π2v(x) :=
∫ ∞

0
[Eπ1,π2

x v(x(t), π1, π2)− v(π1, π2)]dt. (5.2)

Remark 5.2 Note that the w-exponential ergodicity of the process xπ1,π2
(·) estab-

lished in (2.8), and (5.1) yield that

|Zπ1,π2

t v(x)| ≤ CMve
−δtw(x),

and thus,

|Gπ1,π2v(x)| ≤ δ−1CMvw(x) or equivalently ‖Gπ1,π2v(x)‖w ≤ δ−1CMv.

(5.3)

The following result shows some properties of both, the operator Gπ1,π2 , and the
operators that result from its compositions with itself. Its proof delves into the
discussion that led from (3.10) to (3.11) in [12].

Lemma 5.3 For j ≥ 0, let Gj+1
π1,π2 be the j + 1-composition of Gπ1,π2 with itself.

Then

G
j+1
π1,π2v is in Bw(Rn), and μπ1,π2

(
G

j+1
π1,π2v

)
= 0.

Proof By (5.3), Gπ1,π2 is in Bw(Rn). Now, the fact that μπ1,π2(Gπ1,π2) = 0 is
straightforward from (3.2) and (5.2). The rest of the proof easily follows by applying
mathematical induction on j . ��
Definition 5.4 Given a discount factor α > 0. The expected α-discounted v-payoff
when the players use (π1, π2) ∈ �1 ×�2, given the initial state x ∈ R

n, is

Vα(x, π
1, π2, v) := E

π1,π2

x

[∫ ∞

0
e−αtv(x(t), π1, π2)dt

]
. (5.4)
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The following result provides a useful characterization of the α-discounted v-payoff
in terms of a Laurent series (see, for instance [4, Chapter 6]). The proof uses
essentially the same steps of the proof of Theorem 3.1 and Proposition 3.2 in [12],
so we shall omit it.

Theorem 5.5

(a) Let δ > 0 be the constant in Assumption 2.8. If (π1, π2) an arbitrary pair of
strategies in �1 × �2 and v is a function in Bw(Rn × U1 × U2), then, for
α ∈ (0, δ), the α-discounted v-payoff (5.4) can be written as

Vα(x, π
1, π2, v) = 1

α
v(π1, π2)+

∞∑

j=0

(−α)jG
j+1
π1,π2v(x). (5.5)

Moreover the above series converges in w-norm.
(b) Let θ ∈ R be such that 0 < θ < δ, where δ is the constant in Assumption 2.8.

For each v ∈ Bw(Rn×U1×U2), (π
1, π2) ∈ �1×�2, and i = 0, 1, . . . define

the i-residual of the Laurent series (5.5) as

Ri(π
1, π2, v, α) :=

∞∑

j=i

(−α)jG
j+1
π1,π2v.

Then, for all |α| ≤ θ and i = 0, 1, . . .,

sup
(π1,π2)∈�1×�2

∣∣∣
∣∣∣Ri((π

1, π2), v, α)

∣∣∣
∣∣∣
w
≤ CMv

δi(δ − θ)
|α|k. (5.6)

For each v ∈ Bw(Rn × U1 × U2), (π
1, π2) in �1 ×�2, and i = 0, 1, . . . , define

hi
π1,π2v as

hi
π1,π2v(x) := (−1)iGi+1

π1,π2v(x) for all x ∈ R
n and i = 1, 2. (5.7)

It is obvious that, for each v ∈ Bw(Rn × U1 × U2), hi
π1,π2v belongs to Bw(Rn)

because Gi+1
π1,π2v does.

Notation For v = r, with r as in Assumption 2.9, we simply write the operator
in (5.7) as hi

π1,π2 ; that is,

hi
π1,π2r := hi

π1,π2 .

Note that for i = 0, h0
π1,π2 equals to the bias function defined in (4.1), i.e.,

h0
π1,π2(x) = Gπ1,π2r(x) = hπ1,π2(x) for all x ∈ R

n.
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Moreover,

h1
π1,π2 = −G2

π1,π2r(x) = Gπ1,π2(−h0
π1,π2),

is the bias of (π1, π2) when the payoff is −h0
π1,π2 . In general, using mathematical

induction, we can obtain that

hi
π1,π2 = Gπ1,π2(−hi−1

π1,π2) i = 1, 2, . . .

By Theorem 5.5(a) and the expression (5.2), the α-discounted payoff (5.4)—with r

in lieu v—can be written in terms of operator hi
π1,π2 as follows

Vα(x, π
1, π2, r) = 1

α
J (π1, π2)+

∞∑

i=0

αihi
π1,π2(x), (5.8)

and, by Lemma 5.3,

μπ1,π2(hi
π1,π2) = 0 for all i = 0, 1, 2, . . . (5.9)

6 The Poisson System

We now define the so-called Poisson system and characterize its solution in terms of
the basic average optimality criterion, and the recursive operator Gπ1,π2 introduced
in Sect. 5.

For the following definition, recall that Eq. (3.5) is sometimes dubbed Poisson
equation.

Definition 6.1 Let (π1, π2) ∈ �1 × �2 fixed. We say that a constant J ∈ R and
the functions h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn) verify the Poisson system for
(π1, π2) ∈ �1 ×�2 if

J = r(x, π1, π2)+ Lπ1,π2
h0(x), (6.1)

h0(x) = Lπ1,π2
h1(x), (6.2)

. . .

hm(x) = Lπ1,π2
hm+1(x). (6.3)

Theorem 6.2 Let m ≥ −1 be fixed. The constant J ∈ R and the functions
h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn) are solutions to the Poisson system (6.1)–
(6.3) if and only if J = J (π1, π2), hi = hi

π1,π2 for 0 ≤ i ≤ m, and hm+1 =
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hm+1
π1,π2 + z for z ∈ R, where J and hi

π1,π2 , 0 ≤ i ≤ m+ 1, are the functions in (3.2)
and (5.7), respectively.

Proof We will use mathematical induction over Eqs. (6.1)–(6.3).

1. Case m = −1 follows from Lemma 3.2 and Proposition 5.1 in [5].
2. Now, suppose the result is valid for some m ≥ −1.
3. Case m+ 1:

The “if” part: Suppose that J = J (π1, π2), hi = hi
π1,π2 for 0≤ i ≤m,

and hm+1 = hm+1
π1,π2 + z for z ∈ R. Then, we need to prove that hm+1

π1,π2

verifies the (m+ 1)-th Poisson equation. To this end, observe that hm+2
π1,π2 is the

bias function of (π1, π2) when we consider as reward rate −hm+1
π1,π2(x). It is

easy to verify through a mathematical induction procedure that −hm+1
π1,π2 satisfies

Assumption 2.9, then we can invoke Theorem 4.1 in [5], to ensure the existence
of a function hm+2 ∈ C2(Rn) ∩ Bw(Rn), a constant J and a pair of strategies
(π1, π2) that satisfy the average optimality equation

J = −hm+1(x)+ Lπ1,π2
hm+2(x)

= sup
φ∈P(U1)

{−hm+1(x)+ Lφ,π2
hm+2(x)},

= inf
ψ∈P(U2)

{−hm+1(x)+ Lπ1,ψhm+2(x)},

with J = μπ1,π2(−hm+1) = μπ1,π2(−hm+1
π1,π2). Now, Proposition 5.1 in [5]

gives that the bias function with reward rate −hm+1(x) = −hm+1
π1,π2(x) satisfies

the following Poisson equation

μπ1,π2(−hm+1
π1,π2) = −hm+1

π1,π2(x)+ Lπ1,π2
hm+2(x),

which implies that

hm+1
π1,π2(x) = Lπ1,π2

hm+2(x), (6.4)

since that (5.9) gives μπ1,π2(−hm+1
π1,π2) = 0. Thus, (6.4) implies that hm+1

π1,π2 ,
satisfies the (m+ 1)-th Poisson equation.

The “only if” part: Suppose that J ∈ R and h0, h1, . . . , hm+1 ∈ C2(Rn) ∩
Bw(Rn) are solutions to (6.1)–(6.3). By the induction hypothesis the result holds
for some m ≥ 0, i.e.,

hm
π1,π2(x) = hm(x) = Lπ1,π2

hm+1(x). (6.5)
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Therefore, we only need to prove that hm+1 = hm+1
π1,π2 . Namely, the bias function

hm+1
π1,π2(x) when the payoff rate is −hm

π1,π2 , verifies the following Poisson
equation

μπ1,π2(−hm
π1,π2) = −hm

π1,π2(x)+ Lπ1,π2
hm+1
π1,π2(x),

then, by (5.9) we obtain

hm
π1,π2(x) = Lπ1,π2

hm+1
π1,π2(x). (6.6)

Thus, subtracting equation (6.5) to (6.6) we obtain

0 = Lπ1,π2
(hm+1

π1,π2(x)− hm+1(x)).

Therefore, hm+1
π1,π2 − hm+1 is a harmonic function and as a consequence, Lemma

2.1 in [5], yields

hm+1
π1,π2(x) = hm+1(x)+ μπ1,π2(hm+1). (6.7)

Since μπ1,π2 is an invariant probability measure, and hm+1 ∈ C2(Rn)∩Bw(Rn)

satisfies the (m+ 1)-th Poisson equation, we have

μπ1,π2(hm+1) =
∫

Rn

Lπ1,π2
hm+2(y)μπ1,π2(dy) = 0 for all

hm+2 ∈ C2(Rn) ∩ Bw(Rn), (6.8)

where the last equality follows from a well-known result of invariant probability
measures—see, for example [2]. Therefore, hm+1 = hm+1

π1,π2 follows from (6.7)
and (6.8).

��

7 The Average Payoff Optimality System

We devote this section to link the Poisson system (6.1)–(6.3) from Sect. 6 with
the optimization problem we are trying to solve (see Definitions 8.1 and 8.2
below). We do this by means of a system of average optimality equations, and
the characterization of their solutions as a sequence of canonical equilibria of a
collection of average payoff games. This is the purpose of the main result of this
part, namely, Theorem 7.4.
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Definition 7.1 We say that a constant J ∈ R and functions h0, h1, . . . , hm+1 ∈
C2(Rn)∩Bw(Rn) verify the −1-th, 0-th,. . . , m-th average payoff optimality system
for (π∗1, π∗2) ∈ �1 ×�2 and x ∈ R if

J = r(x, π∗1, π∗2)+ Lπ∗1,π∗2
h0(x), (7.1)

= sup
φ∈P(U1)

r(x, φ, π∗2)+ Lφ,π∗2
h0(x), (7.2)

= inf
ψ∈P(U2)

r(x, π∗1, ψ) + Lπ∗1,ψh0(x) (7.3)

h0(x) = Lπ∗1,π∗2
h1(x) (7.4)

= sup
φ∈�1

0(x)

Lφ,π∗2
h1(x) (7.5)

= inf
ψ∈�2

0(x)

Lπ∗1,ψh1(x) (7.6)

. . .

hm(x) = Lπ∗1,π∗2
hm+1(x) (7.7)

= sup
φ∈�1

m(x)

Lφ,π∗2
hm+1(x) (7.8)

= inf
ψ∈�2

m(x)
Lπ∗1,ψhm+1(x) (7.9)

where letting �1−1(x) := P(U1) and �2−1(x) := P(U2) for all x ∈ R
n, then the sets

�k
j (x), for 0 ≤ j ≤ m and k = 1, 2, consist of probability measures φ ∈ �1

j−1(x)

and ψ ∈ �2
j−1(x) attaining the maximum and minimum in the (j − 1)-th average

payoff optimality equation, respectively; that is, for each x ∈ R
n,

�1
0(x) :=

{
φ ∈ P(U1) | J = inf

ψ∈P(U2)

[
r(x, φ,ψ) + Lφ,ψh0(x)

]}
,

�2
0(x) :=

{
ψ ∈ P(U2) | J = sup

φ∈P(U1)

[
r(x, φ,ψ) + Lφ,ψh0(x)

]}
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and, for 1 ≤ j ≤ m,

�1
j (x) :=

{
φ ∈ �1

j−1(x) | hj−1(x) = inf
ψ∈�2

j−1(x)

Lφ,ψhj (x)

}
,

�2
j (x) :=

⎧
⎨

⎩ψ ∈ �2
j−1(x) | hj−1(x) = sup

φ∈�1
j−1

Lφ,ψhj (x)

⎫
⎬

⎭ .

Proposition 7.2 For each k = 1, 2, and −1 ≤ j ≤ m, the sets {�k
j (x)}j≥0 are

convex compact sets.

Proof We use mathematical induction on j :

1. Case j = −1, 0. Since P(U1) and P(U2) are compact and convex sets (see, for
instance, [1, Theorem 15.11]), Lemma 5.1 in [5], gives that �1

0(x) and �2
0(x) are

also convex and compact sets.
2. Suppose now that for some 0 ≤ j ≤ m, �1

j (x) and �2
j (x), are convex compact

sets.
3. Let us prove the result for m = j + 1. To this end, note that

�1
j+1(x) :=

{
φ ∈ �1

j (x)| hj (x) = inf
ψ∈�2

j (x)

Lφ,ψhj+1(x)

}
,

and

�2
j+1(x) :=

⎧
⎨

⎩ψ ∈ �2
j (x)| hj (x) = sup

φ∈�1
j (x)

Lφ,ψhj+1(x)

⎫
⎬

⎭ ,

and by induction hypothesis �1
j (x) and �2

j (x) are convex compact sets. Then,

to verify if �1
j+1(x) and �2

j+1(x) are compact sets it is sufficient to prove that

they are closed, but this property follows due to the compactness of �1
j (x) and

�2
j (x) (induction hypothesis) and the u.s.c in φ (l.s.c. ψ) of Lφ,ψ established in

the Remark 2.10.
The proof that �1

j+1(x) and �2
j+1(x) are convex sets mimicks that of Lemma

4.6 in [20].
��

Since {�k
j (x)}j≥0, k = 1, 2, is a nonincreasing sequence of nonempty compact

sets, the set

�k∞(x) :=
⋂

m≥−1

�k
m(x) (7.10)

is nonempty and compact as well.
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The following definition concerns the pair of strategies (π1, π2) ∈ �1 ×�2 that
attain the maximum and minimum respectively in Eqs. (7.1)–(7.9).

Definition 7.3 We define

�1
m ×�2

m :={(π1, π2) ∈ �1 ×�2 | (π1(·|x), π2(·|x)) ∈ �1
m+1(x)× �2

m+1(x),

∀x ∈ R
n}.

A pair (π1, π2) ∈ �1
m ×�2

m will be referred to as a canonical equilibrium for the
−1-th, 0-th, . . ., m-th average payoff optimality system (7.1)–(7.9).

From Definition 7.3, it is clear that �1
m+1 × �2

m+1 ⊆ �1
m × �2

m, for all m =
−1, 0, 1, · · · .
Theorem 7.4 The −1-th, 0-th,. . . , m-th average reward HJB system (7.1)–(7.9)
admits a unique solution J ∈ R, h0, h1, . . . , hm+1 ∈ C2(Rn) ∩ Bw(Rn), where
J, h0, h1, . . . , hm are unique, and hm+1 is unique up to an additive constant.
Moreover, the set �1

m ×�2
m is nonempty.

Proof We will use mathematical induction on m.

1. Case m = 0. It follows from Theorems 4.1, 5.1 and 5.2 in [5].
2. Suppose that the result holds for some m = j .
3. Now, we prove that the result holds for m = j + 1.

The induction hypothesis ensures the existence of J ∈ R, h0, h1, . . . , hj ∈
C2(Rn)∩Bw(Rn) which are unique solutions of the−1-th, 0-th,. . . , j -th average
payoff optimality system and that that �1

j and �2
j are nonempty.

Let us consider now a new game, so-named j -bias game, consisting in:

• The dynamic system (2.1).

• The payoff function− hj . (7.11)

• The set of control actions �1
j (x) and �2

j (x).

It is easy to verify that this new game satisfies all of our hypotheses. Then,
Theorem 3.5(i)–(ii) ensures the existence of solutions (J , hj+1, (π∗1, π∗2)) to
the following average optimality equations

J = −hj (x)+ Lπ∗1,π∗2
hj+1(x)

= sup
φ∈�1

j (x)

{−hj (x)+ Lφ,π∗2
hj+1(x)}

= inf
ψ∈�2

j (x)

{−hj (x)+ Lπ∗1,ψhj+1(x)}.
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The existence of a function hj+2 ∈ C2(Rn) ∩ Bw(Rn) satisfying

hj+1(x) = Lπ∗1,π∗2
hj+2(x)

= sup
φ∈�1

j (x)

Lφ,π∗2
hj+2(x)

= inf
ψ∈�2

j (x)

Lπ∗1,ψhj+2(x).

is ensured by Proposition 4.5, and the fact that J = μπ∗1,π∗2(−hj ). In this case
hj+1 is unique, and hj+2 is unique up to additive constants. Thus, hj+1 satisfies
the (j + 1)-th average reward HJB equations.

It remains to prove that �1
m × �2

m is nonempty. To this end, we proceed again
by mathematical induction on m. Namely, for the case m = 0, the result follows
by Theorems 5.1 and 5.2 in [5]. Now assume that �1

j ×�2
j is nonempty for some

j = 0, 1, . . . ; that is, there is at least an element (π1
j , π

2
j ) ∈ �1

j×�2
j or equivalently,

(π1
j+1(·|x), π2

j+1(·|x)) ∈ �1
j+1(x)× �2

j+1(x) for all x ∈ R
n. We want to prove that

�1
j+1×�2

j+1 is nonempty. For this, we consider again the j -bias game (7.11). Since
this game satisfies all of our hypotheses, we can invoke Proposition 4.5(i) to ensure
the existence of a bias equilibrium (π1, π2) associated to the j -bias game. Hence,
Proposition 4.5(iii) yields that, in fact, such equilibrium satisfies both, the j -th and
the (j + 1)-th average payoff equations. This completes the proof. ��
Remark 7.5 It is worth noting the relation of the pairs (π∗1, π∗2) ∈ �1

m×�2
m with

the m-bias game in (7.11); namely, if we apply iteratively Proposition 4.5, we can
easily verify that (π∗1, π∗2) ∈ �1

m × �2
m if and only if such a pair is an average

Nash equilibrium for the j -bias game (7.11) for j = −1, · · · ,m.

We define

�1∞ ×�2∞ :=
∞⋂

m=−1

(�1
m ×�2

m). (7.12)

As a consequence of (7.10) and Theorem 7.4, we deduce the following result.

Corollary 7.6 There exists a strategy (π1, π2) ∈ �1 × �2 that satisfies the m-th
average reward HJB equation for all m = −1, 0, . . . . In other words, �1∞×�2∞ is
nonempty.
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8 Blackwell-Nash Equilibria

In this section we present a zero-sum type of Nash equilibrium so-named Blackwell-
Nash equilibrium; we will also introduce a sensitive discount concept related to a
family of optimality criteria so-named m-discount equilibria, for m ≥ −1. We will
see that a Blackwell-Nash equilibrium becomes the limit, as m →∞, of a sequence
of m-discount equilibria and prove the existence of each element of this sequence
based on the results given in previous sections. To begin with this analysis, we first
define the aforementioned concepts as follows.

Definition 8.1 (Blackwell-Nash Equilibrium) A pair (π∗1, π∗2) ∈ �1 × �2 is
called Blackwell-Nash equilibrium if for each (π1, π2) ∈ �1 × �2 and each state
x ∈ R

n, there exists a discount factor α∗ = α∗(x, π1, π2) such that

Vα(x, π
1, π∗2) ≤ Vα(x, π

∗1, π∗2) ≤ Vα(x, π
∗1, π2) (8.1)

for all 0 < α < α∗.

Definition 8.2 (Sensitive Discount Equilibrium)

(a) Let m ≥ −1 be an integer. A pair (π∗1, π∗2) ∈ �1×�2 is called an m-discount
equilibrium if

lim inf
α→0

α−m[Vα(x, π
∗1, π∗2)− Vα(x, π

1, π∗2)] ≥ 0 for all π1 ∈ �1,

and

lim sup
α→0

α−m[Vα(x, π
∗1, π∗2)− Vα(x, π

∗1, π2)] ≤ 0 for all π2 ∈ �2.

(b) We call sensitive discount equilibria to the family {(π∗1
m , π∗2

m ) | m ≥ −1} of all
the m-discount equilibria (m ≥ −1).

We denote by �
1,d
m and �

2,d
m the sets of strategies m-discount optimal for player 1

and 2, respectively.

Theorem 8.3

(i) Let m ≥ −1 be an integer, then �1
m ×�2

m ⊆ �
1,d
m ×�

2,d
m .

(ii) If (π∗1, π∗2) ∈ �1∞ ×�2∞, then it is a Blackwell-Nash equilibrium.
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Proof

(i) Consider the pair (π∗1, π∗2) ∈ �1
m × �2

m, and use the series (5.8) to deduce
the following

1

αm
[Vα(x, π

∗1, π∗2)− Vα(x, π
1, π∗2)]

= 1

α

[ 1

αm

(
J (π∗1, π∗2)− J (π1, π∗2)

)
+ 1

αm−1

(
h0
π∗1,π∗2(x)− h0

π1,π∗2(x)
)

+ · · · +
(
hm−1
π∗1,π∗2(x)− hm−1

π1,π∗2(x)
) ]

+
(
hm
π∗1,π∗2(x)− hm

π1,π∗2(x)
)
+

+ 1

αm

∞∑

i=m+1

αi
(
hi
π∗1,π∗2(x)− hi

π1,π∗2(x)
)
, (8.2)

for all π1 ∈ �1. By virtue of Remark 7.5, (π∗1, π∗2) is a Nash equilibrium for
the −1-th, 0-th, . . ., m-th bias game (7.11). Then, the first m + 2 elements in
equality (8.2) are greater or equal to zero. Finally, letting α → 0 in both sides
of (8.2) and using Theorem 5.5(b), we get

1

αm
[Vα(x, π

∗1, π∗2)− Vα(x, π
1, π∗2)] ≥ 0.

Similar arguments yield

1

αm
[Vα(x, π

∗1, π∗2)− Vα(x, π
∗1, π2)] ≤ 0 for all π2 ∈ �2.

Therefore, �1
m ×�2

m ⊂ �
1,d
m ×�

2,d
m , which proves (i).

(ii) Let π1 ∈ �1 and x ∈ R
n arbitrary and suppose that (π∗1, π∗2) ∈ �1∞ ×�2∞,

then using again (5.8) we can write

Vα(x, π
∗1, π∗2)− Vα(x, π

1, π∗2) = 1

α
[J (π∗1, π∗2)− J (π1, π∗2)]

+
∞∑

i=0

αi [hi
π∗1,π∗2(x)− hi

π1,π∗2(x)]. (8.3)

By virtue of (7.12), (π∗1, π∗2) ∈ �1
m ×�2

m for −1 ≤ m ≤ ∞. So, (π∗1, π∗2)

is a Nash equilibrium for the m-bias game (7.11) for all m = −1, 0, 1, · · · .
Therefore, the equality in (8.3) is nonnegative for every α > α∗, where α∗
depends on the residual term (5.6), which yields the first inequality in (8.1). We
can also mimic the same arguments but now for arbitrary π2 ∈ �2 and thus to
obtain the second inequality in (8.1), yielding that (π∗1, π∗2) is a Blackwell-
Nash equilibrium.

��
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We use Theorems 7.4, 8.3, and Corollary 7.6, to state our final claim.

Corollary 8.4 Under Assumptions 2.1, 2.7, 2.8, and 2.9,

(i) For each m ≥ −1, the set �
1,d
m × �

2,d
m of m-discount optimal strategies is

nonempty.
(ii) There exist Blackwell optimal strategies in �1 ×�2.

9 Final Remarks

In this paper we have shown the existence and provide some characterizations of
the sensitive discount equilibria in a class of zero-sum stochastic differential games
with a uniform ellipticity assumption. This yields a Blackwell-Nash equilibrium in
the limit as m → ∞. To this end, we truncated the Laurent series of the expected
discounted reward/cost, and thus stated the so-called Poisson system, which allowed
us to characterize the equilibria as the collection of strategies that meet it.

It is worth pointing out the fact that Theorem 8.3 and Corollary 8.4 show that, for
a zero-sum stochastic differential game, an m-discount equilibrium is equivalent to
a Blackwell-Nash equilibrium only when m → ∞. This agrees with the controlled
diffusion scheme (see [12, 22]).

Some possible extensions of our work are, for example, to do this same analysis
but considering a more general dynamics type, such is the case of stochastic
differential equations with jumps (in the context of Lévy processes) or using the
same dynamic than ours but under weaker assumptions than those considered here,
such is the case of degenerate diffusions.

Acknowledgement This research was supported in part by CONACyT grant 238045.
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A Note on �-Convergence of Monotone
Functionals

Erick Treviño Aguilar

Abstract In this note we present a criterion under which a functional defined
on vectors of non-decreasing functions is the Γ -limit of a functional defined on
vectors of continuous non-decreasing functions. To this end, we present a separation
principle in which a weakly converging sequence of continuous non-decreasing
functions is decomposed in two parts, one converging to a non-decreasing function
with a finite number of jumps and the other to the complementary jumps.

Keywords �-Convergence · Monotone functionals · Singular control ·
Skorokhod representation

Mathematics Subject Classification 60B10, 60B05, 49J45, 90C30

1 Introduction

For T > 0 fixed, we denote by C the class of right-continuous with left-limits
functions defined on the interval [0,T], which are non-negative and non-decreasing.
We denote by Cf inite the elements of C with a finite number of jumps and by C0

the elements of C with no jumps. For c ∈ C, the jump at time t ∈ [0,T] is denoted
by �c(t) and is defined as the difference c(t)−c(t−). If c(0) > 0 then we consider
a jump of size c(0) at time t = 0. Thus �c(0) := c(0). An element of C defines
a unique positive measure in the interval [0,T] and we will consider the topology
of weak convergence on C. Recall that a sequence of measures {μn}n∈N converges
weakly to a measure μ if for each continuous bounded function f : [0,T] → R
we have limn→∞

∫
f dμn =

∫
f dμ. An equivalent property to weak convergence

is formulated in terms of the elements of C (which can be seen as “distribution
functions”). A sequence {c(n)}n∈N ⊂ C converges pointwise to an element c ∈ C
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for each continuity point of c if and only if the corresponding measures converges
weakly. By a slight abuse of language we will say that the sequence {c(n)}n∈N
converges weakly to c.

An important property of weak convergence is that it is metrizable on separable
spaces. Indeed, the well-known Prokhorov distance is a metric which on separable
spaces characterizes weak convergence; see e.g., Ethier and Kurtz [6, Section 3.1].
This property will be crucial for our results here.

Now consider a functional J : C0 × C0 → R and suppose we are required
to consider the functional in all of the space C × C. One reason why we might
need the functional in an enlarged space is related to the problem of minimizing the
functional. Indeed, a minimizer may fail to exist in the class of continuous elements
and we might need to consider an enlarged space. A classical method to construct
a functional in an enlarged space is by density and approximation. In this method,
we take a point (c1, c2) ∈ C × C and a sequence {(c1(n), c2(n))}n∈N ⊂ C0 × C0

which componentwise converges weakly. We might define a functional J∗ in the
point (c1, c2) by the limit:

J∗(c1, c2) = lim
n→∞ J(c1(n), c2(n)).

The method requires that the limit always exists and to be independent of the partic-
ular sequence. However, we will illustrate in Sect. 3 that for weak convergence, with
a very simple functional one gets different limits and even oscillatory behaviors.
Note also that even for elements of C0 × C0 the functionals J∗ and J does not
necessarily coincide and J∗ is not necessarily an extension of J. Thus, the method
does not work in general and we might need to consider “envelopes” instead of
extensions. A convenient solution still keeping in mind problems of minimization
is that of �-convergence. The concept was introduced in the study of variational
problems by De Giorgi [5]. It is systematically presented by Dal Maso [4] and its
relevance in optimal control, which is our main motivation here, is presented by e.g.,
Buttazzo and Dal Maso [3]. The �-convergence is a far reaching concept providing
a powerful framework covering a wide range of applications; see e.g., Braides [2]
and its references. In Sect. 2 below, we give more detail on this concept for our
specific setting. Let us at this point formulate on the relevance of �-convergence in
optimal control. Consider two topological spaces U (the space of controls) and Y

(the space of state variables), and a function J : U × Y → [0,+∞]. Given a set of
“admissible control-states” A ⊂ U × Y , consider the minimization problem:

min
(u,y)∈A

J(u, y).

This general problem may be difficult to study directly and instead, it might be
convenient to study related problems formulated with other sets Ah ⊂ U × Y and
other functions Jh for h ∈ N. In principle, the minimization problem formulated
in terms of the pair (Ah, Jh) should be easier and provide information about
the original minimization problem formulated in terms of A and J. A way in
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which the sequence of auxiliary minimization problems help to understand the
original problem is that of convergence of minimal values and convergence of
optimal controls for the auxiliary problems, possibly along a subsequence, to an
optimal control of the original problem. This is one of the main properties of �-
Convergence; see e.g., Buttazzo and Dal Maso [3, Theorem 2.1].

The construction of �-limits is a highly non trivial task and in this paper we
obtain a substantial reduction based on an assumption of monotonicity.

Definition 1.1 A functional J is monotone if for each c1, c2 ∈ C0 and ν1, ν2 ∈ C0

we have

J(c1 + ν1, c2 + ν2) ≥ J(c1, c2). (1.1)

In this note, we prove the �-convergence in C × C for monotone functionals as a
consequence of the property for elements of Cf inite × Cf inite which have a finite
number of atoms. This is a non trivial reduction that makes use of Skorokhod’s
representation of weak convergence and depends strongly on the property of
monotonicity of the functional.

After this introduction, the note is organized as follows. In Sect. 2, we elaborate
on the concept of �-convergence in our specific setting. In Sect. 3, we illustrate the
phenomenon of oscillatory behavior. In Sect. 4 we prove a separation principle for
sequences of continuous distributions by making use of Skorokhod’s representation
of weak convergence. In Sect. 5 we prove the sufficient condition for �-convergence.

2 �-Convergence

The next definition can be seen as a special case of the concept systematically
presented by Dal Maso [4].

Definition 2.1 For a functional J : C0 × C0 → R we say that the functional J∗ :
C× C→ R is the �-limit of J if the following conditions are satisfied:

1. for each point (c1, c2) ∈ C × C and sequence {(c1(n), c2(n))}n∈N ⊂ C0 × C0

which componentwise weakly-converges to (c1, c2) we have:

J∗(c1, c2) ≤ lim inf
n→∞ J(c1(n), c2(n)),

2. there exists a sequence {(c1∗(n), c2∗(n))}n∈N ⊂ C0 × C0 which weakly-
converges component by component to (c1, c2) with the property

J∗(c1, c2) = lim
n→∞ J(c1∗(n), c2∗(n)).
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3 An Example of Oscillatory Behavior

In this section we illustrate the phenomenon of oscillatory behavior with the very
simple functional J defined by

J(c1, c2) :=
∫

T

0
dc2

s

∫ s

0
dc1

z.

In particular this example illustrates the convenience of considering the concept of
�-convergence.

For τ ∈ (0,T), let

c2
t := c1

t := 1[τ,T](t). (3.1)

Now we define continuous approximations. Take ε > 0 with τ + ε < T and for
α ∈ (0, 1) let ε′ := αε. Let

u1
t (ε, α) :=

∫ t∧(τ+ε)

0
m1

ε1[τ,τ+ε](s)ds

u2
t (ε, α) :=

∫ t∧(τ+ε)

0
m2

ε,α1[τ+ε′,τ+ε](s)ds. (3.2)

where

m1
ε :=

c1
τ+ε − c1

τ−
ε

= 1

ε

m2
ε,α :=

c2
τ+ε − c2

τ−
ε − ε′

= 1

(1 − α)ε
.

The functions u1 and u2 are illustrated in Fig. 1.

Proposition 3.1 The functions u1(ε, α) and u2(ε, α) defined in (3.2) converge
weakly as ε ↘ 0 to c1 and c2 respectively, and

J(u1(ε, α), u2(ε, α)) = 1 + α

2
.

Proof Note that u1(ε, α), u2(ε, α) converge pointwise as ε ↘ 0 in [0,T]/{τ } to
c1, c2, respectively, and therefore converge weakly. For the second part of the
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Approximating controls

τ τ + ε′ τ + ε

Fig. 1 The two functions u1 and u2, defined in Eq. (3.2)

proposition, we have

∫
T

0
du2

s (ε, α)

∫ s

0
du1

z(ε, α) =
∫ τ+ε

τ+ε′
m2

ε,α1[τ+ε′,τ+ε](s)ds
∫ s

0
m1

ε1[τ,τ+ε](z)dz

= m1
εm

2
ε,α

∫ τ+ε

τ+ε′
ds

∫ s

τ

dz

= m1
εm

2
ε,α

∫ τ+ε

τ+ε′
(s − τ )ds

= m1
εm

2
ε,α

1

2
ε2(1 − α2)

= 1 + α

2
.

��
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Remark 3.2 Note that it is possible to select a sequence {αm}m∈N in such a way that
the sequence

{
J(u1(ε, αm), u2(ε, αm))

}
m∈N generates a dense subset of the interval

[ 1
2 , 1], due to Proposition 3.1.

4 A Separation Principle of Sequences

We start this section with Skorokhod’s representation of weak convergence in the
following form. Let {μn}n∈N be a sequence of probability measures in the interval
[0,T] converging weakly to the measure μ. Then, there exists a probability space
(�,F ,P), a random variable Y and a sequence of random variables {Yn}n∈N defined
in this common space, such that Yn has distribution μn and Y has distribution μ and
the sequence converges to Y everywhere in �. See e.g., Billingsley [1, Theorem
25.6] for the proof.

Lemma 4.1 Let {Fm}m∈N be a sequence of elements of C0. Assume the sequence
converges weakly to an element F of C. Thus, the sequence converges pointwise to
F except, possibly, for the points {τk}∞k=0 where F jumps.

Then, for k0 ∈ N fixed, there exist sequences of non-negative, non-decreasing
continuous functions {Gm}m∈N and {Hm}m∈N such that

1. Fm = Gm +Hm for m ∈ N.
2. The sequence {Hm}m∈N converges pointwise to the function

H(t) :=
∞∑

k=k0+1

�F(τk)1{τk≤t}, (4.1)

for t ∈ [0,T].
3. The sequence {Gm}m∈N converges pointwise to the function

G(t) := F(t)−H(t), (4.2)

for t ∈ [0,T].
Proof We will do the proof only in the case that Fm(T) = F(T) = 1, the general
case following by normalization.

There exist a probability space (�,F , P ) and a sequence of random variables
{Xn}n∈N converging to a random variable X, with Xn ∼ Fn and X ∼ F , due to
Skorokhod’s representation theorem; see e.g., Billingsley [1, Theorem 25.6].
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Let

A := X−1([0,T]/{τk0+1, τk0+2 . . .}),
B := X−1(τk0+1, τk0+2 . . .).

Let us verify that the function G satisfies

G(t) = P [{X ≤ t} ∩ A] . (4.3)

Note that

F(t)− P [{X ≤ t} ∩ A] = P [{X ≤ t}] − P [{X ≤ t} ∩ A]

= P [{X ≤ t} ∩ B]

=
∞∑

k=k0+1

P
[
{X ≤ t} ∩X−1(τk)

]

=
∞∑

k=k0+1

�F(τk)1{τk≤t}

= H(t),

and the equality (4.3) follows. Let

Gm(t) := P [{Xm ≤ t} ∩ A] , for t ∈ [0,T] and m ∈ N.

The function Gm has the following properties:

1. The function is clearly non-negative and non-decreasing.
2. Gm is a continuous function. Suppose by way of contradiction that Gm has a

jump in t0 ∈ [0,T]. Take ε > 0 smaller than the size of the jump

0 < ε ≤ �Gm(t0).

Then

ε ≤ P [{Xm = t0} ∩ A] ≤ P [{Xm = t0}] ,

a contradiction with the fact that the function Fm is continuous. Thus, it was false
to assume that Gm has a jump.

3. For t ∈ [0,T] we claim

lim
m→∞Gm(t) = G(t). (4.4)
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Indeed, we have

lim
m→∞P [{Xm ≤ t} ∩ A] = lim

m→∞EP

[
1(−∞,t ](Xm)1A

]

= EP

[
1(−∞,t ](X)1A

]

= P [{X ≤ t} ∩ A]

= G(t),

where the second equality holds true due to Lebesgue dominated convergence
and the last equality is just (4.3).

Let

Hm := P [{Xm ≤ t} ∩ B] .

Analogously to the sequence {Gm}m∈N we can prove that Hm

1. is a non-decreasing non-negative function,
2. is a continuous function
3. and limm→∞Hm(t) = H(t), for t ∈ [0,T].

The proof concludes with the equalities

Gm(t)+Hm(t) = P [{Xm ≤ t} ∩ A]+ P [{Xm ≤ t} ∩ B]

= P [{Xm ≤ t}]
= Fm(t).

��

5 The �-Limit Under Monotonicity

Theorem 5.1 Let J : C0 × C0 → R be a monotone functional. Assume J∗ : C ×
C → R is the �-limit of J for elements in Cf inite × Cf inite of distributions with a
finite number of jumps. Then, the �-limit of J in C × C is given as follows. For a
pair (c1, c2) ∈ C× C with a countable number of jumps {τ0, τ1, . . .} we have

J∗(c1, c2) = lim
k→∞ J∗(̃c1(k), c̃2(k)),

where

c̃it (k) := ĉit +
k∑

j=0

�ciτj 1{τj≤t}

and ĉi is the continuous part of ci , for i = 1, 2.
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Proof

1. Let {(s1(m), s2(m))}m∈N ⊂ C0 × C0 be a sequence componentwise weakly-
converging to (c1, c2) ∈ C× C. We first prove that

lim inf
m→∞ J(s1(m), s2(m)) ≥ lim

k→∞ J∗(̃c1(k), c̃2(k)). (5.1)

For k ∈ N fixed and arbitrary m ∈ N, take a decomposition si (m) = Gi(m) +
Hi(m) as in Lemma 4.1 with Gi(m) converging to c̃i (k) as m → ∞. The
functional J is monotone and therefore

J(s1(m), s2(m)) ≥ J(G1(m),G2(m)).

As a consequence

lim inf
m→∞ J(s1(m), s2(m)) ≥ lim inf

m→∞ J(G1(m),G2(m)) ≥ J∗(̃c1(k), c̃2(k)),

where the last inequality holds true since Gi(m) weakly converges to c̃i (k). The
sequence {J∗(̃c1(k), c̃2(k))}k∈N is non decreasing and we obtain the inequality
(5.1).

2. Now we construct a sequence where the inequality (5.1) is satisfied with equality.
Let {ki(k, j)}j∈N be a sequence of continuous functions weakly converging

to c̃i (k) for i = 1, 2 and

J∗(̃c1(k), c̃2(k)) = lim
j→∞ J(k1(k, j), k2(k, j)),

such a sequence exists since J∗ is the �-limit of J in Cf inite × Cf inite. Let ρ

denote the Prokhorov metric on the space of probability measures defined on the
interval [0,T]. Next, identify distributions with probability measures. For k ∈ N
let jk ∈ N be such that jk > jk−1 and for j ≥ jk and i = 1, 2

ρ(̃ci (k), ki (k, j)) <
1

2k

ρ(̃ci (k), ci ) <
1

2k
∣∣∣J∗(̃c1(k), c̃2(k))− J(k1(k, j), k2(k, j))

∣∣∣ <
1

k
.
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Then, the sequence {(k1(k, jk), k2(k, jk))}k∈N satisfies (5.1) with equality, since
it has the properties

ρ(ci, ki (k, jk)) <
1

k
,

∣∣∣J∗(̃c1(k), c̃2(k))− J(k1(k, jk), k2(k, jk))

∣∣∣ <
1

k
.

��
Let us give an application of Theorem 5.1. To this end, take a non-negative Radon

measure η with support in the interval [0,T]. Consider a functional of the form

J(c1, c2) =
∫

[0,T]
f (t, c1

t , c
2
t )dηt , for (c1, c2) ∈ C0 × C0,

where f is a normal integrand. That is, the correspondence

t ∈ [0,T] → {(c1, c2, α) ∈ R2+ ×R | f (t, c1, c2) ≤ α},

is closed-valued and measurable. Recall that a set valued mapping (or correspon-
dence) S : � �→ R ∪ {∞} defined in a measurable space (�, σ) is measurable if
the inverse image S−1(O) := {ξ ∈ � | S(ξ) ∩ O �= ∅} of every open set O is
measurable. We will assume that f (t, ·, ·) is a continuous non decreasing function
for each t ∈ [0,T] and it is dominated by an η-integrable function. It is clear that J
is a monotone functional. The �-limit of J is given in the next result.

Proposition 5.2 For (c1, c2) ∈ C × C let D be the set of points where c1 or c2

jumps and let A be the set of atoms of the Radon measure η. Let (A ∩ D)c be the
complement of A ∩D in the interval [0,T]. The �-limit of J in (c1, c2) is given by

J∗(c1, c2) =
∫

(A∩D)c
f (t, c1

t , c
2
t )dηt +

∑

t∈A∩D
η({t})f (t, c1

t−, c2
t−). (5.2)

Proof Take (c1, c2) ∈ Cf inite × Cf inite. For i = 1, 2, take a sequence
{wi(n)}n∈N ⊂ C0 converging weakly to ci . We clearly have that

lim inf
n→∞

∫

[0,T]
f (t, w1

t (n),w
2
t (n))dηt

=
∫

(A∩D)c
f (t, c1

t , c
2
t )dηt + lim inf

n→∞

∫

A∩D
f (t, w1

t (n),w
2
t (n))dηt ,

due to the weak convergence, since f is a continuous function.
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Take t ∈ A ∩D. We will do the proof for t ∈ (0,T), the other cases being more
simple. For ε > 0 and δ > 0 with t − δ, t + δ ∈ (0,T)/A ∪ D let N ∈ N be such
that

∣∣wi
t−δ(n)− cit−δ

∣∣ ≤ ε and
∣∣wi

t+δ(n)− cit+δ

∣∣ ≤ ε, for n ≥ N . Then

−ε + cit−δ ≤ wi
t (n) ≤ ε + cit+δ.

As a consequence

cit− ≤ lim inf
n→∞ wi

t (n) ≤ lim sup
n→∞

wi
t (n) ≤ cit .

The monotonicity and continuity of f implies now that

lim inf
n→∞

∫

A∩D
f (t, w1

t (n),w
2
t (n))dηt ≥

∫

A∩D
f (t, c1

t−, c2
t−)dηt .

Thus, we have proved that J∗(c1, c2) ≤ lim infn→∞ J(w1(n),w1(n)).
Now we are going to construct a sequence {(v1(n), v2(n))}n∈N converging

weakly to (c1, c2) with J∗(c1, c2) = limn→∞ J(v1(n), v2(n)). For t ∈ D ∩ (0,T)
let Bt (δ) := (t, t + δ] where δ > 0 is small enough so that t + δ ∈ (0,T)/(A ∪D)

and the sets Bt (δ) are pairwise disjoint. For i = 1, 2, let lit be the linear function
defined by

lit (z) = (z− t)
ci (t + δ)− ci (t−)

δ
+ ci (t−).

We define

vi
z(δ) :=

{
ciz− for z /∈⋃t∈D∩(0,T) Bt (δ),

lit (z) for z ∈ Bt (δ).

Let {δn}n∈N be a sequence with δn ≤ 1
n

and satisfying the requirements that
t + δn ∈ (0,T)/(A ∪ D) and the sets Bt (δn) are pairwise disjoint. It is clear
that the sequence {(v1(δn), v

2(δn))}n∈N converges weakly to (c1, c2). Indeed,
(v1(δn), v

2(δn)) = (c1, c2) outside the set
⋃

t∈D∩(0,T) Bt (δn). Moreover

∫

A∩D
f (t, v1

t (δn), v
2
t (δn))dηt =

∫

A∩D
f (t, c1

t−, c2
t−)dηt ,

due to the definition of (v1
t (δn), v

2
t (δn)).

We have proved that J∗ as defined in (5.2), is the �-limit of J for elements
in Cf inite × Cf inite of distributions with a finite number of jumps. Then, after
Theorem 5.1, the �-limit of J in C × C is given as follows. For a pair (c1, c2) ∈
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C× C with a countable number of jumps {τ0, τ1, . . .} we have

J∗(c1, c2) = lim
k→∞ J∗(̃c1(k), c̃2(k)),

with the notation of Theorem 5.1. Note that

J∗(̃c1(k), c̃2(k)) =
∫

[0,T]
f (t, c̃1

t−(k), c̃2
t−(k))dηt .

Moreover, limk→∞ c̃it−(k) = cit− uniformly in t ∈ [0,T] and i = 1, 2. As a
consequence

lim
k→∞ J∗(̃c1(k), c̃2(k)) =

∫

[0,T]
f (t, c1

t−, c2
t−)dηt ,

due to the continuity of the function f . The right-hand side of the last equation
coincides with the right-hand side of (5.2). This proves the proposition. ��
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A Criterion for Blow Up in Finite
Time of a System of 1-Dimensional
Reaction-Diffusion Equations

Eugenio Guerrero and José Alfredo López-Mimbela

Abstract We give a criterion for blow up in finite time of the system of semilinear

partial differential equations ∂ui(t,x)
∂t

= 1
2
∂2ui (t,x)

∂x2 + ϕ′i (x)
ϕi (x)

∂ui (t,x)
∂x

+u
1+βi

j (t, x), t > 0,
x ∈ R, with initial values of the form ui (0, x) = hi (x)/ϕi (x), where 0 < ϕi ∈
L2 (R, dx)∩C2 (R), 0 ≤ hi ∈ L2 (R, dx), βi > 0 and i = 1, 2, j = 3−i. Moreover,
we find an upper bound T ∗ for the blowup time of such system which depends both
on the initial values f1, f2, and the measures μi(dx) = ϕ2

i (x) dx, i = 1, 2.

Keywords Semilinear system of PDEs · Local mild solution · Finite time blow
up

2000 Mathematics Subject Classification Primary 60H30, 35K57, 35B35, 60J57

1 Introduction

Consider the semilinear partial differential equation

∂u(t, x)

∂t
= 1

2

∂2u(t, x)

∂x2 + ϕ′ (x)
ϕ (x)

∂u(t, x)

∂x
+u1+β (t, x) , t > 0, x ∈ R, (1)

where β > 0, ϕ ∈ C2(R) is a square-integrable, strictly positive function, and the
initial value is of the form u(0, x) = h(x)/ϕ(x) with h ∈ L2(R, dx) and ϕŠ(x) =
dϕ(x)/dx. Setting ϕ(x) = e−x2/2 in (1) it becomes

∂u(t, x)

∂t
= Lϕu(t, x)+ u1+β (t, x) , t > 0, x ∈ R,
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where Lϕ := 1
2

∂2

∂x2 − x ∂
∂x

is the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup {Tt , t ≥ 0}. Using essentially Jensen’s inequality and the fact that the
measure μ(dx) = ϕ2(x) dx is invariant for {Tt , t ≥ 0}, in [8] we were able to prove
that Eq. (1) exhibits blow up in finite time for any nontrivial initial value of the form
u(0, x) = h(x)/ϕ(x), x ∈ R.

Motivated by this example, in this note we provide a criterion for explosion in
finite time of positive mild solutions of the 1-dimensional semilinear system

∂u1(t, x)

∂t
= 1

2

∂2u1(t, x)

∂x2
+ ϕ′1 (x)

ϕ1 (x)

∂u1(t, x)

∂x
+ u

1+β1
2 (t, x) , t > 0, x ∈ R,

∂u2(t, x)

∂t
= 1

2

∂2u2(t, x)

∂x2
+ ϕ′2 (x)

ϕ2 (x)

∂u2(t, x)

∂x
+ u

1+β2
1 (t, x) , t > 0, x ∈ R, (2)

ui(0, x) = fi(x), x ∈ R, i = 1, 2,

where β1, β2 > 0 are constants, f1, f2 are nonnegative functions and ϕ1, ϕ2 ∈
C2(R) ∩ L2(R, dx) are strictly positive. Semilinear systems of this type have
been investigated intensively in last years, starting with the pioneering work of
Galaktionov et al. [4] (see also [2, 3, 5, 7, 9] and the review papers [1, 6]). This kind
of systems arise as simplified models of the process of diffusion of heat and burning
in a two-component continuous media, where u1 and u2 represent the temperatures
of the two reactant components.

Recall that a pair (u1, u2) of measurable functions is termed mild solution of
system (2) if it solves the system of integral equations

ui(t, x) = T i
t (fi(x))+

∫ t

0
T i
t−s

(
u

1+βi

j (s, x)
)

ds, t ≥ 0, x ∈ R, (3)

where i = 1, 2, j = 3 − i and {T i
t , t ≥ 0} is the semigroup of continuous linear

operators on L∞(R, dx) having infinitesimal generator

Lϕi = 1

2

∂2

∂x2 +
ϕ′i
ϕi

∂

∂x
; i = 1, 2.

If there exists T ∈ (0,∞) such that ‖u1 (t, ·)‖L∞(R,dx) =∞ or ‖u2 (t, ·)‖L∞(R,dx) =
∞ for all t ≥ T , then it is said that (u1, u2) blows up (or explodes) in finite time,
and in this case the infimum of such T ’s is called the blow up time (or the explosion
time) of (u1, u2).
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Notice that for any g ∈ L∞(R, dx) and i = 1, 2,

T i
t (g(x)) = E

[
g
(
X

x,i
t

)]
, t ≥ 0, x ∈ R,

where {Xx,i
t , t ≥ 0} is the unique strong solution of the stochastic differential

equation

Yt = x + Bt +
∫ t

0

ϕ′i
ϕi

(Ys) ds, t ≥ 0, x ∈ R;

here {Bt , t ≥ 0} is a standard 1-dimensional Brownian motion. It turns out that
under our assumptions both processes {Xx,i

t , t ≥ 0}, i = 1, 2, are recurrent and,
moreover, possess corresponding invariant measures

μi(dx) = ϕ2
i (x) dx, i = 1, 2. (4)

The intuitive explanation of the blow up phenomenon in non-linear heat equa-
tions of the archetype

∂u

∂t
= Au+ u1+β; u(0) = f ≥ 0,

where β > 0 andA is the generator of a strong Markov process on a locally compact
space, is that if the initial value f is “small” then the tendency of the solution to
blow up (which it would do if u1+β were the only term in the left-hand side of the
equation) can be inhibited by the dissipative effect of the migration with generator
A; see e.g. [6, 9] or [10]. In view of the ergodicity of the processes {Xx,i

t , t ≥ 0},
i = 1, 2, the mild solution of (2) should therefore blow up in finite time, at least for
certain non-trivial positive initial values fi , i = 1, 2.

In this work we give conditions which imply blow up in finite time of system (2)
under the assumption that ϕ1/ϕ2 is a strictly positive bounded function such that
inf
x∈R{ϕ1 (x) /ϕ2 (x)} > 0, and the initial values are of the form fi = hi/ϕi , where

hi ∈ L2 (R, dx), i = 1, 2. We distinguish two cases: if β1 = β2 we show that any
non-trivial positive mild solution of (2) blows up in finite time. If β1 �= β2 we prove
that a condition on the “sizes” of f1 and f2 and on the measures μ1, μ2 of the form

∫
f1 dμ1 +

∫
f2 dμ2 > c0,

(where the constant c0 > 0 is determined by the system parameters) already implies
finite time explosion of (2); see Theorem 2 below. Moreover, we find an upper bound
T ∗ for the blowup time of system (2) which depends both on the initial values f1, f2,
and the invariant measures (4). Our setting allows us to consider a wide range of
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choices for ϕ1 and ϕ2, for instance

ϕ1 (x) = (sin (x)+ 2) ϕ2 (x) with ϕ2 (x) = e−x2/2,

or else

ϕ1 (x) =
(
e−x2/2 + 1

)
ϕ2 (x) with ϕ2 (x) = 1/(1 + x2).

In these two cases the functions hi , i = 1, 2, can be chosen of the form
hi (x) = Pi (|x|)/Qi (|x|), where Pi,Qi are polynomial functions with non-
negative coefficients such that their degrees satisfy 2 ≤ deg (Qi) − deg (Pi), and
Qi (0) > 0.

In the next section we prove existence and uniqueness of local mild solutions
of (2) using the classical fixed-point argument, adapted to our context. Our main
result, Theorem 2, is stated and proved in Sect. 3.

2 Local Existence and Uniqueness of Mild Solutions

Our proof of existence, uniqueness and positiveness of mild solutions of system (2)
is based on [14, Theorem 2.1], (see also [12, Theorem 2.1], [15, Theorem 3], [7,
Theorem 2] or [11, Theorem 1]).

For each τ ∈ (0,∞) we define the set

Eτ :=
{
(u1, u2) |u1, u2 : [0, τ ] → L∞ (R, dx) , |||(u1, u2)||| < ∞}

,

where

|||(u1, u2)||| := sup
t∈[0,τ ]

{‖u1 (t, ·)‖L∞(R,dx) + ‖u2 (t, ·)‖L∞(R,dx)
}
.

Then (Eτ , |||·|||) is a Banach space and the sets

Pτ := {(u1, u2) ∈ Eτ : u1 ≥ 0, u2 ≥ 0} and

BR := {(u1, u2) ∈ Eτ : |||(u1, u2)||| ≤ R}

are closed subsets of Eτ for any R ∈ (0,∞). Therefore (Pτ ∩ BR, |||·|||) is a
Banach space for all τ, R ∈ (0,∞).

Theorem 1 There exist τ, R ∈ (0,∞) such that system (2) has a unique positive
mild solution in Pτ ∩ BR .
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Proof We will prove that the operator � : Pτ ∩ BR → Pτ ∩ BR defined by

� ((u1 (t, x) , u2 (t, x))) =
(
T 1
t (f1 (x))+

∫ t

0
T 1
t−s

(
u

1+β1
2 (s, x)

)
ds,

T 2
t (f2 (x))+

∫ t

0
T 2
t−s

(
u

1+β2
1 (s, x)

)
ds

)
,

is a contraction for certain τ, R ∈ (0,∞). We start by verifying that � is in fact
an operator from Pτ ∩ BR onto Pτ ∩ BR for suitably chosen τ, R ∈ (0,∞). Let
τ0, R0 ∈ (0,∞) be such that

R0 >
(‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)

)
and

τ0 ≤
R0 −

(‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx)
)

R
1+β1
0 + R

1+β2
0

.

If (u1, u2) ∈ Pτ0 ∩ BR0 then � ((u1, u2)) has positive components due to the
definition of � and the fact that u1, u2 ≥ 0. Hence

|||� ((u1, u2))||| = sup
t∈[0,τ0]

{∥∥∥∥T
1
t (f1 (·))+

∫ t

0
T 1
t−s

(
u

1+β1
2 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

+
∥∥∥∥T

2
t (f2 (·))+

∫ t

0
T 2
t−s

(
u

1+β2
1 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

}

≤ ‖f1‖L∞(R,dx) + ‖f2‖L∞(R,dx) + τ0

(
R

1+β1
0 + R

1+β2
0

)
,

where we have used the contraction property of the operators T i
t , i = 1, 2, to obtain

the last inequality. It follows that |||� ((u1, u2))||| ≤ R0, i.e., � is an operator from
Pτ0 ∩ BR0 onto itself.

In order to prove the contraction property of � we choose τ0 as above in such a
way that

max
i∈{1,2}

{
(1 + βi) R

βi

0

}
τ0 ∈ (0, 1) . (5)

Let (u1, u2) ,
(
û1, û2

) ∈ Pτ0 ∩ BR0 . Using again the contraction property
of the operators T i

t , i = 1, 2, and the well-known inequality |ap − bp| ≤
p (a ∨ b)p−1 |a − b|, which holds for all a, b > 0 and p ≥ 1, we obtain

∣∣∣∣∣∣� ((u1, u2))−�
((
û1, û2

))∣∣∣∣∣∣

= sup
t∈[0,τ0]

{∥∥∥∥
∫ t

0
T 1
t−s

(
u

1+β1
2 (s, ·) − û

1+β1
2 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)
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+
∥∥∥∥
∫ t

0
T 2
t−s

(
u

1+β2
1 (s, ·)− û

1+β2
1 (s, ·)

)
ds

∥∥∥∥
L∞(R,dx)

}

≤ sup
t∈[0,τ0]

∫ t

0

∥∥∥u1+β1
2 (s, ·)− û

1+β1
2 (s, ·)

∥∥∥
L∞(R,dx)

ds

+ sup
t∈[0,τ0]

∫ t

0

∥∥∥u1+β2
1 (s, ·)− û

1+β2
1 (s, ·)

∥∥∥
L∞(R,dx)

ds

≤ (1 + β1)R
β1
0

∫ τ0

0

∥∥u2 (s, ·) − û2 (s, ·)∥∥
L∞(R,dx) ds

+ (1 + β2) R
β2
0

∫ τ0

0

∥∥u1 (s, ·)− û1 (s, ·)∥∥
L∞(R,dx) ds

≤ max
i∈{1,2}

{
(1 + βi) R

βi

0

}
τ0
∣∣∣∣∣∣(u1, u2)−

(
û1, û2

)∣∣∣∣∣∣ .

From the last inequality we conclude, due to (5), that � is a contraction in Pτ0∩BR0 .
It follows from the Banach fixed-point theorem that � has a unique fixed point in
Pτ0 ∩ BR0 , which is the unique mild solution of system (2). ��

3 A Condition for Blowup in Finite Time

Our main result is the following

Theorem 2 Let ϕi ∈ L2 (R, dx)∩C2 (R) be a strictly positive function and assume
that the initial value fi admits the representation

fi (x) := hi (x)

ϕi (x)
≥ 0, x ∈ R, (6)

for some positive nontrivial hi ∈ L2 (R, dx), i = 1, 2. Suppose in addition that
there exist strictly positive constants k1, k2 such that

k1 ≤ ϕ1 (x)

ϕ2 (x)
≤ k2, x ∈ R. (7)

1. Assume that β1 = β2. Then any non-trivial positive mild solution (u1, u2) of
system (2) blows up in finite time.
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2. Assume that β1 > β2. Let A0 :=
(

1+β2
1+β1

) 1+β2
β1−β2 β1−β2

1+β1
and suppose that

∫

R

f1 (x)μ1 (dx)+
∫

R

f2 (x)μ2 (dx) > 2
β2

1+β2 A

1
1+β2
0 . (8)

Then any mild solution (u1, u2) of system (2) blows up in finite time.

Proof Let (u1, u2) be a mild solution of system (2). We denote

wi (t, x) := ϕi (x) ui (t, x) , t ≥ 0, x ∈ R.

Multiplying both sides of (3) by ϕi yields

wi (t, x) = ϕi (x) T
i
t

(
hi

ϕi
(x)

)
+
∫ t

0
ϕi (x) T

i
t−s

(
w

1+βi

3−i (s, x) ϕ
−(1+βi)
3−i (x)

)
ds.

(9)

Since the function gi (x) := ϕ2
i (x) satisfies the differential equation

1

2

∂2

∂x2 gi (x)− ∂

∂x

(
gi (x)

ϕ′i (x)
ϕi (x)

)
= 0, x ∈ R,

it follows that μi (dx) = ϕ2
i (x) dx is invariant for the semigroup

{
T i
t , t ≥ 0

}
. Let

us write E
i [f ] := ∫

R
f (x) ϕi (x) dx. Due to (9) this implies that

E
i [wi (t, ·)] = E

i [hi (·)] +
∫ t

0
E

i
[
w

1+βi

3−i (s, ·) ϕi (·) ϕ−(1+βi)
3−i (·)

]
ds. (10)

Define a := min

{
k2

1,
1

k2
2

}
. From assumption (7) we get

ϕ2
i (x)

ϕ2
3−i (x)

≥ a for all x ∈ R

and i = 1, 2. Therefore

E
i
[
w

1+βi

3−i (s, ·) ϕi (·) ϕ−(1+βi)
3−i (·)

]

=
∫

R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi

ϕ2
i (x) dx

≥ a ‖ϕ3−i‖2
L2(R,dx)

∫

R

(
w3−i (s, x)

ϕ3−i (x)

)1+βi ϕ2
3−i (x)

‖ϕ3−i‖2
L2(R,dx)

dx
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≥ a
‖ϕ3−i‖2

L2(R,dx)

‖ϕ3−i‖2+2βi

L2(R,dx)

(∫

R

w3−i (s, x)

ϕ3−i (x)
ϕ2

3−i (x) dx

)1+βi

= a ‖ϕ3−i‖−2βi

L2(R,dx)

(
E

3−i [w3−i (s, ·)]
)1+βi

, (11)

where we have used Jensen’s inequality to obtain the last inequality. Plugging (11)
into (10) renders

E
i [wi (t, ·)] ≥ E

i [hi (·)] + a ‖ϕ3−i‖−2βi

L2(R,dx)

∫ t

0

(
E

3−i [w3−i (s, ·)]
)1+βi

ds.

(12)
Let yi (t) be the solution of the system

y ′i (t) = a ‖ϕ3−i‖−2βi

L2(R,dx)
y

1+βi

3−i (t) , t > 0,

yi (0) = E
i [hi (·)] , i = 1, 2.

Putting b := a min
{
‖ϕ1‖−2β2

L2(R,dx)
, ‖ϕ2‖−2β1

L2(R,dx)

}
we get the system of differential

inequalities

y ′i (t) ≥ by
1+βi

3−i (t) , t > 0,

yi (0) = E
i [hi (·)] , i = 1, 2.

Let (z1 (t) , z2 (t)) be the solution of the system of ordinary differential equations

z′i (t) = bz
1+βi

j (t) , t > 0,

zi (0) = E
i [hi (·)] , i = 1, 2, j = 3 − i.

By the Picard-Lindelöf theorem, this system with (z1 (0) , z2 (0)) = (0, 0) has a
unique local solution (w1 (t) , w2 (t)) ≡ (0, 0) for all t ∈ [0, τ ), for some τ ∈
(0,∞]. In our case E

i [hi (·)] ≥ 0. Therefore by a classical comparison theorem,
z1 (t) , z2 (t) ≥ 0 for all t ∈ [0, τ ).

Consider the new function

E (t) := z1 (t)+ z2 (t) , t ≥ 0.

We deal separately with the two cases in the statement of the theorem:

1. Case β1 = β2. Using the fact that

x1+β1 + y1+β1 ≥ 2−β1 (x + y)1+β1 , x ≥ 0, y ≥ 0, (13)
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we get

E′ (t) = z′1 (t)+ z′2 (t)

= b
(
z

1+β1
1 (t)+ z

1+β1
2 (t)

)

≥ 2−β1bE1+β1 (t) , t > 0,

E (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

Let I (t) be the solution of the ordinary differential equation

I ′ (t) = 2−β1bI 1+β1 (t) , t > 0,

I (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

Since I is a subsolution of E (see [13], Lemma 1.2.) and I explodes at time

T ∗ = 2β1

bβ1
(
E1 [h1 (·)] + E2 [h2 (·)])β1

∈ (0,∞) ,

it follows that E explodes at some time tE ≤ T ∗, and therefore, by a classical
comparison theorem we get that

E
1 [w1 (t, ·)] = ‖u1 (t, ·)‖L1(R,μ1)

= ∞ or

E
2 [w2 (t, ·)] = ‖u2 (t, ·)‖L1(R,μ2)

= ∞

for all t ≥ T ∗. Since ‖ui (t, ·)‖L1(R,μi )
≤ ‖ui (t, ·)‖L∞(R,dx) ‖ϕi‖2

L2(R,dx) for all
t ∈ [0,∞), i = 1, 2, we conclude that the mild solution (u1, u2) of system (2)
blows up in finite time.

2. Case β1 > β2. Recall that for all x, y ≥ 0, δ > 0 and p, q ∈ (1,∞) such that
p−1 + q−1 = 1 we have Young’s inequality

xy ≤ δ−pxp

p
+ δqyq

q
. (14)

From the definition of A0 it follows that

z
1+β1
2 (t) ≥ z

1+β2
2 (t)− A0, for all t ≥ 0.

In fact, it suffices to choose in (14)

x = 1, y = z
1+β2
2 (t) , δ =

(
1 + β1

1 + β2

) 1+β2
1+β1

and q = 1 + β1

1 + β2
.
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Therefore we have

E′ (t) ≥ b
(
z

1+β2
1 (t)+ z

1+β2
2 (t)− A0

)
.

Using again inequality (13) we conclude that

z
1+β2
1 (t)+ z

1+β2
2 (t) ≥ 2−β2E1+β2 (t) ,

hence

E′ (t) ≥ b
(

2−β2E1+β2 (t)− A0

)
.

Let I (t) solve the ordinary differential equation

I ′ (t) = b
(

2−β2I 1+β2 (t)− A0

)
, t > 0,

I (0) = E
1 [h1 (·)] + E

2 [h2 (·)] .

It follows from the same comparison theorem as above that I is a subsolution of
E. Using separation of variables we get, for t ∈ (0,∞),

t =
∫ I (t)

E(0)

dx

b
(
2−β2x1+β2 − A0

) ≤
∫ ∞

E(0)

dx

b
(
2−β2x1+β2 − A0

) =: T ∗. (15)

But the hypothesis (8) implies that T ∗ < ∞. Hence (15) cannot hold for
sufficiently large t , which yields that I explodes at a finite time T ∗∗ ∈ (0, T ∗].
Therefore E explodes no later than T ∗ as well. From here we proceed as in the
case β1 = β2 to conclude that the mild solution (u1, u2) of system (2) blows up
in finite time also in this case.

��
The following result is an immediate consequence of the previous theorem. Recall
that E (0) = ∫

R
f1 dμ1 +

∫
R
f2 dμ2 and

A0 =
(

1 + β2

1 + β1

) 1+β2
β1−β2 β1 − β2

1 + β1
, b = min

{
k2

1,
1

k2
2

}
min

i∈{1,2}

{
‖ϕi‖−2βi

L2(R,dx)

}
.

Corollary 3 Under the assumptions of Theorem 2, if β1 = β2 then the explosion
time of any non-trivial positive solution of (2) is bounded above by

T ∗ = 2β1

bβ1 (E (0))β1
.
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If β1 > β2 and (8) holds, then the time of explosion of (2) is bounded above by

T ∗ =
∫ ∞

E(0)

dx

b
(
2−β2x1+β2 − A0

) .

Remark Theorem 2 and Corollary 3 remain valid when β2 > β1, with the obvious
changes in the correspondent statements.
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A Note on the Small-Time Behaviour
of the Largest Block Size of Beta
n-Coalescents

Arno Siri-Jégousse and Linglong Yuan

Abstract We study the largest block size of Beta n-coalescents at small times
as n tends to infinity, using the paintbox construction of Beta-coalescents and the
link between continuous-state branching processes and Beta-coalescents established
in Birkner et al. (Electron J Probab 10(9):303–325, 2005) and Berestycki et al.
(Ann Inst H Poincaré Probab Stat 44(2):214–238, 2008). As a corollary, a limit
result on the largest block size at the coalescence time of the individual/block {1} is
provided.

Keywords Beta-coalescent · Kingman’s paintbox construction ·
Continuous-state branching processes · Largest block size · Block-counting
process
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1 Introduction and Main Results

Beta n-coalescents form a class of partition-valued coagulating Markov chains. This
family was introduced by Schweinsberg [20] following pioneer works of Pitman
[17], Sagitov [18] and Möhle and Sagitov [16]. Formally, a Beta n-coalescent
(�(n)(t), t ≥ 0) is a continuous-time Markov chain with values in partitions of
[n] := {1, 2, . . . , n} starting at �(n)(0) = {{1}, {2}, . . . , {n}}. As n-coalescents can
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be used as models for the genealogy of a sample of n individuals, we refer to [n]
as the set of (labels of) individuals. Its dynamics are determined by a parameter
α ∈ (0, 2): when �(n) has b blocks, any k-tuple of them merges into one block at
rate

λb,k := β(k − α, b − k + α)

β(α, 2 − α)
(1)

where β(a, b) = �(a)�(b)/�(a+b) is the Beta function. In this paper, we are only
interested in the case α ∈ (1, 2).

Equation (1) induces exchangeability and consistency of these processes.
Exchangeability means that if we permute the labels of individuals, the law of
�(n) stays unchanged. Consistency refers to that for any couple of integers n < m,
the projection of �(m) on [n] has the same law as �(n). By Kolmogorov’s extension
theorem [17], we can construct the so-called Beta-coalescent process (�(t), t ≥ 0)
taking values in partitions of N such that the projection of � on [n] is equal in
distribution to �(n). When α ∈ (1, 2) the Beta-coalescent has proper frequency
(i.e., almost surely for any t > 0, � has no singletons, see [17]) and comes down
from infinity (i.e., almost surely for any t > 0, � has a finite number of blocks,
see [19]).

Berestycki et al. [2] provided many results on the behaviour of functionals
of �(t) as t tends to 0, such as the number of blocks, the ranked sequence of
asymptotic frequencies of those blocks and the asymptotic frequency of the largest
block. For the latter, they establish the following result in Proposition 1.6:

Proposition 1.1 Let X(t) be the asymptotic frequency of the largest block of � at
time t , then

(α�(α)�(2 − α))
1
α t−

1
α X(t)

d→ X, as t goes to 0 (2)

where X is a Fréchet random variable with parameter α, i.e., P(X ≤ x) = e−x−α
,

for any x ≥ 0, and “
d→” stands for the convergence in law.

This is a result in the infinite coalescent for t → 0. Often, especially when
used as a genealogy model, we are actually more interested in the n-coalescents
and their asymptotic behaviour, since we can then interpret results in terms of the
finite models (as in [7–9, 12, 13, 15, 21, 22]). Proposition 1.1 would in this sense
be first taking n → ∞, then t → 0, while we would like a simultaneous limit
(tn, n) → (0,∞). In this case, we could look at specific, interpretable/interesting
small times tn.

Such time is the external branch length of individual 1 (studied in [9], and with
further extensions given recently in [22] and [24]), denoted by T

(n)
1 and defined by

T
(n)

1 := sup{t, {1} ∈ �(n)(t)}.
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This can be seen as seeing the coalescent from the eyes of individual 1 and
measuring its “distance” to the rest of the sample or its genetic uniqueness [6].
Here individual 1 represents a randomly chosen individual of the sample thanks to
exchangeability. Observe that, since the Beta-coalescent has proper frequency when
α ∈ (1, 2), this variable vanishes as we let n tend to infinity. We are now curious how
the block structure of the coalescent looks like at this specific time (asymptotically).

One possible tool for this study is the minimal clade size, studied in [22] for
α ∈ (1, 2) (see also [11] for α = 1 and [5] for α = 2). This is the size of the
block containing 1 at time T

(n)
1 . The size of the minimal clade gives the information

of how many individuals share the genealogy with individual 1 after he merges.
It was shown in [22] that the minimal clade size converges in law, without any
renormalization, to a heavy-tailed random variable of index (α − 1)2.

Now we would like to compare this minimal clade size to the size of the largest
block at time T

(n)
1 , denoted by W̃ (n). This comparison gives a first picture of the

inhomogeneity of the block structure of the Beta n-coalescent at small times. To
study W̃ (n), we first consider the size of the largest block at any time t , denoted by
W(n)(t). Hence, we have

W̃ (n) = W(n)(T
(n)

1 ).

We obtain an asymptotic result for W(n) at the n1−αt scale.

Theorem 1.2 For a Beta n-coalescent with 1 < α < 2, as n tends to infinity

(α�(α)�(2 − α))
1
α (nt)−

1
α W(n)(n1−αt)

d−→ X, (3)

where X is a Fréchet random variable with parameter α.

Rewriting (3) as

α�(α)�(2 − α))
1
α (n1−αt)−

1
α
W(n)(n1−αt)

n

d−→ X,

the reader can observe the similarity with (2).
To study the behaviour of W̃ (n), we shall consider the restriction of �(n) on

{2, . . . , n}, denoted by �(n,2) = (�(n,2)(t), t ≥ 0). By consistency, the latter is
equal in law to �(n−1) modulo notations of the labels of individuals. Then W̃ (n) is
actually the largest block size of �(n,2)(T

(n)
1 ) plus 1, if {1} coalesces with the largest

block of �(n,2)(T
(n)

1 ) or plus 0 otherwise.
It has been established in the proof of Theorem 5.2 of [9] that conditional on

�(n,2), nα−1T
(n)

1 converges in law to a random variable T . More precisely,

P(nα−1T
(n)
1 ≥ t|�(n,2))

d−→ P(T ≥ t) = (1 + t

α�(α)
)−

α
α−1 . (4)
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This shows that in the decomposition of W̃ (n) = W(n)(T
(n)

1 ), the terms

(W(n)(n1−αt), t ≥ 0) and nα−1T
(n)

1 are asymptotically independent. Combining (4)
together with Theorem 1.2, we can describe the limit of W̃ (n) as a mixture.

Corollary 1.3 As n tends to infinity,

W̃ (n)

n
1
α

d−→ W̃ , (5)

where W̃ is a positive random variable such that for any x ≥ 0,

P(W̃ ≤ x) =
∫ ∞

0

exp(−x−α t
α�(α)�(2−α)

)

(α − 1)�(α)
(1 + t

α�(α)
)−

2α−1
α−1 dt.

This note is organised as follows. In Sect. 2, we introduce the main tools such as
the construction of Beta-coalescents via continuous-state branching processes and
the paintbox construction of exchangeable coalescents. Section 3 is devoted to the
proofs of Theorem 1.2.

2 Preliminaries

2.1 Ranked Coalescent and Paintbox Construction

Assume all along the rest of the paper that 1 < α < 2. Let � = (�(t), t ≥ 0) be the
Beta-coalescent and denote by K = (K(t), t > 0) the block-counting process of �.
In words, K(t) stands for the number of blocks of �(t). It is known that � is coming
down from infinity: for any t > 0, K(t) is finite almost surely [19]. Also recall that
for any t ≥ 0, �(t) is an exchangeable random partition of N. This means that if
we permute finitely many integers in �(t), the law of �(t) is unchanged. Applying
Kingman’s paintbox theorem on exchangeable random partitions [14], almost surely
for every block B ∈ �(t), the following limit, called the asymptotic frequency of
B, exists:

lim
m→∞

1

m

m∑

i=1

1{i∈B}.

Furthermore, when t > 0, the sum of all asymptotic frequencies equals 1 since �

is of proper frequency [17]. Hence, one can reorder all the asymptotic frequencies
in a non-increasing way to define a sequence �(t) = {θ1(t), θ2(t), · · · , θK(t)(t)}
where θ1(t) ≥ θ2(t) ≥ · · · ≥ θK(t)(t) and

∑K(t)
i=1 θi(t) = 1. At time t = 0, every

block is a singleton and then has asymptotic frequency 0. Hence one can naturally
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set �(0) = {0, 0, . . .}. Then the process � = (�(t), t ≥ 0) is well defined. We call
it the ranked coalescent.

Given �(t) for some t > 0, one can recover the distribution of �(t) using again
Kingman’s paintbox theorem. Let us at first divide [0, 1] into K(t) subintervals
such that their lengths are equal one to one to the values of elements of �(t). Then
we throw individuals 1, 2, · · · uniformly and independently into [0, 1]. Finally, all
individuals within one interval form a block and this procedure provides a random
exchangeable partition which has the same law as �(t). Thanks to the consistency
property, the restricted partition �(n)(t) can be obtained using the same procedure
but throwing n particles instead of infinitely many.

2.2 Beta-Coalescents and Stable Continuous-State Branching
Processes

To prove Theorem 1.2, we will use classical relations between Beta-coalescents
and continuous-state branching processes (CSBPs) developed in [4] (see also
Section 2 of [2]). We give a short summary to provide a minimal set of tools. A
continuous-state branching process (Z(t), t ≥ 0) is a [0,∞]-valued Markov process
(in continuous time) whose transition semigroup pt (x, ·) satisfies the branching
property

pt(x + y, ·) = pt(x, ·) ∗ pt (y, ·), for all x, y ≥ 0.

For each t ≥ 0, there exists a function ut : [0,∞) → R such that

E[e−λZ(t)|Z(0) = a] = e−aut (λ). (6)

If, almost surely, the process has no instantaneous jump to infinity, the function ut

satisfies the following differential equation

∂ut (λ)

∂t
= −�(ut(λ)),

where � : [0,∞) −→ R is a function of the form

�(u) = γ u+ βu2 +
∫ ∞

0
(e−xu − 1 + xu1{x≤1})π(dx),

where γ ∈ R, β ≥ 0 and π is a Lévy measure on (0,∞) satisfying
∫∞

0 (1 ∧
x2)π(dx) < ∞. The function � is called the branching mechanism of the CSBP.

As explained in [3], a CSBP can be extended to a two-parameter random process
(Z(t, a), t ≥ 0, a ≥ 0) with Z(0, a) = a. For fixed t , (Z(t, a), a ≥ 0) turns out to
be a subordinator with Laplace exponent λ �→ ut (λ) thanks to (6).



224 A. Siri-Jégousse and L. Yuan

There exists a measure-valued process (Mt , t ≥ 0) taking values in the set
of finite measures on [0, 1] which characterises (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1).
More precisely, (Mt ([0, a]), t ≥ 0, 0 ≤ a ≤ 1) has the same finite-dimensional
distributions as (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). Hence (Mt([0, a]), 0 ≤ a ≤ 1)
is a subordinator with Laplace exponent λ �→ ut (λ) and Z(t, 1) = Mt([0, 1]) is
a CSBP with branching mechanism � started at M0([0, 1]) = 1. In particular, if
the branching mechanism is �(λ) = λα , its Lévy measure is given by π(dx) =
α(α−1)
�(2−α)

x−1−αdx and, for all t > 0, Mt consists only of a finite number of atoms.
For the construction of (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1), we refer to [1, 4, 10].

A deep relation has been revealed in [4] between the Beta-coalescent and the
CSBP with branching mechanism �(λ) = λα . It is described by the following two
lemmas which are respectively Lemma 2.1 and 2.2 of [2]. To save notations, from
now on, (Z(t), t ≥ 0) will always denote a continuous-state branching process
(Z(t, 1), t ≥ 0).

Lemma 2.1 Assume that (Z(t), t ≥ 0) is a CSBP with branching mechanism
�(λ) = λα and let (Mt , t ≥ 0) be its associated measure-valued process. If
(�(t), t ≥ 0) is a Beta-coalescent and (�(t), t ≥ 0) is the associated ranked
coalescent, then for all t > 0, the distribution of �(t) is the same as the distribution

of the sizes of the atoms of the measure
M

R−1(t)

Z(R−1(t))
, ranked in decreasing order. Here

R(t) = (α − 1)α�(α)
∫ t

0 Z(s)1−αds and R−1(t) = inf{s : R(s) > t}.
Let μ denote the Slack’s probability distribution on [0,∞) (see [23]) charac-

terised by its Laplace transform

Lμ(λ) =
∫ ∞

0
e−λxμ(dx) = 1 − (1 + λ1−α)−

1
α−1 , λ ≥ 0. (7)

Lemma 2.2 Assume �(λ) = λα . For any t ≥ 0, let D(t) be the number of atoms of
Mt , and let J (t) = (J1(t), · · · , JD(t)(t)) be the sizes of the atoms of Mt , ranked

in decreasing order. Then D(t) is Poisson with mean γ (t) = ((α − 1)t)−
1

α−1 .
Moreover, conditional on D(t) = k, the distribution of J (t) is the same as
the distribution of (γ (t)−1X1, · · · , γ (t)−1Xk) where X1, · · · ,Xk are obtained by
picking k i.i.d. random variables with distribution μ and then ranking them in
decreasing order.

Remark 2.1 From the relation between (Mt , t ≥ 0) and (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1)
and also the fact that for all t > 0, Mt has a finite number of atoms D(t), we
can deduce that for a given t > 0, there exist 0 ≤ a1, · · · , aD(t) ≤ 1 such that
{Z(t, a1)− Z(t, a1−), · · · , Z(t, aD(t))−Z(t, aD(t)−)} are exactly the sizes of the
atoms of Mt . Markov property of (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1) implies that for s ≥ t ,
discontinuity points of the subordinator (Z(s, a), 0 ≤ a ≤ 1) must be part (or all)
of the points a1, · · · , aD(t). Therefore, t �→ D(t) is almost surely non-increasing.
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3 Proofs

In this section, we aim to prove Theorem 1.2 and Corollary 1.3. From now on,
we will use the notations tn = n1−αt and t ′n = tn

(α−1)α�(α)
. Lemma 2.1 entails

that �(tn) has the same law as
M

R−1(tn)

Z(R−1(tn))
. Moreover, Lemma 4.2 of [2] states that

R−1(tn)
t ′n

P→ 1, as n goes to ∞. From this arises the idea of approximating the block
sizes of the coalescent at time tn by the atoms of the renormalized measure-valued
process at time t ′n. The advantage of this approximation is that the time is no longer
random. This idea will be executed through three steps. First, we will study the size
of the largest atom of the rescaled measure M/Z at deterministic time t ′n, using
tools of the theory of CSBPs. Second we show that the paintbox construction of an
exchangeable partition can also be provided by using a different paintbox and by
modifying it according to the differences between the paintboxes. In the third step,
we use this construction to approximate the partition �(n) at time tn from partitions
built from the rescaled atoms of M/Z at time (1 ± ε)t ′n for small ε.

3.1 The Largest Atom Size of M/Z at a Fixed Time

We start with a technical lemma associated to the measure μ. We write an ∼ bn if
limn→∞ an

bn
= 1. Recall from Equation (33) of [2] that

μ([x,∞)) ∼ x−α

�(2 − α)
(8)

when x goes to ∞.

Lemma 3.1 Let k > 0 and X be a random variable distributed according to μ.
Define X such that conditional on X, X is a Poisson variable with parameter X

k
.

Then for any x > 0,

lim
n→∞ nP(X ≥ xn

1
α ) = (kx)−α

�(2 − α)
.

Proof Let M = �xn 1
α �. We start the proof with two claims. First, using Stirling’s

formula for M! and a change of variable, we get that for any 0 < β < 1,

∫ Mβ

0
e−t t

M

M!dt =
∫ Mβ

0
eM−t

(
t

M

)M

(2πM)−
1
2 (1 +O(M−1))dt

=
∫ β

0
eM(1−t+ln t )(

M

2π
)

1
2 (1 +O(M−1))dt

= O(eM(1−β+lnβ)M
1
2 ). (9)
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The last equality is due to the fact that 1 − t + ln t is negative and increasing for
t ∈ (0, 1). Second, if β > 1, then

∫ ∞

Mβ

e−t t
M

M!dt =
∫ ∞

β

eM(1−t+ln t )(
M

2π
)

1
2 (1 +O(M−1))dt.

Notice that 1 − t + ln t is strictly decreasing and concave over [β,∞]. Then there
exists a positive number ε such that 1 − t + ln t ≤ −εt for any t ≥ β. Therefore,

∫ ∞

Mβ

e−t t
M

M!dt ≤
∫ ∞

β

e−εMt (
M

2π
)1/2(1 +O(M−1))dt = O(e−εMβM−1/2).

(10)

Now we can turn to X . Thanks to successive integrations by parts,

P(X ≥ M + 1) = E[
∫ X

k

0
e−t t

M

M!dt]. (11)

Let 0 < β1 < 1 and β2 > 1, then we have

P(X ≥ M + 1) = I1 + I2 + I3,

where

I1 = E[
∫ X

k

0
e−t t

M

M!dt1{X<kMβ1}],

I2 = E[
∫ X

k

0
e−t t

M

M!dt1{kMβ1≤X≤kMβ2}],

I3 = E[
∫ X

k

0
e−t t

M

M!dt1{X>kMβ2}].

Now let n tend to infinity. By (9), we get

0 ≤ nI1 ≤ nP(X < kMβ1)

∫ Mβ1

0
e−t t

M

M!dt −→ 0, n →∞. (12)

It is easy to verify that
∫∞

0 e−t tM

M!dt = 1 for any integer M ≥ 0. Then using
together (8) and (10), we obtain

lim
n→∞ nI3 = lim

n→∞ nP(X > kMβ2) = (kxβ2)
−α

�(2 − α)
. (13)
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In the same way, we have

0 ≤ nI2 ≤ nP(kMβ1 ≤ X ≤ kMβ2) −→ (kxβ1)
−α

�(2 − α)
− (kxβ2)

−α

�(2 − α)
, n →∞.

(14)

If β1 and β2 are close enough to 1, nI2 can be bounded by an arbitrarily small
positive number for n large enough. The proof is finished by combining (12), (13)
and (14). ��

Fix t > 0. If D(t) �= 0, let J̄i (t) = Ji(t)
Z(t)

for 1 ≤ i ≤ D(t). Let
{d1(t), · · · , dD(t)(t)} be an interval partition of [0, 1] such that the Lebesgue
measure of di(t) is J̄i (t). Build a partition of [n] thanks to a paintbox associated
with {d1(t), · · · , dD(t)(t)}. Let Ni(t) be the number of integers in the i-th interval
and N(t) = max{Ni(t) : 1 ≤ i ≤ D(t)}. This random variable stands for the size of
the largest block of a partition of [n] obtained by a paintbox construction from the
atoms of M/Z at time t .

Lemma 3.2 Let x > 0. Then

1)

lim
n→∞P(N(t ′n) ≤ xn

1
α ) = exp(− tx−α

α�(α)�(2 − α)
).

2) Let 0 < y < x. Then

lim
n→∞P(∃i : Ji(t

′
n) < n

1−α
α y,Ni(t

′
n) ≥ xn

1
α ) = 0. (15)

Proof

1) Let us throw a Poisson number of integers on [0, 1] with parameter nZ(t ′n) .
Then, conditional on {Ji(t

′
n) : 1 ≤ i ≤ D(t ′n)}, the number of integers falling

in di(t
′
n), denoted by Ni , is a Poisson variable with parameter nJi(t

′
n) and {Ni :

1 ≤ i ≤ D(t ′n)} forms a family of (conditional) independent random variables.
Let N be the maximum of all Ni’s. Then, using Lemmas 3.1 and 2.2, as n tends
to infinity,

P(N ≤ xn
1
α ) = E[�D(t ′n)

i=1 P(Ni ≤ xn
1
α )]

−→ exp(−γ (
t

(α − 1)α�(α)
)1−α x−α

�(2 − α)
)

= exp(− tx−α

α�(α)�(2 − α)
).
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Lemma 2.2 implies that Z(t ′n) tends in probability to 1 as n goes to infinity.
Hence N and N are close in the limit and standard comparison techniques allow
to conclude.

2) As Z(t ′n) converges to 1, it is easy to show that (15) is equivalent to

lim
n→∞P(∃i : Ji(t

′
n) < n

1−α
α y,Ni ≥ xn

1
α ) = 0.

Let Ñ = max{Ni : Ji(t
′
n) < n

1−α
α y}. It is necessary and sufficient to show

that lim
n→∞P(Ñ ≥ xn

1
α ) = 0. Notice that conditional on Ji(t

′
n), Ni is a Poisson

variable with parameter nJi(t
′
n). Let {P1(yn

1
α ), P2(yn

1
α ), · · · } be a sequence of

i.i.d. Poisson variables with parameter yn
1
α and also independent of D(t ′n). Then

P(Ñ ≥ xn
1
α ) ≤ P

(
max{Pi(yn

1
α ) : 1 ≤ i ≤ D(t ′n)} ≥ xn

1
α

)

= 1 − E[(P(P1(yn
1
α ) < xn

1
α ))D(t ′n)].

Using (11) and (9), one gets

P(P1(yn
1
α ) < xn

1
α ) = 1 − o(

1

n
).

Meanwhile, Lemma 2.2 tells that D(t ′n)
n

converges in probability to γ ( t
((α−1)α�(α)

)

as n goes to infinity. Hence the proof is finished.
��

Remark 3.1 The key points to prove (15) is that Z(t ′n) converges to 1 in probability

and D(t ′n)
n

is asymptotically bounded by a positive value from above. The distribution
of {Ji(t

′
n)}1≤i≤D(t ′n) is not necessary to know. Actually (15) remains true if t ′n is

random and conditions on Z(t ′n) and D(t ′n) are still satisfied. This fact will be used
in the proof of Theorem 1.2.

3.2 Alternative Paintbox Construction

Let (A1, · · · , Ak) and (B1, · · · , Bk) be two partitions of [0, 1]with k ≥ 1. We throw
n particles uniformly and independently on [0, 1] and group those within the same
intervals of (B1, · · · , Bk), which gives a sequence of k numbers (NB1 , · · · , NBk )

such that NBi is the number of particles located in Bi . We can obtain the law of
this sequence in another way using (A1, · · · , Ak). Throw n particles uniformly and
independently on [0, 1]. Let I := {i : 1 ≤ i ≤ n, l(Ai) ≤ l(Bi )}, where l(·) denotes



A Note on the Small-Time Behaviour of the Largest Block Size of Beta n-Coalescents 229

the Lebesgue measure. If a particle falls in Ai with i ∈ I , then move this particle to
Bi . If a particle falls in Ai with i ∈ I c, then associate to this particle an independent
Bernoulli variable with parameter l(Bi)

l(Ai)
. If the Bernoulli variable gives 1, then the

particle is put into Bi . Otherwise, this particle will be put into Bj for j ∈ I with
probability

l(Bj )− l(Aj )∑
h∈I (l(Bh)− l(Ah))

. (16)

We denote by NA
Bi

the new amount of particles in Bi . We have the following result.

Lemma 3.3 The following identity in law holds.

(NA
B1

, · · · , NA
Bk

)
(d)= (NB1, · · · , NBk ).

Proof Notice that only the Lebesgue measure of each element of (A1, · · · , Ak) and
(B1, · · · , Bk) matters. So one can always assume that [0, 1] is divided in a way that
Ai is contained in Bi for i ∈ I and Bi is contained in Ai for i ∈ I c. Then if a particle
is located in Ai for i ∈ I , it is also located in Bi . But if a particle is located in Ai

for i ∈ I c, with probability l(Bi)
l(Ai)

it is located in Bi . Assume that this particle is not
located in Bi , then it must be in ∪h∈IBh\Ah. Using the uniformity of the throws,
this particle falls in Bj with probability (16). ��

3.3 Proof of Theorem 1.2

Let us first recall some technical results from [2]. Let ε > 0, t > 0 and recall
tn and t ′n. Let t− = (1 − ε)t ′n and t+ = (1 + ε)t ′n. Define the event B1,t :=
{t− ≤ R−1(tn) ≤ t+}. It can be found in Lemma 4.2 of [2] that there exists a constant
C17 such that

P(B1,t ) ≥ 1 − C17tnε
−α. (17)

Also from Lemma 5.1 of [2], there exists a constant C18 such that for all a > 0,
t > 0 and η > 0,

P( sup
0≤s≤t

|Z(s, a)− a| > η) ≤ C18(a + η)tη−α. (18)

Thus, if we define B2,t := {1−n
1−α
2α ≤ Z(s) ≤ 1+n

1−α
2α , ∀s ∈ [t−, t+]}, we obtain

that

P(B2,t ) ≥ 1 − C19t (1 + ε)(1 + n
1−α
2α )n

1−α
2 (19)

where C19 = C18/(α − 1)α�(α).
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Fix any s ≥ 0 and let π be the random partition of [n] obtained from a paintbox

associated with
M

R−1(s)

Z(R−1(s))
. Then π

d= �(n)(s). Observe that if R−1(s) ≥ t−, we can

as well at first build a partition from a paintbox associated with
Mt−
Z(t−)

and then use

Lemma 3.3 to obtain that associated with
M

R−1(s)

Z(R−1(s))
which has the same law as π .

By Markov and branching properties of CSBPs, for any s ≥ t−, we can consider
the CSBP as the sum of D(t−) independent CSBP’s which we denote by mi(s) =
Zi(s − t−, Ji(t−)). Notice that mi(s) can be 0 while Ji(t−) is always positive. Let
us then build a partition V (n)(s) = (V

(n)
1 (s), V

(n)
2 (s), . . . , V

(n)
D(t−)(s)) of [n] from

a paintbox associated with (mi(s)
Z(s)

, 1 ≤ i ≤ D(t−)). Let I
(n)
i (s) be the number of

particles in V
(n)
i (s). and I

(n)
+ (s) = sup{I (n)

i (s), 1 ≤ i ≤ D(t−)}. Fix x > 0 and

define B3,t = {∃k : I (n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α , sup

t−≤s≤t+
|mk(s)− Jk(t−)| ≤

εJk(t−)}.
On the event B3,t , we have that I

(n)
+ (t−) ≥ xn

1
α . Conditional on B1,t we can

also build the partition V (n)(R−1(tn)) from a paintbox associated to the partition
Z(t−)−1(J1(t−), . . . , JD(t−)(t−)) and Lemma 3.3. Let B(m,p) be a binomial
variable with parameters m ≥ 2 and 0 ≤ p ≤ 1. Lemma 3.3 implies that

P

(
I
(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)

≥P
(
B

(
�xn 1

α �, mk(R
−1(tn))Z(t−)

Jk(t−)Z(R−1(tn))
∧ 1

)
≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)

≥P
(
B

(
�xn 1

α �, (1 − ε)
1− n

1−α
2α

1 + n
1−α
2α

)
≥ (1 − 2ε)xn

1
α

)

=P
(
(xn

1
α )−1B

(
�xn 1

α �, (1 − ε)
1 − n

1−α
2α

1 + n
1−α
2α

)
≥ (1 − ε)− ε

)
.

A law of large numbers argument implies that

P

(
I
(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α |B1,t ∩ B2,t ∩ B3,t

)
≥ 1 − ε (20)

for n large enough. Now observe from (18) that

P(B3,t ) = P(∃k : I (n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

× P( sup
t−≤s≤t+

|mk(s)− Jk(t−)| ≤ εJk(t−)|∃k : I (n)
k (t−) ≥ xn

1
α ,

Jk(t−) ≥ n
2(1−α)

α )
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≥ P(∃k : I (n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

(1 − 2tC19n
(1−α)(2−α)

α (1 + ε)ε1−α).

By Lemma 3.2, we obtain that

P(∃k : I (n)
k (t−) ≥ xn

1
α , Jk(t−) ≥ n

2(1−α)
α )

∼ P(∃k : I (n)
k (t−) ≥ xn

1
α ) = P(I

(n)
+ (t−) ≥ xn

1
α )

∼ 1 − exp(−(1 − ε)
tx−α

α�(α)�(2 − α)
).

In consequence,

lim inf
n→∞ P(B3,t ) ≥ 1 − exp(−(1 − ε)

tx−α

α�(α)�(2 − α)
)

when n tends to ∞. Then, thanks to (17) and (19), we deduce that

lim inf
n→∞ P(B1,t ∩ B2,t ∩ B3,t ) ≥ 1 − exp(−(1 − ε)

tx−α

α�(α)�(2 − α)
).

Combining the latter with (20), we obtain

lim inf
n→∞ P

(
I
(n)
+ (R−1(tn)) ≥ (1 − 2ε)xn

1
α

)
≥ 1 − exp(−(1− ε)

tx−α

α�(α)�(2 − α)
).

(21)

Next, we seek to find an upper bound for P
(
I
(n)
+ (R−1(tn)) ≥ xn

1
α

)
. Conditional

on B1,t , we construct V (n)(t+) from V (n)(R−1(tn)) using the method in Lemma 3.3.
Let

B4,t = B1,t ∩ {∃k : I (n)
k (R−1(tn)) ≥ xn

1
α ,mk(R

−1(tn)) ≥ n
2(1−α)

α ,

sup
R−1(tn)≤s≤t+

|mk(s)−mk(R
−1(tn))|

mk(R−1(tn))
≤ ε}.
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Similarly as for the lower bound,

P

(
I
(n)
+ (t+) ≥ (1− 2ε)xn

1
α |B2,t ∩ B4,t

)

≥P
(
B

(
�xn 1

α �, Z(R−1(tn))mk(t+)
Z(t+)mk(R−1(tn))

∧ 1

)
≥ (1 − 2ε)xn

1
α |B2,t ∩ B4,t

)

≥P
(
B

(
�xn 1

α �, (1 − ε)
1 − n(1−α)/α

1 + n(1−α)/α

)
≥ (1 − 2ε)xn

1
α

)
−→ 1. (22)

Using the strong Markov property of the CSBP and (18), we have

P(B4,t ) = P(B1,t ∩ {∃k : I (n)
k (R−1(tn)) ≥ xn

1
α ,mk(R

−1(tn)) ≥ n
2(1−α)

α }) (23)

× (1 − 2tC19n
(1−α)(2−α)

α (1 + ε)ε1−α) (24)

Notice that using (18), in the sense of convergence of probability

lim
n→∞ sup

t−≤s≤t+
Z(s) = lim

n→∞ inf
t−≤s≤t+

Z(s) = 1

Together with (17), we get the following convergence in probability

lim
n→∞Z(R−1(tn)) = 1.

Recall Remark 2.1 where it is deduced that t �→ D(t) is non-increasing. Thus, on
the event B1,t , we have D(t−) ≤ D(R−1(tn)) ≤ D(t+). It is then easy to see that
D(R−1(tn))

n
is asymptotically bounded from above by a certain positive number. Now

we can apply Remark 3.1 and get

P(B4,t ) = P(∃k : I (n)
k (R−1(tn)) ≥ xn

1
α )+ o(1) = P(I

(n)
+ (R−1(tn)) ≥ xn

1
α )+ o(1).

(25)

Using (22), (19) and (25), we get that

lim sup
n−→∞

P(I
(n)
+ (R−1(tn)) ≥ xn

1
α )

≤ lim
n−→∞P(I

(n)
+ (t+) ≥ (1 − 2ε)xn

1
α )

=1 − exp(−(x(1− 2ε))−α t (1 + ε)

α�(α)�(2 − α)
). (26)

Since ε can be arbitrarily small, (21) and (26) allow to conclude.
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21. B. Şengül, Asymptotic number of caterpillars of regularly varying 
-coalescents that come
down from infinity. Electron. Commun. Probab. 22 (2017)

22. A. Siri-Jégousse, L. Yuan, Asymptotics of the minimal clade size and related functionals of
certain Beta-coalescents. Acta Appl. Math. 142(1), 127–148 (2016)

23. R. Slack, A branching process with mean one and possibly infinite variance. Probab. Theory
Relat. Fields 9(2), 139–145 (1968)

24. L. Yuan, On the measure division construction of 
-coalescents. Markov Process. Relat. Fields
20, 229–264 (2014)


	Introduction
	Contents
	Part I Courses
	Scaling Limits of Markov-Branching Trees and Applications
	1 Introduction
	2 Discrete Trees, Examples and Motivations
	2.1 Discrete Trees
	2.2 First Examples
	2.3 The Markov-Branching Property

	3 The Example of Galton–Watson Trees and Topological Framework
	3.1 Real Trees and the Gromov–Hausdorff Topology
	3.2 Scaling Limits of Conditioned Galton–Watson Trees

	4 Scaling Limits of Markov-Branching Trees
	4.1 A Markov Chain in the Markov-Branching Sequence of Trees
	4.2 Scaling Limits of Non-increasing Markov Chains
	4.3 Self-Similar Fragmentation Trees
	4.3.1 Self-Similar Fragmentation Processes
	4.3.2 Self-Similar Fragmentation Trees

	4.4 Scaling Limits of Markov-Branching Trees

	5 Applications
	5.1 Galton–Watson Trees
	5.1.1 Galton–Watson Trees with n Vertices
	5.1.2 Galton–Watson Trees with Arbitrary Degree Constraints

	5.2 Pólya Trees
	5.3 Dynamical Models of Tree Growth
	5.3.1 Ford's Alpha Model
	5.3.2 k-Ary Growing Trees
	5.3.3 Marginals of Stable Trees

	5.4 Cut-Trees

	6 Further Perspectives
	6.1 Multi-Type Markov-Branching Trees and Applications
	6.2 Local Limits
	6.3 Related Random Geometric Structures

	References

	Optimality of Two-Parameter Strategies in Stochastic Control
	1 Introduction
	1.1 One-Parameter Strategies
	1.2 Two-Parameter Strategies
	1.2.1 Two-Sided Singular Control
	1.2.2 Impulse Control
	1.2.3 Zero-Sum Games Between Two Players

	1.3 Fluctuation Theory of Spectrally One-Sided Lévy Processes
	1.4 Solution Procedures
	1.4.1 Selection of the Two Parameters
	1.4.2 Verification of Optimality

	1.5 Comparison with Other Approaches
	1.6 Computation

	2 Spectrally Negative Lévy Processes and Scale Functions
	2.1 Path Variations and Regularity
	2.2 Scale Functions
	2.3 Smoothness of Scale Functions
	2.4 Fluctuation Identities for Spectrally Negative Lévy Processes
	2.4.1 Two-Sided Exit
	2.4.2 Resolvent Measures

	2.5 Fluctuation Identities for the Infimum and Reflected Processes
	2.5.1 Fluctuation Identities for the Infimum Process
	2.5.2 Fluctuation Identities for tb
	2.5.3 Fluctuation Identities for Yta

	2.6 Fluctuation Identities for Doubly Reflected Lévy Processes
	2.7 Other Properties of the Scale Function
	2.7.1 Asymptotics as x →∞
	2.7.2 Log-Concavity
	2.7.3 Martingale Properties

	2.8 Some Further Notations

	3 Two-Sided Singular Control
	3.1 The Double Reflection Strategy
	3.2 Smoothness of the Value Function
	3.3 Existence of (a*, b*)
	3.3.1 The Case of Example 3.1
	3.3.2 The Case of Example 3.2
	3.3.3 The Case of Example 3.3

	3.4 Variational Inequalities and Verification

	4 Impulse Control
	4.1 The (s,S)-Strategy
	4.2 Smoothness of the Value Function
	4.2.1 The Case of Example 4.3
	4.2.2 Brief Remarks on the Cases of Examples 4.1 and 4.2

	4.3 Quasi-Variational Inequalities and Verification
	4.3.1 The Case of Example 4.3
	4.3.2 Brief Remarks on the Cases of Examples 4.1 and 4.2


	5 Zero-Sum Games Between Two-Players
	5.1 Threshold Strategies
	5.1.1 The Case of Example 5.1 

	5.2 Variational Inequalities and Verification
	5.2.1 Verification for Example 5.1

	5.3 Other Optimal Stopping Games
	5.4 When a Stopper Is Replaced with a Controller

	References


	Part II Research Articles
	Asymptotic Results for the Severity and Surplus Before Ruin for a Class of Lévy Insurance Processes
	1 Introduction
	2 Definitions and Preliminary Results
	3 Asymptotic Behavior of the Ruin Probability
	4 Asymptotic Behavior of the Joint Tail of the Severity of Ruin and the Surplus Prior to Ruin
	References

	Characterization of the Minimal Penalty of a Convex Risk Measure with Applications to Robust Utility Maximization for Lévy Models
	1 Introduction
	2 Minimal Penalty Function of Risk Measures Concentrated in Q( P) 
	2.1 Preliminaries from Static Measures of Risk
	2.2 Minimal Penalty Functions

	3 Fundamentals of Lévy and Semimartingales Processes 
	3.1 Density Processes 

	4 Penalty Functions for Densities
	5 The Market Model: General Description and Martingale Measures 
	6 Robust Utility Maximization 
	6.1 Penalties and Solvability
	6.2 The Logarithmic Utility Case

	References

	Blackwell-Nash Equilibria in Zero-Sum Stochastic Differential Games
	1 Introduction
	2 The Game Model and Main Assumptions
	2.1 Strategies
	2.2 Recurrence and Ergodicity
	2.3 The Payoff Rate

	3 Average Equilibria
	4 Bias Equilibria
	5 The Laurent Series
	6 The Poisson System
	7 The Average Payoff Optimality System
	8 Blackwell-Nash Equilibria
	9 Final Remarks
	References

	A Note on -Convergence of Monotone Functionals
	1 Introduction
	2 -Convergence
	3 An Example of Oscillatory Behavior
	4 A Separation Principle of Sequences
	5 The -Limit Under Monotonicity
	References

	A Criterion for Blow Up in Finite Time of a System of 1-Dimensional Reaction-Diffusion Equations
	1 Introduction
	2 Local Existence and Uniqueness of Mild Solutions
	3 A Condition for Blowup in Finite Time
	References

	A Note on the Small-Time Behaviour of the Largest Block Size of Beta n-Coalescents
	1 Introduction and Main Results
	2 Preliminaries
	2.1 Ranked Coalescent and Paintbox Construction
	2.2 Beta-Coalescents and Stable Continuous-State Branching Processes

	3 Proofs
	3.1 The Largest Atom Size of M/Z at a Fixed Time
	3.2 Alternative Paintbox Construction
	3.3 Proof of Theorem 1.2

	References



