Keywords

1 Introduction

To make the computers simulate beings in dealing with certainty and uncertainty in information is one important task of artificial intelligence. Logic appears in a “sacred” (resp., a “profane”) form which is dominant in proof theory (resp., model theory). The role of logic in mathematics and computer science is twofold–as a tool for applications in both areas, and a technique for laying the foundations. Nonclassical logic [1] including many-valued logic and fuzzy logic takes the advantage of classical logic to handle information with various facets of uncertainty [2], such as fuzziness and randomness. At present, nonclassical logic has become a formal and useful tool for computer science to deal with fuzzy information and uncertain information. \(R_0\)-algebra is an important class of non-classical fuzzy logical algebras which was introduced by Wang in [3] by providing an algebra proof of the completeness theorem of the formal deductive system \(\mathcal {L}^*\). From then, \(R_0\)-algebras has been extensively investigated by many researchers. Among them, Jun and Liu studied the theory of filters in \(R_0\)-algebras in [4]. The concept of fuzzy sets is introduced firstly by Zadeh in [5]. Liu and Li in [6] proposed the concept of fuzzy filters of \(R_0\)-algebras and discussed some their properties by using fuzzy sets theory. As an extension of the concept of fuzzy filter, in [7] the author and Xu propose the notion of L-fuzzy filters of \(R_0\)-algebras in terms of the notion of L-fuzzy set in [8], where the prefix L a lattice. In this paper, we will further research the properties of L-fuzzy filters in \(R_0\)-algebras. The lattice structural feature of the set containing all of L-fuzzy filters in a given \(R_0\)-algebra is investigated. It should be noticed that when \(L=[0,1]\), then [0, 1]-fuzzy sets are originally meant fuzzy sets. Since [0, 1] is a special completely distributive lattice, to investigate properties of L-fuzzy filters, sometimes we assume that the prefix L is a completely distributive lattice.

2 Preliminaries

Definition 1

(cf. [3]). Let M be an algebra of type \((\lnot , \vee , \rightarrow )\), where \(\lnot \) is a unary operation, \(\vee \) and \(\rightarrow \) are binary operations. \((M, \lnot , \vee , \rightarrow , 1)\) is called an \(R_0\)-algebra if there is a partial order \(\leqslant \) such that \((M, \leqslant , 1)\) is a bounded distributive lattice with the greatest element 1, \(\vee \) is the supremum operation with respect to \(\leqslant \), \(\lnot \) is an order-reversing involution, and the following conditions hold for every \(a, b, c\in {M}\):

  • (M1) \(\lnot {a}\rightarrow \lnot {b}=b\rightarrow {a}\);

  • (M2) \(1\rightarrow {a}=a, a\rightarrow {a}=1\);

  • (M3) \(b\rightarrow {c}\leqslant (a\rightarrow {b})\rightarrow (a\rightarrow {c})\);

  • (M4) \(a\rightarrow (b\rightarrow {c})=b\rightarrow (a\rightarrow {c})\);

  • (M5) \(a\rightarrow (b\vee {c})=(a\rightarrow {b})\vee (a\rightarrow {c}), a\rightarrow (b\wedge {c})=(a\rightarrow {b})\wedge (a\rightarrow {c})\);

  • (M6) \((a\rightarrow {b})\vee ((a\rightarrow {b})\rightarrow (\lnot {a}\vee {b}))=1\).

Lemma 1

(cf. [3]). Let M be an \(R_0\)-algebra, \(a, b, c\in {M}\). Then the following properties hold.

  • (P1) \(a\leqslant {b}\) if and only if \(a\rightarrow {b}=1\);

  • (P2) \(a\leqslant {b}\rightarrow {c}\) if and only if \(b\leqslant {a}\rightarrow {c}\);

  • (P3) \((a\vee {b})\rightarrow {c}=(a\rightarrow {c})\wedge (b\rightarrow {c}), (a\wedge {b})\rightarrow {c}=(a\rightarrow {c})\vee (b\rightarrow {c})\);

  • (P4) If \(b\leqslant {c}\), then \(a\rightarrow {b}\leqslant {a}\rightarrow {c}\), and if \(a\leqslant {b}\), then \(b\rightarrow {c}\leqslant {a}\rightarrow {c}\);

  • (P5) \(a\rightarrow {b}\geqslant \lnot {a}\vee {b}\) and \(a\wedge \lnot {a}\leqslant {b}\vee \lnot {b}\);

  • (P6) \((a\rightarrow {b})\vee (b\rightarrow {a})=1\) and \(a\vee {b}=((a\rightarrow {b})\rightarrow {b})\wedge ((b\rightarrow {a})\rightarrow {a})\);

  • (P7) \(a\rightarrow (b\rightarrow {a})=1\) and \(a\rightarrow (\lnot {a}\rightarrow {b})=1\);

  • (P8) \(a\rightarrow {b}\leqslant {a}\vee {c}\rightarrow {b}\vee {c}\) and \(a\rightarrow {b}\leqslant {a}\wedge {c}\rightarrow {b}\wedge {c}\);

  • (P9) \(a\rightarrow {b}\leqslant ({a}\rightarrow {c})\vee ({c}\rightarrow {b})\).

Lemma 2

(cf. [3]). Let M be an \(R_0\)-algebra. Define a new operator \(\otimes \) on M such that \(a\otimes {b}=\lnot (a\rightarrow \lnot {b})\), for every \(a, b, c\in {M}\). Then the following properties hold.

  • (P10) \((M, \otimes , 1)\) is a commutative monoid with the multiplicative unit element 1;

  • (P11) If \(a\leqslant {b}\), then \(a\otimes {c}\leqslant {b}\otimes {c}\);

  • (P12) \(0\otimes {a}=0\) and \(a\otimes \lnot {a}=0\);

  • (P13) \(a\otimes {b}\leqslant {a}\wedge {b}\) and \(a\otimes (a\rightarrow {b})\leqslant {b}\) and \(a\leqslant {b}\rightarrow (a\otimes {b})\);

  • (P14) \(a\otimes {b}\rightarrow {c}=a\rightarrow (b\rightarrow {c})\) and \(a\otimes ({b}\vee {c})=(a\otimes {b})\vee (a\otimes {c})\).

Let X be a non-empty set and L a lattice. A map \(\mathscr {A}: X\rightarrow {L}\) is called an L-fuzzy subset on X. The set of all L-fuzzy subsets on X is denoted by \(\mathcal {F}_{L}(X)\). (cf. [8]). Let \(\mathscr {A}\) and \(\mathscr {B}\) be two L-fuzzy subsets on X. We define \(\mathscr {A}\Cap \mathscr {B}\), \(\mathscr {A}\Cup \mathscr {B}\) , \(\mathscr {A}\Subset \mathscr {B}\) and \(\mathscr {A}=\mathscr {B}\) as follows:

  1. (i)

    \((\mathscr {A}\Cap \mathscr {B})(x)=\mathscr {A}(x)\wedge \mathscr {B}(x)\), for all \(x\in {X}\);

  2. (ii)

    \((\mathscr {A}\Cup \mathscr {B})(x)=\mathscr {A}(x)\vee \mathscr {B}(x)\), for all \(x\in {X}\);

  3. (iii)

    \(\mathscr {A}\Subset \mathscr {B}\Longleftrightarrow \mathscr {A}(x)\leqslant \mathscr {B}(x)\), for all \(x\in {X}\);

  4. (iv)

    \(\mathscr {A}=\mathscr {B}\Longleftrightarrow (\mathscr {A}\Subset \mathscr {B} \text{ and } \mathscr {B}\Subset \mathscr {A})\).

3 On L-fuzzy Filters in \(R_0\)-algebras

In this section, we recall the definition of L-fuzzy filters and give their some new properties.

Definition 2

(cf. [7]). Let M be an \(R_0\)-algebra and L a lattice. An L-fuzzy subset \(\mathscr {A}\) on M is said to be an L-fuzzy filter of M, if it satisfies the following conditions:

  • (LF1) \(\mathscr {A}(1)\geqslant \mathscr {A}(a)\) for all \(a\in {M}\) ;

  • (LF2) \(\mathscr {A}(b)\geqslant {\mathscr {A}}(a)\wedge {\mathscr {A}}(a\rightarrow {b})\) for all \(a, b\in {M}\).

The set of all L-fuzzy filters of M is denoted by \(\mathbf{LFil}(M)\).

Theorem 1

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}\) an L-fuzzy subset on M. Then \(\mathscr {A}\in \mathbf{LFil}(M)\) if and only if it satisfies the following conditions:

  • (LF3) \(a\leqslant {b}\) implies \(\mathscr {A}(b)\geqslant \mathscr {A}(a)\) for all \(a,b\in {M}\);

  • (LF4) \(\mathscr {A}(a\otimes {b})\geqslant \mathscr {A}(a)\wedge \mathscr {A}(b)\) for all \(a, b\in {M}\).

Proof

Assume that \(\mathscr {A}\in \mathbf{LFil}(M)\). From Theorem 6 in [7], we know that \(\mathscr {A}\) satisfies the condition (LF3). Let \(a, b\in {M}\), since \(a\leqslant {b}\rightarrow (a\otimes {b})\), by (LF2) and (LF3)), we have that \(\mathscr {A}(a\otimes {b})\geqslant \mathscr {A}(b)\wedge \mathscr {A}(b\rightarrow (a\otimes {b})) \geqslant \mathscr {A}(a)\wedge \mathscr {A}(b)\). Thus \(\mathscr {A}\) also satisfies the condition (LF4). Conversely, Assume that \(\mathscr {A}\) satisfies the condition (LF3) and (LF4). since \(a\leqslant 1\), by (LF3) we have \(\mathscr {A}(1)\geqslant \mathscr {A}(a)\). Thus \(\mathscr {A}\) satisfies the condition (LF1). From \(a\otimes (a\rightarrow {b})\leqslant {b}\), (LF3) and (LF4), it follows that \(\mathscr {A}(b)\geqslant \mathscr {A}(a\otimes (a\rightarrow {b})) \geqslant \mathscr {A}(a)\wedge {\mathscr {A}}(a\rightarrow {b})\). Thus \(\mathscr {A}\) satisfies the condition (LF2). Therefore \(\mathscr {A}\in \mathbf{LFil}(M)\) by Definition 2.

Definition 3

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}\) an L-fuzzy subset on M. An L-fuzzy subset \(\mathscr {A}^{\lambda }\) on M is defined as follows:

$$\begin{aligned} \mathscr {A}^{\lambda }(a)= {\left\{ \begin{array}{ll} \mathscr {A}(a),&{} a\ne 1,\\ \mathscr {A}(1)\vee \lambda , &{}a=1, \end{array}\right. } \end{aligned}$$
(1)

for all \(a\in {M}\), where \(\lambda \in {L}\).

Theorem 2

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}\in \mathbf{LFil}(M)\). Then \(\mathscr {A}^{\lambda }\in \mathbf{LFil}(M)\) for all \(\lambda \in {L}\).

Proof

Firstly, for all \(a, b\in {M}\), let \(a\leqslant {b}\), we consider the following two cases:

  1. (i)

    Assume that \(b=1\). If \(a=1\), we have that \(\mathscr {A}^{\lambda }(b)=\mathscr {A}(1)\vee \lambda =\mathscr {A}^{\lambda }(a)\). If \(a\ne 1\), by using \(\mathscr {A}\in \mathbf{LFil}(M)\) and (LF1), we have that \(\mathscr {A}^{\lambda }(b)\)=\(\mathscr {A}(1)\vee \lambda \geqslant \mathscr {A}(1)\geqslant \mathscr {A}(a)=\mathscr {A}^{\lambda }(a).\)

  2. (ii)

    Assume that \(b\ne 1\), then \(a\ne 1\). It follows that \(\mathscr {A}^{\lambda }(b)=\mathscr {A}(b)\geqslant \mathscr {A}(a)=\mathscr {A}^{\lambda }(a)\) from \(\mathscr {A}\in \mathbf{LFil}(M)\) and (LF3).

Summarize above two cases, we conclude that \(a\leqslant {b}\) implies \(\mathscr {A}^{\lambda }(b)\geqslant \mathscr {A}^{\lambda }(a)\), for all \(a, b\in {M}\). That is, \(\mathscr {A}^{\lambda }\) satisfies (LF3).

Secondly, for all \(a, b\in {M}\), we consider the following two cases:

  1. (i)

    Assume that \(a\otimes {b}=1\). If \(a=b=1\), it is obvious that

    $$\begin{aligned} \mathscr {A}^{\lambda }(a\otimes {b})=\mathscr {A}(1)\vee \lambda =\mathscr {A}^{\lambda }(a)\wedge \mathscr {A}^{\lambda }(b). \end{aligned}$$

If \(a=1, b\ne 1\) or \(a\ne 1, b=1\), then \(a\otimes {b}\ne 1\), it is a contradiction.

If \(a\ne 1\) and \(b\ne 1\), it follows that \(\mathscr {A}^{\lambda }(a)\wedge \mathscr {A}^{\lambda }(b)=\mathscr {A}(a)\wedge \mathscr {A}(b) \leqslant \mathscr {A}(a\otimes {b})=\mathscr {A}(1)\leqslant \mathscr {A}(1)\vee \lambda =\mathscr {A}^{\lambda }(a\otimes {b})\) from \(\mathscr {A}\in \mathbf{LFil}(M)\), (LF4) and (1).

  1. (ii)

    Assume that \(a\otimes {b}\ne 1\). If \(a=b=1\), it is obvious a contradiction.

If \(a=1, b\ne 1\) or \(a\ne 1, b=1\), let’s assume \(a=1, b\ne 1\), then \(a\otimes {b}=\lnot (1\rightarrow \lnot {b})=b\), and so \(\mathscr {A}^{\lambda }(a)\wedge \mathscr {A}^{\lambda }(b)\leqslant \mathscr {A}^{\lambda }(b) =\mathscr {A}(b)=\mathscr {A}(a\otimes {b})=\mathscr {A}^{\lambda }(a\otimes {b}).\)

If \(a\ne 1\) and \(b\ne 1\), it follows that \(\mathscr {A}^{\lambda }(a\otimes {b})=\mathscr {A}(a\otimes {b})\geqslant \mathscr {A}(a)\wedge \mathscr {A}(b) =\mathscr {A}^{\lambda }(a)\wedge \mathscr {A}^{\lambda }(b)\) from \(\mathscr {A}\in \mathbf{LFil}(M)\) and (LF4).

Summarize above two cases, we conclude that \(\mathscr {A}^{\lambda }(a\otimes {b})\geqslant \mathscr {A}^{\lambda }(a)\wedge \mathscr {A}^{\lambda }(b)\), for all \(a, b\in {M}\). That is, \(\mathscr {A}^{\lambda }\) satisfies (LF4).

Thus it follows that \(\mathscr {A}^{\lambda }\in \mathbf{LFil}(M)\) from Theorem 1.

Definition 4

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}, \mathscr {B}\) two L-fuzzy subsets on M. Defined L-fuzzy subsets \(\mathscr {A}^\mathscr {B}\) and \(\mathscr {B}^\mathscr {A}\) on M as follows: for all \(a\in {M}\),

$$\begin{aligned} \mathscr {A}^{\mathscr {B}}(a)= {\left\{ \begin{array}{ll} \mathscr {A}(a),&{} a\ne 1,\\ \mathscr {A}(1)\vee \mathscr {B}(1), &{}a=1, \end{array}\right. }\ \ \ \text{ and }\ \ \ \mathscr {B}^{\mathscr {A}}(a)= {\left\{ \begin{array}{ll} \mathscr {B}(a),&{} a\ne 1,\\ \mathscr {B}(1)\vee \mathscr {A}(1), &{}a=1. \end{array}\right. } \end{aligned}$$
(2)

Corollary 1

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}, \mathscr {B}\) two L-fuzzy subsets on M. If \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\). Then \(\mathscr {A}^{\mathscr {B}}, \mathscr {B}^{\mathscr {A}}\in \mathbf{LFil}(M)\).

Definition 5

Let M be an \(R_0\)-algebra, L a completely lattice and \(\mathscr {A}, \mathscr {B}\) two L-fuzzy subsets on M. An L-fuzzy set \(\mathscr {A}\uplus \mathscr {B}\) on M is defined as follows: for all \(a, x, y\in {M}\),

$$\begin{aligned} (\mathscr {A}\uplus \mathscr {B})(a)=\bigvee \limits _{{x}\otimes {y}\leqslant {a}} \left[ \mathscr {A}(x)\wedge \mathscr {B}(y)\right] . \end{aligned}$$
(3)

Theorem 3

Let M be an \(R_0\)-algebra, L a completely distributive lattice and \(\mathscr {A}, \mathscr {B}\) two L-fuzzy subsets on M. If \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\). Then \(\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\in \mathbf{LFil}(M)\).

Proof

Firstly, for all \(a, b\in {M}\), let \(a\leqslant {b}\), then \(\{x\otimes {y}|x\otimes {y}\leqslant {a}\}\subseteq \{x\otimes {y}|x\otimes {y}\leqslant {b}\}\), and so

$$\begin{aligned} \left( \mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\right) (b) =&\bigvee \limits _{x\otimes {y}\leqslant {b}}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge {\mathscr {B}}^{\mathscr {A}}(y)\right] \\ \geqslant&\bigvee \limits _{x\otimes {y}\leqslant {a}}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge {\mathscr {B}}^{\mathscr {A}}(y)\right] =\left( \mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\right) (a). \end{aligned}$$

Hence \(\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\) satisfies (LF3). Secondly, for all \(a, b\in {M}\), we have that

and so \(\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\) also satisfies (LF4). Hence \(\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\in \mathbf{LFil}(M)\) by Theorem 1.

4 Generated L-fuzzy Filter by an L-fuzzy Subset

In this section, we give the notion of generated L-fuzzy filter by an L-fuzzy subset and establish its representation theorem.

Definition 6

Let M be an \(R_0\)-algebra, L a lattice and \(\mathscr {A}\) an L-fuzzy subset on M. An L-fuzzy filter \(\mathscr {B}\) of M is called the generated L-fuzzy filter by \(\mathscr {A}\), denoted \(\langle {\mathscr {A}}\rangle \), if \(\mathscr {A}\Subset \mathscr {B}\) and for any \(\mathscr {C}\in \mathbf{LFil}(M)\), \(\mathscr {A}\Subset \mathscr {C}\) implies \(\mathscr {B}\Subset \mathscr {C}\).

Theorem 4

Let M be an \(R_0\)-algebra, L a completely distributive lattice and \(\mathscr {A}\) an L-fuzzy subset on M. An L-fuzzy subset \(\mathscr {B}\) on M is defined as follows:

$$\begin{aligned} \mathscr {B}(a)=\bigvee \left\{ \mathscr {A}(x_{1})\wedge \cdots \mathscr {A}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } {x_1}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} , \end{aligned}$$
(4)

for all \(a\in {M}\). Then \(\mathscr {B}=\langle {\mathscr {A}}\rangle \).

Proof

Firstly, we prove that \(\mathscr {B}\in \mathbf{LFil}(M)\). For all \(a, b\in {M}\), let \(a\leqslant {b}\). Then

$$\begin{aligned} \mathscr {A}(a) =&\bigvee \left\{ \mathscr {A}(x_{1})\wedge \cdots \mathscr {A}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } {x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} \\ \leqslant&\bigvee \left\{ \mathscr {A}(x_{1})\wedge \cdots \mathscr {A}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } {x_1}\otimes \cdots \otimes {x_n}\leqslant {b}\right\} =\mathscr {B}(b). \end{aligned}$$

Thus \(\mathscr {B}\) satisfies (LF3). Assume that there are \(x_{1}, x_{2}, \cdots , x_{n}\in {M}\) and \(y_{1}, \cdots , y_{m}\in {M}\) such that \({x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\) and \({y_1}\otimes {y_2}\otimes \cdots \otimes {y_m}\leqslant {b}\), we have that \({x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\otimes {y_1}\otimes {y_2}\otimes \cdots \otimes {y_m}\leqslant {a}\otimes {b}\) by (P11). Thus, we can obtain that

$$\begin{aligned}&\mathscr {B}(a)\wedge \mathscr {B}(b)\\ =&\bigvee \left\{ \mathscr {A}(x_{1})\wedge \cdots \mathscr {A}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } {x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} \\&\ \ \ \ \ \ \wedge \bigvee \left\{ \mathscr {A}(y_{1})\wedge \cdots \mathscr {A}(y_{m})| y_{1}, y_{2}, \cdots , y_{m}\in {M} \text{ and } {y_1}\otimes {y_2}\otimes \cdots \otimes {y_m}\leqslant {b}\right\} \\ =&\bigvee \{\mathscr {A}(x_{1})\wedge \cdots \wedge \mathscr {A}(x_{n})\wedge \mathscr {A}(y_{1})\wedge \cdots \wedge \mathscr {A}(y_{m})| x_{1}, \cdots , x_{n}, y_{1}, \cdots , y_{m}\in {M}\\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{ such } \text{ that } {x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a} \text{ and } {y_1}\otimes {y_2}\otimes \cdots \otimes {y_m}\leqslant {b}\}\\ \leqslant&\bigvee \{\mathscr {A}(x_{1})\wedge \cdots \wedge \mathscr {A}(x_{n})\wedge \mathscr {A}(y_{1})\wedge \cdots \wedge \mathscr {A}(y_{m})| x_{1}, \cdots , x_{n}, y_{1}, \cdots , y_{m}\in {M}\\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{ such } \text{ that } {x_1}\otimes {x_2}\otimes \cdots \otimes {x_n}\otimes {y_1}\otimes {y_2}\otimes \cdots \otimes {y_m}\leqslant {a}\otimes {b}\}\\ \leqslant&\bigvee \left\{ \mathscr {A}(z_{1})\wedge \cdots \mathscr {A}(z_{k})| z_{1}, z_{2}, \cdots , z_{k}\in {M} \text{ and } {z_1}\otimes \cdots \otimes {z_k}\leqslant {a}\otimes {b}\right\} \\ =&\mathscr {B}(a\otimes {b}). \end{aligned}$$

Hence \(\mathscr {B}\) also satisfies (LF4). It follows from Theorem 1 that \(\mathscr {B}\in \mathbf{LFil}(M)\).

Secondly, For any \(a\in {M}\), it follows from \(a\leqslant {a}\) and the definition of \(\mathscr {B}\) that \(\mathscr {A}(a)\leqslant \mathscr {B}(a)\). This means that \(\mathscr {A}\Subset \mathscr {B}\).

Finally, assume that \(\mathscr {C}\in \mathbf{LFil}(M)\) with \(\mathscr {A}\Subset \mathscr {C}\). Then for any \(a\in {M}\), we have

$$\begin{aligned} \mathscr {B}(a) =&\bigvee \left\{ \mathscr {A}(x_{1})\wedge \cdots \wedge \mathscr {A}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } x_{1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} \\ \leqslant&\bigvee \left\{ \mathscr {C}(x_{1})\wedge \cdots \wedge \mathscr {C}(x_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } x_{1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} \\ \leqslant&\bigvee \left\{ \mathscr {C}(x_{1}\otimes \cdots \otimes {x}_{n})| x_{1}, x_{2}, \cdots , x_{n}\in {M} \text{ and } x_{1}\otimes {x_2}\otimes \cdots \otimes {x_n}\leqslant {a}\right\} \\ \leqslant&\bigvee \left\{ \mathscr {C}(a)\right\} =\mathscr {C}(a). \end{aligned}$$

Hence \(\mathscr {B}\Subset \mathscr {C}\) holds. To sum up, we have that \(\mathscr {B}=\langle {\mathscr {A}}\rangle \).

Example 1

Let \(M=\{0, a, b, c, d, 1\}\), \(\lnot 0=1, \lnot {a}=c, \lnot {b}=d, \lnot {c}=a, \lnot {d}=b, \lnot 1=0\), the Hasse diagram of lattice \((M, \vee , \wedge , \leqslant )\) be defined as Fig. 1, and the binary operator \(\rightarrow \) of M be defined as Table 1.

Fig. 1.
figure 1

The Hasse diagram of M

Table 1. Def. of “\(\rightarrow \)

Then \((M, \lnot , \vee , \rightarrow , 1)\) is an \(R_0\)-algebra. Take \(L=([0,1], \max , \min )\) and define an [0,1]-fuzzy subset \(\mathscr {A}\) on M by \(\mathscr {A}(1)=\mathscr {A}(c)=\alpha , \mathscr {A}(a)=\mathscr {A}(b)=\mathscr {A}(d)=\mathscr {A}(0)=\beta \), \(0\leqslant \beta <\alpha \leqslant 1\). Since \(c\leqslant {b}\) but \(\mathscr {A}(b)=\beta \not \geqslant \alpha =\mathscr {A}(c)\), we know that \(\mathscr {A}\not \in \mathbf{LFil}(M)\). It is easy to verify that \(\langle {\mathscr {A}}\rangle \in \mathbf{LFil}(M)\) from Theorem 4, where \(\langle {\mathscr {A}}\rangle (1)=\langle {\mathscr {A}}\rangle (b)=\langle {\mathscr {A}}\rangle (c)=\alpha , \langle {\mathscr {A}}\rangle (a)=\langle {\mathscr {A}}\rangle (d)=\langle {\mathscr {A}}\rangle (0)=\beta \).

5 The Lattice of L-fuzzy Filters in a Given \(R_0\)-algebra

In this section, we investigate the lattice structural feature of the set \(\mathbf{LFil}(M)\) under the L-fuzzy set-inclusion order \(\Subset \).

Theorem 5

Let M be an \(R_0\)-algebra and L a complete lattice. Then \((\mathbf{LFil}(M), \Subset )\) is a complete lattice.

Proof

For any \(\{\mathscr {A}_{\alpha }\}_{\alpha \in \Lambda }\subseteq \mathbf{LFil}(M)\), where \(\Lambda \) is an indexed set. It is easy to verify that \(\Cap _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\in \mathbf{LFil}(M)\) is infimum of \(\{\mathscr {A}_{\alpha }\}_{\alpha \in \Lambda }\), where \(\left( \Cap _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\right) (a)=\bigwedge \limits _{\alpha \in \Lambda }\mathscr {A}_{\alpha }(a)\) for all \(a\in {M}\). i.e., \(\bigwedge \limits _{\alpha \in \Lambda }\mathscr {A}_{\alpha }=\Cap _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\). Define \(\Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\) such that \(\left( \Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\right) (a)=\bigvee \limits _{\alpha \in \Lambda }\mathscr {A}_{\alpha }(a)\) for all \(a\in {M}\). Then \(\left\langle \Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\right\rangle \) is supermun of \(\{\mathscr {A}_{\alpha }\}_{\alpha \in \Lambda }\), where \(\left\langle \Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\right\rangle \) is the L-fuzzy filter generated by \(\Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\) of M. i.e., \(\bigvee \limits _{\alpha \in \Lambda }\mathscr {A}_{\alpha }=\left\langle \Cup _{\alpha \in \Lambda }\mathscr {A}_{\alpha }\right\rangle \). Therefor \((\mathbf{LFil}(M), \Subset )\) is a complete lattice. The proof is completed.

Remark 1

Let M be an \(R_0\)-algebra and L a complete lattice. For all \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\), by Theorem 5 we know that \(\mathscr {A}\wedge \mathscr {B}=\mathscr {A}\Cap \mathscr {B}\) and \(\mathscr {A}\vee \mathscr {B}=\left\langle {\mathscr {A}\Cup \mathscr {B}}\right\rangle \).

Theorem 6

Let M be an \(R_0\)-algebra and L a completely distributive lattice. Then for all \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\), \(\mathscr {A}\vee \mathscr {B}=\left\langle {\mathscr {A}\Cup \mathscr {B}}\right\rangle =\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\) in the complete lattice \((\mathbf{LFil}(M), \Subset )\).

Proof

For all \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\), it is obvious that \(\mathscr {A}\Subset \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\) and \(\mathscr {B}\Subset \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\), that is, \(\mathscr {A}(a)\leqslant \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (a)\) and \(\mathscr {B}(a)\leqslant \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (a)\) for all \(a\in {M}\). Thus\((\mathscr {A}\Cup \mathscr {B})(a)=\mathscr {A}(a)\vee \mathscr {B}(a) \leqslant \left( \mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\right) (a)\), that is, \(\mathscr {A}\Cup \mathscr {B}\Subset \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\), and thus \(\left\langle {\mathscr {A}\Cup \mathscr {B}}\right\rangle \Subset \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\in \mathbf{LFil}(M)\) by Theorem 3. Let \(\mathscr {C}\in \mathbf{LFil}(M)\) such that \(\mathscr {A}\Cup \mathscr {B}\Subset \mathscr {C}\). For all \(a\in {M}\), we consider the following two cases:

  1. (i)

    If \(a=1\), then \(\left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (1) =\bigvee \limits _{x\otimes {y}\leqslant 1}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] =\mathscr {A}^{\mathscr {B}}(1)\wedge \mathscr {B}^{\mathscr {A}}(1) =\mathscr {A}(1)\vee \mathscr {B}(1) =\left( \mathscr {A}\Cup \mathscr {B}\right) (1)\leqslant \mathscr {C}(1)\).

  2. (ii)

    If \(a<1\), then we have

    $$\begin{aligned}&\left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (a) =\bigvee \limits _{x\otimes {y}\leqslant {a}}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] \vee \bigvee \limits _{x\leqslant {a}}\left\{ \mathscr {A}(x)\wedge \left[ \mathscr {A}(1)\vee \mathscr {B}(1)\right] \right\} \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vee \bigvee \limits _{y\leqslant {a}}\left\{ \left[ \mathscr {A}(1)\vee \mathscr {B}(1)\right] \wedge \mathscr {B}(y)\right\} \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] \vee \left[ \bigvee \limits _{x\leqslant {a}}\mathscr {A}(x)\right] \vee \left[ \bigvee \limits _{y\leqslant {a}}\mathscr {B}(y)\right] \\ \leqslant&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1}\left[ \mathscr {C}(x)\wedge \mathscr {C}(y)\right] \vee \left[ \bigvee \limits _{x\leqslant {a}}\mathscr {C}(x)\right] \vee \left[ \bigvee \limits _{y\leqslant {a}}\mathscr {C}(y)\right] \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}}\left[ \mathscr {C}(x)\wedge \mathscr {C}(y)\right] \leqslant \bigvee \limits _{x\otimes {y}\leqslant {a}}\mathscr {C}(x\otimes {y}) \leqslant \mathscr {C}(a), \end{aligned}$$

    thus \(\mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\Subset \mathscr {C}\) for above two cases.

By Definition 6 and Theorem 4 we have that \(\mathscr {A}\vee \mathscr {B}=\left\langle {\mathscr {A}\Cup \mathscr {B}}\right\rangle =\mathscr {A}^{\mathscr {B}}\uplus {\mathscr {B}}^{\mathscr {A}}\).

Theorem 7

Let M be an \(R_0\)-algebra and L a completely distributive lattice. Then \((\mathbf{LFil}(M), \Subset )\) is a distributive lattice, where, \(\mathscr {A}\wedge \mathscr {B} =\mathscr {A}\Cap \mathscr {B}\) and \(\mathscr {A}\vee \mathscr {B}=\left\langle {\mathscr {A}\Cup \mathscr {B}}\right\rangle \), for all \(\mathscr {A}, \mathscr {B}\in \mathbf{LFil}(M)\).

Proof

To finish the proof, it suffices to show that \(\mathscr {C}\wedge \left( \mathscr {A}\vee \mathscr {B}\right) = \left( \mathscr {C}\wedge \mathscr {A}\right) \vee \left( \mathscr {C}\wedge \mathscr {B}\right) \), for all \(\mathscr {A}, \mathscr {B}, \mathscr {C}\in \mathbf{LFil}(M)\). Since the inequality \(\left( \mathscr {C}\wedge \mathscr {A}\right) \vee \left( \mathscr {C}\wedge \mathscr {B}\right) \Subset \mathscr {C}\wedge \left( \mathscr {A}\vee \mathscr {B}\right) \) holds automatically in a lattice, we need only to show the inequality \(\mathscr {C}\wedge \left( \mathscr {A}\vee \mathscr {B}\right) \Subset \left( \mathscr {C}\wedge \mathscr {A}\right) \vee \left( \mathscr {C}\wedge \mathscr {B}\right) \). i.e., we need only to show that \(\left( \mathscr {C}\Cap \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) \right) (a)\leqslant \left( \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}} \uplus \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}\right) (a)\), for all \(a\in {M}\). For these, we consider the following two cases:

  1. (i)

    If \(a=1\), we have

    $$\begin{aligned}&\left( \mathscr {C}\Cap \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) \right) (1) =\mathscr {C}(1)\wedge \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (1)\\ =&\mathscr {C}(1)\wedge \bigvee \limits _{x\otimes {y}\leqslant 1}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] =\mathscr {C}(1)\wedge \left[ \mathscr {A}^{\mathscr {B}}(1)\wedge \mathscr {B}^{\mathscr {A}}(1)\right] \\ =&\left[ \mathscr {C}(1)\wedge \mathscr {A}(1)\right] \vee \left[ \mathscr {C}(1)\wedge \mathscr {B}(1)\right] =\left( \mathscr {C}\Cap \mathscr {A}\right) (1)\vee \left( \mathscr {C}\Cap \mathscr {B}\right) (1)\\ =&\left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(1)\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(1)\\ =&\bigvee \limits _{x\otimes {y}\leqslant 1}\left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(x)\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(y)\right] \\ =&\left( \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}} \uplus \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}\right) (1). \end{aligned}$$
  2. (ii)

    If \(a<1\), we have

    $$\begin{aligned}&\left( \mathscr {C}\Cap \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) \right) (a) =\mathscr {C}(a)\wedge \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) (a)\\ =&\mathscr {C}(a)\wedge \bigvee \limits _{x\otimes {y}\leqslant {a}}\left[ \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] =\bigvee \limits _{x\otimes {y}\leqslant {a}}\left[ \mathscr {C}(a)\wedge \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left[ \mathscr {C}(a)\wedge \mathscr {A}^{\mathscr {B}}(x)\wedge \mathscr {B}^{\mathscr {A}}(y)\right] \vee \\&\ \ \ \ \ \ \ \ \ \bigvee \limits _{y\leqslant {a}}\left[ \mathscr {C}(a)\wedge \mathscr {A}^{\mathscr {B}}(1)\wedge \mathscr {B}(y)\right] \vee \bigvee \limits _{x\leqslant {a}}\left[ \mathscr {C}(a)\wedge \mathscr {A}(x)\wedge \mathscr {B}^{\mathscr {A}}(1)\right] \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left\{ \left[ \mathscr {C}(a)\wedge \mathscr {A}(x)\right] \wedge \left[ \mathscr {C}(a)\wedge \mathscr {B}(y)\right] \right\} \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{y\leqslant {a}} \left\{ \left[ \mathscr {C}(a)\wedge \mathscr {A}^{\mathscr {B}}(1)\right] \wedge \left[ \mathscr {C}(a)\wedge \mathscr {B}(y)\right] \right\} \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{x\leqslant {a}} \left\{ \left[ \mathscr {C}(a)\wedge \mathscr {A}(x)\right] \wedge \left[ \mathscr {C}(a)\wedge \mathscr {B}^{\mathscr {A}}(1)\right] \right\} \\ \leqslant&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left\{ \left[ \mathscr {C}(a\vee {x})\wedge \mathscr {A}(a\vee {x})\right] \wedge \left[ \mathscr {C}(a\vee {y})\wedge \mathscr {B}(a\vee {y})\right] \right\} \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{y\leqslant {a}} \left\{ \left[ \mathscr {C}(1)\wedge \left( \mathscr {A}(1)\vee \mathscr {B}(1)\right) \right] \wedge \left[ \mathscr {C}(a\vee {y})\wedge \mathscr {B}(a\vee {y})\right] \right\} \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{x\leqslant {a}} \left\{ \left[ \mathscr {C}(a\vee {x})\wedge \mathscr {A}(a\vee {x})\right] \wedge \left[ \mathscr {C}(1)\wedge \left( \mathscr {B}(1)\vee \mathscr {A}(1)\right) \right] \right\} \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) (a\vee {x})\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) (a\vee {y})\right] \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{y\leqslant {a}} \left\{ \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) (1)\vee \left( \mathscr {C}\Cap \mathscr {B}\right) (1) \right] \wedge \left( \mathscr {C}\Cap \mathscr {B}\right) (a\vee {y})\right\} \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{x\leqslant {a}} \left\{ \left( \mathscr {C}\Cap \mathscr {A}\right) (a\vee {x})\wedge \left[ \left( \mathscr {C}\Cap \mathscr {B}\right) (1)\vee \left( \mathscr {C}\Cap \mathscr {A}\right) (1)\right] \right\} \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}, x\ne 1, y\ne 1} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(a\vee {x})\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(a\vee {y})\right] \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{y\leqslant {a}} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(1)\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(a\vee {y})\right] \vee \\&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \bigvee \limits _{x\leqslant {a}} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(a\vee {x})\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(1)\right] \\ =&\bigvee \limits _{x\otimes {y}\leqslant {a}} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(a\vee {x})\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(a\vee {y})\right] . \end{aligned}$$

Let \(a\vee {x}=u\) and \(a\vee {y}=v\), since \(x\otimes {y}\leqslant {a}\), using Lemma 2 we get that

$$\begin{aligned} u\otimes {v}=(a\vee {x})\otimes (a\vee {y}) =&((a\vee {x})\otimes {a})\vee ((a\vee {x})\otimes {y})\\ =&(a\otimes {a})\vee (a\otimes {x})\vee (a\otimes {y})\vee (x\otimes {y})\\ \leqslant&{a}\vee {a}\vee {a}\vee (x\otimes {y})\\ =&a\vee (x\otimes {y}) \leqslant {a}\vee {a}=a. \end{aligned}$$

Hence we can conclude that

$$\begin{aligned} \left( \mathscr {C}\Cap \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) \right) (a) \leqslant&\bigvee \limits _{x\otimes {y}\leqslant {a}} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(a\vee {x})\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(a\vee {y})\right] \\ \leqslant&\bigvee \limits _{u\otimes {v}\leqslant {a}} \left[ \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}}(u)\wedge \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}(v)\right] \\ =&\left( \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}} \uplus \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}\right) (a). \end{aligned}$$

To sum up, we have that

$$\left( \mathscr {C}\Cap \left( \mathscr {A}^{\mathscr {B}}\uplus \mathscr {B}^{\mathscr {A}}\right) \right) (a)\leqslant \left( \left( \mathscr {C}\Cap \mathscr {A}\right) ^{\mathscr {C}\Cap \mathscr {B}} \uplus \left( \mathscr {C}\Cap \mathscr {B}\right) ^{\mathscr {C}\Cap \mathscr {A}}\right) (a),$$

for all \(a\in {M}\). The proof is completed.

6 Conclusion

As well known, filters is an important concept for studying the structural features of \(R_0\)-algebras. In this paper, the L-fuzzy filter theory in \(R_0\)-algebras is further studied. Some new properties of L-fuzzy filters are given. Representation theorem of L-fuzzy filter which is generated by an L-fuzzy subset is established. It is proved that the set consisting of all L-fuzzy filters in a given \(R_0\)-algebra, under the L-fuzzy set-inclusion order \(\Subset \), forms a complete distributive lattice. Results obtained in this paper not only enrich the content of L-fuzzy filters theory in \(R_0\)-algebras, but also show interactions of algebraic technique and L-fuzzy sets method in the studying of logic problems. We hope that more links of fuzzy sets and logics emerge by the stipulating of this work.