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Preface

We had three conferences held successfully in 2016.
The International Conference on Mathematics and Decision Science, ICMDS

2016, September 12–15, 2016, was arranged at Guangzhou University, Guangzhou,
China (www.icodm2020.com). Chairman Prof. Bing-Yuan Cao, Chairman of the
Program Committee Prof. Seyed Hadi Nasseri, and Chairman of the Iranian
Operations Research Society Prof. Nezamedin Mahdavi-Amiri ensured that the
conference contained top-level presentations of great general interest. The
researchers giving presentations at the conference represented researchers from
many countries and parts of the world. The beautiful Guangzhou University and
parks gave a relaxing discussion climate and many new meetings, more than 50
experts and professors and students attended the meeting. Delegates from China,
Iran, Sweden, Poland, Canada, Pakistan, and other countries, nearly 20 people, read
out academic papers.

Academic Conference on 30th Anniversary of Fuzzy Geometric Programming
and 40th Education Year by and of Professor Cao Bingyuan (ACFGPAEC) has
been held at Guangzhou University from July 30 to August 1, 2016. Professor
Yu-bin Zhong, the Vice President and Secretary-General of Fuzzy Information and
Engineering Society and Dean Assistant for School of Mathematics and
Information Science of Guangzhou University gave a message to Professor Cao.
The celebration was presided over by Dr. Ji-hui Yang, an Associate Professor from
Shenyang Agricultural University, with more than 30 scholars and postdoctoral
students from home and abroad attending it. More than 10 of Professor Cao’s
postdoctoral, doctoral (including Irans and Pakistans) and master reported their
work in recent years, among whom many people had published, papers in the Fuzzy
Sets and Systems, IEEE T on Fuzzy Systems, Information Sciences etc. magazine.

The third annual meeting of Guangdong Operational Research Society
(TAMGORS) was held on October 22–23, 2016, in Foshan University,
Guangdong. Honorary Chair of the Society, Academician Jing-zhong Zhang of the
Chinese Academy of Sciences attended and made an academic report on the new
thinking of calculus. Professor Hao Zhifeng, Vice Chairman of the Society and
President of Foshan University, Professor Cao Bingyuan, respectively, made their
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work reports and important speeches. Members of the institute, more than 40
entrepreneurs, and related students from Foshan University attended the meeting.
More than 10 people from the Institute and entrepreneurs, persons from Iran,
Pakistan, represented their papers.

We carefully organized them, adopting experts’ recommendation and critical
way of reviews, collected, and published the papers in Intelligent Systems and
Computing. The Advance focuses on five main topics as follows:

I. Mathematics and Fuzziness;
II. Decision and Fuzziness;
III. Fuzzy geometric programming and Optimization;
IV. Fuzzy Systems & Operations Research and Management;
V. Others.

Here, Topic I II, from ICMDS 2016, one of the world’s continuous International
Conference Papers 18 (the Conference was held in Iran after the first International
Conference on Mathematics). We’ve chosen nine papers on Mathematics and
Fuzziness. Topic III collected papers on AMPFGPAT2016 Fuzzy geometric pro-
gramming and Optimization 9. Topic IV V is selected from TAMGORS’s 17 paper.
We carefully selected 44 papers to form the book.

Heartfelt thanks to Dr. Seyed Hadi Nasseri University of Mazandaran, Iran, who
has done a lot of work for launching the ICMDS 2016, conference organization and
reviewers. Thanks to Dr. Xue-gang Zhou and Dr. Ji-hui Yang for organizing such a
good meeting with AMPFGPAT. Appreciation to Guangzhou University for its
great support for the conference and for the preparation and support of the Foshan
University for the TAMGORS. Thanks to Lu Shu-quan for his full help.

Finally, I would like to thank the publisher, Springer editors, for publishing the
proceeding as Advance in Intelligent Systems and Computing.

December 2016 Bing-yuan Cao
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Bipolar Fuzzy BRK-ideals in BRK-algebras

Khizar Hayat1, Xiao-Chu Liu2, and Bing-Yuan Cao1,3(B)

1 School of Mathematics and Information Science, Guangzhou University,
Guangzhou 510006, China
khizar233@gmail.com

2 School of Mechanical and Electric Engineering, Guangzhou University,
Guangzhou 510006, China
gdliuxiaochu@163.com

3 Guangzhou Vocational College of Science and Technology,
Guangzhou 510550, Guangdong, China

caobingy@163.com

Abstract. In this paper, we investigated bipolar fuzzy BRK-ideals
in BRK-algebras and discussed related properties. We presented some
results on images and pre-images of bipolar fuzzy BRK-ideals in BRK-
algebras. Finally, we introduced translation, extension and multipli-
cations of bipolar fuzzy BRK-ideals in BRK-algebras and discussed
related results.

Keywords: Bipolar fuzzy BRK-ideal · BRK-algebra · Images ·
Pre-images · Translations · Extensions · Multiplications

1 Introduction

The fundamental concept of fuzzy set, popularized by Zadeh [1], was used to
generalize several basic concepts of algebra. Fuzzy sets are extremely useful to
deal with the many problems in applied mathematics, control engineering, infor-
mation sciences, expert systems and theory of automata etc. Although, there
are many generalizations of fuzzy sets but none of these deal with the problems
related to the contrary characteristics of the members having membership degree
0. Lee [2] handled this problem by introducing the concept of bipolar fuzzy (BF)
sets. The BF set theory has been widely applied to solve real life problems. The
sweet taste of foodstuffs is a BF set. Assuming that sweet taste of foodstuff as
a positive membership value then bitter taste of foodstuffs as a negative mem-
bership value. The remaining foodstuffs of taste like acidic, saline, chilly etc. are
extraneous to the sweet and bitter foodstuffs. Thus, these foodstuffs are accepted
as zero membership values. Notice that every matter has two sides and bipolar-
ity as well as fuzziness, is an inherent and internal part of human thinking [3,4].
A BF set is a pair of fuzzy sets, namely a membership and a non-membership
function, which represent positive and negative aspects of the given information.

Imai and Iseki investigated two classes of abstract algebras: BCI-algebras
and BCK-algebras [5]. In 2002, Neggers et al. [6], presented B-algebra
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 1



4 K. Hayat et al.

and discussed related properties. The generalization of B-algebra called BF -
algebra and BG-algebra proposed by Walendziak [7], and Kim [8], respectively.
Recently, Bandaru [9], investigated BRK-algebra which is a generalization of
BCK/BCI/Q-algebras. In [10,11], El-Gendy introduced fuzzy BRK-ideal of
BRK-algebra and cubic BRK-ideal of BRK-algebra. Some properties of n-
dimensional fuzzy subalgebra in BRK-algebras investigated by Zulfiqar [12].
Fuzzy translations and fuzzy multiplications of BCK/BCI-algebras presented
in [13]. As a generalization of fuzzy set theory, BF set theory makes descriptions
of the objective world more realistic, practical and very accurate in many cases,
making it very promising. In the past few decades, BF set theory has been suc-
cessfully applied to various algebraic structures. Lee [14], introduced BF ideals
of BCK/BCI-algebras and Akram [15] introduced BF graphs. Recently, Hayat
et al. [16,17], characterized himi-rings by their BF h-ideals and BAF h-ideals.

The contents of the present paper are organized as follows: In Sect. 2, we
presented some basic definitions and preliminaries. In Sect. 3, we investigated
bipolar fuzzy BRK-ideals in BRK-algebras and discussed related properties.
In Sect. 4, we presented some results on images and pre-images of bipolar fuzzy
BRK-ideals in BRK-algebras. In Sect. 5, we introduced translation, extension
and multiplications of bipolar fuzzy BRK-ideals in BRK-algebras and discussed
related results. Finally, we presented some conclusions and future work.

2 Preliminaries

In this section, some elementary aspects that are necessary for this paper are
included.

Definition 2.1. A BRK-algebra is a non-empty set X with a constant 0 and a
binary operation “∗” satisfying the following conditions:

(BRK1) x ∗ 0 = x,
(BRK2) (x ∗ y) ∗ x = 0 ∗ y for all x, y ∈ X.

A partial ordered relation � can be defined by x � y if and only if x ∗ y = 0.
Throughout this paper, X denotes BRK-algebra.

Definition 2.2 [9]. If (X, ∗, 0) is a BRK-algebra, the following conditions hold:

(BRK3) x ∗ x = 0,
(BRK4) (x ∗ y) = 0 implies 0 ∗ x = 0 ∗ y for all x, y ∈ X,
(BRK5) 0 ∗ (a ∗ b) = (0 ∗ a) ∗ (0 ∗ b) for all a, b ∈ X.

Definition 2.3 [11,12]. A subset S of a BRK-algebra X is said to be BRK-
subalgebra of X, if x, y ∈ S, implies x ∗ y ∈ S.

Definition 2.4 [11]. A subset S of a BRK-algebra X is said to be a BRK-ideal
of X ( briefly SBRKX) if it satisfies:

(i) 0 ∈ S,
(ii) 0 ∗ (x ∗ y) ∈ S and 0 ∗ y ∈ S =⇒ 0 ∗ x ∈ S for all x, y ∈ X.
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Example 1. Consider a set X = {0, a1, a2, a3}. We define “∗” on X as the
following table:

∗ 0 a1 a2 a3

0 0 a2 a2 0
a1 a1 0 0 a2

a2 a2 0 0 a2

a3 a3 a1 a1 0

Clearly, X is a BRK-algebra. Then S = {0, a1, a2}BRKX.

Definition 2.5 [11]. Let (X1, ∗, 0) and (X2, ∗′, 0′) be two BRK-algebras. A
mapping ψ : X1 −→ X2 is said to be a homomorphism if ψ(x∗y) = ψ(x)∗′ ψ(y),
for all x, y ∈ X1.

Definition 2.6 [3]. A bipolar fuzzy set is a pair (λ+, λ−), where λ+ : X −→
[0, 1], and λ− : X −→ [−1, 0] are any mappings.

Definition 2.7 [3]. Let B1 = (λ+, λ−) and B2 = (μ+, μ−) be two BF sets in X.
Thenfollowingconditionshold :

(i) B1 ≤ B2 if and only if λ+ ≤ μ+ and λ− ≥ μ−.
(ii) max {B1, B2} = (max {λ+, μ+} ,min {λ−, μ−}),

min {B1, B2} = (min {λ+, μ+} ,max {λ−, μ−}) .

3 Bipolar Fuzzy BRK-ideals in BRK-algebras

In this section, we introduced BF BRK-ideals in BRK-algebras and discussed
related properties.

Definition 3.1. A BF set B = (λ+, λ−) of X is called BF BRK-ideal of X if
it satisfies following conditions hold:

(BF1) λ+ (0) ≥ λ+ (x) , λ− (0) ≤ λ− (x) ,
(BF2) λ+ (0 ∗ x) ≥ min {λ+ (0 ∗ (x ∗ y)) , λ+ (0 ∗ y)} ,

λ− (0 ∗ x) ≤ max {λ− (0 ∗ (x ∗ y)) , λ− (0 ∗ y)} .

Example 2. Consider a set X = {0, a1, a2, a3}. We define “∗” on X as the
following table:

∗ 0 a1 a2 a3

0 0 a1 0 a1

a1 a1 0 a1 0
a2 a2 a1 0 a1

a3 a3 a2 a3 0
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Clearly, X is a BRK-algebra. Define a bipolar fuzzy set,

0 a1 a2 a3

λ+ t1 t1 t2 t2
λ− s1 s1 s2 s3

where t1, t2 ∈ [0, 1] and s1, s2, s3 ∈ [−1, 0] with t1 > t2 and s1 < s2 < s3, routine
calculation gives that B = (λ+, λ−) is a BF BRK-ideal of X.

Lemma 3.1. Let B be a BF BRK-ideal of BRK-algebra X. If y ∗ x ≤ x holds
in X, then λ+ (0 ∗ y) ≥ λ+ (0 ∗ x) and λ− (0 ∗ y) ≤ λ− (0 ∗ x).

Proof. Assume that y ∗ x ≤ x holds in X. Then (y ∗ x) ∗ x = 0. By (BRK2),

λ+ (0 ∗ y) ≥ min {λ+ (0 ∗ (y ∗ x)) , λ+ (0 ∗ x)} ,
λ− (0 ∗ y) ≤ max {λ− (0 ∗ (y ∗ x)) , λ− (0 ∗ x)} .

Also,

λ+ (0 ∗ (y ∗ x)) ≥ min
{
λ+ ((0 ∗ (y ∗ x)) ∗ x) , λ+ (0 ∗ x)

}

= min
{
λ+ (0) , λ+ (0 ∗ x)

}

= λ+ (0 ∗ x) ,

and

λ− (0 ∗ (y ∗ x)) ≤ max
{
λ− ((0 ∗ (y ∗ x)) ∗ x) , λ− (0 ∗ x)

}

= max
{
λ− (0) , λ− (0 ∗ x)

}

= λ− (0 ∗ x) .

Hence λ+ (0 ∗ y) ≥ λ+ (0 ∗ x) and λ− (0 ∗ y) ≤ λ− (0 ∗ x).

Lemma 3.2. Let B be a BF BRK-ideal of BRK-algebra X. If x ≤ y holds in
X, then λ+ (0 ∗ x) ≥ λ+ (0 ∗ y) and λ− (0 ∗ x) ≤ λ− (0 ∗ y).

Theorem 3.1. Let Bi = {(
λ+

i , λ−
i

)
: i ∈ Ω} be a family of BF BRK-ideals in

X. Then B = ∧
i∈Ω

Bi is also a BF BRK-ideal in X, where B = (λ+, λ−) that is

λ+ = ∧
i∈Ω

λ+
i and λ− = ∨

i∈Ω
λ−

i ( λ+ ≤ λ+
i , λ− ≥ λ−

i ∀ i ∈ Ω).

Definition 3.2. Let B = (μ+, μ−) be BF set in BRK-algebra X and (α, β)
∈ [−1, 0] × [0, 1], then

(1) The set B̃+
β = {x ∈ R : μ+ (x) ≥ β} is called positive β-cut of B.

(2) The set B−
α = {x ∈ R : μ− (x) ≤ α} is called negative α-cut of B.

(3) The set B(α,β) = {x ∈ R : μ− (x) ≤ α and μ+ (x) ≥ β} is called (α, β)-cut
of B.

For every γ ∈ (0, 1] and B+
γ ∩ B−

−γ is called γ-cut of B.
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Theorem 3.2. A BF set B = (μ+, μ−) is a BF BRK-ideal in X iff the follow-
ings hold:

(i) For all β ∈ [0, 1], B+
β is non-empty this implies B+

β is a BRK-ideal of X.
(ii) For all α ∈ [−1, 0], B−

α is non-empty this implies B−
α is a BRK-ideal of X.

Proof. Let B = (μ+, μ−) be a BF BRK-ideal in X. For x ∈ B+
β so μ+ (x) ≥ β

where β ∈ [0, 1]. Now μ+ (0) ≥ μ+ (x) ≥ β. This implies that 0 ∈ B+
β .

Next, let 0∗(x ∗ y) ∈ B+
β and 0∗y ∈ B+

β , this means that μ+ (0 ∗ (x ∗ y)) ≥ β

and μ+ (0 ∗ y) ≥ β. Then λ+ (0 ∗ x) ≥ min {λ+ (0 ∗ (x ∗ y)) , λ+ (0 ∗ y)} ≥ β.
Hence B+

β is a BRK-ideal of X.
Analogously, we can prove that B−

α is a BRK-ideal of X.

Corollary 3.1. If B = (μ+, μ−) is a BF BRK-ideal in X, then the sets B̃+
μ+(0)

and B̃−
μ−(0) are BRK-ideals of X.

Corollary 3.2. Let B = (μ+, μ−) be BF set in X. If B = (μ+, μ−) is a BF
BRK-ideal in X, then for all γ ∈ [0, 1] the γ-cut of B is a BRK-ideal of X.

Proof. It is analogous to the proof of Theorem3.2.

Corollary 3.3. If B = (μ+, μ−) is a BF BRK-ideal in X, then B̃(α,β) is a
BRK-ideal in X, ∀ (α, β) ∈ [−1, 0] × [0, 1]. In particular, γ-cut of B is a BRK-
ideal in X, for all γ ∈ [0, 1].

4 Images and Pre-images of a BF BRK-ideal

In this section, we introduced images and pre-images of BF BRK-ideals and
discussed some theorems.

Definition 4.1. Let ψ : X1 → X2 be a mapping of BRK-algebras. If B =
(μ+, μ−) and V = (υ+, υ−) are BF set of X1 and X2 respectively. Then

μ+
(
ψ−1(y)

)
= υ+(y) =

{ ∨
x∈ψ−1(y)

μ+ (x) , if ψ−1 (y) = ∅,

1, Otherwise,
,

and

μ− (
ψ−1(y)

)
= υ−(y) =

{ ∧
x∈ψ−1(y)

μ− (x) , if ψ−1 (y) = ∅,

−1, Otherwise,

for all x ∈ R2 is called image of B = (μ+, μ−) under ψ, where ψ−1 (y) = {x ∈
X1ψ (x) = y}. Also the pre-image B = V ◦ ψ in X1 defined as, υ+ (ψ(x)) =
μ+(x), and υ− (ψ(x)) = μ−(x).

Theorem 4.1. An into homomorphic pre-image of a BF BRK-ideal is also a
BF BRK-ideal.
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Proof. Let ψ : X1 → X2 be an into homomorphism of BRK-algebras. Suppose
that V = (υ+, υ−) be a BF BRK-ideal in (X2, ∗′, 0′) and B = (μ+, μ−) be a BF
BRK-ideal in (X1, ∗, 0). Then for all x ∈ X1, μ+ (0) = υ+ (ψ (0)) ≥ υ+ (ψ (x)) =
μ+(x) and μ− (0) = υ− (ψ (0)) ≤ υ− (ψ (x)) = μ−(x).

Now, let x, y ∈ X1. Then

μ+ (0 ∗ x) = υ+(ψ (0 ∗ x))
= υ+ (ψ (0) ∗′ ψ (x))
≥ min{υ+(ψ (0) ∗′ (ψ (x) ∗′ ψ (y))), υ+ (ψ (0) ∗′ ψ (y))}
= min{υ+(ψ (0 ∗ (x ∗ y))), υ+ (ψ (0 ∗ y))}
= min{μ+(0 ∗ (x ∗ y)), μ+ (0 ∗ y)}

and

μ− (0 ∗ x) = υ−(ψ (0 ∗ x))
= υ− (ψ (0) ∗′ ψ (x))
≤ max{υ−(ψ (0) ∗′ (ψ (x) ∗′ ψ (y))), υ− (ψ (0) ∗′ ψ (y))}
= max{υ−(ψ (0 ∗ (x ∗ y))), υ− (ψ (0 ∗ y))}
= max{μ−(0 ∗ (x ∗ y)), μ− (0 ∗ y)}.

Hence pre-image of a BF BRK-ideal is also a BF BRK-ideal.

Definition 4.2. Let B = (μ+, μ−) be a BF set in X. Then for K ⊆ X1 there
exist m,n ∈ K such that μ+ (m) = ∨

m∈K
μ+ (m) and μ− (n) = ∧

n∈K
μ− (n).

Theorem 4.2. An onto homomorphic image of a BF BRK-ideal is also a BF
BRK-ideal.

Proof. Let ψ : X1 → X2 be an onto homomorphism of BRK-algebras and
V = (υ+, υ−) be a BF BRK-ideal in (X2, ∗′, 0′). Let B = (μ+, μ−) be a BF
BRK-ideal in (X1, ∗, 0) with sup and inf properties. By Definition 4.2, we
get υ+(y′) = μ+

(
ψ−1(y′)

)
= ∨

x∈ψ−1(y)
μ+ (x) and υ−(y′) = μ− (

ψ−1(y′)
)

=

∧
x∈ψ−1(y)

μ− (x) for all y′ ∈ X2. Since B = (μ+, μ−) be BF BRK-ideal in

X1, we have μ+ (0) ≥ μ+ (x) and μ− (0) ≤ μ− (x). Note that 0 ∈ ψ−1(0′).
Thus υ+(0′) = μ+

(
ψ−1(0′)

)
= ∨

a∈ψ−1(0′)
μ+ (a) = μ+ (0) ≥ μ+ (x) and

υ−(0′) = μ− (
ψ−1(0′)

)
= ∧

a∈ψ−1(0′)
μ− (a) = μ− (0) ≤ μ− (x). This implies that

υ+(0′) ≥ ∨
a∈ψ−1(x′)

μ+ (a) = υ+(x′) and υ−(0′) ≤ ∧
a∈ψ−1(x′)

μ− (a) = υ−(x′)for all

x′ ∈ X2.
Now, let x′, y′, z′ ∈ X2 and 00 ∈ ψ−1(0′), x0 ∈ ψ−1(x′), y0 ∈ ψ−1(y′) be

such that μ+(00 ∗ x0) = ∨
a∈ψ−1(0′∗x′)

μ+ (a) and μ+(00 ∗ y0) = ∨
a∈ψ−1(0′∗y′)

μ+ (a)

and μ+(00 ∗ (x0 ∗ y0)) = υ+(ψ(00 ∗ (x0 ∗ y0))) = υ+(0′ ∗ (x′ ∗ y′)) =
∨

00∗(x0∗y0)∈ψ−1(0′∗(x′∗y′))
μ+ (00 ∗ (x0 ∗ y0)) = ∨

a∈ψ−1(0′∗(x′∗y′))
μ+ (a) .
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Thus

υ+(0′ ∗ x′) = ∨
a∈ψ−1(0′∗x′)

μ+ (a)

= μ+(00 ∗ x0)
≥ min{μ+(00 ∗ (x0 ∗ y0)), μ+(00 ∗ y0)}
= min{ ∨

a∈ψ−1(0′∗(x′∗y′))
μ+ (a) , ∨

a∈ψ−1(0′∗x′)
μ+ (a)}

= min{υ+(0′ ∗ (x′ ∗ y′)), υ+(0′ ∗ y′)}.

On the other hand, we have μ−(00 ∗ x0) = ∧
a∈ψ−1(0′∗x′)

μ− (a) and μ−(00 ∗ y0) =

∧
a∈ψ−1(0′∗y′)

μ− (a) and μ−(00 ∗ (x0 ∗ y0)) = υ− (ψ(00 ∗ (x0 ∗ y0))) = υ−(0′ ∗
(x′ ∗ y′)) = ∧

00∗(x0∗y0)∈ψ−1(0′∗(x′∗y′))
μ− (00 ∗ (x0 ∗ y0)) = ∧

a∈ψ−1(0′∗(x′∗y′))
μ− (a) .

Thus,

υ−(0′ ∗ x′) = ∧
a∈ψ−1(0′∗x′)

μ− (a)

= μ−(00 ∗ x0)
≤ max{μ−(00 ∗ (x0 ∗ y0)), μ−(00 ∗ y0)}
= max{ ∧

a∈ψ−1(0′∗(x′∗y′))
μ− (a) , ∧

a∈ψ−1(0′∗x′)
μ− (a)}

= max{υ−(0′ ∗ (x′ ∗ y′)), υ−(0′ ∗ y′)}.

Hence onto homomorphic image of a BF BRK-ideal is also a BF BRK-ideal.

5 BF Translation and BF Extension on BF BRK-Ideals

For any BF set B = (λ+, λ−) in X, we denote � = 1 − sup{λ+(x) | x ∈ X} and
⊥ = −1 − inf{λ−(x) | x ∈ X}.

Definition 5.1. Let B = (λ+, λ−) be a BF set in X and (γ, δ) ∈ [0,�]× [⊥, 0].
By a BF (γ, δ)-translation of B we mean a BF set BT

(γ,δ) = (λ+
(γ,T ), λ

−
(δ,T )) where

λ+
(γ,T ) : X −→ [0, 1], x −→ λ+(x) + γ,

λ−
(δ,T ) : X −→ [−1, 0], x −→ λ−(x) + δ.

Theorem 5.1. If B = (λ+, λ−) is a BF BRK-ideal in X, then the BF (γ,
δ)-translation BT

(γ,δ) = (λ+
(γ,T ), λ

−
(δ,T )) of Bis a BF BRK-ideal in X for all (γ,

δ) ∈ [0,�] × [⊥, 0].

Proof. Let a ∈ X. Then λ+
(γ,T )(0) = λ+(0) + γ ≥ λ+(a) + γ = λ+

(γ,T )(a), and
λ−

(δ,T )(0) = λ−(0) + δ ≤ λ−(a) + δ = λ−
(δ,T )(a). Now, let

λ+
(γ,T )(0 ∗ x) = λ+(0 ∗ x) + γ

≥ min{λ+(0 ∗ (x ∗ y)), λ+(0 ∗ y)} + γ

= min{λ+(0 ∗ (x ∗ y)) + γ, λ+(0 ∗ y) + γ}
= min{λ+

(γ,T ) (0 ∗ (x ∗ y)) , λ+
(γ,T ) (0 ∗ y)},
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and

λ−
(δ,T )(0 ∗ x) = λ−(0 ∗ x) + δ

≤ max{λ−(0 ∗ (x ∗ y)), λ−(0 ∗ y)} + δ

= max{λ−(0 ∗ (x ∗ y)) + δ, λ−(0 ∗ y) + δ}
= max{λ−

(δ,T ) (0 ∗ (x ∗ y)) , λ−
(δ,T ) (0 ∗ y)}.

Hence B = (λ+, λ−) is a BF BRK-ideal in X.

Theorem 5.2. Let B = (λ+, λ−) be a BF set in X such that the BF (γ, δ)-
translation BT

(γ,δ) = (λ+
(γ,T ), λ

−
(δ,T )) of B is a BF BRK-ideal in X for some (γ,

δ) ∈ [0,�] × [⊥, 0]. Then B = (λ+, λ−) is a BF BRK-ideal in X.

Proof. Let a ∈ X. Then λ+(0) + γ = λ+
(γ,T )(0) ≥ λ+

(γ,T )(a) = λ+(a) + γ, and
λ−(0)+δ = λ−

(δ,T )(0) ≤ λ−
(δ,T )(a) = λ−(a)+δ. Thus λ+(0) ≥ λ+(a) and λ−(0) ≤

λ−(a). Now, let

λ+(0 ∗ x) + γ = λ+
(γ,T )(0 ∗ x)

≥ min{λ+
(γ,T ) (0 ∗ (x ∗ y)) , λ+

(γ,T ) (0 ∗ y)}
= min{λ+(0 ∗ (x ∗ y)) + γ, λ+(0 ∗ y) + γ}
= min{λ+(0 ∗ (x ∗ y)), λ+(0 ∗ y)} + γ,

and

λ−(0 ∗ x) + δ = λ−
(δ,T )(0 ∗ x)

≤ max{λ−
(δ,T ) (0 ∗ (x ∗ y)) , λ−

(δ,T ) (0 ∗ y)}
= max{λ−(0 ∗ (x ∗ y)) + δ, λ−(0 ∗ y) + δ}
= max{λ−(0 ∗ (x ∗ y)), λ−(0 ∗ y)} + δ.

Thus λ+(0 ∗ x) ≥ min{λ+(0 ∗ (x ∗ y)), λ+(0 ∗ y)} and λ−(0 ∗ x) ≤ max{λ−(0 ∗
(x ∗ y)), λ−(0 ∗ y)}. Hence B = (λ+, λ−) is a BF BRK-ideal in X.

Definition 5.2. Let B1 = (λ+, λ−) and B2 = (μ+, μ−) be two BF sets in X. If
λ+ (x) ≤ μ+ (x) and λ− (x) ≥ μ− (x) for all x ∈ X, then we say that B2 is a
BF extension of B1.

Definition 5.3. Let B1 = (λ+, λ−) and B2 = (μ+, μ−) be two BF sets in X.
Then B2 is called a BF BRK-ideal extension of B1 if following conditions are
holds:

(i) B2 is called a BF extension of B1,
(ii) If B2 is a BF BRK-ideal extension of X then B1 is also a BF BRK-ideal

extension of X.

By definition λ+
(γ,T ) ≥ λ+ (x) and λ−

(δ,T ) ≤ λ− (x) for all x ∈ X. Therefore,
we have following theorem.
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Theorem 5.3. If B = (λ+, λ−) is a BF BRK-ideal of X, then the BF (γ,
δ)-translation BT

(γ,δ) = (λ+
(γ,T ), λ

−
(δ,T )) of Bis a BF extension of X for all (γ,

δ) ∈ [0,�] × [⊥, 0].
Converse of above theorem is not true in general as seen in following Example.

Example 3. Consider BRK-algebra X = {0, a1, a2, a3} defined in Example 2.
Let B1 = (λ+, λ−) be a BF set in X defined by

0 a1 a2 a3

λ+ 0.4 0.4 0.2 0.2
λ− −0.2 −0.2 −0.1 −0.1

Clearly, B is a BF BRK-ideal of X. Let B2 = (μ+, μ−) be a BF set of X defined
by

0 a1 a2 a3

μ+ 0.42 0.42 0.4 0.65
μ− −0.23 −0.23 −0.23 −0.66

Then B2 is a BF BRK-ideal extension of B1 but it is not BF (γ, δ)-translation
of B1, for all (γ, δ) ∈ [0,�] × [⊥, 0].

Definition 5.4. Let B = (μ+, μ−) be a BF set in X, (α, β) ∈ [−1, 0] × [0, 1],
γ ∈ [0,�] and δ ∈ [⊥, 0]. We define B+T

(β,γ) = {x ∈ X : μ+ (x) ≥ β − γ},
B−T

(α,δ) = {x ∈ X : μ− (x) ≤ α − δ} and BT
((α,β),(γ,δ)) = {x ∈ X : μ− (x) ≤ α − γ

and μ+ (x) ≥ β − δ}.
Theorem 5.4. If B = (μ+, μ−) is BF BRK-ideal of X, then B+T

(β,γ) and B−T
(α,δ)

are BRK-ideal of X for all α ∈ Im(μ−) and β ∈ Im(μ+) with β ≥ γ and α ≤ δ.
If we do not take the condition that B = (μ+, μ−) is BF BRK-ideal of X,

then either both B+T
(β,γ) and B−T

(α,δ) are not BRK-ideals of X, or one of them is
not a BRK-ideal of X.

Example 4. Consider BRK-algebra X = {0, 1, 2} with the following operation

∗ 0 1 2
0 0 2 2
1 1 0 0
2 2 0 0

Let B = (μ+, μ−) be a BF set of X defined by

0 1 2
μ+ 0.5 0.2 0.4
μ− −0.6 −0.4 −0.5

Clearly, B is a BF BRK-ideal of X. Take β = 0.32, α = −0.35, γ = 0.05
and δ = −0.04. Then B+T

(β,γ) = {0, 2} and B−T
(α,δ) = {0, 1, 2} are BRK-ideals of

X. On the other hand, BF set B = (μ′+, μ′−) defined by
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0 2 1
μ′+ 0.6 0.5 0.7
μ′− −0.9 −0.7 −0.5

is not a BF BRK-ideal of X. Take β = 0.55, α = −0.8, γ = 0.03 and δ = −0.07.
Then B+T

(β,γ) = {0, 1} is not a BRK-ideal of X, but B−T
(α,δ) = {0} is a BRK-ideal

of X.

Corollary 5.1. If B = (μ+, μ−) is BF BRK-ideal of X, then BT
((α,β),(γ,δ)) is a

BRK-ideal of X, for all (α, β) ∈ [−1, 0] × [0, 1] and (γ, δ) ∈ [0,�] × [⊥, 0].

Theorem 5.5. Let B = (μ+, μ−) be a BF set of X. Then the BF (γ, δ)-
translation of B is a BF BRK-ideal of X if and only if B+T

(β,γ) and B−T
(α,δ) are

BRK-ideal of X for all β ∈ Im(μ+), α ∈ Im(μ−) and (γ, δ) ∈ [0,�] × [⊥, 0]
with α < δand β > γ.

Proof. Assume that BT
(γ,δ) = (μ+

(γ,T ), μ
−
(δ,T )) is a BF BRK-ideal of X. Let x ∈

B+T
(β,γ). Then μ+ (x) ≥ β − γ such that μ+

(γ,T ) (0) ≥ μ+
(γ,T ) (x) ≥ β. This shows

that μ+ (0) + γ ≥ β. Thus μ+ (0) ≥ β − γ, which implies that 0 ∈ B+T
(β,γ). Now,

let 0 ∗ (a ∗ b) ∈ B+T
(β,γ) and 0 ∗ b ∈ B+T

(β,γ) for all a, b ∈ X. Since μ+ (0 ∗ a) ≥
min{μ+

(γ,T ) (0 ∗ (a ∗ b)) , μ+
(γ,T ) (0 ∗ b)} ≥ β. This shows that μ+ (0 ∗ a) + γ ≥ β.

Thus μ+ (0 ∗ a) ≥ β − γ, which implies that 0 ∗ a ∈ B+T
(β,γ). Hence B+T

(β,γ) is a
BRK-ideal of X. Analogously, we can prove that B−T

(α,δ) is a BRK-ideal of X.
Conversely, suppose B+T

(β,γ) and B−T
(α,δ) are BRK-ideals of X for all β ∈

Im(μ+), α ∈ Im(μ−) and (γ, δ) ∈ [0,�] × [⊥, 0] with α < δ and β > γ.
Assume that there exist a ∈ X, such that μ+

(γ,T ) (0) < β′ < μ+
(γ,T ) (a)

and μ−
δ,T ) (0) > α′ > μ−

δ,T ) (a). Then μ+ (0) > β′ − γ, μ+ (0) > β′ − γ,
μ− (0) < α′ − δ and μ− (0) < α′ − δ. This shows that a ∈ B+T

(β,γ) and
a ∈ B−T

(α,δ), but 0 /∈ B+T
(β,γ) and 0 /∈ B−T

(α,δ) which is contradiction. Hence
μ+

(γ,T ) (0) ≥ μ+
(γ,T ) (a) and μ−

(δ,T ) (0) ≤ μ−
(δ,T ) (a). Similarly, we can prove

that μ+
(γ,T ) (0 ∗ a) ≥ min{μ+

(γ,T ) (0 ∗ (a ∗ b)) , μ+
(γ,T ) (0 ∗ b)}, μ−

(δ,T ) (0 ∗ a) ≤
max{μ−

(δ,T ) (0 ∗ (a ∗ b)) , μ−
(δ,T ) (0 ∗ b)}. Hence BF (γ, δ)-translation of B is a BF

BRK-ideal of X.

Theorem 5.6. Let B = (λ+, λ−) be a BF BRK-ideal in X, (γ, δ) ∈ [0,�] ×
[⊥, 0] and (γ′, δ′) ∈ [0,�]× [⊥, 0]. If (γ, δ) ≥ (γ′, δ′), then BF (γ, δ)-translation
BT

(γ,δ) of B is a BF BRK-ideal extension of (γ′, δ′)-translation BT
(γ′,δ′) of B.

Theorem 5.7. Let B = (λ+, λ−) be a BF BRK-ideal in X and (γ, δ) ∈ [0,�]×
[⊥, 0]. For every BF BRK-ideals extension B′ = (ν+, ν−) of the BF (γ, δ)-
translation BT

(γ,δ) of B, there exist (γ′, δ′) ∈ [0,�]×[⊥, 0] such that (γ, δ) ≥ (γ′,
δ′) and B′ is a BF BRK-ideal extension of the BF (γ′, δ′)-translation BT

(γ′,δ′)
of B.
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Proof. Assume that for every BF BRK-ideal extension B′ = (ν+, ν−) of BT
(γ,δ),

there does not exist (γ′, δ′) ∈ [0,�] × [⊥, 0] (γ, δ) ≥ (γ′, δ′) such that B′ is
not BF BRK-ideal extension of BT

(γ′,δ′). Then ν+ (x) > μ+
(γ′,T ) (x) = μ+ (x)+γ′

and ν− (x) < μ−
(δ′,T ) (x) = μ− (x) + δ′ for x ∈ R. Since, (γ, δ) < (γ′, δ′) so that

ν+ (x) > μ+ (x) + γ′ > μ+ (x) + γ and ν− (x) < μ− (x) + δ′ < μ− (x) + δ. This
shows that ν+ (x) > μ+

(γ,T ) (x) and ν− (x) < μ−
(δ,T ) (x) which is contradiction.

Thus, there exist (γ′, δ′) ∈ [0,�] × [⊥, 0] such that (γ, δ) ≥ (γ′, δ′) and B′ is a
BF BRK-ideal extension of BT

(γ′,δ′).

Definition 5.5. Let B = (λ+, λ−) be a BF set of X and ζ, η ∈ [0, 1]. By a BF
(ζ, η)-multiplication of B we mean a BF set Bm

(ζ,η) = (λ+m
ζ , λ−m

η ) express as

λ+m
ζ : X −→ [0, 1], x −→ λ+ (x) ζ,

λ−m
η : X −→ [−1, 0], x −→ λ− (x) η.

For a BF BRK-ideal, BF (0, 0)-multiplication Bm
(0,0) is a BF BRK-ideal of

X.

Theorem 5.8. If B = (λ+, λ−) is a BF BRK-ideal of X, then BF (ζ, η)-
multiplication Bm

(ζ,η) of B is a BF BRK-ideal of X.

Theorem 5.9. Let B = (λ+, λ−) be a BF set of X. Then BF (ζ, η)-
multiplication Bm

(ζ,η) of B is a BF BRK-ideal of X if and only if B is a BF
BRK-ideal of X for some ζ, η ∈ [0, 1].

Proof. Necessity obtains from Theorem 5.8. Let ζ, η ∈ [0, 1] such that BF (ζ, η)-
multiplication Bm

(ζ,η) of B is a BF BRK-ideal of X. Let x ∈ X. Then λ+ (0) ζ =
λ+m

ζ (0) ≥ λ+m
ζ (x) ≥ λ+ (x) ζ, λ− (0) η = λ+m

η (0) ≤ λ+m
η (x) ≤ λ+ (x) η which

implies that λ+ (0) ≥ λ+ (x). Analogously, λ− (0) ≤ λ− (x). Next, let for x, y ∈
X

λ+ (0 ∗ x) ζ = λ+m
ζ (0 ∗ x)

≥ min{λ+m
ζ (0 ∗ (x ∗ y)) , λ+m

ζ (0 ∗ y)}
= min{λ+ (0 ∗ (x ∗ y)) ζ, λ+ (0 ∗ y) ζ}
= min{λ+ (0 ∗ (x ∗ y)) , λ+ (0 ∗ y)}ζ,

which implies that λ+ (x) ≥ min{λ+ (0 ∗ (x ∗ y)) , λ+ (0 ∗ y)}. And,

λ− (0 ∗ x) η = λ−m
η (0 ∗ x)

≤ max{λ−m
η (0 ∗ (x ∗ y)) , λ−m

η (0 ∗ y)}
= max{λ− (0 ∗ (x ∗ y)) η, λ− (0 ∗ y) η}
= max{λ− (0 ∗ (x ∗ y)) , λ− (0 ∗ y)}η,

which implies that λ− (x) ≤ max{λ− (0 ∗ (x ∗ y)) , λ− (0 ∗ y)} for x, y ∈ X.
Hence B is a BF BRK-ideal of X.
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Theorem 5.10. Let B = (λ+, λ−) be a BF set of X, (γ, δ) ∈ [0,�]× [⊥, 0] and
ζ, η ∈ (0, 1]. Then every BF (γ, δ)-translation BT

(γ,δ) of B is a BF BRK-ideal
extension of the (ζ, η)-multiplication Bm

(ζ,η) of B.

Proof. For all a ∈ R, we have μ+
(γ,T ) (a) = μ+ (a) + γ ≥ μ+ (a) ≥ μ+ (a) ζ =

μ+m
ζ (a) and μ−

(δ,T ) (a) = μ− (a) + δ ≤ μ− (a) ≤ μ− (a) η = μ−m
η (a). Thus BT

(γ,δ)

is a BF extension of the (ζ, η)-multiplication Bm
(ζ,η) of B. Assume that BF (ζ,

η)-multiplication Bm
(ζ,η) of B is a BF BRK-ideal of X. Then by Theorem5.9,

B is a BF BRK-ideal of X. By Theorem 5.1, BT
(γ,δ) is a BF BRK-ideal of X.

Thus every BF (γ, δ)-translation is a BF BRK-ideal extension of the (ζ, η)-
multiplication of B.

6 Conclusion

In this study, we investigated BF BRK-ideals in BRK-algebras and discussed
related properties. We introduced translation, extension and multiplications of
BF BRK-ideals in BRK-algebras and discussed related results. As an extension
of above results, one could study bipolar anti fuzzy BRK-algebras and BF ideals
in other algebraic structures. Applications of the method to consider the related
problems in machines learning, decision makings, information sciences, cognitive
science, intelligent decision-making system, and so on.
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A New Approach for Solving Fuzzy Supplier
Selection Problems Under Volume Discount
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Abstract. In order to achieve a compromised solution for a multi-objective
linear programming with fuzzy right hand sides, Tchebycheff norm and a new
approach based on a-cut is suggested to minimize the distance from the current
estimate of the objective values from the ideal point. Since the obtained solu-
tions by the Tchebycheff approach are weakly efficient for multi-objective
problems. Hence, an augmented weighted Tchebycheff norm has been proposed.
Here, the satisficing tradeoff algorithm is used to solve the augmented weighted
Tchebycheff problems. Since the supplier selection problem is usually a
multi-objective problem, the augmented weighted Tchebycheff method is
applied for obtaining its solutions.

Keywords: Fuzzy multi-objective linear programming � Augmented weighted
Tchebycheff norm � a-cut approach � Satisficing tradeoff algorithm

1 Introduction

Companies have to work with several suppliers in order to supply their raw material.
More than 70% of product’s final price is related to raw material’s cost. Because of this
reason buying management is one of the most important parts in supply chain. In such
circumstances the purchasing department can play a key role in cost reduction, and
supplier selection is one of the most important functions of purchasing management
[1]. Several factors may affect a supplier’s performance. Dickson [2] identified 23
different criteria for vendor selection including quality, delivery, performance history,
warranties, price, technical capability and financial position. Selecting the best sup-
pliers and quota allocations to them reduces purchasing costs, improves competitive-
ness, and improving quality and flexibility to meet the requirements of the end
consumer [3].

Basically there are two kinds of supplier selection problem based on the number of
suppliers:

(1) Single sourcing,
(2) Multiple sourcing,

In the first kind of supplier selection, one supplier can satisfy all the buyer’s needs.
The management needs to make only one decision: which supplier is the best? In the
second type, no supplier can satisfy all the buyer’s requirements. That means, the
buyers makes balance between suppliers and its overall demand is bought from several

© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
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suppliers. The decision maker should make two decision: which suppliers are the best?
And how much should be purchased from each selected supplier?

Based on the number of objective functions, the supplier selection programming is
going to be divided into two clusters:

(1) Single objective;
(2) Multi objectives.

First cluster is consists of problems that have one objective function. This objective
function can be considered as cost, quality or delivery on time, etc. In second cluster,
several objective functions are supposed as objectives of decision making.

In reality most input data is not accurate. In the way that, most of these data can be
mention as verbal variables such as high, low, tall and so on. Crisp models can’t
consider this inaccurate data. Fuzzy logic is one of the strong ways to manage this
inaccurate data [4].

Here, we introduce some existed methods and criteria for supplier selection
problem. We can point to these criteria as the most important ones: coast, quality of
products, service aspects, delivery time, risk factors and trade restrictions. Some of the
most important criteria are used for supplier selection problem from 1966 until now are
summarized in Table 1.

In the previous works, several methods applied to solve supplier selection and order
allocation program. Here, we introduce some of them.

Gaballa [15] is the first author who applied mathematical programming to supplier
selection in a real case. He used mixed integer programming to minimize the total
discounted price of allocated items to the suppliers. He also formulated a
single-objective, mixed-integer programming to minimize the sum of purchasing,
transportation and inventory costs by considering multiple items, multiple time periods,
vendors’ quality, delivery and capacity. Weber and Current [16] used a multi objective
approach to systematically analyze the trade-offs between conflicting criteria in supplier
selection problems. Ghodsypour and O’Brien [17] developed a Decision Support

Table 1. Literature review for supplier selection criteria

Author Criteria
Cost Quality Delivery Capacity Warranty period

Lin [6] ✓ ✓ ✓

Chen [7] ✓

Chan [8] ✓ ✓ ✓ ✓

Ghodsypour [9] ✓ ✓ ✓ ✓

Stavropolous [10] ✓

Min [11] ✓ ✓ ✓

Weber [12] ✓ ✓ ✓ ✓

Abratt [13] ✓

Lehmann [14] ✓ ✓ ✓

Dickson [2] ✓ ✓ ✓ ✓ ✓
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System (DSS) for reducing the number of suppliers according to supply based opti-
mization strategy. They used an integrated Analytical Hierarchy Process (AHP) with
mixed-integer programming and considered suppliers’ capacity constraint and the
buyers’ limitations on budget and quality etc. Ghodsypour and O’Brien [1] developed
an integrated AHP and linear programming model to consider both qualitative and
quantitative factors in purchasing activity. Wang et al. [18] provided an AHP method to
choose from agile/lean supply chain strategies and then used Pre-emptive Goal Pro-
gramming (PGP) to obtain the optimal order quantity from their suppliers. Xia and Wu
[5] introduced rough sets theory to improve AHP and integrated multi-objective mixed
integer programming to determine which suppliers should be selected and the quantity
that should be allocated to them while considering volume discount policy.

Zadeh [19] initiated the fuzzy set theory. Bellman and Zadeh [20] presented some
applications of fuzzy theories to the various decision-making processes in a fuzzy
environment. Zimmerman [21, 22] presented a fuzzy optimization technique to linear
programming problem with single and multiple objectives. Since then the fuzzy set
theory has been applied to formulate and solve the problems in various areas such as
artificial intelligence, image processing, robotics, pattern recognition, etc. Narsimhan
[23] proposed a Fuzzy Goal Programming (FGP) technique to specify imprecise
aspiration levels of the fuzzy goals. Yang, Ignizio and Kim [24] formulated the FGP
with nonlinear membership functions.

This article is divided into the following sections: In Sect. 2, we introduce a multi
objective linear programming model, and then we consider right hand side values as
fuzzy term. In Sect. 3, we use a-cut approach to change fuzzymodel into crisp type. After
that, we use a method to solve crisp model. In Sect. 4, we use from the model that
represented by Xia [5] and based on the data set adopted from a case company, and then
formulate the supplier selection and order allocation model. Numerical findings are
applied to show the usage of the suggested method. In Sect. 5, the conclusions are
presented.

2 Fuzzy Multi Objective Linear Programming

Many of the decision problems in real life are multi objective. That mean, there are
several objectives that each of them should be optimal at the same time.

Generally, a multi objective programming with p objective and is as follow:

min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fpðxÞ�
S:t: gðxÞ� b;

x� 0;
ð1Þ

where gðxÞ is linear function. In a real-life situation for a supplier selection problem,
many input information related to the various supplier are not known with certainty
such as capacity, quality, delivery time, etc. Such vagueness in the critical information
cannot be captured in a deterministic problem and therefore the optimal results of these
deterministic formulations may not serve the real purpose of modeling the problem.
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Due to this, we have considered the model as a fuzzy model. Fuzzy mathematical
programming has the capability to handle both multi objective problems and
vagueness.

A multi objective programming with fuzzy resource can be formulated as:

min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fpðxÞ�
S:t: gðxÞ� eb;

x� 0;
ð2Þ

Where the fuzzy number eb is in the fuzzy region of ½b; bþ u� with given fuzzy
tolerance u, Assume that the fuzzy tolerance u for the fuzzy constraint is known. Then,
eb is equivalent to ðbþ huÞ, where h is in ½0; 1�. In this case, a fuzzy constraint problem
is transformed to be a crisp parametric programming problem. The following section,
we apply Verdegay a-cut approach to transform fuzzy constraint to crisp constraint.

3 Propose Method

In this section, we first introduce Verdegay a-cut approach for transforming fuzzy
constraint to crisp constraint. Then, we present a method in order to solve crisp
equivalent multi objective programming.

3.1 Verdegay a-cut Approach [25]

For dealing problem (2), Verdegay considered if the membership function of the fuzzy
constraint (shown in Fig. 1) has the following form:

then,

lgðxÞ ¼
1; gðxÞ� b;
1� gðxÞ�b

u ; b� gðxÞ� bþ u;
0; gðxÞ[ bþ u;

8<
: ð3Þ

( )g xμ

g( )x0

1

jα

b b u+( )jg x
α

Fig. 1. Membership function of lgðxÞ, with level aj-cut
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Simultaneously, the membership functions of lgðxÞ, is continuous and monotonic
function and trade-off between this fuzzy constraint is allowed; then, problem (2) is
equivalent to the following:

min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fpðxÞ�
S:t: x 2 Xa;

ð4Þ

where Xa ¼ fx j lgðxÞ� a; x� 0g, for each a 2 ½0; 1�.
This is the fundamental concepts of a-cuts method of fuzzy mathematical pro-

gramming. One can then substitute (3) into (4) and obtain the following formulation:

min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fpðxÞ�
S:t: gðxÞ� bþð1� aÞu;

x� 0;

ð5Þ

where a 2 ½0; 1�. Thus the problem given in (5) is equivalent to a crisp parametric
programming formulation. For each a, one will have an optimal solution. In the fol-
lowing we represent a method to solve problem (5).

Now, we explain augmented weighted Tchebycheff approach to solve
multi-objective linear programming that obtained from above.

3.2 Augmented Weighted Tchebycheff Approach [26]

A common method for solving multi objective problems is augmented weighted
Tchebycheff approach. Next, we introduce this approach and an algorithm to solve
multi objective programming.

A multi objective programming consider as follow [26]:

min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . .; fpðxÞ�
S:t: x 2 X;

ð6Þ

where X is feasible region. Suppose that vk � 0; k ¼ 1; 2; . . .; p, are nonnegative

weights such that
Pp
k¼1

vk ¼ 1. So, augmented weighted Tchebycheff norm related to

FðxÞ 2 R
p define as follow:

FðxÞk kvq¼ FðxÞk kv1 þ q FðxÞk k1; ð7Þ

where,

FðxÞk kv1¼ max
k¼1;2;...;p

fvk fkðxÞj jg ð8Þ
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and,

FðxÞk k1¼ f1ðxÞj j þ f2ðxÞj j þ . . .þ fpðxÞ
�� �� ð9Þ

and, q is a nonnegative scalar that usually is a small number between 0.01 and 0.0001.
We apply augmented weighted Tchebycheff norm to find minimum distance

between objective functions and vector ideal solutions. So, we have to solve an opti-
mization problem as fellow:

min FðxÞ � FIk kv1
S:t: x 2 X:

ð10Þ

The equivalent program is obtaining from (7), (8) and (9). Therefore, we have:

minf max
k¼1;2;...;p

vkðfkðxÞ � f Ik Þgþ q
Xp
k¼1

ðfk � f Ik Þ

S:t: x 2 X;

ð11Þ

In order to solve (11) by using to linear programming techniques, we reformulate it
into a linear programming as follow:

minfbþ q
Xp
k¼1

ðfk � f Ik Þg

S:t: b� vkðfkðxÞ � f Ik Þ; k ¼ 1; 2; . . .; p;

x 2 X:

ð12Þ

One of the iterative algorithms to solve (12) is Satisficing Trade of Method
(STOM). Next, we introduce steps of STOM algorithm.

STOM algorithm [27]:

Step 1. Obtain ideal solution f Ik for each fk objective function as follow:

min fk
S:t x 2 X;

ð13Þ

f Ik is equals to optimal value form (13).
Step 2. The decision maker has to specify aspiration levels for each function (the
aspiration levels are determined by decision maker such that f þk [ f Ik , where f

þ
k is

aspiration level for fk objective function).
Step 3. The relative weights determine as follow:

vk ¼ 1
f þk � f Ik

: ð14Þ
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In fact, vk is reverse of distance between ideal value and aspiration levels for fk
objective function.
Then, solve (12).
Step 4. The solutions whose obtain in step 3 offer to decision maker. The decision
maker is asked to classify the objective functions into three classes:

i. The unacceptable objective functions whose values should be improved.
ii. The objective functions whose values may weakly.
iii. The acceptable objective functions whose values are acceptable as they are.

If no objective function is in the group (i) then, STOP. This solution is optimal.
Otherwise, the decision maker has to specify new aspiration levels for functions in
group (i) and (ii) then, go to step 3.

If the new program is infeasible then, the decision maker has determines more
weakly aspiration levels. This process continues until the new program being feasible.

The optimal points whose obtain from STOM algorithm is a Pareto solution of (11).
In order to illustrate the performance of the propose approach we apply it on a case

study from a drilling company.

4 Case Study

The proposed approach to solve supplier selection model was implemented in a drilling
company. There are three sources and three raw materials for purchasing. Decision
maker has to select the best sources and decide how many material buy from them.
Four objectives are considered by decision maker in this company for select suppliers
and order allocation. These objectives are cost, quality, on time delivery, suppliers
score. There are three kinds of commodity, Pipe (P), Gravel (G), Bentonite powder
(B) for purchasing.

We applied proposed method to solve case study model. In order to determine
distance between ideal solution and current solution, we use metric function that
represent by Steuer in [27] as follow:

DKðk; pÞ ¼ ½
Xp
i¼1

kKi ð1� diÞK �
1
K ; ð15Þ

Where di indicates the degree of closeness between obtained solution Ziðx�Þ and
their ideal solution ZI

i ðxÞ and obtain as follow:
When the i-th objective is maximized as:

Ziðx�Þ
ZI
i ðxÞ

: ð16Þ

Otherwise,
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ZI
i ðxÞ

Ziðx�Þ : ð17Þ

Also, k is unit vector of aspiration levels for objective function. K is distance
parameter such that, 1�K�1.

Here, we use distance function (19) for obtain distance between obtained solution
and ideal solution for K ¼ 2.

We compare the obtained compromise solution by proposed method with the
weighted additive approach. These results are shown in Fig. 2.

As seen in Fig. 2, the compromise solution that obtain by proposed method has less
distance from ideal solution related to weighted additive method for each a-cut,
a ¼ 0:1; 0:2; . . .; 1.

So, the result obtained from proposed method is better than weighted additive
approach for each a-cut, a ¼ 0:1; 0:2; . . .; 1.

5 Conclusion

Supplier selection is a complex multi objective decision-making problem. Since each
supplier has its own advantages and disadvantages in terms of cost, quality, delivery
and the technology, a flexibility model is required. In this paper, we use Xia_s model
for formulating our case study. Since, many information of firm is not precise in real
life so, we consider fuzzy number for show this information. We proposed an inter-
active approach by using - cut method, augmented weighted Tchebycheff norm and
STOM algorithm. We compare proposed method with weighted additive approach by
using a distance function. According to Eq. (10) proposed method from ideal solution
has less distance related to weighted additive approach. Future studies may like to use
stochastic variable instead of fuzzy variable. Moreover, using different norm to mini-
mize the distance between the obtain solution of the objectives and the ideal solution.

Fig. 2. Comparison of distance between obtained solution and ideal solution
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Abstract. In the present paper, the L-fuzzy filter theory on R0-algebras
is further studied. Some new properties of L-fuzzy filters are given. Rep-
resentation theorem of L-fuzzy filter which is generated by a fuzzy set
is established. It is proved that the set consisting of all L-fuzzy filters
on a given R0-algebra, under the L-fuzzy set-inclusion order �, forms a
complete distributive lattice.

Keywords: Fuzzy logic · R0-algebra · L-fuzzy filter · Complete distrib-
utive lattice

1 Introduction

To make the computers simulate beings in dealing with certainty and uncertainty
in information is one important task of artificial intelligence. Logic appears in
a “sacred” (resp., a “profane”) form which is dominant in proof theory (resp.,
model theory). The role of logic in mathematics and computer science is twofold–
as a tool for applications in both areas, and a technique for laying the founda-
tions. Nonclassical logic [1] including many-valued logic and fuzzy logic takes the
advantage of classical logic to handle information with various facets of uncer-
tainty [2], such as fuzziness and randomness. At present, nonclassical logic has
become a formal and useful tool for computer science to deal with fuzzy informa-
tion and uncertain information. R0-algebra is an important class of non-classical
fuzzy logical algebras which was introduced by Wang in [3] by providing an alge-
bra proof of the completeness theorem of the formal deductive system L∗. From
then, R0-algebras has been extensively investigated by many researchers. Among
them, Jun and Liu studied the theory of filters in R0-algebras in [4]. The concept
of fuzzy sets is introduced firstly by Zadeh in [5]. Liu and Li in [6] proposed the
concept of fuzzy filters of R0-algebras and discussed some their properties by
using fuzzy sets theory. As an extension of the concept of fuzzy filter, in [7] the
author and Xu propose the notion of L-fuzzy filters of R0-algebras in terms of
the notion of L-fuzzy set in [8], where the prefix L a lattice. In this paper, we
will further research the properties of L-fuzzy filters in R0-algebras. The lattice
structural feature of the set containing all of L-fuzzy filters in a given R0-algebra
is investigated. It should be noticed that when L = [0, 1], then [0, 1]-fuzzy sets
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 3
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are originally meant fuzzy sets. Since [0, 1] is a special completely distributive
lattice, to investigate properties of L-fuzzy filters, sometimes we assume that the
prefix L is a completely distributive lattice.

2 Preliminaries

Definition 1 (cf. [3]). Let M be an algebra of type (¬,∨,→), where ¬ is a
unary operation, ∨ and → are binary operations. (M,¬,∨,→, 1) is called an R0-
algebra if there is a partial order � such that (M,�, 1) is a bounded distributive
lattice with the greatest element 1, ∨ is the supremum operation with respect
to �, ¬ is an order-reversing involution, and the following conditions hold for
every a, b, c ∈ M :

(M1) ¬a → ¬b = b → a;
(M2) 1 → a = a, a → a = 1;
(M3) b → c � (a → b) → (a → c);
(M4) a → (b → c) = b → (a → c);
(M5) a → (b ∨ c) = (a → b) ∨ (a → c), a → (b ∧ c) = (a → b) ∧ (a → c);
(M6) (a → b) ∨ ((a → b) → (¬a ∨ b)) = 1.

Lemma 1 (cf. [3]). Let M be an R0-algebra, a, b, c ∈ M . Then the following
properties hold.

(P1) a � b if and only if a → b = 1;
(P2) a � b → c if and only if b � a → c;
(P3) (a ∨ b) → c = (a → c) ∧ (b → c), (a ∧ b) → c = (a → c) ∨ (b → c);
(P4) If b � c, then a → b � a → c, and if a � b, then b → c � a → c;
(P5) a → b � ¬a ∨ b and a ∧ ¬a � b ∨ ¬b;
(P6) (a → b) ∨ (b → a) = 1 and a ∨ b = ((a → b) → b) ∧ ((b → a) → a);
(P7) a → (b → a) = 1 and a → (¬a → b) = 1;
(P8) a → b � a ∨ c → b ∨ c and a → b � a ∧ c → b ∧ c;
(P9) a → b � (a → c) ∨ (c → b).

Lemma 2 (cf. [3]). Let M be an R0-algebra. Define a new operator ⊗ on M
such that a⊗b = ¬(a → ¬b), for every a, b, c ∈ M . Then the following properties
hold.

(P10) (M,⊗, 1) is a commutative monoid with the multiplicative unit element
1;
(P11) If a � b, then a ⊗ c � b ⊗ c;
(P12) 0 ⊗ a = 0 and a ⊗ ¬a = 0;
(P13) a ⊗ b � a ∧ b and a ⊗ (a → b) � b and a � b → (a ⊗ b);
(P14) a ⊗ b → c = a → (b → c) and a ⊗ (b ∨ c) = (a ⊗ b) ∨ (a ⊗ c).

Let X be a non-empty set and L a lattice. A map A : X → L is called an
L-fuzzy subset on X. The set of all L-fuzzy subsets on X is denoted by FL(X).
(cf. [8]). Let A and B be two L-fuzzy subsets on X. We define A � B, A � B
, A � B and A = B as follows:
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(i) (A � B)(x) = A (x) ∧ B(x), for all x ∈ X;
(ii) (A � B)(x) = A (x) ∨ B(x), for all x ∈ X;
(iii) A � B ⇐⇒ A (x) � B(x), for all x ∈ X;
(iv) A = B ⇐⇒ (A � B and B � A ).

3 On L-fuzzy Filters in R0-algebras

In this section, we recall the definition of L-fuzzy filters and give their some new
properties.

Definition 2 (cf. [7]). Let M be an R0-algebra and L a lattice. An L-fuzzy
subset A on M is said to be an L-fuzzy filter of M , if it satisfies the following
conditions:

(LF1) A (1) � A (a) for all a ∈ M ;
(LF2) A (b) � A (a) ∧ A (a → b) for all a, b ∈ M .

The set of all L-fuzzy filters of M is denoted by LFil(M).

Theorem 1. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset on
M . Then A ∈ LFil(M) if and only if it satisfies the following conditions:

(LF3) a � b implies A (b) � A (a) for all a, b ∈ M ;
(LF4) A (a ⊗ b) � A (a) ∧ A (b) for all a, b ∈ M .

Proof. Assume that A ∈ LFil(M). From Theorem 6 in [7], we know that A
satisfies the condition (LF3). Let a, b ∈ M , since a � b → (a ⊗ b), by (LF2)
and (LF3)), we have that A (a ⊗ b) � A (b) ∧ A (b → (a ⊗ b)) � A (a) ∧ A (b).
Thus A also satisfies the condition (LF4). Conversely, Assume that A satisfies
the condition (LF3) and (LF4). since a � 1, by (LF3) we have A (1) � A (a).
Thus A satisfies the condition (LF1). From a ⊗ (a → b) � b, (LF3) and (LF4),
it follows that A (b) � A (a ⊗ (a → b)) � A (a) ∧ A (a → b). Thus A satisfies
the condition (LF2). Therefore A ∈ LFil(M) by Definition 2.

Definition 3. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset
on M . An L-fuzzy subset A λ on M is defined as follows:

A λ(a) =

{
A (a), a 	= 1,

A (1) ∨ λ, a = 1,
(1)

for all a ∈ M , where λ ∈ L.

Theorem 2. Let M be an R0-algebra, L a lattice and A ∈ LFil(M). Then
A λ ∈ LFil(M) for all λ ∈ L.

Proof. Firstly, for all a, b ∈ M , let a � b, we consider the following two cases:

(i) Assume that b = 1. If a = 1, we have that A λ(b) = A (1) ∨ λ = A λ(a). If
a 	= 1, by using A ∈ LFil(M) and (LF1), we have that A λ(b)=A (1) ∨ λ �
A (1) � A (a) = A λ(a).
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(ii) Assume that b 	= 1, then a 	= 1. It follows that A λ(b) = A (b) � A (a) =
A λ(a) from A ∈ LFil(M) and (LF3).

Summarize above two cases, we conclude that a � b implies A λ(b) � A λ(a),
for all a, b ∈ M . That is, A λ satisfies (LF3).

Secondly, for all a, b ∈ M , we consider the following two cases:

(i) Assume that a ⊗ b = 1. If a = b = 1, it is obvious that

A λ(a ⊗ b) = A (1) ∨ λ = A λ(a) ∧ A λ(b).

If a = 1, b 	= 1 or a 	= 1, b = 1, then a ⊗ b 	= 1, it is a contradiction.
If a 	= 1 and b 	= 1, it follows that A λ(a)∧A λ(b) = A (a)∧A (b) � A (a⊗b) =

A (1) � A (1) ∨ λ = A λ(a ⊗ b) from A ∈ LFil(M), (LF4) and (1).

(ii) Assume that a ⊗ b 	= 1. If a = b = 1, it is obvious a contradiction.

If a = 1, b 	= 1 or a 	= 1, b = 1, let’s assume a = 1, b 	= 1, then a ⊗ b = ¬(1 →
¬b) = b, and so A λ(a) ∧ A λ(b) � A λ(b) = A (b) = A (a ⊗ b) = A λ(a ⊗ b).

If a 	= 1 and b 	= 1, it follows that A λ(a ⊗ b) = A (a ⊗ b) � A (a) ∧ A (b) =
A λ(a) ∧ A λ(b) from A ∈ LFil(M) and (LF4).

Summarize above two cases, we conclude that A λ(a ⊗ b) � A λ(a) ∧ A λ(b),
for all a, b ∈ M . That is, A λ satisfies (LF4).

Thus it follows that A λ ∈ LFil(M) from Theorem 1.

Definition 4. Let M be an R0-algebra, L a lattice and A ,B two L-fuzzy sub-
sets on M . Defined L-fuzzy subsets A B and BA on M as follows: for all a ∈ M ,

A B(a) =

{
A (a), a 	= 1,

A (1) ∨ B(1), a = 1,
and BA (a) =

{
B(a), a 	= 1,

B(1) ∨ A (1), a = 1.

(2)

Corollary 1. Let M be an R0-algebra, L a lattice and A ,B two L-fuzzy subsets
on M . If A ,B ∈ LFil(M). Then A B,BA ∈ LFil(M).

Definition 5. Let M be an R0-algebra, L a completely lattice and A ,B two
L-fuzzy subsets on M . An L-fuzzy set A 
B on M is defined as follows: for all
a, x, y ∈ M ,

(A 
 B)(a) =
∨

x⊗y�a

[A (x) ∧ B(y)] . (3)

Theorem 3. Let M be an R0-algebra, L a completely distributive lattice and
A ,B two L-fuzzy subsets on M . If A ,B ∈ LFil(M). Then A B 
 BA ∈
LFil(M).

Proof. Firstly, for all a, b ∈ M , let a � b, then {x⊗y|x⊗y � a} ⊆ {x⊗y|x⊗y �
b}, and so(

A B 
 BA
)
(b) =

∨
x⊗y�b

[
A B(x) ∧ BA (y)

]
�

∨
x⊗y�a

[
A B(x) ∧ BA (y)

]
=

(
A B 
 BA

)
(a).
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Hence A B 
 BA satisfies (LF3). Secondly, for all a, b ∈ M , we have that(
A B 
 BA

)
(a ⊗ b)

=
∨

x⊗y�a⊗b

[
A B(x) ∧ BA (y)

]
�

∨
x1⊗x2�a and y1⊗y2�b

[
A B(x1 ⊗ y1) ∧ BA (x2 ⊗ y2)

]

�
∨

x1⊗x2�a and y1⊗y2�b

[
A B(x1) ∧ A B(y1) ∧ BA (x2) ∧ BA (y2)

]

=
∨

x1⊗x2�a

[
A B(x1) ∧ BA (x2)

] ∧
∨

y1⊗y2�b

[
A B(y1) ∧ BA (y2)

]
=

(
A B 
 BA

)
(a) ∧ (

A B 
 BA
)
(b),

and so A B
BA also satisfies (LF4). Hence A B
BA ∈ LFil(M) by Theorem 1.

4 Generated L-fuzzy Filter by an L-fuzzy Subset

In this section, we give the notion of generated L-fuzzy filter by an L-fuzzy
subset and establish its representation theorem.

Definition 6. Let M be an R0-algebra, L a lattice and A an L-fuzzy subset
on M . An L-fuzzy filter B of M is called the generated L-fuzzy filter by A ,
denoted 〈A 〉, if A � B and for any C ∈ LFil(M), A � C implies B � C .

Theorem 4. Let M be an R0-algebra, L a completely distributive lattice and
A an L-fuzzy subset on M . An L-fuzzy subset B on M is defined as follows:

B(a) =
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ · · · ⊗ xn � a} ,

(4)
for all a ∈ M . Then B = 〈A 〉.
Proof. Firstly, we prove that B ∈ LFil(M). For all a, b ∈ M , let a � b. Then

A (a) =
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ · · · ⊗ xn � b} = B(b).

Thus B satisfies (LF3). Assume that there are x1, x2, · · · , xn ∈ M and
y1, · · · , ym ∈ M such that x1 ⊗ x2 ⊗ · · · ⊗ xn � a and y1 ⊗ y2 ⊗ · · · ⊗ ym � b, we
have that x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym � a ⊗ b by (P11). Thus, we can
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0

d c

a b

1

Fig. 1. The Hasse diagram of M

Table 1. Def. of “→”

→ 0 a b c d 1

0 1 1 1 1 1 1

a c 1 b c b 1

b d a 1 b a 1

c a a 1 1 a 1

d b 1 1 b 1 1

1 0 a b c d 1

obtain that

B(a) ∧ B(b)

=
∨

{A (x1) ∧ · · ·A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
∧
∨

{A (y1) ∧ · · ·A (ym)|y1, y2, · · · , ym ∈ M and y1 ⊗ y2 ⊗ · · · ⊗ ym � b}
=
∨

{A (x1) ∧ · · · ∧ A (xn) ∧ A (y1) ∧ · · · ∧ A (ym)|x1, · · · , xn, y1, · · · , ym ∈ M

such that x1 ⊗ x2 ⊗ · · · ⊗ xn � a and y1 ⊗ y2 ⊗ · · · ⊗ ym � b}
�
∨

{A (x1) ∧ · · · ∧ A (xn) ∧ A (y1) ∧ · · · ∧ A (ym)|x1, · · · , xn, y1, · · · , ym ∈ M

such that x1 ⊗ x2 ⊗ · · · ⊗ xn ⊗ y1 ⊗ y2 ⊗ · · · ⊗ ym � a ⊗ b}
�
∨

{A (z1) ∧ · · ·A (zk)|z1, z2, · · · , zk ∈ M and z1 ⊗ · · · ⊗ zk � a ⊗ b}
=B(a ⊗ b).

Hence B also satisfies (LF4). It follows from Theorem 1 that B ∈ LFil(M).
Secondly, For any a ∈ M , it follows from a � a and the definition of B that

A (a) � B(a). This means that A � B.
Finally, assume that C ∈ LFil(M) with A � C . Then for any a ∈ M , we

have

B(a) =
∨

{A (x1) ∧ · · · ∧ A (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (x1) ∧ · · · ∧ C (xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (x1 ⊗ · · · ⊗ xn)|x1, x2, · · · , xn ∈ M and x1 ⊗ x2 ⊗ · · · ⊗ xn � a}
�
∨

{C (a)} = C (a).

Hence B � C holds. To sum up, we have that B = 〈A 〉.
Example 1. Let M = {0, a, b, c, d, 1}, ¬0 = 1,¬a = c,¬b = d,¬c = a,¬d =
b,¬1 = 0, the Hasse diagram of lattice (M,∨,∧,�) be defined as Fig. 1, and the
binary operator → of M be defined as Table 1.

Then (M,¬,∨,→, 1) is an R0-algebra. Take L = ([0, 1],max,min) and define
an [0,1]-fuzzy subset A on M by A (1) = A (c) = α,A (a) = A (b) = A (d) =
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A (0) = β, 0 � β < α � 1. Since c � b but A (b) = β 	� α = A (c), we know that
A 	∈ LFil(M). It is easy to verify that 〈A 〉 ∈ LFil(M) from Theorem 4, where
〈A 〉(1) = 〈A 〉(b) = 〈A 〉(c) = α, 〈A 〉(a) = 〈A 〉(d) = 〈A 〉(0) = β.

5 The Lattice of L-fuzzy Filters in a Given R0-algebra

In this section, we investigate the lattice structural feature of the set LFil(M)
under the L-fuzzy set-inclusion order �.

Theorem 5. Let M be an R0-algebra and L a complete lattice. Then
(LFil(M),�) is a complete lattice.

Proof. For any {Aα}α∈Λ ⊆ LFil(M), where Λ is an indexed set. It is easy to
verify that �α∈ΛAα ∈ LFil(M) is infimum of {Aα}α∈Λ, where (�α∈ΛAα) (a) =∧
α∈Λ

Aα(a) for all a ∈ M . i.e.,
∧

α∈Λ

Aα = �α∈ΛAα. Define �α∈ΛAα such that

(�α∈ΛAα) (a) =
∨

α∈Λ

Aα(a) for all a ∈ M . Then 〈�α∈ΛAα〉 is supermun of

{Aα}α∈Λ, where 〈�α∈ΛAα〉 is the L-fuzzy filter generated by �α∈ΛAα of M .
i.e.,

∨
α∈Λ

Aα = 〈�α∈ΛAα〉. Therefor (LFil(M),�) is a complete lattice. The

proof is completed.

Remark 1. Let M be an R0-algebra and L a complete lattice. For all A ,B ∈
LFil(M), by Theorem 5 we know that A ∧B = A �B and A ∨B = 〈A � B〉.
Theorem 6. Let M be an R0-algebra and L a completely distributive lattice.
Then for all A ,B ∈ LFil(M), A ∨B = 〈A � B〉 = A B 
BA in the complete
lattice (LFil(M),�).

Proof. For all A ,B ∈ LFil(M), it is obvious that A � A B 
 BA and B �
A B
BA , that is, A (a) �

(
A B 
 BA

)
(a) and B(a) �

(
A B 
 BA

)
(a) for all

a ∈ M . Thus(A � B)(a) = A (a) ∨ B(a) �
(
A B 
 BA

)
(a), that is, A � B �

A B 
 BA , and thus 〈A � B〉 � A B 
 BA ∈ LFil(M) by Theorem 3. Let
C ∈ LFil(M) such that A � B � C . For all a ∈ M , we consider the following
two cases:

(i) If a = 1, then
(
A B 
 BA

)
(1) =

∨
x⊗y�1

[
A B(x) ∧ BA (y)

]
= A B(1) ∧

BA (1) = A (1) ∨ B(1) = (A � B) (1) � C (1).
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(ii) If a < 1, then we have

(
A B 
 BA

)
(a) =

∨
x⊗y�a

[
A B(x) ∧ BA (y)

]
=

∨
x⊗y�a,x�=1,y �=1

[
A B(x) ∧ BA (y)

] ∨
∨
x�a

{A (x) ∧ [A (1) ∨ B(1)]}

∨
∨
y�a

{[A (1) ∨ B(1)] ∧ B(y)}

=
∨

x⊗y�a,x�=1,y �=1

[
A B(x) ∧ BA (y)

] ∨
⎡
⎣ ∨

x�a

A (x)

⎤
⎦ ∨

⎡
⎣ ∨

y�a

B(y)

⎤
⎦

�
∨

x⊗y�a,x�=1,y �=1

[C (x) ∧ C (y)] ∨
⎡
⎣ ∨

x�a

C (x)

⎤
⎦ ∨

⎡
⎣ ∨

y�a

C (y)

⎤
⎦

=
∨

x⊗y�a

[C (x) ∧ C (y)] �
∨

x⊗y�a

C (x ⊗ y) � C (a),

thus A B 
 BA � C for above two cases.

By Definition 6 and Theorem 4 we have that A ∨B = 〈A � B〉 = A B
BA .

Theorem 7. Let M be an R0-algebra and L a completely distributive lattice.
Then (LFil(M),�) is a distributive lattice, where, A ∧B = A �B and A ∨B =
〈A � B〉, for all A ,B ∈ LFil(M).

Proof. To finish the proof, it suffices to show that C ∧ (A ∨ B) = (C ∧ A ) ∨
(C ∧ B), for all A ,B,C ∈ LFil(M). Since the inequality (C ∧ A )∨ (C ∧ B) �
C ∧ (A ∨ B) holds automatically in a lattice, we need only to show the inequal-
ity C ∧ (A ∨ B) � (C ∧ A ) ∨ (C ∧ B). i.e., we need only to show that(
C �

(
A B 
 BA

))
(a) �

(
(C � A )C�B 
 (C � B)C�A

)
(a), for all a ∈ M .

For these, we consider the following two cases:

(i) If a = 1, we have(
C �

(
A B 
 BA

))
(1) = C (1) ∧ (

A B 
 BA
)
(1)

=C (1) ∧
∨

x⊗y�1

[
A B(x) ∧ BA (y)

]
= C (1) ∧ [

A B(1) ∧ BA (1)
]

= [C (1) ∧ A (1)] ∨ [C (1) ∧ B(1)] = (C � A ) (1) ∨ (C � B) (1)

= (C � A )C�B (1) ∧ (C � B)C�A (1)

=
∨

x⊗y�1

[
(C � A )C�B (x) ∧ (C � B)C�A (y)

]

=
(
(C � A )C�B 
 (C � B)C�A

)
(1).
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(ii) If a < 1, we have(
C �

(
A B 
 BA

))
(a) = C (a) ∧ (

A B 
 BA
)
(a)

=C (a) ∧
∨

x⊗y�a

[
A B(x) ∧ BA (y)

]
=

∨
x⊗y�a

[
C (a) ∧ A B(x) ∧ BA (y)

]
=

∨
x⊗y�a,x�=1,y �=1

[
C (a) ∧ A B(x) ∧ BA (y)

] ∨
∨
y�a

[
C (a) ∧ A B(1) ∧ B(y)

] ∨
∨
x�a

[
C (a) ∧ A (x) ∧ BA (1)

]
=

∨
x⊗y�a,x�=1,y �=1

{[C (a) ∧ A (x)] ∧ [C (a) ∧ B(y)]} ∨
∨
y�a

{[
C (a) ∧ A B(1)

] ∧ [C (a) ∧ B(y)]
} ∨

∨
x�a

{
[C (a) ∧ A (x)] ∧ [

C (a) ∧ BA (1)
]}

�
∨

x⊗y�a,x�=1,y �=1

{[C (a ∨ x) ∧ A (a ∨ x)] ∧ [C (a ∨ y) ∧ B(a ∨ y)]} ∨
∨
y�a

{[C (1) ∧ (A (1) ∨ B(1))] ∧ [C (a ∨ y) ∧ B(a ∨ y)]} ∨
∨
x�a

{[C (a ∨ x) ∧ A (a ∨ x)] ∧ [C (1) ∧ (B(1) ∨ A (1))]}

=
∨

x⊗y�a,x�=1,y �=1

[(C � A ) (a ∨ x) ∧ (C � B) (a ∨ y)] ∨
∨
y�a

{[(C � A ) (1) ∨ (C � B) (1)] ∧ (C � B) (a ∨ y)} ∨
∨
x�a

{(C � A ) (a ∨ x) ∧ [(C � B) (1) ∨ (C � A ) (1)]}

=
∨

x⊗y�a,x�=1,y �=1

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]
∨

∨
y�a

[
(C � A )C�B (1) ∧ (C � B)C�A (a ∨ y)

]
∨

∨
x�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (1)

]

=
∨

x⊗y�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]
.
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Let a ∨ x = u and a ∨ y = v, since x ⊗ y � a, using Lemma 2 we get that

u ⊗ v = (a ∨ x) ⊗ (a ∨ y) =((a ∨ x) ⊗ a) ∨ ((a ∨ x) ⊗ y)
=(a ⊗ a) ∨ (a ⊗ x) ∨ (a ⊗ y) ∨ (x ⊗ y)
�a ∨ a ∨ a ∨ (x ⊗ y)
=a ∨ (x ⊗ y) � a ∨ a = a.

Hence we can conclude that(
C �

(
A B 
 BA

))
(a) �

∨
x⊗y�a

[
(C � A )C�B (a ∨ x) ∧ (C � B)C�A (a ∨ y)

]

�
∨

u⊗v�a

[
(C � A )C�B (u) ∧ (C � B)C�A (v)

]

=
(
(C � A )C�B 
 (C � B)C�A

)
(a).

To sum up, we have that

(
C �

(
A B 
 BA

))
(a) �

(
(C � A )C�B 
 (C � B)C�A

)
(a),

for all a ∈ M . The proof is completed.

6 Conclusion

As well known, filters is an important concept for studying the structural features
of R0-algebras. In this paper, the L-fuzzy filter theory in R0-algebras is further
studied. Some new properties of L-fuzzy filters are given. Representation theorem
of L-fuzzy filter which is generated by an L-fuzzy subset is established. It is
proved that the set consisting of all L-fuzzy filters in a given R0-algebra, under
the L-fuzzy set-inclusion order �, forms a complete distributive lattice. Results
obtained in this paper not only enrich the content of L-fuzzy filters theory in
R0-algebras, but also show interactions of algebraic technique and L-fuzzy sets
method in the studying of logic problems. We hope that more links of fuzzy sets
and logics emerge by the stipulating of this work.
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Abstract. In this paper, the triple valued fuzzy set is selected as the cut set of
intuitionistic fuzzy set and four kinds of cut sets of intuitionistic fuzzy sets are
selected to investigate the intuitionistic fuzzy rough set. The intuitionistic fuzzy
rough set is constructed by using the representation theorem of intuitionistic
fuzzy set, and it is proved to be equivalent to the original intuitionistic fuzzy
rough set. These works give a new perspective on intuitionistic fuzzy rough sets,
which promotes the further research and development of the theory of intu-
itionistic fuzzy sets and rough sets.

Keywords: Fuzzy rough set � Intuitionistic fuzzy set � Cut set � Three valued
fuzzy set � Rough set

1 Introduction

Atanassov expanded the fuzzy set [1] and put forward the concept of intuitionistic
fuzzy sets [2] in 1986. Intuitionistic fuzzy set takes membership and non-membership
into consideration, which makes it more accurate and effective in dealing with
uncertainty. Rough set theory proposed by Professor Pawlak [3] in 1982 is a mathe-
matical tool to deal with imprecise, inconsistent, incomplete information and knowl-
edge. In 1998, Chakrabarty proposed the theory of intuitionistic fuzzy rough sets [4],
which is the generalization of the concept of rough sets of Pawlak. At present, the
combination of intuitionistic fuzzy sets and rough sets is a hot research topic [7–12]. In
2009, based on intuitionistic fuzzy implication operator and intuitionistic fuzzy model,
L. Zhou and W.Z. Wu established the theory framework of intuitionistic fuzzy rough
set by using constructive method and axiomatic method [6]. In 2011, Thomas studied
Rough intuitionistic fuzzy sets in a lattice [13].

In this paper, we select triple valued fuzzy sets [5] as the cut sets of intuitionistic
fuzzy sets. Taking the triple valued fuzzy sets as the theoretical basis, we use the way
‘cut set—operate—bond together’ to construct the intuitionistic fuzzy rough sets.
Comparing with the original theory, we use the representation theorem for two cut sets,
triple fuzzy set and triple fuzzy equivalence relation.

This paper is structured as follows: In the second section, the preparation knowl-
edge required in this paper is introduced. In the third and fourth section, we provide
four kinds of methods to investigate the upper and lower approximation of intuitionistic
fuzzy sets by using the representation theorem.

© Springer International Publishing AG 2018
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2 Preliminary

Definition 2.1 [1]. Let X be a set. The mapping A : X ! ½0; 1� is called a fuzzy subset
of X.

Definition 2.2 [2]. Let X be a set. If the two functions, lA : X ! ½0; 1�; mA : X ! ½0; 1�
satisfy lAðxÞþ mAðxÞ� 1; for all x 2 X, we call A ¼ ðX; lA; mAÞ is an intuitionistic
fuzzy set of X, which is denoted as AðxÞ ¼ ðlAðxÞ; mAðxÞÞ. Then we have the following
operations:

A � B , ðlAðxÞ� lBðxÞ; mAðxÞ� mBðxÞÞ; 8x 2 X;

A ¼ B , ðlAðxÞ ¼ lBðxÞ; mAðxÞ ¼ mBðxÞÞ; 8x 2 X;

Ac ¼ \X; mA; lA [ :

Definition 2.3 [5]. Let 3X ¼ fA Aj : X ! f0; 12 ; 1g is a mappingg. If Ak;Ak 2 3X and

AkðxÞ ¼
1; lAðxÞ� k;
1
2 ; lAðxÞ\k� 1� mAðxÞ;
0; k[ 1� mAðxÞ;

8<
: AkðxÞ ¼

1; lAðxÞ[ k;
1
2 ; lAðxÞ� k\1� mAðxÞ;
0; k� 1� mAðxÞ:

8<
:

We call Ak and Ak the k – upper cut set and k – strong upper cut set of A.
If Ak;Ak 2 3X and

AkðxÞ ¼
1; mAðxÞ� k;
1
2 ; mAðxÞ\k� 1� lAðxÞ;
0; k[ 1� lAðxÞ;

8<
: AkðxÞ ¼

1; mAðxÞ[ k;
1
2 ; mAðxÞ� k\1� lAðxÞ;
0; k� 1� lAðxÞ:

8<
:

We call Ak and Ak the k � lower cut set and k � strong lower cut set of A.
If A½k�;A½k� 2 3X and

A½k�ðxÞ ¼
1; lAðxÞþ k� 1;
1
2 ; mAðxÞ� k\1� lAðxÞ;
0; k\mAðxÞ;

8<
: A½k�ðxÞ ¼

1; lAðxÞþ k[ 1;
1
2 ; mAðxÞ\k� 1� lAðxÞ;
0; k� mAðxÞ:

8<
:

We call A½k� and A½k� the k � upper quasi cut set and k � strong quasi upper cut set
of A.

If A½k�;A½k� 2 3X and

A½k�ðxÞ ¼
1; mAðxÞþ k� 1;
1
2 ; lAðxÞ� k\1� mAðxÞ;
0; k\lAðxÞ;

8<
: A½k�ðxÞ ¼

1; mAðxÞþ k� 1;
1
2 ; lAðxÞ\k� 1� mAðxÞ;
0; k� lAðxÞ;

8<
:

We call A½k� and A½k� the k � lower quasi cut set and k � strong quasi lower cut set
of A.
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Definition 2.4 [5]. Let A 2 3X ; k 2 ½0; 1� and fi : ½0; 1� � 3X ! LX ; ðk;AÞ 7! fiðk;AÞ
be the following mappings ði ¼ 1; 2; . . .; 8Þ :

f1ðk;AÞðxÞ ¼
ð0; 1Þ; AðxÞ ¼ 0;
ðk; 1� kÞ; AðxÞ ¼ 1;
ð0; 1� kÞ; AðxÞ ¼ 1

2 :

8<
: f2ðk;AÞðxÞ ¼

ðk; 1� kÞ; AðxÞ ¼ 0;
ð1; 0Þ; AðxÞ ¼ 1;
ðk; 0Þ; AðxÞ ¼ 1

2 :

8<
:

f3ðk;AÞðxÞ ¼
ð1� k; kÞ; AðxÞ ¼ 0;
ð0; 1Þ; AðxÞ ¼ 1;
ð0; kÞ; AðxÞ ¼ 1

2 :

8<
: f4ðk;AÞðxÞ ¼

ð1; 0Þ; AðxÞ ¼ 0;
ð1� k; kÞ; AðxÞ ¼ 1;
ð1� k; 0Þ; AðxÞ ¼ 1

2 :

8<
:

f5ðk;AÞðxÞ ¼
ð0; 1Þ; AðxÞ ¼ 0;
ð1� k; kÞ; AðxÞ ¼ 1;
ð0; kÞ; AðxÞ ¼ 1

2 :

8<
: f6ðk;AÞðxÞ ¼

ð1� k; kÞ; AðxÞ ¼ 0;
ð1; 0Þ; AðxÞ ¼ 1;
ð1� k; 0Þ; AðxÞ ¼ 1

2 :

8<
:

f7ðk;AÞðxÞ ¼
ðk; 1� kÞ; AðxÞ ¼ 0;
ð0; 1Þ; AðxÞ ¼ 1;
ð0; 1� kÞ; AðxÞ ¼ 1

2 :

8<
: f8ðk;AÞðxÞ ¼

ð1; 0Þ; AðxÞ ¼ 0;
ðk; 1� kÞ; AðxÞ ¼ 1;
ðk; 0Þ; AðxÞ ¼ 1

2 :

8<
:

Definition 2.5 [7]. Let U be a set, R is an equivalence relation in U: That is
R � U � U, for 8x; y; z 2 U satisfying:

(1) ðx; xÞ 2 R;
(2) ðx; yÞ 2 R ) ðy; xÞ 2 R;
(3) ðx; yÞ 2 R; ðy; zÞ 2 R ) ðx; zÞ 2 R.

Definition 2.6 [3]. Let X � U and R be an equivalence relation in U. We call
RðXÞ ¼ [ fx x 2 U; ½x�j \X 6¼ ;g the upper approximation of X
RðXÞ ¼ [ fx x 2 U; ½x�j � Xg the lower approximation of X.

Definition 2.7 [5]. Let H : ½0; 1� ! 3X be a mapping. If k1\k2 ) Hðk1Þ 	 Hðk2Þ;
we call H a triple valued inverse order nested sets on X.

Let H : ½0; 1� ! 3X be a mapping. If k1\k2 ) Hðk1Þ � Hðk2Þ, we call H a triple
valued order nested sets on X.

3 The Upper Approximation of Intuitionistic Fuzzy Set

First of all, we give a kind of cut set and cut relations to construct the upper
approximation of intuitionistic fuzzy sets.

Let U be a finite non empty set, X ¼ ðlX ; mXÞ is an intuitionistic fuzzy subset over
U;R ¼ ðlR; mRÞ is an intuitionistic fuzzy equivalence relation overU, for k 2 ½0; 1�, then
Xk is the triple valued fuzzy set over U, and Rk is the triple valued fuzzy equivalence
relation over U. Let H1ðkÞ ¼ RkðXkÞ, that is for x 2 U;H1ðkÞðxÞ ¼
_y2UðXkðyÞ ^ Rkðx; yÞÞ, thenH1ðkÞ is the triple valued inverse order nested sets onU. Let
RðXÞ ¼ S

k2½0;1�
f1ðk;H1ðkÞÞ or

T
k2½0;1�

f2ðk;H1ðkÞÞ. Then we get the following theorem:
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Theorem 3.1. Let X 2 IFðUÞ; x 2 U, then

RðXÞðxÞ ¼ ð _
y2U

ðlXðyÞ ^ lRðx; yÞÞ; ^
y2U

ðmXðyÞ _ mRðx; yÞÞÞ: ð1Þ

Proof

(1)

RðXÞðxÞ ¼ _
k2½0;1�

f1ðk;H1ðkÞÞðxÞ

¼f_ðk; 1� kÞ H1
�� ðkÞðxÞ ¼ 1g _ f_ð0; 1� kÞ H1

�� ðkÞðxÞ ¼ 1
2
g

¼ ð_fk H1

�� ðkÞðxÞ ¼ 1g;^f1� k H1

�� ðkÞðxÞ� 1
2
gÞ

Because

H1ðkÞðxÞ ¼ 1 , _
y2U

ðXkðyÞ ^ Rkðx; yÞÞ ¼ 1

, 9y0 2 UðXkðy0Þ ^ Rkðx; y0Þ ¼ 1Þ
, 9y0 2 UðlXðy0Þ ^ lRðx; y0Þ� kÞ
, _

y2U
ðlXðyÞ ^ lRðx; yÞÞ� k

Thus _fk H1
�� ðkÞðxÞ ¼ 1g ¼ _

y2U
ðlXðyÞ ^ lRðx; yÞÞ:

And

H1ðkÞðxÞ� 1
2
, _

y2U
ðXkðyÞ ^ Rkðx; yÞÞ� 1

2

, 9y0 2 UðXkðy0Þ ^ Rkðx; y0Þ� 1
2
Þ

, 9y0 2 Uð1� mXðy0Þ� k and 1� mRðx; y0Þ� kÞ
, 9y0 2 UðmAðy0Þ _ mRðx; y0Þ� 1� kÞ
, ^

y2U
ðmXðyÞ _ mRðx; yÞÞ� 1� k

Thus ^f1� k H1
�� ðkÞðxÞ� 1

2g ¼ ^
y2U

ðmXðyÞ _ mRðx; yÞÞ:
Therefore RðXÞðxÞ ¼ ð _

y2U
ðlXðyÞ ^ lRðx; yÞÞ; ^

y2U
ðmXðyÞ _ mRðx; yÞÞÞ.

(2)

RðXÞðxÞ ¼ ^
k2½0;1�

f2ðk;H1ðkÞÞðxÞ

¼f^ðk; 1�kÞ H1
�� ðkÞðxÞ ¼ 0g ^ f^ðk; 0Þ H1

�� ðkÞðxÞ ¼ 1
2
g

¼ ð^fk H1

�� ðkÞðxÞ� 1
2
g;_f1� k H1

�� ðkÞðxÞ ¼ 0gÞ
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Because

H1ðkÞðxÞ� 1
2
, _

y2U
ðXkðyÞ ^ Rkðx; yÞÞ� 1

2

, 8y 2 UðXkðyÞ ^ Rkðx; yÞ� 1
2
Þ

, 8y 2 UðlXðyÞ ^ lRðx; yÞ\kÞ
, _

y2U
ðlXðyÞ ^ lRðx; yÞÞ\k

Thus ^fk H1
�� ðkÞðxÞ� 1

2g ¼ _
y2U

ðlRðyÞ ^ lRðx; yÞÞ:
And

H1ðkÞðxÞ ¼ 0 , _
y2U

ðXkðyÞ ^ Rkðx; yÞÞ ¼ 0

, 8y 2 U;XkðyÞ ^ Rkðx; yÞ ¼ 0

, 8y 2 Uð1� mXðyÞ� k or 1� mRðx; y0Þ� kÞ
, ^

y2U
ðmXðyÞ _ mRðx; yÞÞ� 1� k

Thus _f1� k H1
�� ðkÞðxÞ ¼ 0g ¼ ^

y2U
ðmXðyÞ _ mRðx; yÞÞ:

Therefore RðXÞðxÞ ¼ ðð _
y2U

ðlXðyÞ ^ lRðx; yÞÞ; ^
y2U

ðmXðyÞ _ mRðx; yÞÞÞ.
In the following, we construct the upper approximation of intuitionistic fuzzy sets

by three different methods.
Let U be a finite non empty set, X ¼ ðlX ; mXÞ is an intuitionistic fuzzy subset over

U;R ¼ ðlR; mRÞ, is an intuitionistic fuzzy equivalence relation over U, for k 2 ½0; 1�,
then X½k�;Xk;X ½k� are the triple valued fuzzy sets over U, and R½k�;Rk;R½k� are the triple
valued fuzzy equivalence relations over U.

Let H2ðkÞ ¼ RkðXkÞ. That is for x 2 U, H2ðkÞðxÞ ¼ ^
y2U

ðXkðyÞ _ Rkðx; yÞÞ, thus

H2ðkÞ is the triple valued inverse order nested sets over U. Let RðXÞ ¼
S

k2½0;1�
f3ðk;H2ðkÞÞ or

T
k2½0;1�

f4ðk;H2ðkÞÞ.

In addition, let H3ðkÞ ¼ R½k�ðX½k�Þ. That is for x 2 U;H3ðkÞðxÞ ¼ _
y2U

ðX½k�ðyÞ^
R½k�ðx; yÞÞ, then H3ðkÞ is the triple valued order nested sets over U. Let RðXÞ ¼
S

k2½0;1�
f5ðk;H3ðkÞÞ or

T
k2½0;1�

f6ðk;H3ðkÞÞ.

Similarly, let H4ðkÞ ¼ R½k�ðX ½k�Þ. That is for x 2 U, H4ðkÞðxÞ ¼ ^
y2U

ðX ½k�ðyÞ_
R½k�ðx; yÞÞ, thus H4ðkÞ is the triple valued order nested sets over U. Let RðXÞ ¼
S

k2½0;1�
f7ðk;H4ðkÞÞ or

T
k2½0;1�

f8ðk;H4ðkÞÞ.
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By the three methods above, we get the same theorem:

Theorem 3.2. For X 2 IFðUÞ; x 2 U, then

RðXÞðxÞ ¼ ð _
y2U

ðlXðyÞ ^ lRðx; yÞÞ; ^
y2U

ðmXðyÞ _ mRðx; yÞÞÞ:

The proof of Theorem 3.2 is similar Theorem 3.1.

4 The Lower Approximation of Intuitionistic Fuzzy Set

In this section, we select the corresponding cut sets and cut relations to construct the
lower approximation of intuitionistic fuzzy sets.

Let U be a finite non empty set, X ¼ ðlX ; mXÞ is an intuitionistic fuzzy subset over
U;R ¼ ðlR; mRÞ is an intuitionistic fuzzy equivalence relation over U, for k 2 ½0; 1�,
then Xk is the triple valued fuzzy set over U, and R½k� is the triple valued fuzzy
equivalence relation over U. Let H1ðkÞ ¼ ðR½k�ÞcðXkÞ. That is for x 2 U;

H1ðkÞðxÞ ¼ ^
y2U

ðXkðyÞ _ ðR½k�Þcðx; yÞÞ, then H1ðkÞ is the triple valued inverse order

nested sets on U. Let RðXÞ ¼ S
k2½0;1�

f1ðk;H1ðkÞÞ or
T

k2½0;1�
f2ðk;H1ðkÞÞ. Then we get the

following theorem:

Theorem 4.1. Let X 2 IFðUÞ; x 2 U, then

RðXÞðxÞ ¼ ð ^
y2U

ðlXðyÞ _ mRðx; yÞÞ; _
y2U

ðmXðyÞ ^ lRðx; yÞÞÞ: ð2Þ

Proof

(1)

RðXÞðxÞ ¼
[

k2½0;1�
f1ðk;H1ðkÞÞðxÞ

¼f_ðk; 1�kÞ H1
�� ðkÞðxÞ ¼ 1g _ f_ð0; 1�kÞ H1

�� ðkÞðxÞ ¼ 1
2
g

¼ ð_fk H1
�� ðkÞðxÞ ¼ 1g;^f1� k H1

�� ðkÞðxÞ� 1
2
gÞ

Because

H1ðkÞðxÞ ¼ 1 , ^
y2U

ðXkðyÞ _ ðR½k�Þcðx; yÞÞ ¼ 1

, 8y 2 UðXkðyÞ _ ðR½k�Þcðx; yÞ ¼ 1Þ
, 8y 2 UðlXðyÞ� k or mRðx; yÞ� kÞ
, ^

y2U
ðlXðyÞ _ lRðx; yÞÞ� k

Thus _fk H1
�� ðkÞðxÞ ¼ 1g ¼ ^

y2U
ðlXðyÞ _ mRðx; yÞÞ:
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And

H1ðkÞðxÞ� 1
2
, ^

y2U
ðXkðyÞ _ ðR½k�Þcðx; yÞÞ� 1

2

, 8y 2 UðXkðyÞ _ ðR½k�Þcðx; yÞ� 1
2
Þ

, 8y 2 Uð1� mXðyÞ� k or 1� lRðx; yÞ� kÞ
, 8y 2 UðmAðyÞ ^ lRðx; yÞ� 1� kÞ
, _

y2U
ðmXðyÞ ^ lRðx; yÞÞ� 1� k

Thus ^f1� k H1

�� ðkÞðxÞ� 1
2g ¼ _

y2U
ðmXðyÞ ^ lRðx; yÞÞ:

Therefore RðXÞðxÞ ¼ ð ^
y2U

ðlXðyÞ _ mRðx; yÞÞ; _
y2U

ðmXðyÞ ^ lRðx; yÞÞÞ:

(2)

RðXÞðxÞ ¼ ^
k2½0;1�

f2ðk;H1ðkÞÞðxÞ

¼f^ðk; 1� kÞ H1

�� ðkÞðxÞ ¼ 0g ^ f^ðk; 0Þ H1

�� ðkÞðxÞ ¼ 1
2
g

¼ ð^fk H1
�� ðkÞðxÞ� 1

2
g;_f1� k H1

�� ðkÞðxÞ ¼ 0gÞ

Because

H1ðkÞðxÞ� 1
2
, ^

y2U
ðXkðyÞ _ ðR½k�Þcðx; yÞÞ� 1

2

, 9y0 2 UðXkðy0Þ _ ðR½k�Þcðx; y0Þ� 1
2
Þ

, 9y0 2 UðlXðy0Þ _ mRðx; y0Þ\kÞ
, ^

y2U
ðlXðyÞ _ mRðx; yÞÞ\k

Thus ^fk H1
�� ðkÞðxÞ� 1

2g ¼ ^
y2U

ðlRðyÞ _ mRðx; yÞÞ:
And

H1ðkÞðxÞ ¼ 0 , ^
y2U

ðXkðyÞ _ ðR½k�Þcðx; yÞÞ ¼ 0

, 9y0 2 UðXkðy0Þ _ ðR½k�Þcðx; y0Þ ¼ 0Þ
, 9y0 2 Uð1� mXðy0Þ\k and 1� lRðx; y0Þ\kÞ
, _

y2U
ðmXðyÞ ^ lRðx; yÞÞ[ 1� k

Thus _f1� k H1
�� ðkÞðxÞ ¼ 0g ¼ _

y2U
ðmXðyÞ ^ mRðx; yÞÞ.

Therefore RðXÞðxÞ ¼ ð ^
y2U

ðlXðyÞ _ mRðx; yÞÞ; _
y2U

ðmXðyÞ ^ lRðx; yÞÞÞ.
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In the following, we construct the lower approximation of intuitionistic fuzzy sets by
three different methods.

Let U be a finite non empty set, X ¼ ðlX ; mXÞ is an intuitionistic fuzzy subset over
U;R ¼ ðlR; mRÞ is an intuitionistic fuzzy equivalence relation over U, for k 2 ½0; 1�,
then Xk;X½k�;X ½k� are the triple valued fuzzy sets over U, and Rk;R½k�;Rk are the triple
valued fuzzy equivalence relations over U.

Let H2ðkÞ ¼ ðRkÞcðX ½k�Þ. That is for x 2 U, H2ðkÞðxÞ ¼ _
y2U

ðXkðyÞ ^ ðR½k�Þcðx; yÞÞ,
thus H2ðkÞ is the triple valued inverse order nested sets on U. Let RðXÞ ¼
S

k2½0;1�
f3ðk;H2ðkÞÞ or

T
k2½0;1�

f4ðk;H2ðkÞÞ.

Similarly, let H3ðkÞ ¼ ðRkÞcðX½k�Þ. That is for x 2 U, H3ðkÞðxÞ ¼ ^
y2U

ðX½k�ðyÞ_
ðRkÞcðx; yÞÞ, thus H3ðkÞ is the triple valued order nested sets on U. Let RðXÞ ¼
S

k2½0;1�
f5ðk;H3ðkÞÞ or

T
k2½0;1�

f6ðk;H3ðkÞÞ.

In addition, let H4ðkÞ ¼ ðRkÞcðX ½k�Þ. That is for x 2 U, H4ðkÞðxÞ ¼ _
y2U

ðX ½k�ðyÞ^
ðRkÞcðx; yÞÞ, thus H4ðkÞ is the triple valued order nested sets on U. Let RðXÞ ¼
S

k2½0;1�
f7ðk;H4ðkÞÞ or

T
k2½0;1�

f8ðk;H4ðkÞÞ.

By the three methods above, we get the same theorem:

Theorem 4.2. Let X 2 IFðUÞ; x 2 U. Then

RðXÞðxÞ ¼ ð ^
y2U

ðlXðyÞ _ mRðx; yÞÞ; _
y2U

ðmXðyÞ ^ lRðx; yÞÞÞ:

The proof of Theorem 4.2 is similar to Theorem 4.1.

5 Conclusion

In this paper, triple valued fuzzy sets are selected as the cut sets of intuitionistic fuzzy
sets, and four methods are provided to construct the upper and lower approximations of
intuitionistic fuzzy sets by using the representation theorem. Zhou et al. [6] and Zhang
et al. [7] construct the upper and lower approximations of intuitionistic fuzzy sets by
different intuitionistic fuzzy implicators. Jena et al. [9], Zhou et al. [10] and Samanta
et al. [11] investigate intuitionistic fuzzy rough through the extension of fuzzy rough
set. We get the same result as the original intuitionistic fuzzy rough set given in [6–11]
and provide a theoretical support for the extension from fuzzy rough set to intuitionistic
fuzzy rough sets [9–11]. From the results in this paper, we notice that (1) Cut sets and
representation theorems play an important role in the research of intuitionistic fuzzy set
theory and rough set, and a lot of fuzzy theories can be studied by means of nested set.
(2) The triple fuzzy set is an efficient tool to study intuitionistic fuzzy rough set, which
deserve our more attentions.
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Abstract. Theoretical understanding of the relevant problem structure and
consistent mathematical modeling are necessary keys to formulating operations
research models to be used for optimization of decisions in real applications.
The numbers of alternative models, methods and applications of operations
research are very large. This paper presents fundamental and general decision
and information structures, theories and examples that can be expanded and
modified in several directions. The discussed methods and examples are moti-
vated from the points of view of empirical relevance and computability.

Keywords: Operations research � Mathematical modeling � Optimization

1 Introduction

Operations research is a very large area. In this paper, we will focus on operations
research in connection to optimization of decisions, with one or more decision maker(s).
The classical analytical methods of optimization and comparative statics analysis, basic
economic theory and fundamental linear programming are well presented in Chiang [3].

Mathematical modeling is central to operations research. Usually, in applied
problems, there are many different ways to define the mathematical models repre-
senting the components of the system under analysis. The reference book of the
software package LINGO [1] contains large numbers of alternative operations research
models and applications with numerical solutions.

A particular applied problem should, if possible, be analyzed with a problem
relevant operations research method, using a problem relevant set of mathematical
models. This may seem obvious to the reader, but it is far from trivial to determine the
problem relevant method and models.

The two books by Winston, references [16, 17], give a good and rather complete
presentation of most operations research methods, algorithms and typical applications.
The operations research literature contains large numbers of alternative methods and
models, applied to very similar types of applied problems. In many cases, the optimal
decisions that are the results of the analyses, differ considerably.

For instance, if we want to determine the optimal decision in a particular problem,
we may define it as a one dimensional optimization problem, or as a multidimensional
problem where we simultaneously optimize several decisions that may be linked in
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different ways. We may also consider constraints of different sorts. In most problems,
present decisions have consequences for the future development of the system under
analysis. Hence, multi period analysis is often relevant. Weintraub et al. [15] contains
many dynamic operations research problems and solutions from different natural
resource sectors. Then, we realize that the future state of the world can change for
several reasons. In resource management problems, for instance, we often want to
determine optimal present extraction of some resource, such as coal or oil. If we take
more today, we have to take less in the future. The present and future prices are very
important parameters in such decision problems and we usually have to agree that the
future prices are not perfectly known today. Price changes may occur because of
technical innovations, political changes and many other reasons. We simply have to
accept that future prices can never be perfectly predicted. Hence, the stochastic
properties of prices have to be analyzed and used in the operations research studies in
order to determine optimal present decisions. Many types of resources are continuously
used, thanks to biological growth. Braun [2] gives a very good presentation of ordinary
differential equations, which is key to the understanding and modeling of dynamical
systems, including biological resources of all kinds. In agriculture, fishing, forestry,
wildlife management and hunting, resources are used for many different purposes,
including food, building materials, paper, energy and much more. In order to determine
optimal present decisions in such industries, it is necessary to develop and use dynamic
models that describe how the biological resources grow and how the growth is affected
by present harvesting and other management decisions. Clark [4] contains several
examples and solutions of deterministic optimal control theory problems in natural
resource sectors.

The degree of unexplained variation in the future state of the resource is often
considerable. Many crops are sensitive to extreme rains, heat, floods, parasites and
pests. Forests are sensitive to storms and hurricanes, fires etc. Obviously, risk is of
central importance to modeling and applied problem solving in these sectors. Grimmet
and Stirzaker [6] contains most of the important theory of probability and random
processes. Fleming and Rishel [5] contains the general theory of deterministic and
stochastic optimal control. Sethi and Thompson [12] cover a field very similar to [5],
but is more focused on applied derivations. Lohmander [8, 9] shows how dynamic and
stochastic management decisions can be optimized with different methods, including
different versions of stochastic dynamic programming. Lohmander [10] develops
methodology for optimization of large scale energy production under risk, using
stochastic dynamic programming with a quadratic programming subroutine. Deter-
ministic systems are not necessarily predictable. Tung [13] is a fantastic book that
contains many kinds of mathematical modeling topics and applications, including
modern chaos theory and examples. Such theories and methods are also relevant to
rational decision making in resource management problems. Until now, we have only
considered problems with one decision maker. In reality, we often find many decision
makers that all influence the development of the same system. In such cases, we can
model this situation using game theory. Luce and Raiffa [11] gives a very good cov-
erage of the classical field. In games without cooperation, the Nash equilibrium theory
is very useful. Each player maximizes his/her own objective given that the other player
maximizes his/her objective. Washburn [14] focuses on such games and the important
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and often quite relevant subset “two person zero sum games”. In such games, linear
programming finds many relevant applications. Isaacs [7] describes and analyses
several games of this nature, but in continuous time, with the method differential
games. This manuscript could have been expanded in the direction of dynamic and
stochastic games. The present format limitation however makes this impossible. Let us
conclude this section with the finding that mathematical modeling in operations
research is a rich field with an almost unlimited number of applications.

2 Analysis

Let us investigate alternative specifications of operations research models and discuss
the properties. We may consider (1) as a general representation of linear constraints, as
we find them in most logistics problems, manufacturing problems and many other
applied problems. We assume that a feasible set exists and know that the feasible set
obtained with linear constraints is convex. In a production problem, xk is the production
volume of product k and the constraints are capacity constraints, where Cl is the total
capacity of resource l.

a11x1 þ . . .þ a1KxK �C1

. . .
aL1x1 þ . . .þ aLKxK �CL

8<
: ð1Þ

In case we have a linear objective function, such as the total profit, p, we may
express that as (2).

pðx1; . . .; xKÞ ¼ p0 þ p1x1 þ . . .þ pKxK ð2Þ

Linear programming is a relevant optimization method if we want to maximize (2)
subject to (1). The simplex algorithm will give the optimal solution in a finite number
of iterations. In many applied problems, such as production optimization problems, it is
also important to be able to handle the fact that market prices often are decreasing
functions of the produced and sold quantities of different products. Furthermore, the
production volume of one product may affect the prices of other products, the marginal
production costs of different products may be linked and so on. Then, the objective
function of the company may be approximated as a quadratic function (3). (Note that
(3) may be further simplified.)

pðx1; . . .; xKÞ ¼p0 þ p1x1 þ . . .þ pKxK þ
þ r11x

2
1 þ r12x1x2 þ . . .þ r1ðK�1Þx1xK�1 þ r1Kx1xK þ

þ . . .

þ rK1xKx1 þ rK2xKx2 þ . . .þ rKðK�1ÞxKxK�1 þ rKKx2K

ð3Þ

With a quadratic objective function and linear constraints, we have a quadratic
programming problem (4). Efficient quadratic programming computer codes are
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available, that have several similarities to the simplex algorithm for linear program-
ming. The Kuhn-Tucker conditions can be considered as linear constraints and in [1,
16], many such examples are solved.

maxpðx1; . . .; xKÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

ð4Þ

In real applications, we are often interested to handle the sequential nature of
information. Market prices usually have to be regarded as partially stochastic. We may
influence the price level via our production and sales volumes. Still, there is usually a
considerable price variation outside the control of the producer. Then, we can optimize
our decisions via stochastic dynamic programming, as shown in the example in (5) and
(6). Let us consider the optimal extraction over time from a limited oil reserve. In every
period t until we reach the planning horizon T , we maximize the expected present
value, f ð:Þ, for every possible level of the remaining reserve, s, and for every market
state, m. f ð:Þ = 0 for t ¼ T þ 1, which is shown in (6). In all earlier periods, the values
of f ð:Þ are maximized for all possible reserve and market levels, via the control u, the
extraction level. In a period t, before we reach t ¼ T þ 1, the control u is selected so
that the sum of the present value of instant extraction pð:Þ and the expected present
value of future extraction

P
n
sðn mj Þf ðtþ 1; s� u; nÞ is maximized. sðn mj Þ denotes the

transition probability from market state m to market state n from one period to the next.
The control u has to belong to the set of feasible controls Uð:Þ which is a function of t, s
and m. Equations (5) and (6) summarize the principles and the recursive structure.

f ðt; s;mÞ ¼ max
u2Uðt;s;mÞ

pðu; t; s;mÞþ
X
n

sðnjmÞf ðtþ 1; s� u; nÞ
 !

8ðt; s;mÞj 0� t� Tð Þ
ð5Þ

f ðT þ 1; s;mÞ ¼ 0 8ðs;mÞ ð6Þ

With the stochastic dynamic programming method as a general tool, we may again
consider the detailed production and/or logistics problem (4). Now, we can solve many
such problems, (4), as sub problems, within the general stochastic dynamic program-
ming formulation (5), (6). Hence, for each state and stage, we solve the relevant sub
problems.

Now, the capacity levels (7) may be defined as functions of the control decisions,
time, the remaining reserve and the market state. Furthermore, all other “parameters”,
may be considered as functions, as described in (8), (9) and (10). As a result, we may
describe the sub problems as (11) or even as (12).
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Cl ¼ Clðu; t; s;mÞ 8l ð7Þ
alk ¼ alkðu; t; s;mÞ 8ðl; kÞ ð8Þ
pk ¼ pkðu; t; s;mÞ 8k ð9Þ

rk1k2 ¼ rk1k2ðu; t; s;mÞ 8ðk1; k2Þ ð10Þ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

ð11Þ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t

a11ðu; t; s;mÞx1 þ . . .þ a1Kðu; t; s;mÞxK �C1ðu; t; s;mÞ
. . .

aL1ðu; t; s;mÞx1 þ . . .þ aLKðu; t; s;mÞxK �CLðu; t; s;mÞ

ð12Þ

Now, we include the sub problems in the stochastic dynamic programming
recursion Eq. (13). A problem of this kind is defined and numerically solved using
LINGO software [1] by Lohmander [10].

f ðt; s;mÞ ¼ max
u2Uðt;s;mÞ

maxpðx1; . . .; xK ; u; t; s;mÞ
s:t:

a11x1 þ . . .þ a1KxK �C1

. . .

aL1x1 þ . . .þ aLKxK �CL

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

þ
X
n

sðnjmÞf ðtþ 1; s� u; nÞ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

8ðt; s;mÞj 0� t� Tð Þ

ð13Þ

Observe that (13) represents a very general and flexible way to formulate and solve
applied stochastic multi period production and logistics problems of many kinds. The
true sequential nature of decisions and information is explicitly handled, stochastic
market prices and very large numbers of decision variables and constraints may be
consistently considered. Furthermore, many other stochastic phenomena may be con-
sistently handled with this approach. Several examples of how different kinds of
stochastic disturbances may be included in optimal dynamic decisions are found in
Lohmander [8, 9].
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In the game theory literature, [7, 11, 14], we find many examples of two player
constant sum games. In (14), we find such an example, with one objective function.
The value of the game, Z, is what we obtain when one player maximizes and one player
minimizes the same objective function Qð/;uÞ. The maximizing player, A, determines
control u and the minimizing player, B, determines control /. Qð/;uÞ can, for
instance, represent the difference in profit or resources between two companies or
countries, during a conflict over a particular economic market, a geographical territory
or something else. During a period of conflict, it may be relevant to define this as a
constant sum game. (In other cases, con-constant sum games are sometimes more
relevant, but then it is not always the case that strictly mathematical definitions of the
game can be defined and explicitly solved.) Of course, u and / may represent vectors.

Z ¼ min
/

max
u

Qð/;uÞ ¼ Qð/;uÞ ð14Þ

We may develop and analyze constant sum games in a similar way as the earlier
discussed problems, via the stochastic dynamic programming framework. In (15) and
(16), one player maximizes and one player minimizes the value of the game. The
maximizing player A controls u and x and the minimizing player B controls v and y.
The resources of A and B at time t are sAt and sBt. Stochastic exogenous disturbances
influence the development of the system via the transition probabilities sðn mj Þ. The
state in the next period is considered as a general function of decisions of both players
and of other variables and parameters. In simple situations, continuous time versions of
dynamic game problems can be defined as differential games, as reported by Isaacs [7].
With a higher level of detail, we usually have to use discrete time and state space.
Several interesting discrete examples are found in Washburn [14].

Zðt; sAt; sBt;mÞ ¼ min
v2Vðt;sBt ;mÞ

max
u2Uðt;sAt ;mÞ

min
y2Yðt;sBt ;u;v;mÞ

max
x2Xðt;sAt ;u;v;mÞ

Qðx; y; u; v; t; sAt; sBt;mÞ
s:t:

F1;f1ðx; yÞ� 0 8f1
F2;f2ðx; yÞ� 08f2
F3;f3ðx; yÞ ¼ 08f3

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

þ
X
n

sðnjmÞZðtþ 1; sAðtþ 1ÞðsAt; t;m; v; uÞ; sBðtþ 1ÞðsBt; t;m; v; uÞ; nÞ

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

8ðt; sAt; sBt;mÞj 0� t� Tð Þ
ð15Þ

ZðT þ 1; sAt; sBt;mÞ ¼ 0 8ðsAt; sBt;mÞ ð16Þ

Applications and Mathematical Modeling in Operations Research 51



Note that the specification of the structure described by (15) and (16) can be
adjusted to specific applications. This structure can be regarded as a generalization of
many problems in [7, 14].

The control decisions u and v, may represent key decisions, such as total use of
constrained resources. As seen in (15), these decisions also influence the options and
game values in future periods. The other control decisions, x and y, where x and y may
be vectors, can represent the decisions of A and B in very high resolution. Linear or
quadratic programming as a tool in the sub problems makes this possible. Furthermore,
the stochastic dynamic main program can provide solutions with almost unlimited
resolution in the time dimension. The recursive structure of problem solving does not
make it necessary to store all results in the internal memory. Of course, computation
time increases with resolution.

3 Main Results

Operations research contains a large number of alternative approaches. With logically
consistent mathematical modeling, relevant method selection and good empirical data,
the best possible decisions can be obtained. This paper has presented arguments for
using some particular combinations of methods that often are empirically motivated
and computationally feasible (Fig. 1).

Acknowledgements. My thanks go to Professor Hadi Nasseri for kind, rational and clever
suggestions.

Recommender: 2016 International workshop on Mathematics and Decision Science, Dr. Hadi
Nasseri of University of Mazandaran in Iran.

Fig. 1. The optimal oil industry management problem includes finding the optimal combination
of oil extraction in different fields, domestic crude oil transport, refining and international
logistics. All of this should be done with consideration of stochastic world market prices and
possibly other stochastic events. Source: Lohmander [10]. Equations (13) and (6) are useful to
solve this problem.
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Abstract. Covering topology is induced by covering rough sets, and its
topological property is worth researching. In this paper, covering topol-
ogy countability is studied by a subbasis. At first, basic definitions and
properties are achieved for the covering topology countability based on a
subbasis, including the first and second countability. Then, the relevant
connections between countability and separability are revealed. Finally,
three examples are given for illustration. This study establishes subbasis
-based countability to deepen covering topology.

Keywords: Rough set · Covering topology · Countability · Subbasis

1 Introduction

Rough sets theory, introduced by Pawlak, is a useful mathematical approach
for dealing with vague and uncertain information [1]. Rough set approximation
operators are a bidirectional approximate description [2]. Rough sets have a basic
relationship with the topological structure, so it is significance for the research of
the combination of rough sets and topology. In this view, some authors extend
the topology model of Pawlak rough set theory, and prove that the Pawlak
rough set model is the nature of the special topology promotion instance [3].
Several authors have studied the relationship between the covering rough sets
and topology [4–11]. Reference [12] studies the basic topology. A later paper
[13] studies the similarity of binary relations based on rough set theory and
topology to give an application for topological structures of matroids. Reference
[14] discusses the interior and closure under the subbasis, where the subbasis
is a classification under the rough sets and is also a subbasis of topology. On
the basis of Refs. [14,15] further researches the topology separability based on a
subbasis.

Covering rough sets can naturally induce covering topology, and the lat-
ter’s property is significant. This article aims to investigate the covering topol-
ogy based on a subbasis, and we mainly utilize and promote relevant results of
Refs. [14,15]. Section 2 reviews some preliminaries about rough sets theory and
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 6
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subbases of topology space. Section 3 introduces the first and second countable
spaces. Section 4 offers the connection of separability and countability. Section 5
finally provides three examples for relevant illustration.

2 Preliminaries

In this section, we first review some basic concepts in covering rough set theory,
which can also be referred to [1,14]. Furthermore, some preliminaries about
subbases of covering topological space will be reviewed by Refs. [12,14,15].

2.1 Covering Rough Set Theory

Definition 2.1 [1]. Let K = (U,R) be an approximation space. With each
subset X ⊆ U and an equivalence relation R ∈ IND(K), we associate two
subsets:

R(X) =
⋃

{Y ∈ U/R|Y ⊆ X}, (1)

R(X) =
⋃

{Y ∈ U/R|Y
⋂

X �= ∅}, (2)

and they are called the R − lower and R − upper approximations of X respec-
tively, where R is an equivalence relation on U and U/R represents a set of all
equivalence classes of R.

From [7], let U be a finite set U �= ∅, and R is an equivalence relation on
U . Set β = U/R = {[x]R|x ∈ U}, then β is a subbasis of topology on U (it is
actually a basis).

Definition 2.2 [2]. Let U be a finite set and U �= ∅, then let E be a covering
of U . We say that order pairs (U,E) is an approximation space. Let X ⊆ U , Set

E(X) = {x ∈ X|∀B ∈ E, x ∈ B, then B ⊆ X}, (3)

E(X) =
⋃

{B ∈ E|B
⋂

X �= ∅}, (4)

and they are called the weak lower approximation set and weak upper approxi-
mation set of X respectively.

From [7], let U be a finite set U �= ∅ and E ⊆ U , where E is a covering of U . If
E is a subbasis of topology T on U , then the weak lower approximation set and
weak upper approximation set of X in approximation space (U,E) correspond to
the interior iβ(A) and closure clβ , respectively, which are about E in topological
space (U,T ).

2.2 A Subbasis of the Covering Topological Space

Definition 2.3 [14]. Let (U,T ) be a topological space and β be a subbasis of
T . Two set

iβ(A) = {x ∈ A|∀B ∈ β, x ∈ B, then B ⊆ A}, (5)

clβ(A) =
⋃

{B ∈ β|B
⋂

A �= ∅}, (6)

are called the interior and closure of A about β respectively.
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Let U be a nonempty set. We say that (U,T , β) is a topological space
about β, where β is a subbasis of T and T is a topology of U .

Definition 2.4 [12]. We say that the space is the first countable space if there
are countable neighborhoods bases for any point.

Definition 2.5 [12]. We say that the space is the second countable space if
there are countable topological bases.

Remark. In this paper, we specify that “about subbasis” recorded as “β−”.

Definition 2.6 [15]. Let (U1,T1, β), (U2,T2, α) be the topological space and
f : U1 → U2. We say that f is (β, α) continuous mapping if the original image
of each α−open set of U2 is a β−open set of U1.

3 Covering Topology Countability Based on a Subbasis

In this section, the first and second countable spaces about subbases are intro-
duced. Furthermore, related properties will be discussed.

Definition 3.1. Let (U,T , β) be a topological space. We say that the (U,T , β)
is a β−first countable space if there exists {Vi}i∈Z+ of x for every x ∈ U such
that

{Vi}i∈Z+ ∈ U, Vn+1 ⊆ Vn,

where {Vi}i∈Z+ is the family of β−open set and U is the β−open neighborhood
of x. The β−first countable space is recorded as β − C1 space.

It is clear that the β − C1 space is a C1 space.

Definition 3.2. Let x ∈ U , we say that the collection of all the
β−neighborhoods of x are the family of β−neighborhoods of x, which is recorded
as Nβ(x). Then we say that W is a basis of β−neighborhoods of x, where W is
a β−subset of Nβ(x).

Theorem 3.1. If U has the countable basis of β−neighborhoods at x, then x
has the countable basis of β−neighborhoods {Vn} such that

Vm ⊆ Vn,m > n.

Proof. Let {Wn} be the countable basis of β−neighborhoods of x. Suppose that

Vn =
⋂

Wi(i = 1, 2, ..., n),∀n ∈ N+,

then
Vn ⊆ clβ(Vn) ⊆ Wn.

Thus Vn becomes the countable basis of β−neighborhoods of x. It is clear
that Vm ⊆ Vn when m > n.
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Theorem 3.2. Let (U,T , β) be a topological space. If U is a β − C1 space
and A ∈ U , x ∈ clβ(A), then there exists the β−convergent sequence in A that
convergence to x.

Proof. Let {Vi}i∈Z+ be the countable basis of β−neighborhoods of x. Use
Theorem 3.1 with

Vm ⊆ Vn,m > n.

Since
x ∈ clβ(A),

then
{Vn}

⋂
A �= ∅.

Pick
{xi}i∈Z+ ∈ ({Vn}

⋂
A), ∀n ∈ N,

then we obtain the sequence {xi}i∈Z+ in A. Pick any W which is the β−open
neighborhood of x, then there exists n ∈ N such that

{xi}i∈Z+ ⊆ Vn ⊆ W.

Thus
Vm ⊆ clβ(Vm) ⊆ W,∀m ≥ n.

Then
xm ∈ U,∀m ≥ n.

According to the convergence definition, we have

{xi}i∈Z+ → x.

Thus
xi →β x(i → ∞).

Theorem 3.3. Let (U1,T1, β),(U2,T2, α) be the topological space. If f : U1 →
U2 is the map in (β, α) such that the sequence f{(xi)}i∈Z+ in U2 α−converges
to f(x0) when {xi}i∈Z+β− converges to x0. Then we say that f is continuous
on x0.

Proof. Suppose that f is not continuous on x0. For a α−neighborhood V of
sequence f{(xi)}i∈Z+ .

Then there exists f−1(V ) and f−1(V ) is not a β−neighborhood of x0, i.e.
x0 ∈ clβ((f−1(V ))c).

It follows from Theorem 3.2 that there exists a β−sequence {xi}i∈Z+ in
(f−1(V ))c and xi →β x0.

Since f{(xi)}i∈Z+ in U2 α−converges to f(x0), then

f{(xi)}i∈Z+ ∈ V, {xi}i∈Z+ ∈ f−1(V ), ∀n ∈ N+.

It is a contradiction.



58 Y. Huang et al.

Definition 3.3. Let B∗ be a family of β−subset of U . Set a new family of
β−subset

B
∗

= {W ⊆ U |∀x ∈ W,∃B ∈ B∗ such that x ∈ B ⊆ W},

then we say that B
∗

is a family of β−subset which is generated by B∗. Obviously
B∗ ⊆ B

∗
, ∅ ∈ B

∗
.

Definition 3.4. Let (U,T , β) be a topological space. We say that a family of
β−subset B

∗
in U is a basis of β−topology in U . If B∗ is a β−topology in U .

We say that the family of β−subset B∗ of (U,T , β) is a basis of β−topology in
(U,T , β) if B

∗
= T .

Definition 3.5. Let (U,T , β) be a topological space. We say B∗ is a β−second
countable space if there exists a basis of β−topology B∗ = {βi}0≤i≤∞ in U ,
which is recorded as the β − C2 space.

It is clear that the β − C2 space is a C2 space and is also a β − C1 space.

Theorem 3.4. A β−detachable metric space is a β − C2 space.

Proof. Let (U, d, β) be a β−detachable metric space. Suppose A is a countable
and dense β−subset of (U, d, β). Set up

B∗ = {Bβ(a,
1
n

)|a ∈ A, n ∈ N+},

then B∗ is a countable family of β−open set.
Let’s verify that B∗ is a basis of β−topology of (U, d, β). Thus, it suffices to

check that there exist x ∈ A and n ∈ N+, such that

x ∈ {Bβ(a,
1
n

)} ⊆ W,∀W ∈ B∗,∀x ∈ W.

Fix ε > 0 such that
Bβ(x, ε) ⊆ W.

Pick n > 2
ε and a ∈ A such that

d(x, a) <
1
n

, then x ∈ Bβ(a,
1
n

).

If y ∈ {Bβ(a, 1
n )}, then

d(a, y) <
1
n

.

From triangle inequality, we can know

d(x, y) <
2
n

< ε.

Thus
y ∈ Bβ(x, ε).

Finally

Bβ(a,
1
n

) ⊆ Bβ(x, ε) ⊆ W.
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4 Connections Between Separability and Countability

In this section, we study the relationship between the β − C1 space and β − C2

space. At the same time, we also study the connection between separability and
countability.

Theorem 4.1. Let (U,T , β) be a β − C1 space. The β−sequence of (U,T , β)
has no more than one β−limit point if and only if (U,T , β) is a β − T2 space.

Proof. Suppose xn is a β−sequence of (U,T , β). We may suppose that

{xn} →β x0, {xn} →β y0.

First consider the necessity. Since (U,T , β) is a β − C1 space and is also a
β − T2 space. There exist β−open neighborhoods W and V if

x0 �= y0, where W ∈ Nβ(x), V ∈ Nβ(y).

Thus we have
x0 ∈ W, y0 ∈ V,W

⋂
V = ∅.

Since
{xn} →β x0,

there exists N1 > 0 such that

{xn} ∈ W,∀n > N1.

In a similar way, since
{xn} →β y0,

there exists N2 > 0 such that

{xn} ∈ V,∀n > N2.

Finally, pick N = N1 + N2, and we can see

{xn} ∈ W
⋂

V,∀n > N.

It is a contradiction.

Next focus on the sufficiency. Suppose (U,T , β) is not a β − T2 space. Then
there exist

x, y ∈ U, x �= y,W ∈ Nβ(x), V ∈ Nβ(y),W
⋂

V �= ∅.

Since (U,T , β) is a β−C1 space, then {Wn} is a countable wide-down basis of
β−neighborhood of x. {Vn} is a countable wide-down basis of β−neighborhood
of y. So

{xn} ∈ {Wn}
⋂

{Vn} �= ∅,
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then
{xn} →β x, {xn} →β y.

We obtain
x = y.

It contradicts with the suppose x �= y. Finally, the (U,T , β) is a β−T2 space.

Theorem 4.2. If (U,T , β) is a β − C2 space and is also a β − T3 space. Then
(U,T , β) is a β − T4 space.

Proof. Pick a countable basis of β− topology B∗ of U . Suppose that A and A′

are the β−closed set, and they are non-intersect. For any x ∈ A, then x /∈ A′.
We may therefore apply β − T3 space, and so we have β−neighborhood G and
G′, where G ∈ Nβ(x),G′ ∈ Nβ(A′).

Then
clβ(W )

⋂
A′ = ∅.

Pick B ∈ B∗ such that
x ∈ B ⊆ G.

Then
clβ(B)

⋂
A′ = ∅.

Suppose {B1, B2, ...} is the member of all the closure in B∗ but not in A′. It
has been proved that

A ⊆
⋃

Bn, n = 1, 2, 3, ....

We say that {B′
1, B

′
2, ...} is the member of all the closure in B∗ but not in A.

Then
A′ ⊆

⋃
B′

n, n = 1, 2, 3, ....

Suppose Wn = Bn\
⋃

cl′β(Bn), Vn = B′
n\

⋃
clβ(Bn), n = 1, 2, 3, ....

Then Wn and Vn are all the β−open sets and

Wn

⋂
Vm = ∅,∀m,n.

Set up
W =

⋃
Wn, V =

⋃
Vn, n = 1, 2, 3, ...,

then
W

⋂
V =

⋃
(Wn

⋂
Vm) = ∅, n,m = 1, 2, 3, ....

Suppose x ∈ A, then there exists n such that

x ∈ Bn.

Thus
x ∈ Wn ⊆ W.

So W is a β−open neighborhood of A. In the same way, the V is a β−open
neighborhood of A′. So W and V are the β−neighborhood and respectively
belong to A and A′. So (U,T , β) is a β − T4 space.
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5 Examples

In this section, we use three examples to illustrate the previous conclusion.

Example 5.1. (R,T , β) is not a β −C1 space. Suppose x ∈ R, where R is the
real number set. Any countable system of β−neighborhood Nβ(x) of x is not a
basis of β−neighborhood of x.

Note. Any W ⊆ Nβ(x) is a complementary set of β−finit set. Then
⋃

W c where
W ∈ Nβ(x) is a β−countable set.

Fix
y /∈

⋃
W c,W ∈ Nβ(x), y �= x.

Then
∀W ⊆ Nβ(x), y ∈ W.

Thus R\{y} is a β−open neighborhood of x and it does not contain any
W ⊆ Nβ(x).

Example 5.2. Let B∗ = {[a, b)|a < b} and (R,B
∗
, β) be a topological space.

Then (R,B
∗
, β) is not a β − C2 space.

Note. Suppose μ is a basis of β−topology of (R,B
∗
, β), and a, b ∈ R. Then

[a, a + 1) is a β−open set. Thus there exist the β−open neighborhoods Wa,Wb

in μ.
Then

a ∈ clβ(Wa) ⊆ [a, a + 1),

and a is the smallest member in Wa.
Obviously,

Wa �= Wb, a �= b.

Thus the member of μ is uncountable. Then there exists a countless basis of
β−neighborhood in (R,B

∗
, β).

So (R,B
∗
, β) is not a β − C2 space.

Example 5.3. Let S be a collection of all the irrational numbers. Suppose the
family of β−subset T = {W \ A|W is a β − open set of E1, A ⊆ S}.

Then:

(1) (R,T , β) is a separable space such that (R,T , β) is a β − C1 space.
(2) (R,T , β) is not a β − C2 space.

Note. (1) Since (R,T , β) is a β − C1 space.
Then pick

Wn = {x}
⋃

((x − 1
n

, x +
1
n

)
⋂

Q),∀x ∈ R.
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Thus {Wn} is a countable basis of β−neighborhood of x.
So (R,T , β) is separable.

(2) Suppose (R,T , β) is a β − C2 space. Let T be a β−subspace on x and TS

be a discrete topology.
Suppose A ⊆ S. Since R \ (S \ A) is a β−open set of (R,T , β), then (R \

(S \ A))
⋂

S = A is a β−open set of (S,TS , β).
It is suggested that every β−subset of S is the β−open set of (S,TS , β).
Thus (S,TS , β) is not separable.
If (R,T , β) is a β − C2 space, then (S,TS , β) is also a β − C2 space.
Thus (S,TS , β) should be separable.
It is a contradiction. So (R,T , β) is not a β − C2 space.
Obviously, β−metric space is a β−C1 space; {B(x, q)|q ∈ Q+} is a countable

basis of β−neighborhood of x; If

T = {(−∞, a)| − ∞ ≤ a ≤ +∞},

then (R,T , β) is a β − C2 space.

6 Conclusion

This paper focuses on covering topology and its subbasis to define the β−first
countable space and the β−second countable space, i.e. β −C1 space and β −C2

space. At the same time, it also defines the basis of β−neighborhood, the system
of β−neighborhood, the family of β−subset and the basis of β−topology. Then,
we study the relationship between β − C1 space and β − C2 space. Finally, we
study the connections of the countable space and separable space. In summary,
this study offers the covering topology countability based on a subbasis, as well as
its relationships with separability. Other topological properties are worth deeply
researching for covering topology.
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Abstract. Firstly, this paper presents the new concept of soft subincline. Then
some equivalent conditions of it and two operations “RESTRICTED INTER-
SECT” and “AND” on it are discussed. After that the relationship between soft
subincline and the dual of soft set based on the method of the dual of soft set are
studied. In addition, the concepts and properties of maps between soft subincline
are given. Finally, the chain condition of H which consists of all of the soft
subinclines is introduced and obtain a necessary and sufficient condition for H is
Artinian or Noetherian.

Keywords: Incline-algebra � Soft incline � Soft sets � Dual soft sets � Chain
condition

1 Introduction

As the fuzzy set theory was proposed, mathematical tools dealing with incomplete and
uncertain problems were also presented. In particular, Pawlak and Atanassov proposed
the rough set theory [1] and intuitionistic fuzzy set theory [2]. However, these math-
ematical theories are lack of parameter tools. Therefore, in order to solve this problem,
Molodtsov gave the concept of soft sets innovatively in 1999 [3]. After that, Aktas and
Cagman propose the definition of soft group in 2007 [4] which created a new field of
soft algebra. A few years afterwards, many scholars had done a series of researches in
soft algebra [5–13].

The notion of incline algebra was proposed by Cao in 1981 [14]. He also published
a monograph about incline algebra with other two scholars [15]. In 2001, Jun applied
fuzzy sets to incline algebra and proposed the concept of fuzzy subincline [16].

Liao applied soft sets to incline algebra and proposed the concept of soft incline in
2012 [17]. The concept of fuzzy soft incline and ð2;2 _qÞ� fuzzy soft incline were
proposed by Alshehri in 2012 [18]. The study of inclines and incline matrices is
significant both in theory and in practice, they have good foreground of applications in
many areas including automation theory, decision theory, cybernetics, graph theory and
nervous system [15]. At present, the theories of incline algebras and incline matrices
are highly utilized by computer science applications [19–21].

In 2008, Yuan and Wen introduced algebraic structures in parameter set and
obtained a new algebraic structure of soft sets [22]. They introduced a soft algebra

© Springer International Publishing AG 2018
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structure which can be reduced to L-fuzzy algebra by using the concept of dual soft
sets, where L = P(X) (P (X) is the power set of the common universe X) is a Boolean
algebra. In general the element in lattice L has no structure. However, the elements over
L = P(X) is a set which can also have many elements and algebraic structure. There-
fore, more meaningful results can be obtained than general L-fuzzy algebra.

In this paper, by using the idea above, we give the new concept of soft subincline.
The difference between our new concept of soft subincline and the concept of soft
incline proposed in literature [17] is that: the parameter set of a soft subincline is a fixed
incline in this paper, while it is a subincline of a certain incline in literature [17].
Furthermore, we investigate some algebraic properties of our new type of soft subin-
cline and introduced some properties of the new type of soft subincline of incline under
the chain condition. These results enrich the theory of soft algebra.

2 Preliminary Notes

Definition 2.1 [14]. An inline (algebra) is a set K with two binary operations denoted
by “�” and “�” Satisfying the following axioms: for all x; y; z 2 K,

(1) xþ y ¼ yþ x;
(2) ðxþ yÞþ z ¼ xþðyþ zÞ;
(3) ðxyÞz ¼ xðyzÞ;
(4) xðyþ zÞ ¼ xyþ xz;
(5) ðyþ zÞx ¼ yxþ zx;
(6) xþ x ¼ x;
(7) xþ xy ¼ x;
(8) yþ xy ¼ y.

For convenience, we pronounce “þ ” (resp.”�”) as addition (resp. multiplication).
Every distributive lattice is an incline. An incline is a distributive lattice if and only

if xx ¼ x for all x 2 K.
Note that x� y , xþ y ¼ y for all x; y 2 K.
A subincline of an incline K is a non-empty subset M of K which is closed under

addition and multiplication. A subincline M is said to be an ideal of an incline K if
x 2 M and y� x then y 2 M. By a homomorphism of inclines we shall mean a mapping
f from an incline K into an incline L such that f ðxþ yÞ ¼ f ðxÞf ðyÞ and f ðxyÞ ¼ f ðxÞf ðyÞ
for all x; y 2 K.

Definition 2.2 (Cartesian product). Let A and B be two non-empty set, then A� B ¼
fðx; yÞjx 2 A; y 2 Bg is called a Cartesian product over A and B.

Theorem 2.1 [14]. Let K1 and K2 be incline algebras, then their Cartesian product is
an incline algebra if for all ðx1; x2Þ; ðy1; y2Þ 2 K1 � K2:

ðx1; x2Þþ ðy1; y2Þ ¼ ðx1 þ y1; x2 þ y2Þ;
ðx1; x2Þðy1; y2Þ ¼ ðx1y1; x2y2Þ:
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Definition 2.3 [14]. A pair ðF;AÞ is called a soft set (over X) if and only if F is a
mapping of E into the set of all subsets of the set X.

Definition 2.4 [23] (Restricted intersection operation of two soft sets). Let ðF;AÞ and
ðG;BÞ be two soft sets over a common universe X. If the soft set ðH;CÞ satisfy
C ¼ A\B and for any e 2 C;HðeÞ ¼ FðeÞ \GðeÞ. We call ðH;CÞ is the restricted
intersection of ðF;AÞ and ðG;BÞ, and denote ðH;CÞ¼ðF;AÞ \ ðG;BÞ.
Definition 2.5 [24] (AND operation on two soft sets). Let ðF;AÞ and ðG;BÞ be two
soft sets, then “ðF;AÞ and ðG;BÞ” denoted by ðF;AÞ ^ ðG;BÞ is defined to be
ðF;AÞ ^ ðG;BÞ ¼ ðH;A� BÞ, where Hða; bÞ ¼ FðaÞ \GðbÞ; 8ða; bÞ 2 A� B.

Definition 2.6 [22] (The duality of soft sets)
AH : X ! PðEÞ; x 7!AH ¼ fgjx 2 HðgÞg is called the duality soft set of H if H :

E ! PðXÞ; g 7!HðgÞ is a soft set over K.
HA : E ! PðXÞ; g 7!HðgÞ ¼ fxjg 2 AðxÞg is called the duality soft set of A if A :

X ! PðEÞ is a soft set over X.

Definition 2.7 [22] (The Extension Principle) let X be the common universe. Let f be
defined by f : K1 ! K2 and let H1 : K1 ! PðXÞ and H2 : K2 ! PðXÞ are soft sets over
K1 and K2 respectively. Define soft sets f ðH1Þ over K1 and f�1ðH2Þ over K2 by

8g2 2 K2, f ðH1Þðg2Þ ¼ [ f ðg1Þ¼g2H1ðg1Þ f�1ðg2Þ 6¼ £
£ f�1ðg2Þ ¼ £

�
and 8g1 2 K1; f�1ðH2Þðg1Þ

¼ H2. Then f ðH1Þ is said to be the image of H1 and f �1ðH2Þ is said to be the preimage
of K2.

Definition 2.8 [17]. Let K be an incline algebra. A pair ðF;AÞ is called a soft incline
over K if FðxÞ is a subincline of K for all x 2 A.

3 A New Type of Soft Subincline of Incline

Definition 3.1. Let K be an incline algebra and X be the common universe, H : K !
PðXÞ is a soft set. H is called a new type of soft subincline of incline if it satisfies the
following conditions: for all g1; g2 2 K,

ð1Þ Hðg1 þ g2Þ � Hðg1Þ \Hðg2Þ;

ð2Þ Hðg1g2Þ � Hðg1Þ \Hðg2Þ:

Example 3.1. Let K ¼ f0; a; b; 1g be an incline with the operation tables given in
Table. Let X ¼ f0; a; b; 1g and H : K ! PðXÞ be a soft set defined Hð0Þ ¼ f0; ag
HðaÞ ¼ f0; 1g;HðbÞ ¼ fa; bg;Hð1Þ ¼ fbg. Clearly, H is a new type of soft subincline
of incline over K and it could be verified by Definition 2.1. Because HðbÞ ¼ fa; bg is
not a subincline of K, so H is not a soft incline over K, then the new type of soft
subincline is a new algebraic structure.
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The operation tables of the incline

+ 0 a b 1 ∙ 0 a b 1
0 0 a b 1 0 0 0 0 0
a a a 1 1 a 0 a 0 a
b b 1 b 1 b 0 0 b b
1 1 1 1 1 1 0 a b 1

Theorem 3.1. Let K1 and K2 be two subinclines of K and let H1 and H2 be new type of
soft subinclines of incline over K1 and K2 respectively, if K1 \K2 6¼ £ and
ðH1;K1 \K2Þ ¼ ðH;K1Þ \ ðH;K2Þ, then H is a new type of soft incline of incline over
K1 \K2.

Proof. Because of K1 and K2 be two subinclines of K and K1 \K2 6¼ £, it is easy to
say that K1 \K2 is also a subincline of K. For any g1; g2 2 K1 \K2, we have

Hðg1g2Þ ¼ H1ðg1g2Þ \H2ðg1g2Þ � ½H1ðg1Þ \H1ðg2Þ� \ ½H2ðg1Þ \H2ðg2Þ�
¼ ½H1ðg1Þ \H2ðg1Þ� \ ½H1ðg2Þ \H2ðg2Þ� ¼ Hðg1Þ \Hðg2Þ:

Z

Similarly, Hðg1 þ g2Þ � Hðg1Þ \Hðg2Þ; 8g1; g2 2 K1 \K2.
Therefore, H is a new type of soft subincline of incline of K1 \K2.

Theorem 3.2. Let K1 and K2 be two inclines and let H1 and H2 be new type of soft
subinclines of incline over K1 and K2 respectively, if K ¼ K1 � K2 and
ðH;KÞ ¼ ðH1;K1Þ ^ ðH2;K2Þ, then H is a new type of soft subincline of incline of K.

Proof. Since K1 and K2 are two inclines, by Theorem 2.1, it is sufficient to show that
K1 � K2 is also an incline. Then clearly H½ðx1; y1Þðx2; y2Þ� ¼ Hðx1x2; y1y2Þ¼H1ðx1x2Þ
\H2ðy1y2Þ � ½H1ðx1Þ \H1ðx2Þ� \ ½H2ðy1Þ \H2ðy2Þ� ¼ ½H1ðx1Þ \H2ðy1Þ� \ ½H1ðx2Þ \
H2ðy2Þ�¼Hðx1; y1Þ \Hðx2; y2Þ for all ðx1; y1Þ; ðx2; y2Þ 2 K.

Similarly, H½ðx1; y1Þþ ðx2; y2Þ� � Hðx1; y1Þ \Hðx2; y2Þ for all ðx1; y1Þ, ðx2; y2Þ 2 K.
Therefore, H is a new type of soft subincline of incline of K.

Theorem 3.3. Let K be an incline, then the following are equivalent:

(i) H is a new type of soft subincline of incline of K.
(ii) For all x 2 X;AHðxÞ 6¼ ; is a subincline over K.

Proof. ðiÞ ) ðiiÞ For all g1; g2ðxÞ 2 AHðxÞ, we have x 2 Hðg1Þ and x 2 Hðg2Þ,
therefore x 2 Hðg1Þ \Hðg2Þ. Since H is a new type of soft subincline of incline of K, it
follows that Hðg1Þ \Hðg2Þ�Hðg1g2Þ, then x 2 Hðg1g2Þ. Hence g1g2 2 AHðxÞ.

Similarly, g1 þ g2 2 AHðxÞ for all g1; g2 2 AHðxÞ.
Therefore, AHðxÞ is a subincline over K for all x 2 X.
ðiiÞ ) ðiÞ: For all g1 þ g2 2 K, if Hðg1Þ \Hðg2Þ ¼ £ , then Hðg1Þ \Hðg2Þ ¼

£�Hðg2Þ; if Hðg1Þ \Hðg2Þ 6¼ £, assume that x 2 Hðg1Þ \Hðg2Þ, then x 2 Hðg1Þ
and x 2 Hðg2Þ, hence g1; g2 2 AHðxÞ Note that AHðxÞ is a subincline over K, then
g1g2 2 AHðxÞ and so x 2 Hðg1g2Þ. Thus Hðg1Þ \Hðg2Þ�Hðg1g2Þ.
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Similarly, Hðg1Þ \Hðg2Þ�Hðg1 þ g2Þ for all x 2 Hðg1Þ \Hðg2Þ.
Therefore, H is a new type of soft subincline of incline of K.

Theorem 3.4. Let K be an incline, then the following are equivalent:

(i) Let A be defined by A : X ! PðKÞ, for all x 2 X;AHðxÞ 6¼ £ is a subincline over
K.

(ii) HA is a new type of soft subincline of incline over K.

Proof. ðiÞ ) ðiiÞ: Assume that x 2 HAðg1Þ \HAðg2Þ, then g1 2 AðxÞ and g2 2 AðxÞ.
Note that AðxÞ is a subincline of K, then g1g2 2 AðxÞ and g1 þ g2 2 AðxÞ. Clearly
x 2 HAðg1g2Þ and x 2 HAðg1 þ g2Þ. Thus HAðg1Þ \HAðg2Þ�HAðg1g2Þ and HAðg1Þ \
HAðg2Þ�HAðg1g2Þ.

Therefore, HA is a new type of soft subincline of incline over K.
ðiiÞ ) ðiÞ: For any g1; g2 2 AðxÞ, we have x 2 HAðg1Þ and x 2 HAðg2Þ, and so

x 2 HAðg1Þ \HAðg2Þ. Since HA is a new type of soft subincline of incline over K, it
follows that Hðg1Þ \Hðg2Þ�Hðg1g2Þ and Hðg1Þ \Hðg2Þ�Hðg1 þ g2Þ, then g1g2 2
AðxÞ and g1 þ g2 2 AðxÞ. Therefore,AðxÞ is a subincline over K.

Theorem 3.5. Let K1 and K2 be two inclines and let X be the common universe. Let
f : K1 ! K2 be a hemimorphic mapping. Let H1 : K1 ! PðXÞ and H2 : K2 ! PðXÞ be
soft sets over K1 and K2 respectively. Then f ðH1Þ is a new type of soft incline of incline
over K2 if H1 is a new type of soft subincline of incline over K1.

Proof. For all g2; g02 2 K2.
Case1: Assume f�1ðg2Þ 6¼ £ and f�1ðg02Þ 6¼ £. if f ðH1Þðg2Þ \ f ðH1Þðg02Þ ¼ £,

then f ðH1Þðg2Þ \ f ðH1Þðg02Þ�f ðH1Þðg2 þ g02Þ if f ðH1Þðg2Þ \ f ðH1Þðg02Þ 6¼ £ then 8x 2
f ðH1Þðg2Þ \ f ðH1Þðg02Þ we have x 2 [ f ðg1Þ¼g2H1ðg1Þ and x 2 [ f ðg01Þ¼g02

H1ðg01Þ. Thus
there exists g1 2 K1 such that x 2 H1ðg1Þ and f ðg1Þ ¼ g2. There also exists g01 2 K1

such that x 2 H1ðg01Þ and f ðg01Þ ¼ g02. Hence x 2 H1ðg1Þ \H1ðg01Þ. Since H1 is a new
type of soft subincline of incline over K1, we can get H1ðg1Þ \H1ðg01Þ�H1ðg1 þ g01Þ,
then x 2 H1ðg1 þ g01Þ. Note that f is a homomorphic mapping, so f ðg1 þ g01Þ ¼ f ðg1Þþ
f ðg01Þ¼g2 þ g02 where g1 þ g01 2 K1. Therefore, x 2 H1ðg1 þ g01Þ� [ f ðgÞ¼g2 þ g02

H1ðgÞ ¼
f ðH1Þðg2 þ g02Þ.

Case2: If f�1ðg2Þ ¼ £ or f�1ðg02Þ ¼ £, then f ðH1Þðg2Þ ¼ £ or f ðH1Þðg02Þ ¼ £,
and so f ðH1Þðg2Þ \ f ðH1Þðg02Þ ¼ ;�f ðH1Þðg2 þ g02Þ.

Similarly, f ðH1Þðg2Þ \ f ðH1Þðg02Þ�f ðH1Þðg2g02Þ; 8g2; g02 2 K2.
Therefore, f ðH1Þ is a new type of soft incline of incline over K2 .

Theorem 3.6. Let K1 and K2 be two inclines and let X be the common universe. Let be
f : K1 ! K2 be a homomorphic mapping. H1 : K1 ! PðXÞ and H2 : K2 ! PðXÞ are
soft sets over K1 and K2 respectively. Then f�1ðH2Þ is a new type of soft subincline of
incline of K1, if H2 is a new type of soft subincline of incline over K2.
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Proof. For any g1; g01 2 K1, we have

f�1ðH2Þðg1Þ \ f�1ðH2Þðg01Þ ¼ H2ðf ðg1ÞÞ \H2ðf ðg01ÞÞ�H2ðf ðg1Þþ f ðg01ÞÞ
¼ H2ðf ðg1 þ g01ÞÞ ¼ f �1ðH2Þðg1 þ g01Þ:

Similarly, f�1ðH2Þðg1Þ \ f�1ðH2Þðg01Þ�f�1ðH2Þðg1g01Þ; 8g1; g01 2 K1.
Therefore, f�1ðH2Þ is a new type of soft subincline of incline of K1.

Definition 3.2. Let K1 and K2 be two inclines and let H1 be a new type of soft
subincline of incline over K1. Let f : K1 ! K2 be a map. For all x; y 2 K1, if
f ðxÞ ¼ f ðyÞ, we have H1ðxÞ ¼ H1ðyÞ, then H1 is said to be f-invariant.

Theorem 3.7. Let K1 and K2 be two inclines and let X be the common universe. If f is
a homomorphic mapping from K1 to K2, H1 : K1 ! PðXÞ is a soft set over K1 and H1 is
f-invariant. Then the following are equivalent:

(i) H1 is a new type of soft subincline of incline over K1.
(ii) f ðH1Þ is a new type of soft subincline of incline over K2.

Proof. ðiÞ ) ðiiÞ: Following Theorem 3.5, it is sufficient to show that the conclusion is
correct.

ðiiÞ ) ðiÞ: For any g1; g01 2 K1 and x 2 H1ðg1Þ \H1ðg01Þ, we have x 2 H1ðg1Þ and
x 2 H1ðg01Þ. Assume that f ðg1Þ ¼ g2 and f ðg01Þ ¼ g02 2 K2, then x 2 [ f ðgÞ¼g2H1ðgÞ ¼
f ðH1Þðg2Þ and x 2 [ f ðg0Þ¼g02

H1ðgÞ ¼ f ðH1Þðg02Þ, and so x 2 f ðH1Þðg2Þ \ f ðH1Þðg02Þ.
since f ðH1Þ is a new type of soft subincline of incline over K2, hence
f ðH1Þðg2Þ \ f ðH1Þðg02Þ�f ðH1Þðg2g02Þ, then x 2 f ðH1Þðg2g02Þ ¼ [ f ðgÞ¼g2g02

H1ðgÞ
So clearly there exists g 2 K1 such that f ðgÞ ¼ g2g02 and x 2 H1ðgÞ. Since f is a

homomorphic mapping, then f ðgÞ ¼ f ðg1Þf ðg01Þ ¼ f ðg1g01Þ. Also note that H1 is a
f-invariant, then H1ðgÞ ¼ H1ðg1g01Þ, so x 2 H1ðg1g01Þ.

Hence H1ðg1Þ \H1ðg01Þ�H1ðg1g01Þ.
Similarly, H1ðg1Þ \H1ðg01Þ�H1ðg1 þ g01Þ; 8g1; g01 2 K.
Therefore, H1 is a new type of soft subincline of incline of K1.

Theorem 3.8. Let K1 and K2 be two inclines and let X be the common universe. If f is
a homomorphic mapping from K1 to K2 and H2 : K2 ! PðXÞ is a soft set over K2. Then
the following are equivalent:

(i) H2 is a new type of soft subincline of incline over K2.
(ii) f�1ðH2Þ is a new type of soft subincline of incline over K1.

Proof. ðiÞ ) ðiiÞ: Following Theorem 3.6, it is sufficient to show that the conclusion is
correct.

ðiiÞ ) ðiÞ: For any g2; g02 2 K2, note that f is a homomorphic mapping, so there
exists g1; g01 2 K1 such that g2 ¼ f ðg1Þ; g02 ¼ f ðg01Þ and g2g02 ¼ f ðg1Þf ðg01Þ ¼ f ðg1g01Þ,
then H2ðg2Þ \H2ðg02Þ ¼ H2ðf ðg1ÞÞ \H2ðf ðg01ÞÞ ¼ f�1ðH2Þðg1Þ \ f�1ðH2Þðg01Þ since
f�1ðH2Þ is a new type of soft subincline of incline over K1, we get f�1ðH2Þðg1Þ
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\ f�1ðH2Þðg01Þ�f�1ðH2Þðg1g01Þ ¼ H2ðf ðg1g01ÞÞ ¼ H2ðg1g01Þ. Hence H2ðg2Þ \H2ðg02Þ
�H2ðg2g02Þ.

Similarly, H1ðg2Þ \H1ðg02Þ�H1ðg2 þ g02Þ; 8g2; g02 2 K2.
Therefore, H2 is a new type of soft subincline of incline over K2.

4 The Chain Condition of Incline

Definition 4.1. Let K be an incline algebra and H is the set of all new type of soft
subincline of incline over K. Suppose H1 and H2 are elements of H. Define a binary
relation “� ” over H as follows: H1 �H2 , H1ðgÞ�H2ðgÞ; 8g 2 K.

Definition 4.2. Let K be an incline algebra, H is the set of all new type of soft
subincline of incline over K;H1 and H2 are elements of H. Define a binary relation “¼”
over H as follows: H1 ¼ H2 , H1ðgÞ ¼ H2ðgÞ; 8g 2 K.

Theorem 4.1. ðH; �Þ is a partially ordered set.

Proof. For any H1 2 H, we have H1ðgÞ 2 H1ðgÞ for all g 2 K, hence H1 �H1.
For any H1;H2;H3 2 H, assume that H1 �H2 and H2 �H3. Clearly for any g 2 K we
have H1ðgÞ�H2ðgÞ and H2ðgÞ�H3ðgÞ, then H1ðgÞ�H3ðgÞ. Hence H1 �H3.

For any H1;H2 2 H, assume that H1 �H2 and H2 �H1. Clearly for any g 2 K, we
have H1ðgÞ�H2ðgÞ and H2ðgÞ�H1ðgÞ, then H2ðgÞ ¼ H1ðgÞ.

Hence H2 ¼ H1.
Therefore, ðH; �Þ is a partially ordered set.

Theorem 4.2. K is an incline, H1 and H2 are new type of soft subinclines of incline
over K. Then H1 �H2 if and only if AH1ðxÞ�AH2ðxÞ for all x 2 X.

Proof. Necessity: For any g 2 AH1ðxÞ, we have H1ðgÞ�H1ðgÞ. Since H1 �H2, then
H1ðgÞ�H2ðgÞ. This implies that x 2 H2ðgÞ, so that g 2 AH2ðxÞ. Therefore
AH1ðxÞ�AH2ðxÞ.

Sufficiency: For any g 2 K and x 2 H1ðgÞ, we have g 2 AH1ðxÞ. Since
AH1ðxÞ�AH2ðxÞ then g 2 AH2ðxÞ. This implies that x 2 H2ðgÞ, so that H2ðgÞ�H2ðgÞ.
Therefore H1 �H2.

Corollary 4.1. K is an incline, H1 and H2 are new type of soft subinclines of incline
over K. Then H1 ¼ H2 if and only if AH1ðxÞ ¼ AH2ðxÞ for all x 2 X.

Definition 4.3. K is an incline, XðKÞ is a subincline family of K. For any ascending
chain of XðKÞ;K1�K2� � � � �Kn� � � �, if there exists a positive integer n such that
Kn ¼ Km for all m > n, XðKÞ is called Noetherian. K is called a Noetherian incline if
XðKÞ is the set of all subinclines over K. The number min fijKi ¼ Kiþ 1; i ¼ 1; 2; � � �g
is called the stabilize index of Noetherian and denoted by mfKig.

Definition 4.4. K is an incline, XðKÞ is a subincline family of K. For any descending
chain of XðKÞ;K1 � K2 � � � � � Kn � � � �, if there exists a positive integer n such that
Kn ¼ Km for all m > n, XðKÞ is called Artinian. K is called a Artinian incline if XðKÞ
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is the set of all subinclines over K. The number min fijKi ¼ Kiþ 1; i ¼ 1; 2; � � �g is
called the stabilize index of Artinian and denoted by nfKig.

Definition 4.5. K is an incline,
P

is the set of all subinclines over K. K is said to
satisfy the maximal condition if every nonempty set over

P
has a maximal element.

Definition 4.6. K is an incline,
P

is the set of all subinclines over K. K is said to
satisfy the minimal condition if every nonempty set over

P
has a minimal element.

Theorem 4.3. K is an incline, K is a Noetherian incline if and only if K satisfies the
maximal condition.

Proof. Necessity: Let
P

be the set of all subinclines over K. Assume that nonempty
subset

P0 over
P

without maximal element, then for any Ki 2
P0, there exists Kiþ 1

such that Ki�Kiþ 1. Hence there exists an infinite ascending chain
K1�K2� � � � �Ki�Kiþ 1� � � �, a contradiction. Therefore, K satisfies the maximal
condition.

Theorem 4.4. K is an incline, K is an Artinian incline if and only if K satisfy the
minimal condition.

Proof. The proof of this theorem is similar to the proof of Theorem 4.3 and so is
omitted.

Definition 4.7. K is an incline, let A be a subincline over K. A is said to be reducible if
there exist B and C, which are subincline over K, properly including A, such that
A ¼ B\C. If A ¼ B\C, there must have A ¼ B or A ¼ C, then A is said to be
irreducible.

Theorem 4.5. K is a Noetherian incline, then every subincline over K can be
expressed as intersectiob of finite number of subinclines which are irreducible.

Proof. Let
P

1 be the set of subinclines over K which are cannot be expressed as
intersection of a finite number of irreducible subinclines. Assume that

P
1 6¼ £. Since

K is a Noetherian incline, clearly we know K satisfies the maximal condition. Hence
there exists a maximal element in

P
1 and denoted by a. Because the elements in

P
1

are reducible, there exist b and c, which are subinclines over K, such that a ¼ b\ c
where a 	 b and a 	 c. For a is the maximal element, then b; c 62 P

1, and so b; c can
be expressed as intersection of a finite number of irreducible subinclines, denoted by
b ¼ b1 \ � � � \ bm; c ¼ c1 \ � � � \ cn (the bi; cj are irreduclble). Clearly,
a ¼ b\ c ¼ b1 \ � � � \ bm \ c1 \ � � � \ cn. a can be expressed as intersection of a finite
number of irreducible subinclines, a contradiction. So we have

P
1 ¼ ;, hence every

subincline over K can be expressed as intersection of finite number of subinclines
which are irreducible.

Definition 4.8. K is a Noetherian incline, H is the set of all new type of soft subin-
clines of incline over K. For any ascending chain of new type of soft subinclines of
incline H1 �H2 �H3 � � � �, if there exists a positive integer n such that Hm ¼ Hn for
all m[ n;H is said to have the ascending chain condition, or we say H is Noetherian.
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Definition 4.9. K is an incline, H is the set of all new type of soft subinclines of incline
over K. For any descending chain of new type of soft subinclines of incline
H1 
H2 
H3 
 � � �, if there exists a positive integer n such that Hm ¼ Hn for all
m[ n;H is said to have the descending chain condition, or we say H is Artinian.

Theorem 4.6. K is an incline, H is the set of all new type of soft subinclines of incline

over K. H is Noetherian if and only if XðKÞðxÞ¼DfAHiðxÞjHi 2 Hg is Noetherian for all
x 2 X and supfmfAHiðxÞgjx 2 Xg is finited.

Proof. Necessity: Following Theorem 3.3, it is sufficient to show that AHiðxÞ is a
subincline of K. Then XðKÞðxÞ is a subincline family. Let AH1ðxÞ�AH2ðxÞ
� � � �AHnðxÞ� � � � be an ascending chain over XðKÞðxÞ, according to Theorem 4.2, it
follows that H1 �H2 � � � � �Hn � � � � For H is Noetherian, so there exists a positive
integer n such that Hm ¼ Hn for all m[ n. According to Corollrry 4.1, it follows that
AHmðxÞ ¼ AHnðxÞ for all x 2 X.

Consequently, we infer that XðKÞðxÞ is Noetherian for all x 2 X and
supfmfAHiðxÞgjx 2 Xg is finited.

Sufficiency: Let H1 �H2 � � � � �Hn � � �� be an ascending chain over H,
according to Theorem 4.2, we have that AH1ðxÞ�AH2ðxÞ� � � �AHnðxÞ� � � � for all x 2 X.
Let supfmfAHiðxÞgjx 2 Xg ¼ n, since XðKÞðxÞ is Noetherian, so AHmðxÞ ¼ AHnðxÞ for all
x 2 X if m[ n. According to Corollary 4.1, it follows that Hm¼Hn if m[ n. Therefore
H is Noetherian.

Theorem 4.7. K is an incline, H is the set of all new type of soft subinclines of incline

over K. H is Artinian if and only if XðKÞðxÞ¼D fAHiðxÞjHi 2 Hg is Artinian for all x 2 X
and supfnfAHiðxÞgjx 2 Xg is finited.

Proof. The proof of this theorem is similar to the proof of Theorem 4.6 and so is
omitted.
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Abstract. In this paper, a bidirectional teleportation scheme is pro-
posed, in which Alice wants to transmit an single qubit state to Bob
and Bob wants to teleport a single qubit state to Alice too. They are
shared a set of entangled 5-qubit sates as the quantum channel. All the
operations in this scheme are given in the paper.

Keywords: Bidirectional teleportation · Partially entangled · GHZ

1 Introduction

Teleportation is one of the important applications of quantum information the-
ory. In 1993, the first quantum teleportation scheme was proposed by Bennett
[1]. In the scheme, Alice want to transmit an unknown quantum state to Bob
with maximally entangled Einstein-Podolsky-Rosen states. Later, Karlsson and
Bourennane [2] proposed the first controlled quantum teleportation by using
maximally entangled GHZ state as quantum channel. Actually, this schemes of
controlled teleportation are the same as quantum state sharing [3–7]. From then
on, many theoretical schemes of quantum teleportation [8–14] have been given
by using differently entangled states. At the same time, experimental develop-
ment of quantum teleportation has also been reported [15,16]. Recently, Zha
[17] demonstrated that some cluster state can be used as quantum channel for
bidirectional quantum teleportation. In this type of teleportation schemes, Alice
and Bob can simultaneously transmit an single quantum state each other after
performing some appropriate locally operators. Up to now, various Bidirectional
quantum teleportation schemes have been given with entangled states [18–23].

As to teleportation, the entangled qubit states, such as GHZ states [24–26],
W states [27,28] and other entangled state [29,30], play a pivotal role in quantum
schemes. In general, those entangled states, which arc used as quantum channel,

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
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are maximally entangled. However, those maximally entangled states are dif-
ficult to be generated for the coupling of the quantum states. If the quantum
states are partially entangled in scheme, this schemes of quantum teleporta-
tion are called probabilistic teleportation [31–33], which are not almost realized
perfect but implemented with a probability less than unit. However, some of par-
tially entangled states [34,35] are found that they can be utilized as quantum
channel for an optimal teleportation just as the biggest entangled states work
in the scheme. Now, it is very natural to ask the following question: Whether
bidirectional teleportation can also be implemented with probability unit if the
quantum states, worked as quantum channel, are partially entangled for some
reason? Based on those works, we propose a bidirectional controlled quantum
teleportation with non-maximally entangled states in the paper.

The organization of this paper is outlined as follows. In Sect. 2, we firstly
illustrate how to generate a 5-qubit entangled state from a normal GHZ state,
utilized as quantum channel in the following scheme. In Sect. 3, we propose a
scheme of bidirectional controlled quantum teleportation. Finally, discussions
and conclusions about our scheme are given.

2 Bidirectional Controlled Teleportation

Before describing our scheme, we discuss how to generate the non-maximally
entangled GHZ-type state |φ1〉 (Eq. 1) from a GHZ state, which will be employed
in our teleportation scheme. The state |φ1〉 can be expressed as

|φ1〉 =
1
2
(sinθ|00000〉 + sinθ|00110〉 + sinθ|01001〉 + sinθ|01111〉

+ cosθ|11100〉 − cosθ|11010〉 − cosθ|10101〉 + cosθ|10011〉).
(1)

As showed in Fig. 1, the state input into the circuit is GHZ state

|φ0〉 = sinθ|00000〉 + cosθ|11111〉. (2)

When two Hadamard operations are implemented on the fourth and the fifth
qubit of EQ(2), the generalized GHZ state |φ0〉 is transformed into the following
state (Fig. 1)

|φ′
0〉 = sinθ|000 + +〉 + cosθ|111 − −〉

=
1
2
(sinθ|00000〉 + sinθ|00010〉 + sinθ|00001〉 + sinθ|00011〉

+ cosθ|11100〉 − cosθ|11110〉 − cosθ|11101〉 + cosθ|11111〉).
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Fig. 1. A quantum circuit to generate 5-qubit partially entangled GHZ-type states.

Then, implementing a CNOT gate on the second qubit with the fifth qubit as the
control qubit and another CNOT gate on the third qubit with the fourth qubit
as the control qubit, we have generated the partially entangled state |φ1〉 (Eq. 1).
We use the GME-concurrence [36] to analyze the entanglement properties of the
state |φ1〉, which is given as

CGME(|Ω〉) := min
ri∈r

√
2[1 − Tr(ρ2Ari

)],

then we have CGME(|φ1〉) = |sin2θ|, which varies from 0 to 1. When CGME = 0,
the states

|φ〉 =
1
2
|1〉(|1100〉 − |1010〉 − |0101〉 + |0011〉)

are biseparable. When CGME = 1, the states

|φ1〉 =
1

2
√

2
(|00000〉 + |00110〉 + |01001〉 + |01111〉

+ |11100〉 − |11010〉 − |10101〉 + |10011〉)
are maximally entangled.

We supposed the three parties in the scheme are Alice, Bob and Charlie and
the 5-qubit partially entangled state |φ1〉, used as quantum channel, are shared
between Alice and Bob. Now, Alice wants to transmit an unknown qubit state
|μA〉 to Bob, and Bob also wants to transmit an unknown qubit state |μB〉 to
Alice. Charlie, as a controller, decides whether Alice and Bob, in the scheme,
can attain the qubit state successfully from each other. The two qubit states
transmitted from Alice and Bob, which are known nothing by everyone, are
given by

|μA〉 = a0|0〉 + a1|1〉, |μB〉 = b0|0〉 + b1|1〉, (3)
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where |a0|2 + |a1|2 = 1, |b0|2 + |b1|2 = 1. The total state of physical system can
be shown as

|Ω〉 = |μA〉A ⊗ |φ1〉12345 ⊗ |μB〉B . (4)

where the qubits A, 3, 5 held by Alice, qubits B, 2, 4 by Bob and the qubit 1
belongs to Charlie. At first, a Bell-states measurement is performed by Alice
and Bob on their own qubit respectively. then they public their outcomes each
other by sending two bits of classical information. Thus, the whole states (Eq. 4)
can be rewritten as

|Ω〉B2A3145 = |Ψx〉B2|Ψy〉A3[(a0b0sinθ|000〉 + (−1)xa0b1sinθ|001〉+
(−1)ya1b0sinθ|010〉 + (−1)x+ya1b1sinθ|011〉 + a0b0cosθ|111〉−
(−1)xa0b1cosθ|110〉 − (−1)ya1b0cosθ|101〉 + (−1)x+ya1b1cosθ|100〉]

+ |Ψx〉B2|Φy〉A3[(a0b0sinθ|010〉 + (−1)xa0b1sinθ|011〉+
(−1)ya1b0sinθ|000〉 + (−1)x+ya1b1sinθ|001〉 − a0b0cosθ|101〉+
(−1)xa0b1cosθ|100〉 + (−1)ya1b0cosθ|111〉 − (−1)x+ya1b1cosθ|110〉]

+ |Φx〉B2|Ψy〉A3[(a0b0sinθ|001〉 + (−1)xa0b1sinθ|000〉+
(−1)ya1b0sinθ|011〉 + (−1)x+ya1b1sinθ|010〉 − a0b0cosθ|110〉+
(−1)xa0b1cosθ|111〉 + (−1)ya1b0cosθ|100〉 − (−1)x+ya1b1cosθ|101〉]

+ |Φx〉B2|Φy〉A3[(a0b0sinθ|011〉 + (−1)xa0b1sinθ|010〉+
(−1)ya1b0sinθ|001〉 + (−1)x+ya1b1sinθ|000〉 + a0b0cosθ|100〉−
(−1)xa0b1cosθ|101〉 − (−1)ya1b0cosθ|110〉 + (−1)x+ya1b1cosθ|111〉],

(5)

where |Ψ0〉 = |Ψ+〉, |Ψ1〉 = |Ψ−〉, |Φ0〉 = |Φ+〉, |Φ1〉 = |Φ−〉, and the four states
of |Ψ±〉 = 1√

2
(|00〉 ± |11〉) and |Φ±〉 = 1√

2
(|01〉 ± |10〉) are so called Bell-states.

It is clear that, when Alice and Bob have finished their measurement, the whole
physical states will collapse to one of 16 results. At this time, if Charlie does
not want to implement the communication about quantum information between
Alice and Bob, she can do nothing on her own particle to terminate this scheme.
While she needs to take a measurement on the qubit 1 under bases {|0〉, |1〉}
and tell the others of her measurement outcome by sending one bit of classical
information. Both of Alice and Bob can recover the right states transformed
from the other when they receive all of the measurement outcomes informed by
the others. For example, supposed the measurement results of Alice and Bob are
|Ψ1〉B2|Φ0〉A3, the system state collapses into the following state

|Ω〉145 = a0b0sinθ|010〉 − a0b1sinθ|011〉 + a1b0sinθ|000〉 − a1b1sinθ|001〉
− a0b0cosθ|101〉 − a0b1cosθ|100〉 + a1b0cosθ|111〉 + a1b1cosθ|110〉. (6)
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Now, we also assume Charlie allows Alice and Bob to exchange their quantum
information. Thus, Charlie will take a classical measurement on her qubit 1 and
tell Alice and Bob of her outcome. In term of Charlie’s measurement result, the
state (Eq. 6) of physic system can be rewritten as follows

|Ω〉145 = sinθ|0〉(a0|1〉 + a1|0〉) ⊗ (b0|0〉 − b1|1〉)
+ cosθ|1〉(a1|1〉 − a0|0〉) ⊗ (b0|1〉 + b1|0〉). (7)

If Charlie’s measurement result is |0〉, the composed states hold by Alice and
Bob will be

|Ω〉45 = (a1|0〉 + a0|1〉) ⊗ (b0|0〉 − b1|1〉), (8)

the above state (Eq. 8) hold by Alice and Bob is not absolutely entangled but
biseparable states. Thus, it is possible for them to recover the information trans-
mitting from the others by taking some locally unitary operations. Lets come
back to the above example, when Alice and Bob have performed the two locally
unitary operations UA and UB on the quibt 5 and qubit 4 respectively, they can
recover the states |μB〉 and |μA〉 , that is UA|Ω〉5 = |μB〉5 and UB |Ω〉4 = |μA〉4.
The two unit operations are given by UA = σz = |0〉〈0| − |1〉〈1|, UB = σx =
|0〉〈1| + |1〉〈0|, where σx, σz are the Pauli operations.

Moreover, if Alice and Bob got any other results of their measurements and
Charlie agree they to recover their qubits, Alice and Bob can recover the qubit
state too. On the basis of the measuring results, all of the appropriate operations,
performed by Alice and Bob, are listed in Table1.

3 Conclusion

In this paper, a scheme of bidirectional controlled quantum teleportation via
a non-maximally entangled GHZ-type state, which can be transformed by the
generalized 5-qubit GHZ states, are proposed. As to the mean of technology, our
scheme can be implemented deterministically with only two Bell-state measure-
ments and a classical measurement.

Acknowledgements. The authors thank the anonymous reviewer for the construc-
tive comments and suggestions. The work is supported by The Fund for 2016 Talent
Introduction of Guizhou University of Finance and Economics and The Fundamental
Research Funds for Chongqing Education Commission(Grant No.KJ1501113).

Recommender: Pang Yicheng, Associate professor, School of Mathematics and
Statistics, Guizhou University of Finance and Economics.



Bidirectional Quantum Teleportation with 5-Qubit States 79

Appendix

Table 1. Bob, Alice and Charlie’s possible measuring result, final states by Bob
and Alice, and the corresponding locally operations performed by Bob and Alice
respectively.

Bob’s result Alice’s result Charlie’s result Final states hold in Bob and Alice Locally operation

UB ⊗ UA

|Ψ+〉B2 |Ψ+〉A3 |0〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|0〉 + b1|1〉)5 I ⊗ I

|Ψ+〉B2 |Ψ−〉A3 |0〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|0〉 + b1|1〉)5 σz ⊗ I

|Ψ+〉B2 |Φ+〉A3 |0〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|0〉 + b1|1〉)5 σx ⊗ I

|Ψ+〉B2 |Φ−〉A3 |0〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|0〉 + b1|1〉)5 σzσx ⊗ I

|Ψ−〉B2 |Ψ+〉A3 |0〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|0〉 − b1|1〉)5 I ⊗ σz

|Ψ−〉B2 |Ψ−〉A3 |0〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|0〉 − b1|1〉)5 σz ⊗ σz

|Ψ−〉B2 |Φ+〉A3 |0〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|0〉 − b1|1〉)5 σx ⊗ σz

|Ψ−〉B2 |Φ−〉A3 |0〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|0〉 − b1|1〉)5 σzσx ⊗ σz

|Φ+〉B2 |Ψ+〉A3 |0〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|0〉 − b1|1〉)5 I ⊗ σx

|Φ+〉B2 |Ψ−〉A3 |0〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|1〉 + b1|0〉)5 σz ⊗ σx

|Φ+〉B2 |Φ+〉A3 |0〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|1〉 + b1|0〉)5 σx ⊗ σx

|Φ+〉B2 |Φ−〉A3 |0〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|1〉 + b1|0〉)5 σzσx ⊗ σx

|Φ−〉B2 |Ψ+〉A3 |0〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|1〉 − b1|0〉)5 I ⊗ σzσx

|Φ−〉B2 |Ψ−〉A3 |0〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|1〉 − b1|0〉)5 σz ⊗ σzσx

|Φ−〉B2 |Φ+〉A3 |0〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|1〉 − b1|0〉)5 σx ⊗ σzσx

|Φ−〉B2 |Φ−〉A3 |0〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|1〉 − b1|0〉)5 σzσx ⊗ σzσx

|Ψ+〉B2 |Ψ+〉A3 |1〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|1〉 − b1|0〉)5 σzσx ⊗ σzσx

|Ψ+〉B2 |Ψ−〉A3 |1〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|1〉 − b1|0〉)5 σx ⊗ σzσx

|Ψ+〉B2 |Φ+〉A3 |1〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|1〉 − b1|0〉)5 σz ⊗ σzσx

|Ψ+〉B2 |Φ−〉A3 |1〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|1〉 − b1|0〉)5 I ⊗ σzσx

|Ψ−〉B2 |Ψ+〉A3 |1〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|1〉 + b1|0〉)5 σzσx ⊗ σx

|Ψ−〉B2 |Ψ−〉A3 |1〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|1〉 + b1|0〉)5 σx ⊗ σx

|Ψ−〉B2 |Φ+〉A3 |1〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|1〉 + b1|0〉)5 σz ⊗ σx

|Ψ−〉B2 |Φ−〉A3 |1〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|1〉 + b1|0〉)5 I ⊗ σx

|Φ+〉B2 |Ψ+〉A3 |1〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|0〉 − b1|1〉)5 σzσx ⊗ σz

|Φ+〉B2 |Ψ−〉A3 |1〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|0〉 − b1|1〉)5 σx ⊗ σz

|Φ+〉B2 |Φ+〉A3 |1〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|0〉 − b1|1〉)5 σz ⊗ σz

|Φ+〉B2 |Φ−〉A3 |1〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|0〉 − b1|1〉)5 I ⊗ σz

|Φ−〉B2 |Ψ+〉A3 |1〉1 (a0|1〉 − a1|0〉)4 ⊗ (b0|0〉 + b1|1〉)5 σzσx ⊗ I

|Φ−〉B2 |Ψ−〉A3 |1〉1 (a0|1〉 + a1|0〉)4 ⊗ (b0|0〉 + b1|1〉)5 σx ⊗ I

|Φ−〉B2 |Φ+〉A3 |1〉1 (a0|0〉 − a1|1〉)4 ⊗ (b0|0〉 + b1|1〉)5 σz ⊗ I

|Φ−〉B2 |Φ−〉A3 |1〉1 (a0|0〉 + a1|1〉)4 ⊗ (b0|0〉 + b1|1〉)5 I ⊗ I

References

1. Bennett, C.H., Brssard, G., et al.: Teleporting an unknown quantum state via dual
Classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

2. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entan-
glement. Phys. Rev. A 58, 4394 (1998)

3. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev.
Lett. 83, 648–651 (1999)



80 J. Wang and J. Jiang

4. Lance, A.M., Syul, T., Bowen, W.P., Sanders, B.C., et al.: Tripartite quantum
state sharing. Phys. Rev. Lett. 92, 177903 (2004)

5. Shi, R., Huang, L., Yang, W., et al.: Multi-party quantum state sharing of an
arbitrary two-qubit state with Bell states. Quantum Inf. Process. 10, 231–239
(2011)

6. Zhang, Z.R., Liu, W.T., Li, C.Z.: Quantum secret sharing based on quantum error-
correcting codes. Chin. Phys. B 20(5), 050309 (2011)

7. Bai, M.Q., Mo, Z.W.: Hierarchical quantum information splitting with eight-qubit
cluster states. Quantum Inf. Process. 12(2), 1053–1064 (2013)

8. Gorbacev, V.N., Trubilko, A.I., Rodichkina, A.A.: Can the states of the W-class
be suitable for teleportation? Phys. Lett. A 314, 267–271 (2003)

9. Zhang, Z.J., Zhong, X.M.: Many-agent controlled teleportation of multi-qubit
quantum information. Phys. Lett. A 341, 55–59 (2005)

10. Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite
entanglement. Phys. Rev. Lett. 96, 060502 (2006)

11. Dai, H.Y., Zhang, M., Li, C.Z.: Teleportation of three-level multi-partite entangled
state by a partial three-level bipartite entangled state. Commun. Theor. Phys. 49,
891 (2008)

12. Tsai, C.W., Tzonelih, H.: Teleportation of a pure EPR state via GHZ-like state.
Int. J. Theor. Phys. 49, 1969–1975 (2010)

13. Hu, M.L.: Robustness of Greenberger-Horne-Zeilinger and W states for teleporta-
tion in external environments. Phys. Lett. A 375(5), 922–926 (2011)

14. Hu, M.L.: Disentanglement Bell-nonlocality violation and teleportation capacity
of the decaying tripartite states. Ann. Phys. 327(9), 2332–2342 (2012)

15. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleporta-
tion. Nature 390, 575–579 (1997)

16. Ursin, R., Jennewei, T., Aspelmeyer, M., et al.: Communications: quantum tele-
portation across the danube. Nature 430, 849 (2004). London

17. Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleporta-
tion via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

18. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entan-
gled state. Int. J. Theor. Phys. 53, 1454–1458 (2014)

19. Li, Y.H., Li, X.L., Sang, M.H., et al.: Bidirectional controlled quantum teleporta-
tion and secure direct communication using five-qubit entangled states. Quantum
Inf. Process. 12, 3835–3844 (2013)

20. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using
5-qubit states: ageneralized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)

21. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit
composite GHZ-Bell state. Int. J. Theor. Phys. 52(1), 630–1634 (2013)

22. Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled tele-
portation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53,
2697–2707 (2014)

23. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J.
Theor. Phys. 52, 3870–3873 (2013)

24. Zhang, W., Liu, Y.M., Zhang, Z.J., et al.: Splitting a qudit state via Greenberger-
Horne-Zeilinger states of qubits. Opt. Commun. 283, 628–632 (2010)

25. Peng, Y.Y., Luo, M.X.: Joint remote state preparation of arbitrary two-particle
states via GHZ-type states. Quantum Inf. Process. 12(7), 2325–2342 (2013)

26. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-
type states. Quantum Inf. Process. 12(1), 437–448 (2013)



Bidirectional Quantum Teleportation with 5-Qubit States 81

27. Zheng, S.B.: Splitting quantum information via W states. Phys. Rev. A 74, 054303
(2006)

28. Zhang, Z.H., Shu, L., Mo, Z.: Quantum teleportation and superdense coding
through the composite W-Bell channel. Quantum Inf. Process. 12, 1957–1967
(2013)

29. Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with X-
state. Quantum Inf. Process. 12(2), 773–784 (2013)

30. Nie, Y.Y., Hong, Z.H., Huang, Y.B.: Non-maximally entangled controlled telepor-
tation using for particles cluster states. Int. J. Theor. Phys. 48, 1485–1490 (2009)

31. Kunmar, A., Adhikari, S., Banerjee, S., et al.: Optimal quantum communication
using multiparticle partially entangled states. Phys. Rev. A 87, 022307 (2013)

32. Zhang, W., Xiong, K.W., Zuo, X.Q., et al.: Splitting unknown qutrit or ququart
states via two-qubit partially entangled states channel. Commun. Theor. Phys. 59,
157–164 (2013)

33. Wang, M.Y., Yan, F.L.: Probabilistic chain teleportation of a qutrit-state. Com-
mun. Theor. Phys. 54, 263–268 (2010)

34. Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation. Europhys. Lett. A
84, 5001 (2008)

35. Wang, J.W., Shu, L., Mo, Z.W., et al.: Controlled teleportation of a qudit state by
partially entangled GHZ states. Int. J. Theor. Phys. 53(8), 2867–2873 (2014)

36. Ma, Z.H., Chen, Z.H., Chen, J.L.: Measure of genuine multipartite entanglement
with computable lower bounds. Phys. Rev. A 83, 062325 (2011)



Infinitely Small Quantity and Infinitely Large
Quantity of Fuzzy Valued Functions for Linear

Generation of Structural Elements

Tian-jun Shu(B) and Zhi-wen Mo

College of Mathematics and Software Science, Sichuan Normal University,
Chengdu 610066, China

605519161@qq.com, mozhiwen@263.net

Abstract. A kind of fuzzy distance gives a new definition of the limit of
fuzzy valued function for linear generation of structural elements. Then
the limit definition is used to define infinitely small quantity and infinitely
large quantity of fuzzy valued functions for linear generation of structural
elements. Simultaneously, the connected properties of low order the infi-
nitely small quantity, the higher order infinitely small quantity and the
equivalent infinitely small quantity are studied.
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1 Introduction

The notion of fuzzy valued function for linear generation of structural elements
is proposed by Guo in the literature [10]. For the limit of the fuzzy valued func-
tion for linear generation of structural elements, it has the different form of
expression because of the different form of fuzzy distance. In this paper, the
limit of fuzzy valued function is defined by this fuzzy distance which is given in
the literature [11]. Then we let the limit of fuzzy valued function for linear gen-
eration of structural elements define the infinitely small quantity and infinitely
large quantity of fuzzy valued functions for linear generation of structural ele-
ments. Simultaneously, the related properties about the infinitely small quantity
and infinitely large quantity of fuzzy valued functions for linear generation of
structural elements are discussed.

2 Brief Introduction of the Fuzzy Valued Function
of Linear Construction Theory

Definition 2.1 [9]. E is the fuzzy structure element on the R of real number
field. If its membership function E(x)(x ∈ R)has the following properties:

(1) E(0)=1, E(1+0)=E(-1-0)=0;
c© Springer International Publishing AG 2018
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(2) x ∈ [−1, 0), E(x) monotone increasing right continuous function; x ∈ (0, 1],
E(x) monotone decreasing left continuous function, respectively;

(3) x ∈ (−∞,−1) ∪ (1,+∞), E(x)=0. Obviously, the fuzzy structured element
is a regular convex fuzzy set on the R, which is a bounded closed fuzzy
number.

Definition 2.2 [10]. ˜A is finite fuzzy number. If there is a fuzzy structured
element E and finite real number a ∈ R, r ∈ R+, such that ˜A = a + rE(
r → 0+), ˜A is a fuzzy number linear generated by fuzzy structured element E.
The entire number of fuzzy numbers linear generated by the E is denoted as
ε(E) = { ˜A | ˜A = a + rE, ∀ a ∈ R, r ∈ R+}.

All in this paper, ˜A ∈ ε(E), on account of the decomposition theorem of
fuzzy sets, ˜A =

⋃

λ∈[0,1]

λAλ =
⋃

λ∈[0,1]

λ[a + rE−
λ , a + rE+

λ ].

Definition 2.3 [11]. Let X, Y is the two set of real numbers. ˜N(f) is the whole
set of fuzzy sets on Y. ˜f is a mapping from X to ˜N(f). In other words, for arbi-
trary x ∈ X, there exists only ˜f ∈ ˜N(f) with it correspondence. It is remembered
as ỹ = ˜f(x). Then ˜f(x) is called a fuzzy value function on X. If E is a regular
fuzzy structure element on ˜N(f) . It is said that ˜f(x)=h(x) + ω(x)E is a fuzzy
valued function linear generated by E for X (X ⊆ R). Where h(x), ω(x) in the
X on the bounded, also ω(x) > 0. All of the bounded fuzzy functions linear
generated by E are denoted as N(Ef ) = { ˜f(x) | ˜f(x) = h(x) + ω(x)E, ∀ x ∈ X,
ω(x) > 0}.

All in this paper ˜f(x) ∈ N(Ef ), on account of the decomposition theorem
of fuzzy sets, ˜f(x) =

⋃

λ∈[0,1]

λ ˜fλ(x) =
⋃

λ∈[0,1]

(h(x) + ω(x)Eλ) =
⋃

λ∈[0,1]

[h(x) +

ω(x)e−
λ , h(x) + ω(x)e+λ ].

Definition 2.4 [12]. ∀ ã, ˜b ∈ E, The distance of ã and ˜b was identified as
˜d(ã,˜b) =

⋃

λ∈[0,1]

λ[ sup
λ≤μ≤1

|ã−
μ −˜b−

μ |, sup
0≤λ≤μ

(|ã−
μ −˜b−

μ | ∨ |ã+
μ −˜b+μ |)].

3 A New Definition of the Limit of ˜f(x)

Definition 3.1 (The limit of ˜f(x) when x tends to +∞ ). Let the definition
domain of ˜f(x) to [a,+∞). If ∀ ε > 0, there exists positive M(≥ a) such that
x > M , then d( ˜f(x), ˜A) < ε. So call ˜f(x) when x tends to +∞ to ˜A as the limit.
It is recorded as lim

x→+∞
˜f(x) = ˜A.

We can define similarly ˜f(x) limit of x → −∞, x → ∞. They are denoted
respectively as lim

x→−∞
˜f(x)= ˜A; lim

x→∞
˜f(x)= ˜A.
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Theorem 3.1. If ˜f(x) domain is defined as R, then there are lim
x→∞

˜f(x) = ˜A ⇔
lim

x→−∞
˜f(x) = lim

x→+∞
˜f(x)= ˜A.

Easy to prove by Definition 2.1.

Definition 3.2 (ε− δ definition of the limit of ˜f(x)). Let the definition domain
of ˜f(x) to U0(x0; δ′) ˜A ∈ ε(E). If ∀ ε > 0, there exists positive δ(< δ′) such that
0 <| x − x0 |< δ, then d( ˜f(x), ˜A) < ε. So call ˜f(x) when x tends to x0 to ˜A as
the limit. It is recorded as lim

x→x0

˜f(x) = ˜A.

We can define similarly ˜f(x) limit of x → x−
0 , x → x+

0 , They are denoted
respectively as lim

x→x−
0

˜f(x) = ˜A; lim
x→x+

0

˜f(x) = ˜A.

Easy to prove by Definition 2.2 and Theorem 2.1.

Theorem 3.2. If ˜f(x) is defined on Uo(x0), then there is lim
x→x0

˜f(x) = ˜A ⇔
lim

x→x−
0

˜f(x) = lim
x→x+

0

˜f(x) = ˜A.

The six definition of lim
x→∞

˜f(x), lim
x→+∞

˜f(x), lim
x→−∞

˜f(x), lim
x→x0

˜f(x), lim
x→x+

0

˜f(x)

and lim
x→x−

0

˜f(x) are similar in nature.

Next we take lim
x→x0

˜f(x) as an example to discuss, the rest can only be mod-

ified accordingly.

4 Infinitely Small Quantity of ˜f(x)

Definition 4.1. Let the definition domain of ˜f(x) to U0(x0), If lim
x→x0

˜f(x) = 0,

So ˜f(x) is called the infinitely small quantity of x → x0.

Theorem 4.1. Two the infinitely small quantity sum is still infinitesimal.

Proof. Let ˜f1(x) and ˜f2(x) be two the infinitely small quantity of x → x0, and
˜f(x)= ˜f1(x)+ ˜f2(x). ∀ ε > 0, ˜f1(x) is the infinitely small quantity of x → x0. So
for any ε

2 > 0, there exists δ1 > 0, whenever 0 <| x−x0 |< δ1, hence | ˜f1(x) |< ε
2 .

˜f2(x) is the infinitely small quantity of x → x0, so for any ε
2 > 0, there exists

δ2 > 0, whenever 0 <| x − x0 |< δ2, hence | ˜f2(x) |< ε
2 . Take δ = min{δ1, δ2},

when 0 <| x − x0 |< δ, we have | ˜f(x) |=| ˜f1(x) + ˜f2(x) |≤| ˜f1(x) | + | ˜f2(x) |=
ε
2 + ε

2 < ε. Therefore, lim
x→x0

˜f(x) = 0. That has been proved ˜f(x) is the infinitely

small quantity of x → x0.

Corollary 4.1. Two infinitely small quantity subtraction is still infinitely small
quantity.
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Theorem 4.2. In the same change process of the independent variable x → x0,
lim

x→x0

˜f(x)= ˜A ⇔ ˜f(x) = ˜A + ã, where ã is infinitely small quantity.

Proof. Necessity. Let ˜f(x) = ˜A + ã. So there is | ˜f(x) − ˜A |=| ã |. Because ã
is the infinitely small quantity of x → x0, for each ε > 0, there exist δ > 0,
whenever 0 <| x − x0 |< δ, hence | ã |< ε. Namely | ˜f(x) − ˜A |< ε. Tt has been
proved that lim

x→x0

˜f(x) = ˜A.

Sufficiency. Let lim
x→x0

˜f(x)= ˜A. As a result, for each ε > 0, there exist δ > 0,

whenever 0 <| x − x0 |< δ, hence | ˜f(x) − ˜A |< ε. Order ã = ˜f(x) − ˜A,so that ã

is the infinitely small quantity of x → x0. And ˜A ⇔ ˜f(x) = ˜A + ã. This proves
that ˜f(x) is equal to its limit with an infinitely small quantity.

Theorem 4.3. The product of infinitely small quantity and bounded quantity
is infinitely small quantity.

Proof. Let ˜f1(x) be in the definition domain U0(x0; δ1) within the bounded, so
presence of ˜A′ > 0 makes | ˜f1(x) |< ˜A′, for all the x ∈ U0(x0) are set up. Then
set ˜f2(x) is the infinitely small quantity of x → x0. so ∀ ε > 0, there exist δ2 > 0,
whenever 0 <| x − x0 |< δ2, hence | ˜f2(x) |< ε

A′ . Take δ = min{δ1, δ2}, when
0 <| x − x0 |< δ, we have | ˜f1(x) · ˜f2(x) |=| ˜f1(x) | · | ˜f2(x) |< ε

A′ · ˜A′ = ε. Tt
is to prove that lim

x→x0
( ˜f1(x) · ˜f2(x)) = 0. Therefore, ˜f1(x) · ˜f2(x) is the infinitely

small quantity of x → x0.

Definition 4.2. ˜f1(x) and ˜f2(x) be two the infinitely small quantity of x → x0,
also supp ˜f2(x) �= 0.

(1) If lim
x→x0

̂f1(x)
̂f2(x)

= 0, it is said that the ̂f1(x) is higher order than the ̂f2(x) of

the infinitely small quantity of x → x0, or the ̂f2(x) is smaller order than
the ̂f1(x) of the infinitely small quantity of x → x0, which is denoted as
˜f1(x) = 0( ˜f2(x))(x → x0).

(2) If there are positive numbers a, b ∈ R, when x ∈ U0(x0), there is a ≤
lim

x→x0

̂f1(x)
̂f2(x)

≤ b. So we call ̂f1(x) and ̂f2(x) for the same order infinitely small

quantity of x → x0.

Especially,
(1) If lim

x→x0

̂f1(x)
̂f2(x)

= a �= 0, ̂f1(x) and ̂f2(x) are absolutely the same order

infinitely small quantity of x → x0;
(2) when x ∈ U0(x0), there is lim

x→x0

̂f1(x)
̂f2(x)

≤ b. Hence it is denoted as ˜f1(x) =

0( ˜f2(x))(x → x0);
(3) If ˜f(x) is bounded in U0(x0), then it is denoted as ˜f1(x) = 0(1)(x → x0).
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(3) If lim
x→x0

̂f1(x)

( ̂f2(x))k
= a �= 0, where k > 0, a ∈ R. so we say that ̂f1(x) is about

K’s ̂f2(x) order infinitely small quantity of x → x0.
(4) If lim

x→x0

̂f1(x)
̂f2(x)

= 1, it is said that ̂f1(x) and ̂f2(x) are equivalent infinitely

small quantity of x → x0, which is denoted as ˜f1(x) ∼ ˜f2(x)(x → x0).

Theorem 4.4. ̂f1(x) and ̂f2(x) are equivalent infinitely small quantity ⇔
̂f1(x) = ̂f2(x) + 0( ̂f2(x)).

Proof. Necessity. Let ˜f1(x) ∼ ˜f2(x)(x → x0), that is lim
x→x0

̂f1(x)
̂f2(x)

= 1. then

lim
x→x0

̂f1(x)− ̂f2(x)
̂f2(x)

= lim
x→x0

(
̂f1(x)
̂f2(x)

− 1) = lim
x→x0

̂f1(x)
̂f2(x)

− 1 = 0. Consequently,

̂f1(x) − ̂f2(x) = 0( ̂f2(x)), the same result, ̂f1(x) = ̂f2(x) + 0( ̂f2(x)).

Sufficiency. Let ̂f1(x) = ̂f2(x) + 0( ̂f2(x)). Then lim
x→x0

̂f1(x)
̂f2(x)

=

lim
x→x0

̂f2(x)+0( ̂f2(x))
̂f2(x)

= lim
x→x0

(1 − ̂f2(x)
̂f2(x)

) = 1 + lim
x→x0

0( ̂f2(x))
̂f2(x)

= 1 + 0 = 1. Therefore,

˜f1(x) ∼ ˜f2(x)(x → x0).
This theorem is fully proved.

Theorem 4.5. Let the definition domain of ˜f1(x), ˜f2(x), ˜f3(x) to U0(x0), also
˜f2(x) ∼ ˜f3(x)(x → x0).

(1) If lim
x→x0

( ˜f1(x) · ˜f2(x)) = a, where a ∈ R. so lim
x→x0

( ˜f1(x) · ˜f3(x)) = a;

(2) If lim
x→x0

˜f1(x)
˜f2(x)

= b, where b ∈ R. so lim
x→x0

˜f1(x)
˜f3(x)

= b.

Proof. (1) lim
x→x0

( ˜f1(x) · ˜f3(x)) = lim
x→x0

˜f3(x)
˜f2(x)

· lim
x→x0

( ˜f1(x) · ˜f2(x)) = 1 · a = a.

(2) lim
x→x0

˜f1(x)
˜f3(x)

= lim
x→x0

˜f1(x)
˜f2(x)

· lim
x→x0

˜f2(x)
˜f3(x)

= b · 1 = b.

Theorem 4.6. Let ˜f1(x) ∼ ˜f ′
1(x), ˜f2(x) ∼ ˜f ′

2(x)(x → x0). If lim
x→x0

̂f ′
1(x)
̂f ′
2(x)

exists,

so lim
x→x0

̂f1(x)
̂f2(x)

= lim
x→x0

̂f ′
1(x)
̂f ′
2(x)

.

Proof. Because ˜f1(x) ∼ ˜f ′
1(x), ˜f2(x) ∼ ˜f ′

2(x)(x → x0), lim
x→x0

̂f1(x)
̂f ′
1(x)

= 1,

lim
x→x0

̂f2(x)
̂f ′
2(x)

= 1, hence lim
x→x0

̂f1(x)
̂f2(x)

= lim
x→x0

(
̂f ′
1(x)
̂f ′
2(x)

· ̂f ′
2(x)
̂f ′
1(x)

· ̂f1(x)
̂f2(x)

) = lim
x→x0

̂f ′
1(x)
̂f ′
2(x)

·
lim

x→x0

̂f ′
2(x)
̂f2(x)

· lim
x→x0

̂f1(x)
̂f ′
1(x)

= lim
x→x0

̂f ′
1(x)
̂f ′
2(x)

.

5 Infinitely Large Quantity of ˜f(x)

Definition 5.1. Let the definition domain of ˜f(x) to U0(x0), If for any given
˜A > 0, there exists positive δ > 0 such that x ∈ U0(x0; δ)(⊂ U0(x0)), hence|
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˜f(x) |> ˜A, so it is said that ˜f(x) is the non normal limit ∞ of x → x0. which
is denoted as ˜f(x) = ∞. If the | ˜f(x) |> ˜A change is written in ˜f(x) > ˜A or
˜f(x) < − ˜A, then it is said that ˜f(x) is the non normal limit +∞ or −∞ of
x → x0. which is respectively denoted as ˜f(x) = +∞ or ˜f(x) = −∞. For the
independent variable x ∈ U0(x0), all with as the limit of ∞, +∞ or −∞, all the
˜f(x) are defined as infinitely large quantity of x → x0.

Definition 5.2. Let ˜f1(x) and ˜f2(x) be two the infinitely small quantity of

x → x0, also supp ˜f2(x) �= 0. If lim
x→x0

̂f1(x)
̂f2(x)

= ∞, so it is said that the ̂f1(x) is

lower order than the ̂f2(x) of the infinitely small quantity of x → x0.

Theorem 5.1. Let ˜f(x) is defined in U0(x0), also supp ˜f(x) �= 0.

(1) If ˜f(x) is the infinitely small quantity of x → x0, so 1
˜f(x)

is the infinitely
large quantity of x → x0.

(2) If ˜f(x) is the infinitely large quantity of x → x0, so 1
˜f(x)

is the infinitely
small quantity of x → x0.

Proof. (1) Let lim
x→x0

˜f(x) = 0, also ˜f(x) �= 0. ∀ a > 0, a ∈ R. According to

the definition of the infinitely small quantity, about ε = 1
a , there exist δ > 0,

whenever 0 <| x−x0 |< δ, hence | ˜f(x) |< ε = 1
a . Because when 0 <| x−x0 |< δ

has ˜f(x) �= 0, | 1
˜f(x)

|> 1
ε = a. Therefore, 1

˜f(x)
is the infinitely large quantity of

x → x0.
(2) ∀ b > 0, b ∈ R. According to the definition of the infinitely large quantity,

about b = 1
ε , there exist δ > 0, whenever 0 <| x−x0 |< δ, hence | ˜f(x) |> b = 1

ε .
Consequently, | 1

˜f(x)
|< 1

b = ε. In other words, 1
˜f(x)

is the infinitely small quantity
of x → x0.

Acknowledgements. Appreciate to my tutor Professor Zhi-wen Mo for the guidance
of the paper. This work is supported by National Natural Science Foundation of China
(Grant No. 11671284) and Doctoral Fund of colleges and Universities(20135134110003).

Recommender: This paper is recommended by Ming-qiang Bai who is a Full professor
of mathematics and software science at Sichuan Normal University.

References

1. Li, A.-G., Jin, H.W., Zhang, Z.H., Hua, W.B.: A new definition of fuzzy limit. J.
Liaoning Tech. Univ. 23(6), 845–847 (2004)

2. Zhang, G.: Fuzzy continuous function and it’s properties. Fuzzy Sets Syst. 43(2),
159–171 (1991)

3. Burgin, M.: Neoclassical analysis: fuzzy continuity and convergence. Fuzzy Sets
Syst. 75(2), 291–299 (1995)

4. Panigrahi, M., Panda, G., Nanda, S.: Convex fuzzy mapping with differentiability
and its application in fuzzy optimization. Eur. J. Oper. Res. 185(1), 47–62 (2008)



88 T. Shu and Z. Mo

5. Kaleva, O.: Fuzzy differential equation. Fuzzy Sets Syst. 24(3), 301–317 (1987)
6. Guo, S.Z., Liu, X.H., Han, J.: Extremal problem of fuzzy-valued function. Syst.

Eng. Theor. Pract. 34(3), 738–745 (2014)
7. Bi, S.J., Zhang, X.D.: Convergence and continuity of fuzzy-valued functions. J.

Heilongjiang Commer. Coll. 18(3), 330–333 (2002)
8. Jang, L.C., Kim, T.K., Jeon, J.D., Kim, W.J.: On Choquet integrals of measurable

fuzzy number-valued functions. Bull. Korean Math. Soc. 41(1), 95–107 (2004)
9. Guo, S.Z.: Brief introduction to fuzzy-valued function analysis based on the fuzzy

structured element method (I). Math. Pract. Theor. 21(5), 87–93 (2002)
10. Guo, S.Z.: Brief introduction of fuzzy-valued function analytics base on fuzzy struc-

tured element method (II). Math. Pract. Theor. 38(2), 73–79 (2008)
11. Yin, F., Wang, P.F.: A new definition of fuzzy-valued function limit (continuity)

and its derivability. J. North Univ. China 32(6), 662–666 (2011)
12. Guo, S.Z.: Principle of Fuzzy Mathematical Analysis Based on Structural Element

Theory, pp. 97–113. Northeastern University Press, ShenYang (2004)
13. Tran, L., Duckstein, L.: Comparison of fuzzy numbers using a fuzzy distance mea-

sure. Fuzzy Sets Syst. 130(3), 331–341 (2002)
14. Goetschel, R., Voxman, W.: Elementary fuzzy calculus. Fuzzy Sets Syst. 19(1),

82–86 (2005)
15. Puri, M.L., Ralescu, D.A.: Differentials on fuzzy functions. J. Math. Anal. Appl.

91(2), 552–558 (1983)
16. Burgin, M.: Theory of fuzzy limits. Fuzzy Sets Syst. 115(115), 433–443 (2000)
17. Guo, S.Z.: Commonly express method of fuzzy-valued function based on structured

element. Fuzzy Syst. Math. 19(1), 82–86 (2005)
18. Bi, S.-J.: The convergence of fuzzy value function defined in fuzzy number. J.

Harbin Univ. Sci. Technol. 15(2), 76–78 (2010)
19. Yang, L.B., Gao, Y.Y., Lin, W.X.: The Principle and Application of Fuzzy Math-

ematics, pp. 117-125. South China University of Technology Press, GuangDong
(2001)

20. Guo, X.M., Zhang, H.: Limit of fuzzy valued function and its properties. J.
ChuZhou Univ. 15(5), 21–23 (2013)

21. Liu, H.L., Feng, R.P.: New fuzzy distance definition of fuzzy number. Fuzzy Syst.
Math. 19(2), 106–109 (2005)

22. Department of mathematics, East China Normal University: On mathematical
analysis, 3rd edn., pp. 23–55. Higher Education Press, Beijing (1981)

23. Department of mathematics, Tongji University: Higher mathematics book, 6th
edn., pp. 23–38. Higher Education Press, Beijing (2007)



Part II:
Decision and Fuzziness



Hesitant Fuzzy Group Decision Making Under
Incomplete Information

Jin-hui Lv(&) and Si-zong Guo(&)

Institute of Intelligence Engineering and Mathematics,
Liaoning Technical University, Fuxin 123000, China
359656336@1qq.com, guosizong@163.com

Abstract. To make full use of data information, In this paper, we proposed that
using hesitant fuzzy set as feedback extension of concept. Then, the relationship
and operation of the hesitant fuzzy sets, that considered the hesitancy degree,
was given; Based on this operation, the extension envelope of fuzzy concept is
defined, and the preference information is gathered by using it. In order to give a
hesitant fuzzy group decision making method under incomplete information,
this paper also presents a method for filling the missing information. At last, the
group decision making procedure is given and the above theory is applied in
example.
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1 Introduction

In the 1980s, the theory of factors space [1, 2], Professor Wang Peizhuang proposed,
provided a universal coordinate frame for the knowledge representation in artificial
intelligence. This theory as well as formal concept analysis [3], rough set [4] played an
important role in the wave of intelligent mathematics. At present, the theory has been
applied successfully in the fuzzy information processing [5, 6], data mining [7],
bioinformatics [8], and other fields.

As the carrier of knowledge, the concept is the basis for reasoning and
decision-making. As to the problem of concept representation, the theory of factor
space defined the representation extension of the concept using the Zadeh’s extension
principle [9], and gave the method of concept representation based on representation
extension. In the literature [10], the feedback extension of the concept was constructed
with the help of representation extension, and in order to improve the accuracy, that the
envelope of feedback extension which was an “external” approach to the concept
extension has been defined. Then, in the literature [11], the min-type representation
extension of the concept has been defined and discussed based on the minimal
extension principle, in addition, the outer envelope of min-type feedback extension has
been constructed by using the feedback extension of representation extension. In
another literature [12], in the point of the opposite concept, the outer envelope of
feedback extension has been defined using Zadeh’s maximal extension principle. As an
extension form of fuzzy sets, hesitant fuzzy sets was been proposed by Torra [13, 14],
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etc., and they pointed out that an element belongs to a sets’ membership can be formed
by multiple possible values, and discussed the difference and relation among the
hesitant fuzzy sets, intuitionistic fuzzy sets, type-2 fuzzy sets, and fuzzy multiple sets.

Group decision making is a common decision method, and has been brought into
wide focus by many researchers in recent years. However, in many cases, the limitation
of decision makers’ own knowledge and the fuzziness and uncertainty of practical
problems background, often leads to incomplete decision information. Usually there
were two ways of solving decision making problems of incomplete information. One
way was that the incomplete information system would be complete by using of
deleting data and completing scheme or property of containing vacancy value, but it
would cause that the subjective factors of decision makers destroyed the original
information system in different degrees. The other was that decision would be made by
using of the theory of evidence and the theory of utility directly without completing
system, but it did not involve the impact of incomplete information system on the result
of decision making.

To make full use of data information, In this paper, we proposed that using hesitant
fuzzy set as feedback extension of concept. Then, the relationship and operation of the
hesitant fuzzy sets, that considered the hesitancy degree, was given; Based on this
operation, the extension envelope of fuzzy concept is defined, and the preference
information is gathered by using it. In order to give a hesitant fuzzy group decision
making method under incomplete information, this paper also presents a method for
filling the missing information. At last, the group decision making procedure is given
and the above theory is applied in example.

2 Preliminaries

In this paper, the symbols were derived from the literature [2].
In this paper, U represents an object set (also called a domain); FðUÞ represents all

of the fuzzy set on U; 8A 2 FðUÞ; AðuÞ is the membership function of A; V represents
the factor set. If there is the optional u 2 U; all the factors associated with u will be in
V ; then ðU;V � is called a left pair.

Definition 2.1 [2]. The left pair ðU;V � is given, F � V ; then set family fXðf Þgf2F is
called a factor space on U: If the following axiom is satisfied:

(1) F ¼ Fð_;^; c; 1; 0Þ is fully Boolean Algebra;
(2) Xð0Þ ¼ fhg, in which h represents a null state;
(3) 8T � F; if ð8s; t 2 TÞðs 6¼ t ) s ^ t ¼ 0Þ; then Xð_f2T f Þ ¼

Q
f2T Xðf Þ.

F is called a factor set, f 2 F is called factor, Xðf Þ is the state space of the factor f ,
1 is called full factor, Xð1Þ is called full space.

Definition 2.2 [2]. The concept group C ¼ fa; b; c; � � �g is given. Its domain is
recorded as U; and the factor family V is taken, then a left pair ðU;V � is made up of U
and V . Then the factor set F � V is taken, and F is sufficient for U: That is 8u1; u2 2 U
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is satisfied, 9f 2 F, and it makes that f ðu1Þ 6¼ f ðu2Þ, therefore the triplet ðU;C;F� or
ðU;C; fXðf Þgf2F � is a description frame of C:

If the description frame ðU;C; fXðf Þgf2F � is given, and a 2 C is taken, the
extension of a is A 2 FðUÞ;8f 2 F; noted: f ðAÞ : Xðf Þ ! ½0; 1� , x ! f ðAÞðxÞ ¼
maxf ðuÞ¼xfAðuÞg

f\A[ : Xðf Þ ! ½0; 1�; x ! f\A[ ðxÞ ¼ minf ðuÞ¼xfAðuÞg

Then the fuzzy sets f ðAÞ and f\A[ is called the representation extension of the
concept a which is based on the strong (weak) extension principle in the representation
theory domain Xðf Þ.

Noted: f�1ðf ðAÞÞ : U ! ½0; 1�; u ! f�1ðf ðAÞÞðuÞ ¼ f ðAÞðxÞ ¼ maxf ðuÞ¼xfAðuÞg

f�1ðf\A[ Þ : U ! ½0; 1�; u ! f�1ðf\A[ ÞðuÞ ¼ f\A[ ðxÞ ¼ minf ðuÞ¼xfAðuÞg

Then the fuzzy sets f�1ðf ðAÞÞ and f�1ðf\A[ Þ is called the feedback extension of
the concept a regarding the factor f based on the strong (weak) extension principle.

Definition 2.3 [2]. The factor space is given, and let f ; g 2 F and f � g be true.
If B is any fuzzy set of Xðf Þ; it will be noted that # f

g Xðf Þ ! XðgÞ; B !# f
g B; In

which ð# f
g BÞðxÞ ¼ _

y2Xðf�gÞ
Bðx; yÞ; x 2 XðgÞ; and # f

g is called the projection to g for f .

If B is any fuzzy set of XðgÞ, it will be noted that " f
g XðgÞ ! Xðf Þ, B !" f

g B, In which

ð" f
g BÞðx; yÞ ¼ BðxÞ, ðx; yÞ 2 XðgÞ � Xðf � gÞ, and " f

g is called the column extension to
f for g:

Definition 2.4 [2]. The description frame ðU;C; fXðf Þgf2F � is given. If G � F, and
noted:

A½G� ¼
\
f2G

f�1ðf ðAÞÞ;A Gh i ¼
[
f2G

f�1ðf\A[ Þ

A½G�, A Gh i will be called the inner (outer) envelope of feedback extension corre-
lated to G for A:

Obviously, A½G� and A Gh i are actually the two approaches to A from the outside
and the inside of the A. So there will be A Gh i�A�A½G�:

As a new extension of fuzzy sets, the concept of hesitant fuzzyset was proposed by
Torra [13, 14].

Definition 2.5 [13, 14]. Let X be a given set, and the hesitant fuzzyset H on X is
defined

H ¼ f\hHðxÞ; x[ x 2 Xgj : In which hHðxÞ is the set of several different numer-
ical values on the interval ½0; 1�, which represented several possible degree that the
element x in X belongs to the set H:

hHðxÞ is called the hesitant fuzzy cellular by Xu and Xia [15]. In order to facilitate
the representation, in this paper, it is noted that lðhHðxÞÞ is the number of the values in

Hesitant Fuzzy Group Decision Making Under Incomplete Information 93



the hesitant fuzzy cellular hHðxÞ, and these values are arranged in ascending order.

hrðjÞH ðxÞ represented the j-th value in hHðxÞ:
Definition 2.6 [16, 17]. Let h1 and h2 be two hesitant fuzzy cellular. lðh1Þ 和 lðh2Þ
represented the number of the values in h1 和 h2. lmax ¼ flðh1Þ; lðh2Þ }, The probability
that h1 is greater than h2 is defined

pðh1 � h2Þ ¼ 1
lmax

Xlmax

j¼1

f ðhrðjÞ1 ; hrðjÞ2 Þ; In which f ðx; yÞ ¼
1; x[ y;

0:5; x ¼ y;

0; x\y:

8><
>:

ððx; y� 0ÞÞ:

3 New Representation of Concept Extension Based on Factor
Space

Inspired by the concept of hesitant fuzzyset, the representation extension of the existing
concept a in the representation theory domain Xðf Þ, and the feedback extension of the
concept a regarding the factor f , the definition of them has been expanded in this paper.

Definition 3.1. The description frame ðU;C; fXðf Þgf2F � is given. The concept a 2 C
is taken, and the extension A of it is the fuzzy set on the domain U, noted:

fHðAÞ : Xðf Þ ! ½0; 1�; x ! fHðAÞðxÞ ¼
[

f ðuÞ¼x

fAðuÞg ð5Þ

f�1
H ðfHðAÞÞ : U ! ½0; 1�; u ! f�1

H ðfHðAÞÞðuÞ ¼ fHðAÞðxÞ ð6Þ

Then fHðAÞ is called the representation extension of the concept a in the repre-
sentation theory domain Xðf Þ, and f�1

H ðfHðAÞÞ is called the feedback extension of the
concept a regarding the factor f .

By the Definition 3.1, we can easily know that fHðAÞ and f�1
H ðfHðAÞÞ are the

hesitant fuzzysets. For example, let the concept a be ‘Colds’, and the extension of it is
A; let the factor f be ‘Temperature’. The domain U is for a part of people, u1; u2; u3 is
the three people in the domain U; and the temperature of them is the same, that is
f ðu1Þ ¼ f ðu2Þ ¼ f ðu3Þ ¼ x ¼ 38 	C. But u1; u2; u3 all had a cold in different degree,
that is Aðu1Þ ¼ 0:5, Aðu2Þ ¼ 0:8, Aðu3Þ ¼ 0:9. According to the maximal extension
principle, we can get that the degree of colds of ‘the people of the temperature
x ¼ 38 	C’ belongs to f�1ðf ðAÞÞðuÞ ¼ 0:9. However, according to the minimal
extension principle, we can get that the degree of coldsof ‘the people of the temperature
x ¼ 38	 C’ belongs to f�1ðf\A[ ÞðuÞ ¼ 0:5. According to the representation
extension and the feedback extension formed by the maximal(minimal) extension
principle, the above is actually ‘choosing one in the numerous’ on the choice of the
degree of membership, that will result in a loss of information. So the representation
extension and the feedback extension is regarded as hesitant fuzzyset, that is more close
to the real extension, while the utilization of information is higher. So using the
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definition 3.1 we can get that the degree of coldsof ‘the people of the temperature
x ¼ 38 	C’ belongs to f�1

H ðfHðAÞÞðuÞ ¼ f0:5; 0:8; 0:9g, apparently, the feedback
extension we can get does not have information loss in the given domain.

Definition 3.2. For the two hesitant fuzzy cellular hH1ðxÞ; hH2ðxÞ; if
lðhH1ðxÞÞ
 lðhH2ðxÞÞ; then mðhH1ðxÞÞ
mðhH2ðxÞÞ; in which lðhHðxÞÞ is the number of
the values in the hesitant fuzzy cellular hHðxÞ and mðhH1ðxÞÞ;mðhH2ðxÞÞ respectively
represented the hesitant degree of the hesitant fuzzy cellular hH1ðxÞ; hH2ðxÞ.

For example: hH1ðxÞ ¼ f0:3; 0:5g; hH2ðxÞ ¼ f0:3; 0:6; 0:8g, The membership
degree that x belongs to H1 is between 0.3 and 0.5. The membership degree that x
belongs to H2 is among 0.3, 0.6 and 0.5. Thus, the hesitant degree of hH2ðxÞ is greater
than hH1ðxÞ.

For the feedback extension of a concept, the lower the hesitant degree, the more
close to the real extension. Based on that, the relationship between two hesitant fuzzy
sets is defined as follows.

Definition 3.3. Let H1, H2 be the hesitant fuzzysets on domains U. If there is
hH1ðuÞ�hH2ðuÞ for 8u 2 U; then H1�H2.

Principle 3.1. The description frame is given. The optional concept a 2 C is taken,
and its extension is the fuzzy sets A of U. If it is satisfied that f � g for 8f ; g 2 F; then
A � f�1

H ðfHðAÞÞ � g�1
H ðgHðAÞÞ.

Proof. For 8u 2 U; there is

f�1
H ðfHðAÞÞðuÞ ¼ fHðAÞðf ðuÞÞ ¼

S
f ðu0Þ¼f ðuÞ

fAðu0Þg
g�1
H ðgHðAÞÞðuÞ ¼ gHðAÞðgðuÞÞ ¼

S
gðu0Þ¼gðuÞ

fAðu0Þg
f � g ) fu0 2 Ujf ðu0Þ ¼ f ðuÞg�fu0 2 Ujgðu0Þ ¼ gðuÞg

) S
f ðu0Þ¼f ðuÞ

fAðu0Þg� S
gðu0Þ¼gðuÞ

fAðu0Þg

According to the Definition 3.3, we can get that f�1
H ðfHðAÞÞ � g�1

H ðgHðAÞÞ;
The all-factor 1 is injection, then 1�1ð1ðAÞÞ ¼ A. There is the all-factor 1� f ; then
A � f�1

H ðfHðAÞÞ � g�1
H ðgHðAÞÞ.

The proof is finished.
The Principle 3.1 showed that the more “big” (the more complex) the factor, the

more close to the real extension the feedback extension.

Definition 3.4. Let h1 and h2 be the hesitant fuzzy cellular, h ¼ fc1 [ c2jc1 2 h1;
c2 2 h2g, and the elements in h are arranged in ascending order, hsðiÞ ¼ ci represented
the i-th element in h. Now some of their basic operations are given as follows:

(1) h1 \ h2 ¼ fhsðiÞjhsðiÞ 2 hg, in which i ¼ 1; 2; . . .;minflðh1Þ; lðh2Þg;
(2) h1 [ h2 ¼ fhsðiÞjhsðiÞ 2 hg,

In which, i ¼ lðhÞ �maxflðh1Þ; lðh2Þgþ 1; lðhÞ �maxflðh1Þ; lðh2Þgþ 2; . . .; lðhÞ.
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Explanation: in fact, these operations are that all the elements in h1; h2 are put in the
set h; then select the small ones and minflðh1Þ; lðh2Þ of them constitutes the set h1 \ h2,
select the big ones and maxflðh1Þ; lðh2Þg of them constitutes h1 [ h2.

The proposed operation by the Definition 3.4 is different from the literature [13, 14],
and the operation is not only considering the change of membership degree, but also the
degree of hesitation. For example: let h1 ¼ f0:2; 0:3; 0:5g; h2 ¼ f0:4; 0:5; 0:7; 0:8g,
According to the above definition, we can get that h1 [ h2 ¼ f0:4; 0:5; 0:7; 0:8g,
h1 \ h2 ¼ f0:2; 0:3; 0:4g.

The feedback extension provides the direct theoretical basis and operation method
for the concept extension expression. Because of the complexity of all-factor, it is often
not directly to get the representation extension Bð1Þ of the concept a in the complete
representation theory domain Xð1Þ. Similar to the literature [2], the complex factors are
decomposed into the simple factors, then seeking out the representation extension of
the concept a for these simple factors, the representation extension would ‘synthesize’.
The ‘synthesis’ method is in the definition as following:

Definition 3.5. The description frame ðU;C; fXðf Þgf2F � is given. The optional concept
a 2 C is taken, and the extension is A. G � F is taken, and the factors in G are
independent of each other, then it is noted that A½G�, T

f2G
f�1
H ðfHðAÞÞ. A½G� is called

the feedback extension G-envelope of A.
Notes:

(1) A½G� is the hesitant fuzzyset. The feedback extension got from each factor by A; is
obtained by the operation of definition 4;

(2) When A½G� is degraded into the fuzzy set, A½G� ¼ A.

4 The Hesitant Fuzzy Method of Decision-Making Based
on Incomplete Information of Factor Space

The left pair ðU;V � was given, and it was specified that there was a relationship R
between U and V : Rðu; f Þ ¼ ½0; 1�. If the value of Rðu; f Þ was more than one, R would
be called the hesitant fuzzy relation. If the factor f 2 V was seen as a mapping, it acted
on an object u 2 U and a certain state f ðuÞ ¼ x would be obtained, then Bðf ÞðxÞ could
be a hesitant fuzzy element.

Let fXðf Þgf2F be a factor space on U. The triplet S ¼ ðU;V ; fXðf Þgf2FÞ is an
incomplete information system, in which U ¼ u1; u2; � � � ; umf g is a non-empty finite
object set, F � V and F ¼ ff1; f2; � � � fng is a non-empty finite factor set. Let
BðfjÞðf ðuiÞÞ ¼ hij, hij be a hesitant fuzzy element, if BðfjÞðf ðuiÞÞ is empty, we can use
“h�ij” to represent the missing data.
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4.1 Filled Methods of Missing Value

The performance value of the domain U ¼ u1; u2; � � � ; umf g under the factor fj was
divided into two categories: complete information set and incomplete information set,
noted:

Bþ ðfjÞðf ðuiÞÞ ¼ hij ¼ fhijji ¼ r1; r2; � � � ; rtg

B�ðfjÞðf ðuiÞÞ ¼ h�ij ¼ fh�ijji ¼ rtþ 1; rtþ 2; � � � ; rmg;

In which r1; r2; � � � ; rm was the arrangement of 1; 2; � � � ;m:
For the convenience of research, it is required that a complete information value

under this factor was selected to fill, for the incomplete information under the factor fj.
Then the filled methods of missing value were defined as follows:

h�ij ¼ HFWAðh1j; h2j; � � � ; hrtjÞ ¼ �rt
k¼1

wkhkj ¼
[

c12h1j;c22h2j;���crt2hrt j
f
Xrt
k¼1

wkckg: ð7Þ

In which, w ¼ fw1;w2; � � � ;wrtg was the weight vector of h1j; h2j; � � � ; hrtj. For
convenience in computation, it could be taken that w1 ¼ w2 ¼ � � � ¼ wrt ¼ 1=rt.

For example: there were the information values fh1j; h2j; h�3jg under the factor fj, in
which h1j ¼ f0:2; 0:3g, h2j ¼ f0:3; 0:4g. The missing value h�3j was filled using the
complete information set fh1j; h2jg. From the formula(7), we can get that
h�3j ¼ f0:25; 0:3; 0:35g, in which 0.3 in h�3j repeated for two times.

Notes:

(1) The complete information set was regarded as a vector set, and the missing value
was a combination consisted of one element from each vector. Then the elements
of the new combination were weighted average, and there were many combina-
tions, there were many elements in missing values. The missing value is a new
hesitant fuzzy number.

(2) It could be considered that the opportunity to take all the values on the repre-
sentation theory domain was equal, in a certain factor. So we could make the
weight of each vector of the complete information set (vector set)equal. That was
w1 ¼ w2 ¼ � � � ¼ wrt ¼ 1=rt.

4.2 The Hesitant Fuzzy Group Method of Decision-Making Based
on the Incomplete Information

In the group decision-making problem, let U ¼ u1; u2; � � � ; umf g be the alternative set,
in which m was the number of the alternatives. F ¼ f1; f2; � � � ; fnf g; in which F was the
factors group related to decision making, and n was the number of the factors. D ¼
d1; d2; � � � ; dsf g was the expert set, and s was the number of the experts. The decision

maker dk 2 Dðk ¼ 1; 2; . . .; sÞ evaluated the alternative through a number of factors

Fk ¼ ff ðkÞ1 ; f ðkÞ2 ; . . .; f ðkÞlðFkÞg, in which Fk � F, lðFkÞ represented the number of the
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factors in Fk. Let wðkÞ ¼ ðwðkÞ
1 ;wðkÞ

2 ; . . .;wðkÞ
lðFkÞÞ ðk ¼ 1; 2; . . .; sÞ be the weight vector of

the factors group Fk ¼ ff ðkÞ1 ; f ðkÞ2 ; . . .; f ðkÞlðFkÞg considered by the decision maker dk, and

then the evaluation value of the alternative ui by the decision maker dkðk ¼ 1; 2; . . .; sÞ
was f ðkÞj ðuiÞ under the factor fj 2 Fkðj ¼ 1; 2; . . .; lðFkÞÞ; we could get the

decision-making matrix RðkÞ ¼ ½f ðkÞj ðuiÞ�m�lðFK Þðk ¼ 1; 2; . . .; sÞ:
Based on the above decision-making matrix, the specific decision-making steps

have been given:

Step 1: According to the evaluation of the decision maker dk 2 Dðk ¼ 1; 2; . . .; sÞ;
we could get the hesitant fuzzy decision-making matrix

RðkÞ ¼ ½BðfjÞðf ðkÞj ðuiÞÞ�m�lðFkÞ ðk ¼ 1; 2; . . .; sÞ, For convenience of repre-

senting, let BðfjÞðf ðkÞj ðuiÞÞ ¼ hðkÞij , and then RðkÞ ¼ ½hðkÞij �m�lðFkÞðk ¼
1; 2; . . .; sÞ; the fuzziness and uncertainty of the actual problem background
often lead to the incomplete decision-making information, that is, there is a
missing value in the decision-making matrix.

Step 2: The above hesitant fuzzy decision-making matrix was completely filled and
weighted using the formula (7), and we could get the new decision-making

matrix R0ðkÞ, that is: R
0ðkÞ ¼ ½h0ðkÞij �m�lðFkÞ, in which h0ðkÞij ¼ wðkÞ

j � hðkÞij ;

Step 3: According to A½Fk�ðuiÞ,
T

fj2Fk

f�1
j ðfjðAÞÞðuiÞ ¼

T
fj2Fk

wðkÞ
j � BðfjÞðf ðkÞj ðuiÞÞ ¼

T
fj2Fk

h0ðkÞij , aggregating the row vector information of the matrix R0ðkÞ, we

could get the comprehensive preferences information A½Fk�ðuiÞ of the
alternative ui by the decision maker dk .

Step 4: Using the union operation of the hesitant fuzzy set defined by definition4,
synthesizing the preference information of the solution ui from s decision
makers, we can get that

A½G�ðuiÞ ¼
[s
k¼1

A½Fk�ðuiÞ; in whichG ¼
[s
k¼1

Fk;

Step 5: Construct a comparison table of the hesitant fuzzy set. This comparison
table was a square table with equal number of rows and columns, its rower
and column were the object names in the domain U ¼ fu1; u2; � � � ; umg, the
element of the table was Cij. Based on Definitions 2.5 and 2.6 we compute
and get: Cij ¼ pðA½G�ðuiÞ�A½G�ðujÞÞ ;

Step 6: Compute and compare the row sum of the table Pi ¼
Pm

j¼1 Cij, as well as the
column sum of the table Qi ¼

Pm
j¼1 Cji, then we can obtain the score Si ¼

Pi � Qi of the alternative ui. At last, we can determine the order of the
alternative based on the score.
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5 Examples Analysis

Let 3 experts (decision makers) be d1; d2; d3, and they evaluated three sets of houses
U ¼ fu1; u2; u3g from price f1, appearance f2, traffic f3, environment f4 and area f5. If
the main factors considered by the experts d1; d2; d3 were F1 ¼ ff1; f2; f3g;F2 ¼
ff2; f3; f4g and F3 ¼ ff3; f4; f5g, the evaluated result of each expert was given in the
form of the preference value that was the hesitant fuzzy number, “h�ij” represented the
missing values, the concrete results are shown in the table below (Tables 1, 2 and 3).

Three decision makers dkðk ¼ 1; 2; 3Þ gave different weights wð1Þ ¼ ð0:4; 0:3;
0:3Þ;wð2Þ ¼ ð0:2; 0:4; 0:4Þ;wð3Þ ¼ ð0:4; 0:4; 0:2Þ; to the factors Fkðk ¼ 1; 2; 3Þ consid-
ered. According to the formula (7), completely fill the missing value in the table, and
weight the above hesitant fuzzy value using weight information, the information after
weight was shown in the following table (Tables 4, 5 and 6).

According to the step 3, the preference value of each alternative given by each
decision maker:

Table 1. Evaluation value of the expert d1

U f1 f2 f3
u1 {0.2,0.5,0.8} {0.1,0.2,0.3} {0.4,0.5,0.6}
u2 h�21 {0.2,0.4,0.6} {0.5,0.6,0.7}
u3 {0.3,0.6,0.7} {0.1,0.5} {0.3,0.5}

Table 2. Evaluation value of the expert d2

U f2 f3 f4
u1 {0.5,0.7} {0.3,0.7} {0.2,0.5,0.9}
u2 {0.6,0.8} {0.1,0.3} {0.1,0.6}
u3 {0.3,0.6} h�33 {0.3,0.7}

Table 3. Evaluation value of the expert d3

U f3 f4 f5
u1 {0.5,0.6} {0.5,0.6} {0.3,0.6}
u2 {0.5,0.8} {0.4,0.7} {0.2,0.7}
u3 {0.4,0.5} {0.4,0.5,0.7} h�35
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A½F1�ðu1Þ ¼ f0:03; 0:06; 0:08g; A½F1�ðu2Þ ¼ f0:03; 0:1; 0:12g; A½F1�ðu3Þ ¼ f0:03; 0:09g;
A½F2�ðu1Þ ¼ f0:08; 0:12g; A½F2�ðu2Þ ¼ f0:04; 0:12g; A½F2�ðu3Þ ¼ f0:06; 0:08g;
A½F3�ðu1Þ ¼ f0:06; 0:12g; A½F3�ðu2Þ ¼ f0:04; 0:14g; A½F3�ðu3Þ ¼ f0:05; 0:08g:

Using step 4, synthesize the preference information of the three decision makers to
obtain the final preference value:

A½G�ðu1Þ ¼ f0:06; 0:08; 0:12g; A½G�ðu2Þ ¼ f0:1; 0:12; 0:14g; A½G�ðu3Þ
¼ f0:06; 0:08; 0:09g

in which G ¼ S3
k¼1

Fk;

According to step 5, the calculated scores of each solution are: S1 ¼ �0:66,
S2 ¼ 2S3 ¼ �1:34;

According to the final scores, we can determine u2 was the best.

6 Conclusion

In this paper, based on the theory of factors space the feedback extension of the concept
was presented, regarding as hesitant fuzzy set, and the new definition of relation and
operation was given among the hesitant fuzzy sets considering the hesitancy degree.

Table 4. Evaluation value of the expert d1

U f1 f2 f3
u1 {0.08,0.2,0.32} {0.03,0.06,0.09} {0.12,0.15,0.18}
u2 {0.1,0.16,0.18,0.22,0.24, 0.28,0.3} {0.03,0.12,0.18} {0.15,0.18,0.21}
u3 {0.12,0.24,0.28} {0.03,0.15} {0.09,0.15}

Table 5. Evaluation value of the expert d2

U f2 f3 f4
u1 {0.2,0.14} {0.12,0.28} {0.08,0.2,0.36}
u2 {0.12,0.16} {0.04,0.12} {0.04,0.24}
u3 {0.06,0.12} {0.08,0.12,0.16,0.2} {0.12,0.28}

Table 6. Evaluation value of the expert d3

U f3 f4 f5
u1 {0.2,0.24} {0.2,0.24} {0.06,0.12}
u2 {0.2,0.32} {0.16,0.28} {0.04,0.14}
u3 {0.16,0.2} {0.16,0.2,0.28} {0.05,0.08,0.1,0.13}
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Based on this definition, the operation of extension envelopes and group decision
making method under incomplete information was given, and through the example the
above theories method was applied. The results show that this method can utilize more
efficiently the data and information, the process of gathering information is simple, and
the results are valid.
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Abstract. Let G = (V, E) be a graph. The function f : V (G) → {−1, 1}
is a signed total dominating function if for every vertex v ∈ V (G),∑

x∈NG(v) f(x) ≥ 1. The value of ω(f) =
∑

x∈V (G) f(x) is called the
weight of f . The signed total domination number of G is the minimum
weight of a signed total dominating function of G. In this paper, we
initiate the study of the signed total domination numbers of Mycielski
graphs and find some upper bounds for this parameter. We also calculate
the exact value of the signed total domination number of the Mycielski
graph when the underlying graph is a special graph.

Keywords: Signed total domination number · Mycielski construction

1 Introduction

All graphs considered throughout this paper are simple, finite, undirected and
connected. For the terminology and notations not defined here, we refer the
reader to [7]. Let G be a graph with vertex set V (G) and edge set E(G). The
open neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of vertices
adjacent to v in G. The closed neighborhood of a vertex v in graph G is NG[v] =
NG(v)∪{v}. Moreover, the open and closed neighborhoods of a subset S ⊆ V (G)
are NG(S) = ∪v∈SNG(v) and NG[S] = NG(S) ∪ S, respectively. The degree of
a vertex v ∈ V (G) is degG(v) =| NG(v) |. A vertex v ∈ V (G) is called an odd
(even) vertex if degG(v) is odd (even). For a graph G = (V,E), let Vo and Ve be
the set of odd and even vertices, respectively. We denote the maximum degree
of G with Δ(G) and its minimum degree with δ(G). A vertex is called universal
if it is adjacent to all other vertices of a graph. In a complete graph, all vertices
are universal.

For a function f : V (G) −→ {−1, 1} and a subset S of V (G), we define
f(S) =

∑
x∈S f(x). If S = NG(v) for v ∈ V (G), then we denote f(S) by f [v].

Let Cf = {v ∈ V (G) | f(v) ≥ 1}. A signed total dominating function of G is a
function f : V (G) −→ {−1, 1} such that for all vertices v of G, v ∈ Cf . The weight
of a signed total dominating function f is ω(f) =

∑
v∈V (G) f(v) = f(V (G)).

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 11
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The signed total domination number (STDN), γst(G), is the minimum weight of
a signed total dominating function of G. A signed total dominating function of
weight γst(G) is called a γst(G)-function. For a signed total dominating function
f of G we define Pf = {v ∈ V (G) | f(v) = 1} and Mf = {v ∈ V (G) | f(v) = −1}.

The concept of the signed total domination number of a graph was proposed
by Zelinka [8]. Henning in [4] proved that the problem of determining the signed
total domination number for general graphs is NP-hard.

For a graph G with V (G) = {v1, v2, · · · , vn}, let U = {u1, u2, · · · , un} be a
disjoint copy of V (G) and let w be a new vertex. The Mycielski graph μ(G) of
G is defined as follows:

V (μ(G)) = V (G) ∪ U ∪ {w},

E(μ(G)) = E(G) ∪ {viuj | vivj ∈ E(G)} ∪ {wui | 1 ≤ i ≤ n}.

The vertex w is called the root of μ(G) and the vertex ui = c(vi) is called
the twin of the vertex vi, i = 1, 2, · · · , n. The Mycielski graph of a graph G
was introduced by Mycielski in order to construct triangle-free graphs with an
arbitrary large chromatic number [5]. In recent years, there have been results
reported on Mycielski graphs related to various domination parameters. In [1],
it was proved that γ(μ(G)) = γ(G)+1. This shows that the domination number
of a Mycielski graph can exceed the domination number of its underlying graph
G, but Ghameshlou et al. proved such a result is not true for signed domination
number of Mycielski graphs [2,6].

In this paper, we initiate the study of the signed total domination num-
bers of Mycielski graphs. In Sect. 2, we present some preliminary results on
Mycielski graphs and their signed total domination numbers. In Sect. 3, we
calculate the exact value of signed total domination number of a Mycielski
graph, whose underlying graph has at least one universal vertex. Then we cal-
culate the exact values of γst(μ(G)) when G is a star, a wheel, a fan, a Dutch
windmill or a complete graph. In Sect. 4, we prove that if γst(G) ≥ 0, then
γst(μ(G)) ≤ 2γst(G) + 1, otherwise γst(μ(G)) ≤ γst(G) + 3. Finally, in Sect. 5,
we calculate γst(μ(G)) when G is a cycle, a path or a complete bipartite graph.
It is worth to note that there are graphs G, such as Km,n, when m = 1 or m
and n are both odd, with γst(μ(G)) < γst(G).

2 Preliminary Results

Proposition 1. Let f be a signed total dominating function of μ(G). Then,

ω(f) ≡ 1 (mod 2).

Proposition 2. Let f be a signed total dominating function of μ(G).

1. If G has at least one vertex of degree 1, then for Mycielski graph μ(G), w ∈ Pf .
2. For v ∈ V (μ(G)) if v is an even vertex, then f [v] ≥ 2 while if v is an odd

vertex, then f [v] ≥ 1.
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Ghameshlou et al. proved the following results for signed domination number
of Mycielski graphs.

Theorem 1 [2]. Let G be a graph of order n. If G has at least an universal
vertex, then γs(μ(G)) ≥ 3.

Corollary 1 [2]. For every graph G ∈ {Kn,K1,n,Dn
3 ,Wn, Fn}, γs(μ(G)) = 3.

Theorem 2 [2]. For any graph G of order n,

γs(μ(G)) ≤
{

γs(G) + 2 if γs(G) ≤ −1,
2γs(G) + 1 if γs(G) ≥ 0.

Furthermore, for γs(G) ≥ 0 the bound is sharp for Kn when n is odd and for
Kn.

Theorem 3 [2]. For every cycle Cn of order n,

γs(μ(Cn)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n

2
+ 1 if n ≡ 0 (mod 8),

n + 5
2

if n ≡ 1, 5 (mod 8),
n

2
+ 2 if n ≡ 2, 6 (mod 8),

n + 7
2

if n ≡ 3 (mod 8),
n

2
+ 3 if n ≡ 4 (mod 8),

n + 3
2

if n ≡ 7 (mod 8).

Theorem 4 [2]. For a path Pn, n ≥ 8,

γs(μ(Pn)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + 5
2

if n ≡ 1 (mod 8),
n + 4
2

if n ≡ 2 (mod 8),
n + 3
2

if n ≡ 3, 7 (mod 8),
n + 2
2

if n ≡ 0, 4 (mod 8),
n + 1
2

if n ≡ 5 (mod 8),
n

2
if n ≡ 6 (mod 8).

Theorem 5 [2]. For complete bipartite graph Km,n with m ≥ n ≥ 2,

γs(μ(Km,n)) = 5.

Theorem 6 [6]. If G is a graph of order n, then

γs(μ(G)) ≥

⎧
⎪⎪⎨

⎪⎪⎩

	 (2n + 1)(δ(G) + 1) − 2Δ(G)(n − 1) − no

Δ(G) + δ(G) + 1

 if n is odd,

	 (2n + 1)(δ(G) + 1) − Δ(G)(2n − 1) − no

Δ(G) + δ(G) + 1

 if n is even.

Furthermore, this bound is sharp.
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Theorem 7 [6]. If G is a r-regular graph, then

γs(μ(G)) ≥

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2n + 2r + 1
2r + 1

if n, r are even,

n + 2r + 1
2r + 1

if n is even, r is odd,
2n + 3r + 1

2r + 1
if n, r are odd.

Moreover, this bound is sharp for complete graph Kn.

3 Graphs with Universal Vertices

In this section, we show that the signed total domination number of a Mycielski
graph, whose underlying graph has at least one universal vertex, is at least 3.

Theorem 8. Let G be a graph of order n. If G has at least an universal vertex,
then

γst(μ(G)) ≥ 3.

Corollary 2. For every complete graph Kn,

γst(μ(Kn)) =
{
3 if n is odd,
5 if n is even.

Corollary 3. For every graph G = {K1,n,Km
3 ,Wn, Fn}, γst(μ(G)) = 5.

4 A Relation Between γst(G) and γst(μ(G))

Theorem 9. For any graph G of order n,

γst(μ(G)) ≤
{
2γst(G) + 1 if γst(G) ≥ 0,
γst(G) + 3 if γst(G) ≤ −1.

Furthermore, for γst(G) ≥ 0 the bound is sharp for Fn when n is odd, Km,n

when m and n are odd, and Kn.

5 Cycles, Paths and Complete Bipartite Graphs

In this section we find the signed total domination number of μ(G) when G is a
cycle, a path, or a complete bipartite graph.

Theorem 10. For every cycle Cn of order n,

γst(μ(Cn)) =
{

n + 1 if n ≡ 0, 2 (mod 4),
n if n ≡ 1, 3 (mod 4).

Theorem 11. If G = Pn, then

γst(μ(Pn)) =

⎧
⎨

⎩

n + 1 if n ≡ 0 (mod 4),
n + 2 if n ≡ 1, 3 (mod 4),
n + 3 if n ≡ 2 (mod 4).

Theorem 12. For complete bipartite graph Km,n with m ≥ n ≥ 2,

γst(μ(Km,n)) = 5.
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6 Conclusion

Comparing the results presented here shows that there are some underlying
graphs G of order n which can be generalized to Mycielski graph μ(G) of order
2n + 1 such that γst(μ(G)) ≤ γst(G); for instance, if G ∈ {K1,n,Km

3 }, then
γst(μ(G)) ≤ γst(G).
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Abstract. Arbitrated quantum signature(AQS) is a cryptographic sce-
nario. There are three participants in this scheme. Sender(signer) Alice
generates the signature of a message. Receiver(verifier) Bob verifies the
signature. A trusted arbitrator helps Bob verify the signature. In this
paper, we propose an arbitrated quantum signature scheme with W
states. The W states are used for quantum signature and verification.
The W states have stronger robustness than the GHZ states in the loss
of the quantum bits. Finally, we also discuss its security against forgery
and disavowal.

Keywords: Quantum cryptography · Quantum signature · Arbitrated
quantum signature · W states

1 Introduction

Quantum cryptography is new cross subject with the combination of classic cryp-
tography and quantum information. It is a new type of cryptographic system
that uses quantum effects to realize the information exchange of unconditional
security. The ideology of quantum cryptography can be traced back to the earli-
est Wiesner Stephen article in 1983 [1]. Bennet et al. designed the first quantum
cryptography scheme named BB84 [2]. Since then, quantum cryptography has
developed rapidly. Quite a few branches of quantum cryptography have been
pointed out, including quantum key distribution(QKD) [3–7], quantum secure
direct communication(QSDC) [8–11], quantum secret sharing(QSS) [12–15] and
so on.

The principle of quantum signature is a combination of quantum theory and
the principle of digital signature. Gotteman et al. [16] and Buhrman et al. [17]
proposed quantum digital signatures in 2001. Zeng and Keitel proposed and
designed the first arbitration quantum signature scheme by using the classical
signature and the entanglement of the Greenberger-Horne-Zeilinger(GHZ) triplet
states [18]. Li et al. modified the signature of Zeng and Keitel by using Bell states
instead of GHZ states, which is more efficient and more convenient [19]. Zou
and Qiu proposed an AQS scheme with a public board which can avoid being
disavowed for the integrality of the signature by Bob [20]. With the continuous
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 12
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development and application of the arbitration quantum signature, many practi-
cal quantum signature protocols have been put forward, such as quantum proxy
signature [21,22] ,quantum group signature [23,24], quantum blind signature
[25,26], quantum multi signature [27,28], etc.

In 2000, Dür et al. proposed a new entangled state, and found that the W
states have stronger robustness than the GHZ states in the loss of the quantum
bits [29]. In the case of the loss of particles, the W states can maintain the
quantum entanglement properties well. In this paper, we propose an arbitrated
quantum signature scheme based on W states with public board. And we also
discuss its security against forgery and disavowal.

This paper is arranged as follows. In Sect. 2, we introduce the general prin-
ciple we demand for this AQS scheme. In Sect. 3, we describe the basic scheme
including an initial phase, a signing phase and a verifying phase. In Sect. 4, we
make security analyses on the proposed scheme to show neither to be disavowed
by the signatory nor to be deniable for the receiver. In Sect. 5, we give a brief
conclusion.

2 Preliminaries

There are four Bell basis shown as below

|φ+〉 =
1√
2
(|00〉 + |11〉)

|φ−〉 =
1√
2
(|00〉 − |11〉)

|ψ+〉 =
1√
2
(|01〉 + |10〉)

|ψ−〉 =
1√
2
(|01〉 − |10〉)

(1)

There are three participants in the protocol, the signer Alice, the receiver
Bob and the arbitrator Trent. Alice need to sign the message |P 〉 with a appro-
priate signature |S〉. We assume n qubits in the string, such that |P 〉 = (|p1〉,
|p2〉, · · ·, |pn〉). Any qubit |pi〉 can be expressed as below

|pi〉 = αi|0〉 + βi|1〉 (2)

where αi, βi are complex numbers with |αi|2 + |βi|2 = 1. And |P 〉 can be known
or unknown. In advance, three participants share a three-particle W state

|ϕ〉ATB =
1
2
(|000〉 + |110〉 + |101〉 + |011〉)ATB (3)
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where the subscripts A correspond to Alice, T correspond to Trent and B cor-
respond to Bob. Alice implements a Bell measurement on |pi〉 and the particle
she owns in W state, the system is expressed as follows

|Ψ〉iATB = |pi〉 ⊗ |ϕ〉ATB

=
1

2
√

2
{|φ+〉A[αi(|00〉 + |11〉)TB + βi(|10〉 + |01〉)TB ]

+ |φ−〉A[αi(|00〉 + |11〉)TB − βi(|10〉 + |01〉)TB ]

+ |ψ+〉A[αi(|10〉 + |01〉)TB + βi(|00〉 + |11〉)TB ]

+ |ψ−〉A[αi(|10〉 + |01〉)TB − βi(|00〉 + |11〉)TB ]}

(4)

where |φ+〉A, |φ−〉A, |ψ+〉A, |ψ−〉A represent the Bell states in Eq. (1). At present,
Trent uses {|0〉, |1〉} in the basis to implement a single-measurement, and sends
the outcomes to Bob. Then, Bob can apply a proper unitary operation to recover
the message.

Suppose Alice’s measurement result is |φ+〉A. After the Trent’s measurement,
the particles of Trent and Bob collapse into the state as follows

|0〉T (αi|0〉 + βi|1〉)B + |1〉T (αi|1〉 + βi|0〉)B (5)

If Trent’s measurement result is |0〉, Bob’s particle will be αi|0〉 + βi|1〉.
Bob can use local unitary operation I to recover the message |pi〉. If Trent’s
measurement result is |1〉, Bob’s particle will be αi|1〉 + βi|0〉. Bob can use
unitary operation σx to recover the message |pi〉, where

I = |0〉〈0| + |1〉〈1|
σx = |0〉〈1| + |1〉〈0|
iσy = |0〉〈1| − |1〉〈0|
σz = |0〉〈0| − |1〉〈1|

(6)

All possibilities of the scheme are shown in Table 1. |MA〉 means Alice’s
measurement results in Table 1. |MT 〉 means Trent’s measurement result. |φB〉
means Bob’s collapse state and UB means the unitary operation which Bob needs
to recover the Alice’s message.

Table 1. Relation between the local unitary operations and measurement results

|MA〉 |MT 〉 |φB〉 UB

|φ+〉A |0〉T /|1〉T α|0〉 + β|1〉/α|1〉 + β|0〉 I/σx

|φ−〉A |0〉T /|1〉T α|0〉 − β|1〉/α|1〉 − β|0〉 σz/iσy

|ψ+〉A |0〉T /|1〉T α|1〉 + β|0〉/α|0〉 + β|1〉 σx/I

|ψ−〉A |0〉T /|1〉T α|1〉 − β|0〉/α|0〉 − β|1〉 iσy/σz
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3 Arbitrated Quantum Signature Based on W States

There are three participants in the protocol, the signer Alice, the receiver Bob
and the arbitrator Trent. Trent is absolutely trusted by Alice and Bob. The two
sides share classical keys with arbitrator respectively. The key is stored by the
communication terminal, which can be used for a long time. We also use public
board to avoid being disavowed by Bob. The presented scheme includes three
phases, initializing phase, signing phase, and verifying phase.

3.1 Initializing Phase

Step I1. Alice shares the secret keys KA with arbitrator Trent through the
quantum key distribution [3–7], which were proved to be uncondition-
ally secure [7,30]. Similarly, Bob shares the secret keys KB with Trent.

Step I2. Trent generates n W triplet states |ϕ〉ATB = (|ϕ1〉, |ϕ2〉, · · ·, |ϕn〉).|ϕi〉
is the same as Eq.(3).

|ϕi〉ATB =
1
2
(|000〉 + |110〉 + |101〉 + |011〉)ATB (7)

where the subscripts A, T and B correspond to Alice, Trent and Bob.
Trent distributes corresponding particles to Alice and Bob.

Step S1. Alice need to sign a qubit string |P 〉 = (|p1〉, |p2〉, · · ·, |pn〉) related to
the message with |pi〉 = αi|0〉 + βi|1〉. Alice prepares three copies of
|P 〉 necessarily. Then, Alice uses four unitary operators on the |P 〉 for
local operation.

|P ′〉 = σ|P 〉 = (σ1|p1〉, σ2|p2〉, · · ·, σn|pn〉) (8)

where σi ∈ {I, σx, iσy, σz}, i = 1, 2, · · ·, n. Here notice that |P ′〉 return
to the original states perfectly because of Hermitian conjugate opera-
tors of unitary operators, while measurement operations are not usually
reversible.

Step S2. Alice transforms the qubit string |P ′〉 into a secret qubit string |RA〉
in terms of the key KA.

|RA〉 = EKA
|P ′〉 (9)

For example, assume that the key KA is related to a collection of
unitary operators RKA

= (R1
K1

A
, R2

K2
A
, · · ·, Rn

Kn
A
). If Ri

Ki
A

= 0, Alice

applies the unitary operation σx, namely, Ri
Ki

A
= σx. If Ri

Ki
A

= 1,

Alice applies the unitary operation σz, namely, Ri
Ki

A
= σz. So |RA〉 =

RKA
(P ) = (|r1〉, |r2〉, · · ·, |rn〉) with |ri〉 = M i

Ki
A
(pi).

Step S3. Alice combines each secret message state |P ′〉 and the W states. Then,
she implements a Bell measurement on her particles. It shows in Eq.(4).
And she can obtain |MA〉 = (|M1

A〉, |M2
A〉, · · ·, |Mn

A〉), where |M i
A〉 rep-

resents one of the four Bell states in Eq.(1).
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Step S4. Alice generates the signature |S′〉 = EKA
(|MA〉, |RA〉) of the message

|P ′〉 with the secret key KA by using the quantum one-time pad algo-
rithm.

Step S5. Alice transmits the signature |S′〉 and |P ′〉 to Bob.

3.2 Verifying Phase

Step V 1. Bob encrypts |S′〉 and |P ′〉 with the secret key KB and sends the
resultant outcomes |YB〉 = EKB

(|S′〉, |P ′〉) to the arbitrator Trent.
Step V 2. Trent decrypts with KB and gets |S′〉 and |P ′〉. Then he decrypts |S′〉

with KA and gets |MA〉 and |RA〉. Trent encrypts |P ′〉 by using KA

and gets |R′
A〉. The operation is same as Alice in Step S2. Then Trent

compares |RA〉 with |R′
A〉 through swap [17]. If RA〉 = |R′

A〉, Trent sets
the verification parameter r = 1; otherwise, he sets r = 0.

Step V 3. Trent implements a measurement in the basis {|0〉, |1〉} and obtains
|MT 〉 = (|M1

T 〉, |M2
T 〉, · · ·, |Mn

T 〉). All possibilities of the measurement
results are shown in Table 1.

Step V 4. Trent sends the encrypted results |YT 〉 = EKB
(|S′〉, |P ′〉, |R′

A〉, |MT 〉, r)
to Bob.

Step V 5. Bob decrypts |YT 〉 and gets |S′〉, |P ′〉, |R′
A〉, |MT 〉 and r. If r = 0, obvi-

ously the signature has been forged and Bob rejects it directly. If r = 1,
Bob goes on the next step.

Step V 6. Bob combines the |R′
A〉 and |MT 〉 and implements the corresponding

unitary operation according to Table 1. Bob obtains |P ′
B . He makes

comparisons between |P ′
B〉 and |P ′〉. This method is still swap [17]. If

|P ′
B〉 �= |P ′〉, Bob rejects the signature; otherwise he informs Alice by

the public board to publish σ, which Alice used in Eq.(8).
Step V 7. Alice publishes σ by the public board.
Step V 8. Bob gets back |P 〉 from |P ′〉 and holds |S〉 = (|S′〉, σ) as Alice’s signa-

ture for quantum message |P 〉.

The communications in this AQS scheme are described in Fig.1.

Fig. 1. The communications of the AQS scheme
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4 Security Analysis and Discussion

A secure quantum signature scheme should satisfy two requirements: the signa-
ture should not be forged by the attacker(including the malicious receiver) and
the signature should not be disavowed by the signatory and the receiver. We
discuss security of the proposed AQS scheme to against the two attacks.

4.1 Impossibility of Forgery

If the attacker Eve tries to forge Alice’s signature |S′〉 = EKA
(|MA〉, |RA〉) for his

own benefit, she has to know Alice’s secret keys KA. However, this is impossible
due to the unconditionally security of quantum key distribution [7,30]. Besides,
the use of quantum one-time pad algorithm enhances the security. Subsequently
the parameter r used in verifying phase will not pass the test.

In the worse situation, for instance, the secret key is exposed to attacker,
attacker still cannot forge the signature, since she cannot create appropriate
|MA〉 and |MT 〉. Bob would find such forgery, because the further verification
about |P ′

B〉 = |P ′〉 could not hold without the correct |MA〉 and |MT 〉.
If the malicious receiver Bob wants to forge Alice’s signature |S′〉 =

EKA
(|MA〉, |RA〉) for his own sake, he also should know Alice’s secret KA.

It’s also impossible because of the unconditionally security of quantum key
distribution.

4.2 Impossibility of Disavowal by Signatory and Receiver

Suppose that Alice disavows her signature for her own benefits. In this case,
the arbitrator Trent can confirm that Alice has signed the message since Alice’s
initial secret key kA in the signature |S′〉 = EKA

(|MA〉, |RA〉). Thus Alice cannot
deny signing the message|P 〉.

Similarly, suppose Bob repudiates the receipt of the signature. Then Trent
also can confirm that Bob has received the signature since he needs the assistance
of Trent to verify the signature. And if Bob wants to deny the signature by saying
|P ′

B〉 �= |P ′〉, he cannot get σ to recover the message |P 〉. This means that Bob
cannot disavow the signature.

5 Conclusion

We have investigated an AQS based on W states in three phases, including
initialing phased, signing phase and verifying phase. In the case of the loss of
particles, the W states can maintain the quantum entanglement properties well.
To avoid being disavowed by Bob, Bob has to ask Alice to publish the encryption
key σ which means Bob has no chance to repudiate the signature.
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Abstract. Stochastic dynamic programming, SDP, is often the optimal method.
SDP can be extended to handle very large dimensionality in the decision space,
as long as the dimensionality of the state space is not too large, since SDP can be
combined with linear or quadratic programming subroutines for every state and
stage. When the number of decision variables is large and the optimal decisions
are dependent on detailed information in a state space of large dimensionality,
SDP cannot be applied. Then, optimal control functions for local decisions may
be defined and the parameters can be determined via stochastic full system
simulation and multidimensional regression analysis. This paper includes an
approach to determination of all local decisions based on locally relevant state
space information within stochastic dynamic and spatially explicit production.
The expected present value of all harvests, over time and space, in a forest area,
is maximized. Each tree is affected by competition from neighbor trees. The
harvest decisions, for each tree, are functions of the price in the stochastic
market, the dimensions and qualities of the individual trees and the local
competition. The expected present value of the forest is an increasing function of
the level of price risk.

Keywords: Stochastic dynamic control � Spatial optimization

1 Introduction

The ambition of this study is to develop a general method for optimization of stochastic
and dynamic decision problems with spatial dependencies that cannot be neglected and
where the need to use a multidimensional state space in high resolution makes it
computationally and economically impossible to apply the otherwise relevant method
stochastic dynamic programming. Applications can be found in most sectors of the
economies. One of the most obvious cases, where useful and statistically estimated
functions already exist, is the forest sector. We start with a forest area with 1000 trees
of different sizes, as shown in Fig. 1. The initial locations and sizes of the trees are
simulated.

The problem is to determine an adaptive control function to be used in this forest,
giving the maximum of the total expected present value of all activities over time. The
annual increment of each tree is a function of tree size and competition from neighbor

© Springer International Publishing AG 2018
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trees. The different trees have different wood qualities, initially randomly assigned to
the individuals. The market value of a tree is a function of size, quality and stochastic
price variations. The variable harvesting cost of a tree is size dependent. Every five
years, the trees in the forest are inspected. Then, depending on market prices, tree sizes,
competition, quality etc., it is possible that some or many trees are harvested. The
optimized control function is used to make all of these decisions. Figure 2 shows the
structure of the forest directly after optimal harvesting at t = 0. Obviously, a consid-
erable number of large trees have been removed. Many new seedlings are however
found on the land, in random positions. The trees continue to grow and Fig. 3 illus-
trates the situation 35 years later. 69 years after the first harvest, trees of considerable
sizes exist (Fig. 4). The total number of large trees in year 69 is however much lower
than before the harvest during year 0. Several large trees are harvested in year 70
(Fig. 5). This type of stochastic dynamic and spatial forest development is sustainable.
Furthermore, there are always trees in the forest. We have a system of “optimal con-
tinuous cover forestry”.

Lohmander [1] describes several alternative methods to optimize forest manage-
ment decisions at higher levels. Lohmander and Mohammadi [2] determine optimal
harvest levels in beech forests in Iran, using stochastic dynamic programming. Then,
however, the tree selection decisions were never analyzed.

Fig. 1. Spatial map of initial conditions at t = −1 (years from the present time). The locations of
the circle centers are the locations of the trees. The circle diameters are proportional to the tree
diameters. The square represents one hectare (100 m * 100 m).
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Fig. 2. The state after the first application of the optimized control function at t = 0. Most of the
largest trees have been removed.

Fig. 3. The forest at t = 35.
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Fig. 4. The forest at t = 69.

Fig. 5. The forest at t = 70.
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2 Analysis

The optimal decisions for each tree, i, at time t, is determined by the diameter limit
function dLði; tÞ. If the diameter is larger than the diameter limit, then the tree should be
harvested. Otherwise, it should be left for continued production.

dLði; tÞ ¼ d0 þ dcCðiÞþ dqQðiÞþ dpDPðtÞ ð1Þ

The parameters d0; dc; dq; dp
� �

are optimized in this study. In the graphs and
software, they are denoted (dlim_0, dlim_c, dlim_q and dlim_p).

CðiÞ;QðiÞ;DPðtÞð Þ denote competition index for tree i, quality of tree i and the
stochastic deviation of the market price from the expected price, at time t. The
stochastic price deviations are i.i.d. and have uniform pdf on the interval −10 to +10
EURO/cubic meter.

The objective function is the total expected present value of all revenues minus all
costs from year 0 until year 200. The real rate of interest is set to 3%. The computer
model includes functions for tree height as a function of diameter, functions used in
tree volume calculations, set up costs, tree size dependent revenues and variable har-
vesting costs etc.

The trees grow according to a modified version of the function reported by Schütz
[3]. The modification is that in [3], competition is assumed to come from all parts of the
forest area, also far away from the individual tree. In the function applied in this new
analysis, only competition from trees at distances ten meters or closer, is considered.
Furthermore, in the Schütz function, each tree is only affected by competition from
trees with larger diameters. In the present study, also competition from trees with
smaller diameters is considered. However, it is probably the case that trees with smaller
diameter give a lower degree of competition. The motivation for the new function, used
here, is that competition for light, water and nutrients, obviously is stronger from
neighbor trees than from trees far away. Furthermore, also smaller trees use some of the
available light, water and nutrients. CðiÞ is now expressed as the basal area per hectare
of larger competing trees plus the basal area of smaller competing trees divided by 2
(all within the 10 m radius circle). In future studies, the competition function should be
estimated with locally relevant data.

IðiÞ ¼ b0 þ b1LNðdðiÞÞþ b2 CðiÞð Þ3 ð2Þ

IðiÞ is the diameter increment of tree i and dðiÞ is the diameter. b0; b1; b2ð Þ is a set of
empirically estimated parameters, published by Schütz [3], for beech in Germany.

The optimization of the total expected present value, via the parameters of the
adaptive control function, contained the following steps: A software code was con-
structed and tested in QB64. The objective function was estimated for a set of com-
binations of the control function parameters d0; dc; dq; dp

� �
. For this purpose, a four

dimensional loop with alternative parameter values was run. Preliminary iterative
studies were first made to determine interesting parameter intervals. Then, a
3 * 3 * 3 * 4 loop was used, which gave 108 parameter combinations. For each
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parameter combination, the total expected present value during 200 years was esti-
mated for 10 different forest areas of one hectare, each with 1000 initial random trees.
That analysis took approximately 8 h on an Acer Aspire V personal computer with an
Intel Core i5 processor. Next, the parameter values of dc; dq

� �
determined in the

“108-loop”, were considered optimal and fixed. A more detailed analysis, with higher
resolution, of the parameters d0; dp

� �
was made.

3 Main Results

The adaptive control function parameters d0; dc; dq; dp
� �

were determined in a general
loop. 108 combinations were evaluated. This is the adaptive control function:

dL;aði; tÞ ¼ 0:60� 0:0030CðiÞþ 0:020QðiÞ � 0:020DPðtÞ ð3Þ

The optimal objective function value was estimated to 2571 EURO/hectare. Next,
the parameter values of dc; dq

� � ¼ �0:003; 0:020ð Þ determined in the “108-loop”, were
considered optimal and fixed. A more detailed analysis, with higher resolution, of the
parameters d0; dp

� � ¼ dlim 0; dlim pð Þ was made. Figure 6 shows the objective
function and in Fig. 7, the objective function level curves are given.

Multiple regression analysis and the data presented in Fig. 6 were used to estimate
a quadratic approximation of the objective function, Z. Let x; yð Þ ¼ d0; dp

� �
.

Fig. 6. The objective function reduced by a constant as a function of the parameters dlim_0 and
dlim_p, for optimal values of the other parameters, namely dlim_c = −0.003 and dlim_q = 0.02.
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Z ¼ 8694xþ 22248y� 8170x2 � 235019y2 � 65389xy ð4Þ

The R2 value of the regression was 0.999 and all coefficients were statistically
significant, with p-values below 0.00003. The first order optimum conditions are:

dZ
dx

¼ �16340x� 65389yþ 8694 ¼ 0 ð5Þ

dZ
dy

¼ �65389x� 470038yþ 22248 ¼ 0 ð6Þ

The equation system
�16340 �65389
�65389 �470038

� �
x
y

� �
¼ �8694

�22248

� �
gives this unique

solution:
x; yð Þ � 0:773;�0:0602ð Þ. Now, the objective function value is 2690

EURO/hectare.
The derived optimum is a unique maximum, which is confirmed by:

Fig. 7. The level curves of the objective function as a function of the parameters dlim_0 and
dlim_p, when the other parameters were held constant at their optimal values.
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�16340j j ¼ �16340\0 ^ �16340 �65389
�65389 �470038

����
���� � 3:405 � 109 [ 0 ð7Þ

The quadratic approximation gave this control function (Fig. 8):

dL;bði; tÞ ¼ 0:773� 0:0030CðiÞþ 0:020QðiÞ � 0:0602DPðtÞ ð8Þ
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Abstract. Quantum teleportation has provided us with an interesting
way to transmit an arbitrary quantum state using one maximal entan-
gled state and two classical bits of information. A variety of theoretical
suggestions and experimental efforts have been made in this realm. In
practical implementations of the teleportation protocol, quantum noise
is an unavoidable factor. In this paper, we investigate the probabilistic
quantum teleportation of two-particle. The fidelity of quantum state is
calculated in detail, after suffering from the quantum noise. The rela-
tionship between quantum noise, quantum channel and quantum state
fidelity is obtained. The effect of noise on the teleportation is analyzed.

Keywords: Quantum teleportation · Quantum noise · Fidelity ·
Quantum channel

1 Introduction

Quantum teleportation is a technique for the direct transmission of quantum
states between the correspondents. In 1993, Bennett et al. [1] proposed the con-
cept of quantum teleportation. At present, the technology has made numerous
achievements in both theory [2–15] and experiment [16–18]. It has been studied
from the original single particle quantum teleportation to many particle quan-
tum teleportation and continuous variable quantum teleportation; from accurate
quantum teleportation (the value of fidelity is 1) to the precise quantum telepor-
tation (the value of fidelity is less than 1). All quantum teleportation protocols
need establish a quantum channel by the entangled state. In this process, the
particles of the entangled channel are susceptible to the interference by the quan-
tum noise.

In this paper, we take the probability teleportation of two particle entan-
gled state [19] as an example. and analyze the effects of several common quan-
tum noises [20,21] on the quantum channel. We have obtained the relationship
between the quantum fidelity, the parameters of noise and the state parameters
of channel. It has an important reference value for the practical application of
the quantum teleportation.
c© Springer International Publishing AG 2018
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2 Preparation

2.1 Fidelity and Quantum Noise

To quantify the efficiency of the probabilistic teleportation protocol we use the
fidelity. The fidelity is

F = Tr[ρTargetρout] = 〈ψ|ρout|ψ〉.
The action of the noise on the qubit, described by the density matrix ρ, is
(Table 1)

ρ → ρout =
n∑

j=1

EjρE†
j .

n∑

j=1

EjE
†
j = I.

Table 1. Four types of noise

Types of noise Kraus operators

Bit flip E1 =
√

1 − pI E2 =
√

pσx

Phase flip E1 =
√

1 − pI E2 =
√

pσz

Depolarizing E1 =
√

1 − 3p/4I E2 =
√

p/4σx

E3 =
√

p/4σy E4 =
√

p/4σz

Amplitude damping E1 =

(
1 0

0
√

1 − p

)

E1 =

(
1

√
p

0 0

)

2.2 Examples of Quantum Teleportation

The quantum teleportation of the participant are Alice and Bob. The quantum
state that Alice wants to transmit is |ϕ〉12. And the quantum entanglement
channel is |φ〉34.

|ϕ〉12 = x|00〉 + y|11〉, (1)

|φ〉34 = a|00〉 + b|11〉, (2)

where x and y are non negative real numbers, and x2 + y2 = 1; also a and b are
non negative real numbers, and a2 + b2 = 1. We can suppose 0 < b ≤ a < 1.

Suppose Alice prepared entangled state |φ〉34, then sends Bob the qubit 4
by optical fiber to set up communication channel. In this process, the qubit 4 is
easier affected by noise. So when noise act on the qubit 4, we study the influence
of noise for the quantum teleportation.
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Without noise, composite system composed of qubits 1, 2, 3, 4 is:

|Φ〉1234 = |ϕ〉12 ⊗ |φ〉34; (3)

the quantum state of Eq. (3) can be written as

|Φ〉1234 =
1√
2
[|φ+〉23(ax|00〉14 + by|11〉14) + |φ−〉23(ax|00〉14 − by|11〉14)

+|ψ+〉23(bx|01〉14 + ay|10〉14) + |ψ−〉23(bx|01〉14 − ay|10〉14)];
(4)

where |φ±〉 and |ψ±〉 are Bell states.
Without noise, the quantum channel is |φ〉34. And the density matrix is

ρin =

⎛

⎜⎜⎝

a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2

⎞

⎟⎟⎠ .

3 The Presence of Quantum Noise on the Teleportation

3.1 Bit Flip

After suffering from the noise named bit flip, the density matrix of |φ〉34 is

ρout = (I ⊗ E†
1)ρin(I ⊗ E1) + (I ⊗ E†

2)ρin(I ⊗ E2)

= (1 − p)

⎛

⎜⎜⎝

a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2

⎞

⎟⎟⎠ + p

⎛

⎜⎜⎝

0 0 0 0
0 a2 ab 0
0 ab b2 0
0 0 0 0

⎞

⎟⎟⎠ ;

so the quantum channel has changed as

|φ〉′
34 =

√
1 − p(a|00〉34 + b|11〉34) +

√
p(a|01〉34 + b|10〉34); (5)

and the composite system has changed as

|Φ〉′
1234 =|ϕ〉12 ⊗ |φ〉′

34

=
1√
2

√
1 − p[|φ+〉23(ax|00〉14 + by|11〉14) + |φ−〉23(ax|00〉14 − by|11〉14)

+|ψ+〉23(bx|01〉14 + ay|10〉14) + |ψ−〉23(bx|01〉14 − ay|10〉14)]
+

1√
2
√

p[|φ+〉23(ax|01〉14 + by|10〉14) + |φ−〉23(ax|01〉14 − by|10〉14)

+|ψ+〉23(bx|00〉14 + ay|11〉14) + |ψ−〉23(bx|00〉14 − ay|11〉14)];

(6)

obviously, the fidelity of the composite system is F1 = (1−p)×1+p×0 = 1−p.
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3.2 Phase Flip

After suffering from the noise named phase flip, the density matrix of |φ〉34 is

ρout = (I ⊗ E†
1)ρin(I ⊗ E1) + (I ⊗ E†

2)ρin(I ⊗ E2)

= (1 − p)

⎛

⎜⎜⎝

a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2

⎞

⎟⎟⎠ + p

⎛

⎜⎜⎝

a2 0 0 −ab
0 0 0 0
0 0 0 0

−ab 0 0 b2

⎞

⎟⎟⎠ ;

so the quantum channel has changed as

|φ〉′
34 =

√
1 − p(a|00〉34 + b|11〉34) +

√
p(a|00〉34 − b|11〉34); (7)

and the composite system has changed as

|Φ〉′
1234 =|ϕ〉12 ⊗ |φ〉′

34

=
1√
2

√
1 − p[|φ+〉23(ax|00〉14 + by|11〉14) + |φ−〉23(ax|00〉14 − by|11〉14)

+|ψ+〉23(bx|01〉14 + ay|10〉14) + |ψ−〉23(bx|01〉14 − ay|10〉14)]
+

1√
2
√

p[|φ+〉23(ax|00〉14 − by|11〉14) + |φ−〉23(ax|00〉14 + by|11〉14)

+|ψ+〉23(−bx|01〉14 + ay|10〉14) + |ψ−〉23(−bx|01〉14 − ay|10〉14)];

(8)

obviously, the fidelity of the composite system is

F2 =(1 − p) × 1 + p × 1

4
[| (a2

x
2 − b

2
y
2
) + (a

2
x
2 − b

2
x
2
) + (−b

2
x
2
+ a

2
y
2
) + (−b

2
x
2
+ a

2
y
2
) |]

=(1 − p) × 1 +
1

2
p× | a

2 − b
2 |

=1 + (a
2 − 3

2
)p.

(9)

3.3 Depolarizing

After suffering from the noise named depolarizing, the density matrix of |φ〉34 is

ρout = (I ⊗ E
†
1)ρin(I ⊗ E1) + (I ⊗ E

†
2)ρin(I ⊗ E2) + (I ⊗ E

†
3)ρin(I ⊗ E3) + (I ⊗ E

†
4)ρin(I ⊗ E4)

= (1 − 3p

4
)

⎛
⎜⎜⎝

a2 0 0 ab

0 0 0 0

0 0 0 0

ab 0 0 b2

⎞
⎟⎟⎠+

p

4

⎛
⎜⎜⎝

0 0 0 0

0 a2 ab 0

0 ab b2 0

0 0 0 0

⎞
⎟⎟⎠+

p

4

⎛
⎜⎜⎝

0 0 0 0

0 −a2 −ab 0

0 −ab −b2 0

0 0 0 0

⎞
⎟⎟⎠+

p

4

⎛
⎜⎜⎝

a2 0 0 −ab

0 0 0 0

0 0 0 0

−ab 0 0 b2

⎞
⎟⎟⎠ ;

so the quantum channel has changed as

|φ〉′
34 =

√
1 − 3p

4
(a|00〉34 + b|11〉34) +

√
p

4
(a|01〉34 + b|10〉34)

+
√

p

4
(−ai|01〉34 − bi|10〉34) +

√
p

4
(a|00〉34 − b|11〉34);

(10)
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and the composite system has changed as

|Φ〉′
1234 =|ϕ〉12 ⊗ |φ〉′

34

=
1√
2

√
3p

4
[|φ+〉23(ax|00〉14 + by|11〉14) + |φ−〉23(ax|00〉14 − by|11〉14)

+|ψ+〉23(bx|01〉14 + ay|10〉14) + |ψ−〉23(bx|01〉14 − ay|10〉14)]

+
1√
2

√
p

4
[|φ+〉23(ax|01〉14 + by|10〉14) + |φ−〉23(ax|01〉14 − by|10〉14)

+|ψ+〉23(bx|00〉14 + ay|11〉14) + |ψ−〉23(bx|00〉14 − ay|11〉14)]

− 1√
2
i

√
p

4
[|φ+〉23(ax|01〉14 + by|10〉14) + |φ−〉23(ax|01〉14 − by|10〉14)

+|ψ+〉23(bx|00〉14 + ay|11〉14) + |ψ−〉23(bx|00〉14 − ay|11〉14)]

+
1√
2

√
p

4
[|φ+〉23(ax|00〉14 − by|11〉14) + |φ−〉23(ax|00〉14 + by|11〉14)

+|ψ+〉23(−bx|01〉14 + ay|10〉14) + |ψ−〉23(−bx|01〉14 − ay|10〉14)];

(11)

obviously, the fidelity of the composite system is

F3 =(1 − 3p

4
) × 1 +

p

4
× 0 +

p

4
× 0 +

p

8
× (a2 − b2)

=1 − 1
8
(7 − a2)p.

(12)

3.4 Amplitude Damping

After suffering from the noise named amplitude damping, the density matrix of
|φ〉34 is

ρout = (I ⊗ E†
1)ρin(I ⊗ E1) + (I ⊗ E†

2)ρin(I ⊗ E2)

=

⎛

⎜⎜⎝

a2 0 0 ab
√

1 − p
0 0 0 0
0 0 0 0

ab
√

1 − p 0 0 b2(1 − p)

⎞

⎟⎟⎠ +

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 b2p 0
0 0 0 0

⎞

⎟⎟⎠ ;

so the quantum channel has changed as

|φ〉′
34 = (a|00〉34 + b

√
1 − p|11〉34) + b

√
p|10〉34; (13)

and the composite system has changed as

|Φ〉′
1234 =|ϕ〉12 ⊗ |φ〉′

34

=
1√
2
[|φ+〉23(ax|00〉14 + by

√
1 − p|11〉14) + |φ−〉23(ax|00〉14 − by

√
1 − p|11〉14)

+|ψ+〉23(bx
√

1 − p|01〉14 + ay|10〉14) + |ψ−〉23(bx
√

1 − p|01〉14 − ay|10〉14)]

+
1√
2
[|φ+〉23(by

√
p|10〉14) + |φ−〉23(−by

√
p|10〉14)

+|ψ+〉23(bx
√

p|00〉14) + |ψ−〉23(bx
√

p|00〉14)];

(14)
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obviously, the fidelity of the composite system is

F4 =
1

4
[a

2
x
2
+ b

2
y
2
(1 − p)] + [a

2
x
2
+ b

2
y
2
(1 − p)] + [b

2
x
2
(1 − p) + a

2
y
2
] + [b

2
x
2
(1 − p) + a

2
y
2
]

=
1

2
(1 − b

2
p).

(15)

4 Analysis

In the process of quantum teleportation, the fidelity of the composite system is
F1 = 1 − p, after the channel suffering from the noise named bit flip. So, we
clearly known the fidelity F1 decreases with the increase of the noise parameters
p. If p = 0, means there is no noise, the value of fidelity is 1.
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(a) Phase flip
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(b) Depolarizing
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(c) Amplitude damping

In the process of quantum teleportation, the fidelity of the composite system
is F2 = 1 + (a2 − 3

2 )p, after the channel suffering from the noise named phase
flip. In this equation, we known 0 < b ≤ a < 1, and a2 + b2 = 1. So we get√

2
2 ≤ a < 1. According to the figure (a), suppose a is constant, the fidelity F2

decreases with the increase of the noise parameters p; suppose p is constant, the
fidelity F2 increases with the increase of a. However, if a close to 1, the entangled
state will be unstable. similarly, if p = 0, the value of fidelity is 1.

In the process of quantum teleportation, the fidelity of the composite system
is F3 = 1 − 1

8 (7 − a2)p, after the channel suffering from the noise named depo-
larizing. In this equation, we known

√
2
2 ≤ a < 1 and 0 ≤ p ≤ 1. According to

the figure (b), suppose a is constant, the fidelity F3 decreases with the increase
of the noise parameters p; suppose p is constant, the fidelity F3 increases with
the increase of a. Also a can not be close to 1, and if p = 0, the value of fidelity
is 1.

In the process of quantum teleportation, the fidelity of the composite system
is F4 = 1

2 (1 − b2p), after the channel suffering from the noise named amplitude
damping. In this equation, we known 0 < b ≤

√
2
2 and 0 < p ≤ 1. In another

case, if p = 0, the value of fidelity F4 is 1. According to the figure (c), suppose
b is constant, the fidelity F4 decreases with the increase of the noise parameters
p; suppose p is constant, the fidelity F4 decreases with the increase of b. And b
can not be close to 0.
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5 Conclusion

We have calculated the fidelity of quantum state, and analysis of the effect
of quantum noise on the quantum teleportation. It is useful for the practical
application of the quantum teleportation. Next, we will study the situations
that the quantum states suffer from the different noise at the same time.
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Abstract. This paper introduces an active control technique for sta-
bilization of fractional-order nonlinear non-autonomous systems. The
main characteristic of the proposed control technique is the fast con-
vergence to the origin. The proposed control scheme is theoretically
designed based on the fractional Lyapunov stability theory. The robust-
ness against system uncertainties and the ability of control of non-
autonomous fractional-order complex systems are the other features
of proposed method. Furthermore, numerical examples are included to
highlight the applicability and usefulness of the proposed method in
suppress chaotic/hyperchaotic behaviors of fractional-order complex sys-
tems. It is worth to notice that the proposed active control approach can
be employed for control and stabilization of a vast class of uncertain
nonlinear fractional-order complex systems.

Keywords: Fractional-order system · Complex systems · Active
control · Stabilization · Lyapunov stability theorem

1 Introduction

Nowadays one of the main challenges of science is the faithful modeling of nat-
ural phenomena by the possible simplest equations. In this regard, Fractional
Calculus provides a new frame to this field. The Fractional Calculus establishes
the differentiation and integration of arbitrary orders [1,2]. Although this theory
has a long history, it has been utilized in engineering and physics during the past
three decades [3]. Moreover, it has been known that many systems in various

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
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fields such as viscoelastic materials [4], rotor-bearing system [5], energy systems
[6], thermoelectric systems [7], electromechanical systems [8], finance systems [9],
biological system [10], medicine [11], epidemiology mechanisms [12] and plasma
[13] can be efficiently described by fractional-order differential equations.

Due to the high sensitivity to the initial conditions and chaotic behaviors, the
fractional-order systems are very interesting to investigate [14]. Therefore, some
researchers have proposed various methods to stabilize these systems [15–18].
Up to now, several methods for controlling and stabilization of fractional-order
systems have been designed which includes sliding mode control [19–22], optimal
control [23], robust control [24–26], adaptive control [27–29], PID control [30,31].
However, there are few related results reported on the controllers for fractional-
order complex systems.

On the other hand, stability proving of most of mentioned methods are per-
formed by inappropriate lyapunov methods [32–34]. Despite the fact that, these
techniquees are useful in linear cases, in nonlinear cases it leads to a problem with
more dimensions and increase the capacity of calculations. Although Lyapunov
approach is interesting in the formulation of LMI conditions, has not yet received
acceptable solutions, and more particularly in the non-linear case. In addition,
stability proving of Mittag-Leffler method, which is used by many of researchers,
depends on a unsatisfactory definition of fractional order systems [35].

In this paper, the problem of designing an active control scheme for stabilizing
uncertain fractional-order complex systems is investigated. The effects of model
uncertainties and external disturbances are fully taken into account. In this
regard, we use the fractional version of the Lyapunov stability theory to intro-
duce an active controller for guaranteeing the convergence of the fractional-order
complex system’s trajectories to the equilibrium point. Moreover, the stability
of the closed-loop system is mathematically proved. In addition, fractional-order
permanent magnet synchronous motor system and fractional-order four wing
system are stabilized to show the efficacy of the designed control scheme in
industry and engineering.

The paper is presented as follows: in Sect. 2, basic preliminaries of fractional
calculus and notations are given. In Sect. 3, the general form of fractional-order
complex systems and the suggested active control scheme are presented. Two
numerical examples are simulated, in Sect. 4, to illustrate the usefullness of the
proposed control approache. Finally, concluding remarks are given in Sect. 5.

2 Basic Concepts

Some basic definition of the fractional calculus and a necessary stability theorem
are given below.

Definition 1. The Riemann-Liouville fractional integration of order α is pre-
sented by [36]

t0It = t0D
−α
t f(t) =

1
Γ (α)

∫ t

t0

f(τ)
(t − τ)1−α

dτ, (1)
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where t0 is initial time. Also Γ (.) is the Gamma function.

Definition 2. Let m − 1 < α ≤ m and m ∈ N . The Riemann-Liouville frac-
tional derivative of order α of function f(t) is defined as follows [36]

t0D
α
t f(t) =

dα

dtα
f(t) =

1
Γ (m − α)

dα

dtα

∫ t

t0

f(τ)(t − τ)m−α−1dτ. (2)

Definition 3. The αth order Caputo fractional derivative of a continuous func-
tion f(t) : R+ −→ R is defined as [36]

t0D
α
t f(t) =t0 D

−(m−α)
t

dm

dtm
f(t) =

1
Γ (m − α)

∫ t

t0

f (m)(τ)(t − τ)m−α−1dτ. (3)

It should be noted that, the initial conditions for the fractional differen-
tial equations (FDEs) with the Caputo derivative are in the same form as for
integer-order derivatives which have clear physical meaning. So, the Caputo frac-
tional derivative is more popular than the Riemann-Liouville fractional deriva-
tive, when modeling real-world phenomena with FDEs. Therefore, the Caputo
derivative is used and in the rest of this paper, the notation Dα indicates the
Caputo fractional derivative.

Definition 4. Suppose that h(t) be the impulse response of a linear system. The
diffusive representation of h(t) is called μ(ω) with relation as follows [35]

h(t) =
∫ ∞

0

μ(ω) e−ωt dω. (4)

Remark 1. The fractional order integral (1) can rewrite as [35]

t0I
α
t f(t) = h(t) ∗ f(t), (5)

where ∗ is the convolution operator and h(t) define as h(t) = tα−1

Γ (α) .
The diffusive representation of h(t) is defined as

μ(ω) =
sin(απ)

π
ω−α. (6)

Definition 5. Consider the following nonlinear FDE [35]

t0D
α
t X = f(X(t)). (7)

According to the continuous frequency distributed model of the fractional inte-
grator, the nonlinear system (7) can be written as:

{
∂z(ω,t)

∂t = −ωz(ω, t) + f(X(t)),
x(t) =

∫ ∞
0

μ(ω) z(ω, t) dω,
(8)

while μ(ω) is the same as (6).

Theorem 1. Consider w1 =
∫ ∞
0

μ(ω)ωz2(ω, t)dω and w2 = ax2. Then the
quadratic form w = w1 + w2 is positive definite if and only if a > 0 [35].
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3 The Method and Main Results

Consider the following N-dimensional non-autonomous uncertain complex
fractional-order system:

DαX = F (X, t) + Δ(X, t) + d(t) − U(t), (9)

where α ∈ (0, 1) is the order of the system and X(t) = [x1, x2, ..., xn]T ∈ Rn is
the vector of states, F (X, t) = f1(X, t), f2(X, t), ..., fn(X, t)]T is nonlinear func-
tion of X and t, ΔF (X, t) = [Δf1(X, t),Δf2(X, t), ...,Δfn(X, t)]T and d(t) =
[d1(t), d2(t), ..., dn(t)]T represent unknown model of uncertainty and external dis-
turbances of the system, respectively. And finally, U(t) = [u1(t), u2(t), ..., un(t)]T

is the control input, which is designed later.

Assumption 1: Since the trajectories of complex fractional-order systems are
always bounded, then the unknown uncertainties Δfi(X, t), i = 1, 2, ..., n and
external disturbances di(t), i = 1, 2, ..., n are assumed to be bounded. Therefore,
there exist appropriate positive constants δi and βi such that

|Δfi(X, t)| < δi, i = 1, 2, ..., n (10)

and
|di(t)| < βi, i = 1, 2, ..., n. (11)

So, as a result from (10) and (11), one has

|Δfi(X, t)| + |di(t)| < δi + βi < ρi, i = 1, 2, ..., n. (12)

Here, we propose the active control law as follows:

U(t) = λξsign(X) + F (X, t) + ρ, (13)

where ξ = q‖X‖ also λ and q are possitive constant vectors in Rn and ‖.‖ is a
standard norm and ρ = [ρ1, ρ2, ..., ρn]T .

Theorem 2. Consider the fractional-order complex system (9). If this system
is controlled by the control signal (13), then the system trajectories.

Proof. According to Definition 5 and (8), we can rewrite the Eq.(9) as
{

∂z(ω,t)
∂t = −ωz(ω, t) + f(X(t)),
x(t) =

∫ ∞
0

μ(ω) z(ω, t) dω.
(14)
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Now, we define two Lyapunov function where the first is v(ω, t) = z2(ω,t)
2 . For

v(ω, t) one can has ∂v(ω,t)
∂z(ω,t) = z(ω, t) and by using (456) we can obtain

∂v(ω, t)
∂t

=
∂v(ω, t)
∂z(ω, t)

· ∂z(ω, t)
∂t

= z(ω, t)[−ωz(ω, t) + F (X, t) + Δf(X, t) + d(t) − U(t)]
≤ z(ω, t)[−ωz(ω, t) + F (X, t) + |Δf(X, t)| + |d(t)|︸ ︷︷ ︸

<ρ

−U(t)]

< z(ω, t)[−ωz(ω, t) + F (X, t) + ρ − (λξsign(X) + ρ + F (X, t))︸ ︷︷ ︸
U(t)

]

< z(ω, t)[−ωz(ω, t) − λξsign(X)]

= −ωz2(ω, t) − λξsign(X)z(ω, t).

Therefore, we have

∂v(ω, t)
∂t

< −ωz2(ω, t) − λξsign(X)z(ω, t). (15)

Now, we introduce the main Lyapunov function as follows:

V (t) =
∫ ∞

0

μ(ω) v(ω, t) dω =
1
2

∫ ∞

0

μ(ω) z2(ω, t) dω. (16)

Obviously V (t) > 0 and according to the Lyapunove stability theorem, we
must demonstrate that dV

dt < 0. Therefore, by attention to (16), we can obtain

dV

dt
=

∫ ∞

0

μ(ω)
∂v(ω, t)

∂t
dω

≤
∫ ∞

0

μ(ω) [−ωz2(ω, t) − λξsign(X)z(ω, t)] dω

< −
∫ ∞

0

μ(ω)ωz2(ω, t) dω − λξsign(X)
∫ ∞

0

μ(ω)z(ω, t) dω

︸ ︷︷ ︸
X

< −
∫ ∞

0

μ(ω)ωz2(ω, t) dω − λ q‖X‖︸ ︷︷ ︸
ξ

‖X‖

< −(
∫ ∞

0

μ(ω)ωz2(ω, t) dω + λq‖X‖2 ).

Since the constants λ and q are positive, according to Theorem 1, we have
dV
dt < 0. And this completes the proof.

Remark 2. According to Eq. (13), the control method depends on the constant
and positive values of λi, qi and ρi, i = 1, 2, ..., n, respectively. This means that
the control law is proportional to the values of λi, qi and ρi. Hence, for qi and
larger λi and ρi, i = 1, 2, ..., n lead to appropriate control effort and vice versa.
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4 Numerical Simulations

In this section, to validate of proposed control scheme, two well-known fractional-
order complex systems are concerned. The fractional-order chaotic permanent
magnet synchronous motor system and fractional-order hyper chaotic four-wing
system are adopted here. A modification of Adams-Bashforth-Moulton algo-
rithm, which is proposed by Shahbazi Asl and Javidi in [37], is utilized to solve
FDEs. Also, the MATLAB software is applied to numerical simulations with a
step time of 0.001.
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Fig. 1. Strange attractor in FOPMSM system (17) for α = 0.97. (a) 3D view in the
x1 − x2 − x3 space. (b) Projection on the x1 − x2 plane. (c) Projection on the x2 − x3

plane. (d) Projection on the x1 − x3 plane.

4.1 Stabilization of Fractional-Order Permanent Magnet
Synchronous Motor

Fractional-order permanent magnet synchronous motor (FOPMSM) is extremely
utilized in high performance applications because of simple structure, high power
density, small size, and high efficiency [38]. Here, we verify the effectiveness of
the proposed active controller (13) in the control and stabilization of chaotic
FOPMSM.

Consider the following uncertain FOPMSM [39]

FOPMSM =

⎧
⎨

⎩

Dαx1 = −x1 + x2x3 + Δf1(X, t) + d1(t)− u1(t),
Dαx2 = −x2 − x1x3 + 50x3 + Δf2(X, t) + d2(t)− u2(t),
Dαx3 = 4(x2 − x3) + Δf3(X, t) + d3(t)− u3(t),

(17)

where the uncertainty terms of the above system are selected as

Δf1(X, t) + d1(t) = 0.2 cos(2t)x1 + 0.15 sin(5t),
Δf2(X, t) + d2(t) = 0.15 sin(3t)x2 − 0.1 cos(2t),
Δf3(X, t) + d3(t) = 0.24 cos(4t)x3 + 0.12 sin(4t).

(18)
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Fig. 2. State trajectories of the FOPMSM system (17) controlled with (13).

One can see the chaotic attractor of the uncertain FOPMSM system (17)
for α = 0.97 in Fig. 1. In order to suppress the chaotic behavior of the system
(17), we apply the suggested active control method (13). The control parameters
are selected as λ1 = 5, λ2 = 5, λ3 = 2 and q1 = 2, q2 = 3, q3 = 3, and
ρ = [0.4, 0.4, 0.45]T . Also, x1(0) = 1, x2(0) =? and x3(0) = 3 are chosen as
initial conditions.

The stabilization of the FOPMSM system is illustrated in Fig. 2. It can be
observed that the state trajectories of the uncertain FOPMSM system converge
to equilibrium point, which indicates that the fractional-order permanent mag-
net synchronous motor system is indeed stabilized. The time response of the
active control input (13) is shown in Fig. 3. Obviously, the control signal is
implementable in practice.
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Fig. 3. Time history of the control input (13) applied to the FOPMSM system (17).
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4.2 Stabilization of Fractional-Order Four-Wing Hyperchaotic
System

This example validates the appropriateness of the proposed active controller (13)
in stabilizing a fractional-order hyperchaotic system. Recently, Dadras et al. [40],
have been introduced a 4D fractional-order system with two interesting property.
First, this system can lead to a four-wing hyperchaotic behavior. The second one,
this system has only one equilibrium point at the origin, while we know that
four-wing hyperchaotic systems have usually four or more unstable equilibrium
point.

Consider the following uncertain Fractional-order Four-Wing hyperchaotic
system [40]

FO Four − Wing =

⎧
⎪⎪⎨

⎪⎪⎩

Dαx1 = 8x1 + x2x3 + x4 + Δf1(X, t) + d1(t)− u1(t),
Dαx2 = −40x2 + x1x3 + Δf2(X, t) + d2(t)− u2(t),
Dαx3 = x1x2 − 49x3 + x1x4 + Δf3(X, t) + d3(t)− u3(t),
Dαx4 = −x2 + Δf4(X, t) + d4(t)− u4(t),

(19)

where the following uncertainties and external noises are adopted.

Δf1(X, t) + d1(t) = 0.2 sin(5t)x4 + 0.25 cos(3t),
Δf2(X, t) + d2(t) = 0.3 cos(3t)x1x3 − 0.15 cos(t),
Δf3(X, t) + d3(t) = 0.25 sin(4t)x3 + 0.2 sin(3t),
Δf4(X, t) + d4(t) = 0.25 sin(t)x4 + 0.15 cos(4t).

(20)
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Fig. 4. Hyperchaotic behaviour of FOfour-wing system (19) for α = 0.98. (a) Strange
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Fig. 5. State trajectories of the FO Four-Wing hyperchaotic system (19), controlled
with (13).

The hyperchaotic behavior of the fractional-order Four-Wing hyperchaotic
system (19) is shown in Fig. 4, where x1(0) = 1, x2(0) =?, x3(0) = 3, x4(0) = 2
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Fig. 6. Time history of the control input (13) applied to the FO Four-Wing hyper-
chaotic system (19).
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and α = 0.98 are selected as initial values and fractional order of the system,
respectively. Based on the introduced control method (13), we set λ1 = 1.3,
λ2 = 2, λ3 = 1.3, λ4 = 1.3 and q1 = 3, q2 = 3, q3 = 3, q4 = 3 and ρ =
[0.45, 0.45, 0.45, 0.45]T to suppress the chaos of the fractional-order Four-Wing
hyperchaotic system (19). Figures 5 and 6 show the state trajectories of the
system (19) and the time history of the active control input (13), respectively.
It can be seen that the state trajectories converge to equilibrium point and
the control signal is feasible in practice. This means that the proposed fractional
active controller can effectively stabilize the FO Four-Wing hyperchaotic system.

5 Conclusions

In this paper, the problem of control and stabilization of uncertain fractional-
order complex systems is studied. An efficient active controller is presented, on
the basis of fractional version of Lyapunov stability theory. Also, the stability of
the suggested approach is mathematically proved. Numerical examples demon-
strate that the proposed control technique can stabilize uncertain fractional-
order chaotic/hyperchaotic systems, especially when the whole dynamics of the
system is disturbed by unknown uncertainties and external disturbances. It is
worth to notice that the introduced active control method can be applied to
control a large class of uncertain nonlinear fractional-order dynamical systems.

Acknowledgements. The authors would like to gratefully acknowledge Dr. Forough
Faramarzpour for improving the language of the paper.
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Abstract. Uncertainty measures are important. In neighborhood sys-
tems, neighborhood accuracy, neighborhood roughness and neighborhood
approximation accuracy can be used for evaluating uncertainty. However,
they can not provide enough information in some situations. The paper
depends on knowledge granulation to propose three uncertainty measures.
Firstly, in neighborhood systems, neighborhood accuracy, neighborhood
roughness and neighborhood approximation accuracy based on knowledge
granulation are defined; Secondly, some important properties of the three
new measures are studied, such as granulation monotonicity; Finally, two
examples are designed to make illustration and comparison, and the three
new measures achieve better performance. Neighborhood accuracy, neigh-
borhood roughness and neighborhood approximation accuracy based on
knowledge granulation are reasonable and effective.

Keywords: Neighborhood systems · Uncertainty measures · Knowledge
granulation · Neighborhood accuracy · Neighborhood roughness · Neigh-
borhood approximation accuracy

1 Introduction

Rough set theory introduced by Pawlak [1] can deal well with imprecise, vague
and uncertain information, and it has been successfully applied in many research
fields, such as machine learning, pattern recognition, knowledge discovery and
data analysis [2,3].

In rough set theory, uncertainty measures are important. Uncertainty mea-
sures can provide us with principled methodologies to analyze uncertain data,
so we can unveil the substantive characteristics of the data sets. Accuracy,
roughness and approximation accuracy were proposed by Pawlak [4], and they
are main tools to deal with uncertainty measures issues in rough set theory.
Many authors have studied uncertainty measures of date sets from several view-
points [6–8]. Closely associated with uncertainty measures, several measures on
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 16
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knowledge granulation in an information system were proposed and the relation-
ships between these measures were discussed in [5].

Traditional rough set theory is suitable for discrete data rather than continu-
ous data since only equivalence class and equivalence relation are considered. The
requirement of equivalence relation is too restrictive for many practical data sets
and applications. To overcome the defects, neighborhood spaces are more general
than equivalence spaces, so the neighborhood relation is introduced into rough
set theory [10]. In neighborhood rough set theory, uncertainty measures are sig-
nificant. In recent years, many scholars have done some studies on the uncertainty
measures in neighborhood systems [11–14]. In neighborhood systems, neighbor-
hood accuracy, neighborhood roughness and neighborhood approximation accu-
racy are proposed in [9], and they can be used for evaluating uncertainty to
a certain degree. However, they do not provide enough information in some
situations.

In this paper, the three existing measures (i.e., neighborhood accuracy, neigh-
borhood roughness and neighborhood approximation accuracy) are modified in
neighborhood systems. Concretely, knowledge granulation is introduced to pro-
pose three new measures: neighborhood accuracy, neighborhood roughness and
neighborhood approximation accuracy based on knowledge granulation. More-
over, some significant propositions of the three new measures are studied, such
as granulation monotonicity. In the end, two examples are designed to illustrate
and compare them, and the results show that three new measures can achieve
better performance. Neighborhood accuracy, neighborhood roughness and neigh-
borhood approximation accuracy based on knowledge granulation are actually
reasonable and effective.

2 Neighborhood Rough Sets

In this section, we review some basic concepts. In [9], Chen proposed three uncer-
tainty measures for evaluating uncertainty of an information system or a decision
system in neighborhood rough set theory, and they are neighborhood accuracy
and neighborhood roughness for an information system as well as neighborhood
approximation accuracy for a decision system.

Definition 1 [15]. Let IS = (U,C, V, f, δ) be a neighborhood information sys-
tem. Herein, U is a nonempty finite set of objects called the universe; C is a
nonempty finite set of attributes; V is the union of attribute domains such that
V = ∪c∈CVc; for any c ∈ C, there exists a mapping U → Vc, where Vc is the set
of values and it is normalized between 0 and 1, δ is a neighborhood parameter
[0, 1]. More specially, DS = (U,C ∪ D,V, f, δ) is called a neighborhood decision
system, where C is a set of condition attributes, D is a decision attribute.
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Definition 2 [15]. Let x and y be two objects in N-dimensional feature space
C = {a1, a2, · · · , aN}, v(x, ai) denotes the value of sample x in the ith dimension
ai, then a general metric, named Minkowsky distance, is defined by:

dC(x, y) = (
N∑

i=1

|v(x, ai) − v(y, ai)|p) 1
p . (1)

Herein, the distance can be called Manhattan distance if p = 1; it is called
Euclidean distance if p = 2; while it is called Chebychev distance if p = ∞.

This paper mainly uses the Euclidean distance.

Definition 3 [15]. Give IS = (U,C, V, f, δ) and a distance function d : U ×
U −→ [0, 1]. For any attribute subset B ⊆ C and a neighborhood parameter
δ ∈ [0, 1], B determines a similarity relation denoted by NRδ(B) in the following
form

NRδ(B) = {(x, y) ∈ U × U |dB(x, y) ≤ δ}.

The neighborhood class nδ
B(x) of x ∈ U in the subset B is defined by:

nδ
B(x) = {y|x, y ∈ U, dB(x, y) ≤ δ}.

The dB(x, y) is a distance function, and satisfies the following four conditions:

(1) dB(x, y) ≥ 0 (Distances cannot be negative);
(2) dB(x, y) = 0, if and only if x = y;
(3) dB(x, y) = dB(y, x) (Distance is symmetric);
(4) dB(x, y) + dB(y, z) ≥ dB(x, z), which means the triangular inequality.

Obviously, the neighborhood relation is a similarity relation, which satisfies
reflexivity and symmetry. Specially, nδ

B(x) is an equivalence class and NRδ(B)
is an equivalence relation if δ = 0, and this case is applicable to categorical data.

Proposition 1 [9]. Give IS = (U,C, V, f, δ). For P,Q ⊆ C, and x ∈ U , we
have:

(1) if Q ⊆ P , then nδ
P (x) ⊆ nδ

Q(x);
(2) if 0 ≤ γ ≤ δ ≤ 1, then nγ

P (x) ⊆ nδ
P (x);

(3) nδ
P (x) =

⋂
p∈P nδ

p(x);
(4) nδ

P (x) 	= 0, and
⋃

x∈U nδ
p(x) = U .

Definition 4 [9]. Give IS = (U,C, V, f, δ). For a subset X ⊆ U , and an
attribute subset B ⊆ C, the B-lower and B-upper approximations of X are
defined, respectively, as follows:

Bδ(X) = {x ∈ U |nδ
B(x) ⊆ X},

B
δ
(X) = {x ∈ U |nδ

B(x) ∩ X 	= ∅}.
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Definition 5 [9]. Give IS = (U,C, V, f, δ). For a domain subset X ⊆ U , an
attribute subset B ⊆ C, accuracy and roughness of X with respect to B under
neighborhood system are defined, respectively, as follows:

αδ
B(X) =

|Bδ(X)|
|Bδ

(X)|
,

ρδ
B(X) = 1 − αδ

B(X).

Definition 6 [9]. Give DS = (U,C ∪ D,V, f, δ), let D = {D1,D2, · · · ,Dm} be
equivalence classes constituted by decision attribute D on the universe U , and
the condition attribute subset B ⊆ C. The approximation accuracy of D with
respect to B under neighborhood system is defined as

γδ
B(D) =

∑
Dj∈D |Bδ(Dj)|

∑
Dj∈D |Bδ

(Dj)|
. (2)

Definitions 5 and 6 proposed three uncertainty existing measures in neighbor-
hood systems, i.e., neighborhood accuracy, neighborhood roughness and neigh-
borhood approximation accuracy.

Proposition 2. Give IS = (U,C, V, f, δ), for A,B ⊆ C, X ⊆ U , if ∀xi ∈
U, nδ

A(xi) = nδ
B(xi), the following property holds:

αδ
A(X) = αδ

B(X).

Proof. If ∀xi ∈ U, nδ
A(xi) = nδ

B(xi), so Aδ(X) = Bδ(X), and A
δ
(X) = B

δ
(X),

and then αδ
A(X) = αδ

B(X).

However, the reverse of Proposition 2 is not true, which can be verified by
results of Example 4.2.

Definition 7 [13]. Give DS = (U,C ∪ D,V, f, δ). An attribute subset B ⊆ C,
xi ∈ U , nδ

B(xi) is a neighborhood class. The knowledge granulation of DS with
respect to B is defined as

GKδ(B) =
1

|U |2
|U |∑

i=1

|nδ
B(xi)|. (3)

Definition 7 proposed the definition of knowledge granulation, which is the
basis of three new uncertainty existing measures in neighborhood systems.

3 Three Uncertainty Measures in Neighborhood Systems

In this section, we introduce knowledge granulation and propose three new mea-
sures. Our basic method is to modify the three existing measures of neighborhood
accuracy, neighborhood roughness and neighborhood approximation accuracy.
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Definition 8. Give IS = (U,C, V, f, δ). For X ⊆ U , B ⊆ C, the neighborhood
accuracy and neighborhood roughness based on knowledge granulation of X with
respect to B are defined, respectively, as follows:

αacδ
B(X) = 1 − (1 − αδ

B(X))GKδ(B), (4)

ρroδ
B(X) = 1 − αacδ

B(X) = ρδ
B(X)GKδ(B). (5)

Definition 9. Give DS = (U,C ∪ D,V, f, δ), let D = {D1,D2, · · · ,Dm}, and
give B ⊆ C. The neighborhood approximation accuracy based on knowledge
granulation of X with respect to B is defined by:

γacδ
B(D) = 1 − (1 − γδ

B(D))GKδ(B). (6)

In the Definitions 8 and 9, we give the neighborhood accuracy, neighborhood
roughness and neighborhood approximation accuracy based on knowledge gran-
ulation. Next, we discuss some relevant propositions.

Proposition 3. Give IS = (U,C, V, f, δ), A ⊆ B ⊆ C and X ⊆ U , then

αacδ
A(X) ≤ αacδ

B(X),

ρroδ
B(X) ≤ ρroδ

A(X).

Proof. Let A ⊆ B. By Proposition 1, for ∀x ∈ U , we can know that nδ
B(x) ⊆

nδ
A(x), then |nδ

B(x)| ≤ |nδ
A(x)|. So GKδ(B) ≤ GKδ(A), and ρδ

B(X) ≤ ρδ
A(X),

and then ρroδ
B(X) = ρδ

B(X)GKδ(B) ≤ ρδ
A(X)GKδ(A) = ρroδ

A(X). It is easy to
obtain αacδ

A(X) ≤ αacδ
B(X).

According to Proposition 3, the neighborhood accuracy based on knowledge
granulation of X with respect to B increases, and neighborhood roughness based
on knowledge granulation of X with respect to B decreases, where B is finer.

Proposition 4. Give IS = (U,C, V, f, δ). B ⊆ C, 0 ≤ γ ≤ δ ≤ 1, X ⊆ U , then

αacγ
B(X) ≥ αacδ

B(X),

ρroγ
B(X) ≤ ρroδ

B(X).

Proof. By 0 ≤ γ ≤ δ ≤ 1, for any xi ∈ U , we have nγ
B(xi) ⊆

nδ
B(xi), then |nγ

B(xi)| ≤ |nδ
B(xi)|, Bγ(X) ⊇ Bδ(X), B

γ
(X) ⊆ B

δ
(X), so

|Bγ(X)| ≥ |Bδ(X)|, |Bγ
(X)| ≤ |Bδ

(X)|, and ρroγ
B(X) = ργ

B(X)GKγ(B)

= (1 − |Bγ(X)|
|Bγ

(X)| )
1

|U |2
|U |∑

i=1

|nγ
B(xi)| ≤ (1 − |Bδ(X)|

|Bδ
(X)| )

1
|U |2

|U |∑

i=1

|nδ
B(xi)| = ρroδ

B(X).

So αacγ
B(X) ≥ αacδ

B(X).
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According to Proposition 4, the neighborhood accuracy based on knowledge
granulation of X with respect to B decreases, and neighborhood roughness based
on knowledge granulation of X with respect to B increases, where δ is bigger
than γ. The results will be verified by Examples 4.1 and 4.2 in next section. Thus
Proposition 4 reflects the parameter monotonicity.

Proposition 5. Let DS = (U,C∪D,V, f, δ) be a neighborhood decision system,
and D = {D1,D2, · · · ,Dm}, B ⊆ C, 0 ≤ γ ≤ δ ≤ 1, then

γacγ
B(D) ≥ γacδ

B(D).

Proof. By 0 ≤ γ ≤ δ ≤ 1, for any xi ∈ U , Dj ∈ D, we have nγ
B(xi) ⊆

nδ
B(xi), then |nγ

B(xi)| ≤ |nδ
B(xi)|, Bγ(Dj) ⊇ Bδ(Dj), B

γ
(Dj) ⊆ B

δ
(Dj), so

∑
Dj∈D |Bγ(Dj)| ≥ ∑

Dj∈D |Bδ(Dj)|,
∑

Dj∈D |Bγ
(Dj)| ≤ ∑

Dj∈D |Bδ
(Dj)|,

and so γδ
B(D) ≤ γγ

B(D), GKδ(B) ≥ GKγ(B). Then γacγ
B(D) ≥ γacδ

B(D).

According to Proposition 5, the neighborhood approximation accuracy based
on knowledge granulation of D with respect to B increases, when δ becomes
smaller. The results are verified by Examples 4.1 and 4.2.

Proposition 6. Give IS = (U,C, V, f, δ). A,B ⊆ C, if ∀xi ∈ U, nδ
A(xi) =

nδ
B(xi), then

αacδ
A(X) = αacδ

B(X).

Proposition 7. Give DS = (U,C ∪ D,V, f, δ). Let D = {D1,D2, · · · ,Dm},
A,B ⊆ C, if ∀xi ∈ U, nδ

A(xi) = nδ
B(xi), then

γacδ
A(D) = γacδ

B(D).

Propositions 6 and 7 are similar to proof of Proposition 2.

Proposition 8 (Minimum, Maximum). Give IS = (U,C, V, f, δ). B ⊆ C,
X ⊆ U .

(1) The minimum neighborhood accuracy based on knowledge granulation of X
with respect to B is zero (αacδ

B(X) = 0), if and only if ∀x ∈ U , nδ
B(x) = U ;

(2) The maximum neighborhood accuracy based on knowledge granulation of X
with respect to B is one (αacδ

B(X) = 1), if and only if ∀x ∈ U , nδ
B(x) = {x}.

Obviously, let IS = (U,C, V, f, δ). 0 ≤ αacδ
B(X) ≤ 1 for any subset B of C.

Proposition 9 (Minimum, Maximum). Give DS = (U,C ∪ D,V, f, δ). Let
D = {D1,D2, · · · ,Dm}, B ⊆ C.

(1) The minimum neighborhood approximation accuracy based on knowledge
granulation of D with respect to B is zero (γacδ

B(D) = 0), if and only if
∀x ∈ U , nδ

B(x) = U ;
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(2) The maximum neighborhood approximation accuracy based on knowledge
granulation of D with respect to B is one (γacδ

B(D) = 1), if and only if
∑

Dj∈D |Bδ(Dj)| =
∑

Dj∈D |Bδ
Dj |.

Obviously, let DS = (U,C ∪ D,V, f, δ). 0 ≤ γacδ
B(D) ≤ 1 for any subset

B of C.

4 Two Illustrative Examples

Now, we give two examples to calculate neighborhood accuracy, neighborhood
roughness and neighborhood approximation accuracy based on knowledge gran-
ulation, and analyze monotonicity of the three uncertainty measures.

Table 1. A neighborhood decision system

U c1 c2 c3 D

x1 0.8 1 0.8 Y

x2 0.6 1 0.7 Y

x3 1 0.8 1 Y

x4 0.3 0.7 0 N

x5 1 0 0.3 Y

x6 0.2 0.3 0.6 N

x7 0 0.4 0.2 N

Example 4.1. Suppose a neighborhood decision system DS = (U,C ∪ D,V, f, δ)
shown in Table 1, where U = {x1, x2, · · · , x7}, C = {c1, c2, c3}, D = {D1,D2} =
{{x1, x2, x3, x5}, {x4, x6, x7}}. It has three real-valued condition attributes and
a single categorical decision attribute. In the table, all the value of condition
attributes are normalized between 0 and 1, and let δ = 0.4.

Suppose A = {c1}, B = {c1, c2}, X = {x4, x6, x7}. The neighborhood lower
approximation and upper approximation of X with respect to the condition
attribute sets A,B are generated as follows:

A0.4(X) = {x7}, A
0.4

(X) = {x2, x4, x6, x7},
B0.4(X) = {x6, x7}, B

0.4
(X) = {x2, x4, x6, x7}.

The neighborhood accuracy and neighborhood roughness of X with respect
to A,B are computed respectively:

α0.4
A (X) = |B0.4(X)|

|B0.4
(X)| = 1

4 , ρ0.4
A (X) = 1 − α0.4

A (X) = 3
4 ,

α0.4
B (X) = |B0.4(X)|

|B0.4
(X)| = 1

2 , ρ0.4
B (X) = 1 − α0.4

B (X) = 1
2 .



150 Y. Zhou et al.

The neighborhood lower approximation and upper approximation of D with
respect to A,B are generated as follows:

A0.4(D) = A0.4(D1) ∪ A0.4(D2) = {x1, x3, x5} ∪ {x7},
A

0.4
(D) = A

0.4
(D1) ∪ A

0.4
(D2) = {x1, x2, x3, x4, x5, x6} ∪ {x2, x4, x6, x7},

B0.4(D) = A0.4(D1) ∪ A0.4(D2) = {x1, x3, x5} ∪ {x6, x7},
B

0.4
(D) = B

0.4
(D1) ∪ B

0.4
(D2) = {x1, x2, x3, x4, x5} ∪ {x2, x4, x6, x7}.

Thus, we can obtain
γδ

A(D) = |A0.4(D1)|+|A0.4(D2)|
|A0.4

(D1)|+|A0.4
(D2)|

= 2
5 ,

γδ
B(D) = |B0.4(D1)|+|B0.4(D2)|

|B0.4
(D1)|+|B0.4

(D2)|
= 5

9 .
Obviously, if A ⊆ B, we have the following results:
αδ

A(X) ≤ αδ
B(X), ρδ

B(X) ≤ ρδ
A(X), γδ

A(D) ≤ γδ
B(D).

When B becoming finer, we can know that neighborhood accuracy and neigh-
borhood approximation accuracy X with respect to B increase, while the neigh-
borhood roughness of X with respect to B decreases.

GK0.4(A) = 29
49 , GK0.4(B) = 3

7 ,
αac0.4

A (X) = 0.5561, αac0.4
B (X) = 0.7857,

ρro0.4
A (X) = 0.4439, ρro0.4

B (X) = 0.2143,
γac0.4

A (D) = 0.6449, γac0.4
B (D) = 0.8095.

Obviously, if A ⊆ B, we have the following results from the example:
αacδ

A(X) ≤ αacδ
B(X), ρroδ

B(X) ≤ ρroδ
A(X), γacδ

A(D) ≤ γacδ
B(D).

From Example 4.1, when B becomes finer, we can know that neighborhood
accuracy and neighborhood approximation accuracy based on knowledge gran-
ulation X with respect to B increase, while the neighborhood roughness based
on knowledge granulation of X with respect to B decreases.

In generally, three existing uncertainty measures and three new uncertainty
measures have same monotonicity. However, in some situations, neighborhood
accuracy, neighborhood roughness and neighborhood approximation accuracy,
all can not provide enough information. The limitations are revealed by the
following example.

Example 4.2 (continue Example 4.1). Let δ = 0.3.
Suppose A = {c1}, B = {c1, c2}, X = {x4, x6, x7}.
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The neighborhood classes of objects with respect to A,B are generated as
follows:

n0.3
A (x1) = {x1, x2, x3, x5}, n0.3

A (x2) = {x1, x2, x4},

n0.3
A (x3) = n0.3

A (x5) = {x1, x3, x5} n0.3
A (x4) = {x2, x4, x6, x7},

n0.3
A (x6) = n0.3

A (x7) = {x4, x6, x7},

n0.3
B (x1) = {x1, x2, x3} n0.3

B (x2) = {x1, x2, x4},

n0.3
B (x3) = {x1, x3}, n0.3

B (x4) = {x2, x4, x7},

n0.3
B (x5) = {x5}, n0.3

B (x6) = {x6, x7},

n0.3
B (x7) = {x4, x6, x7}.

The neighborhood lower approximation and upper approximation of X with
respect to A,B are generated as follows:

A0.3(X) = {x6, x7}, A
0.3

(X) = {x2, x4, x6, x7},
B0.3(X) = {x6, x7}, B

0.3
(X) = {x2, x4, x6, x7}.

The neighborhood accuracy and neighborhood roughness of X with respect
to A,B are computed respectively:

α0.3
A (X) = α0.3

B (X) = 1
2 , ρ0.3

A (X) = ρ0.3
B (X) = 1

2 .

The neighborhood lower approximation and upper approximation of D with
respect to A,B are generated as follows:

A0.3(D) = A0.3(D1) ∪ A0.3(D2) = {x1, x3, x5} ∪ {x6, x7},
A

0.3
(D) = A

0.3
(D1) ∪ A

0.3
(D2) = {x1, x2, x3, x4, x5} ∪ {x2, x4, x6, x7},

B0.3(D) = B0.3(D1) ∪ B0.3(D2) = {x1, x3, x5} ∪ {x6, x7},
B

0.3
(D) = B

0.3
(D1) ∪ B

0.3
(D2) = {x1, x2, x3, x4, x5} ∪ {x2, x4, x6, x7}.

The neighborhood approximation accuracy of D with respect to A,B are
computed respectively:

γ0.3
A (D) = |A0.3(D1)|+|A0.3(D2)|

|A0.3
(D1)|+|A0.3

(D2)|
= 5

9 , γ0.3
B (D) = |B0.3(D1)|+|B0.3(D2)|

|B0.3
(D1)|+|B0.3

(D2)|
= 5

9 .

The neighborhood accuracy and roughness based on knowledge granulation of
X with respect to B, neighborhood approximation accuracy based on knowledge
granulation of D with respect to B, respectively, are computed as follows:

GK0.3(A) = 23
49 , GK0.3(B) = 17

49 ,
αac0.3

A (X) = 0.7653, αac0.3
B (X) = 0.8265,

ρro0.3
A (X) = 0.2347, ρro0.3

B (X) = 0.1735,
γac0.3

A (D) = 0.7914, γac0.3
B (D) = 0.8458.
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In Example 4.2, by comparing, neighborhood accuracy, neighborhood rough-
ness and neighborhood approximation accuracy based on knowledge granulation
can be more well used for evaluating uncertainty in neighborhood systems, so
they can more precisely describe the monotonicity. The results show that neigh-
borhood accuracy, neighborhood roughness and neighborhood approximation
accuracy based on knowledge granulation are more reasonable and effective.

5 Conclusion

In this paper, on the basis of neighborhood accuracy, neighborhood roughness
and neighborhood approximation accuracy, we introduce knowledge granulation
and propose three new measures: neighborhood accuracy, neighborhood rough-
ness and neighborhood approximation accuracy based on knowledge granulation.
They can be used more well for evaluating uncertainty in neighborhood systems.
Moreover, we studied some important propositions of the three new measures,
such as granulation monotonicity. Finally, two illustrative examples show that
the proposed new uncertainty measures can be used more precision for evalu-
ating uncertainty in neighborhood systems. By illustrating comparing the clas-
sification accuracy of three new measures, the results show that neighborhood
accuracy, neighborhood roughness and neighborhood approximation accuracy
based on knowledge granulation can achieve better performance. In summary,
the three new uncertainty measures become more reasonable and effective.
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Abstract. The importance and necessity of the data envelopment analysis as a
relevant and effective instrument in investigation of the performance of units
studied such as banks and so forth is an evident issue. One of the main issues we
encounter is envelope analysis of data with random variable values. In this
research, by explaining the general model of the data envelopment analysis
models and inspired by how to work on interval input/output, there would a
solution for random state provided. In fact, the interval the random variable
varies in is considered and using envelope analysis on interval data, we will
determine the effective unit.

Keywords: Data envelopment analysis � Stochastic programing � Stochastic
input and output � Interval data

1 Introduction

Data envelopment analysis is a decision making instrument and approach about the
organizations performance. In this structure, the efficiency and effectiveness of entities
would be studied. Throughout the world either in developed or developing countries, in
a long-term planning for the future, there have always been 3 substantial principles of
the efficiency increasing and enhancement so that they can at least reach their minimum
economic growth. As theories developed, getting together by economies and elimi-
nation of their distance caused a competition in production and world trading. In this
structure, undoubtedly, making use of different data in line with best selecting the
entities for investment is a necessary issue. In this regard, lack of how to select the best
companies would be eliminated by data envelopment analysis. Hence, the data
envelopment analysis is called a mathematical model or planning provides the decision
maker with the best selection based on available data. The importance of study in this
area can be seen in different situations. For example, in a portfolio containing the risk
assets such as stocks, the chance in structure of each model planning is subjected to
issues such as calculations. In this article, we use available approaches in planning the
data envelopment analysis issues for envelope analysis modeling using random data. In
fact in this paper, we study the random data in data envelopment analysis modeling
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structure. Studies conducted on data envelopment analysis has begun since 1950 and
early 1960s. In fact, the first model of planning was announced by Farrell in 1975
whose structure was non-parametric and had one input and output. After Farrell, one
can mention the Cupper, Charles and Rhodes (1978). This research fixated the studies
in the area of data envelopment analysis. Their model was the expansion of Farrell’s
model with input/output variables. Their model is called CCR [1]. Using the definition
of efficiency (P) as:

P ¼ U � Y
V � X : ð1Þ

Where U, Y, V and X are output weight, output value, input weight and input
value, respectively, they planned the chance constraint programming in case of a
certain event occurrence [2]. This programming holds each chance in an event like k.
Land et al. extended this model to obtain the systems’ performance with the only
random output [3]. Olsen and Petersen used the Land et al.’s idea in CCR model [4].
Kwakernaak was the first to use the random concept with mixed fuzzy in data
envelopment analysis [5]. Other articles in this regard are Jing Liang et al.’s research
worked on a random environment model DEA which can measure the environmental
performance under random conditions [6]. In next chapter, the CCR model, the interval
solutions, random problem and necessary tools are investigated. Then the proposed
state is provided and the interval solution and averaging procedures are proposed.
Finally, the numerical results are analyzed.

2 The Basic Methods

In this chapter, 2 mathematical expectation and interval envelope analysis are inves-
tigated which are instruments to solve the random problems used.

2.1 Data Envelopment Analysis

The first data overage analysis model as a comprehensive one was proposed by Edward
Roders in his PhD dissertation. In this thesis, the achievement of the students of
Carnegie in USA was investigated and the CCR model was provided for the teacher’s
performance [7]:

Min h

s:t:
Xn
t¼1

ktXt � hXk t ¼ 1; . . .; n t 6¼ k;

Xn
t¼1

ktYt � Yk t ¼ 1; . . .; n t 6¼ k;

kt � 0 t ¼ 1; . . .; n:

ð2Þ
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In this structure, the efficiency value of unit k (DMUk) is obtained. After CCR

programming, the BCC model was build adding
Pn
t¼1

kt ¼ 1 to above model which is

used by Charles used in order to make the efficiency fixed relative to the scale [8].
Above problem is as follow:

MAX UTYk
s:t:

VTXk ¼ 1;

UTYt � VTXt � 0 t ¼ 1; . . .; n; t 6¼ k;

U;V � 0:

ð3Þ

2.1.1 Interval Data Envelopment Analysis
In interval data envelopment analysis method, the value of each data is in an interval
and can be variable in this interval. If each of n units available uses m input to produce
s output, then Kth unit performance is DMUK which is from fXj kjj ¼ 1; . . .; ng in order
to generate Yikji ¼ 1; . . .; sf g. Now, if input and output are interval ones and have

lower and upper bounds, then for unit k, the input j is as XL
j k; X

U
j k

h i
and output i is as

YL
i k; Y

U
i k

� �
denoted where L is lower bound and U is upper bound of interval and

XL
j k; Y

L
i k � 0 cannot be neglected. The model considered for interval state is written in 2

forms [9]. For upper bound calculation it is given as:

MAX
Xs

i¼1

UT
i Y

U
ik

s:t:
Xm
j¼1

VT
j X

L
jk ¼ 1;

Xs

i¼1

UT
i Y

U
it �

Xm
j¼1

VT
j X

L
jt ¼ 1 t ¼ 1; . . .; n; t 6¼ k;

Ui;Vj � 0 i ¼ 1; . . .;m j ¼ 1; . . .; s:

ð4Þ

And, for lower bound calculation it is given as:

MAX
Xs

i¼1

UT
i Y

L
ik

s:t:
Xm
j¼1

VT
j X

L
jk ¼ 1;

Xs

i¼1

UT
i Y

U
it �

Xm
j¼1

VT
j X

L
jt ¼ 1 t ¼ 1; . . .; n t 6¼ k;

Ui;Vj � 0 i ¼ 1; . . .;m j ¼ 1; . . .; s:

ð5Þ
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2.2 Mathematical Expectation

The set S including all possible events of an experiment is called the sample space. This
set can be finite or infinite, countable or uncountable. Suppose F is a member of subsets
of S with following features:

1. If A 2 F, then F includes the complement A Acð Þ too.
2. S 2 F,
3. [ i2IAi 2 F in which I is the index set and for i 2 I, we have Ai 2 F.

The mapping P : F ! 01½ � is called a probable value if:

1. P Sð Þ ¼ 1,

2. PðS1
i¼1

AiÞ ¼
P1
i¼1

PðAiÞ in which for each i, Ai 2 F for i 6¼ j and Ai 6¼ Aj.

The pair S; Fð Þ is called measure space and (S,F,P) is probable space.
In probable space, the mapping X : S;Fð Þ ! ðR; bÞ in which b is the set of all

open sets in real digits set and is called random variable when X�1 Bð Þ 2 F in which
B 2 b. Considering the probable space S;F;Pð Þ and random variable X, the mathe-
matical expectation, average and expected values or considered value expected from a
random variable equals sum of multiplication results in their probability which is

denoted as E X½ �. In finite discrete state, the expectancy is denoted as E½X� ¼ Pn
i¼1

vipðviÞ.
In continuous state we will have E½X� ¼ R

vdPðvÞ if f xð Þ is the distribution function of
this random variable, f xð Þ � dx ¼ dP xð Þ. Therefore, we will have E½X� ¼ R

vf ðvÞdv
[10].

In this chapter, at first the data envelopment analysis and programming like
envelope and multiple ones are investigated and then the interval model is introduced
and using the classical approach, solving methodology would be provided and finally,
the mathematical expectation is defined. All mentioned issues are solutions for pro-
graming problem solving with random data in data envelopment analysis which are
explained in next chapter.

3 Solving Data Envelopment Analysis with Stochastic Data

In previous sections, the approaches used for random programming in data envelop-
ment analysis were investigated. At first, we state the problem. Suppose in a structure
with n unit, each unit needs for producing s output ad m input. In fact the data of this
programming is as follow (Table 1):
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In above table, information of n unit of firms is available. Now, the random state is
explained. At first, the input variable Xij is considered. This variable is random and has
distribution function of fij xð Þ or in discrete state, suppose there is a natural digit w for
each Xij such that (Table 2):

Table 1. Input and output of system
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Also, there is a natural digit z for each Yij such that (Table 3):

After statement of the problem, these are solved. Now, we will explain 2 solutions
for these problems based on input/output variables. The first one is to use mathematical
expectation. In fact, we calculate the average value of these input/output random
variables and them we will solve the problem and obtain the best DMU. The discrete
state for each of Xij is given as:

Table 2. Probability of system’s input

Table 3. Probability of system’s Output
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Xij ¼
Xw
t¼1

PðXt
ijÞXt

ij ¼
Xw
t¼1

atijX
t
ij: ð6Þ

And for each Yij is given as:

Yij ¼
Xz

t¼1

P Yt
ij

� �
Yt
ij ¼

Xz

t¼1

cijt � Yt
ij: ð7Þ

In continuous state with distribution function fij xð Þ for each Xij, the random state
would be certain as follow:

Xij ¼
Z

xfij xð Þdx: ð8Þ

Also for outputs, each would be as follow with its distribution function:

Yij ¼
Z

yfijðyÞdy: ð9Þ

By this, the problem would be solves as reference model (abovementioned). In
mathematical expectation model, we consider other solutions due to large volume of
the calculations particularly in continuous form. The other approach considered for this
problem is interval approach. In this structure, we consider the minimum and maximum
possible for each input/output random variable. Then, using these value whose lower
and upper bounds are minimum and maximum random variables, respectively, we will
solve the problem by converting using the interval approach. In discrete finite state, for
each Xij the intervals are given as:

aij ¼ Min X1
ij ;X

2
ij ; X

3
ij ; . . .; X

ðw�2Þ
ij ; Xðw�1Þ

ij ; Xw
ij

n o
; ð10Þ

bij ¼ Max X1
ij ; X

2
ij ; X

3
ij ; . . .; X

ðw�2Þ
ij ; Xðw�1Þ

ij ; Xw
ij

n o
: ð11Þ

Now, we substitute Xij with aij; bij
� �

. For Yij, we will have:

a0ij ¼ Min Y1
ij ; Y

2
ij ; Y

3
ij ; . . .; Y

ðz�2Þ
ij ; Y ðz�1Þ

ij ; Yz
ij

n o
; ð12Þ

b0ij ¼ Max Y1
ij ; Y

2
ij ; Y

3
ij ; . . . ; Y

ðz�2Þ
ij ; Y ðz�1Þ

ij ; Yz
ij

n o
: ð13Þ

Here as above, Yij is substituted with a0ij; b
0
ij

h i
.

These intervals include all possible states and based on classical interval approach
of data envelopment analysis, the efficiency obtained will be for all points. Theo other
significant case is the random processes; i.e. each input/output follows a random
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variable. In this case, using the approaches related to each, the maximum and minimum
would be obtained and the interval considered is determined. An approach for esti-
mation of maximum and minimum proposed I that using historical data related to those
processes (such as past prices of stocks which follows a particular process) and dis-
cretization of time, at first the interval considered is determined until the end and
finding the maximum and minimum in each section of time and averaging them and the
problem is solved. It is necessary to note that this is a proposed approach and one can
use other approached to make intervals based on the nature and structure of process.
Now, the tables (reference) include the intervals instead of random variables and using
the model (reference) DMUs considered are obtained and the units are analyzed. In
following, the numerical results are presented.

3.1 Numerical Result

Here, we defied several random paths (Brownian motion multiple-process absolute
value) as input and output of each unit and then, based on above approach, we
investigate the efficiency of each unit (Table 4).

After solving the obtained models, the efficiency interval ½EL
k ;E

U
k � is obtained.

Based on this, there is no unit being efficient for all values available in interval. As
well, units 1 and 3 would not be efficient for none of the values in these intervals.

4 Conclusion

Based on studies on random data envelopment analysis and considering the classical
approaches, we solved the data envelopment analysis problem. In this model, we had
random input and output. Then by defining the probable space and mathematical
expectation, we proposed an approach for solving the random problem by changing it
to certain one. Also, for solving these problems the interval approach was used in
which the beginning and end of the maximum and minimum intervals was considered
for variables and solved with classical interval approach. In further studies, one can
analyze the sensitivity by investigating the intervals and their effect on solution.

Table 4. Estimate of input and output with end method of last part
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Abstract. The paper describes hating practices among young people. First a
review of current literature was made and then a study in Poland was conducted.
This study was the first phase of research including young people from Poland,
India, Romania and Bulgaria. Results prove that hating activities are present
among youngsters and, although some information about dealing with them is
commonly known, there is still a large need for child and teenager’ education in
this field.

Keywords: Haters � Social media � Cyber aggression

1 Introduction

The internet and social media play a crucial role in present day young people’s lives. It
is a powerful force that affects social space and social context and influences whole
communities as well as individuals (Nowak and Krejtz 2006). Though it seems obvious
that the internet modifies industry, economy, society and almost each aspect of
everyday life (Castells 2009), this particular relationship between youngsters and
cyberspace should be talked about and studied as it may influence their personal
development, providing new opportunities as well as threats and dangers.

Exploring the internet can be perceived as a process performed by a core part of
society: people work, study, shop, entertain and socialize online. Still, there are some
differences, some of them usually related to age. Each generation (X, Y, Z, alpha)
explore and experience the meanderings of cyberspace more deeply and strongly than
older ones. In Prensky (2001) coined the terms ‘digital immigrants’ and ‘digital
natives’. According to the Prensky’s vision, the first term described people aware of the
Internet and modern technology, but born in the days before their widespread
deployment. Digital immigrants encountered the Internet at some stage of life. The
implication of this situation is the fact that - regardless of proficiency in the use of
information technology - they treat real life and cyberspace as a separate sphere.
Adapting to a new cyber ‘environment’, they remain the stranger, not treating it as their
own. Prensky describes this phenomenon with the term ‘accent’, which is to be a
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parallel to the process of learning foreign languages and to emphasize the fact that full
assimilation in the new digital environment for them is impossible. On the contrary,
digital natives are the people born in the time of the dynamic dissemination of infor-
mation technologies. For them, the Internet existed ‘forever’. For these young people
immersion in virtual reality takes the strongest form. As a result, digital natives often
treat real and virtual space as one and the same. The symbolic birth date to distinguish
immigrants and natives is 1980. People born in this period and later are digital natives,
and before that time - immigrants. This division is to emphasize how people at different
ages may perceive the Internet and its role in their everyday life, but does not refer to
proficiency in the use of this medium.

Among the main patterns of a young person’s internet usage the following can be
mentioned: immersion in cyberspace, being almost always online, creating new aspects
of their own personality in a cyber reality, transferring social life to the Internet. They
can be named digital natives, generation Y or Z or – based on their lifestyle not date of
birth – generation C, V or L (Hatalska 2008). Their experience with the internet can be
generalized and classified but for every one of them it constitutes a unique form of
participation in the online reality and creation of their own e-personality.

With the beginning of 21st century, Social Networking Services (SNSs) services
increased users’ participation in cyberspace. By allowing two-way real time commu-
nication and publishing content with ease, they changed the internet form Web 1.0
read-only model to read-write called Web 2.0. (Jabłońska 2015). As a result, every user
can publish and comment easily reaching a broad audience. The spread of SNSs has
resulted in a steep rise in socializing online. This process can be very beneficial for an
individual as it was proven to be positively correlated with physical and mental health,
happiness, self-esteem, earnings and business performance (Sabatini and Sarracino
2014). It was a huge change for online socialization; research from the beginning of
century reported major concerns about the correlation between internet usage and
distraction from social interactions in real life and the impoverishment of human
relations (Nie et al. 2002; Wellman and Hampton 2001), but after the spread of SNSs
these conclusions have started to change. Lee (2008), Steinfield et al. (2008),
Bauernschuster et al. (2010), Näsi et al. (2012) and others have proven that social
media positively influence community life and social capital.

Electronic aggression is generally defined as a form of aggressive behavior with the
use of communication technologies (Pyżalski 2009). It is the broadest meaning of
offensive behavior, going beyond cyberspace. A slightly narrower range belongs to the
term of harassment online, which already refers strictly to a particular medium and
actions taken through it in order to harm a specific person. The narrowest significance
belongs to cyber bullying that is a deliberate and repeated aggressive behavior
occurring in a particular social group, which includes both the victim and the assailant
(Pyżalski 2009). Hate speech and verbal aggression, which is the main subject of this
study, may be perceived as a form of cyber bullying.

Hate speech is a form of verbal aggression. It goes far beyond constructive criticism
of expression, content, person, group or social phenomenon. Unsupported by logical
argumentation, it is focused on the desire to hurt, damage and besmirch the dignity of a
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victim. It often takes the form of vulgar, harassing, offensive, violent, disrespectful,
disdainful, filled with hatred, jealous or envious comments. This kind of online
aggression takes the form of comments and statements that are offensive, insulting,
intimidating, threatening, harassing and incite to violence, aggression, hatred, or dis-
crimination (Erjavec and Kovačič 2012a). Some works suggest that the internet
(Cohen-Almagor 2011) and SNSs (Oksanen et al. 2014) plays a significant role in
distributing hate and in transforming speech into action as well as providing a new
environment for making hateful material more visible for a broad audience. Imaginable
consequences of this phenomenon seem to be so crucial and threatening that hate
speech is considered a major concern in today’s society (Harris et al. 2009). Erjavec
and Kovačič (2012b) express the necessity of further studies on this issue.

This paper aims to investigate hate speech among young adolescents. This cohort is
known as digital natives and they use technology at higher rates than previous gen-
erations. Fluent in internet usage, they massively explore the world of social media.
Due to the fact that a great part of their lives is concerned with cyberspace, it is more
probable that they can become victims of hate speech as well as aggressors (haters).
Since information and communication technologies are developing in particular
countries at a different pace, behaviours correlated with social interactions through the
internet may vary. That is why five countries have been chosen to conduct a study:
Poland, Romania, India, Hungary and Bulgaria. In its first phase, described in this
paper, data from Poland have been collected and analyzed.

The remainder of the paper is organized as follows. Section 2 briefly reviews the
related literature. Section 3 describes hater attitude and motives. The next Section is
dedicated to an explanation of methodology and construction of the study. Findings
and conclusions are given in Sects. 5 and 6, respectively.

2 Hate Speech in Current Studies

The phenomenon of hate speech has evolved into numerous definitions. It is intended
to injure, dehumanize, harass, debase, degrade, and/or victimise and refers to abusive,
insulting, offensive, hate-laden, intimidating, bias-motivated, hostile, malicious,
harassing comments. It incites to violence, threatening a person or a group of people, is
used for sharing ideology, propaganda and involves the advocacy of hatred and dis-
crimination on the basis of race, colour, ethnicity, gender, national origin, religious
beliefs, sexual orientation, physical condition, disability, political conviction or other
status (Coliver 1992; Walker 1994; Wentraub-Reiter 1998; Boyle 2001;
Cohen-Almagor 2011; Erjavec and Kovačič 2012a; Cohen-Almagor 2014). The core
factors of online hate speech are presented in Fig. 1.

With the advent of social media, hate speech has spread significantly, still there is a
significant gap in understanding the nature of hate speech on SNSs (Silva et al. 2016).
Belief that the social nature of the internet has contributed to an accumulative rise in the
number of online hate activities was expressed by i.e. Perry and Olsson (2009) and
Banks (2011).
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Several works were dedicated to legal aspects of hate speech online (Schieb and
Preuss 2016; Cohen-Almagor 2011; Harris et al. 2009; Erjavec and Kovačič 2012a;
Jabłońska 2016), proving that a growing number of countries perceive online hate
speech as a peril and discern a necessity to search for new solutions in legal
responsibility.

The motivations of aggressors using the internet were studied and described by
McDevitt et al. (2002) and Cammaerts (2009). Suler (2004) defines a disinhibition
effect that may influence people’s online behaviours, while Erjavec and Kovačič
(2012a) present a classification of haters.

Lincoln and Wilson (2005) describe three types of websites dedicated to hatred
messages: in-your-face, misleading and ambiguous. The first type uses a specific frame
of reference in posting its message, the second depicts itself as an appropriate and
legitimate source of factual information, while the third one practices a more tempered
style of messages and is more refined, sophisticated and covert in its delivery.
Cohen-Almagor (2011) suggests methods of dealing with this form of hate speech by
publishing sites’ names, highlighting their content, locations and ISPs or attempting to
curtail their activities.

Online
Hate

speech

Discrimination

Harassing
Derived from 

prejedicial 
attitudes

Focused on 
person/group

Intend to hurt 
and insult

Fig. 1. Online hate speech key factors, own elaboration.
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Admittedly, websites dedicated to hatred messages are a powerful tool of hate,
discrimination, prejudice or propaganda. Still, in Web 2.0 times, SNSs have becoming
a main arena for distributing hatred comments. Erjavec and Kovačič (2012b) distin-
guish three features of social media responsible for such a situation: anonymity, quick
publication and greater autonomy of writing. For the aims of this paper, this way of
spreading hate speech is the most important as the authors concentrate on youngsters
and this cohort of people is extremely engaged in this form of socialization. SNSs are
extremely popular among young people so they have provided new methods for
making hateful material increasingly visible to millions of young adolescents (Okansen
et al. 2014). Figure 2 presents possible ways of combating hate speech spread through
comments on SNSs.

Activities aiming at combating hate speech on SNSs should be taken especially by
adults, parents or teachers but also local online communities gathering around partic-
ular SNSs.

Schieb and Preuss (2016) mention hate speech effects on victims and society,
including: deepening prejudice and stereotypes, influencing mental health as well as the
emotional well-being of victimized groups and/or individuals and inciting violent acts
in real life. A massive part of the attacks may intend to hurt young people as they are
heavy internet users. Teimouri et al. (2014) names risks in cyberspace to which this
cohort is especially exposed: cyber-bullying, cybergrooming, hacking and download-
ing illegal content, identity theft and providing personal information, meeting online
acquaintances in the real world as well as pornography and risky sexual behaviours.
Baboo et al. (2013) emphasizes the fact that the negative effects of the online activity
might influence young people’s behavioural and social development.

3 Haters’ Motives and Emotions

Hate can be perceived as a distinct emotion or be closely linked to a variation of pride,
rage or anger (Sternberg 2005). It is a complex mental state which is still not fully
understood (Aumer-Ryan and Hatfield 2007). Incited with pride, disgrace, embar-
rassment, fear, irritation or fury, the hater wishes to humiliate, discredit, hurt, defeat
and annihilate a victim (Aumer-Ryan and Hatfield 2007).

Fighting hateful activities on social media

- Filtering, monitoring and auditing tools to provide a safer internet environment,
- Installing computer blocking programs at work and school,
- Developing standards for responsible and acceptable practices by web-hosting companies

Fig. 2. Possible ways of combating hate speech spread through comments on SNSs, own
elaboration based on (Cohen-Almagor 2011).
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According to Nietzsche, hate is born from fear. Still, there can be numerous factors
causing haters to perform their actions on the internet. The psychological background
for such actions performed by the aggressors may be joy and satisfaction from inflicting
harm, a desire to create their own image or positioning in the group, a desire to
discharge frustration, anger or resentment, which aims to improve well-being. Some-
times attackers take their actions with revenge, feeling attacked and harmed, regarding
themselves as victims.

Hate speech may be derived from comparing and aggressors tend to abuse com-
parisons. They can be indeed useful or even motivating when the process is impartial
and aims at improving someone’s performance by endeavouring to resemble a person
perceived as a perfect example. Comparing in this situation may be positive and even
support personal development (Wawrzyniak 2015). Though, if used as a tool of dis-
grace and embarrassment, comparisons may become a prelude of hate speech.

The internet itself releases some aspects of e-personality that can cause hate speech.
The lack of the physical presence of a victim and witnesses, hiding behind false accounts
and numerous nicknames help haters feel anonymous. In 1969, George Philip Zimbardo
conducted a study on the role of a sense of anonymity in the process of exchanging
opinions. Participants of the experiment were divided into two groups. Representatives
of one of them were dressed in robes with large hoods, preventing identification, which
encouraged them to express less popular opinions. This study involved a process called
deindividuation, the phenomenon of getting lost in the crowd, where self-consciousness
and the fear of others’ reactions are weakened (Zimbardo 1969).

The important role of anonymity in the process of interpersonal communication
through the internet was also highlighted by Hayne and Rice (1997). They distinguish
two forms of anonymity: social and technical. The first one is the inability to identify
the unit as a result of the lack of visibility of personality traits, i.e. appearance, voice,
characteristic gestures or personality, while the second one refers to the lack of
information uniquely identifying a unit (document numbers, personal data, address and
check-in, date of birth, telephone number or IP address). The impact of anonymity on
hate speech was widely described by Zimmerman and Ybarra (2012). Disinhibition
revealed in cyberspace under the often illusory sense of anonymity is an important
factor of hate speech, as it often is an incentive for the aggressor.

Among other features of cyberspace that may support aggressive behaviours the
following should be distinguished: dissociative anonymity, invisibility, asynchronicity,
solipsistic introjections, dissociative imagination and minimising authority. All these
may lead to the so-called disinhibition effect. It means that some people self-disclose or
act out more frequently or intensely online than they would in person (Suler 2004).

In Yudofsky et al. (1986) and his team found that verbal aggression is one of the
key forms of confrontational behavior. Ten years later verbal aggression was marked as
a form of electronic aggression (Thompen and Foulger 1996) and another year later,
Katz (1997) stressed that the Internet is a place of constant confrontation, misinfor-
mation and insult. In Kellner (1998) published a work in which he stated that the
Internet broadens the scope of the discussions carried out, regardless of their nature
(creative or critical). Despite its features, the internet still remains a tool. It may
intensify some aspects of e-personality changing people into haters but the majority of
society may remain resistant and communicate without a tone of hatred.
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4 Research Methodology

The first phase of the study tended toward examining Polish internet users and their
attitudes as well as experiences with online hating by collecting data in a questionnaire.
First, the authors made a literature review on haters and their victims and analyzed
common beliefs and views on online hating.

Then another questionnaire was prepared. It comprised of questions about per-
forming and witnessing online hate. The research tool was a questionnaire with a high
level of standardization. Standardization signifies that all interviewees were asked the
same questions in recurring order. The questions were predominantly closed ones, in
which the respondent had to select answers from a list of options prepared by the
investigators. In the case of open questions, the interviewee could answer without any
guidance from the authors.

Making an allowance for the method of filling in questionnaires, generally two
fundamental techniques in quantitative research may be distinguished: a questionnaire
which is filled autonomously by the respondent and interview questionnaire with
questions asked and written down by the interviewer. Due to the online nature of the
conducted study, the authors decided to implement the first one, CAWI – Computer
Assisted Web Interviewing, and published the poll online.

5 Results

In the study 100 Polish respondents participated, 54 female and 46 male. They were
interviewed about their attitudes and practices on online hating. The average respon-
dent’s vita may be characterised by age, education level and place of residence. The
study’s results present the following average interviewee profile, based on the most
common answers: a young person in his or her early twenties with secondary education
or bachelor’s degree, living in a city with more than 500,000 inhabitants. Detailed
demographic statistics are presented in Table 1.

When asked about witnessing online hating behaviours, 84% of interviewees
declared having observed such practices in cyberspace. The three most popular online
environments where such behaviours occur are: Facebook, YouTube and online games
(Table 2).

Among the most encountered activities of online aggressors, harassing a particular
person or a group and criticizing events may be included as presented on Fig. 3. 80%
of respondents claim that the most experienced form of hating is anonymous, without
the aggressor’s identity being revealed.

While analyzing attitudes and reactions on the witnessed hating, the most frequent
feedback was to ignore a hater (41,77% of answers), respond politely (20,25%) and
report (16,45%). Interviewees also admitted performing some actions that may escalate
aggressive reactions, namely to jeer a hater (14,55%) and respond aggressively
(5,69%), though these behaviours were less disseminated.
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31% of respondents fall prey to haters’ attacks, while 53% believe that these
practices are common and 37% claim that hating on the internet is ubiquitous. Only 2%
perceive this form of online aggression as something marginal (Table 3). The frequent
belief among interviewees is to perceive hating as a dangerous and threatening phe-
nomenon (82%).

Table 1. Demographic statistics, own elaboration.

Place of residence Education level

Village 22 Primary education 6
City to 100,000 inhabitants 21 Vocational education 1
City from 100,001 to 500,000 inhabitants 9 Secondary education 52
City above 500,000 inhabitants 48 Bachelor’s degree 24

Master’s degree 10
Completed postgraduate studies 1

Age The academic title 7
Under 18 6
18–26 80
27–35 8 Gender
36–44 5 Female 54
Above 45 1 Male 46

Table 2. The most common places of haters’ attacks (multiple choice question), own
elaboration.

Facebook 81 Instagram 13

YouTube 66 Twitter 11
Online game 37 LinkedIn 1
Forum 33 GoldenLine 1
In comments above published content 31 Tumblr 1

18 Other 1
14

Table 3. Frequency of hating behaviours in
respondents’ opinions, own elaboration.

In your opinion internet hating is:

Ubiquitous 37
Common 53
Sporadic 9
Marginal 2
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Defining the most vulnerable groups as probable victims of hating, subjects named
first celebrities (77 answers), then politicians (58), random internet users (56), the
followers of a particular religion or ideology (55), persons engaged in internet activ-
ities, i.e. bloggers (52), children and teenagers (19) and particular social groups, i.e.
homosexuals, LGBT (10).

When interviewed about their knowledge on the legal responsibility of hating,
almost two thirds (61%) of subjects admitted that they were not aware of this concern.
Only 20 respondents tried to define actions that would decrease the number of such
aggressive attacks. Among their suggestions, the most common one was educating
young people about the consequences of hating for the attacker and victim. Among the
others the following can be mentioned: improving skills to ignore such practices,
comments moderation, accounts validations and blocking aggressive users, financial
penalties or even imprisonment in extreme cases.

After determining respondents’ attitudes towards hating, they were asked about
performing such activities and 18% claimed to be a hater. Among the motivations
underlying their online aggressive behaviours, the following were listed: indignation
about a particular comment or situation, aversion to a person or group, jealousy and bad
mood. After performing hating attacks, investigated haters felt satisfaction (4 persons),
relief (3) or even joy (1). Seven subjects declared frustration and no one fear. The most
common frequency of hating practices was occasionally, only two interviews claimed
they present such behaviours every day. Four haters feel better after publishing
aggressive comments, but the rest of the subjects do not feel cheered up.
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Fig. 3. Forms of hating actions witnessed, own elaboration.
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6 Discussion and Summary

As mentioned in Sect. 2, hating is a threatening phenomenon and with the advent and
massive dissemination of social media, it is spreading widely. The described results
seem to prove this fact and also agree with the most harassed possible groups of
victims, i.e. celebrities, politicians or discrimination based on race, gender, national
origin, religious beliefs, sexual orientation, physical condition and disability. Also
youngsters are more vulnerable to haters’ attacks as they spend massive amounts of
time online.

The authors of the paper also agree with the most common motivations for haters.
Anger, aversion, discrimination or jealousy born from comparing are all present in both
the literature review in Sect. 3 and the study’s results. Almost one-fifth of subjects
declared themselves as haters, feeling mostly satisfaction and relief, but also frustration
after conducting an attack.

The limitation of the study is its small total number of respondents. Still, the
research is in the first stage with further data on larger sample.
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Abstract. Fuzzy relation inequalities with addition-min composition
could be used to describe thePeer-to-Peer (P2P) file sharing system. In this
paper we study some properties of a system of addition-min fuzzy relation
inequalities. The complete solution set of such system is verified to be con-
vex. Besides, it is found that the complete solution set is fully determined
by a unique maximum solution and a number of minimal ones.

Keywords: Fuzzy relation inequality · Addition-min composition · P2P
network system · Solution set · Convexity

1 Introduction

Fuzzy relation equation with max-min composition was first introduced by
E. Sanchez [1–3]. He pointed out some basic properties and practical applications
of fuzzy relation equation. Method for solving all the solutions is one of the most
important aspects in the theoretical research on fuzzy relation equation. Many
researchers has focused on such topic [4–12]. Besides, application of fuzzy relation
equations or inequalities with various kinds of composition were also investigated
[13–21]. Fuzzy relation equations or inequalities were usually applied to describe
a real-word system [22–24]. Furthermore, based on some practical considerations,
corresponding fuzzy relation programming problems were established and inves-
tigated [23–26]. In fact, optimization problem subject to fuzzy relation system
was an interesting research topic [27–35], since P.-Z. Wang [36] proposed and
studied the relevant fuzzy relation latticized linear programming.

In 2012, fuzzy relation inequality with addition-min composition was intro-
duced by J.-X. Li and S.-J. Yang [22] to describe the data transmission mech-
anism in BitTorrent-like Peer-to-Peer (P2P) file sharing system. Motivated by
this application, S.-J. Yang [25] investigated the corresponding fuzzy relation

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
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linear programming problem. In [25], the authors defined the concept of pseudo-
minimal indexes (PMI) and presented a PMI algorithm to deal with the proposed
problem. Based on the pseudo-minimal indexes, the main problem was decom-
posed into some simple linear programming problems. Recently, X.-P. Yang et al.
[26] improved the objective function presented in [25], based on some considera-
tions of the application background. They proposed the min-max programming
with addition-min fuzzy relation inequalities constraint and solved the problem
by converting it into several single subproblems [26].

Due to the important application background of the addition-min fuzzy rela-
tion inequalities, we will further study some properties of such system, including
the convexity and structure of its complete solution set. The rest of this paper is
organized as follows. Section 2 is some basic concepts and results on the addition-
min fuzzy relation system. In Sect. 3, we study the convexity of the solution set,
while in Sect. 4, structure of the solution set is presented. Simple conclusion is
given in Sect. 5.

2 Preliminaries

Let I = {1, 2, · · · ,m} and J = {1, 2, · · · , n} be two index sets and denote
X = [0, 1]n.

Definition 1 (See [22,25]). Let x1 = (x1
1, x

1
2, · · · , x1

n), x2 = (x2
1, x

2
2, · · · , x2

n) ∈
X, we define:

(i) x1 ≤ x2 if x1
j ≤ x2

j , ∀j ∈ J ;
(ii) x1 < x2 if x1 ≤ x2 and there are some j ∈ J such that x1

j < x2
j .

In what follows we denote the dual of order relation ‘<’ and ‘≤’ by the
symbol ‘>’ and ‘≥’, respectively. Obviously, the operator ‘≤’ forms a partial
order relation on X and (X,≤) becomes a lattice.

A system of addition-min FRI is formulated as
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a11 ∧ x1 + a12 ∧ x2 + · · · + a1n ∧ xn ≥ b1,

a21 ∧ x1 + a22 ∧ x2 + · · · + a2n ∧ xn ≥ b2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
am1 ∧ x1 + am2 ∧ x2 + · · · + amn ∧ xn ≥ bm.

(1)

where aij , xj ∈ [0, 1], bi > 0, (i ∈ I, j ∈ J), and the operation ‘+’ represents the
ordinary addition, aij ∧ xj = min{aij , xj}. System (1) can be written as

∑

j∈J

aij ∧ xj ≥ bi, ∀i ∈ I, (2)

or
A � xT ≥ bT (3)

where A = (aij)m×n, x = (x1, x2, · · · , xn) and b = (b1, b2, · · · , bm).
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The solution set of system (1) is denoted by

X(A, b) = {x ∈ X|A � xT ≥ bT }.

Definition 2. System (1) is said to be consistent (compatible or solvable) if
X(A, b) �= ∅. Otherwise, it is said to be inconsistent.

Theorem 1 (See [22,25]). For system (1), we have:

(i) (1) is consistent if and only if
∑

j∈J aij ≥ bi for arbitrary i ∈ I;
(ii) Let x∗ ∈ X(A, b), x ∈ X. x∗ ≤ x implies x ∈ X(A, b);
(iii) Let x′, x ∈ X and x ≤ x′. x′ /∈ X(A, b) implies x /∈ X(A, b);
(iv) Let x ∈ X(A, b). If

∑
j∈J aij = bi for some i ∈ I, then (ai1, ai2, · · · , ain)

≤ x.

Definition 3. In system (1), ˙̂x ∈ X(A, b) is called the maximum (or greatest)
solution if and only if x ≤ ˙̂x for all x ∈ X(A, b), and x̌ ∈ X(A, b) is called a
minimal solution if and only if x ≤ x̌ implies x = x̌ for any x ∈ X(A, b).

Denote ˙̂x = (1, 1, · · · , 1). It is easy to check the following Remark 1.

Remark 1. System (1) is consistent if and only if ˙̂x is its maximum solution.

Furthermore, when system (1) is consistent, its solution set is exactly deter-
mined by the unique maximum solution and a number of minimal solution(s),
i.e.,

X(A, b) =
⋃

x̌∈X̌(A,b)

{x ∈ X|x̌ ≤ x ≤ ˙̂x},

where X̌(A, b) represents the minimal solution set of system (1).

Theorem 2 (See [22,25]). Let x ∈ X(A, b) be a solution of system (1). Then
we have:

(i) x > 0;
(ii) For arbitrary i ∈ I, j ∈ J ,

xj ≥ bi −
∑

k∈J−{j}
aik ∧ xk ≥ bi −

∑

k∈J−{j}
aik;

(iii) For arbitrary i ∈ I, j ∈ J ,

aij ≥ bi −
∑

k∈J−{j}
aik ∧ xk ≥ bi −

∑

k∈J−{j}
aik.

Denote α̂ = (α̂1, α̂2, · · · , α̂n), where

α̂ij = max{0, bi −
∑

k∈J−{j}
aik},

α̂j = max{α̂ij |i ∈ I},

(4)

i ∈ I, j ∈ J .

Theorem 3 (See [25]). System (1) has the unique minimal solution if and only
if α̂ is a solution of (1), i.e. α̂ ∈ X(A, b). In particular, when (1) has the unique
minimal solution, α̂ is the unique minimal solution of system (1).
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3 Convexity of the Complete Solution Set

Let yij = aij ∧ xj , i = 1, 2, · · · ,m, j = 1, 2, · · · , n. Based on system (1), we
construct the following system of linear inequalities:

⎧
⎪⎨

⎪⎩

yi1 + yi2 + · · · + yin ≥ bi, i = 1, 2, · · · ,m,

yij ≤ aij , i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

0 ≤ yij ≤ xj ≤ 1, i = 1, 2, · · · ,m, j = 1, 2, · · · , n,

(5)

with variables x1, x2, · · · , xn, y11, y12, · · · , y1n, y21, y22, · · · , y2n, · · · , ym1,
ym2, · · · , ymn. System (5) can be written as its matrix form, i.e.,

A · z ≥ b,

where A is the coefficient matrix, b is the right-side vector, and z =
(x, y1, y2, · · · , ym), yi = (yi1, yi2, · · · , yin), i = 1, 2, · · · ,m. We denote the solu-
tion set of system (5) by

X(A, b).

It is clear that X(A, b) is a convex set when it is not empty.

Proposition 1. If z′ = (x′, y′
1, y

′
2, · · · , y′

m) is a solution of system (5), then x′

is a solution of system (1).

Proof. Suppose that z′ = (x′, y′
1, y

′
2, · · · , y′

m) is a solution of system (5). Accord-
ing to the inequalities in system (5), it is obvious that x′

j ∈ [0, 1], ∀j ∈ J . Besides
we have y′

ij ≤ aij and y′
ij ≤ x′

j , which indicate

y′
ij ≤ aij ∧ x′

j ,

∀i ∈ I, j ∈ J . And then it follows that

a′
i1 ∧ x′

1 + a′
i2 ∧ x′

2 + · · · + a′
in ∧ x′

n ≥ y′
i1 + y′

i2 + · · · + y′
in ≥ bi,

∀i ∈ I. Consequently, x′ is a solution of system (1).

Proposition 2. If x′ = (x′
1, x

′
2, · · · , x′

n) is a solution of system (1), then
z′ = (x′, y′

1, y
′
2, · · · , y′

m) is a solution of system (5), where y′
i = (ai1 ∧ x′

1, ai2 ∧
x′
2, · · · , ain ∧ x′

n), i = 1, 2, · · · ,m.

Proof. Let
y′
ij = aij ∧ x′

j , (6)

∀i ∈ I, j ∈ J . Then y′
i = (y′

i1, y
′
i, · · · , y′

in), ∀i ∈ I. Inequality (6) indicates

y′
ij ≤ aij , (7)

and
y′
ij ≤ x′

j , (8)
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∀i ∈ I, j ∈ J. Since x′ = (x′
1, x

′
2, · · · , x′

n) is a solution of system (1), we get

0 ≤ x′
j ≤ 1, ∀j ∈ J, (9)

and

y′
i1 + y′

i2 + · · · + y′
in = ai1 ∧ x′

1 + ai2 ∧ x′
2 + · · · + ain ∧ x′

n ≥ bi, ∀i ∈ I. (10)

Moreover, considering 0 ≤ aij ≤ 1 and Inequalities (8) and (9), it is easy to
check that

0 ≤ y′
ij = aij ∧ x′

j ≤ x′
j ≤ 1, ∀i ∈ I, j ∈ J. (11)

From Inequalities (7), (10) and (11), it is cleat that z′ = (x′, y′
1, y

′
2, · · · , y′

m) is a
solution of system (5).

Definition 4. Let ∅ �= C ⊆ Rn, n ∈ Z+. Then C is said to be a convex set if
and only if

λx1 + (1 − λ)x2 ∈ C

holds for any x1, x2 ∈ C and λ ∈ [0, 1].

Theorem 4. If the solution set of system (1) is nonempty, then it is a convex
set.

Proof. Obviously ∅ �= X(A, b) ⊆ Rn. Let x1 = (x1
1, x

1
2, · · · , x1

n), x2 =
(x2

1, x
2
2, · · · , x2

n) ∈ X(A, b) be two arbitrary solution of system (1). We construct
vector z1, z2 as follows:

zk = (xk, yk
1 , yk

2 , · · · , yk
m), k = 1, 2,

where

yk
i = (ai1 ∧ xk

1 , ai2 ∧ xk
2 , · · · , ain ∧ xk

n), k = 1, 2, i = 1, 2, · · · ,m.

According to Proposition 2, z1, z2 are solutions of system (5), i.e. z1, z2 ∈
X(A, b). Observe that system (5) is exactly a system of linear inequalities. It
is well known that the nonempty solution set of a system of linear inequalities
should be convex set. Hence X(A, b) is a convex set. According to Definition 4,
we have

λz1 + (1 − λ)z2 ∈ X(A, b), (12)

for any λ ∈ [0, 1]. On the other hand,

λz1 + (1 − λ)z2 = λ(x1, y1
1 , y

1
2 , · · · , y1

m) + (1 − λ)(x2, y2
1 , y

2
2 , · · · , y2

m)

= (λx1 + (1 − λ)x2, λy1
1 + (1 − λ)y2

1 , · · · , λy1
m + (1 − λ)y2

m).
(13)

According to Proposition 1, (12) and (13) imply that λx1 +(1−λ)x2 ∈ X(A, b).
By Definition 4 it follows that X(A, b) is a convex set.
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4 Structure of Complete Solution Set

It is well-known that the complete solution set of a system of max-min (or max-
product) fuzzy relation inequalities (or equations) was fully determined by a
unique maximum solution and a finite number of minimal solutions. Naturally,
one would be interested in the structure of the solution set of the addition-
min system, with comparison to that of the classical max-min or max-product
system. In this section we will shown that these tow kinds of system have the
similar structure in their solution sets.

Theorem 5. If X(A, b) �= ∅, then
X(A, b) =

⋃

x̌∈X̌(A,b)

{x ∈ X|x̌ ≤ x ≤ x̂} =
⋃

x̌∈X̌(A,b)

[x̌, x̂],

where x̂ = (1, 1, · · · , 1) is the maximum solution of (1).

Proof. According to Theorem 1, it is clear that
⋃

x̌∈X̌(A,b)

{x ∈ X|x̌ ≤ x ≤ x̂} ⊆
X(A, b). Thus we just need to prove that X(A, b) ⊆ ⋃

x̌∈X̌(A,b)

{x ∈ X|x̌ ≤ x ≤ x̂}.

For any y ∈ X(A, b), we define Xy = {x|x ≤ y, x ∈ X(A, b)}. Then y ∈ Xy �=
∅ and (Xy,≤) forms a partial order set.

Choose an arbitrary chain {y1, y2, · · · } ⊆ Xy such that y1 ≥ y2 ≥ · · · . It is
obvious that y ≥ y1 ≥ y2 ≥ · · · and y1, y2, · · · ∈ X(A, b) ⊆ X. Since X is a
closed bounded set, there exists y0 ∈ X such that lim

k→∞
yk = y0. y0 is a lower

bound of the chain {y1, y2, · · · }. Furthermore,

y0 = lim
k→∞

yk ≤ y,

and
(ai1, ai2, · · · , ain) � ykT ≥ bi, i ∈ I, k = 1, 2, · · · ,

i.e.
ai1 ∧ yk

1 + ai2 ∧ yk
2 + · · · + ain ∧ yk

n ≥ bi, i ∈ I, k = 1, 2, · · · ,

lim
k→∞

(ai1 ∧ yk
1 + ai2 ∧ yk

2 + · · · + ain ∧ yk
n) ≥ bi, i ∈ I,

ai1 ∧ lim
k→∞

yk
1 + ai2 ∧ lim

k→∞
yk
2 + · · · + ain ∧ lim

k→∞
yk
n ≥ bi, i ∈ I,

(ai1, ai2, · · · , ain) � ( lim
k→∞

yk
1 , lim

k→∞
yk
2 , · · · , lim

k→∞
yk
n)T ≥ bi, i ∈ I,

(ai1, ai2, · · · , ain) � y0T ≥ bi, i ∈ I.

Hence, y0 ∈ Xy. That is to say, any chain of (Xy,≤) has a lower bound in Xy.
By Zorn’s Lemma, there exists a minimum element y̌ ∈ Xy. We may get

y̌ ≤ y ≤ x̂ for any y ∈ X(A, b) and y̌ ∈ Xy. In order to show the conclusion,
we have to verify y̌ ∈ X̌(A, b). Firstly, y̌ ∈ Xy ⊆ X(A, b). Secondly, for any
x ∈ X(A, b), if x ≤ y̌, then x ≤ y. So we get x ∈ Xy. Since y̌ is the minimum
element in Xy and x ≤ y̌, we have x = y̌. Consequently, y̌ is a minimum solution
of (1), i.e., y̌ ∈ X̌(A, b).
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Theorem 5 indicates the solution set of system (1) is also determined by
its unique maximum solution and a number of minimal solutions. As shown in
[26], the minimal solution set of system (1) might be infinite set (see Example
1 in [26]). This is much different from that of the classical max-T fuzzy relation
system, where T is a continuous triangular norm.

5 Conclusion

Considering the application in BitTorrent-like Peer-to-Peer file sharing system,
we study some properties of a system of addition-min fuzzy relation inequalities.
As know to everyone, the complete solution set of a group of consistent fuzzy
relation equations (or inequalities) with classical max-T (including max-min and
max-product, and T represents a continuous triangular norm) composition, is
usually non-convex set. However, it is found in this paper that the solution set is
convex in a consistent system of addition-min relation inequalities. Besides, we
have shown that the structure of the solution set of addition min fuzzy relation
inequalities is similar to that of the classical max-T fuzzy relation inequalities or
equations. However, the numbers of their minimal solutions might be different.
The classical max-T fuzzy relation system should have finite number of minimal
solutions, while the addition-min one might have infinite number of minimal
solutions.
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Abstract. An geometric programming model is presented with the intu-
itionistic fuzzy coefficient, and then the model is turned into a crisp geo-
metric programming based on centain accuracy degree of intuitionistic
fuzzy sets, the duality theory is used to solve the crisp geometric pro-
gramming. And finally, two numerical examples are given to illustrate
the feasibility and effectiveness.

Keywords: Intuitionistic fuzzy sets · Geometric programming ·
Accuracy degree · The duality theory · Optimal solution

1 Introduction

Geometric programming (GP) is an important optimization type, it was founded
in 1961 [1,2]. GP has been applied in more than a dozen fields. It include com-
munication system, civil engineering, mechanical engineering, structural design
and optimization, chemical engineering, optimal control, decision making, net-
work flows, theory of inventory, balance of machinery, analog circuitry, design
theory, transportation, fiscal and monetary, management science, electrical engi-
neering, electronic engineering, environmental engineering, nuclear engineering,
technical economical analysis, and so on [3]. In 1965, L.A. Zadeh developed the
concept of fuzzy sets [4]. In 1987, Prof. Cao developed fuzzy geometric pro-
gramming (FGP), FGP is enlarge to GP, FGP has also been applied in power
system, environmental engineering, postal services, economical analysis, trans-
portation, inventory theory, engineering design, civil Engineering, etc. [5]. In
1983, Atanassov developed intuitionistic fuzzy sets [6]. The theory of intuition-
istic fuzzy sets is the generalization of the theory of fuzzy sets. It is well suited
to dealing with vagueness. Intuitionistic fuzzy sets have been used to build soft
decision making models, such as medical diagnosis [7], electronic engineering [8],

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 20
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image processing and pattern recognition [9], etc. This paper presents a geomet-
ric programming with intuitionistic fuzzy coefficient, it will expand the range of
the geometric programming under uncertain environment [10–12].

The rest of this paper is organized as follows: In Sect. 2 brief states the intu-
itionistic fuzzy sets and geometric programming. In Sect. 3, geometric program-
ming with intuitionistic fuzzy Coefficient are described and a numerical algo-
rithm is developed. In Sect. 4, we have used two numerical examples to explain
the effectiveness of the algorithm. In Sect. 5, some concluding remarks are given.

2 Intuitionistic Fuzzy Sets and Geometric Programming

Definition 2.1 [13]. Let X be a universal set. An intuitionistic fuzzy set A in
X is an triple having the following form

A = {< x, μA(x), νA(x) > |x ∈ X} (2.1)

where: μA : X → [0, 1] and νA : X → [0, 1] such that

0 ≤ μA(x) + νA(x) ≤ 1

The functions μA(x), νA(x) ∈ [0, 1] is called the degree of membership and
non-membership of the element x ∈ X to the set A ⊆ X, respectively.

For convenience of notation, we abbreviate intuitionistic fuzzy set to IFS
and represent IFS(X) as all the IFS in X.

Definition 2.2 [13]. For each intuitionistic fuzzy set A in X, we call

πA(x) = 1 − μA(x) − νA(x) (2.2)

an intuitionistic fuzzy index of x ∈ A and it is a hesitation degree of whether x
belongs to A or not.

It is very easy to see that 0 ≤ πA(x) ≤ 1, for each x ∈ X.
For every A,B ∈ IFS(X), the operations of IFS can be defined as follows:

(1) A ≤ B if and only if μA(x) ≤ μB(x) and νA(x) ≥ νB(x) for all x in X.
(2) A = B if and only if A ≤ B and A ≥ B.
(3) A ∩ B = {(x,min(μA(x), μB(x)),max(νA(x), νB(x))|x ∈ X}.
(4) A ∪ B = {(x,max(μA(x), μB(x)),min(νA(x), νB(x))|x ∈ X}.

Definition 2.3 [13]. AC = {(x, νA(x), μA(x))|x ∈ X} is called the complemen-
tary of the intuitionistic fuzzy set A.

Definition 2.4 [13]. The α = (uα, vα) is called an intuitionistic fuzzy number,
where uα ∈ [0, 1], vα ∈ [0, 1], uα + vα ≤ 1.

Definition 2.5. Let α = (uα, vα) be an intuitionistic fuzzy number, a score
function S of α can be represented as follows [14]:

S(α) = uα − vα, S(α) ∈ [−1, 1].



188 J. Yang et al.

Definition 2.6. Let α = (uα, vα) be an intuitionistic fuzzy number, an accu-
racy function H of α can be represented as follows [15]:

H(α) = uα + vα,H(α) ∈ [0, 1].

Definition 2.7. Let α = (uα, vα) and β = (uβ , vβ) be two intuitionistic fuzzy
numbers, S(α) = uα − vα and S(β) = uβ − vβ be the scores of α and β, respec-
tively, if let H(α) = uα + vα and H(β) = uβ + vβ be the accuracy degrees of
α and β, respectively, if S(α) < S(β), then α is smaller than β, denoted by
α < β. If S(α) = S(β), when H(α) = H(β), α and β have the same information,
denoted by α = β; when H(α) < H(β), α is smaller than β, denoted by α < β.

Definition 2.8 [13]. We call α = ([aα, bα], [cα, dα]) is an interval intuitionistic
fuzzy number, where [aα, bα] ⊂ [0, 1], [cα, dα] ⊂ [0, 1], bα + dα ≤ 1.

Definition 2.9. Let α = ([aα, bα], [cα, dα]) be an interval intuitionistic fuzzy
number, a score function S of α can be represented as follows [16]:

S(α) =
aα − cα + bα − dα

2
, S(α) ∈ [−1, 1].

Definition 2.10. Let α = ([aα, bα], [cα, dα]) be an interval intuitionistic fuzzy
number, an accuracy function H of α can be represented as follows [16]:

H(α) =
aα + +bα + cα + dα

2
,H(α) ∈ [0, 1].

Definition 2.11. Let α = ([aα, bα], [cα, dα]) and β = ([aβ , bβ ], [cβ , dβ ]) be

two interval intuitionistic fuzzy numbers, S(α) =
aα − cα + bα − dα

2
and

S(β) =
aβ − cβ + bβ − dβ

2
be the scores of α and β, respectively, if let H(α) =

aα + +bα + cα + dα

2
and H(β) =

aβ + +bβ + cβ + dβ

2
be the accuracy degrees

of α and β, respectively, if S(α) < S(β), then α is smaller than β, denoted by
α < β. If S(α) = S(β), when H(α) = H(β), α and β have the same informa-
tion, denoted by α = β; when H(α) < H(β), α is smaller than β, denoted by
α < β [16].

Definition 2.12 [17]. The following standard form

(GP ) min f0(x)
s. t. fi(x) ≤ 1, (1 ≤ i ≤ p)

lj(x) ≤ 1, (1 ≤ j ≤ q)
x > 0,

(2.3)

is called geometric programming (GP), where

fi(x) =
Ji∑

k=1

fik(x) =
Ji∑

k=1

cik

n∏

l=1

xγikl

l (0 ≤ i ≤ p) (2.4)
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is posynomial function of variable x.

lj(x) = cj

n∏

l=1

x
γjl

l (1 ≤ j ≤ q) (2.5)

is monomial function of variable x, and coefficient cik > 0, cj > 0, variable
x = (x1, x2, · · ·, xn)T > 0, exponent γikl (1 ≤ k ≤ Ji, 0 ≤ i ≤ p, 1 ≤ l ≤ n),
γjl (1 ≤ j ≤ q, 1 ≤ l ≤ n) is arbitrary real number.

3 Geometric Programming with Intuitionistic Fuzzy
Coefficient

In this real world most of geometric programming problems take place in a fuzzy
environment. The coefficient of objective and constraints function are difficult to
be determined accurately. The coefficient can be described through intuitionistic
fuzzy set, which can bring convenience for dealing with practical problems. The
geometric programming with intuitionistic fuzzy coefficient can be expressed as
follows:

Definition 3.1. The following standard form

(GP ) min g̃0(x)
s. t. g̃i(x) ≤ 1, (1 ≤ i ≤ p)

h̃j(x) ≤ 1, (1 ≤ j ≤ q)
x > 0,

(3.1)

is called geometric programming with intuitionistic fuzzy coefficient or intuition-
istic fuzzy Geometric programming (IFGP), where

g̃i(x) =
Ji∑

k=1

g̃ik(x) =
Ji∑

k=1

c̃ik

n∏

l=1

xγikl

l (0 ≤ i ≤ p) (3.2)

is intuitionistic fuzzy posynomial function of variable x.

h̃j(x) = c̃j

n∏

l=1

x
γjl

l (1 ≤ j ≤ q) (3.3)

is intuitionistic fuzzy monomial function of variable x, and coefficient c̃ik and c̃j

are the intuitionistic fuzzy numbers or the interval ones, variable x = (x1, x2, · · ·,
xn)T > 0, exponent γikl (1 ≤ k ≤ Ji, 0 ≤ i ≤ p, 1 ≤ l ≤ n), γjl (1 ≤ j ≤ q, 1 ≤
l ≤ n) is arbitrary real number.
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4 The Solution of Geometric Programming
with Intuitionistic Fuzzy Coefficient

Definition 4.1. The following geometric programming

(GP ) min g0(x)
s. t. gi(x) ≤ 1, (1 ≤ i ≤ p)

hj(x) ≤ 1, (1 ≤ j ≤ q)
x > 0,

(4.1)

is called crisp geometric programming of IFGP (3.1), where

gi(x) =
Ji∑

k=1

gik(x) =
Ji∑

k=1

aik

n∏

l=1

xγikl

l (0 ≤ i ≤ p) (4.2)

hj(x) = aj

n∏

l=1

x
γjl

l (1 ≤ j ≤ q) (4.3)

and coefficient aik = cikH(cik), aj = cjH(cj), variable x = (x1, x2, · · ·, xn)T > 0,
exponent γikl (1 ≤ k ≤ Ji, 0 ≤ i ≤ p, 1 ≤ l ≤ n), γjl (1 ≤ j ≤ q, 1 ≤ l ≤ n) is
arbitrary real number.

The programming (4.1) can usually be solved based on the theory of convex
programming and geometric programming [18,19].

Definition 4.2. The solution x∗ of crisp geometric programming (4.1) is called
the solution of intuitionistic fuzzy geometric programming (3.1).

In order to illustrate the relation between intuitionistic fuzzy coefficients
and the solution x∗ of intuitionistic fuzzy geometric programming (3.1), some
accuracy degrees of the solution x∗ of intuitionistic fuzzy geometric programming
(3.1) is defined as follows:

Definition 4.3. Let

H(x∗) = (
p∧

i=0

Ji∧

k=1

H(c̃ik)) ∧ (
q∧

j=1

H(c̃j)), (4.4)

the H(x∗) is called the minimal accuracy degree of the solution x∗ of intuition-
istic fuzzy geometric programming (3.1).

Definition 4.4. Let

H(x∗) = w

√√√√(
p∏

i=0

Ji∏

k=1

H(c̃ik))
q∏

j=1

H(c̃j)), (4.5)

where w =
p∑

i=0

Ji + q, the H(x∗) is called the geometric mean accuracy degree

of the solution x∗ of intuitionistic fuzzy geometric programming (3.1).
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Definition 4.5. Let

H(x∗) =
(

p∑
i=0

Ji∑
k=1

H(c̃ik)) + (
q∑

j=1

H(c̃j))

w
, (4.6)

where w =
p∑

i=0

Ji + q, the H(x∗) is called the arithmetic mean accuracy degree

of the solution x∗ of intuitionistic fuzzy geometric programming (3.1).

Definition 4.6. Let

H(x∗) = (
p∨

i=0

Ji∨

k=1

H(c̃ik)) ∨ (
q∨

j=1

H(c̃j)), (4.7)

the H(x∗) is called the maximal accuracy degree of the solution x∗ of intuition-
istic fuzzy geometric programming (3.1).

The above some accuracy degrees can depicts the solution x∗ of intuitionistic
fuzzy geometric programming (3.1) from different side.

Based on the above discussion, we are ready to present an algorithm to find
an optimal solution for intuitionistic fuzzy geometric programming (3.1).

Algorithm 4.1

Step 1 Through the fuzzy information processing technology, the coefficient
are denoted by the intuitionistic fuzzy numbers or the interval ones.
Step 2 Establish intuitionistic fuzzy geometric programming (3.1).
Step 3 Establish crisp geometric programming (4.1) based on intuitionistic
fuzzy geometric programming (3.1).
Step 4 Solving crisp geometric programming by duality theory.
Step 5 Solving the optimal solution x∗ and the optimal value g(x∗) of crisp
geometric programming (4.1).
Step 6 Utilize definition (4.4)–(4.7) to calculate the accuracy degrees of the
optimal solution x∗.

5 Numerical Example

In this section, two optimization examples of geometric programming with intu-
itionistic fuzzy coefficient are provided [19,20]. The first example is geometric
programming with intuitionistic fuzzy number coefficient. The second example is
geometric programming with interval intuitionistic fuzzy number. The optimal
solution can be obtained and the accuracy degrees of the optimal solution can
be analyzed by the Algorithm4.1.
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Example 1

min g̃0(x) = 2̃00x1x2 + 5̃
9x1x

2
3
2 x3

3 + 4̃1
45x1x

2
3
2 x3

3x4,

s.t g̃1(x) = ˜2.74 · 106x−1
1 x−1

2 x−1
3 x−1

4 ≤ 1,

g̃2(x) = 1̃ 1
9x4 + ˜67

80 · 10−6x2x3x4 ≤ 1,
x1, x2, x3, x4 > 0.

where 2̃00 = (0.6, 0.4), 5̃
9 = (0.8, 0.1), 4̃1

45 = (0.7, 0.2) ˜2.74 · 106 = (0.7, 0.3),

1̃ 1
9 = (0.5, 0.4), ˜67

80 · 10−6 = (0.6, 0.2).

The intuitionistic fuzzy geometric programming can be changed into crisp
geometric programming as follows:

min g0(x) = 200x1x2 + 0.5x1x
2
3
2 x3

3 + 0.82x1x
2
3
2 x3

3x4,
s.t g1(x) = 2.74 · 106x−1

1 x−1
2 x−1

3 x−1
4 ≤ 1,

g2(x) = x4 + 0.67 · 10−6x2x3x4 ≤ 1,
x1, x2, x3, x4 > 0.

The duality programming is as follows:

max D(δ) = (200δ01
)δ01( 0.50

δ02
)δ02( 0.82

δ03
)δ03(2.74 · 106)δ11( δ20

δ21
)δ21( 0.67·10−6δ20

δ22
)δ22 ,

s.t δ01 + δ02 + δ03 = 1,
δ01 + δ02 + δ03 − δ11 = 0,
δ01 + 2

3δ02 + 2
3δ03 − δ11 + δ22 = 0,

3δ02 + 3δ03 − δ11 + δ22 = 0,
δ03 − δ11 + δ21 + δ22 = 0,
δ01, δ02, δ03, δ11, δ20, δ21, δ22 ≥ 0.

Solving the duality programming, the optimal solutions of duality variables
can be obtained:

δ∗
01 = 0.700, δ∗

02 = 0.125, δ∗
03 = 0.175, δ∗

11 = 1.000, δ∗
20 = 0.825, δ∗

21 = 0.725, δ∗
22 = 0.100.

Further, the optimal solutions of primal variables can be obtained:

x∗
1 = 15, x∗

2 = 16960, x∗
3 = 12.200, x∗

4 = 0.80.

The optimal value g0(x∗) = 73.26.
The minimal accuracy degree of the solution x∗ is H(x∗) = 0.8.
The geometric mean accuracy degree of the solution x∗ is H(x∗) = 0.91.
The arithmetic mean accuracy degree of the solution x∗ is H(x∗) = 0.92.
The maximal accuracy degree of the solution x∗ is H(x∗) = 1.
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Example 2

min g̃0(x) = 1̃0
7 x−4

1 x−1
2 x2

4 + 6̃x2
1x

−2
2 ,

s.t g̃1(x) = 5̃
2x2x3 + 3̃0

7 x
−1
2

1 x
−3
4

2 x−1
3 + 1̃5

2 x
1
2
2 x−1

3 x
−1
2

4 ≤ 1,
x1, x2, x3, x4 > 0.

Where

1̃0
7

= ([0.6, 0.1], [0.5, 0.2]), 6̃ = ([0.4, 0.2], [0.3, 0.1]),

5̃
2

= ([0.6, 0.1], [0.7, 0.2]),
3̃0
7

= ([0.4, 0.1], [0.6, 0.3]),

1̃5
2

= ([0.5, 0.2], [0.4, 0.1]).

The intuitionistic fuzzy geometric programming can be changed into crisp
geometric programming as follows:

min g0(x) = x−4
1 x−1

2 x2
4 + 3x2

1x
−2
2 ,

s.t g1(x) = 1
3x2x3 + 3x

−1
2

1 x
−3
4

2 x−1
3 + 9

2x
1
2
2 x−1

3 x
−1
2

4 ≤ 1,
x1, x2, x3, x4 > 0.

The duality programming is as follows:

max D(δ) = ( 1
δ01

)δ01( 3
δ02

)δ02(
1
3 δ10
δ11

)δ11( 3δ10
δ12

)δ12( 9δ10
δ13

)δ13 ,

s.t δ01 + δ02 = 1,
−4δ01 + 2δ02 − 1

2δ12 = 0,
−δ01 − 2δ02 + δ11 − 3

4δ12 + 1
2δ13 = 0,

δ11 − δ12 − δ13 = 0,
2δ01 − 1

2δ13 = 0,
δ01, δ02, δ11, δ12, δ13 ≥ 0.

Where δ10 = δ11 + δ12 + δ13.
Solving the duality programming, the optimal solutions of duality variables

can be obtained:

δ∗
01 =

1
4
, δ∗

02 =
3
4
, δ∗

11 = 2, δ∗
12 = 1, δ∗

13 = 1, δ∗
10 = 4.

Further, the optimal solutions of primal variables can be obtained:

x∗
1 = 418, x∗

2 = 42.7, x∗
3 = 0.035, x∗

4 = 11184810.

The optimal value g0(x∗) = 384.
The minimal accuracy degree of the solution x∗ is H(x∗) = 0.5.
The geometric mean accuracy degree of the solution x∗ is H(x∗) = 0.65.
The arithmetic mean accuracy degree of the solution x∗ is H(x∗) = 0.66.
The maximal accuracy degree of the solution x∗ is H(x∗) = 0.8.
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6 Conclusion

In this paper, we studied the geometric programming with intuitionistic fuzzy
coefficient. We have changed intuitionistic fuzzy geometric programming into
crisp geometric programming based on centain accuracy degree, we can obtain
optimal solution by solving crisp geometric programming, the optimal solution
has been analyzed based on some accuracy degree. At last, two numerical exam-
ples is given to illustrate the proposed algorithm.
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Abstract. Geometric Programming (GP) problem is very considered
problem in many fields these days. In the literature, many studies have
been focusing on the different types of GP. Many methods were proposed
and developed during these years to find the optimal solution easier. In
this paper, we propose a method to solve one type of geometric pro-
gramming so called Monomial Geometric Programming problem respect
to Trapezoidal Fuzzy Numbers (MGPTFN). We try to keep the fuzzy
numbers in the fuzzy form during the whole solution and use negative
fuzzy numbers in the problem. We want to show that in this type of
Fuzzy Geometric Programming problem (FGP), for the problem with
negative coefficients or exponents, optimal solution and optimal value
can be computed and for multi-objective geometric programming prob-
lem or GP with polynomial objective function, this method holds. For
illustrate the method we use numerical examples.

Keywords: Fully fuzzy monomial geometric programming · Trape-
zoidal fuzzy variables · Negative fuzzy numbers

1 Introduction

Fuzzy set theory is very popular in engineering system and science management.
For the first time, Tanaka et al. proposed the fuzzy mathematical programming
problem [19]. Afterwards, Zimmermann [18] proposed the first formulation of
Fuzzy Linear Programming (FLP). Geometric programming is a type of nonlin-
ear programming problem. In fact geometric programming mainly, is extension
comprehension of linear programming applications and constitutionally classified
in many types of nonlinear sets. In the beginning, GP was applied in engineer-
ing and sciences. At first the most applications of geometric programming were
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 21
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in chemical and mechanical engineering, statistics and probability, economics,
wireless networking and etc. [4,10,24].

Nowadays fuzzy geometric programming is very important in each field, such
as engineering, statistics, economic, management. Many authors worked on it
and tried to find the best method to solve FGP’s problem and found out the
optimal value.

In this paper, a new method is proposed to find the optimal fuzzy solution
and optimal fuzzy value of fuzzy monomial geometric programming problem with
equality constraints. This method has two general parts. The first part is to convert
fuzzy monomial geometric programming to linear one, and the second step is to
solve the fuzzy linear programming without changing fuzzy number to real one in
whole solution. In some papers the method is to change the fuzzy number to real
number by using Rank on objective function or constraints [20,22], but we try to
keep it fuzzy number and we show that there is no limitation for numbers to be
negative or positive.

The rest of this paper is organized as follows: Sect. 2 review some basic defin-
itions of geometric programming and trapezoidal fuzzy number’s arithmetic. In
Sect. 3, we first introduce the monomial fuzzy geometric programming problem
and some depending theorems and then devotes to presenting a method to solve
it. In Sect. 4, we illustrate the algorithm by three different types of numerical
examples to show that there is no boundary for objective function and negative
fuzzy numbers exist in this method. The conclusions are discussed in Sect. 5.

2 Preliminaries

In this section, we review some basic and necessary definitions and notices.

Definition 1. The subset Ã in set X defined as Ã = {(μÃ(x), x)|x ∈ X}, where
μÃ(x) is a real number belong to interval [0,1]. μÃ(x) is degree of membership x

in Ã and call
μÃ : X → [0, 1],

x → μÃ(x)

a membership function in fuzzy set Ã.

Definition 2. We denote the trapezoidal fuzzy number as Ã = (a−, a+, a, a)
and show the set of all trapezoidal fuzzy numbers with F (R).

Definition 3. Fuzzy number Ã = (a−, a+, a, a) is said to be a trapezoidal fuzzy
number, if its membership function defined as follows:

μÃ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; x < a− − a, x > a+ + a,

1 − a−−x
a ; a− − a � x < a−,

1 ; a− � x � a+,

1 − x−a+

a ; a+ < x � a+ + a.



198 A. Khorsandi et al.

Definition 4 [28]. L-R fuzzy number Ã = (a−, a+, a, a)LR can be presented as
follows:

μÃ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 ; x < a− − a, x > a+ + a,

L(a−−x
a ) ; a− − a � x < a−,

1 ; a− � x � a+,

R(x−a+

a ) ; a+ < x � a+ + a,

where a− < a+ and a > 0 and a > 0 are left and right spreads, respectively.
Functions L(a−−x

a ) and R(x−a+

a ) are continuous and strictly decreasing func-
tions in closed interval [0, 1] and satisfy L(x) = R(x) = 0 for x � 1, and
L(x) = R(x) = 1 for x � 0.

Remark 1 [5]. In Definition 4 particularly when L(x) = R(x) = 1 − x, the
L-R fuzzy number Ã = (a−, a+, a, a)LR becomes a trapezoidal fuzzy number
Ã = (a−, a+, a, a).

Definition 5 [5,11,14]. Let Ã = (a−, a+, a, a) and B̃ = (b−, b+, b, b) be two
trapezoidal fuzzy numbers. The arithmetic operations properties on trapezoidal
fuzzy numbers denote as follows:

(1)Ã + B̃ = (a− + b−, a+ + b+, a + b, a + b).

From Definition 3, let L(a−−x
a ) = L( b−−y

b ) = v, (v ∈ [0, 1]), and R(x−a+

a ) =

R(y−b+

b
) = v, (v ∈ [0, 1]). So x = a− − aL−1(v) = a+ + aR−1(v) and y =

b−−bL−1(v) = b++bR−1(v). It shows that t = x+y = (a−+b−)−(a+b)L−1(v).
So it holds and the same for R−1(v), i.e., t = x+y = (a+ + b+)+(a+ b)R−1(v).
So the formula of addition can be proved. For opposite of Ã, we have

(2) − Ã = (−a+,−a−, a, a),

(3)c � 0, c ∈ R; cÃ = (ca−, ca+, ca, ca),

(4)c < 0, c ∈ R; cÃ = (ca+, ca−,−ca,−ca),

(5)Ã − B̃ = (a− − b+, a+ − b−, a + b, a + b).

For multiplication of two trapezoidal fuzzy numbers, suppose that Ã =
(a−, a+, a, a) and B̃ = (b−, b+, b, b) are positive numbers. Considering the basic
operation of this type to LR fuzzy numbers, the computation of multiplication
is similar to computation of two fuzzy numbers addition. Following formula for
Ã, B̃ holds:

t = xy = (a− − aL−1(v))(b− − bL−1(v)) = a−b− − (a−b + ab−)L−1(v) +
ab(L−1(v))2.

t = xy = (a+ + aR−1(v))(b+ + bR−1(v)) = a+b+ + (a+b + ab+)R−1(v) +
ab(R−1(v))2.

Consider to L−1(v) and R−1(v), without losing generality we can elimi-
nate terms (a−b+ab−)L−1(v) and (a+b+ab+)R−1(v) and construct trapezoidal
fuzzy number.
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The same as L−1(v), we can also compute approximate formula for the mul-
tiplication by R−1(v).

t = −xy = (−a− +aL−1(v))(b− − bL−1(v)) = −a−b− +(a−b+ab−)L−1(v)−
ab(L−1(v))2, and its similar for R−1(v).

For trapezoidal fuzzy numbers Ã < 0 and B̃ > 0, can get their formula for
multiplication similarly. For extended multiplication of these LR fuzzy numbers,
the approximate formulas obtain as follows:

(6)Ã > 0, B̃ > 0; Ã × B̃ = (a−b−, a+b+, ab, ab),

(7)Ã < 0, B̃ > 0; Ã × B̃ = (−a−b−,−a+b+,−ab,−ab).

More information can be found in [11,14,16].

3 Monomial Geometric Programming

In this section, we express Geometric Programming (GP) and the type of GP,
called Monomial Fuzzy Geometric Programming (MFGP) and then will discuss
some definitions and theorems to demonstrate the sufficient and necessary con-
dition for feasible and optimal solution in posynomial fuzzy geometric program-
ming problem, after that propose the method to solve MFGP with trapezoidal
fuzzy numbers in all constants and variables.

Definition 6 [5]. Call

min
J0∑

k=1

k0k

m∏

j=1

x
α0kj

j (1)

s.t.

Ji∑

k=1

kik

m∏

j=1

x
αikj

j � ti, (1 � i � n),

x > 0,

the posynomial geometric programming of x, where x = (x1, ..., xm)T is an m-
dimensional variable vector, kik > 0 is a coefficient real number and αikj > 0 is
an arbitrary real number.

Definition 7. We define fully fuzzy monomial geometric program as follows:

min k̃0

m∏

j=1

x̃
α̃0j
j (2)

s.t. k̃i

m∏

j=1

x̃
α̃ij

j � t̃i, (1 � i � n),

x̃ > 0̃,

where x̃ = (x̃1, ..., x̃m)T is m-dimensional fuzzy variable vector, Here xi =
(x−, x+, x, x) is a trapezoidal fuzzy number, k̃i > 0 is a coefficient fuzzy number,
t̃i > 0 is a fuzzy number and α̃ij is an arbitrary fuzzy number.
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Degree of Difficulty. In geometric programing problem, the term N − n − 1
indicate the degree of difficulty. In posynomial geometric programming problem,
N represents the number of all the terms of posynomials in geometric program-
ming i.e., N represent numbers of terms in objective function plus numbers of
the terms in constraints and n is the number of design variables.

Note. If the geometric programming problem has a zero-degree-of-difficulty,
the solution is unique. So this is the sufficient condition of feasible solution for
geometric programming problem. For more information see [25].

Theorem 1. Each fuzzy posynomial geometric programming (1) can turn into
fuzzy convex programming [7].

Proof. Let xj = ezj for 1 � j � m. Then

Ji∑

k=1

kik

m∏

j=1

x
αikj

j =
Ji∑

k=1

kike
∑m

j=1 zjαikj = Hi(z), 0 � i � n. (3)

From [2] the conclusion of the theorem holds.

Remark 2 [5]. Each fuzzy posynomial geometric programming problem (1) can
turn into a monomial fuzzy geometric programming problem.

Theorem 2. Each monomial fuzzy posynomial geometric programming (2) can
turn into a fuzzy linear programming with the optimal solution:

min lnk̃0 +
m∑

j=1

α̃0j z̃j (4)

s.t. lnk̃i +
m∑

j=1

α̃ij z̃j � lnt̃i, (1 � i � n),

z̃j > 0̃.

Proof. Apply “ln” on Eq. (2), it turns to

min lnk̃0 +
m∑

j=1

α̃0j lnx̃j (5)

s.t. lnk̃i +
m∑

j=1

α̃ij lnx̃j � lnt̃i, (1 � i � n),

z̃j > 0̃.
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Let z̃j = lnx̃j . So we obtain

min lnk̃0 +
m∑

j=1

α̃0j z̃j (6)

s.t. lnk̃i +
m∑

j=1

α̃ij z̃j � lnt̃i, (1 � i � n),

z̃j > 0̃.

From Theorem 1, Eq. (2) is a convex programming, so by [2] it has fuzzy
optimal solution.

Theorem 3. Each fuzzy posynomial geometric programming (FGP) (2) can be
turned into fuzzy linear programming (FLP) (5).

Proof. The theorem holds by Remark 2 and Theorem 2.

Definition 8 [1]. Suppose that f : Rn → R and x ∈ T be feasible solution. If
x∗ ∈ T and f(x) � f(x∗),∀x ∈ T , then we called x∗, an optimal solution.

Theorem 4 [1]. Suppose that φ �= T ∈ R
n be a open convex set and f : T → R

be differentiable on T , then f is convex iff ∀x1, x2 ∈ T , we have

(∇f(x2) − ∇f(x1))t(x2 − x1) � 0.

Definition 9. Suppose that φ �= T ∈ R
n be a convex set and f : T → R.

Function F is convex if for x, y ∈ T

f(λx + (1 − λ)y) � λf(x) + (1 − λ)f(y), 0 � λ � 1.

Theorem 5. Suppose that φ �= T ∈ R
n be a convex set and f : T → R be

convex on T . For minimize f(x) objective problem, suppose that x∗ ∈ T be a
local optimal solution, then

(1) x∗ is a global optimal solution.
(2) If x∗ is a strict local minimum or f is strictly convex, then x∗ is the uniqe

global optimal solution.

Proof. Suppose that x∗ be a local optimal solution, so there exists a ε-
neighborhood Nε(x∗) for x∗, where f(x∗) � f(x),∀x ∈ T ∩ Nε(x∗).
Use contradiction for solving. Suppose that x∗ is not a global optimal solution,
so there exists some x ∈ T , such that f(x) � f(x∗). Again, f is a convex function
on T , so for 0 � λ � 1, we have

f(λx + (1 − λ)x∗) � λf(x) + (1 − λ)f(x∗) � λf(x∗) + (1 − λ)f(x∗) = f(x∗) ∈ T ∩ Nε(x
∗).

So λx + (1 − λ)x∗ ∈ T ∩ Nε(x∗). It’s clear that f(λx + (1 − λ)x∗) � f(x∗) has
contradicts with f(x∗) � f(x),∀x ∈ T ∩ Nε(x∗).

For proving part 2 see [1].
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Corollary 1. From the theorems and definitions mentioned above, we can con-
clude that the necessary condition to have optimal solution in minimization objec-
tive problem is the objective function to be a convex function.

Remark 3. In solving Eq. (2) there is no limitation for z̃j , i.e., z̃j can be positive
or negative number, because from Theorem 1, x̃j = ez̃j , so x̃j > 0 always holds.

As considering, the monomial geometric programming change into linear pro-
gramming problem. Now we can solve it with the suitable method in type of
linear programming.

3.1 Algorithm

Here by using the definitions and theorem mentioned in Sect. 2, we would like
to explain the algorithm step by step.

(1) For the first step is to change Eq. (2) to (5) based on Theorem 2.
(2) Write the Eq. (5) as follows:

min lnk̃0 +
m∑

j=1

α̃0j × z̃j (7)

s.t. lnk̃i +
m∑

j=1

α̃ij × z̃j � lnt̃i, (1 � i � n),

z̃j > 0.

(3) Substitute all of the trapezoidal fuzzy parameters k̃i = (k−
i , k+

i , ki, ki), α̃ij =
(α−

ij , α
+
ij , αij , αij), z̃j = (z−

j , z+j , zj , zj) and t̃i = (t−i , t+i , ti, ti) in Eq. (7). We
obtain:

min ln(k−
i , k+

i , ki, ki) +
m∑

j=1

(α−
0j , α

+
0j , α0j , α0j) × (z−

j , z+j , zj , zj)

s.t. ln(k
−
i , k

+
i , ki, ki)+

m∑

j=1

(α
−
ij , α

+
ij , αij , αij) × (z

−
j , z

+
j , zj , zj) � ln(t

−
i , t

+
i , ti, ti), (1 � i � n),

z̃j > 0.

(4) Let (α−
ij , α

+
ij , αij , αij) × (z−

j , z+j , zj , zj) = (m−
ij ,m

+
ij ,mij ,mij) = m̃ij , (1 �

j � m), (0 � i � n) by using the arithmetic operation properties, defined in
preliminaries section, the fuzzy geometric programming problem in Step 3
change into the following problem:

min lnk̃i +
m∑

j=1

m̃ij
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s.t. lnk−
i +

m∑

j=1

m−
ij = lnt−i , (1 � i � n),

lnk+
i +

m∑

j=1

m+
ij = lnt+i , (1 � i � n),

lnki +
m∑

j=1

mij = lnti, (1 � i � n),

lnki +
m∑

j=1

mij = lnti, (1 � i � n),

z̃j > 0̃.

(5) Keep the parameters in one side and transfer the given fuzzy numbers to
another side. Let lnti − lnki = li for each for constraints

min lnk̃i +
m∑

j=1

m̃ij

s.t.

m∑

j=1

m−
ij = l−i , (1 � i � n),

m∑

j=1

m+
ij = l+i , (1 � i � n),

m∑

j=1

mij = li, (1 � i � n),

m∑

j=1

mij = li, (1 � i � n),

z̃j > 0̃.

(6) Now we find the solution z−
j , z+j , zj and zj easily from the equations in step5.

(7) Substitute the values of step 5 in z−
j = lnx−

j , z+j = lnx+
j , zj = lnxj and

zj = lnxj and obtain optimal solution x−
j , x+

j , xj and xj .
(8) Obtain fuzzy optimal solution by putting x−

j , x+
j , xj and xj in x̃∗

j =
(x−

j , x+
j , xj , xj), (1 � j � m).

(9) Find fuzzy optimal value by substitute fuzzy optimal solution x̃∗
j in Eq. (2).

The proposed algorithm will be explained by solving illustration examples in the
next section.
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4 Numerical Example

In this section, we illustrate the method by helping numerical example. We
solve three different type of examples. First is only for positive fuzzy numbers.
Example 1 exhibit the process of the algorithm for solving fully fuzzy monomial
geometric programming problem step-by-step. The method on how to reach
the optimal solution will be fully described with this simple example. Follow-
ing the first example, we provide Example 2 to explain when negative fuzzy
numbers appear in objective function and constraints in monomial geometric
programming problem, this method can be utilized for obtaining the optimal
solution. Finally in Example 3, we try to extend monomial geometric program-
ming to posynomial geometric programming problem. This example shows that
if the objective function become a posynomial GP function and constraints be
monomial GP function, for positive and negative fuzzy numbers we can use this
method to compute optimal solution and optimal value.

So these three example illustrate the accuracy and impact of the algorithm
and clearly explain the examples diversity.

Example 1. Solve the fully fuzzy monomial geometric programming problem
with the help of algorithm method

min x̃1̃
1x̃

2̃
2

s.t. x̃1̃
1x̃

1̃
2 = e5̃,

x̃3̃
1x̃

2̃
2 = e1̃2,

x̃1, x̃2 > 0̃,

where 1̃ = (1, 2, 1, 1), 2̃ = (2, 3, 1, 2), 3̃ = (3, 4, 2, 3), 5̃ = (5, 14, 3, 5), 1̃2 =
(12, 24, 4, 12) and 0̃ = (0, 0, 0, 0).

Solution. At change the problem by applying Theorem 2, we obtain

min 1̃ × z̃1 + 2̃ × z̃2

s.t. 1̃ × z̃1 + 1̃ × z̃2 = 5̃ × 1,

3̃ × z̃1 + 2̃ × z̃2 = 1̃2 × 1,

z̃1, z̃2 > 0̃.

Now substitute the values 1̃, 2̃, 3̃, 5̃, 1̃2 and variables z̃1 = (z−
1 , z+1 , z1, z1), z̃2 =

(z−
2 , z+2 , z2, z2) in the above equation.

min (1, 2, 1, 1) × (z−
1 , z+1 , z1, z1) + (2, 3, 1, 2) × (z−

2 , z+2 , z2, z2)

s.t. (1, 2, 1, 1) × (z−
1 , z+1 , z1, z1) + (1, 2, 1, 1) × (z−

2 , z+2 , z2, z2) = (5, 14, 3, 5),

(3, 4, 2, 3) × (z−
1 , z+1 , z1, z1) + (2, 3, 1, 2) × (z−

2 , z+2 , z2, z2) = (12, 24, 4, 12),

z̃1, z̃2 > 0̃.
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By using the arithmetic properties of trapezoidal fuzzy numbers, obtain

min (z−
1 , 2z+1 , z1, z1) + (2z−

2 , 3z+2 , z2, 2z2)

s.t. (z−
1 , 2z+1 , z1, z1) + (z−

2 , 2z+2 , z2, z2) = (5, 14, 3, 5),

(3z−
1 , 4z+1 , 2z1, 3z1) + (2z−

2 , 3z+2 , z2, 2z2) = (12, 24, 4, 12),

z̃1, z̃2 > 0̃.

The above fuzzy linear programming problem change into the equations in
Step 4 as follows:

min (z−
1 + 2z−

2 , 2z+1 + 3z+2 , z1 + z2, z1 + 2z2)

s.t. z−
1 + z−

2 = 5,

2z+1 + 2z+2 = 14,

z1 + z2 = 3,

z1 + z2 = 5,

3z−
1 + 2z−

2 = 12,

4z+1 + 3z+2 = 24,

2z1 + z2 = 4,

3z1 + 2z2 = 12,

z̃1, z̃2 > 0̃.

By solving equations, we obtain z−
1 = 2, z+1 = 3, z1 = 1, z1 = 2 and z−

2 = 3, z+2 =
4, z2 = 2, z2 = 3, so z̃1 = (2, 3, 1, 2), z̃2 = (3, 4, 2, 3) and (z−

1 +2z−
2 , 2z+1 +3z+2 , z1+

z2, z1 + 2z2) = (8, 18, 3, 8). Now x̃∗
1 = (e2, e3, e1, e2) and x̃∗

2 = (e3, e4, e2, e3) are
the optimal solution of the problem and the optimal value is (e8, e18, e3, e8).

Example 2. Solve the following fuzzy geometric programming problem with neg-
ative exponents by helping algorithm method.

min x̃1̃
1x̃

2̃
2

s.t. x̃−̃1
1 x̃1̃

2 = e1̃,

x̃4̃
1x̃

−̃1
2 = e5̃,

x̃1, x̃2 > 0̃,

where 1̃ = (1, 2, 1, 1), 2̃ = (2, 3, 1, 2), 4̃ = (4, 5, 3, 4), 5̃ = (5, 7, 1, 5) and 0̃ =
(0, 0, 0, 0).
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Solution. At change the problem by applying Theorem 2:

min 1̃ × z̃1 + 2̃ × z̃2

s.t. −̃1 × z̃1 + 1̃ × z̃2 = 1̃ × 1,

4̃ × z̃1 + −̃1 × z̃2 = 5̃ × 1,

z̃1, z̃2 > 0̃.

Now substitute the values 1̃, 2̃, 4̃, 5̃ and variables z̃1 = (z−
1 , z+1 , z1, z1), z̃2 =

(z−
2 , z+2 , z2, z2) in above equation and by using the arithmetic properties of trape-

zoidal fuzzy numbers, we obtain

min (z−
1 , 2z+1 , z1, z1) + (2z−

2 , 3z+2 , z2, 2z2)

s.t. (−z−
1 ,−2z+1 ,−z1,−z1) + (z−

2 , 2z+2 , z2, z2) = (1, 2, 1, 1),

(4z−
1 , 5z+1 , 3z1, 4z1) + (−1z−

2 ,−2z+2 ,−z2,−z2) = (5, 7, 1, 5),

z̃1, z̃2 > 0̃.

This fuzzy linear programming problem can be changed into the equations
in Step 4 as follows:

min (z−
1 + 2z−

2 , 2z+1 + 3z+2 , z1 + z2, z1 + 2z2)

s.t. − z−
1 + z−

2 = 1,

−2z+1 + 2z+2 = 2,

−z1 + z2 = 1,

−z1 + z2 = 1,

4z−
1 − z−

2 = 5,

5z+1 − 2z+2 = 7,

3z1 − z2 = 1,

4z1 − z2 = 5,

z̃1, z̃2 > 0̃.

By solving equations, z−
1 = 2, z+1 = 3, z1 = 1, z1 = 2 and z−

2 = 3, z+2 =
4, z2 = 2, z2 = 3, so the fuzzy solution for linear programming is z̃1 = (2, 3, 1, 2)
and z̃2 = (3, 4, 2, 3) and optimal value is (z−

1 + 2z−
2 , 2z+1 + 3z+2 , z1 + z2, z1 +

2z2) = (8, 18, 3, 8). Now x̃∗
1 = (e2, e3, e1, e2) and x̃∗

2 = (e3, e4, e2, e3) are the
fuzzy optimal solution of the monomial geometric programming problem and,
(e8, e18, e3, e8) is the optimal value of it. It’s wonderful that to see

x̃1̃
1x̃

2̃
2 = (e2, e6, e1, e2) × (e6, e12, e2, e6) = (e8, e18, e3, e8).

Therefore we can have following remark.
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Remark 4. In geometric programming problem if the objective function is poly-
nomial function, the algorithm holds and optimal solution is not concerned to
objective function. The constraints are very important, so objective function
can each be polynomial geometric programming problem. Consider the follow-
ing example.

Example 3. Solve the fully fuzzy polynomial geometric programming problem
with negative fuzzy exponents in objective function and constraints

min 2̃x̃1̃
1x̃

2̃
2 + x̃−̃2

1 x̃1̃
2

s.t. x̃−̃1
1 x̃1̃

2 = e1̃,

x̃4̃
1x̃

−̃1
2 = e5̃,

x̃1, x̃2 > 0̃,

where 1̃ = (1, 2, 1, 1), 2̃ = (2, 3, 1, 2), 4̃ = (4, 5, 3, 4), 5̃ = (5, 7, 1, 5) and 0̃ =
(0, 0, 0, 0).

Solution. By applying Theorem 2, the problem change into:

min ln(2̃x̃1̃
1x̃

2̃
2 + x̃−̃2

1 x̃1̃
2)

s.t. −̃1 × z̃1 + 1̃ × z̃2 = 1̃ × 1,

4̃ × z̃1 + −̃1 × z̃2 = 5̃ × 1,

x̃1, x̃2, z̃1, z̃2 > 0̃.

Now substitute the value of 1̃, 2̃, 4̃, 5̃ and variables z̃1 = (z−
1 , z+1 , z1, z1), z̃2 =

(z−
2 , z+2 , z2, z2) in above equation.

s.t. (−z−
1 ,−2z+1 ,−z1,−z1) + (z−

2 , 2z+2 , z2, z2) = (1, 2, 1, 1),

(4z−
1 , 5z+1 , 3z1, 4z1) + (−1z−

2 ,−2z+2 ,−z2,−z2) = (5, 7, 1, 5),

z̃1, z̃2 > 0̃.

The constraints of the above equation is the same as Example 2. As we
see the fuzzy optimal solution of this problem is x̃∗

1 = (e2, e3, e1, e2) and x̃∗
2 =

(e3, e4, e2, e3). Just substitute the fuzzy optimal solution in objective function.
Obtain

2̃x̃1̃
1x̃

2̃
2 + x̃−̃2

1 x̃1̃
2 = (2, 3, 1, 2) × (e2, e6, e1, e2) × (e6, e12, e2, e6) +

(e−4, e−9, e−1, e−4) × (e3, e8, e2, e3) = (2e8 + e−1, 3e18 + e−1, e3 + e, 2e8 + e1).
Therefore the optimal value of the problem is (2e8 + e−1, 3e18 + e−1, e3 +

e, 2e8 + e1).

Note. We can solve fully fuzzy posynomial geometric programming problem in
monomial constraints by this method. As we see either coefficients or exponents
can be negative or positive, the solution is the same and the method holds.
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5 Conclusion

In this paper we proposed a new method to solve fully fuzzy monomial geometric
programming problem with trapezoidal fuzzy numbers by keep fuzzy numbers in
whole solution. We show that if the exponents is negative number, the method
holds. The special thing is that if the objective function is posynomial, the FFGP
can solved. the condition of being monomial is only for constraints function and
objective function which can be posynomial geometric programming.
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Abstract. System of max-�Lukasiewicz bipolar fuzzy relation equations
is considered in this paper. A modified concept of characteristic matrix
and the corresponding necessary and sufficient condition is given to check
a solution in such system. Based on the necessary and sufficient condition,
novel method for checking the consistency of system of max-�Lukasiewicz
bipolar fuzzy relation equations is also proposed, with some illustrative
examples.

Keywords: Fuzzy relation equation · Max-�Lukasiewicz composition ·
Consistency · Solution · Characteristic matrix

1 Introduction

In this paper we consider the following system of bipolar fuzzy relation equations
with max-�Lukasiewicz composition

max
j∈J

max{TL(a+ij , xj), TL(a−
ij , x̄j)} = bi, i = 1, 2, · · · ,m. (1)

where a+ij , a
−
ij , xj , bi ∈ [0, 1], x̄j = 1 − xj i ∈ I = {1, 2, · · · ,m}, j ∈ J =

{1, 2, · · · , n}, and TL represents the max-�Lukasiewicz composition.
The max-�Lukasiewicz bipolar fuzzy relation equation system (1) was recently

introduced by Li [2] and Liu et al. [3]. The authors provided some effective
methods for minimizing a linear objective function subject to system (1). As
we know, concept of bipolar fuzzy relation equation was proposed by Freson
et al. [1] for the first time. In [1], max-min composition was considered. System
of max-min bipolar fuzzy relation equations was applied to describe the public
awareness of some products. For maximizing the benefits of the suppliers, the
authors investigated the corresponding linear optimization problem.

As pointed out in [2], there exists three commonly used compositions in unipo-
lar or bipolar fuzzy relation equation, i.e. minimum TM (x0, y0) = min{x0, y0},
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 22
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product TP (x0, y0) = x0 · y0 and �Lukasiewicz t-norm TL(x0, y0) = max{x0 + y0 −
1, 0}, where x0, y0 ∈ [0, 1]. According to the operation of �Lukasiewicz t-norm, sys-
tem (1) can also be written as

max
j∈J

{max{a+ij + xj − 1, 0} ∨ max{a−
ij + x̄j − 1, 0}} = bi, i = 1, 2, · · · ,m, (2)

or in its matrix form
A+ ◦ x ∨ A− ◦ x̄ = b, (3)

where A+ = (a+ij)m×n, A− = (a−
ij)m×n, x = (x1, x2, · · · , xn)T , x̄ =

(x̄1, x̄2, · · · , x̄n)T , b = (b1, b2, · · · , bm)T , and ◦ represents the max-�Lukasiewicz
composition.

Denote X = [0, 1]n

This short note is motivated by the following considerations based on the
existing works [2,3].

• How to check the feasibility of a vector in system (1)? In Ref. [2], after cal-
culation of the value of the lower bound x̌ and upper bound x̂, the equations
with right side bi = 0 were deleted. This process is necessary before continu-
ing to check the feasibility of a vector in system (1). Otherwise, the checking
condition will be invalid. However, it is found that when the characteristic
matrix is modified, then the necessary and sufficient condition will be effec-
tive without deleting the equations with bi = 0. In this paper we will give the
modified concept of characteristic matrix and the corresponding condition to
check a solution in system (1).

• How to check the consistency of system (1)? Consistency of a system of unipo-
lar or bipolar fuzzy relation equation is usually an important issue the relevant
investigation. Such as in Refs. [1–3], before solving the linear optimization
problem with fuzzy relation constraint, one should check the consistency of
the constraint first. If the constraint is inconsistent, then it is unnecessary
to continue the solution procedure. There exists no optimal solution to the
problem. Unfortunately, we didn’t find a necessary and sufficient condition for
checking the consistency of the bipolar fuzzy relation equations in [1,3]. The
authors just given a necessary condition for the consistency. In this paper, an
effective method is proposed to check the consistency of system (1).

We try to give answers to the above-mentioned questions. The rest of the
paper is organized as follows. Section 2 is preliminaries, in which some basic
concepts and relevant results are presented. In Sect. 3 we give a new definition
to characteristic matrix, based on which a necessary and sufficient condition
is developed for checking a solution in system (1). In Sect. 4 a necessary and
sufficient condition is proposed to check the consistency of system (1) with illus-
trative examples. Section 5 is the conclusions.

2 Preliminaries

For convenience, we denote

fij(xj) = max{a+ij + xj − 1, 0} ∨ max{a−
ij + x̄j − 1, 0}, (4)
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for any i ∈ I, j ∈ J . Then system (1) can be written as

max
j∈J

fij(xj) = bi, i = 1, 2, · · · ,m, (5)

or ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f11(x1) ∨ f12(x2) ∨ · · · ∨ f1n(xn) = b1,

f21(x1) ∨ f22(x2) ∨ · · · ∨ f2n(xn) = b2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
fm1(x1) ∨ fm2(x2) ∨ · · · ∨ fmn(xn) = bm,

(6)

System (1) is called consistent (inconsistent) its solution set is nonempty
(empty). Its solution set is always denoted by X(A+, A−, b) in this paper. That
is,

X(A+, A−, b) = {x ∈ X|A+ ◦ x ∨ A− ◦ x̄ = b}. (7)

Lemma 1 (See Lemma 1 in [2]). For any a+, a−, b ∈ [0, 1], the inequality

max{TL(a+, x0), TL(a−, 1 − x0)} ≤ b

holds if and only if

TL(a−, 1 − b) ≤ x0 ≤ SL(1 − a+, b),

where SL(x0, y0) = min{x0 + y0, 1}.
Lemma 2 (See Lemma 3 in [2]). A vector x ∈ [0, 1]n is a solution to sys-
tem of bipolar max-TL equations A+ ◦ x ∨ A− ◦ x̄ = b if and only if
max{TL(a+ij , xj), TL(a−

ij , 1−xj)} ≤ bi for every i ∈ I and j ∈ J , and there exists
an index ji ∈ J for each i ∈ I such that max{TL(a+iji , xji), TL(a−

iji
, 1−xji)} = bi.

Based on the above-mentioned Lemmas 1 and 2, the following Lemma 3 was
developed in Ref. [3].

Lemma 3 (See Lemma 2 in [3]). If x = (xj)j∈J ∈ X(A+, A−, b) �= ∅ is a feasible
solution for (1), then

max
i∈I

{a−
ij − bi, 0} ≤ xj ≤ min

i∈I
{1 − a+ij + bi, 1}, ∀j ∈ J.

Denote
x̌ = (x̌1, x̌2, · · · , x̌n) = (max

i∈I
{a−

ij − bi, 0})j∈J (8)

and
x̂ = (x̂1, x̂2, · · · , x̂n) = (min

i∈I
{1 − a+ij + bi, 1})j∈J (9)

Lemma 3 indicates that a solution of system (1), denoted by x, should be bigger
than or equal to x̌, and meanwhile less than or equal to x̂. That is to say,
x̌ ≤ x ≤ x̂ holds for any x ∈ X(A+, A−, b). In general, x̌ and x̂ are called the
lower bound and upper bound of the solution in system (1).
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Lemma 4 (See Lemma 3 in [3]). If x = (xj)j∈J ∈ X(A+, A−, b) �= ∅ is a
feasible solution for (1), then

max
j∈J

{1
2
(a+ij + a−

ij − 1), 0} ≤ bi ≤ max
j∈J

{a+ij , a−
ij}, ∀i ∈ I.

In [2], the characteristic matrix is denoted by Q̃ = (q̃ij)m×n, where

q̃ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{x̌j}, if TL(a−
ij , 1 − x̌j) = bi �= TL(a+ij , x̂j),

{x̂j}, if TL(a−
ij , 1 − x̌j) �= bi = TL(a+ij , x̂j),

{x̌j , x̂j}, if TL(a−
ij , 1 − x̌j) = bi = TL(a+ij , x̂j),

∅, otherwise.

(10)

Based on the above concept of characteristic matrix, necessary and sufficient
condition was given to check whether a vector x ∈ [0, 1]n is a solution of system
(1), as shown in the following Theorem 1.

Theorem 1 [2]. Let A+◦x∨A−◦x̄ = b be a system of bipolar max-TL equations.
A vector x ∈ [0, 1]n is a solution of A+ ◦ x∨A− ◦ x̄ = b if and only if x̌ ≤ x ≤ x̂
and the induced binary matrix Qx = (qxij)m×n has non zero rows where

qxij =

{
1, if xj ∈ q̃ij ,

0, otherwise.
(11)

3 New Definition of Characteristic Matrix
and the Corresponding Necessary and Sufficient
Condition for Checking a Solution

In this section we modify the concept of characteristic matrix, based on which a
necessary and sufficient condition is developed for checking a solution in system
(1). The necessary and sufficient condition lies in Theorem 2. Two lemmas are
presented first, which are helpful to the proof of Theorem 2.

Lemma 5. Let x̌ and x̂ be the lower and upper bounds of system (1), as defined
by (8) and (9). Then for any i ∈ I, j ∈ J and xj ∈ [x̌j , x̂j ], we have fij(xj) ≤ bi.
Especially it holds that

fij(x̌j) ≤ bi, fij(x̂j) ≤ bi. (12)

Proof. According to (8) and (9), we get

x̌j = max
i∈I

{a−
ij − bi, 0} ≥ max{a−

ij − bi, 0} = TL(a−
ij , 1 − bi),

and

x̌j ≤ x̂j = min
i∈I

{1 − a+ij + bi, 1} ≤ min{1 − a+ij + bi, 1} = SL(1 − a+ij , bi).
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That is x̌j ∈ [TL(a−
ij , 1 − bi), SL(1 − a+ij , bi)]. In the similar way we may check

x̂j ∈ [TL(a−
ij , 1 − bi), SL(1 − a+ij , bi)]. Hence [x̌j , x̂j ] ⊆ [TL(a−

ij , 1 − bi), SL(1 −
a+ij , bi)]. Considering xj ∈ [x̌j , x̂j ], it follows from Lemma 1 that fij(xj) =
max{TL(a+ij , xj), TL(a−

ij , 1 − xj)} ≤ bi.

Lemma 6. Let y ∈ X(A+, A−, b) �= ∅ be a solution of system (1), with lower
bound x̌ and upper bound x̂. Suppose there exists some i ∈ I and j ∈ J such that

fij(yj) = max{a+ij + yj − 1, 0} ∨ max{a−
ij + ȳj − 1, 0} = bi. (13)

Then we have

(i) If bi �= 0, then yj ∈ {x̌j , x̂j}.
(ii) If bi = 0, then yj ∈ [x̌j , x̂j ].

Proof. (i) bi �= 0, i.e. bi > 0
Equation (13) indicates either

max{a+ij + yj − 1, 0} = bi (14)

or
max{a−

ij − yj , 0} = bi (15)

holds. Since bi > 0, we have either

a+ij + yj − 1 = bi, (16)

or
a−
ij − yj = bi. (17)

In order to complete the proof of (i), next we will verify that “x̌j ≤ yj ≤ x̂j”
doesn’t hold, according to Eqs. (16) and (17).

(By contradiction) Assume that x̌j ≤ yj ≤ x̂j .
Case 1. If Eq. (16) holds, then

fij(x̂j) = max{a+ij + x̂j − 1, 0} ∨ max{a−
ij − x̂j , 0}

≥ a+ij + x̂j − 1

> a+ij + yj − 1

= bi.

(18)

This is conflict with Lemma 5.
Case 2. If Eq. (17) holds, then

fij(x̌j) = max{a+ij + x̌j − 1, 0} ∨ max{a−
ij − x̌j , 0}

≥ a−
ij − x̌j

> a−
ij − yj

= bi.

(19)
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This is conflict with Lemma 5.

(ii) This is trivial according to Lemma 3.

Definition 1. For system (1), Q̃ = (q̃ij)m×n is said to be the characteristic
matrix, where

q̃ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{x̌j}, if TL(a−
ij , 1 − x̌j) = bi �= TL(a+ij , x̂j),

{x̂j}, if TL(a−
ij , 1 − x̌j) �= bi = TL(a+ij , x̂j),

{x̌j , x̂j}, if TL(a−
ij , 1 − x̌j) = bi = TL(a+ij , x̂j) �= 0,

[x̌j , x̂j ], if TL(a−
ij , 1 − x̌j) = bi = TL(a+ij , x̂j) = 0,

∅, otherwise.

(20)

In Definition 1, it is obvious that the element of the characteristic matrix Q̃
takes value in four situations, i.e. (i) single-element set, (ii) two-element set, (iii)
closed interval, (iv) empty set.

Theorem 2. In system (1), let x ∈ [x̌, x̂] be a fuzzy vector. Define a binary
matrix Qx = (qxij)m×n with respect to x as follows:

qxij =

{
1, if xj ∈ q̃ij ,

0, otherwise.
(21)

Then x ∈ X(A+, A−, b) if and only if each row in Qx has at least one nonzero
element.

Proof. According to the proof of Theorem1 (See Theorem 1 in [2]) and the
above-proved Lemma 6, it is not difficult to verify the result presented in this
theorem.

4 Necessary and Sufficient Condition for Checking
the Consistency of System (1)

In Ref. [3] the authors just provided a necessary condition to check the
(in)consistency of system (1). In the following a numerical example is given
to illustrate that such necessary condition may be insufficient in some cases.

Example 1. Consider the following bipolar fuzzy relation equations with max-
�Lukasiewicz composition:

A+ ◦ x ∨ A− ◦ x̄ = b, (22)

where

A+ = (a+ij)3×3 =

⎡

⎣
0.9 0.8 0.7
0.6 0.5 0.3
0.4 0.9 0.7

⎤

⎦ , A− = (a−
ij)3×3 =

⎡

⎣
0.7 0.6 0.7
0.6 0.3 0.4
0.6 0.6 0.8

⎤

⎦ , b =

⎡

⎣
0.5
0.3
0.4

⎤

⎦ ,

x = (x1, x2, x3)T and x̄ = 1 − x = (1 − x1, 1 − x2, 1 − x3)T .
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Lemma 4 was used to check the case of the empty solution set in [3]. Now
we apply Lemma 4 to system (22). Compute max

j=1,2,3
{ 1
2 (a+ij + a−

ij − 1), 0} and

max
j=1,2,3

{a+ij , a−
ij} for i = 1, 2, 3 as follows.

max
j=1,2,3

{1
2
(a+1j + a−

1j − 1), 0}

= max
j=1,2,3

{1
2
(0.9 + 0.7 − 1),

1
2
(0.8 + 0.6 − 1),

1
2
(0.7 + 0.7 − 1), 0} = 0.3.

Similarly, after calculation we get max
j=1,2,3

{ 1
2 (a+2j + a−

2j − 1), 0} = 0.1,

max
j=1,2,3

{ 1
2 (a+3j +a−

3j −1), 0} = 0.25, max
j=1,2,3

{a+1j , a−
1j} = 0.9, max

j=1,2,3
{a+2j , a−

2j} = 0.6,

max
j=1,2,3

{a+3j , a−
3j} = 0.9.

It is clear that the vector bT = (0.5, 0.3, 0.4) satisfies

max
j=1,2,3

{1
2
(a+ij + a−

ij − 1), 0} ≤ bi ≤ max
j=1,2,3

{a+ij , a−
ij}, ∀i ∈ {1, 2, 3}.

However, system (22) is inconsistent (See Example 2 below), i.e., its solution set
is empty set.

Next we propose a necessary and sufficient condition to avoid the case demon-
strated in Example 1.

Construct the bound vector (or terminal vector) set as follows:

V B = {x = (x1, x2, · · · , xn)|xj ∈ {x̌j , x̂j}, j = 1, 2, · · · , n}. (23)

Here x̌ and x̂ are the lower and upper bounds defined by (8) and (9). Each
element in the set V B is called a bound vector or terminal vector. Obviously V B

is a finite set and has 2n elements.

Definition 2. A bound vector x ∈ V B is said to be a bound solution, if x is
also a solution of system (1).

Proposition 1. If x̌ and x̂ are the lower and upper bounds of system (1) and
there exists i′ ∈ I such that bi′ = 0, then for any x̌ ≤ x ≤ x̂ it holds that

fi′j(xj) = bi′ , ∀j ∈ J. (24)

Proof. It is obvious that fi′j(xj) = max{a+i′j+xj−1, 0}∨max{a−
i′j+x̄j−1, 0} ≥

0 = bi′ . On the other hand, it follows from Lemma 5 that fi′j(xj) ≤ bi′ . So we
get fi′j(xj) = bi′ for arbitrary j ∈ J .

Theorem 3. System (1) is consistent if and only if there exists at least one
bound solution.
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Proof. If system (1) is consistent take arbitrary y ∈ X(A+, A−, b). It follows
from Lemma 3 that x̌j ≤ yj ≤ x̂j ,∀j ∈ J . Based on the solution y, construct
vectors x̌y = (x̌y

1, x̌
y
2, · · · , x̌y

n) and x̂y = (x̂y
1, x̂

y
2, · · · , x̂y

n) as follow:

x̌y
j =

{
yj , if yj ∈ {x̌j , x̂j},
x̌j , if yj /∈ {x̌j , x̂j}.

(25)

and

x̂y
j =

{
yj , if yj ∈ {x̌j , x̂j},
x̂j , if yj /∈ {x̌j , x̂j}.

(26)

In fact both x̌y and x̂y are bound solution. However, in order to complete
the proof, we just need to check one of them. Next we verify that x̌y is a bound
solution. Obviously it is a bound vector. Hence only x̌y ∈ X(A+, A−, b) need to
be checked.

x̌j ≤ yj ≤ x̂j indicates x̌j ≤ x̌y
j ≤ x̂j , ∀j ∈ J . Take arbitrary i ∈ I. Following

Lemma 5, it is holds that

fij(x̌
y
j ) ≤ bi, ∀j ∈ J. (27)

Moreover, considering y ∈ X(A+, A−, b) and Lemma 2, that there exists
ji ∈ J such that

fiji(yji) = bi. (28)

Case 1. If bi �= 0, then yji ∈ {x̌j , x̂j}, according to Lemma 6. By (25) and
(28) we get

fiji(x̌
y
ji

) = fiji(yji) = bi. (29)

Case 2. If bi = 0, then yji ∈ [x̌j , x̂j ], again by Lemma 6. It follows from
Lemma (5) that fiji(x̌

y
ji

) ≤ bi = 0. On the other hand, fiji(x̌
y
ji

) = max{a+iji +
x̌y
ji

−1, 0}∨max{a−
iij

− x̌y
ji
, 0} ≥ 0 holds naturally. Combining these two aspects

we get
fiji(x̌

y
ji

) = fiji(yji) = 0 = bi. (30)

According to Lemma 2 and Eqs. (27), (29) and (30), x̌y is a solution of system
(1) and the proof is complete.

Denote the set of all bound solution by XB = V B ∩X(A+, A−, b). Then the
following Theorem 4 is direct corollary of Theorem 3.

Theorem 4. System (1) is consistent if and only if XB �= ∅.
Example 2. Consider the bipolar fuzzy relation equations given in Example 1,
i.e. system (22). Now we check the consistency of (22) according to Theorems 2
and 3.

After calculation, the lower and upper bound vectors turn out to be x̌ =
(0.3, 0.2, 0.4) and x̂ = (0.6, 0.5, 0.7) respectively. Thus the set of all bound vectors
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is V B = {x1, x2, · · · , x8}, where

x1 = (0.3, 0.2, 0.4), x2 = (0.3, 0.2, 0.7),

x3 = (0.3, 0.5, 0.4), x4 = (0.3, 0.5, 0.7),

x5 = (0.6, 0.2, 0.4), x6 = (0.6, 0.2, 0.7),

x7 = (0.6, 0.5, 0.4), x8 = (0.6, 0.5, 0.7).

(31)

Compute the characteristic matrix by (20) in Definition 1:

Q̃ =

⎡

⎣
{0.6} ∅ ∅
{0.3} ∅ ∅

∅ {0.2, 0.5} {0.4, 0.7}

⎤

⎦ .

Following Theorem 2, it is found that the induced binary matrices with respect
to x1, x2, x3 and x4 are identical and all equal to

Q
′
=

⎡

⎣
0 0 0
1 0 0
0 1 1

⎤

⎦ ,

while the induced binary matrices with respect to x5, x6, x7 and x8 are all equal
to

Q
′′

=

⎡

⎣
1 0 0
0 0 0
0 1 1

⎤

⎦ ,

It is obvious that both of Q
′

and Q
′′

have at least one zero row. According to
Theorem 2, none of the bound vectors (i.e. x1, x2, · · · , x8) is a solution to system
(22). That is to say, there doesn’t exist any bound solution to (22). It follows
from Theorem 3 that system (22) is inconsistent.

Example 3 [3]. Check the consistency of the following system of max-
�Lukasiewicz bipolar fuzzy relation equations, which is picked out from [3],
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{g1(0.9, 0.9, x1), g2(0.8, 0.7, x2), g3(0.9, 0.8, x3), g1(0.6, 0.9, x4)} = 0.8,
max{g1(0.8, 0.7, x1), g2(0.9, 0.9, x2), g3(0.7, 0.7, x3), g1(1, 0.8, x4)} = 0.8,
max{g1(0.8, 0.6, x1), g2(0.6, 0.8, x2), g3(0.8, 0.9, x3), g1(0.4, 0.9, x4)} = 0.7,
max{g1(0.5, 0.6, x1), g2(0.6, 0.9, x2), g3(0.4, 0.8, x3), g1(0.4, 0.4, x4)} = 0.6,

(32)
where gj(a+0 , a

−
0 , xj) = TL(a+0 , xj)∨TL(a−

0 , x̄j) = max{a+0 +xj−1, 0}∨max{a−
0 −

xj , 0}, j = 1, 2, 3, 4, TL is the max-�Lukasiewicz composition.
The lower bound and upper bound are

x̌ = (0.1, 0.3, 0.2, 0.2) and x̂ = (0.9, 0.9, 0.9, 0.8).

After calculation, we get the characteristic matrix of system (32), i.e.,

Q̃ =

⎡

⎢
⎢
⎣

{0.1, 0.9} ∅ {0.9} ∅
∅ {0.9} ∅ {0.8}

{0.9} ∅ {0.2, 0.9} {0.2}
∅ {0.3} {0.2} ∅

⎤

⎥
⎥
⎦ .
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Take the bound vector xB = (0.1, 0.9, 0.2, 0.2). According to Theorem 2, the
induced binary matrix with respect to xB is

Q =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0

⎤

⎥
⎥
⎦ .

Obviously in the matrix Q, each row has at least one nonzero element. Hence
xB is a bound solution and consequently system (32) is consistent.

5 Conclusion

Bipolar fuzzy relation equations is a new kind of fuzzy relation system. It was
proposed by Freson in 2013 for the first time. Optimization problems with linear
objective function and bipolar fuzzy relation equations constraint were investi-
gated in [1–3]. In this paper, the max-�Lukasiewicz composition is considered, as
the same to that in [2,3]. We give a modified condition for checking a solution in
system (1). Checking by this new condition, the equations with bi = 0 needn’t
to be deleted in the computing processes. Besides, we propose a necessary and
sufficient condition to check the consistency of system (1), which is important
in solving the corresponding fuzzy relation optimization problems.
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Abstract. In this paper, we consider the multi-level linear program-
ming subject to max-product fuzzy relation equations which is used to
characterize a kind of wireless communication EBS model. Based on the
theorem of lexicography order, we developed a algorithm to find the
unique optimal solution. And a numerical example is given to illustrate
the feasibility and efficiency of the algorithm.

Keywords: Fuzzy relation equations · Multi-level linear programming ·
Lexicography order

1 Introduction

The notion of fuzzy relational equations has been investigated both from a the-
oretical standpoint and in a view of applications since they were first introduced
by Sanchez [1,2]. Various effective methods were proposed by many scholars.

The optimization problems withe fuzzy relation equations or inequalities con-
straint is said to be a fuzzy relation optimization problem. Because of the special
structure of the feasible domain i.e. the solution set of fuzzy relation equations
or inequalities, the solution method is much different from the ordinary opti-
mization problem. Many different kinds fuzzy relation optimization problems
were investigated such as: P.Z. Wang et al. proposed the fuzzy relation latticized
linear programming with max-composition [11], P. Li and Fang focused on the
optimization of a system of fuzzy relational equations with sup-T composition
[9,10].

Recently X.-P. Yang and B.-Y. Cao et al. investigated a latticized linear
programming subject to max-product fuzzy relation inequalities [5]. In this paper
a kind of wireless communication optimization management models into a system
of max-product fuzzy relation inequalities. And in another article [4], the author
propose a new order relation during solving a multi-level linear programming
subject to addition-min fuzzy relation inequalities.
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 23
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Based on the application of wireless communication, we want to reduce the
damage of electromagnetic radiation by limiting power of electromagnetic. So
we give a multi-level linear programming subject to system of the max-product
equations and solve it this paper. In Sect. 2 we introduce some basic theorem
of max-product fuzzy relation equations and corresponding multi-level linear
programming problem. In Sect. 3, resolution of this problem is studied with a
step-by-step algorithm based some theorems of lexicography order. Section 4
provides a numerical example to illustrate the feasibility and efficiency of the
algorithm. At last we give a sample conclusion.

2 Preliminaries

In this section we present some basic definitions and theory about the system of
max-product fuzzy relation equations.

A system of fuzzy relation equalities is formulated as follow:
⎧
⎪⎪⎨

⎪⎪⎩

a11x1 ∨ a12x2 ∨ · · · ∨ a1nxn = b1,
a21x1 ∨ a22x2 ∨ · · · ∨ a2nxn = b2,

· · ·
am1x1 ∨ am2x2 ∨ · · · ∨ amnxn = bm,

(1)

or
ai1x1 ∨ ai2x2 ∨ · · · ∨ ainxn = bi, i = 1, 2, . . . (2)

or
A ◦ xT = bT , (3)

where ◦ represents the max-product composition, A = (aij)m×n, x =
(x1, x2, · · · , xn), b = (b1, b2, · · · , bn), aij , xj , bj ∈ [0, 1], bj > 0, i =
1, 2, · · · ,m, j = 1, 2, · · · , n.

In this paper we denote X = [0, 1]n, I = {1, 2, · · · ,m}, J = {1, 2, · · · , n}.
The nature order relation ≤ on the set X is defined below.

Definition 1. Denote X = [0; 1]n Let x1 = (x1
1, x

1
2, · · · , x1

n), x2 =
(x2

1, x
2
2, · · · , x2

n) ∈ X, we define:
(i) x1 ≤ x2, if x1

j ≤ x2
j ,∀j ∈ J ;

(ii) x1 < x2, if x1 ≤ x2 and there some j ∈ J such that x1
j < x2

j .

The dual order relations of ≤ and < are denote by ≥ and >, obviously (X,≤)
forms a partial order set.

Let X(A, b) = {x|A ◦ x = b} denotes the solution set of system (1). If
X(A, b) = {x|A ◦ x = b} �= ∅, we say the system is consistent, otherwise it
is inconsistent.

Definition 2. Define

aij 
−1 bi =
{ bi

aij
, aij > bi,

1, aij ≤ bi,
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where 
−1 is an operator defined on [0, 1], i = 1, 2, . . . ,m, j = 1, 2, . . . , n. Let

x̂ = (x̂1, x̂2, . . . , x̂n)T , and x̂j =
m∧

i=1

aij 
−1 bi j = 1, 2, . . . , n.

Lemma 1 [9,10]. The system (1) is consistent if and only if x̂ ∈ X(a, b).

Definition 3. A solution x̂ ∈ X(A, b) is said to be a maximum or greatest
solution if and only if x ≤ x̂ for all x ∈ X(A, b). A solution x̌ ∈ X(A, b) is said
to be a minimal solution if and only if x ≤ x̌ implies x = x̌ for any x ∈ X(A, b).

Obviously the maximum solution of the system (1), if it exists, is unique.
While if the system has a minimal solution, the minimal solutions are usually
not unique. If we denote the set of all the minimal solutions by X̌(A, b), then we
have [2]:

X(A, b) =
⋃

x̌∈X̌(A,b)

{x|x̌ ≤ x ≤ x̂}

As shown in [6], a wireless communication EBS system can be reduced to
a system of max-product fuzzy relation equations as (1). In this system the
major optimization is to minimize {x1, x2, . . . , xn}, in which the every xi is
in same level. However in real practical situation, the importance of every xi

is different. In this paper we consider the optimization objective with priority
rank: xj1 → xj2 → · · · → xjn , where {j1, j2, . . . , jn} = J and the notation
xj1 → xj2 → · · · → xjn means xjp is more important than xjq if p < q. Based
on this consideration we reduce a wireless communication EBS system into a
multi-level programming as follow:

min xj1

min xj2

· · ·
s.t. A ◦ xT = bT . (4)

Definition 4. Denote X = [0; 1]n, let x1 = (x1
1, x

1
2, · · · , x1

n), x2 =
(x2

1, x
2
2, · · · , x2

n) ∈ X, and {j1, j2, . . . , jn} = J is an ranking set of J , which
means for any p > q ∈ [1, n], jp is more important than jq in the order relation.
And we denote:

(i) x1 = x2, if x1
j ≤ x2

j , for all j ∈ J ;
(ii) x ≺ y, if there exists a k ∈ J such that x1

j1
= x1

j1
, . . . , x1

jk−1
= x2

jk−1

and x1
jk

< x2
jk
.

x  y represent x ≺ y or x = y. The dual notations of “≺” and “” are “�”
and “�” respectively.

The order relation defined in Definition 4 is said to be lexicography order
(based a certain ranking set). Obviously it is a total order on the X.
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Theorem 1. Let x, y, z ∈ X. Then:

(i) x  x,
(ii) x  y and y  x imply x = y,
(iii) x  y and y  z imply x  z.

Definition 5. A solution x∗ ∈ X(A, b) is said to be a lexicography minimum
solution if and only if x  x∗ impliesx = x∗ for any x ∈ X(A, b)

Absolutely the lexicography minimum solution of (1) is the optimal solution
of (4)

3 Resolution of Problem (4)

Theorem 2. If the system (1) is consistent, the lexicography minimum solution
must exist and be unique, then problem (4) has an unique optimal solution.

Theorem 3. If the system (1) is consistent, any minimal solution x̌ ∈ X(A, b)
must be a lexicography minimum solution based on a certain ranking set.

Because lexicography order is a total order on the X, so Theorems 2 and 3
are obviously right.

Theorem 4. If x̌ is minimal solution∈ X(A, b), x̂ is the maximum solution,
then x̌ ≤ x̂ and there must exist at least one k ∈ J such that x̌k = x̂k.

Proof. Absolutely, x̌ ≤ x̂, if for all k ∈ J we have x̌k < x̂k, then aikx̌k < aikx̂k =
bi hold for each i ∈ I, x̌ /∈ X(A, b), so there must exist at least one k ∈ J such
that x̌k = x̂k

The optimal solution of (2) can be choose from the minimal solution set of
(1) by compare every element, but it is very difficult, so we need to find a new
algorithm to compute the optimal solution of (2).

Algorithm
Step 1. Compute x̂ = (x̂1, x̂2, . . . , x̂n) by Definition 3.
Step 2. Check the feasibility of (1) by Lemma 1. If X(A, b) �= ∅, Let k = 1

and go to the Step 3, otherwise the system is not consistent, and there is no
lexicography minimum solution.

Step 3. Denote yk = (yk1 , y
k
2 , . . . , y

k
n), x∗ = (x∗

1, x
∗
2, . . . , x

∗
n), and,

ykj =

⎧
⎨

⎩

x∗
j , j < k,
0, j = k,
x̂j , j > k.

Step 4. If the yk ∈ X(A, b), let x∗
k = 0, otherwise let x∗

k = x̂k.
Step 5. If k < n, let k = k + 1 and return to the Step 3. If k = n, the

solution x∗ = (x∗
1, x

∗
2, . . . , x

∗
n) is the lexicography minimum solution.
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Theorem 5. The vector x∗ obtained by the Algorithm mentioned above is the
lexicography minimum solution of system 1.

Proof. (i) Firstly, we prove that x∗ ∈ X(A, b), denote pl = (pl1, p
l
2, . . . , p

l
n), and

pl =
{
x∗
j j ≤ l,

x̂j j > l,

x∗ = pn, when l = 1, y1 = (0, x̂2, x̂3, . . . , x̂n), if y1 ∈ X(A, b), then x∗
1 = 0

and p1 = y1 ∈ X(A, b).
If y1 /∈ X(A, b), then x∗

1 = x̂1 and p1 = x̂ ∈ X(A, b).
When l = k, we assume that pk ∈ X(A, b), if yk+1 ∈ X(A, b), then x∗

k+1 = 0
and pk+1 = yk+1 ∈ X(A, b).

If yk+1 /∈ X(A, b), then x∗
k+1 = x̂k+1 and pk+1 = pk ∈ X(A, b)

So from the all x∗ = pn ∈ X(A, b).
(ii) Secondly we prove x∗is the lexicography minimum solution. Assume x =

(x1, x2, . . . , xn) ∈ X(A, b) is an arbitrary solution. Then we prove x∗  x. If
x∗
1 = 0, x∗

1 ≤ x1 obviously.
If x∗

1 = x̂1, then y1 = (0, x̂2, x̂3, . . . , x̂n) /∈ X(A, b), so exist an i1 ∈ I such
that:

ai12x̂2 ∨ ai13x̂3∨, · · · ,∨ai1nx̂n �= bi1 .

At the same time x̂ ∈ X(A, b), so we have:

ai11x̂1 ∨ ai12x̂2∨, · · · ,∨ai1nx̂n �= bi1 .

So we have ai11x̂1 = bi1 and

ai1j x̂j < bi1 , j = 2, 3 · · ·
For the x,

ai11x1 ∨ ai12x2∨, · · · ,∨ai1nxn = bi1 .

Because x̂ is the maximum solution, xj ≤ x̂j , and

ai1jxj ≤ ai1j x̂j < bi1 , for j = 2, 3 · · ·
So ai11x1 = bi1 and then x1 = x̂1 = x∗

1.
Then prove that if x∗

k = xk, then x∗
k+1 = xk+1 for k = 1, 2, 3, . . . by the same

way.
So x∗  x holds.
From the (i)(ii) is the lexicography minimum solution of system (1).

4 Numerical Example

min x1

min x2

· · ·
min x8

s.t. A ◦ xT = bT .



Multi-level L-Programming Subject to Max-product Relation Equalities 225

In this problem we consider the optimization objective with priority rank: x1 →
x2 → x3 → x4 → x5 → x6 → x7 → x8 and

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8 0.6 0.2 0.4 0.2 0.7 0.7 0.5
0.6 0.3 0.7 0.6 0.1 0.3 0.5 0.3
0.5 0.8 0.7 0.4 0.7 0.8 0.3 0.8
0.2 0.4 0.5 0.1 0.3 0.5 0.8 0.4
0.6 0.2 0.5 0.5 0.1 0.4 0.7 0.2
0.9 0.9 0.8 0.2 0.8 0.6 0.1 0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

b = (0.56, 0.42, 0.64, 0.4, 0.42, 0.72), x = (x1, x2, · · · , x8).

Step 1. By the Definition 3, we obtain that x̂ = (0.7, 0.8, 0.6, 0.7, 0.9, 0.8, 0.5, 0.8)
Step 2. Since

A ◦ x̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.8 0.6 0.2 0.4 0.2 0.7 0.7 0.5
0.6 0.3 0.7 0.6 0.1 0.3 0.5 0.3
0.5 0.8 0.7 0.4 0.7 0.8 0.3 0.8
0.2 0.4 0.5 0.1 0.3 0.5 0.8 0.4
0.6 0.2 0.5 0.5 0.1 0.4 0.7 0.2
0.9 0.9 0.8 0.2 0.8 0.6 0.1 0.4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.7
0.8
0.6
0.7
0.9
0.8
0.5
0.8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.56
0.42
0.64
0.4
0.42
0.72

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

so A ◦ xT = bT is consistent and go to step 3.
Step 3–5. y1 = (0, 0.8, 0.6, 0.7, 0.9, 0.8, 0.5, 0.8) and it is easy to check that
y1 /∈ X(A, b), so x∗

1 = x̂1 = 0.7.
y2 = (0.7, 0, 0.6, 0.7, 0.9, 0.8, 0.5, 0.8) and it is easy to check that y2 ∈ X(A, b),

so x∗
2 = 0.
y3 = (0.7, 0, 0, 0.7, 0.9, 0.8, 0.5, 0.8) and it is easy to check that y3 ∈ X(A, b),

so x∗
3 = 0.
y4 = (0.7, 0, 0, 0, 0.9, 0.8, 0.5, 0.8) and it is easy to check that y4 ∈ X(A, b),

so x∗
1 = 0.
y5 = (0.7, 0, 0, 0, 0, 0.8, 0.5, 0.8) and it is easy to check that y5 /∈ X(A, b), so

x∗
5 = x̂5 = 0.9.
y6 = (0.7, 0, 0, 0, 0.9, 0, 0.5, 0.8) and it is easy to check that y6 ∈ X(A, b), so

x∗
1 = 0.
y7 = (0.7, 0, 0, 0, 0.9, 0, 0, 0.8) and it is easy to check that y7 /∈ X(A, b), so

x∗
7 = x̂7 = 0.5.
y8 = (0.7, 0, 0, 0, 0.9, 0, 0.5, 0) and it is easy to check that y8 /∈

X(A, b), so x∗
8 = x̂8 = 0.8, the lexicography minimum solution is x∗ =

(0.7, 0, 0, 0, 0.9, 0, 0.5, 0).

5 Conclusion

In this paper, we introduce a optimization model, i.e. multi-level linear pro-
gramming subject to max-product fuzzy relation equations which can be used
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to describe a wireless communication EBS system. And the optimal solution is
one of the minimal solutions of the max-product fuzzy relation equations. We
introduce a method to find it without finding all the minimal solutions.

Acknowledgments. The authors would like to thank Jin-wu Gao for his recommen-
dation and many enlightening conversations.

Supported by National Natural Science Foundation of China (U1601204), the Nat-
ural Science Foundation of Guangdong Province (2016A030313552) and Guangzhou
Vocational College of Science and Technology (2016TD03).

Recommender: Jin-wu Gao: Associate Professor, School of Information Renmin
University of China.

References

1. Sanchez, E.: Equations de Relations Flous. These Biologie Humaine, France (1972)
2. Sanchez, E.: Resolutions in fuzzy relation equations. Inf. Control 30, 38–48 (1976)
3. Yang, X.-P., Zheng, G.-Z., Zhou, X.-G., Cao, B.-Y.: Lexicography minimum solu-

tion of fuzzy relation inequalities: applied to optimal control in P2P file sharing
system. Int. J. Mach. Learn. Cybern. (2016)

4. Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: Multi-level linear programming subject to
addition-min fuzzy relation inequalities with application in Peer-to-Peer file sharing
system. J. Intell. Fuzzy Syst. 28, 2679–2689 (2015)

5. Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: Latticized linear programming subject to
max-product fuzzy relation inequalities with application in wireless. Inf. Sci. 358–
359, 44–55 (2016)

6. Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: Singal variable term semi-latticized fuzzy
relation geomtric programming with max-product operator. Inf. Sci. 325, 271–287
(2015)

7. Yang, X.-P., Zhou, X.-G., Cao, B.-Y.: Min-Max programming problem subject to
addition-min fuzzy relation inequalities. IEE Trans. Fuzzy Syst. 24, 111–119 (2016)

8. Drewniak, J., Matusiewicz, Z.: Properties of max-* relation equations. Soft. Com-
put. 14, 1037–1041 (2010)

9. Li, P., Fang, S.-C.: A survey on fuzzy relational equations, part I: classication and
solvability. Fuzzy Optim. Decis. Making 8, 179–229 (2009)

10. Li, P., Fang, S.-C.: On the resolution and optimization of a system of fuzzy relation
equations with sup-T composition. Fuzzy Optim. Decis. Making 7, 169–214 (2008)

11. Wang, P.Z., Wang, D.Z., Sanchez, E.: Latticized linear programming and fuzzy
relation inequalities. J. Math. Anal. Appl. 159, 72–87 (1991)



Quadratic Programming with Max-product
Fuzzy Relation Inequality Constraints

Xue-Gang Zhou1, Xiao-Peng Yang3, and Pei-Hua Wang2(B)

1 Department of Applied Mathematics, Guangdong University of Finance,
Guangzhou 510521, Guangdong, China

2 School of Mathematics and Statistics, Hanshan Normal University,
Chaozhou 521041, Guangdong, China

phwang321@163.com
3 Guangzhou Vocational College of Science and Technology,

Guangzhou 510550, Guangdong, China

Abstract. In this paper, a new method for quadratic programming with
max-product fuzzy relation inequality constraints is proposed. First, the
properties of the optimal solution are analyzed in several special cases
of fuzzy relation quadratic programming. Simultaneously, some rules are
presented to simplify the original fuzzy relation quadratic programming
problem. Then, an algorithm is presented, based on rules, the branch and
bound method and numerical algorithm for solving traditional quadratic
programming problems with interval constraints. The proposed algo-
rithm does not need to find all feasible minimal solutions. Hence, the
amount of calculation is reduced. Some numerical examples are given to
illustrate the feasibility and effectiveness of the proposed algorithm.

Keywords: Quadratic programming · Max-product fuzzy relation
inequality · Fuzzy relation quadratic programming · Optimal solution

1 Introduction

In this paper, the following quadratic programming problem with max-product
fuzzy relation inequality constraints is studied:

min f(x) =
1
2
xTQx + cTx

s.t. A ◦ x � b,

D ◦ x � e,

x ∈ [0, 1]n,

(1)

where Q = (qij)n×n is the n order symmetric matrix, A = (akj)m×n,D =
(dlj)h×n, x = (x1, · · · , xn)T , b = (b1, · · · , bm)T , e = (e1, · · · , eh)T , c =
(c1, · · · , cn)T ,k ∈ K, j ∈ J, l ∈ L, here, K = {1, 2, · · · ,m}, J = {1, 2,
· · · , n}, L = {1, 2, · · · , h}, “◦” denotes the max-product operator.

c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 24
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As is well known, Quadratic Programming (QP) can be viewed as a gen-
eralization of linear programming [1]. It arises in a wide variety of scientific
and engineering applications including regression analysis and function approx-
imation [2], pattern recognition [3], portfolio selection [4], and so on. Ref. [5]
has given an algorithm for finding the global optimal solution of fuzzy relation
quadratic programming with a max-min fuzzy relation equation constraint. Ref.
[6] discusses quadratic programming with a max-product fuzzy relation inequal-
ity constraint. Some sufficient conditions are presented to determine its optimal
solution in terms of the maximal solution or the minimum solutions of its fea-
sible domain, and some simplification operations have been given to accelerate
the resolution of the problem by removing the components that have no effect
on the solution process. Ref. [7] use some properties of n × n real symmetric
indefinite matrices, Choleskys decomposition, and the least square technique,
and convert the problem to a separable programming problem. Furthermore, a
relation in terms of a closed form is presented to solve it. Finally, an algorithm
is proposed to solve the original problem. Ref. [8] propose a new definition of
FRI path of max-product fuzzy relation inequality. In this paper, we revise the
definition of the FRI path of the max-product fuzzy relation inequality, and put
forward some new properties of problem (1). Several new simplified constrained
quadratic programming methods are obtained based on the new properties.

This paper is organized as follows: In Sect. 2, the solution set structure
of the max-product fuzzy relation inequality and some properties of the FRI
path are introduced. In Sect. 3, the properties of the optimal solution for the
quadratic programming with max-product fuzzy relation inequality constraints
is introduced, and the process of simplified constrained quadratic programming
is described. Then the new algorithm for the quadratic programming with max-
product fuzzy relation inequality constraints is proposed. In Sect. 4, some numeri-
cal examples are presented to illustrate the effectiveness of the algorithm. Finally,
the conclusions are presented in Sect. 5.

2 Max-product Fuzzy Relation Inequality

In this section, some concepts and properties of the max-product fuzzy relation
inequality will be introduced based on the following form:

A ◦ x � b,

D ◦ x � e,
(2)

where 0 � xj � 1(j ∈ J). Suppose that X(A, b,D, e) is the solution set of (2).

Definition 2.1 [9,10]. x̂ ∈ X(A, b,D, e) is called maximal solution of (2), if
x � x̂, for all x ∈ X(A, b,D, e). x̌ ∈ X(A, b,D, e) is called a minimum solution
of (2), if x � x̌ for any x ∈ X(A, b,D, e), we have x = x̌.

If X(A, b,D, e) �= ∅, then it can be completely determined by a unique max-
imal solution and a finite number of minimum solutions. Denote the set of
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minimum solutions of (2) by X̌, then we have X(A, b,D, e) =
⋃

x̌∈X̌{x ∈
[0, 1]n|x̌ � x � x̂}. The maximal solution x̂ can be solved by the following
formula (see [9,10]):

x̂j =

⎧
⎨

⎩

min{ el
dlj

|dlj > el}, if {l ∈ L|dlj > el} �= ∅,

1, else.
(3)

Let Jk = {j ∈ J |akj x̂j � bk}(k ∈ K),Kj = {k ∈ K|akj x̂j � bk}(j ∈ J)
and Λ = J1 × J2 × · · · × Jm. The vector p = (p1, p2, · · · , pm) ∈ Λ if and only if
pk ∈ Jk,∀k ∈ K. For all p ∈ Λ, we can calculate the index set

Kj
p = {k ∈ K | pk = j}, j ∈ J, (4)

and define

xp
j =

⎧
⎨

⎩

max
k∈Kj

p

bk
akj

if Kj
p �= ∅,

0 if Kj
p = ∅,

∀j ∈ J. (5)

The vector p ∈ Λ is called the general path or G-path of (2). We denote the set
of all G-paths of (2) by GP .

Theorem 2.1 [9]. Suppose that X(A, b,D, e) �= ∅, the following conclusions are
evident: (1) If p ∈ Λ, then xp ∈ X(A, b,D, e). (2) For all x̌ ∈ X̌, there exists
some G-paths p, such that xp = x̌.

Definition 2.2 [8]. A vector p is called an FRI path of (2) if for any k ∈ K,

pk

⎧
⎪⎪⎨

⎪⎪⎩

= 0,
if there exists some k′ ∈ {1, · · · , k − 1}, such that

j0 = pk′ ∈ Jk ∩ {p1, · · · , pk−1} and
bk′

ak′j0
� bk

akj0

,

∈ Jk, otherwise.

Definition 2.3. For all k1, k2 ∈ K, k1 < k2 and j0 ∈ Jk1 ∩ Jk2 , suppose that
bk1

ak1,j0

� bk2

ak2,j0

, if the vector p ∈ Λ satisfying the following conditions

pk

{∈ Jk, if Jk ∩ {p1, · · · , pk−1} = ∅,
= 0, else, ∀k ∈ K,

then the vector p is called an FRI path of (2).

Definition 2.4. For all k1, k2 ∈ K, k1 < k2 and j ∈ J , suppose that
bk1

ak1,j
�

bk2

ak2,j
, for any k ∈ K, if the vector p ∈ Λ satisfying the following conditions

pk

{∈ Jk, if Jk ∩ {p1, · · · , pk−1} = ∅,
= 0, else, ∀k ∈ K,

then the vector p is called an FRI path of (2).
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Suppose that the set of all FRI paths(which can be calculated based on the
above definition) is FRIP . We can obtain the following conclusions.

Theorem 2.2 [8]. Suppose that bk > 0 for all k ∈ K, p and q are FRI paths
of (2), then we have the following results:

(1) For all k1, k2 ∈ K, k1 < k2, if pk1 = pk2 , and one of the following two

conditions holds 1© Jk1

⋂
Jk2 = ∅, 2© bk1

ak1j0

� bk2

ak2,j0

for all j0 ∈ Jk1

⋂
Jk2 , then

pk1 = pk2 = 0.

(2) Suppose that
bk1

ak1,j
>

bk2

ak2,j
for all k1, k2 ∈ K, k1 < k2, j ∈ Jk1 ∩ Jk2 , p

and q is the path of (2) and p �= q, then xp �= xq.
(3) Suppose x̌ is a minimum solution of system (2). Then there must exist

an FRI path p such that x̌ = xp, where xp is defined by (5).

(4) For any FRI path p of (2), suppose that
bk1

ak1,j
>

bk2

ak2,j
for all k1, k2 ∈ K,

k1 < k2 and j ∈ J , then xp is a minimum solution of (2), where xp is defined
by (5).

Theorem 2.3 [8]. Suppose that x̌ is a minimum solution of a fuzzy relation
inequality (2), then there exists an FRI path p ∈ FRIP satisfying x̌ = xp. If
bk1

ak1,j
>

bk2

ak2,j
for all k1, k2 ∈ K, k1 < k2 and j ∈ J , then for all FRI paths p, xp

is a minimum solution of (2).

Definition 2.5 [10]. Suppose that p ∈ GP . A solution xp = (xp
1, x

p
2, · · · , xp

m)T

is called the quasi-minimum solution corresponding to the G-path and p is called
a corresponding G-path of xq.

Theorem 2.4 [8]. If X(A, b,D, e) �= ∅, then X(A, b,D, e) = {x ∈ X | xq � x �
x̂, q ∈ GP} = {x ∈ X | xq � x � x̂, q ∈ FRIP}.

3 Properties and Algorithms

This section first analyzes several special cases of problem (1) and then some rules
are proposed to simplify the problem for the general case of (1). Finally, the new
global optimal solution algorithm for solving problem (1) is constructed based
on the branch and bound method in a special case and numerical algorithms for
solving a classical quadratic programming problem[23,31-33].

For all i0 ∈ J , set J+
i0

= {j ∈ N |qi0j � 0}, J−
i0

= J\J+
i0

.

Lemma 3.1. If there exists some i0 ∈ J satisfying ci0 � 0, qi0i0 � 0, and
ci0 + 0.5qi0i0 x̂i0 +

∑

j∈J+
i0

qi0j < 0, then we can get x∗
i0

= x̂i0 for any optimal

solution x∗.
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Proof. Let x∗ be the optimal solution of problem (1) and x∗
i0

< x̂i0 . Suppose
that x̄ = (x̄1, · · · , x̄n) satisfies

x̄j =
{

x∗
j , if j �= i0,

x̂j , if j = i0.

Obviously, x̄ is a solution of (2). If j �= i0, we have 0 � x∗ = x̄ � x̂, otherwise,
0 � x∗

j < x̄j = x̂j . Therefore, we can obtain

f(x∗) = 1
2x∗TQx∗ + cTx∗

= 1
2

n∑

i=1,i �=i0

n∑

j=1,j �=i0

qijx
∗
i x

∗
j +

∑

j∈J−
i0

,j �=i0

qi0,jx
∗
i0

x∗
j +

n∑

i=1,i �=i0

cix
∗
i

+ (
∑

j∈J+
i0

,j �=i0

qi0,jx
∗
j + 1

2qi0i0x
∗
i0

+ ci0)x
∗
i0

> 1
2

n∑

i=1,i �=i0

n∑

j=1,j �=i0

qijx
∗
i x

∗
j +

∑

j∈J−
i0

,j �=i0

qi0,j x̂i0x
∗
j +

n∑

i=1,i �=i0

cix
∗
i

+ (
∑

j∈J+
i0

,j �=i0

qi0,jx
∗
j + 1

2qi0i0 x̂i0 + ci0)x̂i0

= 1
2 x̄TQx̄ + cT x̄,

where the inequality follows from ci0 � 0, qi0i0 � 0, and ci0 + 0.5qi0i0 x̂i0 +∑

j∈J+
i0

qi0j < 0. It is a contradiction that x∗ is an optimal solution of problem (1).

Therefore, x∗
i0

= x̂i0 for all optimal solutions x∗.

The following conclusions can be directly obtained using Lemma 3.1.

Corollary 3.1. If ci � 0, qii � 0, and ci +0.5qiix̂i +
∑

j∈J+
i

qij < 0 for all i, j ∈ J ,

then the maximal solution of (2) is an optimal solution of (1).

Due to Lemma 3.1, we propose the following rule to simplify problem (1).

Rule 3.1. Suppose that J0 = {j ∈ J |cj � 0, qjj � 0, cj + 0.5qjj x̂j +
∑

i∈J+
j

qij

< 0}. For all j ∈ J0, let x∗
j = x̂j , and remove the jth column of matrix A.

Suppose that K0 = {k ∈ K|akj x̂j � bk,∀j ∈ J0}. For any k ∈ K0, remove the
kth row of matrix A and the kth component of vector b.

By using Rule 3.1, we can reduce the objective function of problem (1) into
the following function

min f(x) =
1
2
xTQx + cTx

=
1
2

∑

i∈J\J0

∑

j∈J\J0

qijxixj +
∑

i∈J\J0

cixi +
1
2

∑

i∈J0

∑

j∈J\J0

qij x̂ixj

+
1
2

∑

i∈J\J0

∑

j∈J0

qijxix̂j +
1
2

∑

i∈J0

∑

j∈J0

qij x̂ix̂j +
∑

i∈J0

cix̂i.
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Suppose that matrix A′ and vector b′ are created by deleting rows or columns
of the original matrix A and vector b based on Rule 3.1, x1 = (xj)j∈J\J0 , Q1 =
Q(J−J0)×(J−J0) denote the matrix Q obtained by deleting the ith(i ∈ J0) row
and the jth(j ∈ J0) column, and let c1j = cj +

∑

i∈J0
qij x̂i for all j ∈ J − J0,

α = 1
2

∑

i∈J0

∑

j∈J0
qij x̂ix̂j +

∑

i∈J0
cix̂i. Thus, we can reduce problem (1) into the

following equivalent problem

min f(x) =
1
2
x1TQ1x1 + c1Tx1 + α

s.t. A′ ◦ x1 � b′,

0 � xj � x̂j , j ∈ J\J0.

(6)

It follows from Note 2.5 that we can construct Rule 3.2 to reduce problem (6).

Rule 3.2. According to the constraint conditions of problem (6), for all k ∈
K\K0, calculate Jk = {j ∈ J\J0|akj x̂j � bk},Λ =

∏

k∈K\K0
Jk. If there exists

k1 � k2, and Jk1 ⊇ Jk2 such that
bk1

ak1j
� bk2

ak2j
(∀j ∈ Jk2), then deleting Jk1

from Λ will not affect the minimum solution set of problem (6), that is, the kth
1

inequality of A′ ◦ x1 � b′ can be deleted.

Lemma 3.2. If there exists some i0 ∈ J such that ci0 � 0, qi0i0 � 0, and
ci0 +

∑

j∈J−
i0

qi0j > 0, then there exists a minimum solution x̌ satisfying x∗
i0

= x̌i0

for any optimal solution x∗.

Proof. Since x∗ is a feasible solution of problem (1), then there exists a mini-
mum solution x̌ satisfying 0 � x̌ � x∗ � x̂, that is, for all j ∈ J ,we must have
0 � x̌j � x∗

j � x̂j . To prove the conclusion, equivalent to proving x̌i0 = x∗
i0

,
suppose that x̄ = (x̄1, · · · , x̄n) satisfies

x̄j =
{

x∗
j , if j �= i0,

x̌j , if j = i0.

Obviously, x̄ is a solution of (2) since x̌ � x̄ � x∗. If j �= i0, we have
0 � x∗ = x̄ � x̂, otherwise, 0 � x∗

j < x̄j = x̂j . Thus, we can get

f(x∗) = 1
2x∗TQx∗ + cTx∗

= 1
2

n∑

i=1,i �=i0

n∑

j=1,j �=i0

qijx
∗
i x

∗
j +

∑

j∈J−
i0

,j �=i0

qi0,jx
∗
i0

x∗
j +

n∑

i=1,i �=i0

cix
∗
i

+ (
∑

j∈J+
i0

,j �=i0

qi0,jx
∗
j + 1

2qi0i0x
∗
i0

+ ci0)x
∗
i0

> 1
2

n∑

i=1,i �=i0

n∑

j=1,j �=i0

qijx
∗
i x

∗
j +

∑

j∈J−
i0

,j �=i0

qi0,j x̌i0x
∗
j +

n∑

i=1,i �=i0

cix
∗
i

+ (
∑

j∈J+
i0

,j �=i0

qi0,jx
∗
j + 1

2qi0i0 x̌i0 + ci0)x̌i0

= 1
2 x̄TQx̄ + cT x̄,
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where the inequality follows from ci0 � 0, qi0i0 � 0, and ci0 +
∑

j∈J−
i0

qi0j > 0. It is

a contradiction that x∗ is an optimal solution of problem (1). So, there exists a
minimum solution x̌ satisfying x∗

i0
= x̌i0 for any optimal solution x∗.

The following corollary can be directly obtained by using Lemma 3.2.

Corollary 3.2. If ci � 0, qii � 0, and ci +
∑

j∈J−
i

qij > 0 for all i ∈ J , then there

exists a minimum solution x̌ of (2) such that x∗ = x̌, where x∗ is an optimal
solution of problem (1).

Lemma 3.3. Suppose that Kj = {k ∈ K|akj ∧ x̂j � bk}(j ∈ J). If there exists
some i0 ∈ J satisfying the following conditions: (a)Ki0 = ∅; (b)ci0 � 0, qi0i0 � 0,
and ci0 +

∑

j∈J−
i0

qi0j > 0, then we have x∗
i0

= 0 for any optimal solution x∗.

Proof. Suppose that x∗ is an optimal solution of problem (1). It follows from
Lemma 3.2 that there exists a minimum solution x̌ such that x∗

i0
= x̌i0 . According

to Theorem 2.3, there exists an FRI path p such that x̌ = xp. Because Ki0 = ∅,
it implies that i0 /∈ Jk for all k ∈ K, that is, pk �= i0 for any FRI path p of (2).
It implies that x̌i0 = xp

i0
= 0 based on (5).

Based on Lemma 3.3, we present the following rule to simplify problem (6).

Rule 3.3. Let J1 = {j ∈ J\J0|Kj = ∅, cj � 0, qjj � 0, cj +
∑

i∈J−
j

qij > 0}. For

all j ∈ J1, set x∗
j = 0.

Lemma 3.4. If there exists k0 ∈ K and j0 ∈ J satisfying: (a) Jk0 = {j0}, (b)
bk0

ak0j0

� bk
akj0

for all k �= k0 and j0 ∈ Jk ∩ Jk0 , (c) cj0 � 0, qj0j0 � 0, and

cj0 +
∑

j∈J−
j0

qj0j > 0, then any optimal solution x∗ of problem (1) must meet

x∗
j0

=
bk0

ak0j0

.

Proof. It follows from conditions (a) and (b) that any FRI path p =
(p1, · · · , pm) of (2) must satisfy pk0 = j0 and pk �= j0(k > k0). This implies

that xp
j0

=
bk0

ak0j0

. From condition (3) and Lemma 3.2, we have x∗
j0

=
bk0

ak0j0

for

any optimal solution x∗ of problem (1).

Based on Lemma 3.4, we present the following rule to simplify problem (6).

Rule 3.4. Let J2 = {j0 ∈ J\J0|(a)∃k0 ∈ K\K0, Jk0 = {j0}, (b)∀k �= k0, j0 ∈
Jk ∩ Jk0 ,have

bk0

ak0j0

� bk
akj0

, (c)cj0 � 0, qj0j0 � 0, cj0 +
∑

j∈J−
j0

qj0j > 0}. For all

j ∈ J2, set x∗
j =

bk0

ak0j0

, and when j0 ∈ Jk, deleting Jk, that is, deleting the kth

inequality of A′ ◦ x1 � b′.
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Lemma 3.5. If there exists some k0 ∈ K, j0 ∈ J satisfying (a)Jk0 = {j0}, (b)

x̂j0 =
bk0

ak0j0

, then for any optimal solution x∗, we can get x∗
j0

= x̂j0 .

Proof. If j0 ∈ Jk(k ∈ K, k �= k0), then, from the definition of Jk, we have
bk0

ak0j0

= x̂j0 � bk
akj0

. Suppose that p = (p1, · · · , pm) is any FRI path of (2).

If pk �= j0 for all k < k0, then we can get pk0 = j0. Thus we have xp
j0

=
bk0

ak0j0

= x̂j0 .

If there exists some k < k0 satisfying pk = j0, then must have
bk0

ak0j0

= x̂j0 �
bk

akj0

. Now, we consider the following two cases:

(1)
bk0

ak0j0

= x̂j0 >
bk

akj0

. According to Definition 2.2, we have pk0 = j0. This

implies xp
j0

=
bk0

ak0j0

= x̂j0 .

(2)
bk0

ak0j0

= x̂j0 =
bk

akj0

. By using Definition 2.2, we can obtain pk0 = 0. It

follows that we have xp
j0

=
bk

akj0

= x̂j0 .

Thus, there is always xp
j0

= x̂j0 for any FRI path p. By Theorems 2.3 and
2.4, for any one feasible solution x of problem (1), we can get xj0 = x̂j0 . So, for
any one optimal solution x∗, we must have x∗

j0
= x̂j0 .

The following rule for simplifying problem (6) is proposed based on
Lemma 3.5.

Rule 3.5. Let J3 = {j0 ∈ J |∃k0 ∈ K\K0, Jk0 = {j0}, x̂j0 =
bk0

ak0j0

}. For all

j ∈ J3, let x∗
j = x̂j0 , and when j0 ∈ Jk, deleting Jk, that is, deleting the kth

inequality of A′ ◦ x1 � b′.

Corollary 3.3. If there exists some i ∈ J satisfying: (a) Ki �= ∅, and Ki∩Kj = ∅
for all j ∈ J\{i}, (b) ci � 0, qii � 0, and ci +

∑

j∈J−
i

qij > 0, then any optimal

solution x∗ must have x∗
i = max{ bk

aki
|k ∈ Ki}.

Proof. Suppose that an optimal solution of problem (1) is x∗. From Lemma 3.2,
there exists a minimum solution x̌ satisfying x∗

i = x̌i. Let k1, · · · , kr ∈ Ki,

k1 < k2 < · · · < kr and
bkl

akli
= max{ bk

aki
|k ∈ Ki}(1 � l � r). Since Ki ∩ Kj = ∅

for all j ∈ J\{i}, then we have Jk1 = Jk2 = · · · = Jkl
= {i}, and i /∈ Jk(k ∈

K, k /∈ {k1, · · · , kr}). From the definition of the FRI path, any FRI path p =
(p1, · · · , pm) of (2) satisfies pkl

= i. It then follows from Theorem 3.3 that for any
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minimum solution x̌, there exists some FRI path p meeting x̌ = xp. According

to (5), we can get x̌i = xp
i = max{ bk

aki
|pk = i} =

bkl

akli
= max{ bk

aki
|k ∈ Ki}.

The following conclusion can be obtained easily from Corollaries 3.2 and 3.3:

Corollary 3.4. If problem (1) satisfies: (a) for all i ∈ J , then wehave ci �
0, qii � 0, and ci +

n∑

j∈J−
i

qij > 0; (b) for all t, j ∈ J we have Kt ∩ Kj = ∅, then

problem (1) has a unique optimal solution x∗ = (x∗
1, · · · , x∗

n)T , and

x∗
j =

⎧
⎨

⎩

max{ bk
akj

|k ∈ Kj}, if Kj �= ∅,

0, if Kj = ∅,
j ∈ N.

Theorem 3.1. If there exists some j1 ∈ J such that: (a)
n⋃

j=1,j �=j1

Kj ⊂ Kj1 ,

(b)∃k0 ∈ Kj1 −
n⋃

j=1,j �=j1

Kj satisfies
bk0

ak0j1

� bk
akj1

(∀k ∈ Kj1); (c) ci � 0, qii � 0,

and ci+
n∑

j∈J−
i

qij > 0 for all i ∈ J ; then problem (1) has a unique optimal solution

x∗ = (x∗
1, · · · , x∗

n)T , where

x∗
j =

⎧
⎨

⎩

bk0

ak0j1

, if j = j1,

0, if j �= j1,
j ∈ J.

Proof. When X(A, b,D, e) �= ∅, we can obtain Kj1 = K. Otherwise, there
exists some k ∈ K such that k /∈ Kj1 . This implies k /∈ Kj(∀j ∈ J), that is,
for all j ∈ J, akj x̂j � bk. So, the kth inequality of A ◦ x � b has no solution.
It is a contradiction to X(A, b,D, e) �= ∅. Thus akj x̂j � bk for all k ∈ K,
that is, x = (0, · · · , 0, x̂j , 0, · · · , 0)T is a solution of A ◦ x � b. Since k0 ∈
Kj1 −

n⋃

j=1,j �=j1

Kj , we have Jk0 = {j1}. Based on the proof of Corollary 3.3, we

have x̌j1 =
bk0

ak0j1

for any minimum solution x̌ of (2). Since ci � 0, qii � 0 and

ci +
n∑

j∈J−
i

qij > 0 for all i ∈ j, then any optimal solution x∗ satisfies x∗
j1

=
bk0

ak0j1

.

Thus (0, · · · , 0,
bk0

ak0j1

, 0, · · · , 0)T is an optimal solution of problem (1).

Theorem 3.2. If there exists some j1, · · · , jr ∈ J satisfying: (1) for all l ∈
{1, 2, · · · , r},

n⋃

j=1,j /∈{j1,··· ,jr}
Kj ⊂ Kjl and Kjl = K; (2) for all l ∈ {1, 2, · · · , r},

there exists some kl ∈ Kjl −
n⋃

j=1,j �=k

Kj such that
bkl

akljl

� bk
akjl

(∀k ∈ Kjl); (3)
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for all i, j ∈ N , ci � 0, qij � 0, and ci +
n∑

j∈J−
i

qij > 0; then problem (1) has a

unique optimal solution x∗ = (x∗
1, · · · , x∗

n)T , where

x∗
j =

⎧
⎨

⎩

bkl

akljl

, if j = jl,

0, if j �= jl,
j ∈ J.

The following rule to simplify problem (1) is proposed based on Corollary 3.3.

Rule 3.6. Let J4 = {j ∈ J\J0|(a)Kj �= ∅, and for all i ∈ J\{j} have Ki ∩
Kj = ∅, (b)cj � 0, qjj � 0, and cj +

n∑

i∈J−
j

qij > 0}. For all j ∈ J4, set x∗
j =

max{ bk
akj

|k ∈ Kj}, and deleting the jth column of matrix A, that is, deleting all

j from Jk.

By Rules 3.1–3.6, problem (1) can be reduced to the following questions

min f(x) =
1
2

∑

i∈J5

∑

j∈J5

qijxixj +
∑

i∈J5

cixi +
1
2

∑

i∈J0

∑

j∈J5

qij x̂ixj

+
1
2

∑

i∈J5

∑

j∈J0

qijxix̂j +
1
2

∑

i∈J6

∑

j∈J5

qijx
∗
i xj +

1
2

∑

i∈J5

∑

j∈J6

qijxix
∗
j + α′

s.t. A′′ ◦ x � b′′,

0 � xj � x̂j , j ∈ J5,
(7)

where, A′′, b′′ are new matrix and vector that are made by deleting rows and
columns from the original matrix and vector based on Rules 3.1–3.6, J5 =
J\J0\J1\J2\J3\J4, J6 = J2 ∪ J3 ∪ J4,

α′ =
1
2

∑

i∈J0

∑

j∈J0

qij x̂ix̂j +
∑

i∈J0

cix̂i +
1
2

∑

i∈J6

∑

j∈J6

qijx
∗
i x

∗
j +

∑

i∈J6

cix
∗
i .

Suppose that the entire FRI path set of problem (7) is FRIP , and |FRIP | =
h. In order to solve problem (7), we must solve the following h quadratic program-
ming problems with interval constraints by numerical algorithms as in Bazaraa
et al. [1]

min f(x)
s.t. xq

j � xj � x̂j , j ∈ J ′,
(8)

where q ∈ FRIP. Suppose that the optimal solution of problem (8) is
xl(l = 1, 2, · · · , h), then the optimal solution x∗ of problem (7) is f(x∗) =

min
l=1,2,··· ,h

{f(xl)}.
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If the conditions of Corollary 3.2 are met, suppose that the entire FRI path
set of problem (7) is FRIP , and |FRIP | = h, then we just solve the following
problems

min f(x)
s.t. x = xq, q ∈ FRIP.

(9)

We can then solve problem (9) by using the branch and bound method [1].
Now we build algorithms to solve problem (1) based on the above discussion.

Step 1. Calculate the maximal solution of the quadratic programming with
max-product fuzzy relation inequality constraints by Formula (3). If A ◦ x̂ � b
holds, then go to Step 2, otherwise, there is no feasible solution to the original
problem (1), stop.

Step 2. Compute J0 = {j ∈ J |cj � 0, qjj � 0, cj + 0.5qjj x̂j +
∑

i∈J+
j

qij <

0}, J ′ = {j ∈ J |cj � 0, qjj � 0, cj +
∑

i∈J−
j

qij > 0}, J ′′ = J\J0\J ′, go to Step 3.

Step 3. If J0 = J , the maximal solution x̂ is the optimal solution of problem
(1), stop, otherwise, go to Step 4.

Step 4. If J ′ = J , go to step 6, otherwise, go to Step 5.
Step 5. Calculate K0 = {k ∈ K|akj x̂j � bk,∀j ∈ J0}, and simplify problem

(1) based on Rule 3.1, that is, for all j ∈ J0, set x∗
j = x̂j , deleting the jth column

of matrix A, and deleting the kth row of matrix A and the kth component of
vector b for any k ∈ K0. Set J = J\J0. Go to Step 6.

Step 6. Calculate Jk = {j ∈ J ′ ∪ J ′′|akj x̂j � bk} for all k ∈ K\K0, and
Λ =

∏

k∈K\K0
Jk. Simplify problem (1) or (7) based on Rule 3.2, and update index

set Λ, go to Step 7.
Step 7. Calculate Kj = {k ∈ K\K0|akj ∧ x̂j � bk}(j ∈ J\J0) and J1 =

{j ∈ J\J0|Kj = ∅, cj � 0, qjj � 0, cj +
∑

i∈J−
j

qij > 0}, and simplify problem (1) or

(7) based on Rule 3.3. Set J ′ = J ′\J1. If J ′ = ∅ and J ′′ = ∅, stop, and calculate
the optimal solution and the optimal value. Otherwise, update index set Λ, go
to Step 8.

Step 8. Calculate J2, and simplify problem (1) or (7) based on Rule 3.4. Set
J ′ = J ′\J2. If J ′ = ∅ and J ′′ = ∅ or Λ = ∅, stop. Set x∗

j = 0(j ∈ J\J0\J1\J2),
and calculate the optimal solution and the optimal value. Otherwise, update
index set Λ, go to Step 9.

Step 9. Calculate J3, and simplify problem (1) or (7) based on Rule 3.5.
Set J ′ = J ′\J3. If J ′ = ∅ and J ′′ = ∅ or Λ = ∅, stop. Set x∗

j = 0(j ∈
J\J0\J1\J2\J3), and calculate the optimal solution and the optimal value. If
J ′ �= ∅ and J ′′ = ∅, update index set Λ, and go to Step 10. If J ′′ �= ∅, update
index set Λ, and go to Step 11.

Step 10. Calculate J4, and simplify problem (1) or (7) based on Rule 3.6.
Set J ′ = J ′\J1. If J ′ = ∅ and J ′′ = ∅ or Λ = ∅, stop. Set x∗

j = 0(j ∈
J\J0\J1\J2\J3\J4), and calculate the optimal solution and the optimal value.
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If J ′ �= ∅ and J ′′ = ∅, update index set Λ, and go to Step 11. If J ′′ �= ∅, update
index set Λ, and go to Step 12.

Step 11. Solve the optimal solution for problem (9) based on the FRI path
and branch and bound method, and the optimal solution of (1) will be obtained.

Step 12. Find all FRI paths of problem (8) and corresponding solutions xp

based on the definition of the FRI path. Look for the optimal solutions of problem
(8) based on numerical optimization methods for solving traditional quadratic
programming with interval constraints. The optimal solution of problem (1) can
then be obtained.

4 Numerical Examples

Example 4.1. Consider the following fuzzy relation quadratic programming

min f(x) =
1
2
xTQx + cx

s.t. A ◦ x � b,

D ◦ x � e,

x ∈ [0, 1]4,

(10)

where c = (−2.415,−1.947,−1.772,−3.522)T , b = (0.2, 0.25, 0.45, 0.4)T , e =
(0.141, 0.2, 0.435, 0.333)T ,

Q =

⎡
⎢⎢⎣
−1.94 1.38 0.55 0.33
1.38 −1.21 0.31 −1.47
−0.55 0.31 −1.2 1.23
0.33 −1.47 1.23 −1.31

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

0.9 0.8 0.75 0.68
0.75 0.88 0.6 0.8
0.66 0.89 1 0.56
0.7 0.25 0.9 0.4

⎤
⎥⎥⎦ , D =

⎡
⎢⎢⎣

0.25 0.4 0.1 0.4
0.3 0.6 0.24 0.8
0.71 0.5 0.23 0.3
0.6 0.8 0.5 0.6

⎤
⎥⎥⎦ .

Solution. Step 1. Calculate the maximal solution of problem (10) based
on formula (3). The maximal solution is x̂ = (0.555, 0.333, 0.666, 0.25)T and
A ◦ x̂ � b, and go to Step 2.

Step 2. J = {1, 2, 3, 4}, J0 = {1, 2, 3, 4}, J ′ = ∅, J ′′ = ∅, go to Step 3.
Step 3. Since J0 = J , the maximal solution x̂ = (0.555, 0.333, 0.666, 0.25)T

is the optimal solution of problem (10), the optimal value is f(x̂) = −4.2702.

Example 4.2

min f(x) =
1
2
xTQx + cx

s.t. A ◦ x � b,

D ◦ x � e,

x ∈ [0, 1]6,

(11)

where c = (1.8551, 2.506, 1.6991, 3.8909, 1.9593, 4.5472)T ,
b = (0.3, 0.3, 0.4, 0.5, 0.6, 0.6)T ,
e = (0.3, 0.6, 0.6, 0.6, 0.4, 0.7, 0.8, 0.9)T ,
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Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.7577 0.7431 −0.3922 0.6555 −1.1712 0.7060
0.7431 0.2769 0.0462 0.0971 −0.8235 0.6948

−0.3922 −1.0462 0.0344 −0.4387 0.3816 0.7655
0.6555 0.0971 −0.4387 0.4456 0.6463 −2.7094
1.1712 −0.8235 0.3816 0.6463 0.1626 −0.1190
0.7060 0.6948 0.7655 −2.7094 −0.1190 0.7513

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.1 0.8 0.3 0.6 0.3 0.2
0.3 0.2 0.4 0.5 0.4 0.3
1 0.2 0.5 0.5 0.4 0.2

0.4 0.2 0.2 0.4 0.5 0.5
0.3 0.4 0.5 0.8 0.8 0.6
0.5 0.6 0.3 0.3 0.5 0.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,DT =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.3 0.5 0.1 0.6 0.4 0.5 0.8 0.3
0.2 0.6 0.2 0.5 0.4 0.5 0.8 0.9
0.4 0.3 0.3 0.4 0.4 0.6 1 0.3
0.5 0.3 0.4 0.3 0.3 0.6 1 0.9
0.5 0.5 0.5 0.2 0.3 0.7 1 0.3
0.3 0.4 0.6 0.1 0.3 0.7 0.8 0.4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solution. Step 1. The maximal solution is x̂ = (1, 1, 0.75, 0.6, 0.6, 1)T and
A ◦ x̂ � b. Go to Step 2.

Step 2. J = {1, 2, 3, 4, 5, 6}, J0 = ∅, J ′ = {1, 2, 3, 4, 5, 6}, J ′′ = ∅, go to
Step 3.

Step 3. J0 �= J , go to Step 4.
Step 4. J ′ = J , go to Step 6.
Step 6. For all k ∈ K = {1, 2, 3, 4, 5, 6}, we calculate index set Jk:

J1 = {2, 4, 5}, J2 = {1, 3, 4}, J3 = {1}, J4 = {6}, J5 = {6}, J6 = {2},Λ =
6∏

k=1

Jk.

Since J4 = J5 = {6}, and
b4
a46

� b5
a56

, delete J5 from Λ based on Rule 3.2, that

is, delete the 5th inequality of A ◦ x � b. Update Λ : Λ = J1 × J2 × J3 × J4 × J6,
go to Step 7.

Step 7. For all j ∈ J ′ = {1, 2, 3, 4, 5, 6}, calculate index set Kj K1 =
{2, 3},K2 = {1, 6},K3 = {2},K4 = {1, 2},K5 = {1},K6 = {4} and J1 = ∅.
Therefore, Rule 3.3 can not be taken advantage of simplification problem (11),
go to Step 8.

Step 8. It is clear that J2 = {1, 2, 6}, J3 = {1}, J4 = {6}, J6 = {2}. By

using Rule 3.4, set x1 =
b3
a31

= 0.4, x2 =
b6
a62

= 1, x6 =
b4
a46

= 1, and delete

J1, J2, J3, J4, J6. Since J = J\J2 = {3, 4, 5} and Λ = ∅, stop. Set x∗
3 = x∗

4 = x∗
5 =

0. Thus, the optimal solution and the optimal value are x∗ = (0.4, 1, 0, 0, 0, 1)
and f(x∗) = 9.6444, respectively.

Example 4.3. Solving fuzzy relation quadratic programming [6]:

min f(x) = 1
2xTQx + cTx

s.t A ◦ x � b,
D ◦ x � e,
0 ≤ xj ≤ 1, j ∈ J

(12)
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c = (2,−1,−1,−3, 5, 1, 1)T , b = (0.3, 0.24, 0.3, 0.15, 0.35, 0.24, 0.23)T , e =
(0.2, 0.5, 0.4, 0.8, 0.4, 0.6)T ,

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −1.5 2 2 3 1 1
−1.5 −3 −1 −2.5 −3.5 −5.5 −8

2 −1 3 4 7 5 1
2 −2.5 4 6.6 2 2.2 1
3 −3.5 7 2 3.5 3 3
1 −5.5 5 2.2 3 4 5
1 −8 1 1 3 5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9 0.3 0.3 0.56 0.4 0.34 0.99
0.8 0.95 0.7 0.6 0.3 0.25 0.43
0.3 0.5 0.6 0.44 0.35 0.65 1
0.8 0.4 0.56 0.66 0.34 0.23 0.12
0.24 0.34 0.46 0.87 0.94 0.34 0.27
0.45 0.44 0.56 0.87 0.65 0.44 0.23
0.55 0.45 1 0.42 0.41 0.24 0.35

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.94 0.6 0.45 0.9 0.34 0.33 0.44
0.65 0.24 0.5 0.87 0.42 0.24 0.2
0.52 0.35 0.65 0.76 0.27 0.15 0.15
0.6 0.44 0.8 0.65 0.66 0.23 0.4
0.3 0.5 0.26 0.8 0.44 0.7 0.76
0.64 0.4 0.43 0.25 0.34 0.66 0.1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Solution. Step 1. The maximal solution is x̂ = (0.213, 0.333, 0.444, 0.222, 0.588,
0.571, 0.454)T . Obviously, A ◦ x̂ � b, go to Step 2.

Step 2. J0 = {2}, J ′ = {1, 5}, J ′′ = {3, 4, 6, 7}, go to Step 3.
Step 3. J0 �= J , go to Step 4.
Step 4. J ′ �= J , go to Step 5.
Step 5. Since J0 = {2},K0 = {2}, according to Rule 3.1, set x2 = 0.333,

and delete the 2th column, the 2th row of matrix A and the 2th component of
vector b. Then problem (12) can be reduced as follows:

min f(x) =
1
2
x1TQ1x1 + c1x1 + α

s.t. A′ ◦ x1 � b′,
0 � xi � x̂i, i = 1, 3, 4, 5, 6, 7,

(13)
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where c1 = (1.5005,−1.333,−3.8325, 3.8345,−0.8315,−1.664), x1 = (x1, x3, x4,
x5, x6, x7)T , b′ = (0.3, 0.3, 0.15, 0.35, 0.24, 0.23)T , α = −0.4993 and

Q1 =

i\j 1 3 4 5 6 7
1
3
4
5
6
7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 2 3 1 1
2 3 4 7 5 1
2 4 6.6 2 2.2 1
3 7 2 3.5 3 3
1 5 2.2 3 4 5
1 1 1 3 5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
A′ =

k\j 1 3 4 5 6 7
1
2
4
5
6
7

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.9 0.3 0.56 0.4 0.34 0.99
0.3 0.6 0.44 0.35 0.65 1
0.8 0.56 0.66 0.34 0.23 0.12
0.24 0.46 0.87 0.94 0.34 0.27
0.45 0.56 0.87 0.65 0.44 0.23
0.55 1 0.42 0.41 0.24 0.35

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

So,J = {1, 3, 4, 5, 6, 7}, J0 = ∅, J ′ = {1, 5}, J ′′ = {3, 4, 6, 7}. Go to Step 6.

Step 6. For all k = 1, 2, 4, 5, 6, 7, and Jk = {j ∈ J ′ ∪ J ′′|akj x̂j � bk},
calculate index set Jk : J1 = {7}, J3 = {6, 7}, J4 = {1, 3, 5}, J5 = {5}, J6 =
{3, 5, 6}, J7 = {3, 5},Λ = J1 × J3 × J4 × J5 × J6 × J7. Because 7 ∈ J1 ⊆
J3, 5 ∈ J5 ⊆ J6,

b1
a17

� b3
a37

,
b5
a55

� b6
a65

, delete J3 and J6 based on Rule 3.2,

that is, delete the 3th and the 6th inequalities of A ◦ x � b. Λ is updated to
Λ = J1 × J4 × J5 × J7 = {7} × {1, 3, 5} × {5} × {3, 5}. Go to Step 7.

Step 7. For all j ∈ {1, 3, 4, 5, 6, 7}, calculate index set Kj K1 = {4},K3 =
{5, 7},K4 = ∅,K5 = {4, 5, 7},K6 = ∅,K7 = {1} and J1 = ∅. Therefore, Rule 3.3
can not be taken advantage of simplification problem (13), go to Step 8.

Step 8. Because J2 = ∅, Rule 3.4 cannot be applied, go to Step 9.
Step 9. Because J3 = ∅, Rule 3.5 cannot be applied, go to Step 10.
Step 10. Because J4 = ∅, Rule 3.6 cannot be applied. Since J ′′ �= ∅, go to

Step 12.
Step 12. By using Λ = J1 ×J4 ×J5 ×J7 = {7}×{1, 3, 5}×{5}×{3, 5} and

Definition 2.2, we find all FRI paths p of (14) are p1, p2, p3, p4, p5, where

p1 = (7, 1, 5, 3), p1 = (7, 1, 5, 5), p3 = (7, 3, 5, 0), p4 = (7, 5, 0, 3), p5 = (7, 5, 0, 5).

The corresponding solutions are

xp1 = (0.1875, 0.23, 0, 0.3723, 0, 0.303), xp2 = (0.1875, 0, 0, 0.561, 0, 0.303),
xp3 = (0, 0.2678, 0, 0.3723, 0, 0.303), xp4 = (0, 0.23, 0, 0.4412, 0, 0.303),
xp5 = (0, 0, 0, 0.561, 0, 0.303).

So, all minimum solutions are:

xp1 = (0.1875, 0.23, 0, 0.3723, 0, 0.303), xp3 = (0, 0.2678, 0, 0.3723, 0, 0.303),
xp4 = (0, 0.23, 0, 0.4412, 0, 0.303), xp5 = (0, 0, 0, 0.561, 0, 0.303).

We solve the following four quadratic programming problems by numerical algo-
rithms [1]

min f(x) =
1
2
x1TQ1x1 + c1x1 + α

s.t. xpl � x1 � x̂1,
(14)
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where l = 1, 3, 4, 5, x1 = (x1, x3, x4, x5, x6, x7)T , x̂1 = (0.213, 0.444, 0.222, 0.588,
0.571, 0.454)T . The optimal solution and optimal value of problem (14) can be
seen in Table 1

Table 1. The optimal solution and optimal value of (14) for any xpl

l x∗ f(x∗)

1 (0.1875,0.23,0.222,0.3723,0,0.303) 1.976082

3 (0,0.2678,0.222,0.3723,0,0.303) 1.362797

4 (0,0.23,0.222,0.4412,0,0.303) 1.807865

5 (0,0,0.222,0.561,0,0.303) 1.882416

So the optimal solution of problem (12) is x∗ = (0, 0.333, 0.2678,
0.222, 0.3723, 0, 0.303), the optimal value is f(x∗) = 1.362797.

5 Conclusion

We have presented a new algorithm for solving quadratic programming problems
with max-product fuzzy relation inequality constraints, based on FRI paths,
branch and bound methods and a numerical algorithm for solving traditional
quadratic programming with interval constraints. The proposed algorithm has
avoided a rather large amount of work that has nothing to do with finding the
optimal solution within the feasible region. As the new algorithm does not need
to find all minimum solutions of the fuzzy relation equations, the efficiency of
the new algorithm has been demonstrated. Numerical examples have proved that
the new algorithm can smoothly reach the optimal point when the variable scale
of the fuzzy relation inequality (2) is not very large. However, when the size of
fuzzy relation inequality (2) is very large, how to effectively solve problem (1) is
still a problem to be studied.
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Abstract. Network flow problem is prevalent in engineering and man-
agement. In real life the parameters between nodes are not certain. Many
authors try to proposed the solution method in different types of this
problem. This paper proposes the simple method to compute the fuzzy
shortest path (fuzzy shortest distance) between source node and destina-
tion node in network flow problem. This algorithm only considered the
nodes that need to reach destination node and doesn’t involve all nodes,
so it has expended less time. The goal is to reach destination node and
find the shortest path, so it’s not important which nodes will be past
through.

Keywords: Ranking function · Trapezoidal fuzzy numbers · Fuzzy
shortest path

1 Introduction

Network is a graph that contains finite set of nodes and arcs, which arcs length
have numerical value. Zadeh [5] presented the parameters by fuzzy numbers.
Lin and Chern [6] proposed the algorithm for the type of network flow that
arc lengths have fuzzy numbers to finding the most vital arcs. In [11], Okada
presented the conception of “degree of possibility” for the arcs that used in
shortest path of network.

Chuang and Kung [2] proposed the new algorithm for computing the fuzzy
shortest path with triangular fuzzy set on arc lengths. Sujatha and Elizabeth
[12] investigated all the paths between source node and destination node and
then find the fuzzy shortest path by fuzzy shortest length heuristic procedure.

Hernandes et al. [3] considered a generic algorithm by using any fuzzy num-
bers ranking index on the decision-maker. In [9] Mahdavi et al. first proposed
ranking order between fuzzy numbers, then improved a dynamic programming
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 25
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approach for the fuzzy shortest chain problem. Amit Kumar [4] proposed a
new method that decision maker obtain the fuzzy shortest path between each
node and source node and use ranking function for comparing paths. We focus
on shortest path between source node and destination node and only consider
paths and nodes utilized in shortest path by using ranking function.

The rest of this paper is organized as follows: Sect. 2 review some basic defini-
tions of fuzzy numbers and trapezoidal fuzzy number’s arithmetic and introduce
ranking function. In Sect. 3 proposed the algorithm and illustrate the method
by helping an example. The conclusions are discussed in Sect. 4.

2 Preliminaries

In this section we review some basic and necessary definitions and notices.

Definition 1 [1]. The subset Ã in set X defined as Ã = {(µÃ(x), x)|x ∈ X},
where µÃ(x) is a real number belong to interval [0, 1]. µÃ(x) is degree of mem-
bership x in Ã and call

µÃ : X → [0, 1],

x → µÃ(x)

a membership function in fuzzy set Ã.

Definition 2. We denote the trapezoidal fuzzy number as Ã = (a1, a2, a3, a4)
and show the set of all trapezoidal fuzzy numbers with F (R).

Definition 3 [1]. Fuzzy number Ã = (a1, a2, a3, a4) is said to be a trapezoidal
fuzzy number if its membership function defined as follows

µÃ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 , x < a1, x > a4,
x−a1
a2−a1

, a1x < a2,

1 , a2xa3,
a4−x
a4−a3

, a3 < xa4.

Definition 4 [1]. Let Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4) be two trape-
zoidal fuzzy numbers. The arithmetic operations properties on trapezoidal fuzzy
numbers denote as follows:

(1) Ã + B̃ = (a1 + b1, a2 + b2, a3 + b3, a4 + b4),
(2) c � 0, c ∈ R; cÃ = (ca1, ca2, ca3, ca4),
(3) c < 0, c ∈ R; cÃ = (ca4, ca3, ca2, ca1),
(4) Ã − B̃ = (a1 − b4, a2 − b3, a3 − b2, a4 − b1).

Ranking Function
The accessible method for comparing fuzzy numbers is to use ranking function
(see [7,13]).
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Definition 5 (Ranking Function). We call R : F (R) → R a ranking function
that effects on elements of F (R)by natural ordering and maps this fuzzy numbers
into real number in R. Suppose Ã1, Ã2 ∈ F (R), we define the orders respect to
ranking function R as follows:

Ã1

R
> Ã2 iff R(Ã1) > R(Ã2),

Ã1

R
< Ã2 iff R(Ã1) < R(Ã2),

Ã1
R= Ã2 iff R(Ã1) = R(Ã2).

Note. It is obvious that R is linear ranking function such that R(cÃ1 + Ã2) =
cR(Ã1) + R(Ã2), where c ∈ R.

Remark 1 [4,14]. Suppose that Ã = (a1, a2, a3, a4) be a trapezoidal fuzzy num-
ber. Ranking function defined on Ã as follows:

R(Ã) =
a1 + a2 + a3 + a4

4
.

3 Process of the Algorithm and Numerical Example

Here by using the definitions and theorem mentioned in Sect. 2, we want to
explain the algorithm step by step.

Suppose that N = {1, 2, ..., n} be the set of all nodes in network and node 1
be the source node and node n be the destination node. P̃ij denotes the fuzzy
distance between node i and node j. Np(i) is the set of all nodes that have
relationship with node i.

Algorithm

(1) P̃11 = 0̃ = (0, 0, 0, 0) because the distance between each node and itself
(loop) is zero.

(2) Put i = 1, find j for P̃1j = P̃11 +
∧

j∈Np(1) P̃1j , then compute P̃1j .
(3) Replace j instead of i, i.e., put i = j.
(4) Now find the new j by P̃1j = P̃1i +

∧
j∈Np(i) P̃ij .

Note. If minimum of dij appears for more than one value of j, it denote
that there exist more than one optimal fuzzy path, so continue the algorithm
by all of them. Consider that which path is minimal in next step, and then
choose the best.

(5) Continue the process since j become equal to n, i.e., arrive to destination
node n, so the algorithm will stops when j = n appears.
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Numerical Examples

Here we illustrate the algorithm by helping numerical example. The example
presented in [4,8] will solving by new method and then you can compare the
results that approached by Liu and Kao in [8] and Kumar and Kaur in [4] and
this method.

Example
In this example we want to find the shortest path between source node and the
destination node with the fuzzy distances in following graph.

Solution
The graph shows the source node is node 1 and the destination node is node 6,
so n = 6 and for the first step P̃11 = (0, 0, 0, 0).

At first i = 1, so it needs to find j by the equation

P̃1j = P̃11 +
∧

j∈Np(1)

P̃1j = P̃11 +
∧

j∈{2,3}
P̃1j = P̃11 + (P̃12 ∧ P̃13)

= (0, 0, 0, 0) + ((10, 20, 20, 30) ∧ (52, 62, 65, 70)),

R(10, 20, 20, 30) =
10 + 20 + 20 + 30

4
= 20,

R(52, 62, 65, 70) =
52 + 62 + 65 + 70

4
= 62.25.

Because R(10, 20, 20, 30) < R(52, 62, 65, 70), so

P̃1j = (0, 0, 0, 0) + ((10, 20, 20, 30) ∧ (52, 62, 65, 70)) = (0, 0, 0, 0) + (10, 20, 20, 30) = (10, 20, 20, 30).

It implies that j = 2, therefore P̃12 = (10, 20, 20, 30).

For the next step substitute i by j = 2, i.e., i = 2 and again it needs to
computing the new j to find the shortest path of P̃1j by using the equation
P̃1j = P̃1i +

∧
j∈Np(i) P̃ij .

P̃1j = P̃12 +
∧

j∈Np(2)P̃2j

= P̃12 +
∧

j∈{3,5}
P̃1j = P̃12 + (P̃23 ∧ P̃25) =

(10, 20, 20, 30) + ((35, 38, 40, 45) ∧ (52, 55, 60, 65)),

R(35, 38, 40, 45) =
35 + 38 + 40 + 45

4
= 39.5,

R(52, 55, 60, 65) =
52 + 55 + 60 + 65

4
= 58,

so P̃1j = (10, 20, 20, 30) + (35, 38, 40, 45) = (45, 58, 60, 75).
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Here j = 3, it implies that P̃13 = (45, 58, 60, 75).
Put i = j = 3, compute following equation to find new j.

P̃1j = P̃13 +
∧

j∈Np(3)

P̃3j = P̃13 +
∧

j∈{4,5}
P̃1j = P̃13 + (P̃34 ∧ P̃35) =

(45, 58, 60, 75) + ((10, 13, 17, 20) ∧ (8, 9, 9, 10)),

R(10, 13, 17, 20) =
10 + 13 + 17 + 20

4
= 15,

R(8, 9, 9, 10) =
8 + 9 + 9 + 10

4
= 9

and
P̃1j = (45, 58, 60, 75) + (8, 9, 9, 10) = (53, 67, 69, 85).

So j = 5 and P̃15 = (53, 67, 69, 85).
Since now we find the shortest path from the source node to node 5. By the

graph, there is only one path from node 5 to node 6. To finding an optimal path
we will solve the last equation as follows. i = 5

P̃1j = P̃15 +
∧

j∈Np(5)

P̃5j = P̃15 +
∧

j∈{6}
P̃1j = P̃15 + P̃56

= (53, 67, 69, 85) + (50, 70, 80, 100) = (103, 137, 149, 185).

The process stops because here j = n = 6. It shows that we find optimal path, so
the algorithm finished. Therefore P̃16 = (103, 137, 149, 185) is the value of fuzzy
shortest path between source node (node 1) to destination node (node 6).

Note. Nodes can labeled by their distance from the source node and the previ-
ous node.

In this example, node 1 can labeled as [(0, 0, 0, 0),−], then arrive to node 2
from node 1, i.e., 1 → 2 so node 2 labels as [(10, 20, 20, 30), 1], it means that you
come from node 1 to node 2 by value distance (10, 20, 20, 30).

Then 1 → 2 → 3, so node 3 can labeled as [(45, 58, 60, 75), 2].
Next node is node 5, 1 → 2 → 3 → 5, so node 5 can labeled as

[(53, 67, 69, 85), 3]. And for the destination node, the path is 1 → 2 → 3 → 5 → 6,
and node 6 can labeled as [(103, 137, 149, 185), 5].

4 Conclusion

In this paper we proposed a new method to solve fuzzy shortest path network
problem with trapezoidal fuzzy numbers. There exist different algorithms to
find the fuzzy shortest path. In [4] the algorithm for computing fuzzy shortest
path between source node and the destination node, involved all the nodes in
network and it needs to find the fuzzy shortest path between source node and
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each other nodes. In this paper we try to improve this method that it doesn’t
need to involve all node to find the shortest path, only the nodes that utilized
to approach destination node, are enough. As you see, the results are the same.
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Abstract. When the causality-relationship is incomplete, it’s easy to have
problem on sample classification. For the sake of solving this problem, this paper
proposes an improved classification recognition algorithm based on causality
analysis. This algorithm has improved the process of classification and recog-
nition which is proposed in Causality Analysis in Factor Spaces [1], and it’s
based on the nearest-neighbor rule and maximum subordination principle. In
addition, aiming at the case that can be only applied in the discrete groups in
Pei-Zhuang Wang’s paper, this article has transformed the continuous data into
discrete data by segmentation method. Therefore, this algorithm expands on its
original application into the case involving continuous data. Experimental results
indicate that this improved classification recognition algorithm can successfully
identify all the samples, and it also significantly improves the overall recognition
rate. Simultaneously, when continuous data is centralizing, this algorithm is
better than most common classification algorithms, and it can be effectively
applied to image classification areas.

Keywords: Factor space � Causality analysis � Nearest-neighbor rule �
Maximum subordination principle � Improved classification recognition
algorithm

1 Introduction

Pei-Zhuang Wang proposed factor space theory [2] in 1982, and built other mathe-
matical theories of knowledge representation based upon it factor space theory [3].
During the first stage of its development, factor space theory focused on concept
representation and inferential decision, which has provided mathematical basis for
China’s artificial intelligence [4]. With the arrival of the big data era, in order to use
factor space theory to solve the problems that generated by this era, Prof. Wang came
up with a new dataset–factor data-bases in 2013 [5], and then proposed causality
analysis in 2014. This method has been widely used in data mining, especially on data
classification problems. This indicates that the development of factor space theory has
entered the second stage.

© Springer International Publishing AG 2018
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2 Propaedeutic

There are two main parts in this article: one is improving the algorithm in Causality
Analysis in Factor Spaces; the other is expanding the application of this algorithm. For
the following study, we introduce the relevant definitions from references and the factor
relation as well as its expression.

2.1 Definition

Definition 1. In factor space theory, the factor being concerned is the resulted factor,
that have impact on them are called conditional factors.

Definition 2. A state of conditional factor fj denotes by s, and the union of all the
objects of s states in fj denotes as ½s�. If all the objects in ½s� has the same results g, then
½s� is one determining class in fj.

Definition 3. The union of all the determining classes of fj is the determining region
from fj to result g.

Definition 4. The ratio of the number of factors in determining region to the total
number of objects m is the determining degree from fj to result g.

Definition 5. In the causality analysis table (Table 1), if factor fj1 ¼ sj1 and
fj2 ¼ sj2 . . .fjend ¼ sjend , then the resulted factor g is t (fj1 ; . . .; fj end 2 F). The
causality-relationship between these kinds of factors are called inference sentences, and
its general notation:

T : fj1 sj2
^ fj2 sj2

^ . . . ^ fjk sjend ! g t

2.2 Causality Analysis Table

According to factor space theory, there is causality relationship of mutual influence and
mutual restriction between factors. Investigating m objects u1; . . .; um, then there will be
a m � n table, when rows are objects, columns are conditional factors, and the last
column is the resulted factor. Table 1 is an example of a causality analysis table.

Table 1. Causality analysis table

U F ! g

f1 … fn g

u1
u2
…
um

fj(ui) g(ui)
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2.3 Causality Analysis in Factor Space

Focusing on the causality analysis table like Table 1, the calculation steps of causality
analysis table in factor space can be concluded as follows:
Step 1. Set the causality analysis table of training as the training domain discourse

Utrain.
Step 2. Select the determined class from the state of all the unclassified factors

fj 2 Fnot finish, and find the determining region, then calculate the determin-
ing degree of result g in each conditional factor.

Step 3. Transform all the determining classes of conditional factors, which possesses
the maximum determining degree, into inference sentence. For instance, the
determining class having max determining degree in conditional factor fj is
½s�, all the objects in ½s� have an unique result t, then the inference sentence
will be T : fj s ! g t.

Step 4. Delete the max determining degree factors from the unclassified factor set,
and group them into the classified factor set Ffinish.

Step 5. Update the state of the unclassified factor set into the union of the state of
classified factor set: the state of unclassified factor fp 2 Fnot finish of object ui
is fpðuiÞ ¼ sp, the state of the new classified factor fj 2 Ffinish is fjðuiÞ ¼ s,
then the updating state of unclassified is fpðuiÞ ¼ fsp; sg.

Step 6. Deleting the max determining degree conditional factor from the training
domain discourse, we get one new domain discourse. If the new domain
discourse is an empty set, then move onto step 7; otherwise, return to step2.

Step 7. Set the causality analysis table of the testing set as the testing domain
discourse Utest, let i ¼ 1.

Step 8. For ui 2 Utest, fj1ðuiÞ ¼ sj1; fj2ðuiÞ ¼ sj2; . . .; fjmaxðuiÞ ¼ sjmax. If the inference
sentence Tk : fj1 sj1^fj2 sj2̂ . . .^fjmax sjmax ! gk exists, then gðuiÞ ¼ gk . Let
i ¼ iþ 1.

Step 9. If i[NðUtestÞ, then NðUtestÞ is the row number of testing domain discourse,
and the algorithm comes to an end. Otherwise, return to step 8.

In summary, Step 1 to Step 6 concludes the casual rule of factors in the training set,
and extract inference sentences; Step 7 to Step 9 is the classification recognition
process in the testing set.

3 Improved Classification Recognition Algorithm Based
on Causality Analysis

3.1 The Problems Exist in Factor Analysis Algorithm

From the naissance to maturation of new algorithms, tests need to be continuously done
to evaluate and find possible problems, and then improve the algorithm to gradually
perfect development. Causality analysis is a new algorithm which arose in the last two
years. It’s inevitable to have some problems: 1. Paper 1 only discusses the application
of factor analysis algorithm in discrete data. There is lack of literature referring to the
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continuous data; 2. Since the process of factor analysis algorithm is conducting causal
analysis on training set to get the causality rule, the testing set does the result estimation
based on these causality rules. If the causality-relationship from the training set is
incomplete, then some testing objects cannot be recognized.

For problem 1, this article tries to divide the continuous data into discrete intervals,
so as to apply it to the factor analysis algorithm. For problem 2, Yanke Bao improved
the algorithm by increasing the utilization of sample information in training set, and
proposed a new knowledge mining algorithm [6]; Haitao Liu built the inference model
of causality analysis by using “knowledge base and an inference engine” principle [7].
This paper attempts to start from a new perspective. It improves the factor analysis
algorithm by utilizing the nearest-neighbor rule and maximum subordination principle,
so where the sample cannot be recognized in the original factor analysis algorithm can
be recognized here, improving the overall recognition rate.

For the sake of visually representing which conditional factors will affect the
resulted factors in the inference sentence to make the algorithm expression more clear,
this paper denotes the inference sentence by a 1 � (n + 1) vector:

T ¼ ð £ £ . . . sj1 . . . sj2 . . . sjend . . . £ t Þ:

The jth1 ; j
th
2 ; . . .; j

th
end columns respectively are denoted as sj1 ; sj2 ; . . .; sjend , representing

the state of jth1 ; j
th
2 ; . . .; j

th
end conditional factor is sj1 ; sj2 ; . . .; sjend , respectively; other

columns are denoted as £, representing conditional factors in inference sentence T
which have no impact on resulted factor; all the not empty factors called non-empty
factors; The ðnþ 1Þth column is the confirmable resulted factor t in this inference
sentence.

3.2 Preprocess of Continuous Data

The recognition rate of classification and recognition in factor analysis algorithm
depends on the reflection degree of inference sentence set between conditional factors
and resulted factors, that is, whether the inference sentence set is complete. There is
generally less possibility of the state in discrete data. Few training samples may already
include most of even all the possibility state, making it easier for the inference sentence
set to be complete. Compared with discrete data, there are too many possible state in
continuous data. It’s really hard to contain all possibilities of state in the training set,
leading to the inference sentence being hard to be complete, resulting in the low
recognition rate of the algorithm. Meanwhile, due to a plethora of state possibility, the
amount of inference sentences will increase and reduce the algorithm efficiency. Hence,
transforming the continuous data set into discrete data will be beneficial to the appli-
cation of causality analysis in continuous data.

For a finite continuous data set S, 8si 2 S, always has min S� si �max S. Thus,

data set S can be the union of n disjoint sets with Length ¼ max S�min S
n , that is

S ¼ ½min S;min Sþ LengthÞ [ . . .[ ½min Sþðn� 1ÞLength;max S�. Then S can be
divided into n intervals: I1¼½min S;min Sþ LengthÞ, I2¼½min Sþ Length;min Sþ
2LengthÞ,…,In¼½min Sþðn� 1ÞLength;max S�.
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For 8si 2 S, there always exist Ij 2 I1; . . .; In such that si 2 Ij,that is all the data
from the finite continuous data set S can be divided into one of n discrete intervals. The
n divided intervals reflect the n level of original data set S from small to large. The
process of segment can be regarded as the map from data set S to different degree set,
denoted as f ðsiÞ ¼ j; if si 2 Ij (Fig. 1).

3.3 Design of Improved Classification Recognition Algorithm Based
on Causality Analysis

The factor analysis algorithm in factor space depends on the complete degree of causal
rule training by the training data set. If the causal rule is incomplete, it will cause some
testing objects to not be recognized, and reduce the overall recognition rate of the
algorithm. If we can do correct identification on the non-recognized object, it will
efficiently increase the overall recognition rate of the algorithm. Learning from the
concept of nearest-neighbor rule and maximum subordination principle, this paper
ameliorates the classified recognition process of factor analysis algorithm in factor
space, and proposes the improved classification recognition algorithm based on
causality analysis, enabling all the test samples to be successfully classified and
recognized.

3.3.1 Nearest-Neighbor Rule
Nearest-neighbor rule is the core principle of K nearest neighbor categorization algo-
rithm. Its core idea is that if most of K samples closest to one sample in characteristic
space belongs to one class, then this sample also belongs to this class [8]. Based on this
principle, this article calculates the Euclidean distance between the testing sample and
all inference sentences, and the resulting closest distance of inference sentence becomes
the classified result of this testing sample. Thus, all the testing sample can be classified:

Assume the conditional factors of testing sample ui are f1ðuiÞ; f2ðuiÞ; . . .; fnðuiÞ,
respectively, 9Tk ¼ ð £ £ . . . sj1 . . . sj2 . . . sjend . . . £ tk Þ, the Euclidean distance
between testing sample ui and inference sentence Tk defined as:

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsj1 � fj1ðuiÞÞ2 þðsj2 � fj2ðuiÞÞ2 þ . . .þðsjn � fjnðuiÞÞ2

q
: ð1Þ

In formula (1), the empty conditional factors in inference sentence and resulted
factors are not involved in the calculation. If the data is discrete, then it needs to do the
data standardization in order to eliminate the dimensional impact on the calculation;

Fig. 1. Interval segmentation of continuous data
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doing the segmentation on continuous data has the same effect so standardization for
continuous data isn’t required.

When doing classified recognition on testing sample ui, calculate the distance D
between ui and all inference sentences T , then the resulted factor of the closest distance
inference sentence becomes the testing classified result of ui. If Dk ¼ 0, then the
distance between ui and Tk will be the minimum distance, and the result of ui is
identified as tk. This means that the testing sample is in full agreement with the state of
non-empty conditional factor of Tk , and it’s equivalent to the classified recognition
principle of causality analysis in factor space. If 8Dk 2 fDg, Dk 6¼ 0, this indicates that
ui doesn’t match with any inference sentence. This is the case that this sample cannot
be recognized in the causality analysis, and according to the nearest-neighbor rule, the
result of ui matches the closest distance result of inference sentence.

3.3.2 Membership Degree and Maximum Subordination Principle
Doing classified recognition based on the nearest-neighbor rule, thought it can classify
and recognize all the non-recognized samples, if ui has non-unique nearest-neighbors,
that is, if there are two or more inference sentences which coincide with the distance of
ui and are minimum, it necessary to properly classify and determine which nearest
neighbor is most reliable. This paper introduces the membership degree and maximum
subordination principle from fuzzy mathematics theory [9], in order to figures out the
most reliable inference sentence. Membership degree is the concept that measures the
degree of object belonging to one factor. If there is one object u and one factor A� , then

A�ðuÞ is the membership degree from u to A� . The range of membership degree is ½0; 1�.
The closer it is to 1, the higher degree of u belonging to A� ; the closer it is to 0,the lower

the degree. If there is one object u , and factors A� 1
; A� 2

; . . .; A� n
, and if A� i

¼ maxfA� 1
;

A� 2
; . . .; A� n

g, then u belongs to A� i
. This is called maximum subordination principle.

Focusing on causality analysis tables like Table 1, assume that the resulted factors
are divided into p categories: g ¼ fg1; g2; . . .; gpg, conditional factors fj has q different
states: fj ¼ fs1; s2; . . .; sqg, denotes the row number of g ¼ gkðk� pÞ in the table as mk,
denotes the row number of the result is gk and conditional factors fj ¼ slðl� qÞ as nk;j;l,
then the calculation formula of membership degree is:

Lðk; j; lÞ ¼ nk;j;l
mk

: ð2Þ

In formula (2), Lðk; j; lÞ represents the result of gk , the membership degree of factor
fj ¼ sl indicates that the degree of the state sl from factor fj can represent the gk
category. The higher the membership degree, the higher the degree of this sample
belonging to the gk category when fj ¼ sl. After calculating membership degree of all
categories, factors and states, we will obtain p� n� q membership degree table L.

For sample ui, if 9Tk1 ; Tk2 ; . . .; Tkend , Dk1 ¼ Dk2 ¼ . . . ¼ Dkend 6¼ 0 and all of them
are the minimum, for any Tk ¼ ð £ £ . . . sj1 . . . sj2 . . . sjN . . . £ tk Þ
(Tk 2 fTk1 ; Tk2 ; . . .; Tkendg) having NðN� nÞ non-empty factors. This defines the aver-
age membership degree Lk as the membership degree between sample ui and inference
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sentence Tk, which represents the matching degree of ui with Tk. The larger the average
membership degree, the more ui match with Tk .

In order to calculate average membership degree Lk , define function HðvÞ to
determine whether sample ui is consistent with the state of non-empty factor in
inference sentence Tk:

HðvÞ ¼ 1 if sjv ¼ fjvðuiÞ;
0 if sjv 6¼ fjvðuiÞ:

(
ð3Þ

Then calculate the average membership degree:

Lk ¼
PN
v¼1

HðvÞLðtk; jv; sjvÞ
N

: ð4Þ

Based on formulas (3) and (4), we can calculate that the average membership
degree of Tk1 ; Tk2 ; . . .; Tkend are Lk1 ; Lk2 ; . . .; Lkend , respectively. If
Lkmax ¼ maxfLk1 ; Lk2 ; . . .; Lkendg, according to the maximum subordination principle,
then sample ui belongs to inference sentence Tkmax.

4 Result Analysis

This paper uses three data sets from UCI machine learning database to test the
improved classification recognition algorithm based on causality analysis, and the
overall recognition rate serves as the evaluation index to detect the effect of practical
applications of this algorithm.

4.1 Dataset Description

4.1.1 The United States Wisconsin Breast Cancer Database [10, 11]
This dataset is a discrete dataset, having 699 samples. There are 9 conditional factors in
this dataset and each factor includes 10 states, marked as 1–10 respectively; the resulted
factors are divided into 2 classes, g ¼ 2 represents benign, and g ¼ 4 represents
malignant. There are some abnormal state ‘?’ existing in some factors in this dataset,
after deleting the abnormal samples, there are 683 samples left, selecting the former
533 samples as the training set, and the latter 150 samples as testing set. Using the
original causality analysis, 140 samples are correctly recognized, 1 sample is
misidentified, 9 samples cannot be recognized, resulting in an overall recognition rate
of 93.33%.

4.1.2 Image Segmentation Database [12]
This dataset has 210 training samples and 2100 testing samples. There are 9 conditional
factors, and the resulted factors are divided into 7 categories: brickface, sky, foliage,
cement, window, path, and grass, respectively. This dataset is continuous data, using
the method of segmentation to divide each conditional factor into 4 types.

256 Y. Zhong et al.



4.1.3 Letter Recognition Database [13]
This dataset has 20000 samples, selecting the first 16000 samples into the training set,
and 4000 samples into the testing set. There are 16 conditional factors in this dataset.
The original data of these conditional factors is continuous data and is divided into 16
categories after segmentation. The resulted factors have 26 categories, denoted by letter
A * Z.

4.2 Testing Results and Analysis

The United States Wisconsin breast cancer database is a discrete dataset, and is tested
by the improved classification recognition algorithm based on causality analysis. The
testing result: 148 samples are correctly classified, with 2 identification sample errors,
resulting in an overall recognition rate of 98.67%. This test result indicates that the
improved algorithm can classify and recognize the 9 non-recognized samples, and 8 of
them are classified properly with 1 misidentified, resulting in an increase of overall
recognition rate by 5.34%.

Image segmentation database and letter recognition database are both continuous
figure classification datasets. After segmentation, they can be tested by the improved
classification recognition algorithm based on causality analysis. The test results: the
overall recognition rate in image segmentation database is 86.95%, and is 77.65% in
the letter recognition database. Amund Tveit used MIPSVM, C4.5, Navie Bayes,
C_SVM, which are common classified algorithms to get these results. [14] Compared
with classified results conducted by Amund Tveit, we can find only C4.5 has better
performance in two dataset than the improved algorithm; though C-SVM has a higher
overall recognition rate in letter recognition database than the improved algorithm, its
performance in the image segmentation database is far beneath the improved algorithm.
The overall recognition rate of MIPSVM and Navie Bayes are both smaller than the
improved algorithm. The comparative result indicates that the improved classification
recognition algorithm based on causality analysis has a good performance in contin-
uous dataset, coming in the second position amongst the four common classified
algorithms discussed above.

5 Conclusion

In situations where some objects cannot be recognized in the practical application of
causality analysis, the paper improves the classified process based on the
nearest-neighbor principle, and builds the membership degree table, making further
selections among the non-unique nearest cases based on the maximum subordination
principle. The result of testing the breast cancer database shows that the improved
algorithm can recognize all the testing sample, and the recognition rate has significantly
increased comparing to the causality analysis in factor space. Meanwhile, to apply the
improved algorithm to continuous cases, this paper divides the continuous data into
several disjoint intervals, and arranges the original data into the intervals, then trans-
forms the continuous data into discrete data by the method of segmentation. This paper
tests the performance of the improved algorithm by selecting the image segmentation
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database and letter recognition to be the testing dataset. The results indicate that the
improved classification recognition algorithm based on causality analysis can effec-
tively apply to continuous cases. Making a comparison with MIPSVM, C4.5, Navie
Bayes, and C_SVM, its overall recognition rate is only inferior to C4.5, and superior to
the other classified algorithms.

Though the improved classification recognition algorithm based on causality
analysis has explored the continuous case, it hasn’t address the mixed case. In the
process of improving the classified recognition, in order to address the not-recognized
problem and pursue a higher overall recognition rate, it’s inevitable to increase the
complexity of the algorithm. The future direction of study will be to even further
improve the algorithm effectiveness and efficiency at the same time.
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Abstract. In this study, we define notion of intuitionistic fuzzy filters
(IFF) in BE -algebras. We introduced intuitionistic fuzzy filters of fil-
teristic soft BE-algebras and discussed related properties by means of
∈-soft sets and q-soft sets.
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1 Introduction

Molodtsov [1], popularized the soft sets as a new soft tool in mathematics for
dealing with uncertainties. Subsequently, this theory has been applied in many
research areas such as data analysis, approximate reasoning and decision-making.
Maji et al. [2], proposed some useful results in soft sets theory. In 2009 Ali
et al. [3], presented some new operations in soft set theory. Nowadays, research
in this area is advancing rapidly with remarkable applications. Soft sets have
been applied in various algebraic structures, such as in group theory, rings the-
ory and semi-rings theory etc. In 2007 Kim and Kim [4], presented concept of
BE-algebras as a generalization of a dual BCK-algebra. They examined some
properties of BE-algebras by utilizing upper sets in BE-algebras. In [5], Rezaei
and Saeid investigated commutative ideals of BE –algebras and see [6]. Ahn
and So [7], characterized BE -algebras by using ideals. Ahn, Kim, So [8], pre-
sented the notion of fuzzy BE-algebras, and Jun, Lee, Song [9], investigated the
concept of fuzzy ideals in BE-algebras. Recently, Abdullah et al. [11] presented
N-structures in implicative filters of BE-algebras. Applications of soft sets in BE-
algebras presented in [10]. In this work, we introduce intuitionistic fuzzy filters
of filteristic soft BE-algebras using notions presnted in [13].

In this study, we define notion of intuitionistic fuzzy filters (IFF) in BE -
algebras. We introduced intuitionistic fuzzy filters of filteristic soft BE-algebras
and discussed related properties by means of ∈-soft sets and q-soft sets.
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 27
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2 Preliminaries

In what follows, let X be a BE-algebra unless otherwise specified.

Definition 2.1 [4]. An algebra (X, �, 1) of type (2, 0) is called a BE -algebra if
the following axioms holds:

(i) a � a = 1,
(ii) a � 1 = 1,
(iii) 1 � a = a,
(iv) a1 � (a2 � a3) = a2 � (a1 � a3) , for all a1, a2, a3 ∈ X.

Example 1. Let X = {1, p, q, r, s} be a set with table:

� 1 p q r s
1 1 p q r s
p 1 1 p s s
q 1 p 1 s s
r 1 1 p 1 p
s 1 1 1 1 1

Clearly, (X, �, 1) is a BE-algebra.
We consider the relation, � on (X, �, 1) by a � b if and only if a � b = 1.
In rest of paper, X is BE-algebra, unless else we particularized.

Definition 2.2 [7]. A subset L �= ∅ of a BE-algebra X is called an filter of X
if it holds:

(i) 1 ∈ L,
(ii) (y � x) ∈ L, y ∈ X =⇒ x ∈ X, ∀x, y ∈ L.

Definition 2.3. A fuzzy set λ in a BE-algebra X is called a fuzzy filter of X if
it satisfies for all x, y ∈ X:

(1) λ(1) ≥ λ(x),
(2) λ(x) ≥ λ(y � x) ∧ λ(y).

Let X be an universe. Let P (X) be a set of power set of X and E be non-
empty subsets of X. Then we define following definitions:

Definition 2.4 [1]. A soft set (S-set) (γ̃, E) over X is defined as γ̃ : E → P (X)
such that γ̃(a) = ∅ if a /∈ E. It can be represented by (γ̃, E) = {(a, γ̃(a)) | a ∈
X, γ̃(a) ∈ P (X)}. The set of all soft sets over X is denoted by S(X).

Definition 2.5. Let (γ̃1,X), (γ̃2,X) and (γ̃, X) ∈ S(X). Then,

(i) A soft set is called null soft set if γ̃(a) = ∅, for a ∈ X. It denoted by ˜ΦL.
(ii) A soft set is called whole soft set if γ̃(a) = X, for a ∈ X. It denoted by μ̃L.
(iii) Soft set γ̃1 is called subset of γ̃2, denoted by (γ̃1,X) � (γ̃2,X) and defined

by γ̃1(a) ⊆ γ̃2(a) for all a ∈ X.
(iv) Intersection of γ̃1 and γ̃2 denoted by (γ̃1,X)  (γ̃2,X) and defined by

(γ̃1  γ̃2) (a) = γ̃1(a) ∩ γ̃2(a) for all a ∈ X.
(v) Union of γ̃1 and γ̃2 denoted by (γ̃1,X) � (γ̃2,X) and defined by

(γ̃1 � γ̃2) (a) = γ̃1(a) ∪ γ̃2(a) for all a ∈ X.
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3 Filteristic Soft BE-algebras

In [12], an intuitionistic fuzzy set is defined as in following form:

Definition 3.1. An intuitionistic fuzzy subset (IFS in short) A is a non-empty
set X is an object having the form A = {(x, μA(x), νA(x)) : x ∈ X}, where the
functions μA : X −→ [0, 1] and νA : X −→ [0, 1] denote the degree of membership
and the degree of non membership, respectively, and 0 ≤ μA(x) + νA(x) ≤ 1 for
all x ∈ X.

Definition 3.2. An intuitionistic fuzzy set A in a BE-algebra X is called an
intuitionistic fuzzy filter of X (IFF (X)) if it satisfies:

(IFF1) μA(1) ≥ μA(x), νA(1) ≤ νA(x) ∀x, y ∈ X,
(IFF2) μA(x) ≥ min{μA(y � x), μA(y)}, νA(x) ≤ max{νA(y � x), νA(y)}
∀x, y ∈ X.

Definition 3.3. Let x be a fixed point of a non-empty set X. If t ∈ (0, 1] and
s ∈ [0, 1) be two real numbers such that 0 ≤ s+ t ≤ 1 then the intuitionistic fuzzy
set of the form 〈x, (t, s)〉 = 〈x, xt, x1−s〉, is called an intuitionistic fuzzy point.
We shall use the notation x(t,s) instead of 〈x, xt, x1−s〉. For an IFP x(t,s) in X
and an IFS A = {(x, μA(x), νA(x)) : x ∈ X}, we define x(t,s) ∈ A as follows:

x(t,s) ∈ A resp. x(t,s)qA means that μA(x) ≥ t and νA(x) ≤ s (resp. μA(x)+
t > 1 and νA(x)+s < 1 and in this case we say that x(t,s) belong to (resp. quasi-
coinsident with) an intuitionistic fuzzy set A = {(x, μA(x), νA(x)) : x ∈ X}.

Definition 3.4. Let (γ̃, E) be a soft set over X, then (γ̃, E) is called a filteristic
soft BE-algebra over X if γ̃ (x) is a filter of X for all x ∈ E.

For an intuitionistic fuzzy set A = {(x, μA(x), νA(x)) : x ∈ X} of X and
E = E1 ∪ E2 where E1 = (0, 1] and E2 = [0, 1) consider two set valued function
γ̃ : E −→ S(X), (t, s) �−→ {x ∈ X | x(t,s) ∈ A} = {x ∈ X | μA(x) ≥ t, νA(x) ≤
s}. Then (γ̃, E) is called ∈-soft set.

γ̃q : E −→ S(X), (t, s) �−→ {x ∈ X | x(t,s)qA} = {x ∈ X | μA(x) + t ≥
1, νA(x) + s ≤ 1}. Then (γ̃q, E) is called q-soft set.

Theorem 3.1. Let A = {(x, μA(x), νA(x)) : x ∈ X} be a IFS of X and (γ̃, E),
be an ∈-soft set over X with E = E1 ∪ E2 where E1 = (0, 1] and E2 = [0, 1).
Then the following are equivalent:

(i) (γ̃, E) is a filteristic soft BE-algebra over X,
(ii) A is an intuitionistic fuzzy filter of X.

Proof. (i) =⇒(ii). Assume that (γ̃, E) is a filteristic soft BE-algebra over X,
then γ̃(t, s) is a filter of X for all t ∈ (0, 1] and s ∈ [1, 0). If there exist some
x, y ∈ X such that μA(1) < μA(x) and νA(1) > νA(x), then for some t ∈
(0, 1] and s ∈ [1, 0) we have μA(1) < t ≤ μA(x) and νA(1) > s ≥ νA(x).
Thus x ∈ γ̃(t, s) but 1∈γ̃(t, s), which is contradiction, therefore μA(1) ≥ t and
νA(1) ≤ s. Now let x, y ∈ X such that μA(x) < min{μA(y � x), μA(y)} and
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νA(x) > max{νA(y � x), νA(x)}, then for some t ∈ (0, 1] and s ∈ [1, 0) we have
μA(x) < t ≤ min{μA(y � x), μA(y)} and νA(x) > s > max{νA(y � x), νA(x)}.
Thus y � x ∈ γ̃(t, s), y ∈ γ̃(t, s) but x∈γ̃(t, s), which is contradiction, therefore
μA(x) ≥ t and νA(x) ≤ s. Hence A is IFF of X.

(ii) =⇒(i). Assume that A is an intuitionistic fuzzy filter of X. Let x ∈ X,
t ∈ (0, 1] and s ∈ [1, 0) such that x ∈ γ̃(t, s) that is x(t,s) ∈ A or μA(x) ≥ t
and νA(x) ≤ s. Since A is an intuitionistic fuzzy filter of X, so we have μA(1) ≥
μA(x) ≥ t and νA(1) ≤ νA(x) ≤ s. Then μA(1) ≥ t and νA(1) ≤ s, it follows that,
1 ∈ γ̃(t, s). Now, let y ∈ γ̃(t, s) and y � x ∈ γ̃(t, s) that is μA(y) ≥ t , νA(y) ≤ s
and μA(y�x) ≥ t, νA(y�x) ≤ s. Since A is an intuitionistic fuzzy filter of X, so we
have μA(x) ≥ min{μA(y�x), μA(y)} ≥ t and νA(x) ≤ max{νA(y�x), νA(y)} ≤ s.
Then μA(x) ≥ t and νA(x) ≤ s, it follows that, x ∈ γ̃(t, s).

Theorem 3.2. Let A = {(x, μA(x), νA(x)) : x ∈ X} be a IFS of X and (γ̃, E)
a q-soft set over X with E = E1 ∪ E2, where E1 = (0, 1] and E2 = [0, 1). Then
the following are equivalent:

(i) A is an intuitionistic fuzzy filter of X,
(ii) (For all t ∈ E1 and s ∈ E2) (γ̃q(t, s) �= ∅ =⇒ γ̃q(t, s) filter of X.

Proof. (i) =⇒(ii). Assume that A is an intuitionistic fuzzy filter of X. Let x ∈ X,
t ∈ (0, 1] and s ∈ [1, 0) such that x ∈ γ̃q(t, s) that is x(t,s)qA or μA(x) + t ≥ 1
and νA(x) + s ≤ 1. Since A is an intuitionistic fuzzy filter of X, so we have
μA(1)+t ≥ μA(x)+t ≥ 1 and νA(1)+s ≤ νA(x)+s ≤ 1. Then μA(1)+t ≥ 1 and
νA(1)+s ≤ 1, it follows that, 1 ∈ γ̃q(t, s). Now, let y ∈ γ̃q(t, s) and y�x ∈ γ̃q(t, s)
that is μA(y) + t ≥ 1, νA(y) + s ≤ 1 and μA(y � x) + t ≥ 1, νA(y � x) + s ≤ 1.
Since A is an intuitionistic fuzzy filter of X, so we have μA(x)+ t ≥ min{μA(y �
x), μA(y)} + t ≥ 1 and νA(x) + s ≤ max{νA(y � x), νA(y)} + s ≤ 1. Then
μA(x) + t ≥ 1 and νA(x) + s ≤ 1, it follows that, x ∈ γ̃q(t, s).

(ii) =⇒(i). Assume that γ̃q(t, s) �= ∅ is a filter of X for all t ∈ (0, 1] and s ∈
[1, 0). If there exist some x, y ∈ X such that μA(1) < μA(x) and νA(1) > νA(x),
then for some t ∈ (0, 1] and s ∈ [1, 0) we have μA(1) + t < 1 ≤ μA(x) + t and
νA(1) + t > 1 ≥ νA(x) + s. Thus x(t,s)qA but1(t,s)qA, which is contradiction,
therefore μA(1) + t ≥ 1 and νA(1) + s ≤ 1 and μA(1) ≥ μA(x) and νA(1) ≤
νA(x). Now let x, y ∈ X such that μA(x) < min{μA(y � x), μA(y)} and νA(x) >
max{νA(y�x), νA(x)}, then for some t ∈ (0, 1] and s ∈ [1, 0) we have μA(x)+t <
1 ≤ min{μA(y � x), μA(y)} + t and νA(x) + s > 1 > max{νA(y � x), νA(x)} + s.
Thus y �x ∈ γ̃q(t, s), y ∈ γ̃q(t, s) but x∈γ̃q(t, s), which is contradiction, therefore
μA(x) + t ≥ 1 and νA(x) + s ≤ 1. Hence A is IFF of X.

Example 2. Consider BE-algebra X = {1, r1, r2} defined as follow:

� 1 r1 r2 r3
1 1 r1 r2 r3
r1 1 1 r2 r2
r2 1 r1 1 r1
r3 1 1 1 1
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We define IFS A = {(x, μA(x), νA(x)) : x ∈ X} in X as follows:

μA(x) =

⎧

⎨

⎩

0.7, x = 1,
0.5, x = r1,
0.3, x = r2, r3,

νA(x) =

⎧

⎨

⎩

0, x = 1,
0, x = r1,
0.6, x = r2, r3.

Let (γ̃q, E) a q-soft set over X with E = E1 ∪ E2 where E1 = (0, 1] and
E2 = [0, 1). And γ̃q(t, s) = {x ∈ X | μA(x) + t ≥ 1, νA(x) + s ≤ 1} = {1, r1}.
One can easily check that A ∈ IFF (X) ⇐⇒ γ̃q(t, s) is a filter of X.

4 Conclusion

In above study, we investigated IFF -filters in BE-algebras and discussed some
basic results of IFF -filters. Our approach provides a new insights into BE-
algebras using properties of the ∈-soft sets and q-soft sets. Hopefully, these
notions and essential results may lead to significant and new results in related
fields.
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Abstract. The atom-bond connectivity (ABC) index is a degree-based molec-
ular structure descriptor that found chemical applications. A chemical tree is a
tree whose maximum degree is no greater than 4. The lower bound of ABC index
for chemical trees has been obtained by Furtula et al. [Discrete Applied Math-
ematics, 157(2009)2828-2835]. In this paper, we sharpened the lower bound of
atom-bond connectivity index of chemical trees of some particular cases. In
addition, a way to obtain extremal graphs is obtained, which shows the com-
plexity of the structure of extremal graphs.

Keywords: Chemical trees � Atom-bond connectivity index � Extremal
graphs � Minimal values

1 Introduction

Topological molecular index, which is widely studied in QSPR/QSAR of chemical
theory, is one of the most active research fields in modern chemical graph theory [1].

If G = (V,E) is a molecular graph, and du; dv are the degree of the its terminal
vertices u and v of edge uv; then the atom-bond connectivity (ABC) index of G is

defined by ABC Gð Þ ¼ P
uv2E Tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
du þdv�2

dudv

q
. This molecular structure descriptor,

introduced by Estrada et al. in 1998, can serve as a descriptor of thermodynamic
stability of acyclic saturated hydrocarbons and the strain energy of their cyclic
congeners.

In 2009, it has been proven by Furtula et al. [2] that, among all trees, the star tree Sn
hasthe maximal ABC-index. But, finding the minimal ABC values of trees and its
graphs remain to be a difficult problem. Gutman et al. [3] have proven some structural
features of the trees with minimal ABC-index. As a particular case, chemical trees also
have the same structural features.

Lemma 1.1 [3]. If n � 10, then the n-vertex tree with minimal ABC-index does not
contain internal paths of length k � 2.

© Springer International Publishing AG 2018
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Lemma 1.2 [4]. If n � 10 and T is an n-vertex tree with minimal ABC-index, then
each pendent path of T is of length 2or 3, and T contains at most one pendent path of
length 3.

Lemma 1.3 [5]. Let T be a tree with minimal ABC-index. For every positive integer d
the vertices with degrees at least d induce a subtree of T.

Boris Furtula et al. [2] reached a conclusion about value ranges of ABC-index of
chemical trees.

Lemma 1.4 [2]. Let T be a chemical tree with n vertices. Then,

0; n� 2
1ffiffi
2

p ðn� 1Þ; 3� n� 9
8ffiffi
2

p þ 2
3 ; n ¼ 10

3
ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
132 nþ �63

ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
132 ; n[ 10

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

�ABCðTÞ� nþ 3
4

ffiffiffi
3

p
þ n� 5

4

ffiffiffiffi
2:

p

At the same time, extremal graph T1 (see Fig. 1) which reaches the lower bound is
given. This type of extremal graph meets the situation that n = 11 k + 10 (k � 1).

Its ABC index is ABC T1ð Þ ¼ 3
ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
132 nþ �63

ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
132 :

Based on the theory of Furtula et al., this paper improved the lower bond of Lemma
1.4, found out the minimal ABC index of n = 11 k + x (x = 0, 1, 2,…, 9) and a way to
construct various kinds of extremal graphs with a same minimal ABC index. The
conclusion of paper [2] is a special case for x = 10.

2 Minimal ABC Index of Chemical Tree

Definition 2.1. Chemical tree Tn with minimal ABC index has vertex of degree 4,
called basic chemical tree.

Fig. 1. Chemical tree T1 (n = 11 k + 10)
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Lemma 2.1. If basic chemical tree Tn contains chemical tree T2 (see Fig. 2) for
n > 16, then it doesn’t contain structure B1 (see Fig. 3).

Proof. We proof it by way of contradiction for two cases.

Case 1: If both T2 and B1 exist and are adjacent, it can lead to structure B2 (see Fig. 4).

Its ABC index is ABC B2ð Þ ¼
ffiffiffiffi
15

p þ 13
ffiffi
2

p
2 :

But B2 can be transformed into structure B3 (see Fig. 5) whose ABC index is

ABC B3ð Þ ¼
ffiffi
6

p þ 14
ffiffi
2

p
2 : Obviously, ABC index of B3 is smaller than B2.

Case 2: If both T2 and B1 exist but not adjacent, it can lead to structure B4 (see Fig. 6)
where circles represent trees or forests.

Fig. 2. Chemical tree T2

Fig. 3. Structure B1

Fig. 4. Structure B2

Fig. 5. Structure B3
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From Lemma 1.3, V2 of B4 must be a vertex of degree 4 or degree 3. Hence, we
have to discuss the following two cases:

Case 2.1: V2 is a vertex of degree 3.

The ABC index of B4 is ABC B4ð Þ ¼ Kþ 4þ 2
ffiffiffiffi
15

p þ 39
ffiffi
2

p
6 .4þ 2

ffiffiffiffi
15

p þ 39
ffiffi
2

p
6 where K is the

sum of ABC index of edges in B4 which is neither V1V2 nor in B1 or T2.
But B4 can be transformed into structure B5 (See Fig. 7) whose ABC index is

ABC B5ð Þ ¼ Kþ
ffiffi
6

p þ 14
ffiffi
2

p
2 which is obviously smaller than B4. A contradiction is

therefore obtained.

Case 2.2: V2 is a vertex of degree 4.

The ABC index of B4 is ABC B4ð Þ ¼ Kþ
ffiffiffiffi
15

p þ 13
ffiffi
2

p
2 : But the ABC index of B5 is

ABC B5ð Þ ¼ Kþ
ffiffi
6

p þ 14
ffiffi
2

p
2 : Hence, ABC index of B5 is smaller than B4. Again, a

contradiction.
In summary, if Tn contains chemical tree T2, Tn will not contain structure B1.
As for n = 11 k + 10, when k = 1, T3 (see Fig. 8) obviously is the extremal graph

of chemical tree with minimal ABC index, which is called the basic chemical tree of

T1. The ABC index of T3 is ABC T3ð Þ ¼ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
6 :

Fig. 6. Structure B4

Fig. 7. Structure B5

Fig. 8. Chemical tree T3
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When k > 1, T1 is a type of extremal graphs of chemical trees with minimal ABC
index.When k increases by 1(while n increases by 11 at the same time), we split an edges
in T3 which is adjacent to a pair of vertices with degree 4 and degree 3 respectively with a
new vertex v, and attach T2 to the splitted graph by identifying v and V4. Thus,

ABC T11kþ 1Oð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
ðk� 1Þþ 4

ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

6

¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
kþ �3

ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12

¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

132
nþ �63

ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

132
:

From 1.4, the ABC index of T1 consists of the ABC index of chemical tree

T3ABC T3ð Þ ¼ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
6 and the ABC index of T0

2ABC T0
2

� � ¼ 3
ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
12 which

is the sum of the ABC index of newly attached k (k > 1) chemical tree T2.
Combining Lemma 1.4, we obtain the extremal graphs of chemical trees with

minimal ABC index and its ABC index formula below.

Proposition 2.1. Assuming n = 11 k (k is a positive integer), then

(1) For k = 1, T4 (see Fig. 9) is the chemical trees with minimal ABC index. Its ABC

index is ABC T4ð Þ ¼ 4þ 27
ffiffi
2

p
6 :

(2) For k � 2, the minimal ABC index is given by the following formula

ABC T11kð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 2ð Þþ 3

ffiffiffi
6

p þ ffiffiffiffiffi
15

p þ 54
ffiffiffi
2

p

6
ð1Þ

T5 (see Fig. 10) is a type of extremal graphs of chemical trees with minimal ABC
index.

Fig. 9. Chemical tree T4 (n = 11)

Fig. 10. Chemical tree T5 (n = 11 k,k > 1)
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Proof. When k = 1, we list all possible graphs out by using enumeration method.
Restrained by Lemmas 1.1, 1.2 and 1.3, T3 is the only one chemical tree with ABC
index.

In a similar way, when k = 2, T6 (see Fig. 11), which is called basic chemical tree of
T5, is the chemical tree with minimal ABC index. Its ABC index is

ABC T6ð Þ ¼ 3
ffiffi
6

p þ ffiffiffiffi
15

p þ 54
ffiffi
2

p
6 :

We prove the following by way of contradiction.
When k � 2, we assume that formula (1) does not hold. That is to say, there exists

a chemical tree ~T5 which is not isomorphic to T5 but has the minimal ABC index such

that ABC ~T5
� � ¼ Lþ 3

ffiffi
6

p þ ffiffiffiffi
15

p þ 54
ffiffi
2

p
6 where L\ 3

ffiffi
6

p þ 4
ffiffiffiffi
15

p þ 48
ffiffi
2

p
12 :

Hence, we can obtain another chemical tree ~T1 from T2 by using the same way. We

constructed chemical tree T1. And ABC ~T1
� � ¼ Lþ 4

ffiffiffiffi
15

p þ 48
ffiffi
2

p
6 < ABC (T1).

This is a contradiction to Lemma 1.4. So formula (1) must hold.
The following Propositions 2.2–2.10 can be proved by a similar way.

Proposition 2.2. Suppose n = 11 k + 1 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 1 can be calculated by the following formula

ABC T11kþ 1ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ

ffiffiffiffiffi
15

p þ 30
ffiffiffi
2

p

6

T7 (see Fig. 12) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Fig. 11. Chemical tree T6 (n = 22)

Fig. 12. Chemical tree T7 (n = 11 k + 1)
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Proposition 2.3. Suppose n = 11 k + 2 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 2 can be calculated by the following formula

ABC T11kþ 2ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ 4þ 15

ffiffiffi
2

p

3

T8 (see Fig. 13) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Proposition 2.4. Suppose n = 11 k + 3 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 3 can be calculated by the following formula

ABC T11kþ 3ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ

ffiffiffi
6

p þ 24
ffiffiffi
2

p

4

T9 (see Fig. 14) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Proposition 2.5. Suppose n = 11 k + 4 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 4 can be calculated by the following formula

ABC T11kþ 4ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ

ffiffiffiffiffi
15

p þ 18
ffiffiffi
2

p

3

T10 (see Fig. 15) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Fig. 13. Chemical tree T8 (n = 11 k + 2)

Fig. 14. Chemical tree T9 (n = 11 k + 3)
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Proposition 2.6. Suppose n = 11 k + 5 (k is a positive integer), then

(1) When k = 1, T11 (see Fig. 16) is the chemical trees with minimal ABC index.
Its ABC index is

ABC T11ð Þ ¼
ffiffiffiffiffi
15

p þ 39
ffiffiffi
2

p

6

(2) When k � 2, the minimal ABC index of T11kþ 5 can be calculated by the fol-
lowing formula

ABC T11kþ 5ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 2ð Þþ 9

ffiffiffi
6

p þ 2
ffiffiffiffiffi
15

p þ 132
ffiffiffi
2

p

12

T12 (see Fig. 17) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Fig. 15. Chemical tree T10 (n = 11 k + 4)

Fig. 16. Chemical tree T11 (n = 16)

Fig. 17. Chemical tree T12 (n = 11 k + 5,k > 1)
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Proposition 2.7. Suppose n = 11 k + 6 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 6 can be calculated by the following formula

ABC T11kþ 6ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ 3

ffiffiffi
6

p þ 2
ffiffiffiffiffi
15

p þ 84
ffiffiffi
2

p

12

T13 (see Fig. 18) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Proposition 2.8. Suppose n = 11 k + 7 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 7 can be calculated by the following formula

ABC T11kþ 7ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ 9

ffiffiffi
6

p þ 2
ffiffiffiffiffi
15

p þ 84
ffiffiffi
2

p

12

T14 (see Fig. 19) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Proposition 2.9. Suppose n = 11 k + 8 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 8 can be calculated by the following formula

ABC T11kþ 8ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ

ffiffiffi
6

p þ 16
ffiffiffi
2

p

2

T15 (see Fig. 20) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Fig. 18. Chemical tree T13 (n = 11 k + 6)

Fig. 19. Chemical tree T14 (n = 11 k + 7)
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Proposition 2.10. Suppose n = 11 k + 9 (k is a positive integer), for k � 1, the
minimal ABC index of T11kþ 9 can be calculated by the following formula

ABC T11kþ 9ð Þ ¼ 3
ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 48
ffiffiffi
2

p

12
k� 1ð Þþ 3

ffiffiffi
6

p þ 4
ffiffiffiffiffi
15

p þ 96
ffiffiffi
2

p

12

T16 (see Fig. 21) is a kind of extremal graphs of chemical trees with minimal ABC
index.

Based on Lemma 1.4 and combining Propositions 2.1–2.10, we can obtain the
following theorem (Fig. 22).

Theorem 2.1. Suppose Tn is an n-vertex chemical tree, then

Fig. 20. Chemical tree T15 (n = 11 k + 8)

Fig. 21. Chemical tree T16 (n = 11 k + 9)

Fig. 22. Chemical tree T17 (n = 11 k, k > 1)
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3 The Diversity of Extremal Graphs of Chemical Trees
with Minimal ABC Index

From Proposition 2.1, for n = 11 k, T5 is a type of extremal graphs of chemical trees
with minimal ABC index, when k > 1. We prove the diversity of extremal graphs
(Fig. 23).

When k increases by m, we attach m T2 to T6.
Let a*b be an edge which is adjacent to a pair of vertices with degree a and degree

b respectively. So ABC (a*b) =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
aþb�2
ab

q
.

Just an observation, we know that there are 5 places despite of isomorphism that T2

can be inserted into. These places are 4*4, 4*3, 4*2, 3*2, 2*1.

Fig. 23. Chemical tree T18 (n = 11 k, k > 1)
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If chemical tree T2 is inserted to a*b and V4 is the attaching point, then it will
destroy an a*b edge and create an a*4 edge and a 4*b edge. At the same time, the
structure of T2 is changed. V4 will become a vertex of degree 4 rather than degree 2. So
we need to consider the changing of the ABC index of a*4 edges and 4*b edges
during the process.

① If a = b = 4, then a*4 and 4*b become 4*4 and 4*4 respectively. That is to

say, it increases the ABC index by
ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4�2
4�4

q
.

② If a = 4 and b = 3, then a*4 and 4*b become 4*4 and 4*3 respectively.

That is to say, it increases the ABC index by
ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4�2
4�4

q
.

③ If a = 4 and b = 2, then a*4 and 4*b become 4*4 and 4*2 respectively.

That is to say, it increases the ABC index by
ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 4�2
4�4

q
.

④ If a = 3 and b = 2, then a*4 and 4*b become 3*4 and 4*2 respectively.

That is to say, it increases the ABC index by
ffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4�2
3�4

q
.

⑤ If a = 2 and b = 1, then a*4 and 4*b become 2*4 and 4*1 respectively.

That is to say, it increases the ABC index by
ffiffiffiffiffiffiffiffiffiffiffiffi
4þ 1�2
4�1

q
.

Because ABC (4*4) < ABC (4*3) < ABC (4*1) < ABC (2*x) =
ffiffi
2

p
2

(x = 1,2,3,4), cases ① ② ③ are more desired than ④ ⑤.
If we only consider case ①, it will get the following graph.
If we only consider case ②, it will get chemical tree T5 (see Fig. 10).
If we only consider case ③, it will get the following graph.
Extremal graph T5 is obtained from chemical tree T6 by inserting k–2 T2 as in case

②. We can approach different graphs which are not isomorphic by taking different
inserting strategy as shown in different cases. In addition, all of them meet the char-
acteristics of chemical trees with minimal ABC index and their ABC indices are in fact
minimized. In another word, ABC (T18Þ = ABC (T5 ) = ABC (T19 ). We can also take
multiple inserting strategies picked from those different cases we have shown which
will create even more desired extremal graphs. We are not going to linger around more
details here.

Thus, for n = 11 k + x (x = 0,1,2,3,4,5,6,7,8,9), there are many kinds of extremal
graphs with minimal ABC index.

4 Conclusion

The problem of finding chemical trees with minimal ABC index is solved. This paper
provided more accurate lower bond of ABC index of chemical trees and sorted out the
extremal graphs of chemical trees with minimal ABC index and showed its diversity.
But, finding the minimal ABC index of trees remains an open and attractive problem.
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Abstract. Online shopping behavior has received much attention. This
paper investigates the customer satisfaction in electronic retailing. The
satisfaction is surveyed by questionnaires and the evaluation criteria are
measured by using some simple symbols. The symbols in questionnaires
are collected and aggregated into an intuitionistic fuzzy information in
a group decision-making environment. The examined online retail com-
panies are ranked by using an extended TOPSIS (technique for order
preference by similarity to ideal solution) technique.

Keywords: Customer satisfaction · Electronic retailing · Group
decision-making · Intuitionistic fuzzy information · Symbol information

1 Introduction

Electronic commerce, commonly known as e-commerce, is trading in products
or services using computer networks, for example, the Internet. E-commerce is
generally considered to be the sale aspects of e-business.

China Internet Network Information Center (CNNIC) released a statistical
report [1]. According to the report, up to December 2016, China had 731 million
Internet users, with a yearly increase of 42.99 million. The Internet penetration
rate reached 53.2%, up 2.9% points from the end of 2015. As of December 2016,
the number of mobile Internet users in China reached 695 million, an increase
of 75.5 million from the end of 2015. Mobile netizens accounted for 95.1% of
the total netizen population, while this percentage was 90.1% in 2015. Accord-
ing to the report, by December 2016, China had 466.7 million online shopping
customers, a yearly increase 63.8%. The Chinese online shopping market still
maintains robust growth. Meanwhile, the number of mobile online commerce
(or m-commerce) customers is growing rapidly to 440.93 million, an increase of
63.4%.

In the current business world, there are many online retail companies in
China. For example, Taobao Mall, Jingdong Mall (360buy), Amazon.cn and
Dangdang. The competition among companies has become increasingly fierce,
companies need to differentiate themselves from other companies in order to keep
their relationships with their customers. Customer satisfaction is an important
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 29
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object that all companies are seeking. To facilitate business growth in retail sec-
tor, the assessment of customer’s satisfaction and loyalty levels is very important
work, which needs in-depth investigation.

As we all know, questionnaire is an important survey tool. Consider that par-
ticipants hope a simple questionnaire. This paper plans to employ some simple
symbols {�,

Ś
,©} to answer questionnaire, where the symbols �,

Ś
,© denote,

respectively, satisfaction, dissatisfaction, and hesitation or abstention. Consider
that an intuitionistic fuzzy number is composed of three parameters, one is the
membership degree, which can measure the customer satisfaction (�); another is
the non-membership degree, which can measure the customer dissatisfaction(

Ś
);

and third is a hesitation or indeterminacy index, which can measure the uncer-
tain information. The nonresponse and © are uncertain information. That is
to say, the symbols �,

Ś
,© are consistent with an intuitionistic fuzzy number.

How is the symbol information aggregated into an intuitionistic fuzzy informa-
tion? And how is a new evaluation approach to customer satisfaction based on
intuitionistic fuzzy theory developed? This is a pressing problem. To solve this
problem, the rest of the paper is structured as follows. Section 2 reviews the
related work and introduces the research motivation. Section 3 briefly reviews
the interval-valued intuitionistic fuzzy information and some related decision
tools. Section 4 presents an evaluation methodology and algorithm based on the
above idea, including a real example. And Sect. 5 gives our conclusions and future
research.

2 Related Work and Research Motivation

Customer satisfaction has been defined in various ways. Oliver [2] regarded
customer satisfaction as a customer’s response to consumption experiences.
Armstrong et al. [3] defined customer satisfaction as the level of a person’s felt
state resulting from comparing a product’s perceived performance or outcome
with his/her own expectations. Numerous studies have treated satisfaction as the
essential principle for the retention of customers, and customer satisfaction has
moved to the head of relationship marketing approaches. For example, Terpstra
and Verbeeten [4] investigated the relation between customer satisfaction, cus-
tomer servicing costs, and customer value in a financial services firm. Chow [5]
focused on the relationship between customer satisfaction, measured by customer
complaints, and the service quality of Chinese carriers. Saeidi et al. [6] examined
the mediating role of competitive advantage, reputation, and customer satisfac-
tion. Homburg et al. [7] focused on understanding how price importance links to
customer’s price search and satisfaction. Shi et al. [8] compared casino service
quality evaluations, customer satisfaction and loyalty between casino members
and nonmembers. Kang and Park [9] developed a new framework for measure-
ment of customer satisfaction for mobile services. Demirci Orel and Kara [10]
examined the service quality of supermarket/grocery store and its impact on cus-
tomer satisfaction and loyalty in an emerging market. Chen et al. [11] studied
the customer satisfaction in homebuilding industry.



284 C. Yue and Z. Yue

Customer satisfaction is a key driver of loyalty in the retail context [12], and
it is considered an antecedent of repurchase intention [13]. This relationship has
been confirmed in the online context [14]. So customer satisfaction has become
a key factor for company’s survival, development and competitiveness. How to
quantify the customer satisfaction is an important research topic, which has been
widely considered in above-mentioned literature. However, there are only a few
papers evaluating the customer satisfaction in e-retailing industry. For example,
based on multivariate analysis of covariance techniques, Thirumalai and Sinha
[15] investigated the customization of the online purchase process in electronic
retailing. Ihtiyar et al. [16] examined the relationships of the conceptual model
among intercultural competence, reliability, and customer satisfaction; and Rose
et al. [14] developed and empirically tested a model of the relationship between
antecedents and outcomes of online customer experience; and Srivastava and
Kaul [17] investigated the impact of both convenience and social interaction on
customer satisfaction and the mediating role of customer experience. Endo et al.
[18] investigated the e-satisfaction for online shoes retailing by using statistical
analysis method. Low et al. [19] examined the relationship between customer
satisfaction and price sensitivity by using hierarchical regression analysis.

The above-mentioned methods, including statistical methods, have made
great contributions to examine the customer satisfaction. However, there are
some research gaps, which need in-depth investigation:

1. Previous studies pay little attention to the ranking of evaluation objects.
2. It is often the case that there is still the lack of answers to questions in tested

questionnaires, on which the respondents may be hesitation or negligence. The
nonresponse is also an information resource. Current statistical methods, as
far as we know, have failed to consider it.

3. Some participants might be pressed for time, they always complain that the
tested questionnaire has too many terms and options. They more prefer the
questionnaire in which there are fewer terms and options, and the options can
be answered by some simple symbols, such as �,

Ś
,©, where the symbols

�,
Ś

,© denote, respectively, satisfaction, dissatisfaction, and hesitation or
abstention.

To solve these problems, this paper employs a decision-making method to
deal with the evaluation of customer satisfaction in retail industry. Multi-criteria
decision-making is one of the most complex administrative processes in manage-
ment, which is the procedure to find the best alternative among a set of feasible
alternatives. Owing to the increasing complexity of the socio-economic environ-
ment, a single decision maker (DM) or expert may be impossible to consider
all relevant aspects of a problem. In this case, some decision-making problems
require to be further extended to group decision-making (GDM) [20]. Recently,
the GDM has drawn great attention from researchers [21–24].

Fuzzy logic system is more suitable for dealing with the lack of answers to
questions in tested questionnaire. Fuzzy logic, emerged from the theory of fuzzy
set [25], is one of the techniques of soft computing which can deal with the
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inherent subjectivity, imprecision and vagueness in the articulation of opinions.
As a generalization of Zadeh’s fuzzy set, the intuitionistic fuzzy theory [26] has
been extensively applied to various areas in the recent decade. The intuitionistic
fuzzy number [27] and interval-valued intuitionistic fuzzy number (IVIFN) [28]
were developed and have been applied to many multi-criteria decision-making
[29] and GDM problems [30]. In this model, we will employ the intuitionistic
fuzzy theory to handle the symbol-based evaluation problem.

We consider that some evaluations in questionnaires might be very positive;
while others might be very negative. If the evaluations are aggregated into a
collective decision of DMs, the positive information and the negative information
will be offset. To avoid this, this paper attempts to propose a direct GDM
method for evaluating the customer satisfaction based on an extended TOPSIS
(technique for order preference by similarity to ideal solution) technique [31]. The
TOPSIS technique is a compromise method [32], which can highlight the positive
and the negative information, and compromises them by a relative closeness.

The main research motivation and contributions of this work are as follows.

1. This paper intendeds to contribute a new evaluation method to customer
satisfaction. The evaluation information only includes three simple symbols
{�,

Ś
,©}.

2. The evaluation information will be aggregated into an intuitionistic fuzzy
information in group decision-making setting.

3 Preliminaries

As preliminaries, this section intends to prepare two contents: interval-valued
intuitionistic fuzzy information and GDM.

3.1 Interval-Valued Intuitionistic Fuzzy Information

Zadeh [25] given the concept of fuzzy set. As a generalization of fuzzy set,
Atanassov [26] introduced the intuitionistic fuzzy set. Later, Atanassov et al.
[33] extended the intuitionistic fuzzy set to interval-valued intuitionistic fuzzy
set as follows.

Let X be a universe of discourse. An interval-valued intuitionistic fuzzy set
Ã in X is an object of the form:

Ã = {(x, μÃ(x), νÃ(x))|x ∈ X}, (1)

where μÃ(x) = [μl
Ã
(x), μu

Ã
(x)] ⊆ [0, 1] and νÃ(x) = [νl

Ã
(x), νu

Ã
(x)] ⊆ [0, 1] are

intervals, μl
Ã
(x) = infμÃ(x), μu

Ã
(x) = supμÃ(x), νl

Ã
(x) = infνÃ(x), νu

Ã
(x) =

supνÃ(x), and μu
Ã
(x) + νu

Ã
(x) ≤ 1, for all x ∈ X, and πÃ(x) = [πl

Ã
(x), πu

Ã
(x)],

where πl
Ã
(x) = 1 − μu

Ã
(xi) − νu

Ã
(x), πu

Ã
(x) = 1 − μl

Ã
(x) − νl

Ã
(x), for all x ∈ X.

Especially, if μÃ(x) = μl
Ã
(x) = μu

Ã
(x) and νÃ(x) = νl

Ã
(x) = νu

Ã
(x), then, Ã

is reduced to an intuitionistic fuzzy set.
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Xu and Chen [28] called the pair α̃ = (μα̃, να̃) an interval-valued intuitionistic
fuzzy number (IVIFN), and denoted an IVIFN by

α̃ = ([μl
α̃, μu

α̃], [νl
α̃, νu

α̃]), (2)

where [μl
α̃, μu

α̃], [νl
α̃, νu

α̃], [πl
α̃, πu

α̃] ⊆ [0, 1], μu
α̃ + νu

α̃ ≤ 1, πl
α̃ = 1 − μu

α̃ − νu
α̃, πu

α̃ =
1 − μl

α̃ − νl
α̃.

And Xu and Chen [28] introduced the following operations:

Definition 1. Let α̃ = ([μl
α̃, μu

α̃], [νl
α̃, νu

α̃]) and β̃ = ([μl
β̃
, μu

β̃
], [νl

β̃
, νu

β̃
]) be two

IVIFNs and λ be a real number. Then

1. α̃ + β̃ = ([μl
α̃ + μl

β̃
− μl

α̃μl
β̃
, μu

α̃ + μu
β̃
− μu

α̃μu
β̃
], [νl

α̃νl
β̃
, νu

α̃νu
β̃
]);

2. λα̃ = ([1 − (1 − μl
α̃)λ, 1 − (1 − μu

α̃)λ], [(νl
α̃)λ, (νu

α̃)λ]), λ > 0;
3. α̃c = ([νl

α̃, νu
α̃], [μl

α̃, μu
α̃]), where the α̃c is the complement of α̃.

Definition 2. Let α̃ = ([μl
α̃, μu

α̃], [νl
α̃, νu

α̃]) and β̃ = ([μl
β̃
, μu

β̃
], [νl

β̃
, νu

β̃
]) be two

IVIFNs. Similar to literature [34], the Euclidean distance between α̃ and β̃ is
given as follows:

s(α̃, β̃) =
�

(μl
α̃

− μl
β̃
)2 + (μu

α̃
− μu

β̃
)2 + (νl

α̃
− νl

β̃
)2 + (νu

α̃
− νu

β̃
)2 + (πl

α̃
− πl

β̃
)2 + (πu

α̃
− πu

β̃
)2, (3)

where, by Eq. (2), the πl
α̃ = 1−μu

α̃ − νu
α̃, πu

α̃ = 1−μl
α̃ − νl

α̃, πl
β̃

= 1−μu
β̃
− νu

β̃
and

πu
β̃

= 1 − μl
β̃
− νl

β̃
.

Definition 3. Let X = (x̃ij)m×n be a matrix. If all elements x̃ij are IVIFNs,
then we call X an interval-valued intuitionistic fuzzy matrix.

Similar to Eq. (3), we define the Euclidean measure between two interval-
valued intuitionistic fuzzy matrices X1 = (([μ1l

ij , μ
1u
ij ], [ν1l

ij , ν1u
ij ]))mn and X2 =

(([μ2l
ij , μ

2u
ij ], [ν2l

ij , ν2u
ij ]))mn as:

S(X1,X2) =
√∑m

i=1

∑n
j=1((μ

1l
ij − μ2l

ij)2 + (μ1u
ij − μ2u

ij )2 + (ν1l
ij − ν2l

ij )2 + (ν1u
ij − ν2u

ij )2 + (π1l
ij − π2l

ij )2 + (π1u
ij − π2u

ij )2),

(4)
where, by Eq. (2), the π1l

ij = 1−μ1u
ij −ν1u

ij , π1u
ij = 1−μ1l

ij −ν1l
ij , π2l

ij = 1−μ2u
ij −ν2u

ij

and π2u
ij = 1 − μ2l

ij − ν2l
ij (i = 1, 2, . . . ,m, j = 1, 2, . . . , n).

3.2 Group Decision-Making

For convenience, the following indexes and sets of key elements are considered
to represent the GDM problem in this paper.

1. A set of m feasible alternatives written as A = {Ai|i ∈ M}, where M =
{1, 2, . . . ,m};

2. A set of criteria written as U = {uj |j ∈ N}, where N = {1, 2, . . . , n};
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3. A weight set of criteria written as w = {wj |j ∈ N}, with 0 ≤ wj ≤ 1 and∑n
j=1 wj = 1;

4. A set of DMs written as D = {dk|k ∈ T}, where T = {1, 2, . . . , t}.
A GDM problem with t DMs, m alternatives and n criteria can be charac-

terized by the following matrix:

Xi =

⎛
⎜⎜⎜⎝

u1 u2 · · · un

d1 xi
11 xi

12 · · · xi
1n

d2 xi
21 xi

22 · · · xi
2n

...
...

...
...

...
dt xi

t1 xi
t2 · · · xi

tn

⎞
⎟⎟⎟⎠, i ∈ M, (5)

where the Xi = (xi
kj)t×n and the xi

kj , provided by kth DM, is the score of the
ith alternative with respect to jth criterion.

The aim of GDM is to rank the alternatives Ai(i ∈ M) according to the
Xi(i ∈ M).

4 Methodology

This section is a framework this research, which will be illustrated by the fol-
lowing model in detail.

4.1 Alternatives, Criteria and Decision Makers

Three online retail companies, located in China, are considered as alternatives
in this paper. That is to say, the evaluation set is A = {A1, A2, A3}= {company
1, company 2, company 3}. The customer satisfaction are evaluated and com-
pared among three companies. Evaluation criteria in this paper are based on
the recommendation of evaluators, which are U = {u1, u2, u3}= {product qual-
ity, product price, after-sales service}. The DMs are respondents (or evaluators,
or raters) in this model. A DM is a group of respondents in a district. All
respondents had purchased products from websites of electronic retailers ensur-
ing familiarity with the online purchase process in this setting. Specifically, the
set of DMs is D = {d1, d2, d3}= {respondents in district 1, respondents in dis-
trict 2, respondents in district 3}, each of which is further divided into four
age grades: respondents aged younger than 20; respondents between the ages of
21 and 35; respondents between the ages of 36 and 50; respondents aged older
than 50.

4.2 Data Collection and Measurement

The customer’s opinions are collected by questionnaires. This paper selected a
random sample of 8788 participants, who had successfully participated to the
evaluation. The data are collected by postmen, who asks for his/her customer



288 C. Yue and Z. Yue

to complete a questionnaire after every delivery. The questionnaire includes five
main content: age and three evaluation criteria. The age term is divided into the
above-mentioned four stages. The customer is asked for marking by symbol � on
own age stage. The three criteria are evaluated by customer, where each criterion
is marked by using only one symbol from {�,

Ś
,©}. As described above, the

symbol � denotes satisfaction; the symbol
Ś

denotes dissatisfaction; and the
symbol © denotes hesitation or abstention. That is to say, each respondent
marks at most thirteen symbols in a questionnaire.

These symbols in questionnaires will be collected, quantified, and aggregated
by the following steps 1–3, then the elements of Xi(i = 1, 2, 3) in Eq. (7) are
formed, which are characterized by IVIFNs. The complete evaluation procedure
is as follows.

Step 1. Data collection and statistics.
For each examined company Ai(i = 1, 2, 3), the questionnaires are divided
into three class dk(k = 1, 2, 3) by the districts of respondents, and each class
is further divided into four subclasses according to the ages of respondents.
For each subclass of questionnaires, the total number of questionnaires of Ai

with respect to dk at hth (h = 1, 2, 3, 4) ages is written as sih
k , the symbols

� and
Ś

are collected respectively from the three criteria {uj |j = 1, 2, 3} in
all the questionnaires. The total number of symbols � is written as nih

kj , and
the total number of symbols

Ś
is written as mih

kj . The statistics is shown in
Table 1.

The statistics in Table 1 involve only two symbols � and
Ś

. However, the
symbol © is not neglected. It is considered as the same as the nonresponse in
statistics. In fact, the symbol © can show that the respondent is not negligence
this evaluation of criterion, but hesitation or abstention. For convenience, the
information © along with the nonresponse will be quantified and aggregated
into a hesitancy degree πil

kj and πiu
kj in Eqs. (11) and (12) below, although the

missing values are not equivalent complete hesitation.

Step 2. Data normalization.
All data are normalized by the following formulas:

ξih
kj =

nih
kj

sih
k

, ηih
kj =

mih
kj

sih
k

, i ∈ M, j ∈ N, k ∈ T, (6)

where the sih
kj , n

ih
kj and mih

kj(i, j, k = 1, 2, 3, h = 1, 2, 3, 4) are the same as in
Table 1.
The normalized data are shown in Table 2.

Step 3. Determine the interval-valued intuitionistic fuzzy information of evalu-
ation criteria.
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Table 1. Statistics of assessment information

Alternative DM Age sihk u1 u2 u3

nih
k1(�) mih

k1(
Ś

) nih
k2(�) mih

k2(
Ś

) nih
k3(�) mih

k3(
Ś

)

A1 d1 <25 250 86 155 66 96 27 58

26–40 220 80 79 83 135 63 82

41–55 307 129 132 77 138 99 79

>56 202 73 87 65 80 38 91

d2 <25 190 56 85 86 76 97 80

26–40 230 122 79 89 75 93 81

41–55 258 87 102 129 97 122 118

>56 202 66 67 68 70 73 76

d3 <25 260 81 79 84 70 88 84

26–40 250 78 73 94 76 132 65

41–55 300 125 119 132 85 84 131

>56 172 54 87 65 72 66 83

A2 d1 <25 260 90 60 86 120 110 125

26–40 280 81 177 93 69 125 133

41–55 260 36 120 137 99 25 108

>56 182 41 59 65 93 37 72

d2 <25 260 85 62 80 122 104 127

26–40 300 78 180 92 72 120 135

41–55 250 40 125 132 97 30 110

>56 200 41 61 61 95 42 74

d3 <25 270 89 152 67 93 30 55

26–40 250 83 76 86 132 66 79

41–55 292 132 130 80 135 102 76

>56 200 76 84 68 78 43 94

A3 d1 <25 220 58 87 88 78 99 83

26–40 250 124 80 87 77 95 84

41–55 290 89 105 127 99 120 120

>56 218 68 68 70 73 75 77

d2 <25 250 81 80 84 74 88 85

26–40 248 78 75 94 77 132 69

41–55 290 125 124 132 88 84 130

>56 208 54 88 65 72 66 89

d3 <25 243 85 66 80 122 104 129

26–40 285 78 176 92 82 120 145

41–55 260 40 115 132 107 30 110

>56 208 41 76 61 98 42 78
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Table 2. Normalization of assessment information

Alternative DM Age and
[min,max]

u1 u2 u3

ξih
k1(�) ηih

k1(
Ś

) ξih
k2(�) ηih

k2(
Ś

) ξih
k3(�) ηih

k3(
Ś

)

A1 d1 <25 0.344 0.620 0.264 0.384 0.108 0.232

26–40 0.364 0.359 0.377 0.614 0.286 0.373

41–55 0.420 0.430 0.251 0.450 0.323 0.257

>56 0.361 0.431 0.322 0.396 0.188 0.451

[min, max] [0.344,0.420] [0.359,0.620] [0.251,0.377] [0.384,0.614] [0.108,0.323] [0.232,0.451]

d2 <25 0.295 0.447 0.453 0.400 0.511 0.421

26–40 0.530 0.344 0.387 0.326 0.404 0.352

41–55 0.337 0.395 0.500 0.376 0.473 0.457

>56 0.327 0.332 0.337 0.347 0.361 0.376

[min, max] [0.295,0.530] [0.332,0.447] [0.337,0.500] [0.326,0.400] [0.361,0.511] [0.352,0.457]

d3 <25 0.312 0.304 0.323 0.269 0.339 0.323

26–40 0.312 0.292 0.376 0.304 0.528 0.260

41–55 0.417 0.397 0.440 0.283 0.280 0.437

>56 0.314 0.506 0.378 0.419 0.384 0.483

[min, max] [0.312,0.417] [0.292,0.506] [0.323,0.440] [0.269,0.419] [0.280,0.528] [0.260,0.483]

A2 d1 <25 0.346 0.231 0.331 0.462 0.423 0.481

26–40 0.289 0.632 0.332 0.246 0.446 0.475

41–55 0.139 0.462 0.527 0.381 0.096 0.415

>56 0.225 0.324 0.357 0.511 0.203 0.396

[min, max] [0.139,0.346] [0.231,0.632] [0.331,0.527] [0.246,0.511] [0.096,0.446] [0.396,0.481]

d2 <25 0.327 0.239 0.308 0.469 0.400 0.489

26–40 0.260 0.600 0.307 0.240 0.400 0.450

41–55 0.160 0.500 0.528 0.388 0.120 0.440

>56 0.205 0.305 0.305 0.475 0.210 0.370

[min, max] [0.160,0.327] [0.239,0.600] [0.305,0.528] [0.240,0.475] [0.120,0.400] [0.370,0.489]

d3 <25 0.330 0.563 0.248 0.344 0.111 0.204

26–40 0.332 0.304 0.344 0.528 0.264 0.316

41–55 0.452 0.445 0.274 0.462 0.349 0.260

>56 0.380 0.420 0.340 0.390 0.215 0.470

[min, max] [0.330,0.452] [0.304,0.563] [0.248,0.344] [0.344,0.528] [0.111,0.349] [0.204,0.470]

A3 d1 <25 0.264 0.396 0.400 0.355 0.450 0.377

26–40 0.496 0.320 0.348 0.308 0.380 0.336

41–55 0.307 0.362 0.438 0.341 0.414 0.414

>56 0.312 0.312 0.321 0.335 0.344 0.353

[min, max] [0.264,0.496] [0.312,0.396] [0.321,0.438] [0.308,0.355] [0.344,0.450] [0.336,0.414]

d2 <25 0.324 0.320 0.336 0.296 0.352 0.340

26–40 0.315 0.302 0.379 0.311 0.532 0.278

41–55 0.431 0.428 0.455 0.303 0.290 0.448

>56 0.260 0.423 0.313 0.346 0.317 0.428

[min, max] [0.260,0.431] [0.302,0.428] [0.313,0.455] [0.296,0.346] [0.290,0.532] [0.278,0.448]

d3 <25 0.350 0.272 0.329 0.502 0.428 0.531

26–40 0.274 0.618 0.323 0.288 0.421 0.509

41–55 0.154 0.442 0.508 0.412 0.115 0.423

>56 0.197 0.365 0.293 0.471 0.202 0.375

[min, max] [0.154,0.350] [0.272,0.618] [0.293,0.508] [0.288,0.502] [0.115,0.428] [0.375,0.531]
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For each evaluation criterion uj of alternative Ai, the evaluation value can
be characterized by an IVIFN as follows:

xi
kj = ([μil

kj , μ
iu
kj ], [ν

il
kj , ν

iu
kj ]), i ∈ M, j ∈ N, k ∈ T, (7)

where the μil
kj = ξil

kj/σiu
kj , μ

iu
kj = ξiu

kj/σiu
kj , ν

il
kj = ηil

kj/σiu
kj , ν

iu
kj = ηiu

kj/σiu
kj , and

the σiu
kj = ξiu

kj + ηiu
kj , ξ

il
kj = min1≤h≤4{ξih

kj}, ξiu
kj = max1≤h≤4{ξih

kj}, ηil
kj =

min1≤h≤4{ηih
kj}, ηiu

kj = max1≤h≤4{ηih
kj}, and M = N = T = {1, 2, 3}.

It is clear that the μiu
kj and νiu

kj satisfy the condition μiu
kj +νiu

kj ≤ 1(i ∈ M, j ∈
N, k ∈ T ) in Eq. (2).

The assessment values based on interval-valued intuitionistic fuzzy informa-
tion are shown in Table 3.

Table 3. Assessment based on interval-valued intuitionistic fuzzy information

Decision DM u1 u2 u3

X1 d1 ([0.331,0.404],[0.345,0.596]) ([0.253,0.381],[0.388,0.619]) ([0.140,0.417],[0.300,0.583])

d2 ([0.301,0.542],[0.339,0.458]) ([0.374,0.556],[0.362,0.444]) ([0.373,0.527],[0.364,0.473])

d3 ([0.338,0.452],[0.317,0.548]) ([0.376,0.512],[0.314,0.488]) ([0.277,0.522],[0.257,0.478])

X2 d1 ([0.142,0.354],[0.236,0.646]) ([0.319,0.508],[0.237,0.492]) ([0.104,0.481],[0.427,0.519])

d2 ([0.173,0.353],[0.257,0.647]) ([0.304,0.526],[0.239,0.474]) ([0.135,0.450],[0.416,0.550])

d3 ([0.325,0.445],[0.300,0.555]) ([0.285,0.394],[0.395,0.606]) ([0.136,0.426],[0.249,0.574])

X3 d1 ([0.296,0.556],[0.350,0.444]) ([0.405,0.553],[0.389,0.447]) ([0.398,0.521],[0.389,0.479])

d2 ([0.302,0.502],[0.352,0.498]) ([0.390,0.568],[0.369,0.432]) ([0.295,0.543],[0.284,0.457])

d3 ([0.159,0.362],[0.281,0.638]) ([0.290,0.503],[0.285,0.497]) ([0.120,0.446],[0.391,0.554])

Step 4. Construct the weighted decision.
For the criteria’ weight vector w = (w1, w2, . . . , wn), the weighted decision
is constructed by the following matrix:

Yi = (yi
kj)tn, i ∈ M,k ∈ T, j ∈ N, (8)

where the yi
kj = wjx

i
kj = ([τ il

kj , τ
iu
kj ], [υil

kj , υ
iu
kj ]), the τ il

kj = 1−(1−μil
kj)

wj , τ iu
kj =

1 − (1 − μiu
kj)

wj , υil
kj = (νil

kj)
wj , υiu

kj = (νiu
kj)

wj (i ∈ M,k ∈ T, j ∈ N) by
Definition 1, and the xi

kj ∈ Xi are the same as in Eq. (7).

The weight vector of criteria is (w1, w2, w3) = (0.3, 0.3, 0.4), which is nego-
tiated and determined by some representative DMs. The weighted decisions Yi

are shown in Table 4, where the M = N = T = {1, 2, 3}.
Step 5. Determine the ideal decisions.

For the Yi(i ∈ M) in Eq. (8), according to the framework of TOPSIS tech-
nique, we let

Y+ = (y+
kj)tn, k ∈ T, j ∈ N, (9)
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Table 4. Weighted assessment based on interval-valued intuitionistic fuzzy information

Decision DM u1 u2 u3

Y1 d1 ([0.113,0.144],[0.727,0.856]) ([0.084,0.134],[0.752,0.866]) ([0.058,0.194],[0.618,0.806])

d2 ([0.102,0.209],[0.723,0.791]) ([0.131,0.216],[0.737,0.784]) ([0.171,0.259],[0.667,0.741])

d3 ([0.116,0.165],[0.708,0.835]) ([0.132,0.194],[0.706,0.806]) ([0.122,0.256],[0.581,0.744])

Y2 d1 ([0.045,0.123],[0.648,0.877]) ([0.109,0.192],[0.650,0.808]) ([0.043,0.231],[0.711,0.769])

d2 ([0.055,0.122],[0.665,0.878]) ([0.103,0.201],[0.651,0.799]) ([0.056,0.213],[0.704,0.787])

d3 ([0.111,0.162],[0.696,0.838]) ([0.096,0.140],[0.757,0.860]) ([0.057,0.199],[0.573,0.801])

Y3 d1 ([0.100,0.216],[0.730,0.784]) ([0.144,0.214],[0.753,0.786]) ([0.184,0.255],[0.685,0.745])

d2 ([0.102,0.189],[0.731,0.811]) ([0.138,0.223],[0.742,0.777]) ([0.131,0.269],[0.604,0.731])

d3 ([0.051,0.126],[0.683,0.874]) ([0.098,0.189],[0.686,0.811]) ([0.050,0.211],[0.687,0.789])

be the positive ideal decision (PID) of all Yi(i ∈ M), where, the y+
kj =

([τ+l
kj , τ+u

kj ], [υ+l
kj , υ+u

kj ]), and τ+l
kj = max

i∈M
{μil

kj}, τ+u
kj = max

i∈M
{μiu

kj}, υ+l
kj =

min
i∈M

{νil
kj} and υ+u

kj = min
i∈M

{νiu
kj}(k ∈ T, j ∈ N).

A negative ideal decision (NID) should have the maximum separation from
the PID, so we let

Y− = (y−
kj)tn, k ∈ T, j ∈ N, (10)

be a NID of all Yi(i ∈ M), where, the y−
kj = ([τ−l

kj , τ−u
kj ], [υ−l

kj , υ−u
kj ]), and τ−l

kj =
min
i∈M

{μil
kj}, τ−u

kj = min
i∈M

{μiu
kj}, υ−l

kj = max
i∈M

{νil
kj} and υ−u

kj = max
i∈M

{νiu
kj}(k ∈

T, j ∈ N).
The ideal decisions are shown in Table 5.

Table 5. Ideal decisions of all decisions

Decision DM u1 u2 u3

Y+ d1 ([0.113,0.216],[0.648,0.784]) ([0.144,0.214],[0.650,0.786]) ([0.184,0.255],[0.618,0.745])

d2 ([0.102,0.209],[0.665,0.791]) ([0.138,0.223],[0.651,0.777]) ([0.171,0.269],[0.604,0.731])

d3 ([0.116,0.165],[0.683,0.835]) ([0.132,0.194],[0.686,0.806]) ([0.122,0.256],[0.573,0.744])

Y− d1 ([0.045,0.123],[0.730,0.877]) ([0.084,0.134],[0.753,0.866]) ([0.043,0.194],[0.711,0.806])

d2 ([0.055,0.122],[0.731,0.878]) ([0.103,0.201],[0.742,0.799]) ([0.056,0.213],[0.704,0.787])

d3 ([0.051,0.126],[0.708,0.874]) ([0.096,0.140],[0.757,0.860]) ([0.050,0.199],[0.687,0.801])

Step 6. Calculate the separations of each decision from its ideal decisions.
The separation of each decision Yi from its PID Y+, S+

i , is given by the
Euclidean distance between Yi and Y+ (see Eq. (4)) as follows:

S+
i =

√∑t
k=1

∑n
j=1((τ

il
kj − τ+l

kj )2 + (τ iu
kj − τ+u

kj )2 + (υil
kj − υ+l

kj )2 + (υiu
kj − υ+u

kj )2 + (πil
kj − π+l

kj )2 + (πiu
kj − π+u

kj )2), i ∈ M,

(11)
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where the τ+l
kj , τ+u

kj , υ+l
kj and υ+u

kj are the same as in Eq. (9), the πil
kj = 1 −

τ iu
kj −υiu

kj , π
iu
kj = 1−τ il

kj−υil
kj , π

+l
kj = 1−τ+u

kj −υ+u
kj and π+u

kj = 1−τ+l
kj −υ+l

kj (i ∈
M,k ∈ T, j ∈ N) by Eq. (2).
Similarly, the separation of each Yi from its NID Y−, S−

i , is given by:

S−
i =

√∑t
k=1

∑n
j=1((τ

il
kj − τ−l

kj )2 + (τ iu
kj − τ−u

kj )2 + (υil
kj − υ−l

kj )2 + (υiu
kj − υ−u

kj )2 + (πil
kj − π−l

kj )2 + (πiu
kj − π−u

kj )2), i ∈ M,

(12)
where the τ−l

kj , τ−u
kj , υ−l

kj and υ−u
kj are the same as in Eq. (10), the πil

kj and πiu
kj

are the same as in Eq. (11), the π−l
kj = 1 − τ−u

kj − υ−u
kj and π−u

kj = 1 − τ−l
kj −

υ−l
kj (i ∈ M,k ∈ T, j ∈ N) by Eq. (2).

Step 7. Calculate the relative closeness.
For each decision Yi, an extended relative closeness in TOPSIS technique is
calculated by [35]:

RCi =
S−

i

S+
i + S−

i

, i ∈ M. (13)

Step 8. Rank the preference order of alternatives.
All alternatives are ranked in descending order in accordance with their
relative closeness. The greater the relative closeness RCi, the better the
alternative Ai(i ∈ M) is.
The separations, relative closeness, ranking of alternatives are summarized
in Table 6.

Table 6. Separations, relative closeness and ranking of alternatives

Alternative S+
i S−

i RCi Ranking

A1 0.3487 0.3403 0.4939 2

A2 0.3788 0.3138 0.4531 3

A3 0.3302 0.3745 0.5314 1

Table 6 shows that the order of customer satisfaction of three examined online
retail companies is as follows:

A3 � A1 � A2.

Specifically, the A3 is the best online retail company, followed by the A1

and A2.

5 Conclusion

The aim of this study is to develop a comprehensive GDM model to evaluate
the customer satisfaction in the e-retailing. We now offer insights into the find-
ings of the study and discuss implications for academics and practitioners, and
conclusion and future research.
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This study makes four contributions to existing evaluation methods. The first
contribution is that the questionnaire is answered by using some simple symbols,
which makes respondents easy to complete the questionnaires. The second con-
tribution is that this study provides a data aggregation method. These data are
characterized by symbols, and they are aggregated into an intuitionistic fuzzy
information in a GDM setting. The third contribution is to solve an information
fusion problem for the lack of answers to questions in questionnaires. The study
identifies the nonresponse as an information regarding the customer satisfaction,
and fuses it into an intuitionistic fuzzy information. The fourth contribution is
made by extending existing evaluation methodology into a new context. Specif-
ically, the current method extends the previous research on the relationship
between factors and customer satisfaction into a new research on the ranking of
evaluation objects.

This study helps three retail companies to distinguish their ranking and to
further improve their work based on customer satisfaction. As in all commercial
contexts, a key managerial objective should be high customer satisfaction ratings
for an online site. However, a high level of online customer experience in any one
transaction does not ensure repeat purchase. Rather e-retailers must provide a
compelling online customer experience continuously over time in order to build
levels of cumulative satisfaction which drives trust in the e-retailer [14]. The
future work should build the cumulative satisfaction over time.

The findings and contributions of our study are to some extent constrained
by certain limitations, some of which provide opportunities for further research.
First, if the ages of respondents in Tables 1 and 2 are no longer distinguished,
then it will simplify the procedure of survey and the calculation of model. The
future work might simplify this procedure for assessing customer satisfaction.
Second, the data are collected by postmen of express/delivery companies in this
study, which is a limitation. The proposed approach can and should be improved
by using multi-form questionnaires for survey. For example, the online retail
company can pay a return visit to its customers by telephone; the customer can
pay a feedback on the online evaluation system, etc.

Acknowledgements. The authors would like to thank the editor’s work. This work
was supported by the Young Creative Talents Project from Department of Education
of Guangdong Province (No. 2016KQNCX064), the Education and Teaching Reform
Program of Guangdong Ocean University (No. XJG201644) and the Project of Enhanc-
ing School with Innovation of Guangdong Ocean University (No. GDOU2017052802).

Recommender: Ou Xie, Guangdong Ocean University, associate professor.

References

1. CNNIC: Statistical report on Internet development in China, January 2017. http://
www.cnnic.net.cn/

2. Oliver, R.L.: Satisfaction: A Behavioral Perspective on the Consumer. ME Sharpe
(2010)

http://www.cnnic.net.cn/
http://www.cnnic.net.cn/


A Soft Approach to Evaluate the Customer Satisfaction in E-retailing 295

3. Armstrong, G., Cunningham, M.H., Kotler, P.: Principles of Marketing, Pearson
Australia (2012)

4. Terpstra, M., Verbeeten, F.H.M.: Customer satisfaction: cost driver or value driver?
Empirical evidence from the financial services industry. Eur. Manag. J. 32(3), 499–
508 (2014)

5. Chow, C.K.W.: Customer satisfaction and service quality in the Chinese airline
industry. J. Air Transp. Manage. 35, 102–107 (2014)

6. Saeidi, S.P., Sofian, S., Saeidi, P., Saeidi, S.P., Saaeidi, S.A.: How does corporate
social responsibility contribute to firm financial performance? The mediating role of
competitive advantage, reputation, and customer satisfaction. J. Bus. Res. 68(2),
341–350 (2015)

7. Homburg, C., Allmann, J., Klarmann, M.: Internal and external price search in
industrial buying: The moderating role of customer satisfaction. J. Bus. Res. 67(8),
1581–1588 (2014)

8. Shi, Y., Prentice, C., He, W.: Linking service quality, customer satisfaction and
loyalty in casinos, does membership matter? Int. J. Hosp. Manage. 40, 81–91 (2014)

9. Kang, D., Park, Y.: Review-based measurement of customer satisfaction in mobile
service: sentiment analysis and VIKOR approach. Expert Syst. Appl. 41(4), 1041–
1050 (2014)

10. Orel, F.D., Kara, A.: Supermarket self-checkout service quality, customer satisfac-
tion, and loyalty: empirical evidence from an emerging market. J. Retail. Consum.
Serv. 21(2), 118–129 (2014)

11. Chen, C.X., Martin, M., Merchant, K.A.: The effect of measurement timing on
the information content of customer satisfaction measures. Manage. Account. Res.
25(3), 187–205 (2014)

12. Joseph Cronin Jr., J., Brady, M.K., Hult, G.T.M.: Assessing the effects of qual-
ity, value, and customer satisfaction on consumer behavioral intentions in service
environments. J. Retail. 76(2), 193–218 (2000)

13. Seiders, K., Voss, G.B., Grewal, D., Godfrey, A.L.: Do satisfied customers buy
more? Examining moderating influences in a retailing context. J. Mark. 69(4),
26–43 (2005)

14. Rose, S., Clark, M., Samouel, P., Hair, N.: Online customer experience in e-
retailing: an empirical model of antecedents and outcomes. J. Retail. 88(2), 308–
322 (2012)

15. Thirumalai, S., Sinha, K.K.: Customization of the online purchase process in elec-
tronic retailing and customer satisfaction: an online field study. J. Oper. Manage.
29(5), 477–487 (2011)

16. Ihtiyar, A., Sh Ahmad, F., Baroto, M.B.: Impact of intercultural competence on
service reliability and customer satisfaction in the grocery retailing. Procedia-Soc.
Behav. Sci. 99, 373–381 (2013)

17. Srivastava, M., Kaul, D.: Social interaction, convenience and customer satisfaction:
The mediating effect of customer experience. J. Retail. Consum. Serv. 21(6), 1028–
1037 (2014)

18. Endo, S., Yang, J., Park, J.K.: The investigation on dimensions of e-satisfaction
for online shoes retailing. J. Retail. Consum. Serv. 19(4), 398–405 (2012)

19. Low, W.-S., Lee, J.-D., Cheng, S.-M.: The link between customer satisfaction and
price sensitivity: An investigation of retailing industry in Taiwan. J. Retail. Con-
sum. Serv. 20(1), 1–10 (2013)

20. Yue, Z.L., Jia, Y.Y.: A method to aggregate crisp values into interval-valued intu-
itionistic fuzzy information for group decision making. Appl. Soft Comput. 13(5),
2304–2317 (2013)



296 C. Yue and Z. Yue

21. Yue, C.: A geometric approach for ranking interval-valued intuitionistic fuzzy num-
bers with an application to group decision-making. Comput. Ind. Eng. 102, 233–
245 (2016)

22. Yue, C.: A model for evaluating software quality based on symbol information. J.
Guangdong Ocean Univ. 36(1), 85–92 (2016)

23. Yue, C.: Normalized projection approach to group decision-making with hybrid
decision information. Int. J. Mach. Learn. Cybern. doi:10.1007/s13042-017-0650-3

24. Yue, C.: Two normalized projection models and application to group decision-
making. J. Intell. Fuzzy Syst. doi:10.3233/JIFS-16537

25. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
26. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986)
27. Xu, Z.S.: Intuitionistic fuzzy aggregation operators. IEEE Trans. Fuzzy Syst. 15(6),

1179–1187 (2007)
28. Xu, Z.S., Chen, J.: An approach to group decision making based on interval-valued

intuitionistic judgment matrices. Syst. Eng. Theory Pract. 27(4), 126–132 (2007)
29. Chen, T.-Y.: An interval-valued intuitionistic fuzzy permutation method with

likelihood-based preference functions and its application to multiple criteria deci-
sion analysis. Appl. Soft Comput. 42, 390–409 (2016)

30. Yue, Z.L., Jia, Y.Y.: A group decision making model with hybrid intuitionistic
fuzzy information. Comput. Ind. Eng. 87, 202–212 (2015)

31. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and pplica-
tions. Springer-Verlag, Berlin (1981)

32. Po-Lung, Y.: A class of solutions for group decision problems. Manage. Sci. 19(8),
936–946 (1973)

33. Atanassov, G., et al.: Interval valued intuitionistic fuzzy sets. Fuzzy Sets Syst.
31(3), 343–349 (1989)

34. Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets
Syst. 114(3), 505–518 (2000)

35. Yue, Z.L.: TOPSIS-based group decision-making methodology in intuitionistic
fuzzy setting. Inf. Sci. 277, 141–153 (2014)

http://dx.doi.org/10.1007/s13042-017-0650-3
http://dx.doi.org/10.3233/JIFS-16537


An M/G/1 Queue with Second Optional Service
and General Randomized Vacation Policy

Yan Chen1, Xian-Wei Lin2, Cai-Min Wei2,3(B), and Zhun Fan3

1 Department of Natural Sciences, Shantou Polytechnic,
Shantou 515078, People’s Republic of China

cylxq331@126.com
2 Department of Mathematics, Shantou University,

Shantou 515063, People’s Republic of China
15xwlin1@stu.edu.cn, cmwei@stu.cn

3 Guangdong Provincial Key Laboratory of Digital Signal
and Image Processing Techniques, Shantou University,

Shantou 515063, People’s Republic of China
zfan@stu.edu.cn

Abstract. This paper studies a continuous time queue system with
second optional service where all the arriving customers demand the
first “essential” service while only some of them demand the second
“optional” service with probability α. The service time of the first essen-
tial service and the second optional service both are independent and
arbitrarily random variables. Whenever a busy period is completed, the
server takes a vacation. If there is at least one customer waiting at a vaca-
tion, the server immediately serves the customer. Otherwise, the server
takes another vacation with probability p, or remains idle with probabil-
ity 1 − p. We give some performances analysis of this model. Finally, it
gives some numerical examples to illustrate the effect of the probabilities
λ and p on the mean system size, waiting time, the probabilities when
the server is idle and is on a vacation.

Keywords: Continuous time queue · Second optional service · General
randomized vacation policy · Supplementary variable method

1 Introduction

As soon as the first essential service of a customer is completed, he or she immedi-
ately leaves the system with probability α or accepts the second optional service
with probability 1−α. This service policy is called second optional service policy
and was firstly studied by Madan [1]. The literature discussed an M/G/1 queue
with the second optional service in which the first essential service time follows
a general distribution, but the second optional service is assumed to be expo-
nentially distributed. Medhi [2] extended Madan’s model by considering that
the second optional service follows a general distribution. Wang [3] examined an
M/G/1 queue with second optional service and breakdowns in which the first
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 30
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essential service time follows a general distribution, but the second optional ser-
vice is assumed to be an exponential distribution. In addition, there are many
other queue models concerned second optional service which have been studied
in recent years, details of which may be seen [4–18].

When a busy period is completed, the server immediately takes a vacation.
The server will serve the customers if there are customers waiting in the queue at
the end of a vacation. Otherwise, the server either remains idle with probability
p or takes another vacation with probability 1 − p. This pattern continues until
the server has taken J vacations. The server keeps idle, if there are not customers
in the system at J th vacation. This vacation policy is called randomize vacation
policy and was studied by Ke [10]. However, some more complex queue systems
with this policy are hard to analysis, as in a queue system with working vacations.
Therefore, we cancel the limit of randomized vacation policy, namely the server
remains idle with probability p or takes another vacation with probability 1 − p
if no customers are waiting for service at the end of any vacation, and then
let the pattern continue forever. Here we define this vacation policy as general
randomized vacation policy. The policy eliminates a parameter J so that it is
easy to be widely applied to some more complex queue systems. Moreover it
is not a stand alone vacation policy but also summarizes multiple and single
vacation policy. That is our motivation to put forward the general randomized
vacation policy.

The remainder of this paper is organized as follows. A full description of the
model and analysis of the system embedded with the Markov chain are given
in Sect. 2. In Sect. 3, some important measures performance of the system are
obtained. In Sect. 4, we give two special cases of the model. Finally in Sect. 5,
we present some numerical results to illustrate the effect of α and p on the
performance of the system. Section 6 concludes the paper.

2 Description and Analysis of Model

In the section, we describe our model with following assumptions. Customers
arrive the system according to a Poisson process with rate λ. When the first
“essential” service of a customer is completed by the server, he or she will
demand the second “optional” service with probability α. We assume that the
first “essential” service and the second “optional” service both follow general
distributions, with probability distribution functions G1(x) and G2(x), respec-
tively. In addition, let gk(x), 1

uk
, and uk(x)dx = dGk(x)

1−Gk(x)
, k = 1, 2, denote the

corresponding probability density functions, means and hazard rate functions.
When an busy period is completed, the server immediately takes a vacation
with general distribution V (x). Let v(x), v and w(x)dx = dV (x)

1−V (x) be the corre-
sponding probability density function, mean and hazard rate function. If there
is at least one customer in the system at the end of the vacation, the server will
immediately serve the customer. Otherwise, the server will either take another
vacation with probability p or remain idle waiting for the arrival of customers
with probability 1 − p. Obviously, if p = 1, our model can be simplified to the



An M/G/1 Queue with Second Optional Service 299

M/G/1 queue with second optional service and multiple vacations; if p = 0, the
model can be also simplified to the M/G/1 queue with second optional service
and single vacation.

We assume, throughout this paper, that various stochastic processes involved
in the system are mutual independence and obey first-come first-served (FCFS)
service discipline. For a given function F (x), its Laplace-Stieltjes transform
(LST) denotes by F ∗(s) =

∫ ∞
0

e−sxdF (x). And then, we define ρ = λ
u1

+ α λ
u2

.
Obviously, ρ < 1 is the necessary and sufficient condition when a steady state
solution exists.

Let N(t) be the system size including the one being served (if any) at time
t, and denote by G−

1 (x), G−
2 (x) and V −(x) the elapsed first “essential” service,

elapsed second “optional” service and elapsed vacation at time t, respectively.
In addition, we introduce the following random variable

J(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if the server is idle at time t,
1, if the server is busy providing a essential service at time t,
2, if the server is busy providing a second optional service at time t,
3, if the server is taking a vacation at time t

At time t, the system can be described by the process (N(t), c(t)) where
c(t) = 0 if J(t) = 0; c(t) = G−

1 (x) if J(t) = 1; c(t) = G−
2 (x) if J(t) = 2 and

c(t) = V −(x) if J(t) = 3. For further studying the model, we define the following
limiting probabilities:

p0,0 = limt→∞ p(N(t) = 0, c(t) = 0),
p1,n = limt→∞ p(N(t) = n, c(t) = G−

1 (x);x ≤ G−
1 (x) ≤ x + dx), n ≥ 1, x ≥ 0,

p2,n = limt→∞ p(N(t) = n, c(t) = G−
2 (x);x ≤ G−

2 (x) ≤ x + dx), n ≥ 1, x ≥ 0,
p3,n = limt→∞ p(N(t) = n, c(t) = V −(x);x ≤ V −(x) ≤ x + dx), n ≥ 0, x ≥ 0

Then in steady-state condition, the Kolmogorov forward equations to govern
the model can be written as follows:

λp0,0 = (1 − p)
∫ ∞

0

p3,0(x)w(x)dx (1)

dp1,1(x)
dx

+ [λ + u1(x)]p1,1(x) = 0 (2)

dp1,n(x)
dx

+ [λ + u1(x)]p1,n(x) = λp1,n−1(x), n ≥ 2 (3)

dp2,1(x)
dx

+ [λ + u2(x)]p2,1(x) = 0 (4)

dp2,n(x)
dx

+ [λ + u2(x)]p2,n(x) = λp2,n−1(x), n ≥ 2 (5)

dp3,0(x)
dx

+ [λ + w(x)]p3,0(x) = 0 (6)
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dp3,n(x)
dx

+ [λ + w(x)]p3,n(x) = λp3,n−1(x), n ≥ 1 (7)

Equations (1)–(7) will be solved under the following boundary conditions at
time x = 0

p1,1(0) = λp0,0 + (1 − α)

∫ ∞

0
p1,2u1(x)dx +

∫ ∞

0
p2,2u2(x)dx +

∫ ∞

0
p3,1w(x)dx (8)

p1,n(0) = (1 − α)

∫ ∞

0
p1,n+1u1(x)dx +

∫ ∞

0
p2,n+1u2(x)dx +

∫ ∞

0
p3,nw(x)dx, n ≥ 2 (9)

p2,n(0) = α

∫ ∞

0

p1,nu1(x)dx, n ≥ 1 (10)

p3,0(0) = (1 − α)
∫ ∞

0

p1,1u1(x)dx +
∫ ∞

0

p2,1u2(x)dx + p

∫ ∞

0

p3,0w(x)dx (11)

In order to solve the above Equations, we define some probability generating
functions as follows:

Pi(x, z) =
∞∑

n=1

pi,n(x)zn, P3(x, z) =
∞∑

n=0

p3,n(x)zn, Pi(z) =
∫ ∞

0

Pk(x, z)dx

where i = 1, 2; k = 1, 2, 3.
Multiplying both sides of Eqs. (2) and (3) by zn (n = 1, 2, · · · ) and summing

over n, then we have

P1(x, z) = P1(0, z)[1 − G1(x)]e−λ(1−z)x (12)

Similar proceeding on the Eqs. (4)–(7), then we obtain

P2(x, z) = P2(0, z)[1 − G2(x)]e−λ(1−z)x (13)

and
P3(x, z) = P3(0, z)[1 − V (x)]e−λ(1−z)x (14)

In the same way, we can get the following equation from Eqs. (8) and (9)

P1(0, z) = λp0,0(z − 1) − p3,0(0) +
1 − α

z
P1(0, z)G∗

1(λ(1 − z))

+ 1
z P2(0, z)G∗

2(λ(1 − z)) + P3(0, z)V ∗(λ(1 − z))
(15)

For convenience, let r(z) = λ(1 − z). From Eq.(15), we have

P1(0, z) = λp0,0(z − 1) − p3,0(0) +
1 − α

z
P1(0, z)G∗

1(r(z))

+ 1
z P2(0, z)G∗

2(r(z)) + P3(0, z)V ∗(r(z))

Solving the differential Eq.(6) yields

p3,0(x) = p3,0(0)(1 − V (x))e−λx (16)
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Then multiplying both sides of Eq.(16) by w(x) and integrating with x from
0 to ∞, together with Eq.(1), we have

p3,0 =
λp0,0

(1 − p)V ∗(λ)
(17)

Substituting Eq.(17) into Eq.(15), we obtain

P1(0, z) = λp0,0(z − 1) − λp0,0
(1−p)V ∗(λ) +

1 − α

z
P1(0, z)G∗

1(r(z))

+
1
z
P2(0, z)G∗

2(r(z)) + P3(0, z)V ∗(r(z))
(18)

Since P3(0, z) = p3,0(0), Eq.(18) can be written as follows:

P1(0, z) = λp0,0(z − 1) − λp0,0
(1−p)V ∗(λ) +

1 − α

z
P1(0, z)G∗

1(r(z))

+
1
z
P2(0, z)G∗

2(r(z)) +
λp0,0

(1 − p)V ∗(λ)
V ∗(r(z))

(19)

Multiplying both sides of Eq. (10) by zn (n = 1, 2, · · · ) and summing over n,
then we have

P2(0, z) = αP1(0, z)G1(r(z)). (20)

Substituting Eq.(20) into Eq.(19), we obtain

P1(0, z) =
λzp0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(21)

Integrating both sides of Eq.(12) with x from 0 to ∞, then we get

P1(z) = P1(0, z)
1 − G∗

1(r(z))
λ(1 − z)

(22)

Substituting Eq.(21) into Eq.(22), we have

P1(z) =
zp0,0[1 − G∗

1(r(z))][1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]
(1 − p)V ∗(λ)(1 − z)[(1 − α)G∗

1(r(z)) + αG∗
1(r(z))G∗

2(r(z)) − z]
(23)

Performing similar operations on Eqs. (13) and (14), then we get

P2(z) = P2(0, z)
1 − G∗

2(r(z))
λ(1 − z)

(24)

and

P3(z) = P3(0, z)
1 − V ∗(λ(1 − z))

λ(1 − z)
(25)

Then, substituting Eqs. (20) and (17) into (24) and (25), respectively, we
have

P2(z) =
p0,0zαG∗

1(r(z))[1 − G∗
2(r(z))][1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]

(1 − p)V ∗(λ)(1 − z)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(26)
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and

P3(z) =
p0,0[1 − V ∗(r(z))]

(1 − p)V ∗(λ)(1 − z)
(27)

From Eqs. (23), (26) and (27), we get the probability generating function for
steady-state system size

P (z) = P1(z) + P2(z) + P3(z) + p0,0

=
p0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

(28)

Using the normalization condition P1(z) + P2(z) + P3(z) + p0,0 = 1, thus we
have

p0,0 =
(1 − p)(1 − ρ)V ∗(λ)
λv + (1 − p)V ∗(λ)

(29)

Substituting p0,0 into Eq. (28), it is given as

P (z) =
(1 − ρ)[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + (1 − p)V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

Based on the above analysis, we will give some performance analysis for the
system in the next section.

3 Performance Analysis

In the section, we will obtain the probability generating function of the steady
state system size at a departure epoch, and the mean values for the steady
state system size, waiting time, sojourn time. In addition, we will obtain the
probability for each state of the server.

We denote by πn, n = 0, 1, · · · the probabilities that there are n customers in
the system at a departure point (no including the one just departing from the
system). Then, we can obtain the forward equations as follows:

πn = M(1 − α)
∫ ∞

0

p1,n+1u1(x)dx + M

∫ ∞

0

p2,n+1u2(x)dx, n = 0, 1, · · · (29)

where M is the normalizing constant.
Multiplying Eq.(29) by zn (n = 1, 2, · · · ) and summing over n, then together

with Eqs. (12) and (13), we obtain the probability generating function of the
system size Π(z) at a departure epoch as follows:

Π(z) =
Mλp0,0[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

(1 − p)V ∗(λ)[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G
∗
2(r(z)) − z]

(30)
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by utilizing the normalizing condition Π(1) = 1, from Eq.(30), we have

M =
(1 − ρ)(1 − p)V ∗(λ)

λp0,0[λv + (1 − p)V ∗(λ)]
(31)

Substituting Eq. (31) into Eq. (30), we obtain

Π(z) =
(1 − ρ)[1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + (1 − p)V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G
∗
2(r(z)) − z]

(32)

Thus, the probability generating function of the steady state system size at a
departure epoch is same as the one of the system size at a random epoch. From
the Eq. (32), we can have a theorem as follows:

Theorem 1. If ρ < 1, the steady-state system size L can be decomposed into
the sums of two stochastic variables, i.e., L = L0 + Ld, where L0 denotes the
steady-state system size at departure epoch of M/G/1 queue with second optional
service whose generating function has been given in [1], Ld is the steady-state
additional system size due to the general randomized vacations with the proba-
bility generating function as follows

Ld(z) =
1 + (1 − p)V ∗(λ)(1 − z) − V ∗(r(z))

(1 − z)[λv + (1 − p)V ∗(λ)]
(33)

Proof. From Eq. (32), it is very easy to obtain the theorem.

Utilizing Theorem 1, we can obtain a remark as follows.

Remark 1. If ρ < 1, the mean system size can be written as E[L] = E[L0] +
E[Ld], where E[L0] denotes the mean system size at departure epoch of M/G/1
queue with second optional service whose detailed expression has been given
in [1], E[Ld] is the additional mean system size due to the general randomized
vacations with the detailed expression as follows

E[Ld] =
λ2v(2)

2[λv + (1 − p)V ∗(λ)]
(34)

where v(2) stands for the two moment of the general distribution V (x).
Utilizing Remark 1 and Little formula, we can obtain the other two remarks

as follows.

Remark 2. If ρ < 1, the expected value for the sojourn time of a customer in
the system is given by

E[W ] =
E[L0]

λ
+

λv(2)

2[λv + (1 − p)V ∗(λ)]
(35)
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Remark 3. If ρ < 1, the expected value for the waiting time of a customer in the
system is given by

E[Wq] =
E[L0]

λ
+

λv(2)

2[λv + (1 − p)V ∗(λ)]
− 1

u1
− α

u2
(36)

From the expressions of P1(z), P2(z), P3(z) and p0,0, we can determined the
probability for each state of the server, as in the following Corollary 1.

Corollary 1. If ρ < 1, then

(1) the probability when the server is idle is

p0,0 =
(1 − p)(1 − ρ)V ∗(λ)
λv + (1 − p)V ∗(λ)

(2) the probability when the server is busy with supplying the first essential ser-
vice is

P1 = ρ1

(3) the probability when the server is busy with supplying the second optional
service is

P2 = ρ2

(4) the probability when the server is taking a vacation is

P3 =
(1 − ρ)λv

λv + (1 − p)V ∗(λ)

where ρ1 =
λ

u1
, ρ2 =

αλ

u2
.

4 Special Cases of the Model

In the section, we will give two special cases of our model by choosing the different
value of p. We will only study Π(z) for the two cases of the model, and the other
parameters can be studied similarly.

Case 1. Let p = 1. Then our model can be simplified to the M/G/1 queue with
second optional service and multiple vacations. Let p = 1 in Π(z). We have the
probability generating function of system size at a departure epoch as follows

Π(z) =
(1 − ρ)[1 − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

λv[(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]

Case 2. Let p = 0. Then our model can be simplified to the M/G/1 queue with

second optional service and single vacation. In addition, let p = 0 in Π(z). We
have the probability generating function of system size at a departure epoch as
follows

Π(z) =
(1 − ρ)[1 + V ∗(λ)(1 − z) − V ∗(r(z))]G∗

1(r(z))[(1 − α) + αG∗
2(r(z))]

[λv + V ∗(λ)][(1 − α)G∗
1(r(z)) + αG∗

1(r(z))G∗
2(r(z)) − z]
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5 Numerical Results

In the section, our first purpose is to study the effects of parameters p and
λ on the expected system size of messages and the expected waiting time of
messages in the system. We assume that the length of a first essential service, a
second optional service and a vacation all follow exponential distributions with
parameters μ1, μ2 and ν, respectively.

For convenience, we choose μ1 = 2.5, μ2 = 2.0, ν = 1.5, α = 0.5 and p =
0, 0.2, 0.5, 0.7, 1, and then vary the value of λ from 0 to 1.0.
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Figures 1 and 2 show that the expected system size and the expected waiting
time are functions of the arrival rate λ and p. We find that whenever λ increases,
the expected system size and expected waiting time increase at a higher level
with a fixed p, so the both are increasing functions of λ. Similarly the both are
also increasing functions of p with a fixed λ.

The second purpose is to study the effects of parameters p and λ on proba-
bilities p0,0 and P3. We make some assumptions as above.
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Figures 3 and 4 show that p0,0 is a function of the arrival rate λ and p. We
find that λ increases, p0,0 decreases at a lower level with a fixed p, so it is a
decreasing function of λ. Furthermore, P3 is increasing function about p with a
fixed λ, but not of the monotonicity, of λ with a fixed p.

6 Conclusions

In this paper, we study the general randomized vacation policy for the M/G/1
queueing system with second optional service. By the Kolmogorov forward equa-
tions and supplementary variable method, we obtain the probability generating
functions for the steady state system size and expected values for the steady
state system size, waiting time and sojourn time. Additionally, utilizing numer-
ical illustration, we study the effects of parameters p and λ on the expected
system size of messages, the expected waiting time of messages and the proba-
bilities when the server is idle and is on vacation.
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Abstract. Based on the paper [1–11], this paper studied matrix representation
of six basic transformations in error logic and their application in eliminating or
avoiding errors, including the following: Similar conjunctions corresponds to
T�1
x (reverse similarity); The replacement conjunction corresponds to T�1

z

(inverse permutation); The addition of the conjunction corresponds to T�1
zn

(reducing the transforming word); The decomposed conjunction corresponds to
T�1
f (combination transformation words); Destroyed conjunction corresponds to

T�1
h (produce a transformative word); Unit conversion Conjunction word system

Td (unit); corresponds to T�1
d (inverse unit conversion word); Error logical

quantifier system.

Keywords: Error logic � Convert conjunctions � Matrix representation �
Eliminate the wrong

1 The Concept of Fuzzy Error Matrix

Definition 1.1

Set A ¼
ððu111 u112. . .u11kÞ; x11Þ ððu121 u122. . .u12kÞ; x12Þ . . . ððu1n1 u1n2. . .u1nkÞ; x1nÞ
ððu211 u212. . .u21kÞ; x21Þ ððu221 u222. . .u22kÞ; x22Þ . . . ððu2n1 u2n2. . .u2nkÞ; x2nÞ

. . . . . . . . . . . .
ððum11 um12. . .um1kÞ; xm1Þ ððum21 um22. . .um2kÞ; xm2Þ . . . ððumn1 umn2. . .umnkÞ; xmnÞ

0
BB@

1
CCA

Then A is called an m � n-order fuzzy error matrix, in which xij 2 0; 1½ �, I = 1,2,…,
m; j = 1,2,…,n.
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Definition 1.2

Set A ¼
U10 S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11, S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .
U1t S1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1 t tð Þ x1 t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1 t tð Þ

0
BB@

1
CCA

Then A is called (t + 1) � 7 fuzzy error matrix, (t + 1) � 7 fuzzy error matrix elements
are the collection, in which x1i 2[0,1], I = 0,1,2,…,t.

2 Matrix Representation of Fuzzy Error Logic
Transformation

By the definition of fuzzy matrix multiplication, each column of the matrix can be
defined as a decomposition transformation. It can act on every element of the right
matrix.

u; xð Þ ¼ ðU1; S1 tð Þ; p*1; T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GU tð ÞÞ ¼
U10S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1tS1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA

X1i 2[0,1], I = 0,1,2,…,t;.

Definition 2.1

Set u; xð Þ ¼ ðU1; S1 tð Þ; p*1; T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GA tð ÞÞ ¼
U10S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1tS1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA

X1i 2[0,1], I = 0,1,2,…,t;.

V; yð Þ ¼ ðV2; S2 tð Þ; p*2; T2 tð Þ; L2 tð ÞÞ; y tð Þ ¼ f ððv tð Þ; p*2Þ;GV tð ÞÞ ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . . . . . . . . . . .

ðV2t; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ ; L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BBB@

1
CCCA

Y2i 2[0,1], I = 0,1,2,…,t;
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A ¼ ðu; xÞ
ððu11 u12 . . . u1kÞ; x1Þ
ððu21 u22 . . . u2kÞ; x2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

xi 2[0,1], I = 1,2,…,m.

B = (v,y) ¼ ððv11v12 . . . v1kÞ; yÞ½ �

AB ¼
ððw11w12 . . . w1kÞ; x1 ^ yÞ
ððw21w22 . . . w2kÞ; x2 ^ yÞ

. . . . . . . . .
ððwum1wm2 . . . wmkÞ; xm ^ yÞ

0
BB@

1
CCA

If xi � y, xi ¼ 1; 2; � � � � � � ;m; y 2 ½0; 1�, then this element is empty, or this element
ððui1ui2 � � � uikÞ; xi1 ^ yÞ ¼ ððui1ui2 � � � uikÞ; xiÞ, then v = (u1 hu1 h… h um。. Then
called

A ¼
ððu11 u12 . . . u1kÞ; x1Þ
ððu21 u22 . . . u2kÞ; x2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

is decomposition transformation of ((v11 v12 … v1k), y).
xi 2[0,1], I = 1,2,…,m;.

Definition 2.2

A ¼
ððu11 u11 . . . u1kÞ; x1Þ
ððu21 u21 . . . u2kÞ; x2Þ
. . . . . . . . . . . . . . .

ððum1 um1 . . . umkÞ; xmÞ

0
BB@

1
CCA

xi 2[0,1], I = 1,2,…,m;

B ¼ ððv11v11 � � � v1kÞ; y1Þ ððv21v22 � � � v2kÞ; y2Þ � � � ððvm1vm1 � � � vmkÞ; ymÞ½ �

BA ¼ ðw; zÞ ððw11w2 � � �wkÞ; ðx1 ^ y1Þ _ ðx2 ^ y2Þ_ � � � _ðxm ^ ymÞÞ½ �

WJ = u1J h u2J h … h umJ = v1J h v2J h … h vmJ; z is the combined target error
value, and z ¼ ðx1 ^ y1Þ _ ðx2 ^ y2Þ _ � � � _ ðxm ^ ymÞ.

(For example, if yi � xi; xi; yi ¼ 1; 2; � � � ;m; and z = max(x1, x2, … , xm). Then
z ¼ ðx1 ^ y1Þ _ ðx2 ^ y2Þ _ � � � _ ðxm ^ ymÞ .Can be satisfied.)

Then called
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A ¼
ððu11 u12 . . . u1kÞ; x11Þ
ððu21 u22 . . . u2kÞ; x21Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xm1Þ

0
BB@

1
CCA

is combination transformation of (((v11 v11 … v1k), y1) ((v21 v22… v2k), y2)… ((vm1 vm1

… vmk), ym).
From this we can see that the decomposition transformation and the combined

transformation (i.e., its inverse transformation) are the matrix multiplications of right
and left. Therefore, only six basic transformations are discussed below, and its inverse
is not discussed.

Definition 2.3

Set B ¼ ððv1; y1Þ ððv2; y2Þ � � � ððvm; ymÞ ; yi 2 ½0; 1�; I = 1,2,. . .;m;½ �

A ¼

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . a . . . 0 0 i

. . .
0 0 . . . 0 1 mn

j

0
BBBBBBBB@

1
CCCCCCCCA

AB = ((v1, y1) ((v2, y2)……a ((vj, yj)……((vm, ym), then called

A =

1 0 . . . 0 0
0 1 . . . 0 0

. . .
0 0 . . . a . . . 0 0 i

. . .
0 0 . . . 0 1 mm;

0
BBBBBB@

1
CCCCCCA

is similarity transformation of B = ((v1, y1) ((v2, y2)…a ((vj, yj)…((vm, ym).yi2[0,1],
I = 1,2,…,m;

Definition 2.4

Set u; xð Þ ¼ ðU1; S1 tð Þ; p*1; T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GA tð ÞÞ ¼
U10S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1tS1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA

X1i 2[0,1], I = 0,1,2,…,t;.
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V; yð Þ ¼ ðV2; S2 tð Þ; p*2; T2 tð Þ; L2 tð ÞÞ; y tð Þ ¼ f ððv tð Þ; p*2Þ;GB tð ÞÞ ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . . . . . . . . . . .

ðV2t; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ ; L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BBB@

1
CCCA

Y2i2[0,1], I = 0,1,2,…,t;.

A ¼ ðu; xÞ
ððu01 u02 . . . u0kÞ; x0Þ
ððu11 u12 . . . u1kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

xi2[0,1], I = 0,1,2,…,m.

B ¼ ðv; yÞ ¼ ððv11 v12 � � � v1kÞ; yÞ½ �

AB ¼
ððv11 v12 . . . v1kÞ; x0 ^ yÞ
ððu11 u12 . . . u1kÞ; x1 ^ yÞ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xm ^ yÞ

0
BB@

1
CCA

If x0 � y, xi � y, i = 1,2, � � � ;m, then

ððv11 v12 . . . v1kÞ; x0 ^ yÞ
ððu11 u12 . . . u1kÞ; x1 ^ yÞ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xm ^ yÞ

0
BB@

1
CCA ¼

ððv11 v12 . . . v1kÞ; yÞ
ððu11 u12 . . . u1kÞ; x1Þ
. . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

then called

A ¼
ððu01 u02 . . . u0kÞ; x0Þ
ððu11 u12 . . . u1kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

is the increasing transformation of ((v11 v12 … v1k), y).

Definition 2.5

Set u; xð Þ ¼ ðU1; S1 tð Þ; p*1; T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GA tð ÞÞ ¼
U10S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1tS1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð Þ L1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA
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X1i2[0,1], I = 0,1,2,…,t;.

V; yð Þ ¼ ðV2; S2 tð Þ; p*2; T2 tð Þ;L2 tð ÞÞ; y tð Þ ¼ f ððv tð Þ; p*2Þ;GB tð ÞÞ ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . . . . . . . . . . .

ðV2t; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ ; L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BBB@

1
CCCA

Y2i2[0,1], I = 0,1,2,…,t;.

A ¼ ðu; xÞ
ððu11 u12 . . . u1kÞ; x0Þ
ððu21 u22 . . . u2kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

xi 2[0,1], I = 0,1,2,…,m;.

B ¼ ðv; yÞ
¼ ððv11v12. . .v1kÞ; y0Þ ððv21v22. . .v2kÞ; y1Þ � � � ððvm1vm2. . .vmkÞ; ymÞ½ �

yi2[0,1], I = 0,l,2,…,m.

AB ¼
ððu11 u12 . . . u1kÞ; x0 ^ y1Þ
ððu21 u22 . . . u2kÞ; x1 ^ y2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xm ^ ymÞ

0
BB@

1
CCA

If xi � yi; i = 1,2, � � � � � � ;m. Then

AB ¼
ððu11 u12 . . . u1kÞ; x1Þ
ððu21 u22 . . . u2kÞ; x2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

then called

A ¼
ððu11 u12 . . . u1kÞ; x0Þ
ððu21 u22 . . . u2kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

is permutation transformation of ((v11 v12 … v1k), y).
Or
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A ¼ ðu; xÞ
ððu11 u12 . . . u1kÞ; x0Þ
ððu21 u22 . . . u2kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

xi 2[0,1], I = 0,1,2,…,m;.

B ¼ ðv; yÞ ¼
ððv11 v12 . . . v1kÞ; y0Þ
ððv21 v22 . . . v2kÞ; y1Þ
. . . . . . . . . . . . . . .

ððvm1 vm2 . . . vmkÞ; ymÞ

0
BB@

1
CCA

yi 2[0,1], I = 0,1,2,…,m;.

AþB ¼
ððu11 u12 . . . u1kÞ; x0 _ y1Þ
ððu21 u22 . . . u2kÞ; x1 _ y2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xm _ ymÞ

0
BB@

1
CCA

If xi � yi; i = 1,2, � � � ;m. Then

AþB ¼
ððu11 u12 . . . u1kÞ; x1Þ
ððu21 u22 . . . u2kÞ; x2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

Called

A ¼
ððu11 u12 . . . u1kÞ; x0Þ
ððu21 u22 . . . u2kÞ; x1Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; xmÞ

0
BB@

1
CCA

is the second kind of permutation transformation of ((v11 v12 … v1 k), y).

Definition 2.6

Set u; xð Þ ¼ ðU1; S1 tð Þ; p*1;T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GA tð ÞÞ ¼
U10 S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1t S1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA

X1i 2[0,1], I = 0,1,2,…,t;.
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V; yð Þ ¼ ðV2; S2 tð Þ; p*2; T2 tð Þ; L2 tð ÞÞ; y tð Þ ¼ f ððv tð Þ; p*2Þ;GB tð ÞÞ ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . .. . . . . .. . . . . .. . . . . .. . .

ðV2t tð Þ; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ ; L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BBB@

1
CCCA

Y2i 2[0,1], I = 0,1,2,…,t;.

A ¼ ðu; xÞ ððu11u12. . .u1kÞ;UÞ ððu21u22. . .u2kÞ;UÞ � � � ððum1um2. . .umkÞ;UÞ½ �

B ¼ ðv; yÞ ¼
ððv11 v12 . . . v1kÞ; y0Þ
ððv21 v22 . . . v2kÞ; y1Þ
. . . . . . . . . . . . . . .

ððvm1 vm2 . . . vmkÞ; ymÞ

0
BB@

1
CCA

AB ¼
ððu11 u12 . . . u1kÞ; U ^ y1Þ
ððu21 u22 . . . u2kÞ; U ^ y2Þ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; U ^ ymÞ

0
BB@

1
CCA

Then

B ¼ ðv; yÞ ¼
ððv11 v12 . . . v1kÞ; y0Þ
ððv21 v22 . . . v2kÞ; y1Þ
. . . . . . . . . . . . . . .

ððvm1 vm2 . . . vmkÞ; ymÞ

0
BB@

1
CCA

Called

A ¼
ððu11 u12 . . . u1kÞ; UÞ
ððu21 u22 . . . u2kÞ; UÞ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; UÞ

0
BB@

1
CCA

is destruction transformation of quantities of ((v11 v12 … v1k), y).
Or

A ¼ ðu; xÞ
ððu11 u12 . . . u1kÞ; UÞ
ððu21 u22 . . . u2kÞ; UÞ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; UÞ

0
BB@

1
CCA
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B ¼ ðv; yÞ ¼
ððv11 v12 . . . v1kÞ; y0Þ
ððv21 v22 . . . v2kÞ; y1Þ
. . . . . . . . . . . . . . .

ððvm1 vm2 . . . vmkÞ; ymÞ

0
BB@

1
CCA

A�B ¼
ððu11 u12 . . . u1kÞ; U ^ y1Þ
ððu21 u22 . . . u2kÞ; U ^ y2Þ
. . . . . . . . . . . . . . .
ððum1 um2 . . . umkÞ; U ^ ymÞ

0
BB@

1
CCA

Then

B ¼ ðv; yÞ ¼
ððv11 v12 . . . v1kÞ; y0Þ
ððv21 v22 . . . v2kÞ; y1Þ
. . . . . . . . . . . . . . .

ððvm1 vm2 . . . vmkÞ; ymÞ

0
BB@

1
CCA

Called

A ¼
ððu11 u12 . . . u1kÞ; UÞ
ððu21 u22 . . . u2kÞ; UÞ
. . . . . . . . . . . . . . .

ððum1 um2 . . . umkÞ; UÞ

0
BB@

1
CCA

is destruction transformation of quantities of ((v11 v12 … v1k), y).
Particularly, if

A ¼ ðu; xÞ
U U U U... U U U
U U U U... U U U

. . .
U U U U... U U U

0
BB@

1
CCA

B ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . . . . . . . . . . .
ðV2t; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ ; L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BB@

1
CCA

Y2i 2[0,1], I = 0,1,2,…,t;.

A�B ¼
U ^ V20; U ^ S20 tð Þð Þ U ^ p*20ðx1; x2; � � � ; xnÞ U ^ T2 tð Þ U ^ L2 tð Þ U ^ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ U ^ GV10 tð Þ
U ^ ðV21; U ^ S21 tð ÞÞ U ^ p*21ðx1; x2; � � � ; xnÞ U ^ T21 tð Þ U ^ L21 tð Þ U ^ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ U ^ GV11 tð Þ
. . . . . . . . . . . .
U ^ ðV2t;U ^ Stt tð ÞÞ U ^ p*2tðx1; x2; � � � ; xnÞ U ^ T2t tð Þ ;U ^ L2t tð Þ U ^ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ U ^ GV1t tð Þ

0
BB@

1
CCA

¼
U U U U... U U U
U U U U... U U U

. . .
U U U U... U U U

0
BB@

1
CCA
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Called

A ¼
U U U U... U U U
U U U U... U U U

. . .
U U U U... U U U

0
BB@

1
CCA

is the second kind of complete destruction transformation of ((v11 v12 … v1k), y).

Definition 2.7

Set u; xð Þ ¼ ðU1; S1 tð Þ; p*1;T1 tð Þ; L1 tð ÞÞ ; x tð Þ ¼ f ððu tð Þ; p*1Þ;GA tð ÞÞ ¼
U10 S10 tð Þ p*10ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ x10 tð Þ ¼ f10ððu tð Þ; p*1Þ;GU10 tð ÞÞ GU10 tð Þ
U11; S11 tð Þ p*11ðx1; x2; � � � ; xnÞ T11 tð Þ L11 tð Þ x11 tð Þ ¼ f11ððu tð Þ; p*1Þ;GU11 tð ÞÞ GU11 tð Þ

. . . . . . . . . . . .

U1t S1t tð Þ p*1tðx1; x2; � � � ; xnÞ T1t tð ÞL1t tð Þ x1t tð Þ ¼ f1tððu tð Þ; p*1Þ;GU1t tð ÞÞ GU1t tð Þ

0
BBB@

1
CCCA

xi1 2[0,1], I = 0,1,2,…,t;.

V; yð Þ ¼ ðV2; S2 tð Þ; p*2;T2 tð Þ;L2 tð ÞÞ; y tð Þ ¼ f ððv tð Þ; p*2Þ;GB tð ÞÞ ¼
V20; S20 tð Þð Þ p*20ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*2Þ;GV tð ÞÞ GV10 tð Þ
ðV21; S21 tð ÞÞ p*21ðx1; x2; � � � ; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*2Þ;GV tð ÞÞ GV11 tð Þ

. . . . . . . . . . . .

ðV2t; Stt tð ÞÞ p*2tðx1; x2; � � � ; xnÞ T2t tð Þ L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2Þ;GV tð ÞÞ GV1t tð Þ

0
BBB@

1
CCCA

Y2i 2[0,1], I = 0,1,2,…,t;.

A ¼ ðu; xÞ ððu1 u2 . . . ukÞ;1Þ½ �

B ¼ ðv; yÞ ¼ ððv11 v12 . . . v1kÞ; yÞ½ �

AB ¼ ððw1 w2 . . . wkÞ;1^ yÞ½ �
¼ ðð v11 v12 . . . v1k Þ; yÞ

Then
A ¼ ðu; xÞ ððu1 u2 . . . ukÞ;1Þ½ � Is called unit transformation of

B ¼ ðv; yÞ ¼ ððv11 v12 . . . v1kÞ; yÞ½ �.

3 Application Examples for the Matrix Representation
of Fuzzy Error Logic Conjunction

The set equation for fuzzy error logic matrix
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Set A ¼
U1 S1 tð Þ p*1ðx1; x2; � � � ; xnÞ T1 tð Þ L1 tð Þ y1 tð Þ ¼ f1ððu tð Þ; p*1Þ;GU1 tð ÞÞ GU1 tð Þ
U2 S2 tð Þ p*2ðx1; x2; � � � ; xnÞ T2 tð Þ L2 tð Þ y2 tð Þ ¼ f2ððu tð Þ; p*2Þ;GU2 tð ÞÞ GU2 tð Þ
U3 S3 tð Þ p*3ðx1; x2; � � � ; xnÞ T3 tð Þ L3 tð Þ y3 tð Þ ¼ f3ððu tð Þ; p*3Þ;GU3 tð ÞÞ GU3 tð Þ
U4 S4 tð Þ p*4ðx1; x2; � � � ; xnÞ T4 tð Þ L4 tð Þ y4 tð Þ ¼ f4ððu tð Þ; p*4Þ;GU4 tð ÞÞ GU4 tð Þ

0
BB@

1
CCA

yi 2[0,1], I = 1,2,3,4;.

U1 ¼ u12; u13; � � � ; u15f g;
SU1ðtÞ ¼ s11; s12; � � � ; s15f g;
p*U1ðx1; x2; � � � ; xnÞ ¼ fp*11; p

*

12; � � � ; p*15g;
TU1ðtÞ ¼ ft11; t12; � � � ; t15g;
LU1ðtÞ ¼ fl11; l12; � � � ; l15g;
YU1 tð Þ ¼ f1ððu tð Þ; p*1Þ ¼ fy11; y12; � � � ; y15g;
GU1ðtÞ ¼ fg11; g12; � � � ; g15g:

UU2ðtÞ ¼ fu21; u22; � � � ; u26g;
SU2ðtÞ ¼ fs21; s22; � � � ; s26g;
p*U2ðx1; x2; � � � ; xnÞ ¼ fp*21; p

*

22; � � � ; p*26g;
TU2ðtÞ ¼ ft21; t22; � � � ; t26g;
LU2ðtÞ ¼ fl21; l22; � � � ; l26g;
yU2 tð Þ ¼ f2ððu tð Þ; p*2Þ ¼ fy21; y22; � � � ; y26g;
GU2ðtÞ ¼ fg21; g22; � � � ; g26g:

UU3ðtÞ ¼ fu31; u32; � � � ; u36g;
SU3ðtÞ ¼ fs31; s32; � � � ; s36g;
p*U3ðx1; x2; � � � ; xnÞ ¼ fp*31; p

*

32; � � � ; p*26g;
TU3ðtÞ ¼ ft31; t32; � � � ; t36g;
LU3ðtÞ ¼ fl31; l32; � � � ; l36g;
YU3 tð Þ ¼ f3ððu tð Þ; p*3Þ ¼ fy31; y32; � � � ; y36g;
GU3ðtÞ ¼ fg31; g32; � � � ; g36g:

U4 ¼ fu41; u42; � � � ; u47g;
SU4ðtÞ ¼ fs41; s42; � � � ; s47g;
p*U4ðx1; x2; � � � ; xnÞ ¼ fp*41; p

*

42; � � � ; p*47g;
TU4ðtÞ ¼ ft41; t42; � � � ; t47g;
LU4ðtÞ ¼ fl41; l42; � � � ; l47g;
YU4 tð Þ ¼ f4ððu tð Þ; p*4Þ ¼ fy41; y42; � � � ; y4ng;
GU4ðtÞ ¼ fg41; g42; � � � ; g47g:
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X ¼
U1x S1x tð Þ p*1xðx1; x2; � � � ; xnÞ T1x tð Þ L11x tð Þ x1x tð Þ ¼ f1xððu tð Þ; p*1xÞ;GU1x tð ÞÞ GU1x tð ÞÞ
U2x S2x tð Þ p*2xðx1; x2; � � � ; xnÞ T2x tð Þ L2x tð Þ x2x tð Þ ¼ f2xððu tð Þ; p*2xÞ;GU2x tð ÞÞ GU2x tð ÞÞ
U3x S3x tð Þ p*3xðx1; x2; � � � ; xnÞ T3x tð Þ L3x tð Þ x3x tð Þ ¼ f3xððu tð Þ; p*3xÞ;GU3x tð ÞÞ GU3x tð ÞÞ
U4x S4x tð Þ p*4xðx1; x2; � � � ; xnÞ T4x tð Þ L4x tð Þ x4x tð Þ ¼ f4xððu tð Þ; p*4xÞ;GU4x tð ÞÞ GU4x tð ÞÞ

0
BB@

1
CCA

xix 2[0,1], I = 1,2,…,4;.

B ¼
ððV1 Sv1 tð ÞÞ p*v1ðx1; x2; � � � ; xnÞ Tv1 tð Þ Lv1 tð Þ yv1 tð Þ ¼ fv1ððv tð Þ; p*v1Þ;GV1 tð ÞÞ GV1 tÞð Þ
ððV2; Sv2 tð ÞÞ p*v2ðx1; x2; � � � ; xnÞ Tv2 tð Þ L2 tð Þ yv2 tð Þ ¼ fv2ððv tð Þ; p*v2Þ;GV2 tð ÞÞ GV2 tÞð Þ
ððV3; Sv3 tð ÞÞ p*v3ðx1; x2; � � � ; xnÞ Tv3 tð Þ L3 tð Þ yv3 tð Þ ¼ fv3ððv tð Þ; p*v3Þ;GV3 tð ÞÞ GV3 tÞð Þ
ððV4; Sv4 tð ÞÞ p*v4ðx1; x2; � � � ; xnÞ Tv4 tð Þ L4 tð Þ yv4 tð Þ ¼ fv4ððv tð Þ; p*v4Þ;GV4 tð ÞÞ GV4 tð ÞÞ

0
BB@

1
CCA

Yvi 2[0,1], I = 1,2,…,4;.

V1 ¼ u12; u13; � � � ; u15f g;
SV1ðtÞ ¼ s11; s13; � � � ; s15f g;
p*1ðx1; x2; � � � ; xnÞ ¼ fp*11; p

*

12; � � � ; p*15g;
TV1ðtÞ ¼ t12; t13; � � � ; t15f g;
LV1ðtÞ ¼ l12; l13; � � � ; l15f g;
YV1 tð Þ ¼ f1ððu tð Þ; p*1Þ ¼ fy11; y12; � � � ; y15g;
GV1ðtÞ ¼ fg11; g12; � � � ; g15g:

UV2 ¼ u21; u22; � � � ; u25f g;
SV2ðtÞ ¼ s21; s22; � � � ; s25f g;
p*V2ðx1; x2; � � � ; xnÞ ¼ fp*21; p

*

22; � � � ; p*25g;
TV2ðtÞ ¼ t21; t22; � � � ; t25f g;
LV2ðtÞ ¼ l21; l22; � � � ; l25f g;
yV2 tð Þ ¼ f2ððu tð Þ; p*2Þ ¼ fy21; y22; � � � ; y25g;
GV2ðtÞ ¼ fg21; g22; � � � ; g25g:

V3 ¼ u31; u32; � � � ; u36f g;
SV3ðtÞ ¼ s31; s32; � � � ; s36f g;
p*V3ðx1; x2; � � � ; xnÞ ¼ fp*31; p

*

32; � � � ; p*26g;
TV3ðtÞ ¼ t31; t32; � � � ; t36f g;
LV3ðtÞ ¼ l31; l32; � � � ; l36f g;
YV3 tð Þ ¼ f3ððu tð Þ; p*3Þ ¼ fy31; y32; � � � ; y36g;
GV3ðtÞ ¼ fg31; g32; � � � ; g36g:

The Matrix Representation of Fuzzy Error Logic Conjunction 319



V4 ¼ u41; u42; � � � ; u45f g;
SV4ðtÞ ¼ s41; s42; � � � ; s45f g;
p*V4ðx1; x2; � � � ; xnÞ ¼ fp*41; p

*

42; � � � ; p*45g;
TV4ðtÞ ¼ t41; t42; � � � ; t45f g;
LV4ðtÞ ¼ l41; l42; � � � ; l45f g;
YV4 tð Þ ¼ f4ððu tð Þ; p*4Þ ¼ fy41; y42; � � � ; y45g;
GV4ðtÞ ¼ fg41; g42; � � � ; g45g:

A � B is given by the given condition, and the theorem is solved by the fuzzy error
matrix, If X = B, then X is the solution of equation X ^ A ¼ B, and it can be obtained
by X transform to be B, here is X = B.
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Variational Iteration Method for Solving
an Inverse Parabolic Problem
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Abstract. In this paper, the variational iteration method is applied
to solving an inverse problem of determining more than one unknown
parameters in a linear parabolic equation with Neumann boundary con-
ditions. If one of boundary conditions is considered as unknown, it is
desirable to be able to determine more than one parameter from the
given data. This method is based on the use of Lagrange multipliers for
identification of optimal valuse of parameters in a functional. We get a
rapid convergent sequence tending to the exact solution of the inverse
problem. To show the efficiency of the present method, one interesting
example is presented.

Keywords: Variational iteration method · Inverse parabolic equation ·
Neumann boundary conditions · Lagrange multipliers

1 Introduction

In this work, we will consider the following inverse problem of simultaneously
finding unknown coefficients p(t), one boundary condition q(t) and u(x, t) from
the following parabolic equation

ut = uxx + p(t)u + f(x, t), x ∈ (0, 1), t ∈ (0, T ], (1)

with the initial-boundary conditions

u(x, 0) = ϕ(x), x ∈ (0, 1), t ∈ (0, T ], (2)
ux(0, t) = q(t), t ∈ (0, T ], (3)
ux(1, t) = μ1(t), t ∈ (0, T ], (4)
u(1, t) = μ2(t), t ∈ (0, T ], (5)

and the additional specification

u(x∗, t) = E(t), x∗ ∈ (0, 1), t ∈ (0, T ], (6)
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 32
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where f(x, t), ϕ(x), μ1(t), μ2(t) and E(t) �= 0 are known functions, p(t) and q(t)
are unknown function, x∗ is a fixed prescribed interior point in (0, 1).

The determination of unknown coefficients in partial differential equations of
parabolic type from additional boundary conditions (i.e., measured data taken on
the boundary) is well known in literature as inverse coefficient problems (ICP).
Physically, the ICP is the reconstruction of an intra property of a medium in some
bounded region by using state measurements taken on the boundary. ICP for
semi-linear parabolic equations have been studied by many people, for example,
by Cannon and Lin [1], Emine [2], Hasanov and Liu [3], Liu [4–6], Odibat [7],
Varedi, Hosseini, Rahimi, et al. [8].

The variational iteration method is introduced by He [9–11] as a modifica-
tion of a general Lagrange multiplier method [12], which has been proved by
many authors to be a powerful mathematical tool for various types of nonlinear
problems. It was successfully applied to burger’s equation and coupled equa-
tion [13], a biochemical reaction model [14], singular perturbation initial value
problems [15], strongly nonlinear problems [16,17], nonlinear differential equa-
tions of fractional order [18,26], generalized nonlinear Boussinesq equation [19]
and generalized KdV [20], Dehghan, Liu Jinbo, Huang Dejian and Ma Yunjie
have studied the inverse problems by use of the variational iteration method
[7,21,22,25,27].

In this paper, we will apply the variational iteration method to find the exact
solution of a control parameter p(t), a boundary condition q(t) in parabolic
equation.

2 The Variational Iteration Method

In this section the application of variational iteration method is discussed for
solving problem (1)–(5) with over specification (6). Applying a pair of transfor-
mations [2] as follows:

r(t) = exp(−
∫ t

0

p(s)ds), (7)

w(x, t) = u(x, t)r(t). (8)

We reduce the original inverse problem (1)–(6) to the following auxiliary
problem:

wt = wxx + r(t)f(x, t), x ∈ (0, 1), t ∈ (0, T ]. (9)
w(x, 0) = ϕ(x), x ∈ (0, 1), t ∈ (0, T ], (10)
wx(0, t) = r(t)q(t), t ∈ (0, T ], (11)
wx(1, t) = r(t)μ1(t), t ∈ (0, T ], (12)
w(1, t) = r(t)μ2(t), t ∈ (0, T ], (13)

subject to

r(t) =
w(x∗, t)

E(t)
, t ∈ (0, T ]. (14)



Variational Iteration Method for Solving an Inverse Parabolic Problem 323

It is easy to show that the original inverse problem (1)–(6) is equivalent to the
auxiliary problem (9)–(14). Obviously, Eq. (9) has only one unknown function
w(x, t) [23,24] and has suitable form to apply the variational iteration method.

According to the variational iteration method, we consider the correction
functional in t− direction in the following form

wn+1(x, t) = wn(x, t) +

∫ t

0
λ(s){∂wn(x, s)

∂s
− ∂2w̃n(x, s)

∂x2
− w̃n(x∗, s)

E(s)
f(x, s)}ds, (15)

where λ(t) is the general Lagrange multiplier, its optimal value is found by using
variational theory, w0(x, t) is an initial approximation which must be chosen
suitably and w̃n is the restricted variation i.e. δw̃n = 0 [9].

To find the optimal value of λ(t), we have

δwn+1(x, t) = δwn(x, t) + δ

∫ t

0
λ(s){∂wn(x, s)

∂s
− ∂2w̃n(x, s)

∂x2
− w̃n(x∗, s)

E(s)
f(x, s)}ds, (16)

or

δwn+1(x, t) = δwn(x, t) + δ

∫ t

0

λ(s){∂wn(x, s)
∂s

}ds. (17)

Using integration by parts, we have

δwn+1(x, t) = δwn(x, t)(1 + λ(t)) −
∫ t

0

δwn(x, s)λ′(s)ds = 0, (18)

which yields

λ′(s) = 0|s=t, (19)
1 + λ(s) = 0|s=t. (20)

Thus we have

λ(t) = −1. (21)

and we obtain the following iteration formula

wn+1(x, t) = wn(x, t)−
∫ t

0
{∂wn(x, s)

∂s
− ∂2wn(x, s)

∂x2
− wn(x∗, s)

E(s)
f(x, s)}ds. (22)

Now using (22) we can find the solution of Eq. (9). Then we get the solutions
of the original inverse problem from the following

u(x, t) =
w(x, t)
E(t)

, (23)

and

p(t) = −r′(t)
r(t)

, (24)
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then

q(t) = ux(0, t), (25)

where r(t) is given in (7).
Also we can consider wn as an approximation of the exact solution for suffi-

ciently large values of n.

3 The Test Example

To show the efficiency of the present method, we consider the following example,
which can be solved iteratively by using the variational iteration method.

Consider Eqs. (1)–(6) with the following conditions:

u(x, 0) = cos(πx) + x, (26)
ux(1, t) = exp(t), (27)
u(1, t) = 0, (28)
f(x, t) = π2 exp(t) cos(πx) − t2 exp(t)[cos(πx) + x], (29)

E(t) = (
√

2
2

+
1
4
) exp(t), (30)

with x∗ = 0.25. The exact solution of this problem is [26]

u(x, t) = exp(t)[cos(πx) + x], (31)

and

p(t) = 1 + t2, (32)
q(t) = exp(t). (33)

We set from (10)

w0 = ϕ(x) = cos(πx) + x. (34)

Using Eq. (22), we obtain

w1(x, t) = w0(x, t)− ∫ t
0 {

∂w0(x,s)
∂s

− ∂2w0(x,s)

∂x2 − w0(x
∗,s)

E(s)
f(x, s)}ds

= cos(πx) + x − ∫ t
0 {π2 cos(πx)− [π2 cos(πx)− s2(cos(πx) + x)]}ds

= [cos(πx) + x](1− t3

3
)

=
∑1

j=0

(− t3
3 )j

j!
[cos(πx) + x],

(35)

w2(x, t) = w1(x, t)− ∫ t
0 {

∂w1(x,s)
∂s

− ∂2w1(x,s)

∂x2 − w1(x
∗,s)

E(s)
f(x, s)}ds

= [cos(πx) + x](1− t3

3
)− ∫ t

0 {−[cos(πx) + x]s2 + (s2 − s5

3
)[cos(πx) + x]}ds

= [cos(πx) + x](1− t3

3
+ t6

18
)

=
∑2

j=0

(− t3
3 )j

j!
[cos(πx) + x],

(36)
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w3(x, t) = w2(x, t) − ∫ t

0
{∂w2(x,s)

∂s − ∂2w2(x,s)
∂x2 − w2(x

∗,s)
E(s) f(x, s)}ds

= [cos(πx) + x](1 − t3

3 + t6

18 ) − ∫ t

0
{[cos(πx) + x] s8

18}ds

= [cos(πx) + x](1 − t3

3 + t6

18 − t9

162 )

=
∑3

j=0
(− t3

3 )j

j! [cos(πx) + x],

(37)

and so on.
Generally we obtain

wn(x, t) =
n∑

j=0

(− t3

3 )j

j!
[cos(πx) + x]. (38)

Thus the exact value of w in a closed form is

w(x, t) = exp(− t3

3
)[cos(πx) + x] (n → ∞), (39)

which results the exact solution of the problem. It can be seen that the same
results are obtained using Finite difference method [25], Comparing with Finite
difference method, it is easy to know that the approximation obtained by the
variational iteration method converges to its exact solution faster than those of
Finite difference without calculating implicit difference scheme. The results show
the computation efficiency of the variational iteration method for the studied
model.

4 Conclusion

In this work, the variational iteration method has been successfully applied
to inverse parabolic equation with Neumann boundary conditions. Since this
method solves the problem without any need to discretization of the variables,
it is not affected by computation round off errors and one is not faced with neces-
sity of large computer memory and time. The example shows that this method
provides the solution of the problem in a closed form without calculating implicit
difference scheme, which is an advantage of the variational iteration method over
Finite difference method. Thus we can say the proposed method is very simple
and straightforward.
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Abstract. Motivated by some problems in real life, we consider the
problem how to partition vertices of a fuzzy graph ξ = (V, σ, μ). We
define a coloring function (or coloring for short) of a fuzzy graph ξ to be
a mapping f : V → R such that |σ(v)f(v) − σ(u)f(u)| ≥ μ(vu) for any
v, u ∈ V . If |{f(v) : v ∈ V }| ≤ |{g(v) : v ∈ V }| for any coloring g, then f
is a minimum coloring and the cardinality |{f(v) : v ∈ V }| is called the
chromatic number of ξ, denoted χ(ξ).

The topic is interesting because a series of results show that the chro-
matic number problem for fuzzy graphs is essential a new combinatorial
optimization problem different from, but having some relations with, the
chromatic number problem for crisp graphs.

Keywords: Coloring function · Chromatic number · Combinatorial
optimization · Fuzzy graph

1 Introduction

Background. Graph models have been widely used in many real world phenom-
ena, such as social networks, biological networks and finance. A graph is a con-
venient way of representing information with relationships between objects. In
recent years, the current complicated ubiquitous information enables the rela-
tionship between objects to become more vague [6]. Therefore, fuzzy graph model
has attracted a lot of attention from the communities of data science and fuzzy
logic [14].

The concept of a fuzzy set was introduced by L. Zadeh in [22]. A fuzzy set in
a referential (universe of discourse) X is characterized by a membership function
A which associates with each element x ∈ X a real number A(x) ∈ [0, 1], having
the interpretation that A(x) is the membership degree of x in the fuzzy set
A. A fuzzy graph ξ = (V, σ, μ) is an algebraic structure of non-empty set V
together with a pair of functions σ : V → [0, 1] and μ : V × V → [0, 1], where μ
is a symmetric relation, σ(x) and μ(x, y) (or μ(xy)) represent the membership
values of the vertex x and of the edge xy in ξ respectively.
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 33
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Rosenfeld introduced the concept of a fuzzy graph in 1975 [13]. Since then,
the topic on fuzzy graph and its applications has been extensively studied in, for
example [2,4,7,10,11,18,21]. Among them, some versions of fuzzy domination is
studied in [11,15,16], and a version of fuzzy coloring is studied in [12]. Motivated
by the following problem in real life, we introduce a type of coloring of a fuzzy
graph.

Motivating Example. In a fuzzy graph ξ = (V, σ, μ) we consider the vertices
in ξ as signals. The membership value σ(v) is interpreted as characteristic value
of signal v. The relation value μ(vi, vj) is considered as a threshold such that
if only the difference of the characteristic values are more than this threshold,
putting these two signals in a same information channel would not cause con-
fusion. Specifically, two adjacent signals with a same characteristic value should
be put into different information channels in order to avoid confusion. For two
non-adjacent signals or two adjacent signals with big difference in their charac-
teristic values, we can clearly put them into a same information channel. For two
adjacent signals with small difference in their characteristic values, we can first
assign each of them a coloring (or function value) to enlarge the difference so
that the difference can be recognized, and then put them in a same information
channel. The standard if two signals u, v can be put into a same information
channel is |σ(v)f(v) − σ(u)f(u)| ≥ μ(vu), which is a natural generalization of
coloring in crisp graph. Then at least how many information channels are needed
for this purpose? This problem can be mathematically stated as follows.

Definition 1. A coloring of a fuzzy graph ξ = (V, σ, μ) is a mapping f : V → R
such that |σ(v)f(v)−σ(u)f(u)| ≥ μ(vu) for any two vertices v, u ∈ V . If |{f(v) :
v ∈ V }| ≤ |{g(v) : v ∈ V }| for any colorings g, then f is a minimum coloring
and the cardinality |{f(v) : v ∈ V }| is called the chromatic number of ξ, denoted
χ(ξ).

One can easily see that a crisp graph G = (V,E) can be seen as a fuzzy
graph ξ = (V, σ, μ) such that σ(v) = 1 for every v ∈ V and σ(e) = 1 for every
e ∈ E and σ(e) = 0 for every e /∈ E. This is why we use the same coloring terms
in fuzzy graphs as in crisp graphs. In the coloring of a crisp graph, minimum
number of colors are assigned to the vertices of this graph such that any two
adjacent vertices don’t have a same color.

The topic is interesting because the chromatic number of a fuzzy graph has
some relations with that of a crisp graph, but it is also shown that these two
parameters are not necessarily related to each other. Specifically, some relations
between chromatic number of a fuzzy graph and that of its corresponding crisp
graph are provided. Based on these relations, we design an Heuristic to produce
a coloring of a fuzzy graph from that of its corresponding crisp graph. On the
other hand, it is also shown that the chromatic number problem of a fuzzy graph
is essentially a new combinatorial problem different from the chromatic number
problem of a crisp graph.

The base graph Gξ = (V,E) of a fuzzy graph ξ = (V, σ, μ) is a crisp graph
such that E = {uv : μ(u, v) > 0}. If two vertices are adjacent in Gξ, so too are
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them in ξ. ξ is a fuzzy complete graph (or other type of graph) if its base graph Gξ

is a complete graph (or other type of graph). For two crisp graphs G1 = (V1, E1)
and G2 = (V2, E2), G1 is called a subgraph of G2, if V1 ⊆ V2 and E1 ⊆ E2,
denoted by G1 ⊆ G2. Let ξ1 and ξ2 be two fuzzy graphs. If Gξ1 ⊆ Gξ2 , then we
say that ξ1 is a fuzzy subgraph of ξ2, denoted ξ1 ⊆ ξ2. The induced subgraph of G
by S ⊆ V is the graph G[S] with vertex set S and edge set {uv ∈ E : u, v ∈ S}.
A clique is a maximal set of vertices which induces a complete subgraph. The
base graph Gξ is usually written by G for short if there is no ambiguousness
occurs. The notions not defined here can be seen in text books [3,13].

2 Coloring Fuzzy Graphs

To generalize the coloring of a crisp graph to that of a fuzzy graph, we first give
a new equivalent version of the coloring of a crisp graph.

Definition 2.1. A coloring of a graph G = (V,E) is a mapping f : V → N
such that for any edge vu ∈ E, |f(v) − f(u)| ≥ 1, where N is the set of natural
numbers. The cardinality |{f(v) : v ∈ V }| is called the coloring number of G. The
minimum coloring number of G is called the chromatic number of G, denoted
χ(G).

Since a crisp graph G = (V,E) can be considered as a fuzzy graph ξ =
(V, σ, μ) such that σ(v) = 1 for any v ∈ V , μ(e) = 1 if e ∈ E and μ(e) = 0 if e /∈
E, it is easy to see that Definition 1 is a natural generalization of Definition 2.1.

Lemma 1. Let f be a fuzzy coloring of ξ = (V, σ, μ) and let M be a positive
number. Denote by g = M + f such that g(v) = f(v) + M for every v ∈ V .
Denote by h = Mf such that h(v) = Mf(v) for every v ∈ V . Then both M + f
and Mf are also colorings of ξ, as long as M is large enough.

Proof. The proof is easy to be observed, and thus we omit. ��
By Lemma 1, it is easy to see that we can assign M a proper value to make

all the function values of a coloring Mf being natural numbers. So Definition 1
has the following equivalent version.

Definition 1′. A coloring of a fuzzy graph ξ = (V, σ, μ) is a mapping f : V → N
such that |σ(v)f(v) − σ(u)f(u)| ≥ μ(v, u) for any two vertices v, u ∈ V .

In what follows, we will always use Definition 1′ to continue our studies. We
further have the following property.

Lemma 2. Let f be a coloring of ξ = (V, σ, μ) with v0 ∈ V . Then there exists
a large enough number M such that the function g such that g(v0) = f(v0) + M
and g(v) = f(v) for any v 	= v0 is also a coloring of ξ.
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Proof. Since f is a coloring of ξ, |σ(v)f(v) − σ(u)f(u)| ≥ μ(v, u) for all
v, u ∈ V . If σ(v0) = 0, then for ∀ v 	= v0, |σ(v0)g(v0) − σ(v)g(v)| =
|σ(v0)f(v0) − σ(v)f(v)| ≥ μ(v0, v). If σ(v0) 	= 0, then choose M such that
M ≥ (|σ(v0)f(v0) − σ(v)f(v)| + |μ(v0, v)|)/σ(v0). It follows that |σ(v0)g(v0) −
σ(v)g(v)| = |σ(v0)f(v0) − σ(v)f(v) + σ(v0)M | ≥ σ(v0)M − |σ(v0)f(v0) −
σ(v)f(v)| ≥ μ(v0, v). ��

It is well known that two vertices u, v in a crisp graph G can take a same
color in a coloring of G if and only if they are not adjacent. For coloring of a
fuzzy graph, by combining Lemmas 1 and 2 and its proof, we have the further
conclusion as follows.

Theorem 1. Two vertices u, v of a fuzzy graph ξ can take a same color (function
value) in a coloring of ξ if and only if they are not adjacent or σ(u) 	= σ(v).

Proof. If u, v are adjacent and σ(u) = σ(v), then it is clear that they cannot
take a same color (function value) by Definition 1′. It remains to prove the
converse direction. Let f be a coloring of ξ. Assume σ(u) 	= σ(v) and f(v) −
f(u) = k > 0. If σ(u) = 0, then from the proof of Lemma 2 we know that the
function g such that g(u) = f(u) + k and g(x) = f(x) for every x 	= u is also a
colorings of ξ, in which g(u) = g(v). Suppose σ(u) 	= 0. We first choose a large
enough number M to enlarge f(v) − f(u) such that Mk = Mf(v) − Mf(u) ≥
(|σ(u)Mf(u)−σ(v)Mf(v)|+ |μ(u, v)|)/σ(u). From Lemma 1 we know that Mf
is also a colorings of ξ. Then by Lemma 2 we know that the function g such that
g(u) = Mf(u) + Mk and g(x) = f(x) for all x 	= u is also a colorings of ξ, in
which g(u) = g(v). ��

A color class (under some coloring of ξ) is a set of vertices having the same
color. Suppose f is a coloring of ξ such that f(u) = f(v) for two vertices u, v.
By Lemmas 1 and 2, the functions Mf,M +f and M +f(v0) in the two lemmas
are still coloring of ξ. So we can use Theorem 1 once again to add another vertex
to the set {u, v} to form a larger color class (under a new coloring). Starting
from all possible sets and repeating this step can result in a minimum coloring
of ξ. However, the complexity for running these all possible steps is NP-hard.
In fact, the chromatic number problem for a crisp graph G = (V,E) is a special
case of the chromatic number problem for a fuzzy graph ξ = (V, σ, μ) such that
σ(v) = 1 for each v ∈ V and μ(e) = 1 for each e ∈ E and μ(e) = 0 for each e /∈ E.
On the other hand, the chromatic number problem for a general crisp graph is
well-known to be NP-hard. By the above analysis, Definitions 1 and 1′ have also
the following equivalent form, which can help us to better understanding the
NP-hard property of this problem.

Definition 1′′. A coloring of a fuzzy graph ξ = (V, σ, μ) is a partition of V such
that any two vertices from a same part are not adjacent or have different mem-
bership values. The minimum partition number is called the chromatic number
of ξ.
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By Definition 1′′, it is easy to see that a coloring of the base graph Gξ is also
a coloring of the fuzzy graph ξ. So we have the following relation between the
chromatic number of a fuzzy graph and that of its base graph.

Theorem 2. For any fuzzy graph ξ, χ(ξ) ≤ χ(Gξ).

The chromatic number of a fuzzy complete graph can be determined as
follows.

Theorem 3. Let ξ = (V, σ, μ) be a fuzzy complete graph. {σ(v) : v ∈ V } =
{σ1, σ2, . . . , σk}. V (σi) = {v ∈ V : σ(v) = σi}, i = 1, 2, . . . , k. Then χ(ξ) =
M = max1≤i≤k{|V (σi)|}.
Proof. Since every pair of vertices is adjacent, then noting Theorem 1, we only
need to consider a partition such that any two vertices from a same part have
different membership degrees. We first choose exact one vertex from each set
V (σi), and put these chosen vertices in a set C1. Then We choose exact one
vertex from each non-empty set V (σi), and put these chosen vertices in a set
C2. Repeat this step until all vertices are chosen. Obviously, the resulted sets
correspond a minimum coloring of ξ. On the other hand, we note that there are
all together M = max1≤i≤k{|V (σi)|} steps are needed. So the desired result. ��

By Theorem 3 we know that the chromatic number of a fuzzy complete graph
ξ may be any integer from 1 to n, where n is the vertex number of ξ. By contrast,
a complete graph of n vertices has the chromatic number n.

Based on Theorem 3 and its proof, we can also easily obtain the chromatic
number of a fuzzy split graph. In crisp graph theory, a split graph is a graph
whose vertex set can be partitioned into a clique and a stable set, where, a
clique is a set of vertices each pair of vertices in which is adjacent, a stable set
consists of vertices not adjacent each other.

Corollary 1. Let ξ = (V, σ, μ) be a fuzzy split graph with clique K. {σ(v)| v ∈
K} = {σ1, σ2, . . . , σk}. V (σi) = {v ∈ K| σ(v) = σi}, i = 1, 2, . . . , k. Then
χ(ξ) = max1≤i≤k{|V (σi)|}.

By above conclusions one can easily see that the chromatic number problem
for fuzzy graphs is essential anther combinatorial optimization problem different
from, but having some relations with, the chromatic number problem for crisp
graphs.

Computing the chromatic number of a fuzzy graph is NP-hard. In practi-
cal situations, one must therefore be content with efficient heuristic procedures
which perform reasonably well.

Based on the relations between the chromatic number of a fuzzy graph and
that of its base graph, we show a heuristic which derives a coloring of a fuzzy
graph from a coloring of its base graph.
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FuzzyColorHeuristicI.
Input: a fuzzy graph ξ, and a coloring of Gξ with color classes c1, c2, . . . , ck;
Output: color classes of ξ.
for each ci 	= ∅, i from 1 to k do

for each v ∈ ci do
while there exists some j 	= i such that μ(vu) = 0 or σ(v) 	= σ(u) for every

u ∈ cj do
cj ← cj ∪ {v}; ci ← ci \ {v};

end while
if ci = ∅ then

turn to the next ci;
else

set back each color class to its status before ci is considered;
turn to the next ci;

end for
When heuristic FuzzyColorHeuristicI stops, the output non-empty sets ci, i ≤

k are color classes of ξ.
We further provide a heuristic to produce a coloring of a fuzzy graph from

the fuzzy graph itself, which may help us to better understand the relationship
between a coloring of a fuzzy graph and that of its base graph.
FuzzyColorHeuristicII.
Input: a fuzzy graph ξ = (V, σ, μ) and its base graph G;
Output: color classes C1, C2, . . . of ξ.
let {σ(v) : v ∈ V } = {σ1, σ2, . . . , σk};
initially V (σi) = {v ∈ V : σ(v) = σi}, i = 1, 2, . . . , k;
for each Cs, s = 1, 2 . . ., do
initially Cs = ∅;

for each V (σi) 	= ∅, i from 1 to k do
find color classes ci1, ci2, . . . , cit of G[V (σi)]
such that the number of color is as small as possible;
V (σi) ← {ci1, ci2, . . . , cit};
choose exact one element cij from V (σi);
Cs ← Cs ∪ cij ;
V (σi) ← V (σi) \ {cij};

end for;
end for

When heuristic FuzzyColorHeuristicII stops, the output sets Cs are color
classes of ξ. Further, from this Heuristic and the arguments in Theorem3 we
easily have the following sharp upper bound for the chromatic number of a
fuzzy graph.

Theorem 4. Let ξ = (V, σ, μ) be a fuzzy complete graph. {σ(v) : v ∈ V } =
{σ1, σ2, . . . , σk}. V (σi) = {v ∈ V : σ(v) = σi}, i = 1, 2, . . . , k. Then χ(ξ) ≤
max1≤i≤k{χ(G[V (σi)])}.
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3 An Example

Coloring fuzzy graphs has many applications in real life. Here we provide another
example different from the motivated example in Introduction: Chemical storage
problem.
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Fig. 1. Minimum colorings of a fuzzy graph and its base graph

A company manufactures n chemicals C1, C2, . . . , Cn. Each chemical Ci has
a characteristic value σ(Ci). Each pair of chemicals Ci and Cj have a threshold
μ(Ci, Cj) such that if only the difference of the characteristic values are more
than this threshold, putting these two chemicals in a same warehouse would
not cause explosions. As a precautionary measure, what is the least number of
warehouses such that the chemicals in a same warehouse is safety? We first use
a fuzzy graph ξ = (V, σ, μ) to denote the n chemicals and their thresholds. It
is easy to see that the least number of warehouses is equal to the chromatic
number of ξ.

We consider the Chemical storage problem in Fig. 1. For the crisp graph on
the right side, four warehouses (four colors 1, 2, 3 and 4) are needed to store the
chemicals. By contrast, for the fuzzy graph on the left side, only two warehouses
(two colors 1 and 10) are needed to store these chemicals, where, the colors 1
and 10 can be considered as the strengths of the packages of the chemicals.

4 Further Study

In this paper, we concentrate our attention mainly on the existence of a minimum
coloring of a fuzzy graph, and not on what such a coloring function is. For further
studies on the coloring of fuzzy graphs, finding more properties of the coloring of
a fuzzy graph and determining a coloring function f such that max{f(v) : v ∈ V }
or

∑
v∈V f(v) is minimum among all minimum colorings of a fuzzy graph are

also interesting topics.
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Abstract. Geometric Brownian Motion is One of the basic and useful models
applicable in different regions such as Mathematical biology, Financial Math-
ematics and etc. Its differential is dS ¼ aSdtþ rSdwt. Where a and r are con-
stant and wt is Wiener process. aSdt is deterministic part and rSdwt is stochastic
part. a and r could be estimated with data about amount of S in past. In this
paper, we estimate a and r in each time of past, we use numerical method to
prepare quadratic function based on time, and we set them on last constant
amount. Finally, we can find dS ¼ aðtÞSdtþ rðtÞSdwt. Eventually, we express
some path with real data and MATLAB.

Keywords: Geometric Brownian Motion � Implied volatility � Historic
volatility � Curve fitting

1 Introduction

Geometric Brownian Motion in physics is a kind of particles motion in fluids. This
motion is obtained from impact of particle to atoms or molecules in fluid. In 1827,
Robert Brown, botanist, saw on microscope that pollen in water has special motion, but
he couldn’t find justification for this movement. In 1905, in his paper, Albert Einstein
described that the motion observed by Brown in water is result of water’s molecules
motion. Then, he tried to model this structure [1]. However it should be noted that
Thiele 1880 and Bachelier 1900 worked on Brownian Motion [2, 3]; Unaware of each
other’s works.

The importance and necessity of this model in some sciences like Financial
Mathematics is undeniable. Bachelier was the first who studied Brownian Motion in
price behavior of Paris stock market, in his PhD thesis although it wasn’t welcomed. In
1965 Paul Samuelson used it in economic system and showed application of this thesis.
After Samuelson, Fischer Black, Myron Scholes, and Robert K. Merton extended this
model [1, 4].

In this paper we present a new model for Geometric Brownian Motion. In this
structure we use numerical method, and introduce elements based on time.
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We suppose B tð Þ whose dynamic follows formula [5]:

dB tð Þ ¼ l B tð Þ; tð Þdt; ð1Þ

Where l depends on the value of B tð Þ and time.
If we rewrite model (1) in free risk market we would have:

dB tð Þ ¼ r tð ÞB tð Þdt; ð2Þ

r tð Þ is interest rate.
Now we want introduce the variable that has a stochastic part or in other words has

risk in market. For better understanding, suppose that some factors like weather, policy
or other things have effect on the value of variable and make volatility.

In model (1), suppose variable has stochastic change. We know

dS
dt

¼ l B tð Þ; tð Þ: ð3Þ

Clearly stochastic model is seen, we must have a stochastic parameter, so with
constant a we can find

l B tð Þ; tð Þ ¼ a B tð Þ; tð Þþ ‘‘noise”; ð4Þ
dS
dt

¼ a B tð Þ; tð Þþ ‘‘noise”: ð5Þ

In next section we introduce the Geometric Brownian Motion model and its
properties and explain the concept of volatility. In section three, we present our new
Brownian Motion model, and numerical result.

2 Geometric Brownian Motion (GBM)

We consider this noise in form of stochastic process that has following features, that it
is definition of Wiener process [6, 7]:

ðp;F; pÞ is probability space.

1. For all Wt 2 p; t ! Wt be continuous;
2. For every group Wt0 ;Wt1 �Wt0 ; . . .Wtk�1 �Wtk�2 ;Wtk �Wtk�1ð Þ; t0\t1\. . .\tk,

each of them is independent of other one;
3. For every 0\s\t the difference Wt �Wsð Þ has Normal distribution with zero mean

and t � sð Þ variance: Wt �Wsð Þ�N 0; t � sð Þ.
With this property, we define dynamic of Geometric Brownian Motion that

stochastic source follows above process:

dS ¼ aSdtþ rSdwt: ð6Þ

In the following, we present concept volatility.
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2.1 Volatility in Geometric Brownian Motion Model

If we ignore “noise”, we have this formula [4]:

dS ¼ aSdt: ð7Þ

Solving (7), we find:

S ¼ S0e
aDt: ð8Þ

This formula is smooth curve. Now, we import “noise” and have volatility near
formula (8).

We can find:

S ¼ S0e
ða�1

2r
2ÞDtþrDwt : ð9Þ

To estimate value of variable in Geometric Brownian Motion model, we need
a; r; S0 and t. To find these parameters there are tow way Implied Volatility and
Historic Volatility (Fig. 1).

2.1.1 Implied Volatility
In this method, we consider expectation of decision makers who use this variable in
their program and we can estimate future of variable. In this method we have some
special phrase like scowl and smile of variable; and decision maker makes the best
decision in this situation [4].

2.1.2 Historic Volatility
In this section with historical data, we find a and r which are constant.

Fig. 1. Geometric Brownian Motion with a ¼ 1 and r ¼ 0:4
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dS ¼ aSdtþ rSdwt: ð10Þ

Now we divide the interval t; Tð Þ in n sections t0 ¼ t\t1\. . .\tn ¼ T .
We use property of Ito integral so we can find [4]:

Zi ¼ Ln Siþ 1
Si

� �
;

E Z½ � ¼ ða� 1
2 r

2ÞDt;
Var Z½ � ¼ r2 � Dt;
E Z½ � ¼ 1

n�1

P
Zi;

Var Z½ � ¼ 1
n�1

P ðZi � E½Z�Þ2:

ð11Þ

To find numerical result we use property of Brownian Motion, and we assume:

Dwt ¼ e�
ffiffiffiffiffi
Dt

p
; e 2 Nð0; 1Þ: ð12Þ

3 The New Geometric Brownian Motion (NGBM)

Suppose we have amount of variable S in times D ¼ t0; t1; . . .; tnf g. Now for each
Ti; i[ 0 from set D we consider the data from t0 to Ti and obtain ai and ri with
historical volatility method (11).

With this method, we will have fa1; . . .; ai; . . .; an�1g and fr1; . . .; ri; . . .; rn�1g
(Fig. 2).

With Curve fitting, we can find quadric equation aðtÞ and rðtÞ. a and r have
positive amount, so in formula (6), we consider absolute value of aðtÞ and rðtÞ.

So we rewrite formula (6):

dS ¼ jaðtÞjSdtþ jrðtÞjSdwt: ð13Þ

With numerical method, we have:

Stiþ 1 ¼ Sti þ jaðtiÞjStiDtþ jrðtiÞjStiDwt: ð14Þ

Fig. 2. Amount of ai&ri on each time unit interval
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3.1 MATLAB Code

3.2 Numerical Result

We have data of Stock Index of country X for 101 days in vector Data; A = [61700.1;
61710.2; 61728.1; 62055.9; 62632.8; 62655; 62461; 62788.7; 62841.2; 63516.9;
64860.9; 65424.1; 65119.5; 66118.1; 66562.5; 66960.4; 67740.1; 68857.5; 70999.5;
71011; 71393.9; 71118.8; 72912.8; 73725.5; 73684; 74103.6; 74569.4; 75783.8;
78199.1; 77497.9; 76594.2; 76709.5; 77377.5; 77141.6; 77888; 77560.9; 77234.9;
77587.7; 77704; 77840.2; 78228.3; 77733.8; 77539.2; 77648.8; 77697.8; 78022.2;
78093; 78158.4; 78220; 78312.1; 79366.5; 80236.7; 80037.5; 80219.4; 81200.3;
81261; 80935.7; 80561.3; 81480.4; 81536.9; 80852.7; 80872.1; 80965.8; 80752.7;
80654; 80280.7; 80262.4; 80109.3; 7588.3; 77984.8; 77516.2; 78435.4; 78430.9;
78269; 78281.7; 78448.3; 78688.4; 78394.4; 78404.7; 78414.6; 78384.4; 78285.4;
78044.4; 78033.8; 77423.9; 77045.3; 77106; 76630.4; 75982.6; 76138.6; 75863.2;
75980.5; 76292.9; 76413.3; 76448.3; 76613.9; 76692.8; 76853; 76690.6; 76387;
76431.5].

There is a path that we estimate with programming. The Fig. 3 is obtained from
GBM and the Fig. 4 is our new model (NGBM) with same stochastic source. Figure 5
shows the difference between GBM and NGBM.
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4 Conclusion

In this paper we studied Geometric Brownian Motion, and presented more dynamism
for Geometric Brownian Motion. In fact, we prepared a and r by using historical data,
repeating the estimate that we used in Geometric Brownian Motion, and numerical
method (Curve fitting) that they depend on time and put them in the last model. At last,
with programming in MATLAB, we produced some path.
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(SFMM) Team and Supported by Vice-President for Research of Allameh Tabataba’i University.
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Fig. 5. The difference between NGBM and GBM

Fig. 3. The GBM estimate Fig. 4. The NGBM estimate
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Abstract. In this paper, aimed at the congestion of urban roads, the author
analyses the possibility of building an evaluation index system that is suitable
for the traffic capacity of urban roads. The author proposes that urban traffic
capacity should be evaluated in a dynamic comprehensive evaluation method
according to the real time and dynamics of traffic condition. The roads can be
divided into five types and their traffic capacity should be worked out in a
respective calculation formula. On this basis, the comprehensive calculation
model of the traffic capacity is set up. In order to improve the urban traffic
condition, the author utilizes MATLAB7.0 to calculate and compare the traffic
capacity of urban roads with three different structures. The results show that
three types of open residential areas can raise the traffic capacity of the whole
system and improve the road traffic conditions.

Keywords: Traffic capacity � Saturation � Community structure � MATLAB

1 Basic Assumptions

(1) Neglect the traffic jams caused by traffic accident, natural disaster, the pedestrian,
etc.

(2) The management of communities, urban traffic roads and its intersection is
reasonable.

(3) No traffic violation records.
(4) The traffic control system operates normally.

2 The Establishment and Solution of the Model

2.1 The Selection and Calculation of Evaluation Indexes

In order to select the appropriate evaluation index system to reflect the complicated and
changing road condition, using comprehensive analysis method,indexes reflecting the
traffic condition are selected. According to the traffic condition, roads are divided into
common segments and intersections, as shown in Figs. 1 and 2.
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According to the characters of road traffic and the functions of urban road inter-
sections, indicators include: traffic density E, time share T, saturation B, the average
delay time J, queue length K, signal intersection queue rate R.

(1) Traffic density E: At one point, the number of vehicles in a unit is the indicator of
road congestion, computation expression is: E ¼ N

L
Where, E is the traffic density, N is the number of vehicles (number/km),

(2) Time share T: refers to the product of observation time and number of the traffic
detectors per occupancy time in a fixed period of time, which reflects the overall
road congestion [1] the formula is: T ¼ tc

L1
(3) Saturation B: the ratio of traffic flow and road capacity at traffic crossing, which is

the measure of intersection congestion. Which is: B ¼ S
E

Where, S stands for actual traffic volume, which reflects the traffic capacity of
entrance lane (car equivalent/hour).

(4) Average delay time J: is the average delay time of each car entering the inter-

section, the formula is J ¼ 0:5T 1�tb
Tð Þ

1� minð1;dÞtbT½ � ; which reflects traffic stuck in the inter-

section and the queuing situation [3].

Fig. 1. The intersection

Fig. 2. Ordinary road

344 D. Yuan et al.



Where, T is signal cycle length, tb is green time, d is the saturation of one car lane,
saturation is, under ideal conditions, the ratio of maximum service traffic volume
and basic capacity.

(5) Queue length k: is the vehicle queue length in the intersection, average queue
length can reflect the intersection congestion directly and visually. Generally
speaking, the more serious traffic congestion is, the longer the queue length will
be. In urban road, when the vehicles reach the intersection, because of the traffic
control signal, they usually need to wait or slow down, the vehicles reaching the
intersection when the lights are red are bound to wait in line, we normally think
the situation that the vehicles can pass in 1–2 signal doesn’t belong to the category
of traffic jams [4].

(6) Secondary line rate of signal intersection r: is the ratio of the number of vehicles
parked twice or more in one cycle to that of vehicles passing through the green
light, which is r ¼ H

C, H = D + G − Z. Secondary line rate can intuitively reflect
whether the intersection is crowded, which is belong to the traffic management
indicators that must be strictly controlled, secondary parking can be expressed as:
the number of vehicles parked twice in this cycle equals to the number of vehicles
stranded last cycle plus the number of vehicles arriving at the red time this cycle
minus that of vehicles leaving at the green time this cycle.

Where D is the number of stranded vehicles in the previous cycle, G is the number
of vehicles arriving at the red time this cycle, Z is the number of vehicles leaving at the
green time this cycle, r is the secondary line rate.

Through literature, the structure of the community could be roughly divided into
the following three types (Fig. 3).

Class A model Class B model Class C model

Fig. 3. Neighborhood structure type
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Where:

Class A model: Enclosed plot diagram—Ring road model
Class B model: The traffic open plot diagram—Little closed, great open
Class C model: Enclosed plot diagram—The number of road system

This article employs brittleness indexes based on the urban road network to reflect
the influences from opening different structures of village.

Brittleness of urban road network: refers to the possibility of the function loss of the
whole system for the whole or partial system getting damaged under external distur-
bance. Vulnerability of urban road network is mainly manifested in the level of road
network service degree. Urban road network is a complex network system and brit-
tleness is inevitable. The study found that vulnerability of urban road network is related
to the topology of the urban road network. This paper mainly studies the impact of the
level of openness of the community, residential location and scale of residential area on
the topology structure of road network, we may analyze the brittleness of urban road
network according to the change of its topology structure.

Brittleness: urban road network evaluation indexes include node degree and
betweenness centrality, etc. Edge node degree refers to the number of sides adjacent to
the node, in the network vi, the number of adjacent side ki is called the degree of node
vi. Average the degree of all the nodes in the network then we get the average degrees

of the network k ¼ 1=
PN
i¼1

ki:

Betweenness could be divided into node betweenness and edge betweenness, it
reflects the importance of the nodes and edges in the network. Node (side) betweenness
refers to the ratio of the number of the shortest paths through the node (edge) to the
number of all the shortest paths, and its calculation formula is:

Bi ¼
X

i;j;k2ðk 6¼jÞ

njkðiÞ
njk

Where, njk is the number of the shortest paths between vj and vk. njkðiÞ is the
number of shortest paths which pass through node vi between vj and vk.

The betweenness centrality CBðviÞ of node vi is the normalized betweenness and its
formula is

CBðviÞ ¼ 2Bi

ðN � 2ÞðN � 1Þ½ �

Degree and Betweenness are to reflect the degree of importance of a structure unit
in the network, studies have shown that the fewer the important structural units are, the
brittler the urban road network is. Based on the above ideas, this paper takes the
variances of the node degrees as the evaluation indexes of the vulnerability of urban
road network.
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Variance reflects the degree of deviation from the average. The smaller the variance
of node degrees in urban road network is, the better the uniformity of urban road
network will be. The smaller the difference of important level of the nodes, the stronger
the capacity of resisting damage of the road network, i.e., the smaller the brittleness of
urban road network. Therefore it is reasonable to take the variances of the node degrees
as evaluation indexes of the brittleness of urban road network [7] (Tables 1 and 2).

Variance calculation formula is: DðkÞ ¼ 1
N

PN
i¼1

ki � �kð Þ2:

2.2 Pretreatment of Indicators

Multi-index comprehensive evaluation system includes different evaluation indexes,
therefore, the comprehensive indexes should be pretreated before there are assessed.

2.2.1 Uniformization of Evaluation Indexes
In the multi-index comprehensive evaluation system, some indicators are as small as
possible, these indicators are called inverse indicators and some of them are the bigger
the better, these indicators are called positive indicators. Before the evaluation
appraisal, the indicators have to be standardized, the reverse indicators should be

Table 1. Indicators than choose standard

Standard of
comparison

Detailed instructions

Clear Unambiguous professional work
Simple Easy to understand, easy to analyze and apply
Description and
prediction ability

Describe and evaluate the present situation, find out the problem,
predict the traffic growth in the future, reflect the traffic fluctuation

Analytical ability Few data requirements, low cost of collecting data, easy collection
and statistical analysis, congestion degree can be described
reasonably

Feasibility Suitable for all kinds of transportation, can reflect road type,
congestion and continuously to collect and congestion area;
Applied to different areas;
Can reflect the degree of congestion based on the urban size;
Can reflect the air quality and energy consumption

Table 2. Applied analysis of Primary road congestion index

Importance
of indicators

Road indicators

Traffic
density

The time
to share

Saturation Evaluation of
delay time

Queue
length

Rate of signal
intersection line

Community
structure

Primary ✓ ✓ ✓

Secondary ✓ ✓ ✓

General ✓
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converted into positive indicators, and vice versa. With said into positive indicators, the
transform is: z0i ¼ c

zi
; i ¼ 1; 2; 3; � � � ; n (generally, c equals to 1), That is z0i ¼ 1

zi
.

2.2.2 Standardization of Appraisal Indicators
In the multi-index comprehensive evaluation system, there are differences between
these indicators in units of measurement, the intrinsic attributes, orders of magnitude,
etc. Therefore, it is inappropriate to weigh average the data directly, the results will be
meaningless, hence the data need to be unified, namely, they should be converted into
proper dimensionless indexes. Conventional methods: “(1) standardization law,
(2) extreme value method, (3) efficacy function method”.

(1) Formula of Standardization method (method of data standardization) is:

yi ¼ xi � s
�x

In the expression, yi is the standardized value of xi, �x and si indicate he sample
mean and the mean square error of xi, respectively.

(2) The extremum method:
If we set: Wj ¼ Max xij

� �
;wj ¼ min xij

� �
, then: x0ij ¼ xij�wj

Wj�wj
is a dimensionless, and

x0ij 2[0,1].
即 Xij 2 ½60; 100�

(3) Efficacy function method:
Let Xij ¼ cþ xij�mj

Mj�mj
d

Where Mj, mj are the satisfied and not permitted values of xij, and c, d are positive
constant. c is used to translate the value after transformation, d is used to enlarge or
narrow the value after transformation. Generally, take c = 60, d = 40, namely
Xij 2 ½40; 60�:

2.3 The Choice of Comprehensive Evaluation Method

After the urban road traffic evaluation system was determined, each indicator will be
endowed with weight, we also need to select an appropriate evaluation method of the
evaluation system. There are many multi-index comprehensive evaluation methods
such as the data envelopment analysis (DEA) model, the fuzzy synthetic method, the
dynamic comprehensive evaluation method, etc. They are frequently applied.

Each kind of comprehensive evaluation method has its characteristics and limita-
tions, among the multi-index evaluation methods, lateral summery of static scheduling
has been widely used. As the application objects in this paper are the urban road traffic
conditions, where traffic conditions are real-time dynamic, we should consider the
dynamicity and real time when selecting the corresponding evaluation indexes. In order
to fully consider the characteristics of demand, this article will use the dynamic
comprehensive evaluation method as the best evaluation index.
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3 The Establishment of the Comprehensive Urban
Transportation Capacity Model

3.1 Basic Capacity of Road Traffic

Basic capacity refers to under the ideal conditions, the maximum capacity of traffic
flow of each road per unit time. Ideal road conditions refer to that the lane width should
be greater than 3.65 m (assuming the provisions of 3.75 m), roadside lateral remaining
is not less than 1.75 m, longitudinal slope is gentle, and with wide field of vision, good
road conditions. Ideal traffic conditions, mainly refer to cars of standard size, composed
of single vehicles in the same lanes at different speeds, drive continuously, each vehicle
keeps the minimum distance appropriate to the speed, meanwhile without any inter-
ference from each direction. In such ideal road and traffic conditions, this paper
establishes traffic flow calculation model, then figures out the maximum traffic flow,
that is, the basic capacity. The calculation formula is: CB ¼ 3600

t0
¼ 3600

h0
v0
3:6

¼ 1000v0
h0

:

Where: CB is the basic capacity, v0 is the vehicle speed (km/h); and t0 is the average
headway (s);

h0 ¼ h1 þ h2 þ h3 þ h4 ¼ v0
3:6

tþ v20
254u

þ h3 þ h4

Where h0 is the minimum vehicle distance (m); t is the driver’s reaction time (s),
where preferable time is about 1.2 s; h1 is the distance of vehicle within the driver’s
reaction time; h2 is the braking distance; h3 is the safe distance between two cars (m),
where desirable distance is 5 m; h4 is the average length of the vehicles (m), where
desired length is 5 m, the expected value of large passenger cars is 9 m, and that of
buses and trackless vehicles is 14 m.

3.2 Possible Capacity

The calculation of possible capacity is based on the basic capacity, taking the actual
road and traffic conditions into account, then we may determine its correction coeffi-
cient. And then multiply the correction coefficient by basic traffic capacity, we could
get the possible capacity in the actual road, traffic and certain environment conditions.
The correction coefficients of factors that affect the traffic capacity, are:

(1) Correction coefficient of lane width e1;
(2) Correction coefficient of longitudinal slope width e2;
(3) Correction coefficient of traffic condition e3;
(4) Correction coefficient of design speed e4;
(5) Correction coefficient of direction distribution e5;
(6) Correction coefficient of lateral width e6;
(7) Correction coefficient of transverse interference e7.

Where correction coefficient of traffic condition e3 mainly refers to the composition
of different types of vehicles, the determination of reduction factor of longitudinal slope
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e2 is related to the conversion coefficient between different vehicles, usually, it is based
on the percentage of trucks, its calculation is: v3 ¼ 100

100�dr þErdr
.

Where: dr represents for the percentage of trucks; Er is the equivalent value of
trucks in terms of vehicles, it could be calculated according to the slope gradient and
slope length from the table. Other reduction factors are determined from the size of the
difference between actual conditions and ideal conditions which could be achieved by
the corresponding form. The possible capacity of the road is: Wk ¼ Nmaxe1e2e3e4e5e6e7.

3.3 The Actual Capacity

The actual capacity, usually as the basis of road planning and design, could be cal-
culated by multiplying the possible traffic capacity by the ratio of the service traffic
volume to the traffic capacity. Namely:

Rk ¼ Wk � serving traffic � traffic capacity ((m=h )Þ

3.4 The Traffic Capacity of Plane Intersection

Level crossing refers to two or more roads intersecting in the same plane, the traffic
capacity of plane intersection refers to the maximum traffic flow when traffic moving in
two different directions through the intersection.

Plane intersection could be divided into three forms: intersection with traffic lights,
round about of the central island and intersection without traffic lights.

3.5 The Traffic Capacity of Intersection Without Traffic Lights

Its computational principle is to see the traffic flow on the main road as continuous
traffic flow, then suppose the vehicles arrive at a Poisson process, therefore the spacing
interval of the vehicles obeys negative exponential distribution [7]. But not all intervals
might be used for vehicle passing, only when this interval is greater than the critical
threshold. When there is a time interval, traffic flow in the non-primary route could pass

in order the accessory interval as the following formula: Qr ¼ Qg�e�qd

1�e�qd .
Where Qr is the traffic flow in the non-primary route without priority (m/h); Qg

represents for the traffic flow on the main road with priority (m/h); and q is: Qg

3600 (m/h).

3.6 The Traffic Capacity of Roundabout

Roundabout is the center of intersection where several streets intersect, it would be set
to round island or arc shape, thus vehicles entering the intersection would pass the
island along the same direction. Formula expressed as [9]:

Qn ¼ 354v Q1 þ h
v

� �
1� v

l

� �� 	
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Where, Qn is the maximum capacity of the weaving segment (m/h) and l is for the
weaving segment length (m), v is the weaving section width (m), h is the width of
approach road of the intersection (m), and r is the ratio of weaving vehicles to all
vehicles, expressed as a percentage.

3.7 The Traffic Capacity of Signal Intersection

In the signal intersection, red, yellow and green light are used to command vehicles
pass, stop, turn left and right. The traffic lights change, according to the length of the
signal cycle and the time occupancy of each kind of signal, could be used to calculate
the traffic capacity of signal intersection. Taking the stop line of the approach as
standard, as long as through the line of vehicles to have passed through the intersection,
traffic capacity of each inlet: go straight, And turn right, turn left for three kinds of
situations, and at the same time each inlet lane is divided into lanes and mixed with
lane, so the intersection traffic capacity is the sum of the intersection traffic capacity at
the road entrance. According to three different lanes, introduce three kinds of formulas.

(1) A single special straight lane capacity KS ¼ 3600
Nq

� ti�tg
tj

Where: Nq signal cycle time, tj for both before and after the car through the mean
time between you, ti is green time of one cycle, and tg is to green light loss of one
cycle time, contains the car starting acceleration time.

(2) A single right turn lanes of traffic capacity formula is as follows: KY ¼ 3600
tk
, (m/h)

Where: tk is both before and after the time interval of right turn vehicles
successively

(3) A single left turn lanes of traffic capacity KL ¼ n 3600
Nq

Where: n is a cycle number of vehicles allowed to turn left.
(4) Straight, left a driveway when driving with mixed traffic capacity (MSL)

At the same path straight, left, on the basis of different directional interference, even
parking phenomenon, therefore, should be multiplied by the appropriate reduction
factor K. At the same time, because the left car is often greater than straight driving
through time by time, generally is about 1.75 times that of straight driving through time
we left the car should be multiplied by the proportion of 1.75 times, and set to left the
vehicle percentage accounted for, is: MSL ¼ KS 1� 3

4 nA

 �

K; unit: m/h

Qx ¼ Ks þKY þKL þMSL þMSR

(5) Straight, right human traffic capacity of a road motorised (MSR)

General principle ditto, but what right transfer on time is 1.5 times that of the
straight road. Which is expressed in nB right transfer accounts for a percentage:
MSR ¼ KS 1� 1

2 nB

 �

K, unit: m/h. The entire signal intersection traffic capacity for each
imported straight, turn right, turn left the sum of all the ability to influence [10,11].
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Qx ¼ Ks þKY þKL þMSL þMSR

Where, Qx for the whole of the traffic capacity of signal intersection.
To sum up, the actual capacity of the whole traffic system can be drawn from

computation formula is as follows:

RsQc ¼ Wk � service volume� Qc

RsQn ¼ Wk � service volume� Qn

RsQx ¼ Wk � service volume� Qx

Where, RsQc no traffic lights to control the actual capacity of intersection, RsQn is
the actual capacity of intersection, the RsQx is the actual capacity of the whole signal
intersection. Qx for the whole signal intersection traffic capacity, and the HL for traffic
capacity of the whole transportation system.

3.8 The Establishment of the Comprehensive Urban Transportation
Capacity Model

According to the above analysis, the comprehensive capacity of urban road compu-
tation formula is as follows:

SA ¼ ðf1 � NsQc þ f2 � NsQn þ f3 � NsQx þ f4 � CBÞ � f1 þ f2 þ f3 þ f4

Among them: SA said integrated transportation capacity.

4 The Model Application and Based on the Analysis
of Traffic Capacity

In accordance with the established model, 3.3 will be opened area before the relevant
data input MATLAB7.0, concluded that the actual capacity of different road in front of
the village is opened. As shown in Table 3:

Table 3. Before opening the actual capacity of different roads

The actual capacity (pcu/h)

Base this section 396 363.64 357.14 348.3 336.7 320.51 229.4

No intersection modes of pipe system 12142 17543 17544 18903 40044 57449 65159

Ring shape intersection 94.649 95.724 109.4 147.34 218.5 358.25 406.33

Signal intersection 60.62 89.157 90.7136 98.0599 211.105 307.64 352.66
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According to the above data, again by MATLAB, the application of the model of
the formula:

SA ¼ ðf1 � NsQc þ f2 � NsQn þ f3 � NsQx þ f4 � CBÞ � ðf1 þ f2 þ f3 þ f4Þ

It is concluded that village before opening the whole transportation system capacity
(Table 4).

To solve by the model under the three different structure of the village after the
opening of the whole traffic capacity.

Hypothesis: village road intersection with the outside world in light, and the
internal of the village, no lights, and that roads are standard in the community.

When open cell types for type A, we learn that the added two signal intersection, the
traffic network basic sections increased n1, so will be modified road data, using the
model using the MATLAB software to calculate the results as shown in Table 5:

When the open cell type is type B, according to the plot structure, the whole added
eight signal intersection, the traffic network basic sections increased article n2, so will
be modified road data, using the model using the MATLAB software to calculate the
results as shown in Table 6:

Table 4. The village before opening the whole transport capacity

The actual capacity (pcu/h)

The whole transport system 2620

Table 5. Type A village after opening traffic capacity

The actual capacity (pcu/h)

The whole transport system 3390

Table 6. The class B district traffic capacity after opening

The actual capacity (pcu/h)

The whole transport system 3690
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When open cell types for type C, according to the plot structure, the signal of the
traffic network intersection increased by six basic sections increased n3, so will be
modified road data, using the model using the MATLAB software to calculate the
results as shown in Table 7:

Will be opened area before and after comparing the actual capacity of the whole
traffic system as shown in Table 8:

Through the comparison and analysis can be concluded that: open area can
effectively improve the actual capacity of the whole traffic system, is conducive to the
improvement of road capacity.

5 Conclusion

Through rational filtration, analysis and selection, this article selects traffic density,
time share, saturation, average delay time, queue length, the rate of signal intersection
line, community structure on traffic impact as significant indicators to form the eval-
uation index system. Considering the real time and dynamic of traffic situation,
dynamic comprehensive evaluation method is applied: the road could be divided into
several types: basic road section, plane intersection, intersection without traffic lights,
roundabout intersection and signal intersection, then the calculation formula of their
traffic capacity is achieved. On this basis, we may establish the model to calculate the
comprehensive capacity of the whole traffic system. Based on the important influence
of community open on improving urban traffic conditions, combined with three dif-
ferent plot structure, the model is solved by using MATLAB7.0. We may find that:
before the village open, the comprehensive capacity of the whole transportation system
was 2620 (pcu/h), after the opening of community A, B, C, the comprehensive capacity
of the whole traffic system becomes 3390 (pcu/h), 3690 (pcu/h), 3796 (pcu/h),
respectively. By comparing the comprehensive capacity of the whole traffic system
before and after the opening of the community, it could be concluded the opening of

Table 7. The class C district traffic capacity after opening

The actual capacity (pcu/h)

The whole transport system 3796

Table 8. The village before and after open the actual capacity of the whole transportation
system

Village before opening After the opening area

Type A village Type B village Type C village

The actual capacity (pcu/h) 2620 3390 3690 3796
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the community would improve the comprehensive capacity of the whole traffic system
and the road traffic conditions and provide hard reference data for the urban planning
and development.
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Abstract. In this paper, we compare exact solution and four approximate
solutions obtained from the R-K method by four different means. We illustrate
related results and investigate better and closer solutions to the exact solutions.
The accuracy of presented method is showed by solving examples from the
fuzzy differential equations with initial values.

Keywords: Fuzzy differential equations � Runge-Kutta method � Initial value
problems

1 Introduction

Fuzzy differential equation (FDE) has been studied in the recent past. This topic has
much application in many fields such as mathematics, engineering and in the field of
medicines. At the first the concept of fuzzy derivative introduced by Chang and Zade
[2]. Dubois et al. [5] discussed differentiation with fuzzy features by using extension
principle in their approach. The fuzzy differential equations and initial value problems
were studied by Kaleva [10, 11] and Seikkala [18], respectively. Also, some related
methods are discussed by Ouyang and Wu [15], Kloden [12] and Wu [19]. Puri et al.
[17] and Goescjel et al. [9] contributed toward the differential of fuzzy functions.
Runge-Kutta methods have been studied by Abbasbandy [1] and Palligkinis et al. [16].
Numerical solution of FDE by Runge-Kutta method of order two with new parameters
has been by Nirmala, Savetha, N and S Chenthur Pandian [13] and three order have
been studied by Duraisamy and Usha [6] and by Runge-Kutta method of order four
with new parameters by Nirmala et al. [14].

In this paper, Runge-Kutta method applied in several means to obtain the
approximate solutions and compare it with exact solution. The present concepts
extended the previously introduced results of centroidal mean [8], harmonic mean [3,
4] and contraharmonic mean [7].

This paper is organized as follows: in Sect. 2, some basic definition of fuzzy
numbers and fuzzy derivative are given. Section 3, contains definitions of fuzzy

© Springer International Publishing AG 2018
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Runge-Kutta method by different means. The numerical example and proposed method
and the result of compared different means with the exact solutions are in Sect. 5 and
conclusions are in Sect. 6.

2 Preliminaries

In this paper, we present Fuzzy Runge-Kutta method by using centroidal mean, har-
monic mean and contraharmonic mean.

First, we present some preliminary from the fuzzy number, fuzzy function and etc.

Definition 2.1 [3]. A fuzzy number u is satisfied by an ordered of functions (u(r), �u(r)).
r 2 [0, 1] by following conditions:

(i) as bounded left continuous non-decreasing function over [0, 1] with respect to
any r,

(ii) as a bounded right continuous non-decreasing function over [0, 1] with respect
to any r,

(iii) u rð Þ� �u rð Þ 0� r� 1,
(iv) 8u 2 RF u is upper semi continuous on R.

r-level set { u½ �r¼ x u xð Þ� rjf g 0 � r� 1 is closed and bounded interval denoted by

u½ �r¼ u rð Þ; u rð Þ
h i

and u½ �0¼ x u xð Þ� 0jf g is compact.

Definition 2.2 [4] / � level setð Þ. Let I be the real interval. A mapping y: I ! E is
called a fuzzy process and its / � level set is denoted by
y½ �/¼ ½y t;/ð Þ; �y t;/ð Þ� = t 2 I 0� / � 1.

Definition 2.3 [3]. A trapezoidal fuzzy number u is a fuzzy set in E, defined by for real
numbers k\l\m\n where our membership function is:

uðxÞ ¼
x�k
l�k ; k� x� l
1; l� x�m
x�k
l�k ; m� x� n

8><
>: ;

we have:

1. u[ 0 if k[ 0;
2. u[ 0 if l[ 0;
3. u[ 0 if m[ 0;
4. u[ 0 if n[ 0:

Lemma 2.1. If the sequence of non-negative numbers Wnf gNn¼0 satisfy
Wn þ 1j j �A Wnj j þB; 0� n�N� 1.
For the given positive constant A and B, then
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Wnj j �An W0j j þB
An � 1
A� 1

; 0� n�N:

Lemma 2.2. If the sequence of non-negative numbers Wnf gNn¼0; Vnf gNn¼0 satisfy

Wn þ 1j j � Wnj j þA max Wnj j; Vnj jf gþB,

Wn þ 1j j � Wnj j þAmax Wnj j; Vnj jf gþB:

For the given positive constant A and B, then

Un ¼ Wnj j þ Vnj j; 0� n�N,

we have Un �AnU0 þBAn�1
A�1

; 0� n�N where �A ¼ Iþ 2A and �B ¼ 2B.

Lemma 2.3. Let F(t, u, v) and G(t, u, v) belong to C1 RFð Þ and the partial derivatives of
F and G be bounded over RF. Then for arbitrarily fixed r, 0� r� 1,

D yðtnþ 1Þ; y0 tnþ 1ð Þ� �� h2Lð1þ 2CÞ;

where L is a bounded of partial derivatives of F and G, and

C ¼ max f G½tN; ðyðtN; r); �y tN�1ð Þj j; r 2 0; 1½ �g\1:

Lemma 2.4. Let F(t, u, v) and G(t, u, v) belong to C1 RFð Þ and the partial derivatives of
F and G be bounded over RF. Then for arbitrarily fixed r, 0� r� 1, the numerical
solution of yðtnþ 1; rÞ and �yðtNþ 1; rÞ converge the exact solutions Y t; rð Þ and �Y t; rð Þ
uniformly in t.

Theorem 2.1. Let F(t, u, v) and G(t, u, v) belong to C1 RFð Þ and the partial derivatives
of F and G be bounded over RF and 2Lh\1. Then for arbitrarily fixed r, 0� r� 1, the
iterative numerical solution of yðjÞðtn; rÞ and �yðtNþ 1; rÞ converge to the numerical
solutions y t; rð Þ and �y t; rð Þ uniformly in t0 � tn � tN, when j ! 1.

3 Fuzzy Initial Value Problem

Consider a first-order fuzzy initial value differential equation is given by

y0 tð Þ ¼ f t; y tð Þð Þ; t 2 t0; T½ �
y t0ð Þ ¼ y0

�
; ð3:1Þ

where y is a fuzzy function of t, f(t, y) is a fuzzy function of the crisp variable t and the
fuzzy variable y, y0 is the fuzzy derivative of y and y(t0) = y0 is a trapezoidal or a
trapezoidal shaped fuzzy number.
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We denote the fuzzy function y by y ¼ ½y; �y�. It means that the r-level set of y(t) for
t 2 t0; T½ � is

y tð Þ½ �r ¼ y t; rð Þ;�y t; rð Þ
h i

;

y t0ð Þ½ �r ¼ y t0; rð Þ;�y t0; rð Þ
h i

; r 2 0; 1ð �:

We write f(t, y) = [f t; yð Þ;�f t; yð Þ] and

f t; yð Þ ¼ F t; y;�y
h i

;

�f t; yð Þ ¼ G t; y;�y
h i

:

Because of y0 = f(t, y), we have

�f t; y tð Þ; rð Þ ¼ G t; y t; rð Þ;�y t; rð Þ
h i

:

By using the extension principle, we have the membership function

f t; yðtÞð Þ sð Þ ¼ supfyðtÞ sð Þjs ¼ f t; sð Þg;

so fuzzy number f(t, y(t)). From this, it follows that

f t; y tð Þð Þ½ �r¼ f t; y tð Þ; rð Þ;�f t; y tð Þ; rð Þ
h i

; r 2 0; 1ð �;

where

f t; yðtÞ; rð Þ ¼ minff t; uð Þju 2 y tð Þ½ �rg;
�f t; y tð Þ; rð Þ ¼ maxff t; uð Þju 2 y tð Þ½ �rg:

Definition 3.1. A function f : R ! RF is said to be fuzzy continuous function, if for an
arbitrary fixed t0 2 R and e[ 0, d[ 0 such that t� t0j j\d ) D f tð Þ; f t0ð Þ½ �\e exists.

Throughout this paper, we also consider fuzzy functions which are continuous in
metric D. Then the continuity of f(t, y(t); r) guarantees the existence of the definition of f(t,
y(t); r) for t 2 t0;T½ � and r 2 0; 1½ �. Therefore, the functions G and F can be definite too.

4 The Forth Order Runge-Kutta Method

The basis of all Runge-Kutta method is to express the difference between the value of y,

ynþ 1 � yn ¼
Xm

i¼1
wiki; ð4:1Þ
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where for i = 1, 2, …, m, wi’s are constants and

ki ¼ hf tn þ cih; ynh
Xi�1

i¼1
aijkj

� �
ð4:2Þ

Equation (4.1) is to be exact for powers of h through hm because it is to be
coincident with Taylor series of order m.

Therefore, the truncation error Tm, can be written as

Tm ¼ cmh
mþ 1 þ o hmþ 2

� �
:

4.1 The Fourth Order Runge-Kutta Method Based on Contraharmonic
Mean

We consider fuzzy initial value problem (3.1) with the grid points (3.2). Let the exact
solution ½YðtÞ�r ¼ ½Y1ðt; rÞ; Yrðt; rÞ� is approximated by some ½yðtÞ�r ¼ ½y1ðt; rÞ; y2ðt; rÞ�.
From (2.6), (2.7) we define

y1 tnþ 1; rð Þ � y1 tnð Þ ¼
X4

i¼1
wiki;1 tn; y tn; rð Þð Þ;

y2 tnþ 1; rð Þ � y2 tnð Þ ¼
X4

i¼1
wiki;2 tn; y tn; rð Þð Þ;

where the wi’s are constants and

½k1ðtn; yðtn; rÞÞ�r ¼ ki;1 tn; y tn; rð Þð Þ; ki;2 tn; y tn; rð Þð Þ� �
;

ki;1 tn; y tn; rð Þð Þ ¼ hf ðtn þ cih; y1 tnð Þþ
Xi�1

j¼1
aijkj;1 tn; y tn; rð Þð Þ;

ki;2 tn; y tn; rð Þð Þ ¼ hf ðtn þ cih; y2 tnð Þþ
Xi�1

j¼1
aijkj;2 tn; y tn; rð Þð Þ;

and

k11 tn; y tn; rð Þð Þ ¼ minfhf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �g;
k12 tn; y tn; rð Þð Þ ¼ maxfhf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �g;

k21 tn; y tn; rð Þð Þ ¼ minfhf tþ h=2; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �g;
k22 tn; y tn; rð Þð Þ ¼ maxfhf tþ h=2; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �g;
k31 tn; y tn; rð Þð Þ ¼ min hf tþ h=2; uð Þju 2 z2;1 t; y t; rð Þð Þ; z2;2 t; y t; rð Þð Þ� �	 


;

k32 tn; y tn; rð Þð Þ ¼ max hf tþ h=2; uð Þju 2 z2;1 t; y t; rð Þð Þ; z2;2 t; y t; rð Þð Þ� �	 

;

k41 tn; y tn; rð Þð Þ ¼ minfhf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �g;
k42 tn; y tn; rð Þð Þ ¼ maxfhf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �g;
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where the fourth order Runge-Kutta method based on Contraharmonic Mean

z1;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2k1;1 t; y t; rð Þð Þ;
z1;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2 k1;2 t; y t; rð Þð Þ;

z2;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=8 k1;1 t; y t; rð Þð Þþ 3=8 k2;1 t; y t; rð Þð Þ;
z2;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=8 k1;2 t; y t; rð Þð Þþ 3=8 k2;2 t; y t; rð Þð Þ

z3;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=8 k1;1 t; y t; rð Þð Þ � 3=8 k2;1 t; y t; rð Þð Þþ 3=8 k2;2 t; y t; rð Þð Þ;
z3;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=4 k1;2 t; y t; rð Þð Þ � 3=8 k2;2 t; y t; rð Þð Þþ 3=2 k2;2 t; y t; rð Þð Þ:

Define

F t; y t; rð Þð Þ½ � ¼ k211 t; y t; rð Þð Þþ k221 t; y t; rð Þð Þ
k11 t; y t; rð Þð Þþ k21 t; y t; rð Þð Þ þ

k221 t; y t; rð Þð Þþ k231 t; y t; rð Þð Þ
k21 t; y t; rð Þð Þþ k31 t; y t; rð Þð Þ þ

k231 t; y t; rð Þð Þþ k241 t; y t; rð Þð Þ
k31 t; y t; rð Þð Þþ k41 t; y t; rð Þð Þ ;

G t; y t; rð Þð Þ½ � ¼ k212 t; y t; rð Þð Þþ k221 t; y t; rð Þð Þ
k12 t; y t; rð Þð Þþ k21 t; y t; rð Þð Þ þ

k222 t; y t; rð Þð Þþ k231 t; y t; rð Þð Þ
k22 t; y t; rð Þð Þþ k31 t; y t; rð Þð Þ þ

k232k t; y t; rð Þð Þþ k242 t; y t; rð Þð Þ
k32 t; y t; rð Þð Þþ k42 t; y t; rð Þð Þ :

The exact and approximate solutions at tn; 0� n�N are denoted by

Y tnð Þ½ �r¼ Y1 tn; rð Þ; Y2 tn; rð Þ½ � and y tnð Þ½ �r¼ y1 tn; rð Þ; y2 tn; rð Þ½ �

respectively. The solution is calculated by grid points at (2.13). By (4.1) and (4.5), we
have

Y1 tnþ 1; rð Þ � Y1 tn; rð Þþ 1=3 F t; y t; rð Þð Þ½ �;
Y2 tnþ 1; rð Þ � Y2 tn; rð Þþ 1=3G t; y t; rð Þð Þ½ �:

We define

y1 tnþ 1; rð Þ � y1 tn; rð Þþ 1=3 F t; y t; rð Þð Þ½ �;
y2 tnþ 1; rð Þ � y2 tn; rð Þþ 1=3G t; y t; rð Þð Þ½ �:

4.2 The Fourth Order Runge-Kutta Method Based on Centroidal Mean

The same that last method, we have four kis, but by different exponent and different
mean, then

y1 tnþ 1; rð Þ � y1 tnð Þ ¼
X4

i¼1
wisi;1 tn; y tn; rð Þð Þ;

y2 tnþ 1; rð Þ � y2 tnð Þ ¼
X4

i¼1
wisi;2 tn; y tn; rð Þð Þ;
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where the wi’s are constants

½s1 tn; y tn; rð Þð Þ�r ¼ si;1 tn; y tn; rð Þð Þ; si;2 tn; y tn; rð Þð Þ� �
;

si;1 tn; y tn; rð Þð Þ ¼ hf ðtn þ dih; y1 tnð Þþ
Xi�1

j¼1
bijsj;1 tn; y tn; rð Þð Þ;

si;2 tn; y tn; rð Þð Þ ¼ hf ðtn þ dih; y2 tnð Þþ
Xi�1

j¼1

bijsj;2 tn; y tn; rð Þð Þ

and

s11 tn; y tn; rð Þð Þ ¼ minfhf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �g;
s12 tn; y tn; rð Þð Þ ¼ maxfhf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �g;

s21 tn; y tn; rð Þð Þ ¼ minfhf tþ h=2; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �g;
s22 tn; y tn; rð Þð Þ ¼ maxfhf tþ h=2; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �g;
s31 tn; y tn; rð Þð Þ ¼ minfhf tþ h=2; uð Þju 2 v2;1 t; y t; rð Þð Þ; v2;2 t; y t; rð Þð Þ� �g;
s32 tn; y tn; rð Þð Þ ¼ maxfhf tþ h=2; uð Þju 2 v2;1 t; y t; rð Þð Þ; v2;2 t; y t; rð Þð Þ� �g;

s41 tn; y tn; rð Þð Þ ¼ minfhf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �g;
s42 tn; y tn; rð Þð Þ ¼ maxfhf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �g;

where in the fourth order Runge-Kutta method based on Centroidal Mean

v1;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2ð Þs1;1 t; y t; rð Þð Þ;
v1;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2ð Þs1;2 t; y t; rð Þð Þ;

v2;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ ð1=2Þs1;1 t; y t; rð Þð Þþ 11=24ð Þs2;1 t; y t; rð Þð Þ;
v2;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2ð Þs1;2 t; y t; rð Þð Þþ 11=24ð Þs2;2 t; y t; rð Þð Þ;

v3;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2ð Þs1;1 t; y t; rð Þð Þþ 11=24ð Þs2;1 t; y t; rð Þð Þþ 73=66ð Þs2;2 t; y t; rð Þð Þ;
v3;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2 s1;2 t; y t; rð Þð Þþ 11=24 s2;2 t; y t; rð Þð Þþ 73=662 s2;2 t; y t; rð Þð Þ

Define

F t; y t; rð Þð Þ½ � ¼ s211 t; y t; rð Þð Þþ s11 t; y t; rð Þð Þs21 t; y t; rð Þð Þþ s221 t; y t; rð Þð Þ
s11 t; y t; rð Þð Þþ s21 t; y t; rð Þð Þ

þ s221 t; y t; rð Þð Þþ s21 t; y t; rð Þð Þs31 t; y t; rð Þð Þþ s231 t; y t; rð Þð Þ
s21 t; y t; rð Þð Þþ s31 t; y t; rð Þð Þ

þ s231 t; y t; rð Þð Þþ s31 t; y t; rð Þð Þs41 t; y t; rð Þð Þþ s241 t; y t; rð Þð Þ
s31 t; y t; rð Þð Þþ s41 t; y t; rð Þð Þ ;
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G½ t; y t; rð Þð Þ ¼ s212 t; y t; rð Þð Þþ s12 t; y t; rð Þð Þs21 t; y t; rð Þð Þþ s221 t; y t; rð Þð Þ
s12 t; y t; rð Þð Þþ s21 t; y t; rð Þð Þ

þ s222 t; y t; rð Þð Þþ s22 t; y t; rð Þð Þs31 t; y t; rð Þð Þþ s231 t; y t; rð Þð Þ
s22 t; y t; rð Þð Þþ s31 t; y t; rð Þð Þ

þ s232 t; y t; rð Þð Þþ s32 t; y t; rð Þð Þs41 t; y t; rð Þð Þþ s242 t; y t; rð Þð Þ
s32 t; y t; rð Þð Þþ s42 t; y t; rð Þð Þ :

The exact and approximate solutions at tn; 0� n�N are denoted by

Y tnð Þ½ �r¼ Y1 tn; rð Þ; Y2 tn; rð Þ½ � and y tnð Þ½ �r¼ y1 tn; rð Þ; y2 tn; rð Þ½ �

respectively. The solution is calculated by grid points at (2.13). By (4.1) and (4.5), we
have

Y1 tnþ 1; rð Þ � Y1 tn; rð Þþ 2=9 F t; y t; rð Þð Þ½ �;
Y2 tnþ 1; rð Þ � Y2 tn; rð Þþ 2=9G t; y t; rð Þð Þ½ �;

We define

y1 tnþ 1; rð Þ � y1 tn; rð Þþ 2=9 F t; y t; rð Þð Þ½ �;
y2 tnþ 1; rð Þ � y2 tn; rð Þþ 2=9G t; y t; rð Þð Þ½ �:

4.3 The Fourth Order Runge-Kutta Method Based on Harmonic Mean

Consider

y1 tnþ 1; rð Þ � y1 tnð Þ ¼
X4

i¼1
pigi;1 tn; y tn; rð Þð Þ;

y2 tnþ 1; rð Þ � y2 tnð Þ ¼
X4

i¼1
pigi;2 tn; y tn; rð Þð Þ;

where the wi’s are constants and

½g1 tn; y tn; rð Þð Þ�r ¼ gi;1 tn; y tn; rð Þð Þ; gi;2 tn; y tn; rð Þð Þ� �
;

gi;1 tn; y tn; rð Þð Þ ¼ hf ðtn þ cih; y1 tnð Þþ
Xi�1

j¼1
aijgj;1 tn; y tn; rð Þð Þ;

gi;2 tn; y tn; rð Þð Þ ¼ hf ðtn þ cih; y2 tnð Þþ
Xi�1

j¼1
aijgj;2 tn; y tn; rð Þð Þ;

and

g11 tn; y tn; rð Þð Þ ¼ min hf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �f g;
g12 tn; y tn; rð Þð Þ ¼ max hf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �f g;
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g21 tn; y tn; rð Þð Þ ¼ min hf tþ h=2; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �	 

;

g22 tn; y tn; rð Þð Þ ¼ max hf tþ h=2; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �	 

;

g31 tn; y tn; rð Þð Þ ¼ min hf tþ h=2; uð Þju 2 z2;1 t; y t; rð Þð Þ; z2;2 t; y t; rð Þð Þ� �	 

;

g32 tn; y tn; rð Þð Þ ¼ max hf tþ h=2; uð Þju 2 z2;1 t; y t; rð Þð Þ; z2;2 t; y t; rð Þð Þ� �	 

;

g41 tn; y tn; rð Þð Þ ¼ min hf tþ h; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �	 

;

g42 tn; y tn; rð Þð Þ ¼ max hf tþ h; uð Þju 2 z1;1 t; y t; rð Þð Þ; z1;2 t; y t; rð Þð Þ� �	 

;

where in the fourth order Runge-Kutta method based on Contraharmonic Mean

z1;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2 g1;1 t; y t; rð Þð Þ;
z1;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2 g1;2 t; y t; rð Þð Þ;

z2;1 t; y t; rð Þð Þ ¼ y1 t; rð Þ � 1=8 g1;1 t; y t; rð Þð Þþ 5=8 g2;1 t; y t; rð Þð Þ;
z2;2 t; y t; rð Þð Þ ¼ y2 t; rð Þ � 1=8 g1;2 t; y t; rð Þð Þþ 5=8 g2;2 t; y t; rð Þð Þ;

z3;1 t; y t; rð Þð Þ ¼ y1 t; rð Þ � 1=4 g1;1 t; y t; rð Þð Þþ 7=20 g2;1 t; y t; rð Þð Þþ 9=10 g2;2 t; y t; rð Þð Þ;
z3;2 t; y t; rð Þð Þ ¼ y2 t; rð Þ � 1=4 g1;2 t; y t; rð Þð Þþ 7=20 g2;2 t; y t; rð Þð Þþ 9=10 g2;2 t; y t; rð Þð Þ:

Define

F t; y t; rð Þð Þ½ � ¼ g11 t; y t; rð Þð Þg11 t; y t; rð Þð Þ
g11 t; y t; rð Þð Þþ g21 t; y t; rð Þð Þ þ

g21 t; y t; rð Þð Þg31 t; y t; rð Þð Þ
g21 t; y t; rð Þð Þþ g31 t; y t; rð Þð Þ þ

g31 t; y t; rð Þð Þg41 t; y t; rð Þð Þ
g41 t; y t; rð Þð Þþ g41 t; y t; rð Þð Þ ;

G t; y t; rð Þð Þ½ � ¼ g t; y t; rð Þð Þg21 t; y t; rð Þð Þ
g t; y t; rð Þð Þþ g21 t; y t; rð Þð Þ þ

g21 t; y t; rð Þð Þg31 t; y t; rð Þð Þ
g21 t; y t; rð Þð Þþ g31 t; y t; rð Þð Þ þ

g32 t; y t; rð Þð Þþ g42 t; y t; rð Þð Þ
g32 t; y t; rð Þð Þþ g42 t; y t; rð Þð Þ :

The exact and approximate solutions at tn; 0� n�N are denoted by

Y tnð Þ½ �r¼ Y1 tn; rð Þ; Y2 tn; rð Þ½ � and y tnð Þ½ �r¼ y1 tn; rð Þ; y2 tn; rð Þ½ �

respectively. The solution is calculated by grid points at (2.13). By (4.1) and (4.5), we
have

Y1 tnþ 1; rð Þ � Y1 tn; rð Þþ 2=3 F t; y t; rð Þð Þ½ �;
Y2 tnþ 1; rð Þ � Y2 tn; rð Þþ 2=3 G t; y t; rð Þð Þ½ �:

We define

y1 tnþ 1; rð Þ � y1 tn; rð Þþ 2=3 F t; y t; rð Þð Þ½ �;
y2 tnþ 1; rð Þ � y2 tn; rð Þþ 2=3G t; y t; rð Þð Þ½ �:
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4.4 The Fourth Order Runge-Kutta Method Based on General Mean

The same that last method, we have four kis, but by different exponent and different
mean, then

y1 tnþ 1; rð Þ � y1 tnð Þ ¼
X4

i¼1
wili;1 tn; y tn; rð Þð Þ;

y2 tnþ 1; rð Þ � y2 tnð Þ ¼
X4

i¼1
wili;2 tn; y tn; rð Þð Þ;

where the wi’s are constants and

l1 tn; y tn; rð Þð Þ½ �r ¼ li;1 tn; y tn; rð Þð Þ; li;2 tn; y tn; rð Þð Þ� �
;

li;1 tn; y tn; rð Þð Þ ¼ hf ðtn þ dih; y1 tnð Þþ
Xi�1

j¼1
bijlj;1 tn; y tn; rð Þð Þ;

li;2 tn; y tn; rð Þð Þ ¼ hf ðtn þ dih; y2 tnð Þþ
Xi�1

j¼1
bijlj;2 tn; y tn; rð Þð Þ;

and

l11 tn; y tn; rð Þð Þ ¼ min hf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �f g;
l12 tn; y tn; rð Þð Þ ¼ max hf t; uð Þju 2 y1 t; rð Þ; y2 t; rð Þ½ �f g;

l21 tn; y tn; rð Þð Þ ¼ min hf tþ h=2; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �	 

;

l22 tn; y tn; rð Þð Þ ¼ max hf tþ h=2; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �	 

;

l31 tn; y tn; rð Þð Þ ¼ min hf tþ h=2; uð Þju 2 v2;1 t; y t; rð Þð Þ; v2;2 t; y t; rð Þð Þ� �	 

;

l32 tn; y tn; rð Þð Þ ¼ max hf tþ h=2; uð Þju 2 v2;1 t; y t; rð Þð Þ; v2;2 t; y t; rð Þð Þ� �	 

;

l41 tn; y tn; rð Þð Þ ¼ min hf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �	 

;

l42 tn; y tn; rð Þð Þ ¼ max hf tþ 1=4ð Þþ �3=4ð Þþ 3=2ð Þð Þh; uð Þju 2 v1;1 t; y t; rð Þð Þ; v1;2 t; y t; rð Þð Þ� �	 

;

where in the fourth order Runge-Kutta method based on Centroidal Mean

v1;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2ð Þl1;1 t; y t; rð Þð Þ;
v1;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2ð Þl1;2 t; y t; rð Þð Þ;

v2;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ 1=2ð ÞÞl2;1 t; y t; rð Þð Þ;
v2;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ 1=2ð Þl2;2 t; y t; rð Þð Þ;

v3;1 t; y t; rð Þð Þ ¼ y1 t; rð Þþ l3;2 t; y t; rð Þð Þ;
v3;2 t; y t; rð Þð Þ ¼ y2 t; rð Þþ l3;2 t; y t; rð Þð Þ:
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Define

F t; y t; rð Þð Þ½ � ¼ s11 t; y t; rð Þð Þþ 2s21 t; y t; rð Þð Þþ 2s31 t; y t; rð Þð Þþ s41 t; y t; rð Þð Þ;
G t; y t; rð Þð Þ½ � ¼ s12 t; y t; rð Þð Þþ 2s22 t; y t; rð Þð Þþ 2s32 t; y t; rð Þð Þþ s42 t; y t; rð Þð Þ:

The exact and approximate solutions at tn; 0� n�N are denoted by

Y tnð Þ½ �r¼ Y1 tn; rð Þ; Y2 tn; rð Þ½ � and y tnð Þ½ �r¼ y1 tn; rð Þ; y2 tn; rð Þ½ �

respectively. The solution is calculated by grid points at (2.13). By (4.1) and (4.5), we
have

Y1 tnþ 1; rð Þ � Y1 tn; rð Þþ 1=6 F t; y t; rð Þð Þ½ �;
Y2 tnþ 1; rð Þ � Y2 tn; rð Þþ 1=6G t; y t; rð Þð Þ½ �:

We define

y1 tnþ 1; rð Þ � y1 tn; rð Þþ 1=6 F t; y t; rð Þð Þ½ �;
y2 tnþ 1; rð Þ � y2 tn; rð Þþ 1=6G t; y t; rð Þð Þ½ �:

5 Numerical Example

Fuzzy initial value problem

y0 ¼ y tð Þ; t� 0
y 0ð Þ ¼ 0:8þ 0:125r; 1:1� 0:1rð Þ:

�

The exact solution is given by

Y t; rð Þ ¼ ½ 0:8þ 0:125rð Þet; 1:1� 0:1rð Þet�:

At t = 1 we get

Y 1; rð Þ ¼ ½ 0:8þ 0:125rð Þe; 1:1� 0:1rð Þe� ; 0� r� 1:

The value of exact solution and approximate solutions is given in Tables 1, 2, 3 and 4.
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Table 1. .

r t R-k 4 CHmean Exact Error
y1 y2 Y1 Y2 y1 y1

0 1 2.1531 2.999 2.1746 2.9901 0.006484 0.0089174
0.2 1 2.2204 3.0143 2.2426 3.0445 0.022198 0.030136
0.4 1 2.3174 3.1081 2.3105 3.0988 0.006898 0.0092417
0.6 1 2.3856 3.1626 2.3785 3.1532 0.007094 0.0094038
0.8 1 2.4537 3.2171 2.4465 3.2076 0.007291 0.009566
1 1 2.5219 3.2717 2.5144 3.2619 0.007498 0.0097281

Table 2. .

r t R-k 4 method Exact
y1 y2 Y1 Y2 y1 y1

0 1 2.1667 2.9792 2.1746 2.9901 0.0079588 0.010943
0.2 1 2.2344 3.0333 2.2426 3.0445 0.0082075 0.011142
0.4 1 2.3021 3.0875 2.3105 3.0988 0.0084562 0.011341
0.6 1 2.3698 3.1417 2.3785 3.1532 0.0087049 0.01154
0.8 1 2.4375 3.1958 2.4465 3.2076 0.0089536 0.011739
1 1 2.5052 3.25 2.5144 3.2619 0.0092024 0.011938

Table 3. .

r t R-k4 Cnt mean Exact Error
y1 y2 Y1 Y2 y1 y1

0 1 2.5794 3.5466 2.1746 2.9901 0.40474 0.55652
0.2 1 2.66 3.6111 2.2426 3.0445 0.41739 0.56664
0.4 1 2.7406 3.6756 2.3105 3.0988 0.43004 0.57676
0.6 1 2.8212 3.7401 2.3785 3.1532 0.44269 0.58688
0.8 1 2.9018 3.8046 2.4465 3.2076 0.45534 0.597
1 1 2.9824 3.8691 2.5144 3.2619 0.46798 0.60711

Table 4. .

r t R-k 4 H mean Exact Error
y1 y2 Y1 Y2 y1 y1

0 1 2.1531 2.9605 2.1746 2.9901 0.021525 0.029597
0.2 1 2.2204 3.0143 2.2426 3.0445 0.022198 0.030136
0.4 1 2.2877 3.0682 2.3105 3.0988 0.022871 0.030674
0.6 1 2.355 3.122 2.3785 3.1532 0.023543 0.031212
0.8 1 2.4222 3.1758 2.4465 3.2076 0.024216 0.03175
1 1 2.4895 3.2297 2.5144 3.2619 0.024889 0.03228

Solving First Order Fuzzy Initial Value Problem 367



6 Conclusion

In this paper Runge-Kutta method by different means has been applied for finding the
better and closed numerical solution and prepare by exact solution. The efficiency and
the accuracy of the proposed method have been illustrated by a suitable example.
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Part V: Others



Non-traveling Wave Exact Solutions
of (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama

Equation

Najva Aminakbari, Guo-qiang Dang, Yong-yi Gu, and Wen-jun Yuan(B)

School of Mathematics and Information Science,
Guangzhou University, Guangzhou 510006, China

wjyuan1957@126.com

Abstract. In this paper, the exact solutions for (3+1)-dimensional
Yu-Toda-Sasa-Fukuyama equation have been investigated. By Lie group
method and traveling wave transformation, we obtain two symmetry
reduced equations of (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equa-
tion. Then three classes of non-traveling wave exact solutions of (3+1)-
dimensional Yu-Toda-Sasa-Fukuyama equation are constructed. At last,
we achieve some computer simulations to illustrate our main results.

Keywords: (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama equation ·
Non-traveling exact wave solution · Meromorphic function · Elliptic
function

1 Introduction and Main Results

One of the main topics in physics, chemistry, biology is to create mathematical
models to describe the natural phenomenon and find exact solutions of non-
linear partial and ordinary differential equations. Exact solutions of differential
equations can be used to help researchers to well understand the mechanism
of the complicated natural phenomenon. Many effective methods being used to
find exact solutions of differential equations have been developed, such as the
exponential function method [1,2], F-expansion method [3], tanh-sech method
[4], direct algebraic method [5], first integral method [6], sine-cosine method [7],
transformed rational function method [8], inverse scattering transform method
[9], Bäcklund transform method [10], Darboux transform method [11], G′

G expan-
sion method [12], Lie group method [13], and so on.

In 1998, Yu et al. [14] extended the Bogoyavlenskii Schiff equation

ut + Φ(u)uz = 0, Φ(u) = ∂2
x + 4u + 2ux∂−1

x (1)

to be the (3+1)-dimensional non-linear evolution equation

(−4ut + Φ(u)uz)x + 3uyy = 0, Φ(u) = ∂2
x + 4u + 2ux∂−1

x . (2)

c© Springer International Publishing AG 2018
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Setting u := vx, Eq. (2) is changed into the (3+1)-dimensional potential
Yu-Toda-Sasa-Fukuyama (YTSF) equation

vxxxz − 4vxt + 4vxvxz + 2vxxvz + 3vyy = 0. (3)

Substituting the traveling wave transformation

v = v(ξ), ξ = a1x + a2y + a3z + a4t (4)

into the YTSF equation yields a non-linear ordinary differential equation, setting
w = v′ and integrating it yields the ordinary differential equation

a3
1a3w

′′ + (3a2
2 − 4a1a4)w + 3a2

1a3w
2 = β, (5)

where a1, a2, a3, a4 are constants.
By Lie group method [13], we derive two symmetry reduced equations

ϕxxxη + 4ϕxρ + 4ϕxϕxη + 2ϕxxϕη + 3ϕρρ + 4 = 0, (6)

ϕxxxη + 4ϕxϕxη + 2ϕxxϕη + 3ϕyy = 0. (7)

Substituting the transformation

ϕ = v(x, ρ, η) − 2
3
ρ2 + ερ + β

into Eq. (6) yields the ordinary differential equation

vxxxη + 4vxρ + 4vxvxη + 2vxxvη + 3vρρ = 0, (8)

where ε, β are constants.
Next, substituting the traveling wave transformation

v(x, ρ, η) = v(θ), θ = kx + lη + rρ (9)

into Eq. (8), setting w = v′ and integrating it yields the differential equation

k3lw′′ + 3k2lw2 + (4kr + 3r2)w = β, (10)

where k, l, r are constants.
Substituting the traveling wave transformation

ϕ(x, η, y) = ϕ(θ), θ = kx + lη + ry (11)

into Eq. (7), setting w = ϕ′ and integrating it yields the ordinary differential
equation

k3lw′′ + 3k2lw2 + 3r2w = β, (12)

where k, l, r are constants.
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Equations (5), (10) and (12) are special cases of the following non-linear ordi-
nary differential equation

Aw′′ + Bw + Cw2 + D = 0, (13)

where A,B,C,D are constants.
In Eq. (13), if A = 0, w must be a constant. If C = 0, B �= 0, we have a linear

ODE

Aw′′ + Bw + D = 0. (14)

Any meromorphic solution of Eq. (14) has no pole, because all the solutions
of Eq. (14) are:

w(ξ) =

⎧
⎪⎨

⎪⎩

C1e
√

−B
A ξ + C2e

−
√

−B
A ξ − D

B
, where − B

A
�= 0,

C1 + C2ξ − D

2A
ξ2, where − B

A
= 0.

(15)

In order to clarify our main results, we need some basic concepts. A mero-
morphic function is holomorphic in the complex plane C except for poles.

Let ω1, ω2 be two given complex constants such that Imω1
ω2

> 0, L =
L[2ω1, 2ω2] be discrete subset L[2ω1, 2ω2] = {ω | ω = 2nω1+2mω2, n,m ∈ Z}.
The discriminant Δ = Δ(c1, c2) := c31 − 27c22 and

sn = sn(L) :=
∑

ω∈L\{0}

1
ωn

.

Weierstrass elliptic function ℘(z) := ℘(z, g2, g3) is a meromorphic function
with two periods 2ω1, 2ω2 and satisfying

(℘′(z))2 = 4℘(z)3 − g2℘(z) − g3, (16)

where g2 = 60s4, g3 = 140s6 and Δ(g2, g3) �= 0.
Weierstrass zeta function ζ(z) := 1

z +
∑

ω �=0

( 1
z−ω + 1

ω + z
ω2 ) is a meromorphic

function and satisfying the differential equation

℘(z) = −ζ ′(z). (17)

Weierstrass elliptic function ℘(z) satisfies the following addition formula

℘(z − z0) = −℘(z) − ℘(z0) +
1
4
[
℘′(z) + ℘′(z0)
℘(z) − ℘(z0)

]2. (18)

Weierstrass zeta function ζ(z) satisfies the following addition formula

ζ(z − z0) = ζ(z) − ζ(z0) +
1
2
[
℘′(z) + ℘′(z0)
℘(z) − ℘(z0)

]. (19)

In 2012, applying the complex method, for the first time, Yuan et al. achieved
the general meromorphic solutions of Eq. (13) with AC �= 0:
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Theorem A [17]. Suppose that AC �= 0, then the general meromorphic solu-
tions w of equation

Aw′′ + Bw + Cw2 + D = 0

are of the following forms:

(I) The elliptic general solutions

wd(z) = 6A
C ℘(z) − 3A

2C [℘′(z)+F
℘(z)−E ]2 + 6AE

C − B
2C , (20)

where 4DC = −12A2g2 + B2, F 2 = 4E3 − g2E − g3, g2, g3 and E are
arbitrary.

(II) The simply periodic solutions

ws(z) = −3A

2C
α2 coth2 α

2
(z − z0) +

A

C
α2 − B

2C
, (21)

where z0 ∈ C, α �= 0, 4DC = −A2α4 + B2.
(III) The rational function solutions

wr(z) = −6A

C

1
(z − z0)2

− B

2C
, (22)

where z0 ∈ C, 4CD = B2.

This paper is organized as follows. In the second section, we construct the
traveling exact solutions of the YTSF equation. In the third section, we give the
symmetry reduced equations and the non-traveling exact solutions of the YTSF
equation. Our main results are the following Theorems.

2 Traveling Wave Exact Solutions

Theorem 1. Suppose that ξ = a1x + a2y + a3z + a4t, a1a3 �= 0, then the
traveling exact solutions v of Eq. (3) are the following forms:

(I) The solutions with elliptic functions

vd(ξ) = 2a1[ζ(ξ) − ζ(ξ0) + 1
2

℘′(ξ)+F
℘(ξ)−E ] − 3a2

2−4a1a4

6a2
1a3

(ξ − ξ0) + γ, (23)

here F 2 = 4E3 − g2E − g3, g2, g3, ξ0 and E are arbitrary, γ is integral
constant.

(II) The solutions with some certain simply periodic functions

vs(ξ) = a1α coth
α

2
(ξ − ξ0) +

4a1a4 − 3a2
2 − a3

1a3α
2

6a2
1a3

(ξ − ξ0) + γ, (24)

here α �= 0, ξ0 is arbitrary, γ is integral constant.
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(III) The solutions with rational functions

vr(ξ) =
2a1

ξ − ξ0
+

4a1a4 − 3a2
2

6a2
1a3

(ξ − ξ0) + γ, (25)

here ξ0 is arbitrary, γ is integral constant.

Proof. Setting A = a3
1a3, B = 3a2

2 − 4a1a4, C = 3a2
1a3,D = −β, by Theorem A

and the addition formulas of Weierstrass η and ζ function, the solutions with
elliptic functions of Eq. (3) are

vd(ξ) =
∫

wd(ξ)dξ

=
∫

6A

C
℘(ξ) − 3A

2C
[
℘′(ξ) + F

℘(ξ) − E
]2 +

6AE

C
− B

2C
dξ

=
∫

−6A

C
℘(ξ − ξ0) − B

2C
dξ

=
6A

C
ζ(ξ − ξ0) − B

2C
(ξ − ξ0) + γ

= 2a1[ζ(ξ) − ζ(ξ0) +
1
2

℘′(ξ) + F

℘(ξ) − E
] − 3a2

2 − 4a1a4

6a2
1a3

(ξ − ξ0) + γ.

here, γ is integral constant.
The solutions with some certain simply periodic functions of Eq. (3) are

vs(ξ) =
∫

ws(ξ)dξ

=
∫

−3A

2C
α2 coth2 α

2
(ξ − ξ0) +

A

C
α2 − B

2C
dξ

=
3A

C
α coth

α

2
(ξ − ξ0) − 3A

C

α2

2
(ξ − ξ0) + (

A

C
α2 − B

2C
)(ξ − ξ0) + γ

= a1α coth
α

2
(ξ − ξ0) +

4a1a4 − 3a2
2 − a3

1a3α
2

6a2
1a3

(ξ − ξ0) + γ.

The solutions with rational functions of Eq. (3) are

vr(ξ) =
∫

wr(ξ)dξ

=
∫

−6A

C

1
(ξ − ξ0)2

− B

2C
dξ

=
6A

C

1
ξ − ξ0

− B

2C
(ξ − ξ0) + γ

=
2a1

ξ − ξ0
+

4a1a4 − 3a2
2

6a2
1a3

(ξ − ξ0) + γ.



378 N. Aminakbari et al.

Remark 1. By Theorem 1, we give the computer simulations.
Setting a1 = a2 = a3 = a4 = 1, x = 1, y = 1, ξ0 = 0, γ = 0, we have a solution

with a rational function (See Fig. 1(a))

vr1(ξ) =
2

z + t + 2
+

1
6
(z + t) +

1
3
. (26)

Fig. 1. Two solutions with rational functions of Eq. (3).

Setting a1 = 2, a2 = 3, a3 = 4, a4 = 5, x = 1, y = 1, ξ0 = 0, γ = 0, we have a
solution with a rational function (See Fig. 1(b))

vr2(ξ) =
4

4z + 5t + 5
+

13
24

z +
65
96

t +
65
96

. (27)

Setting a1 = a2 = a3 = a4 = 1, α = 2, x = 1, y = 1, ξ0 = 0, γ = 0, we have a
solution with a simply periodic function (See Fig. 2(a))

vs1(ξ) = 2 coth(z + t + 2) − 1
2
(z + t) − 1. (28)

Setting a1 = 2, a2 = 3, a3 = 4, a4 = 5, α = 1
2 , x = 1, y = 1, ξ0 = 1, γ = 0, we

have a solution with a simply periodic function (See Fig. 2(b))

vs2(ξ) = coth(z +
5
4
t + 1) +

5
24

z +
25
96

t +
5
24

. (29)
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Fig. 2. Two solutions with simply periodic functions of (3).

3 Non-traveling Wave Exact Solutions and Symmetry
Reduced Equations

3.1 Symmetry of YTSF Equation

In order to find out the symmetry σ = σ(x, y, z, t, u) of Eq. (3), setting

σ = avx + bvy + cvz + dvt + ev + f. (30)

Here u is the solution of Eq. (3), a, b, c, d, e, f are unknown functions of real
variables x, y, z, t. According to Lie group analysis [13] and reference [12], σ
satisfies

σxxxz − 4σxt + 4vxσxz + 4vxzσx + 2vxxσz + 2vzσxx + 3σyy = 0. (31)

Substituting Eq. (30) into Eq. (31), we have a new differential equation,
where

vxxxz = 4vxt − 4vxvxz − 2vxxvz − 3vyy. (32)

By Eqs. (30), (31) and (32), we have

a = c1x + c2, b = c3y + c4, c = (2c3 − 3c1)z + s(t),

d = (2c3 − c1)t + c5, e = c1, f = s′(t)x +
2
3
s′′(t)y2 + τ(t)y + μ(t), (33)

where ci are real constants, s(t), τ(t), μ(t) are arbitrary real functions of t. Sub-
stituting Eq. (33) into Eq. (30), we achieved the symmetry of YTSF equation

σ = (c1x + c2)vx + (c3y + c4)vy + ((2c3 − 3c1)z + s(t))vz

+((2c3 − c1)t + c5)vt + c1v + s′(t)x +
2
3
s′′(t)y2 + τ(t)y + μ(t). (34)
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3.2 Symmetry Reduced Equations of YTSF Equation

By solving the characteristic equation of σ

dx

c1x + c2
=

dy

c3y + c4
=

dz

(2c3 − 3c1)z + s(t)

=
dt

(2c3 − c1)t + c5
=

du

c1v + s′(t)x + 2
3s′′(t)y2 + τ(t)y + μ(t)

, (35)

we find different symmetry reduced equations. Without loss of generality, we
have two reduced equations as follows.

Setting c1 = c2 = c3 = 0, c4 = c5 = 1, τ(t) = 0, s(t) = t, solving σ = 0, we
have the first similarity solution of Eq. (3)

v = ϕ(x, ρ, η) − xt −
∫

μ(t)dt, (36)

where ρ = y − t, η = z − 1
2 t2. Substituting Eq. (36) into Eq. (3), we have the first

symmetry reduced equation Eq. (6)

ϕxxxη + 4ϕxρ + 4ϕxϕxη + 2ϕxxϕη + 3ϕρρ + 4 = 0.

Setting c1 = c2 = c3 = c4 = 0, c5 = −1, solving σ = 0, we have the second
similarity solution of Eq. (3)

v = ϕ(x, y, η) + s(t)x +
2
3
s′(t)y2 +

∫

(τ(t)y + μ(t))dt, (37)

where η = z +
∫

s(t)dt. Substituting Eq. (37) into Eq. (3), we have the second
symmetry reduced equation Eq. (7)

ϕxxxη + 4ϕxϕxη + 2ϕxxϕη + 3ϕyy = 0.

3.3 Non-traveling Exact Solutions of YTSF Equation

By Theorem A and Eq. (10), we derive the non-traveling exact solutions of
Eq. (3).

Theorem 2. Suppose that θ = kx + lη + rρ,kl �= 0,ρ = y − t, η = z − 1
2 t2,

δ = − 2
3ρ2 + ερ + β − xt − ∫

μ(t)dt, here ε, β are arbitrary real numbers, μ(t) is
arbitrary real function of t, then the non-traveling exact solutions v of Eq. (3)
are the following forms:

(I) The solutions with elliptic functions

vd(x, y, z, t) = vd(θ) = 2k[ζ(θ)− ζ(θ0) +
1
2

℘′(θ)+F
℘(θ)−E

]− 4kr+3r2

6k2r
(θ − θ0) + γ + δ, (38)

here F 2 = 4E3 − g2E − g3, g2, g3, θ0 and E are arbitrary, γ is integral
constant.
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(II) The solutions with some certain simply periodic functions

vs(x, y, z, t) = vs(θ) = kα coth
α

2
(θ − θ0)− (

k

6
α2 +

4kr + 3r2

6k2l
)(θ − θ0) + γ + δ, (39)

here θ0 is arbitrary, α �= 0.
(III) The solutions with rational functions

vr(x, y, z, t) = vr(θ) =
2k

θ − θ0
− 4kr + 3r2

6k2l
(θ − θ0) + γ + δ, (40)

here θ0 is arbitrary.

Remark 2. By Theorem 2, we give the computer simulations.
Setting k = 1, l = 1, r = 1, x = 1, y = 1, ε = 0, β = 0, μ(t) = 0, γ = 0, θ0 = 0,

we have a solution with a rational function (See Fig. 3(a))

vr3(θ) =
2

2 + z − 1
2 t2 − t

− 7
3

− 7
6
z +

7
12

t2 +
1
6
t − 2

3
(1 − t)2. (41)

Setting k = 2, l = −1, r = 1, α = 2, x = −1, y = 1, ε = 1, β = 1, μ(t) = 0, γ =
0, θ0 = 0, we have a solution with a simply periodic function (See Fig. 3(b))

vs3(θ) = 4 coth(−1 − z +
1
2
t2 − t) − 7

16
t2 +

7
8
t +

7
8
z +

23
8

− 2
3
(1 − t)2. (42)

Fig. 3. Two solutions of Eq. (3).

Remark 3. By these Theorems, many non-traveling exact solutions can be con-
structed by selecting different initial value. Specially, setting A = 4klr+3lr2 < 0,
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α =
√−kA

k2l , θ = kx + lη + rρ, kl �= 0, ρ = y − t, η = z − 1
2 t2, ε, β are arbitrary

real numbers, μ(t) is arbitrary real function of t, by Theorem 2, we have

vs(x, y, z, t) =vs(θ) =
1

kl

√
−klr(4k + 3r) coth{1

2

1

k2l

√
−klr(4k + 3r)θ − θ0} + γ

−2

3
(y − t)2 + ε(y − t) + β − xt −

∫
μ(t)dt,

obviously, this solution is equivalent to the solution v4 in reference [12].
Setting A = −(4klr + 3lr2) < 0, α =

√
kA

k2l , by Theorem 2, we have

vs(x, y, z, t) = vs(θ) =
1
kl

√
klr(4k + 3r) coth{1

2
1

k2l

√
klr(4k + 3r)θ − θ0} + γ

−2
3
(y − t)2 + ε(y − t) + β − xt −

∫

μ(t)dt,

obviously, this solution is equivalent to the solution v5 in reference [12].
By Theorem 1 and Eq. (12), we derive the non-traveling solutions of Eq. (3).

Theorem 3. Suppose that θ = kx + lη + ry, kl �= 0, η = z +
∫

s(t)dt, δ =
s(t)x + 2

3s′(t)y2 +
∫

(τ(t)y + μ(t))dt, then the non-traveling exact solutions v of
Eq. (3) are the following forms:

(I) The solutions with elliptic functions

vd(x, y, z, t) = vd(θ) = 2k[ρ(θ)− ρ(θ0) +
1
2

℘′(θ)+F
℘(θ)−E

]− r2

2k2l
(θ − θ0) + γ + δ. (43)

here F 2 = 4E3 − g2E − g3,g2, g3,θ0 and E are arbitrary, γ is integral
constant.

(II) The solutions with some certain simply periodic functions

vs(x, y, z, t) = vs(θ) = kα coth
α

2
(θ − θ0)− (

k

6
α2 +

r2

2k2l
)(θ − θ0) + γ + δ, (44)

here θ0 is arbitrary, α �= 0.
(III) The solutions with rational functions

vr(x, y, z, t) = vr(θ) =
2k

θ − θ0
− r2

2k2l
(θ − θ0) + γ + δ, (45)

here θ0 is arbitrary.

Remark 4. By Theorem 3, we give the computer simulations.
Setting k = 1, l = 2, r = 1, x = 1, y = 1, s(t) = t, τ(t) = 0, μ(t) = 0, γ =

0, θ0 = 0, we have a solution with a rational function (See Fig. 4(a))

vr4(θ) =
2

t2 + 2z + 2
− 1

4
t2 − 1

2
z + t +

1
6
. (46)

Setting k = 1, l = 2, r = 1, x = 1, y = 1, α = 2, s(t) = t, τ(t) = 0, μ(t) =
0, γ = 0, θ0 = 0, we have a solution with a simply periodic function (See
Fig. 4(b))

vs4(θ) = 2 coth(t2 + 2z + 2) − 11
12

t2 − 11
6

z + t − 7
6
. (47)
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Fig. 4. Two solutions of Eq. (3).
4 Conclusion

By Theorem A and Lie group method, we achieved some new non-traveling
exact solutions of YTSF equation. These solutions can be represented into three
forms, containing the solutions with elliptic functions, some certain simply peri-
odic functions or rational functions. This idea can be applied to other nonlinear
partial differential equations.
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Abstract. The concept of fuzzy sets and fuzzy error matrix is presented in this
paper. On this basis, we studied the types of the set matrix of error matrix. It is
especially researched that the elements of fuzzy error matrix are set, and each row
of matrix is the decomposition of a fuzzy error logic proposition [1–5]. The error
matrix equation is a general set of relations, not just the usual equation [6–12].
And the solvability of this error matrix, and solutions to it are presented. And an
example of solving the fuzzy error set matrix would be given in the paper.

Keywords: Error logic � Convert conjunctions � Matrix representation �
Eliminate the wrong

1 Fuzzy Set

1.1 Concept

1.1.1 Fuzzy Set
Suppose A is a mapping from set X to [0,1], A: X ! [0,1], x ! A (x), then A is the
fuzzy set on X, A (x) is called the membership function of fuzzy set A, Or A (x) is the
membership degree of x to fuzzy set A.

1.1.2 Representation of Fuzzy Set

1. When the elements in the fuzzy set are finite, the fuzzy set can be expressed as
follows: suppose domain U = {u (1), u (2), …, u (n)}

(1) Zadeh representation method: A ¼ Aðu1Þ
u1 þ Aðu2Þ

u2 þ Aðu3Þ
u3 þ � � �

(2) Vector representation method: A ¼ fAðu1Þ;Aðu2Þ; � � �g
(3) Sequence dual representation method: A ¼ �ðu1;Aðu1Þ

�
;
�ðu2;Aðu2Þ

�
; � � �

2. When there are infinitely elements in the fuzzy set, the fuzzy set can be expressed as

Zadeh method as follows: A ¼ R AðuÞ
u

© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6_38



2 Fuzzy Error Set Matrix

2.1 Classification of Fuzzy Set Matrix

2.1.1 Fuzzy Set Matrix
Aij; Bij; i ¼ 1; 2; . . .; m, j ¼ 1; 2; . . .; n is a fuzzy set.

¼ A
¼ Bare fuzzy set matrixs:

A12 . . . . . . A1l . . . A1n

A21 A22 . . . A2l . . . A2n

Ai1 Ai2 . . . Ail . . . Ain

Am1 Am . . . Aml . . . Amn

0
BB@

1
CCA ¼ A

and
B11 B12 . . . B1l . . . B1n

B21 B22 . . . B2l . . . B2n

Bi1 Bi2 . . . Bil . . . Bin

Bm1 Bm . . . Bml . . . Bmn

0
BB@

1
CCA ¼ B

2.1.2 Fuzzy Error Set Atrix
This (t + 1) *7 matrix is an set matrix, which is also called a fuzzy error set matrix,
since it is composed of seven (set) elements of the error logic proposition, where yij 2
[0,1].

2.2 Fuzzy Error Set Matrix Operation

3 Fuzzy Error Set Matrix Equation

3.1 Error Set Matrix Equation Type

1. Equality form
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2. Connotative form

3.2 The Solution of Fuzzy Set Matrix Equation

3.2.1 The Solution Schemes of Fuzzy Matrices Set Equation
The equation of fuzzy matrices set has two types, equality form and connotative form.
In general, the elements in a matrix are taken over a certain set. To solve fuzzy matrix
equation, the solution is generally determined in a set. Here we first introduce the
solving diagram of the fuzzy error matrix set equation (Figs. 1 and 2).

Fig. 1. An inverse solution to the left known matrix

Le  known error matrix Unknown error matrix Known error matrix

(If the inverse matrix does not exist)
Le  known error matrix * Unknown error matrix

Known error matrix

The elements of the le  error matrix = The elements of the right error matrix

The elements of the unknown 
error matrix

The Corresponding Solu ons of M * n 
Error Matrix Equa ons

Fig. 2. No inverse solution for the left known matrix

Research of Solvability and Application of Fuzzy Errors 387



3.2.2 The Solution of Fuzzy Error Matrix Equation
The solution of Fuzzy Error Matrix Equation of Type II 1

XA0 � B ¼
U10x S10x tð Þ p*10x ðx1; x2; . . .; xnÞ T10x tð Þ L10x tð Þ x10x tð Þ ¼ f10xððu tð Þ; p*10xÞ;GU10x tð ÞÞ GU10x tð Þ
U11x S11x tð Þ p*11x ðx1; x2; . . .; xnÞ T11x tð Þ L11x tð Þ x11x tð Þ ¼ f11xððu tð Þ; p*11xÞ;GU11x tð ÞÞ GU11x tð Þ
. . .

U1tx S1tx tð Þ p*1tx ðx1; x2; . . .; xnÞ T1tx tð Þ L1tx tð Þ x1tx tð Þ ¼ f1txððu tð Þ; p*1txÞ;GU1tx tð ÞÞ GU1tx tð Þ

0
BBB@

1
CCCA

A0 ¼ ðU2; S2 tð Þ; P*2;T2 tð Þ;L2 tð Þ; x2 tð Þ ¼ f2ððu tð Þ; P*2Þ;GU2 tð ÞÞÞ

¼
U20 S20 tð Þ p*20 ðx1; x2; . . .; xnÞ T20 tð Þ L2 tð Þ y20 tð Þ ¼ f20ððu tð Þ; p*20Þ;GU20 tð ÞÞ GU20 tð Þ
U21 S21 tð Þ p*21 ðx1; x2; . . .; xnÞ T21 tð Þ L21 tð Þ y21 tð Þ ¼ f21ððu tð Þ; p*21Þ;GU21 tð ÞÞ GU21 tð Þ
. . .

U2t Stt tð Þ p*2t ðx1; x2; . . .; xnÞ T2t tð Þ L2t tð Þ y2t tð Þ ¼ f2tððu tð Þ; p*2tÞ;GU2t tð ÞÞ GU2t tð Þ

0
BBB@

1
CCCA

B0 ¼

b11; y11ð Þ b12; y12ð Þ . . . b1m1; y1m1ð Þ
b21; y21ð Þ b22; y22ð Þ . . . b1m2; y1m2ð Þ
. . .

bm21; ym21ð Þ bm21; ym21ð Þ . . . bm2m1; ym2m1ð Þ

0
BBB@

1
CCCA

¼

V201 Sv201 tð Þ P
*

v201 ðx1; x2; . . .; xnÞ Tv201 tð Þ Lv201 tð Þyv201 tð Þ ¼ fv201ððv tð Þ;P*v201Þ;GV201 tð ÞÞ GV101 tð Þ. . .
. . .V21j Sv21j tð Þ P

*

v21j ðx1; x2; . . .; xnÞ Tv21j tð ÞL21j tð Þyv21j tð Þ ¼ fv21jððv tð Þ;P*v21jÞ;GV21j tð ÞÞ GV21j tð Þ. . .
. . .

. . .V2m2m1 Sv2m2m1 tð Þ P
*

v2m2m1 ðx1; x2; . . .; xnÞ Tv2m2m1 tð Þ; Lv2m2m1 tð Þ yv2m2m1 tð Þ ¼ fv2m2m1ððv tð Þ;
P
*

v2m2m1Þ;GV2m2m1 tð ÞÞGV1m2m1 tð Þ

0
BBBBBBB@

1
CCCCCCCA

Definition 3.1 let XA0 �
w11; z11ð Þ w12; z12ð Þ. . . w1m1; z1m1ð Þ
w21; z21ð Þ w22; z22ð Þ. . . w2m2; z2m2ð Þ

. . .

wm21; zm21ð Þ wm21; zm21ð Þ. . . wm2m1; zm2m1ð Þ

0
BBB@

1
CCCA

¼

ðV201Sv201 tð Þ P
*

v201 ðx1; x2; . . .; xnÞ Tv201 tð Þ Lv201 tð Þyv201 tð Þ ¼ fv201ððv tð Þ;P*v201Þ; GV201 tð ÞÞ GV101 tð Þ. . .
. . . V21jSv21j tð ÞP

*

v21j ðx1; x2; . . .; xnÞ Tv21j tð ÞL21j tð Þyv21 tð Þ ¼ fv21jððv tð Þ;P*v21jÞ; GV21j tð ÞÞ GV11j tð Þ. . .
. . .

. . .V2m2m1Sv2m2m1 tð ÞP*v2m2ml ðx1; x2; . . .; xnÞ Tv2m2m1 tð Þ ; Lv2m2m1 tð Þyv2m2m1 tð Þ ¼ fv2m2m1ððv tð Þ; P
*

v2m2mlÞ; GV2m2m1 tð ÞÞGV1m2m1 tð Þ

0
BBBB@

1
CCCCA

There into

wij; zij
� � ¼ U1ix ^ U2j; S1ix tð Þ ^ S2j tð Þ P

*

ijx ðx1; x2; . . .; xnÞ ^ P
*

2j T1ix tð Þ ^ T2j tð Þ L1ix tð Þ ^ L2j

tð Þ x1ix tð Þ ¼ f1iððu tð Þ; P*1ixÞ; GU1i tð ÞÞ ^ y2j tð Þ GU1ix tð Þ ^ GU2j tð Þ
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There into

U10x ^ U20S10x tð Þ ^ S20 tð Þ P
*

10x ðx1; x2; . . .; xnÞ ^ P
*

20T10x tð Þ ^ T20 tð ÞL10x tð Þ ^ L tð Þx10x tð Þ ¼ f10xððu tð Þ; P*10xÞ;GU10 tð ÞÞ ^ y20 tð Þ
GU10x tð Þ ^ GU20 tð Þ. . .
. . .U11x ^ U21; S11x tð Þ ^ S21 tð Þ P

*

11x ðx1; x2; . . .; xnÞ ^ P
*

21T11x tð Þ ^ T21 tð ÞL11x tð Þ ^ L21 tð Þx11x tð Þ ¼ f11xððu tð Þ; P*11xÞ;GU11 tð ÞÞ ^ y21 tð Þ
GU11x tð Þ ^ GU21 tð Þ. . .

. . .

. . .U1tx ^ U2tS1tx tð Þ ^ S2t tð ÞP
*

1tx ðx1 ;x2 ;...;xnÞ
^ P

*

2tT1tx tð Þ ^ T2t tð ÞL1tx tð Þ ^ L2t tð Þx1tx tð Þ ¼ f1txððu tð Þ;P*1txÞ;GU1t tð ÞÞ ^ y2t tð ÞGU1t tð Þ ^ GU2t tð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

V201Sv201 tð ÞP*v201 ðx1; x2; . . .; xnÞ Tv201 tð Þ Lv201 tð Þyv201 tð Þ ¼ fv201ððv tð Þ; P
*

v201Þ;GV201 tð ÞÞ G

V101 tð Þ. . .
. . .V21jSv21j tð ÞP

*

v21j ðx1; x2; . . .; xnÞ Tv21j tð ÞL21j tð Þyv21 tð Þ ¼ fv21jððv tð Þ; P
*

v21jÞ;GV21j tð ÞÞGV11j tð Þ. . .
. . .

. . .V2m2m1Sv2m2m1 tð ÞP*v2m2m1 ðx1; x2; . . .; xnÞ Tv2m2m1 tð Þ ; Lv2m2m1 tð Þyv2m2m1 tð Þ ¼ fv2m2m1ððv tð Þ;P*v2m2mlÞ;
GV2m2m1 tð ÞÞGV1m2m1 tð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

By the definition of equal matrices: if two matrices are contained, then the corre-
sponding elements of the two matrices contain each other. Namely wij; zij

� � �
bij; yij

� �
, therefore,

U1ix ^ U2j; S1ix tð Þ ^ S2j tð Þ P
*

1ix ðx1; x2; . . .; xnÞ ^ P
*

2j T1ix tð Þ ^ T2j tð Þ L1ix tð Þ ^ L2j tð Þ
x1ix tð Þ ¼ f1iððu tð Þ;P*1ixÞ;GU1i tð ÞÞ ^ y2j tð ÞGU1ix tð Þ ^ GU2j tð Þ � bij; yij

� �

¼¼ ðV2ijSV2ij tð ÞP
*

v2ij ðx1; x2; . . .; xnÞ TV2ij tð Þ LV2ij tð ÞyV2ij tð Þ ¼ fV2ijððv tð Þ; P*v2ijÞ;GV2ij tð ÞÞGV2ij tð ÞÞ

Equals to the following set of equations:

U10x ^ U20 � Vv20

S10x tð Þ ^ S20 tð Þ � Sv20 tð Þ
P
*

10x ðx1; x2; . . .; xnÞ ^ P
*

20 � P
*

v20 ðx1; x2; . . .; xnÞ
T10x tð Þ ^ T20 tð Þ � Tv20 tð Þ
L10x tð Þ ^ L20 tð Þ � Lv20 tð Þ
x10x tð Þ ¼ f10xððu tð Þ;P*10xÞ;GU10x tð ÞÞ ^ y20 tð Þ � yv20 tð Þ ¼ fv20ððu tð Þ;P*v20Þ;GV tð ÞÞ
GU10x tð Þ ^ GU20 tð Þ � GV20 tð Þ� � �
U1ix ^ U2j � V2j

S1ix tð Þ ^ S2j tð Þ � SV2j tð Þ
P
*

1ix ðx1; x2; . . .; xnÞ ^ P
*

2j � P
*

v2j ðx1; x2; . . .; xnÞ
T1ix tð Þ ^ T2j tð Þ � TV2j tð Þ
L1ix tð Þ ^ L2j tð ÞLV2j tð Þ
x1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ y2j tð Þ � yV2j tð Þ ¼ fV2jððu tð Þ;P*v2jÞ;GV tð ÞÞ
GU1ix tð Þ ^ GU2j tð Þ � GV2j tð Þ� � �
Uttx ^ U2t � VV2t

Sttx tð Þ ^ S2t tð Þ � SV2t tð Þ
P
*

ttx ðx1; x2; . . .; xnÞ ^ P
*

2t � P
*

v2t ðx1; x2; . . .; xnÞ
Tttx tð Þ ^ T2t tð Þ � TV2t tð Þ
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Lttx tð Þ ^ L2t tð Þ � LV2t tð Þ
xttx tð Þ ¼ fttxððu tð Þ;P*ttxÞ;GUttx tð ÞÞ ^ y2t tð Þ � yv2t tð Þ ¼ fv2tððu tð Þ;P*v2tÞ;GV tð ÞÞ
GUttx tð Þ ^ GU2t tð Þ � GV2t tð Þ
About operations of “^”, if both sides of the equation are sets, then ^ means the

“intersection” operation of the set. If ^ is the number on both sides of the equation, ^
means the “minimum” operation of the number.

As for ðU1ix ^ U2jÞh1ðS1ix tð Þ ^ S2j tð Þ Þh2ðP
*

lix ðx1; x2; . . .; xnÞ ^ P
*

2jÞ _ h3ðT1ix
tð Þ ^ T2j tð Þ Þh4ðL1ix tð Þ ^ L2j tð Þ Þh5ðx1ix tð Þ ¼ f1ixððu tð Þ;P*lixÞ, GU1ix tð ÞÞ ^ y2j tð Þ Þh6ðGU1ix

tð Þ ^ GU2j tð Þ namely “hi, i = 1,2, … 6” operations matrix elements, it mean that the
elements have been computed are “combined” into a complete matrix element
(proposition). The mode of combination depends on specific situations. One way is to
use the parameters after the operation for the corresponding parameters constitute a
new set of error elements or error logic proposition, which is called the multiplication
of the m*7 error matrix.

Since we are not asking XiA0 ¼ Bbut XiA0 ¼ B in the solvability of the real
problem, we will discuss the more general error matrix equation model.

The solution of Fuzzy Error Matrix Equation of Type II 1 XA0 � B

Theorem 1. The necessary and sufficient condition for the solvability of the fuzzy
error matrix equation XA0 � B is the solvability of xiA0 � Bi; i ¼ 1; 2; . . .; m2ð Þ:
Proof: If XA0 � B has solvability, it is can be known by the definition of XA0 � B
and xiA0 � Bi; i = 1; 2; . . .;m2ð Þ that are two equivalent equations, so it is necessary
for xiA0 � Bi; i = 1; 2; . . .;m2ð Þ has solvability; otherwise if xiA0 � Bi; i = 1; 2; . . .;ð
m2Þ has solutions, similarly it does for XA0 � B.

Proved.
Therefore, we use the method of discussing the solvability of

xi A0 = Bi; i = 0; 1; 2; . . .; m2ð Þ to discuss the solution of XA0 ¼ B.
Then for in XiA0 � Bi

ðU1ix S1ix tð ÞP*1ix ðx1; x2; . . .; xnÞ T1ix tð ÞL1ix tð Þx1ix tð Þ ¼ f1ixððu tð Þ; P*1ixÞ;GU1ix tð ÞÞGU1ix tð ÞÞA0

� ðU1ix ^ U20Þ _ ðS1ixðtÞ ^ S20ðtÞÞ _ ð~P1ix ðx1; x2; . . .; xnÞ ^~P20Þ _ ðT1ixðtÞ ^ T20ðtÞÞ
_ ðL1ixðtÞ ^ L20ðtÞÞ _ ðx1ixðtÞ ¼ f1ixððuðtÞ;~P10xÞ;GU1ixðtÞÞ ^ x20ðtÞÞ _ ðGU1ix ^ GU20ðtÞ

� � �

ðU1ix ^ U2jÞ _ ðS1ix tð Þ ^ S2j tð ÞÞ _ ðP*1ix ðx1; x2; . . .; xnÞ ^ P
*

2jÞ _ ðT1ix tð Þ ^ T2j tð ÞÞ
_ ðL1ix tð Þ ^ L2j tð Þ Þ _ ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x2j tð ÞÞ _ ðGU1ix tð Þ ^ GU2j tð Þ

� � �
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ðU1ix ^ U2m1Þ _ ðS1ix tð Þ ^ S2m1 tð ÞÞ _ ðP*1ix ðx1; x2; . . .; xnÞ ^ P
*

2mlÞ _ ðTiix tð Þ
^ T2m1 tð ÞÞ _ ðL1ix tð Þ ^ L2m1 tð ÞÞ _ ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x2m1 tð ÞÞ _ ðGU1ix tð Þ ^ GU2m1 tð Þ
� ðbi1; yi1Þ bi2; yi2ð Þ . . . bim1; yim1ð Þ

Which means

ðU1ix ^ U20Þ _ ðS1ix tð Þ ^ S20 tð ÞÞ _ ðP*1ix ðx1; x2; . . .; xnÞ ^ P
*

20Þ _ ðT1ix tð Þ ^ T20 tð ÞÞ
_ ðL1ix tð Þ ^ L20 tð ÞÞ _ ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x20 tð ÞÞ _ ðGU1ix tð Þ ^ GU20 tð Þ
� ðV20Sv20 tð ÞP*v20 ðx1; x2; . . .; xnÞ Tv20j tð ÞLv20 tð Þyv20 tð Þ ¼ fv20ððv tð Þ;P*v20Þ;G2jV tð ÞÞ GV20 tð Þ

� � �

ðU1ix ^ U2jÞ _ ðS1ix tð Þ ^ S2j tð ÞÞ _ ðP*1ix ðx1; x2; . . .; xnÞ ^ P
*

2jÞ _ ðT1ix tð Þ ^ T2j tð ÞÞ
_ ðL1ix tð Þ ^ L2j tð ÞÞ _ ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x2i tð ÞÞ _ ðGU1ix tð Þ ^ GU2j tð Þ
� V2j; Sv2j tð Þ

� �
P
*

v2j ðx1; x2; . . .; xnÞ Tv2j tð Þ Lv2j tð Þyv2j tð Þ ¼ fv2jððv tð Þ; P*v2jÞ;G2jV tð ÞÞGV2j tð Þ

� � �

ðU1tx ^ U2m1Þ _ ðS1tx tð Þ ^ S2m1 tð Þ Þ _ ðP*1tx ðx1; x2; . . .; xnÞ ^ P
*

2mlÞ _ ðT1tx tð Þ
^ T2m1 tð ÞÞ _ ðL1tx tð Þ ^ L2m1 tð ÞÞ _ ðx1tx tð Þ ¼ f1txððu tð Þ;P*1txÞ; GU1tx tð ÞÞ ^ x2m1 tð ÞÞGU1tx tð Þ
^ GU2m1 tð Þ � V2t; Sv2t tð Þð ÞP*v2t ðx1; x2; . . .; xnÞ Tv2t tð ÞLv2t tð Þyv2t tð Þ ¼ fv2tððv tð Þ;P*v2tÞ;GV tð ÞÞ GV2t tð ÞÞ

A series of equations is obtained,

ðU1ix ^ U20Þ � V20;
ðS1ix tð Þ ^ S20 tð ÞÞ � Sv20 tð Þ;
ðP*1ix ðx1; x2; . . .; xnÞ ^ P

*

20Þ �v20 ðx1; x2; . . .; xnÞ ;
ðT1ix tð Þ ^ T20 tð ÞÞ � Tv20j tð Þ;
ðL1ix tð Þ ^ L20 tð ÞÞ � Lv20 tð Þ;
ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x20 tð ÞÞ� yv20 tð Þ ¼ fv20ððv tð Þ;P*v20Þ;G2jV tð ÞÞ;
ðGU1ix tð Þ ^ GU20 tð Þ � GV20 tð Þ;

� � �
ðU1ix ^ U2jÞ � V2j;

ðS1ix tð Þ ^ S2j tð ÞÞ � Sv2j tð Þ;
ðP*1ix ðx1; x2; . . .; xnÞ ^ P

*

2jÞ � P
*

v2j ðx1; x2; . . .; xnÞ ;

ðT1ix tð Þ ^ T2j tð ÞÞ � Tv2j tð Þ;
ðL1ix tð Þ ^ L2j tð ÞÞ � Lv2j tð Þ;
ðx1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ^ x2i tð ÞÞ� yv2j tð Þ ¼ fv2jððv tð Þ;P*v2jÞ;G2j V tð ÞÞ;
ðGU1ix tð Þ ^ GU2j tð Þ � GV2j tð Þ;
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� � �
U1tx ^ U2m1Þ � V2t;
ðS1tx tð Þ ^ S2m1 tð ÞÞ � Sv2t tð Þ;
ðP*1tx ðx1; x2; . . .; xnÞ ^ P

*

2m1Þ � P
*

v2t ðx1; x2; . . .; xnÞ ;
ðT1tx tð Þ ^ T2m1 tð ÞÞ � Tv2t tð Þ;
ðL1tx tð Þ ^ L2m1 tð ÞÞ � Lv2t tð Þ;
ðx1tx tð Þ ¼ f1txððu tð Þ;P*1txÞ;GU1tx tð ÞÞ ^ x2m1 tð ÞÞ� yv2t tð Þ ¼ fv2tððv tð Þ;P*v2tÞ;GV tð ÞÞ;
GU1tx tð Þ ^ GU2m1 tð Þ � GV2t tð ÞÞ

Theorem 2: The sufficient and necessary condition for the solvability of Fuzzy Error
Matrix Equation XiA0 � Bi is as follows:

U20 � V20,
S20 tð Þ � Sv20 tð Þ
P
*

20 � P
*

v20 ðx1; x2; . . .; xnÞ ,
T20 tð Þ � Tv20j tð Þ,
L20 tð Þ>Lv20 tð Þ,
x20 tð Þ>yv20 tð Þ ¼ fv20ððv tð Þ;P*v20Þ;G2jV tð ÞÞ,
GU20 tð Þ � GV20 tð Þ;

� � �
U2j � V2j;

S2j tð Þ � Sv2j tð Þ;
P
*

2j � P
*

v2j ðx1; x2; . . .; xnÞ ;
T2j tð Þ � Tv2j tð Þ;
L2j tð Þ>Lv2j tð Þ;
x2i tð Þ>yv2j tð Þ ¼ fv2jððv tð Þ;P*v2jÞ;G2jV tð ÞÞ;
GU2j tð Þ � GV2j tð Þ;

� � �
ðU2m1Þ � V2t

S2m1 tð Þ � Sv2t tð Þ;
P
*

2ml � P
*

v2t ðx1; x2; . . .; xnÞ ;
T2m1 tð Þ � Tv2t tð Þ;
L2m1 tð ÞÞ>Lv2t tð Þ;
x2m1 tð Þ>yv2t tð Þ ¼ fv2tððv tð Þ;P*v2tÞ;GV tð ÞÞ;
GU2m1 tð Þ � GV2t tð ÞÞ
Firstly we discuss the necessity.

Proof: If one of the conditions above is not meet, without loss of generality, suppose
that S2j tð Þ � Sv2j tð Þ is not meet, then in the ðS1ix tð Þ ^ S2j tð ÞÞ ¼ Sv2j tð Þ; no matter what
the value of S1ix tð Þ is, we can not get ðS1ix tð Þ ^ S 2j tð ÞÞ ¼ S v2j tð Þ.
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Proved.
Then discuss the sufficiency.
Because in the error matrix equation XiA0 � Bi;A � Bi, we should only take union

operation between the corresponding element of A in Xi., that is

U1ix ¼ U20 [U21 [ ; . . .; [U2j; [ . . .; [U2t:

S1ix tð Þ ¼ S20 tð Þ [ S21 [ ; . . .; [ S2j; [ . . .; S2t:

P
*

1ix ðx1;x2;...;xnÞ ¼ P
*

20 [P
*

21 [ ; . . .; [P
*

2j; [ . . .; [P
*

2t:

T1ix tð Þ ¼ T20 tð Þ [ T21 [ ; . . .; [ T2j; [ . . .; [ T2t:
L1ix tð Þ ¼ L20 tð ÞÞ [ L21 [ ; . . .; [ L2j; [ . . .; [ L2t:

x1ix tð Þ ¼ f1ixððu tð Þ;P*1ixÞ;GU1ix tð ÞÞ ¼ x20 tð Þ [ x21 [ ; . . .; [ x2j; [ . . .; [ x2t:
GU1ix tð Þ ¼ GU20 tð Þ [GU21 tð Þ [ ; . . .; [GU2j tð Þ [ . . .; [GU2t tð Þ:
Proved.
Then we discuss all the solution of XiA0 � Bi and XA0 � B:
After computing the solution X ðx1; x2; xnÞ; X0ðx01; x02; . . .. . .; x0nÞ 2 X0 is obtained

by the intersection operation between X and Kg, rw, xq.

3.3 The Example of Application of Error Matrix Equation

Let

A0 ¼ a1a2½ �
a1 ¼ ðU201S201 tð Þ P*201 ðx1; x2; . . .; xnÞ T201 tð ÞL2 tð Þ ðu1; 0; 6ÞGU201 tð ÞÞ
a2 ¼ ðU202S202 tð Þ P*202 ðx1; x2; . . .; xnÞ T202 tð ÞL202 tð Þðu2; 0; 8ÞGU202 tð ÞÞ
U01 ¼ u1; u2;u3;u4

� �
;

S01 tð Þ ¼ s011;s012; s013;s014
� �

;

P
*

201 ðx1; x2; . . .; xnÞ ¼ fP*201;P
*

202; . . .;P
*

20ng; n ¼ 4
T01 tð Þ ¼ t011; t012; t013; t014f g;
L01 tð Þ ¼ l011; l012; l013; l014

� �
;

GU01 tð Þ ¼ g011; g012; g013; g014;
� �

:

U02 ¼ u1; u2;u3; u4; u015
� �

;

S02 tð Þ ¼ s011; s012; s013; s014; s015
� �

;

P
*

202 ðx1; x2; . . .; xnÞ ¼ fP*201; P
*

202; P
*

20n. . .; g; n ¼ 4
T02 tð Þ ¼ t011; t012; t013; t014; t015

� �
;

L02 tð Þ ¼ l011; l012; l013; l014; l015
� �

;

GU02 tð Þ ¼ g011; g012; g013; g014; g015
� �

:

X = x

x ¼ ðU10xS10x tð ÞP*10x ðx1; x2; . . .; xnÞ T10x tð ÞL10x tð Þx10x tð Þ ¼ f10xððu tð Þ;P*10xÞ;GU10x tð ÞÞ GU10x tð ÞÞ
B0¼ b11 b12½ �
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b11 ¼ ðV201Sv201 tð Þ P*v201 ðx1; x2; . . .; xnÞ Tv201 tð ÞLv201 tð Þðv1; 0; 5ÞGV101 tð ÞÞ
b21 ¼ ðV202Sv201 tð Þ P*v201 ðx1; x2; . . .; xnÞ Tv202 tð ÞL202 tð Þðv2; 0; 6ÞGV211 tð ÞÞ
V01 ¼ u1; u2f g
Sv201 tð Þ ¼ s011;s012; s013;

� �
;

P
*

201 ðx1; x2; . . .; xnÞ ¼ fP*201;P
*

202; . . .;P
*

20ng; k ¼ 3
Tv01 tð Þ ¼ t011; t012; t013f g;
Lv01 tð Þ ¼ l011; l012;

� �
;

Gv01 tð Þ ¼ g011; g012f g:
V202 ¼ u1; u2;u3

� �
;

Sv202 tð Þ ¼ s011;s012; s013;
� �

;

P
*

202 ðx1; x2; . . .; xnÞ ¼ fP*201; P
*

202; . . .; P
*

20kg; k ¼ 3
Tv2 02 tð Þ ¼ t011; t012; t013f g;
Lv202 tð Þ ¼ l011; l012;l013;

� �
;

Gv202 tð Þ ¼ g011; g012;g013
� �

;

By the theorem 2 under the assumptions of the erasure planning, the solution of
XA0 � B0 is:

U10x ¼ u1; u2; u3; . . .f g;
S10x tð Þ ¼ s011; s012; s013; . . .f g;
P
*

10x ðx1; x2; . . .; xnÞ ¼ fP*201; P
*

201; . . .;P
*

20ng; n ¼ 3; 4; . . .
T10x tð Þ ¼ t011; t012; t013; . . .f g;
L10x tð Þ ¼ l011; l012;l013;. . .

� �
;

x10x tð Þ ¼ fðu1; 0; 6Þ; ðu2; 0; 8Þ; . . .g:
G10x tð Þ ¼ g011; g012;g013; . . .

� �
:

4 Conclusion

Therefore, in order to study the occurrence and transformation of fuzzy errors in
systems science and system management, economy and management, such as T (u) =
u1. Known T and u to seek u1; known T and u1 to seek u; known u and u1 to find T;
Among them, transformation of T, u and u1, etc, it is necessary to study a mathematical
tool to describe quantitatively these errors and its laws - fuzzy error sets, fuzzy error
matrix equations, fuzzy error matrix set equations and its solvability theory and solving
method.
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Abstract. Using the method of quantitative analysis, we present that
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e, with the Shanghai Composite Index and the Dow Jones Industrial
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1 Introduction

As it is known to all that the markets are emotional, human emotion is affected
most by the movements and the relative position of the moon, and secondly by
the macula, magnetic storm and the relative position of other planets in solar
system, and so on. The trading market is a place that full of greed for money
and naked competitions for survival. In such circumstances, many decisions of
the traders are instinctive, subjective or emotional, and often in the control of
emotion. With further research we found that movements of the financial markets
are related to the transcendental numbers π and e [1].

Because 2π represents a cycle in the nature, and the movements of the finan-
cial markets are periodic motions, so movements of the financial markets are
related to. The growth and recession models in the nature are related to mathe-
matical constant e, and the movements in the financial markets are the growth
and recession phenomenon in the nature, so movements of the financial markets
are related to the mathematical constant e. For example, the product of e/10 and
6124.04 which is the 2007’s peak of Shanghai Composite Index, is 1664 which is
the 2008’s low of Shanghai Composite Index. Another example is the product of
e/13 and 1558.95 which is the 1993’s peak of Shanghai Composite Index, is 325
which is the 1994’s low of Shanghai Composite Index.

2 Main Conclusions

As we know, there are different π sequences for different markets that included
varieties and stocks. Which π sequences should be used in different markets?
c© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6 39
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For different varieties and stocks, the π sequences should be decided by the
stock market fluctuation. If one sequence can explain one markets form of fluc-
tuations effectively, so we should use this π sequence, and the success rate of
the farther market forecast will be improved. For example, cyclotomic sequences
π/n, exponential sequences (π/4)n and so on. For the mathematical constant e,
if we have one e sequence can explain one markets form of fluctuations, so we
should use this sequence, and the success rate of the farther market forecast will
be improved. In general, natural constant sequence consist of e/n,(e/4)n,(e/3)n

and so on. Next, we introduce natural constant sequence e/n.
The well known Fibonacci Sequence

{Fm = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, · · · ,m = 1, 2, 3, · · · .}
And Lucas sequence:

{Gm : m ∈ N+} = {1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, · · · }
Suppose H is the high of one stage, for the bearish market, we define the

prices included index price, stock price, futures price, conversion rate and so on,
as follow

P1(H,β) = Hβ (1)

β = e/k (2)

Formulas (1) and (2) are still applicable to stock market crash, only need to
change the condition to when k is integer n, suppose n = n1n2n1, n2 ∈ Fm or
n1 ∈ Fm,n2 ∈ Gm, so the bottoms of some varieties can be approximated by

Lpredict = H × e/n (3)

Similarly, suppose L is the bottom of one stage, for the bull market, we define
the prices included index price, stock price, futures price, conversion rate and so
on, as follow

P2(L, β) = L ÷ β (4)

β = e/k (5)

When k is integer n, suppose n = n1n2n1, n2 ∈ {Fm} or n1 ∈ {Fm}, n2 ∈
{Gm}, so some tops of some varieties approximated by inversion transform

Hpredict = L ÷ (e/n) (6)

As shown in Fig. 1, star from the high 1429.01 of Shanghai Composite Index
in May 26, 1992, the difference between the 1429.01e/10 = 388.44 and the
bottom 386.85 in November 17, 1992 is small, the denominator n add 1, then
from the point 386.85 we do the inversion transform, the difference between the
386.85 ÷ (e/11) = 1565.45 and the high 1558.95 in February 16, 1993 is small,
the denominator n add 1 again, because 12 = 3 × 4, 3 ∈ {Fm}, but 4 /∈ {Fm},
so the denominator n continue to add 1 again, now 3 ∈ {Fm}, the difference
between 1558.95e/13 = 325.97 and the bottom 325.89 points in July 29,1994
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Fig. 1. Shanghai Composite Index from 1991 to 2009.

is just only 0.08 points. Star from n = 10, the denominator n minus 1, from
the point 325.89 we do the inversion transform 325.89 ÷ (e/9) = 1078.99 then
we can estimate the high Shanghai Composite Index rebound to in 1994, the
denominator n continue to minus 1, from the point 512.53 we do the inversion
transform 512.83 ÷ (e/8) = 1509.27, the difference between the 1509.27 and
the high 1510.18 in May 12, 1997 is just only 0.91 points, and the difference
between the 1510.18 × e/4 = 1026.27 and the bottom 1025.13 in September
23, 1997 is 1.14 points. From the point 1025.13 we do the inversion transform
1025.13 ÷ (e/6) = 2262.74, and 95.79 × eπ = 2216.64, the mean value of 2262.74
and 2216.64 is 2239.69, this point is very close to the high 2254.44 in June 14,
2001. Then we use 2245.44× e/6 = 1017.28 to estimate the ballpark drop target
from 2245.44 points, and 2245.44× e = 6103.73 is very close to the high 6124.04
in October 16, 2007.

Around the first callback target 1510.18×e/4 = 1026.27, the second callback
target 2245.44 × e/6 = 1017.28, from the additive property of the denominator,
we can know the third callback target is around 6124.04 × e/(4 + 6) = 1664.68,
and the difference between this point and the bottom 1664.92 in October 28,
2008 is just only 0.24 points.

3 Application

Figures 2, 3 and 4 show the relation between Dow Jones Industrial Average Index
and the mathematical constant e[= 2.718281828459 · · · ].
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Fig. 2. Dow Jones industrial average yearly.

Fig. 3. Dow Jones industrial average monthly.

Fig. 4. Dow Jones industrial average weekly.
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4 The Relation Between Stock Market Crash and the
Mathematical Constant e

Figure 5 shows that the relation between the mathematical constant e and the
Hang Seng Index which from 1774.96 points in March 9, 1973 fell to 150.11
points in December 10, 1974, is 1774.96 × e/32 = 150.77. And Fig. 6 show that
the relation between the mathematical constant e and the Dow Jones Industrial
Average Index which from 386.1 points in September 3, 1929 fell to 40.56 points
in July 8, 1932, the stock market crash happened in New York October 1929, is
386.1 × e/26 = 40.36.

Fig. 5. Hang Seng Index monthly.

Fig. 6. Hang Seng Index monthly.
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Figure 6 show that the relation between the mathematical constant e and the
Hang Seng Index which from 16820.3 points in August 7, 1997 fell to 6544.79
points in August 13, 1998, is 16820.3 × e/7 = 6531.76 in the Asian Financial
Crisis.

Figure 7 show the Dow Jones Industrial Average Index fell to 6470.11 points
in 6-Mar-2009 from 14198.1 points in 11-Oct -2007 in the 2008’s Subprime Lend-
ing Crisis, while 14198.1 × e/6 = 6432.4 and 14198.1 × (1 − e/5) = 6479.21.

Fig. 7. Dow Jones Industrial Average Index daily.

5 The π-type Stock Market Crash

For the π type stock market crash, when n is integer, suppose n = n1n2, n1, n2 ∈
{Fm} or n1 ∈ {Fm}, n2 ∈ {Gm}, so some tops of some varieties approximated
by inversion transform

Lpredict = H × π/n (7)

Figure 8 show the Taiwan Weighted Stock Index fell to 2485.25 points in 12-
Oct-1990 from 12682.41 points in 12-Feb-1990, while 14198.1 × /16 = 2490.185.
This is the Taiwan area’s stock market crash at the beginning of last 90’s.

Figure 9 show the Nikkei Stock Average fell to 7603.76 points in 28-Apr-
2003 from 38957.44 points in 29-Feb-1989, while 38957.44×/16 = 7649.27 other
14556.11 × /6 = 7621.56. In 1989, the Japanese bubble economy burst.

The Vietnam stock market index fell to 367.46 points in June, 2008 from
1170.67 points in March, 2007, while 1770.67 × /10 = 367.77 in 2008’s Vietnam
stock market crash.

Besides, The Stock Market Crash of 1929 in USA [5], the price of United
States Steel Corporation fell to 21 from 262, and we have 262

4π = 21. And the
price of General Motors Corporation felled to 7 from 92, and 92

4π = 7.
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Fig. 8. Taiwan Weighted Stock Index quarterly.

Fig. 9. Nikkei Stock Average quarterly.

6 Conclusion

The stock market crash analysis methods based on qualitative measures have
some disadvantage. We found a method to do quantitative analysis of stock
market crash. Just the same as the hydrogen energy level (E = E1/n2, rn =
r1n

2, E1 = −13.6eV ) of Niels Henrik David Bohr, the ground level of stock
market crash is discontinuous. A higher value of n indicates a bigger drops of
the price(Lpredict = eH/n).
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Abstract. The popularity of online hotel reviewwebsites has changed the way of
customers’ booking hotel rooms. Based on the review data of 1537 hotels in
Guangzhou listed on the eLong network, we first adopt the stepwise linear
regression, develop 4 categories of linear models for various classes of hotels, and
analyze the fluctuately fuzzy information impacts of 4 sectors, including hotel
features, customer reviews, platform booking recommendations and hotel services
Index, to the online-booking effects of these hotels. Additionally, we have showed
that the platform booking recommendations and customers’ reviews impact
highly on the online-booking of these hotels. Furthermore, hotel service infor-
mation influences hotels’ reservations except for four-star/upscale hotels, so do
hotel features except for five-star/luxury ones. The studymay provide online hotel
booking platforms with guidance to providing better services for their customers.

Keywords: Online booking � Fluctuate data � Variables � Linear regression
model

1 Introduction

The rapid development of information technology has changed travel industry, the
Internet has become one of the most important ways for tourism enterprises to provide
communication platform and services for visitors [1]. With the development of hotel
online reservation, rather than relying on advantages of geography, hotels now rely on
Internet platforms to attract guests. Meanwhile, more and more consumers release
fluctuate evaluation on the Internet, the number of reviews is fast-growing on indepen-
dent hotel review sites, such as ctrip, qnar, elong. Potential consumers not only search for
product information such as price, type, brand, also concern about other consumers’
post-purchase reviews [2]. After integrating information provided by third-party hotel
review sites, potential consumers could reduce the information asymmetry, to lower the
risk of purchase. Therefore, online information have a significant impact on consumers’
purchase decisions, arising a wide attention from scholars now.

© Springer International Publishing AG 2018
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2 Literature Review

As a typical experiential product, hotel industry is one of the earliest and most successful
online channels for consumer to obtain information [3]. By investigating 1480 visitors,
Gretzel and Yoo found that online reviews from other tourists affect significantly the
made-up of decisions [4]. On the study of the influence factors of online hotel reser-
vation, Dickinger and Mazanec also represented that online reviews can significantly
influence consumers’ purchase decision [5]. Vermeulen and Seegers found online
reviews can improve consumer perception of the hotel, while the positive reviews can
significantly improve the consumers’ purchases willingness [6]. On the hotel industry
study, Sparks and Browning (2011) developed that when the hotel has its own number
of positive reviews, consumers also put marked high trust on it [7]. Through empirical
research, Ye demonstrated that tourists comments has an important impact on hotel
online sales, when increase on travel review reaches by 10%, increase on hotel online
sales reaches by 5% [8]. By studying Paris’s largest hotel reservation site data,Öğȕ t and
Cezar (2012) found that higher ratings and lower prices will increase the number of
comments, but extreme scores and star of hotels have no impact on comments’ publish,
in addition, room size may has negative effects on evaluation releasing [9]. Based on
ctrip’s data, Zhang Meng etc (2011) studied the effect of online information on online
booking of 4 different ratings of hotels [10]. Xu Feng (2013) studied the impact of the
different cities and different types on hotels online booking [11].

To sum up, the current research about online reviews of hotels focuses on impact of
online reservation numbers, information of sentiment (positive and negative), hotel
feature, and booking platform on hotels’ online hotel bookings from large and medium
cities. Given different features of each city and different potential consumer groups,
factors that influence consumer hotels online booking also vary differently. Taking
Guangzhou for example, this article attempts to take an in-depth study on influence of
online information of elong on Guangzhou hotel booking online, and a comparative
analysis of the difference between different stars of Guangzhou hotels’.

3 Research Method

3.1 Data Collection and Processing

First, through browsing ctrip (http://www.ctrip.com/), elong (http://www.elong.com/)
and qunar (http://www.qunar.com/) the three most large and authoritative sites of cus-
tomer reviews, we compare hotels reservation pages, comments and other information,
ultimately we select elong as a sample for the study for the following three reasons as
follows First, elong has a unique data-services index which can provide more detailed
information for this study the data including promptly confirmation rate after booking
and reservation success rate and user complaints rate, and the ranking of the hotel in the
same city, and the data for a user who wants to reserve a hotel worth considering and
should be paid attention by the hotel. Secondly, elong divides hotels into five-star
hotels/Luxury, four star/upscale, three star/comfort, economic/Inn, having the same
hotel classification with our study, which can be sampled directly. And thirdly, acquired
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by ctrip, elong can be represented to some extent ctrip. Therefore, we choose elong as
the sample site.

Additionally as online information is dynamic, up-to-date, a time frame is needed.
2014 and 2015 newly-opened hotels are not included in the statistics, because of less
number of reviews generally on new hotels. With the lack of time, the comparability
between hotels of the same type is affected. Meanwhile, all included users’ comments
come from the date before August 30, 2015.

Finally, room numbers provided by different size hotels have an impact on the
number of its customers’ reviews, affecting the comparability between hotels of the
same type. According to the data provided by the China National Tourism Adminis-
tration, in 2014 the average occupancy rate for hotels is 54%. In principle, we select the
number of online comments is greater than the total number of 54% room numbers.

After data collection and collation, we chose 1537 hotels as a sample of which 108
five-star/luxury hotels, 268 four star/upscale hotels, 510 three star/comfortable hotels,
and 651 economic hotels.

3.2 Establishment of Indicator System

Variable selection in this study is based on online information provided by elong. Hotel
online reservation volume and information of hotel features, hotel service, and rec-
ommendation of reservation platform can be obtained directly on the website, but
recommended rate of customer comments instead of recommended rate need an cal-
culation before obtaining. Recommended rate means recommended number dividing
total review numbers, but non-recommended rate is not recommended number to
divide total review numbers, and non- recommended number is made up of all reviews
number minusing the recommended number and minusing the number to be improved.

Because ctrip online hotel’s actual reservation data is not open to the public, we
cannot obtain directly each hotel online reservation number on the site, thus this study
adopts the alternative practice of online comments similar to online hotel bookings in
the same period, proving that there exists a linear relationship between the two [12]
(Table 1).

Table 1. eLong customer evaluation index system of Guangzhou Hotels

First class indicator Second class
indicator

Description

Num of hotel online
booking

Y Num Reviews All customer comment number of i Hotel
before Oct, 2015

Hotel feature
information

X1 Room Types Available room type showed on i Hotel
website

X2 Lowest Price The lowest price provided on i Hotel website
X3 Highest Price The highest price provided on i Hotel website
X4 Room Pictures Related hotel photos showed on i Hotel

website

(continued)
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3.3 Research Process and Methods

In order to distinguish effects of different online information on different stars of hotels’
online booking, the study takes the actual data from elong, using a linear regression
model and 4 models to study the effect of online information on the five star/luxury,
four star/luxury, three star/comfortable, economic hotels.

The model can be expressed as:

Y ¼ b0 þ b1X1 þ b2X2 þ b3X3 þ b4X4 þ b5X5 þ b6X6 þ b7X7 þb8X8 þb9X9 þ b10X10

þ b11X11 þ b12X12 þ b13X13 þ b14X14:

First of all, because of large number of independent variables, we study the
bivariate correlation between the independent variables and the dependent ones,
rejecting dependent variable irrelevant of independent one. Then, we use the linear
regression to analyze dependent variables related to independent ones. And at last, as

Table 1. (continued)

First class indicator Second class
indicator

Description

Customer comment
information

X5 Applause Rate Overall comment on i Hotel based on living
experience

X6

Recommendation
Rate

Recommendation of i Hotel based on living
experience

X7 Not
recommended
Rates

No recommendation of i Hotel based on
living experience

X8 Users upload
Photos

Hotel photos by customers showed on i Hotel
website

Hotel service
information

X9 Service Index Promptly confirmation rate after booking and
reservation success rate, user complaints rate,
and the ranking of the hotel in the same city

X10 Determine
Rates

Promptly confirmation rate after booking

X11 Success rate
of booking

Success consumption after reservation rate

X12 Customer
complaint Rate

Complaint after consumption rate

Booking platform
recommendation
information

X13 Travelers’
Rating

According to the evaluation of the hotel I,
considering the various factors, booking
platform rates for cooperated hotels

X14 Browsing
Index

According to the browse number of i Hotel,
booking platform assign for the variables

(These factors include the assessed star of NTA, the hotel’s facilities and equipment, supporting,
service level, social reputation, brand visibility and integrity to the customer, and so on)
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the model shows us, histogram does not assume a normal distribution of residuals,
residuals scatter distribution regularly, indicating the existing of heteroscedasticity of
the model. In order to solve this problem, in this study we use the log-linear regression
model to analyze influence of online information on hotels online reservations.

ln Y ¼ b0 þ b1ln X1 þ b2ln X2 þ b3ln X3 þ b4ln X4 þ b5ln X5 þ b6ln X6 þ b7ln X7

þ b8ln X8 þ b9ln X9 þ b10ln X10 þ b11ln X11 þ b12ln X12 þ b13ln X13 þ b14ln X14:

4 Empirical Analysis

4.1 Related Analysis

Take the effect of online information on five-star/luxury hotels’ online booking for
example, we first take logarithm of all variables, using bivariate correlation analysis of
IBM SPSS Statistics 20 to exclude independent variables irrelevant to dependent ones
and keep those independent variable relevant to dependent variables. Significantly
related independent variables are represented as follows (Table 2):

4.2 Linear Regression Analysis

Take the effect of online information from five-star/luxury hotels’ online booking for
example, we use linear regression analysis of IBM SPSS Statistics 20. Specifically, we
use stepwise regression method to multicollinearity problems, DW testing way to test
whether the model exists autocorrelationally. Thereafter, Its final result estimatation is
shown in Table 3.

According to the analysis of model 1, log-linear model of five-star luxury hotel
lnY = −15.192 + 0.112lnX8 + 3.851lnX11 − 0.401 lnX13 + 0.639 / lnX14. Among
customer reviews, users upload photos X8 (b – 8 = 0.112, t = 2.563), hotel services
reservation success rate X11 (b – 11 = 3.851, t = 4.868), users’ rating of recom-
mended information by reservation platform X13 (b – 13 = −0.401, t = −2.578) and
browse and collection index X14 (b – 14 = 0.639, t = 8.170) significantly affected
hotel online reservation. Since other variables did not pass the test, the hotel reservation
service information was influenced significantly. Among reservation of five- star/luxury
hotels, the impact of success rate of booking of hotel service information surpass
reservation platform information and customer reviews as well. This shows that no
matter what kind of reason leads to unsuccessful reservation would directly impact

Table 2. Linear correlation of independent variable and dependent variables

lnX1 lnX4 lnX5 lnX6 lnX7 lnX8 lnX9 lnX11 lnX13 lnX14

lnY 0.257** 0.300** 0.283** 0.192* -0.181 0.553** 0.190* 0.235* -0.227* 0.722**

**. significantly related to 0.1 (bilaterally) *. significantly related to 0.05 (bilaterally)
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customer reservations, thus customers worry about their failing reservation. Booking
platform information has greater impact on hotels online booking, customers rating
demonstrates that customer think highly of the rating of a hotel whether it is five-star or
luxury. Browse and collection index shows that customers tend to put into Favorites
when they see hotels are interested for their quick access to the hotel, which also
reflects the hotel’s popularity and arise another customers’ interest in their option of
this hotel. Users upload photos in guests’ comments also has certain impact on hotel
online reservation, probably because customers believe that compared with hotel
photos, users upload photos does not have a strong propaganda purposes, the

Table 3. Summary of four models estimation results

Model Five-star/luxury
model 1

Four
star/upscale
model 2

Three
star/comfortable
model 3

Economic
model 4

b0 −15.192
(−4.161)

1.102
(2.589)

−3.133
(−4.998)

−3.088
(−3.471)

lnX1 0.048
(0.430)

0.633
(7.862)

0.155
(1.966)

0.416
(6.153)

lnX2 −0.013
(−0.087)

0.198
(3.357)

0.112
(1.422)

0.353
(5.556)

lnX3 −0.002
(−0.017)

0.070
(1.074)

−0.007
(−0.093)

−0.243
(−3.624)

lnX4 −0.031
(−0.300)

0.047
(0.778)

−0.187
(−3.100)

−0.166
(−3.514)

lnX5 0.610
(0.237)

0.700
(0.682)

0.304
(4.136)

0.438
(2.366)

lnX7 0.098
(0.538)

−0.266
(−4.909)

−0.063
(−1.554)

0.038
(0.901)

lnX8 0.112
(2.563)

0.084
(2.317)

0.128
(2.980)

0.168
(5.034)

lnX9 0.281
(0.290)

−0.674
(−1.343)

0.088
(0.635)

0.830
(3.142)

lnX11 3.851
(4.868)

−0.180
(−1.678)

0.873
(6.735)

0.140
(1.591)

lnX13 −0.401
(−2.578)

0.798
(4.957)

−0.875
(−6.691)

0
(0)

lnX14 0.639
(8.170)

0.569
(14.904)

0.791
(27.342)

0.797
(29.608)

R-squared 0.645 0.651 0.761 0.723
Adjusted
R-squared

0.632 0.646 0.758 0.720

F-statistic 46.852 115.564 228.619 238.846
Sum Squared
Residual

23.083 137.623 230.767 266.335

Note: the numerical values in the brackets are t-statistics of parameter.
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authenticity and reliability of the photos is strong. Hotel feature information does not
affect the five star/luxury hotel online reservation, possibly because the five star/luxury
hotels are in higher grade, hardware and software services can reach a higher level,
room types and photos in the customers mind have little difference. Customers of five
star/luxury hotel have strong spending power, or charge on administrative unit or
company, and also they are not very sensitive to the price.

According to the analysis of model 2, the log-linear model of four star/upscale hotel
is lnY = 1.102 + 0.633 lnX1 + 0.198lnX2 − 0.266 lnX7 + 0.084 lnX8 + 0.798
lnX13 + 0.569 lnX14. Room types in hotel feature information X1 (b – 1 = 0.633,
t = 7.862), the lowest room rate X2 (b – 2 = 0.198, t = 3.357), not recommended rate
in customer reviews information X7 (b – 7 = −0.266, t = −4.909), users uploading
photos X8 (b – 8 = 0.084, t = 2.317), users rating in recommended information of
booking platform X13 (b – 13 = 0.798, t = 4.957) and browse and collection index
X14 (b – 14 = 0.569, t = 14.904) significantly affect hotel online reservation, other
variables did not pass the test, of which recommended information on online booking
platforms having a significant impact on online booking. This means customers of four
star/upscale hotel are most concerned about the recommendations of reservation plat-
form, and whether the hotel is four star or upscale. The same with customers of
five-star/luxury hotels, customers of four star/upscale hotel, Hotel tend to put into
Favorites when they seeknow that hotels are interested for their quick access to the
hotel, which also reflects the hotel’s popularity and arise another customers’ interest in
this hotel. On browsing other customer comments, not recommended rates reflects that
customers are more concerned about negative feedback, thinking that users uploaded
photos are more authentic. Last, as room types and the lowest rate of hotel feature
information are concerned, we know the fact showing that different room types and
room price have different impact on customers. Hotel service information did not pass
the significance test, reflecting that hotel service information has no great impact at all.

According to the analysis of model 3, the log-linear model of three star/comfort
hotel is lnY = −3.133 + 0.155lnX1 − 0.187lnX4 + 0.304 lnX5 + 0.128 lnX8 + 0.873
lnX11 − 0.875 lnX13 + 0.791lnX14. Room types in the hotel feature informationX1
(b – 1 = 0.155, t = 1.966), hotel photos X4 (b – 4 = −0.187, t = −3.100), praise rate
of customer reviews X5 (b – 5 = 0.304, t = 4.136), users uploaded photos X8
(b – 8 = 0.128, t = 2.980), reservation success rate of hotel service information X11
(b – 11 = 0.873, t = 6.735), user rating in the recommendations of reservation plat-
form X13 (b – 13 = −0.875, t = −6.691) and browse and collection index X14
(b – 14 = 0.791, t = 27.342) significantly affected hotel online reservation, other
variables did not pass the test, of which reservation platform information and hotel
reservation service information on the Internet have significant impact. This means
customers are most concerned about the recommendations of reservation platform, and
whether the hotel is three star or more comfortable. Customers tend to put into
Favorites when they see hotels are interested. Secondly, the reservation success rate of
hotel service information affects customers booking, customers worry about a failure
reservation. The favorable rate of customer reviews indicates customer pays close
attention to positive reviews. Finally room types in hotel feature information, hotel
photos are given due consideration, but prices not significantly affect bookings.
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According to the analysis of model 4, the log-linear models for economic hotels is
lnY = −3.088 + 0.416lnX1 + 0.353lnX2 − 0.243lnX3 + 0.438lnX5 + 0.168lnX8 +
0.830lnX9 + 0.797lnX14. Room types in hotel feature information X1 (b − 1 = 0.416,
t = 6.153), the lowest rate X2 (b − 2 = 0.353, t = 5.556), the highest rate X3
(b − 3 = −0.243, t = −3.624), favorable rate of customer reviews X5 (b − 5 = 0.438,
t = 2.366), users upload photos X8 (b − 8 = 0.168, t = 5.034), hotel service information
indexX9 (beta 9 = 0.830, t = 3.142), browse and collection index of recommendations of
booking platform X14 (b − 14 = 0.797, t = 29.608) significantly affect hotel online
reservation, other variables did not pass the test. The impact of hotel service information,
recommendations of reservation platform on online bookings is notable. Customers for
economic hotels are most concerned about hotel service index, caring abour the com-
prehensive efficiency of interactive services provided by hotels. Second browse and
collection in the booking platform recommended index, shows customers tend to put into
Favorites when they see hotels are nterested in their access to it. And room type in hotel
feature information shows the difference of different type of room, hotel reservation is
positively correlated to the lowest rate and negatively correlated to the highest rate
showing customers’ sensitivity to room rate, prices significantly affect consumer choice.
Finally favorable rate of guests’ comments and users uploaded photos indicates that
customer pays close attention to positive reviews. Economic hotels do not have users’
rating information, the data thus is absent.

5 Research Conclusions

5.1 Conclusions

Comparing the analysis of four model parameter analysis, we come into a conclusion
below:

(1) Booking platform recommendations have a significant effect on all hotel booking
online. Except model 4 economic hotels having no users’ rating information, its
data being absent.

(2) Hotel service information significantly effects online reservation of five
star/luxury, three star/comfort and economic hotels. Users’ complaints data is
zero, so there is no impact.

(3) The impact of customer reviews on all hotel booking online is notable. Significant
effect of users’ uploaded photos has shown on all hotel online booking.

(4) Hotel features information owns a significant effect on online reservation of four
star/upscale, three star/comfort and economic hotels, and has no effect on
five-star/luxury hotels.

5.2 Research Proposals

The conclusion above has certain implications for hotel to develop its online booking.
First of all, consumers focus on different information. Consumers of five-star/luxury

hotels concern services index, namely, efficiency of the hotel itself offers online
booking services. Consumers of four star/upscale and three star hotels concern about
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recommendation information of reservation platform, which is the ratings of cooper-
ated hotels after several factors are considered.

Secondly, there are certain commonalities of management method to online
booking platform to increase online reservation. Studies have shown that browse and
collection index and customer reviews influence greatly all hotels in four models.
Therefore, Internet booking platform should encourage all customers to browse and
collect hotels, trying to make customers put cooperated hotels into their Favorites, for
their first consideration of those hotels. Online booking platform should guide cus-
tomers to upload photos. Because customer’s photos are real enough with high relia-
bility, with great influence on other potential customers. Online booking platform
should also motivate customers to write down objective and real reviews. Customers of
four star/upscale hotels concern more about negative feedback. Maybe they are least
satisfied with hotel living experience, holding a pickier attitude to browse comments.
Customers of three star/comfortable and economic hotel care more about positive
feedback. Maybe they are satisfied with hotel living experience, holding an approval
attitude to browse comments.

Finally, different types of hotels put different emphasis on online booking man-
agement. Hotel’s feature information lies influence on online reservation of four
star/luxury, three star/comfortable and economic hotels significantly. There is no effect
on online reservation of five-star/luxury hotels. Four star/upscale, Three star/
comfortable, economic hotels need to diversify products, and put forward a wider
variety of room types for customer to choose from. Customers of four star/upscale hotels
are sensitive to the lowest prices, they need to lower room rates or take some special
rooms to attract customers. The room price of three star/comfortable hotels is moderate,
thus no adjustment is needed, but more photos uploaded by customers for reference is in
much need. Economic hotel reservation is positively correlated to the lowest rate and
negatively correlated to the highest rate which shows customers’ sensitivity to room
rate, prices significantly affect consumer choice. Hotel service information has great
effect on online reservation of five-star luxury, three star/comfortable and economic
hotels. Among them, the reservation success rate has great influence on five-star/luxury
and three star/comfortable hotel. The impact of reservation rate on five star/luxury hotels
surpass other factors, and its impact on three star/comfortable hotels just inferior to
impact of platform information. This shows that if the booking was not successful, it
would affect customers’ reservation psychology. Customers worry about a case that like
other consumers, they suffer from failure reservations. Hotel reservations need to
enhance the management of reservation at a successfulrate, and improve the con-
sumption rate of customers’ reservation. Economic hotels need to strengthen the
management of service index, improve confirm rates, raise a reservation success rate and
reduce the rate of customer complaints.

6 Limitations

Though the study rigorously builds model, standardizes data collection and control
model evaluation, the study still has some limitations. When we select explanatory
variables, we only consider the number index of online information, without
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considering the effect of comment texts, and the quality of hotel photos and users’
uploaded photos. Therefore, data mining and text mining methods can be used in the
future to research online information, the difference between hotel photos and users’
uploaded photos is also worth studying.

7 Conclusion

Based on the review data of hotels in Guangzhou listed on the eLong network, we first
adopt linear regression, develop 4 categories of linear models for various classes of
hotels, and analyze the fluctuately fuzzy information impacts of 4 sectors. After we
represented a high impact of platform booking recommendations and customers’
reviews on the online-booking, we see clearly the important influences bwtween hotel
service information and their reservations. And we also provide online hotel booking
platforms with guidance to providing better services for their customers.
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Abstract. In this paper, we discuss a discrete-time Geom[X]/G/1
queueing system with modified T vacation policy and startup time. We
derive the generating functions and the mean values for the steady state
system size and the waiting time, and also get those of the busy period,
the vacation period and the vacation cycle by using embedded Markov
chain. Finally, we determine the optimal (T ∗, J∗) to minimize the cost
function with fixed cost elements by constructing a cost function.

Keywords: Queueing system model · Startup time · Stochastic decom-
position · Modified T vacations policy · Embedded markov chain method

1 Introduction

The server leaves for a vacation with fixed length T slots when the system is
empty. After a vacation, the server returns to the system. The server immedi-
ately begins to serve if there is at least one customer waiting for service in the
system; otherwise, the server takes another vacation and so on until at least one
customer waits for service. This vacation policy is called T vacation policy and
was firstly studied by Levy and Yechiali [1] and Heyman [2]. Sen and Gupta [3]
analyzed a time dependent M/M/1 queueing with T policy via a lattice path
combinatoric technique. In recent years, some authors began to study the mod-
ified T policy queueing systems. Ke [4] considered modified T vacation policy
M/G/1 with an unreliable server and startup, and obtained the expected num-
ber of customers, the expected waiting time and other performances. It followed
that Ke [5] studied a batch arrival queueing system under modified T vacation

c© Springer International Publishing AG 2018
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policy with startup and closedown, and determined the optimal (T ∗, J∗) by con-
structing a cost function. In addition, there are many other queueing models
concerned T policy which have been studied in recent years, details of which
may be seen [6–15].

In this paper, we consider a discrete time batch arrival queueing with mod-
ified T policy and startup, and derive the generating functions and the mean
values for the steady state system size and the waiting time, and also get the
generating functions and the expected values of the busy period, the vacation
period and the vacation cycle. In addition, by constructing an cost function,
we determine the optimal (T ∗, J∗) to minimize the cost function. In fact, the
modified T vacation policy is applied to many fields now. Take manufacturing
systems for example, a machine will process a subproduct with fixed T slots
after all ordinary products have been processed. And after finishing a processed
subproduct while no ordinary products wait in queue, the machine continues
to process another subproduct. This pattern continues cycle until at least one
new ordinary product waits in the queue, otherwise it the server has already
processed J subproducts. After that the machine stops to wait for arrival of the
new ordinary products.

The remainder of this paper is organized as follows. A full description of the
model and an embedded Markov chain are given in the Sect. 2. In Sect. 3, we
obtain stochastic decomposition of the queue size and the expected values of
waiting time. In Sect. 4, the expected values length of the vacation cycle, the
vacation period and the busy period are obtained. We construct a cost function
to introduce the optimal policy in Sect. 5. Finally in Sect. 6, we present some
numerical results to illustrate the effect of λ on the expected queue size and
the waiting time in the system, and obtain the optimal (T ∗, J∗) with fixed cost
elements.

2 Describing Model and Embedded Markov Chain

In the classical Geom[X]/G/1 queueing system, we introduce the following vaca-
tion strategy: as soon as the system is empty, the server deactivates to take a
vacation with fixed length of T . If no customers are found in the system when
a vacation is finished, while the server takes another vacation with the same
length T . This pattern continues cycle until a vacation is finished, the server
finds at least one customer waiting in the queue or he will be already taken J
vacations. If no customers are found at the end of the J-th vacation, the server
stops in the system to wait for the arrival of one customer. If there is at least
one customer waiting for service in the system when a vacation is finished or the
server is idle in the system, he is immediately reactivated. But, the server will
be need a startup time before supplying service for the waiting customers. As
soon as the startup is finished, the server starts supplying service for the waiting
customers until the system becomes empty again.

In the Geom[X]/G/1 queueing model with T policy and startup time, we
denote by Λ the number of customers who arrive in a single slot. The Λ is
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assumed to be an integral multiple, and its probability distribution and proba-
bility generating function of Λ are given by, respectively, λ(k) = p(Λ = k), k =
0, 1, 2, · · · ;Λ(z) =

∑∞
k=0 λ(k)zk, |z| ≤ 1.

In addition, we denote by λ and λ(i) the mean and the i-th factorial moment
of Λ, respectively, λ = E[Λ], λ(i) = E[Λ(Λ − 1) · · · (Λ − i + 1)], i = 2, 3, · · · .

Let X be the service time of one customer and the length of the service time
be an integral multiple of a slot duration, then its probability distribution and
probability generating function are given by, respectively, b(l) = p(X = l), l =
1, 2, · · · ;B(z) =

∑∞
l=1 b(l)zl, |z| ≤ 1.

Let b and b(i) be the mean and the i-th moment of the service time distrib-
ution, respectively, b = E[X]; b(l) = E[X l], i = 2, 3, · · · .

Let S be the startup time and the length of the startup time be an inte-
gral multiple of a slot duration, then its probability distribution and probabil-
ity generating are given by, respectively, s(l) = p(S = l), l = 1, 2, · · · ;S(z) =∑∞

l=1 s(l)zl, |z| ≤ 1.
Let s and s(i) be the mean and the ith factorial moment of the startup time

distribution, respectively: s = E[S]; s(i) = E[S(S−1) · · · (S−i+1)], i = 2, 3, · · · .
Now we consider a Markov chain {Ln;n = 1, 2, · · · }, where Ln denotes the

number of customers present in the system after the server has completed service
for the n-th customer. And suppose that An is the number of arriving customers
during the n-th customer’s service and α is that of present customers in the
system at the end of the startup time, thus we have

Ln+1 =
{

Ln + An+1 − 1, Ln ≥ 1,
α + An+1 − 1, Ln = 0

Let A(z) be the PGF for An, and α(z) for α. For the system, we imagine
a Geom[X]/G/1 queueing system with a vacation period that may terminate in
one of the following two situations.

Case 1. If there is at least one customer waiting in the system at the end of
the j-th vacation (1 ≤ j ≤ J), the server immediately operates a startup. In
this case, at the end of the startup time the PGF for the number of customers
waiting in the system is given by [1−λJT (0)][ΛT (z)−λT (0)][1−λT (0)]−1S[Λ(z)].

Case 2. If there is no customer waiting in the system at the end of the J-th
vacation, the server stays idle in the system. Once a customer arrives, the server
immediately operates a startup. Thus, in this case, at the end of the startup
time the PGF for the number of customers found of in the system is given by
λJT (0)[Λ(z) − λ(0)][1 − λ(0)]−1S[Λ(z)].

From the two cases above, at the end of the startup time the PGF α(z) for
the number of customers waiting in the system is given by

α(z) = [1 − λJT (0)]
ΛT (z) − λT (0)

1 − λT (0)
S[Λ(z)] + λJT (0)

Λ(z) − λ(0)
1 − λ(0)

S[Λ(z)] (1)

If we denote by {kj , j = 0, 1, 2, · · · } and {bj , j = 0, 1, 2, · · · } the probability
distributions for An and α + An − 1, respectively, then the PGFs for them are
given by A(z) =

∑∞
j=0 kjzj = B[Λ(z)], ξ(z) =

∑∞
j=0 bjzj = α(z)B[Λ(z)]

z .
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Therefore, the transition probability matrix of Markov chain {Ln, n =
1, 2, · · · } is given by

P̃ =

⎡

⎢
⎢
⎣

b0 b1 b2 b3 · · ·
k0 k1 k2 k3 · · ·

k0 k1 k2 · · ·
k0 k1 · · ·

.

.

.
.
.
.

⎤

⎥
⎥
⎦ .

By the Foster rule, we can prove that the Markov chain {Ln, n = 1, 2, · · · } is
positive recurrence if and only if ρ = λb < 1.

3 Stochastic Decomposition of Queue Size and Expected
Waiting Times in System

In the section, we will obtain the PGFs for the steady-state system size and the
waiting time.

Theorem 1. If ρ < 1, the steady-state system size L can be decomposed into the
sum of two stochastic independent variables, i.e., L = LGeom[X]/G/1 + Ld, where
LGeom[X]/G/1 denotes the steady-state system size of classical Geom[X]/G/1
model which generating function and expected value have been given in [15].
Then

Ld(z) =
λ[1 − α(z)]

E[α][1 − Λ(z)]

is the generating function of additional system Ld.

Proof. We assume that a steady-state distribution exists for the Markov chain
{Ln;n = 1, 2, · · · } and that it is denoted by πk = limn→∞ p(Ln = k), k =
0, 1, 2, · · · .

Because the steady-state {πk, k ≥ 0} satisfies ΠP̃ = Π, we have

πj = π0bj +
j+1∑

i=1

πikj+1−i, j ≥ 0

where Π = (π0, π1, π2, · · · ).
Taking generating function, we obtain

L(z) =
∑∞

j=0 πjz
j = π0

∑∞
j=0 bjz

j +
∑∞

j=0

∑j+1
i=1 πikj+1−iz

j

= π0
α(z)B[Λ(z)]

z + 1
z B[Λ(z)][L(z) − π0]

(2)

Substituting Eq.(1) into Eq.(2), we get

L(z) =
π0B[Λ(z)][α(z) − 1]

z − B[Λ(z)]

By the normalization L(1) = 1 and the L’Hospital rule, we obtain

π0 =
1 − ρ

E[α]
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where

E[α] = [1 − λJT (0)]
Tλ + sλ[1 − λT (0)]

1 − λT (0)
+ λJT (0)

λ + sλ[1 − λ(0)]
1 − λ(0)

is the mean number customers at the end of the startup time.
Substituting π0 into Eq.(2), we obtain

L(z) =
(1 − ρ)B[Λ(z)][α(z) − 1]

E[α]{z − B[Λ(z)]} = LGeom[X]/G/1 · λ[1 − α(z)]
E[α][1 − Λ(z)]

(3)

Thus, it yields

Ld(z) =
λ[1 − α(z)]

E[α][1 − Λ(z)]

The proof is complete.

In addition, from the Theorem 1, we obtain the mean queue size in system
given by

E[L] = E[LGeom[X]/G/1]+E[Ld] = E[LGeom[X]/G/1]+
2λE[α(α − 1)] − λ(2)E[α]

2λE[α]

where

E[α(α − 1)] =
1−λJT (0)
1−λT (0)

{T (T − 1)λ2 + Tλ(2) + 2Tsλ2 + [1 − λT (0)](λ2s(2) + λ(2)s)}
+

λJT (0)
1−λ(0) {2λ2s + λ(2) + [1 − λ(0)](λ2s(2) + λ(2)s)}

Theorem 2. If ρ < 1, the steady-state waiting time W can be decomposed into
the sum of two stochastic independent variables, i.e., W = WGeom[X]/G/1 +
Wd, where WGeom[X]/G/1 denotes the steady-state waiting time of classical
Geom[X]/G/1 model which generating function and expected value have been
given in [15]. Then

Wd(z) =
[1 − λ(0)][1 − β(z)]

E(α)(1 − z)

is the generating function of additional system Wd.

Proof. We consider the waiting time of an arbitrary customer in FCFS systems
and give explicit expressions for the PGF W (z) of the waiting time for FCFS
systems. The distribution of the waiting time can be easily obtained by assuming
that a group of customers arrive in the same slot and they constitute one super-
customer in a Geom/G/1 system. That is, the PGF Λg(z) and the mean λg for
the number of the super-customers who arrive in a slot in the Geom/G/1 system
are given by, respectively,

Λg(z) = λ(0) + [1 − λ(0)]z (4)

λg = 1 − λ(0) (5)
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The PGF Bg(z) for the service time of a super-customer is given by

Bg(z) = Λ̃[B(z)] =
Λ[B(z)] − λ(0)

1 − λ(0)
(6)

Therefore, the PGF for the number of present super-customer in the corre-
sponding Geo[X]/G/1 system at the end of super-customer’s service is given by

Lg(z) =
(1 − ρ)Bg[Λg(z)][αg(z) − 1]

E[α]{z − Bg[Λg(z)]} (7)

where

αg(z) = [1 − λJT (0)]
ΛT

g (z) − λT (0)
1 − λT (0)

S[Λg(z)] + λJT (0)
Λg(z) − λ(0)

1 − λ(0)
S[Λg(z)]

Let β[Λg(z)] = αg(z), then we obtain

β(z) = [1 − λJT (0)]
zT − λT (0)
1 − λT (0)

S(z) + λJT (0)
z − λ(0)
1 − λ(0)

S(z)

Since the number of present super-customer in the system at the end of super-
customer’s service equals just that arriving super-customer in the time interval
that they have been in the system, by Wg(z) denoting the PGF for the waiting
time of the super-customer, we have the following expression

Lg(z) = Wg[Λg(z)]B[Λg(z)] (8)

Note that the traffic intensity ρ is the same in classic Geom/G/1 and
Geom[X]/G/1 queue systems. Substituting Eqs.(4)–(7) into Eq.(8), we get the
PGF Wg(z) for the waiting time Wg of a supercustomer in an FCFS system as

Wg(z) =
(1 − ρ)[1 − λ(0)][1 − β(z)]

E[α]{Λ[B(z)] − z} (9)

The waiting time W of an arbitrary customer consists of two independent
components. One is the waiting time Wg of a super-customer to who the arbitrary
customer belongs; the other, denoted by J , is the sum of the service time for
those customers within the same super-customer who are served in front of the
arbitrary customer. Note that these components are independent. If J(z) denotes
the PGF for J , we have

W (z) = Wg(z)J(z) (10)

In order to get the J(u), we know that the number of customers within the
super-customer that are served in front of the arbitrary customer is equivalent to
the forward recurrence time in a discrete-time renewal process when the interre-
newal time is given by the number of customers included in the super-customer.
Hence we have

J(z) =
1 − Λ[B(z)]
λ[1 − B(z)]

(11)
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Substituting Eqs. (9) and (11) into Eq.(10), we get

W (z) = (1−ρ)[1−λ(0)][1−β(z)]{1−Λ[B(z)]}
λE[α][1−B(z)]{Λ[B(z)]−z} = WGeo[x]/G/1(z)Wd(z)

Thus, it yields

Wd(z) =
[1 − λ(0)][1 − β(z)]

E(α)(1 − z)

The proof is complete.

In addition, from the Theorem 2, we obtain the mean waiting time in system
given by

E[W ] = E[WGeo[x]/G/1] + E[Wd] = E[WGeo[x]/G/1] +
E[β(β − 1)][1 − λ(0)]

2E(α)

where

E[β(β−1)] =
1 − λJT (0)

1 − λT (0)
{T (T−1)+2Ts+[1−λT (0)]s(2)}+ λJT (0)

1 − λ(0)
{2s+[1−λ(0)]s(2)}

4 Expected Length of the Vacation Cycle, the Vacation
Period and the Busy Period

We define a time interval as a vacation period that starts at the busy period and
terminates at the beginning of the startup time, and denote it by Iv. It consists
of a vacation and an idle period. Then we can obtain the probabilities and the
PGF, respectively,

{
P (Iv = kT ) = [1 − λ(0)]λ(k−1)T (0)

∑T−1
j=0 λj(0), 1 ≤ k ≤ J,

P (Iv = JT + i) = λJT+i−1(0)[1 − λ(0)], i ≥ 1

and

Iv(z) =
∑∞

j=1 P (Iv = j)zj

= [1 − λ(0)]{∑J
k=1 λ(k−1)T (0)

∑T−1
j=0 λj(0)zkT +

∑∞
i=1 λJT+i−1(0)zJT+i}

= [1−λ(0)][1−λJT (0)zJT ]zT

1−λT (0)zT + λJT (0)[1−λ(0)]zJT+1

1−λ(0)z

Thus, it leads to the mean vacation period length

E(Iv) =
−JTλJT (0)[1− λ(0)] + T [1− λJT (0)]

1− λT (0)
+

λJT (0){(JT + 1)[1− λ(0)] + λ(0)}
1− λ(0)

(12)

We denote by Θv a busy period defined as a time interval from the end of
the startup time to the beginning of the next vacation. Since α is the number of
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customers in the system at the beginning of a busy period, the PGF Θv(z) and
the mean E(Θv) for the length Θv of a busy period are given by

Θv(z) = α[Θ(z)]

= [1 − λJT (0)]ΛT (Θ(z))−λT (0)

1−λT (0)
S[Λ(Θ(z))] + λJT (0)Λ(Θ(z))−λ(0)

1−λ(0)
S[Λ(Θ(z))]

and

E(Θv) = E(Θ)[1−λJT (0)]
1−λT (0)

{λT + sλ[1 − λT (0)]} + λE(Θ)λJT (0){1+s[1−λ(0)]}
1−λ(0)

= ρ[1−λJT (0)]
(1−ρ)[1−λT (0)]

{T + s[1 − λT (0)]} + ρλJT (0){1+s[1−λ(0)]}
(1−ρ)[1−λ(0)]

(13)

where Θ is the length of a busy period caused by the service time of a sin-
gle customer in the system, Θ(z) and E(Θ) are the PGF and the mean of Θ,
respectively.

A vacation cycle consists of a vacation period, startup time and the follow
busy period. The PGF Cv(z) and the mean E[Cv] for the length Cv of the
vacation cycle are given by

Cv(z) = Iv(z) · S(z) · Θv(z)
= S(z) × S[Λ(Θ(z))] × { [1−λT (0)][1−λJT (0)zJT ]zT

1−λT (0)zT + λJT (0)[1−λ(0)]zJT+1

1−λ(0)z }
×{[1 − λJT (0)]ΛT (Θ(z))−λT (0)

1−λT (0)
+ λJT (0)Λ(Θ(z))−λ(0)

1−λ(0) }

and

E[Cv] = E(Iv) + s + E(Θv)
= s + −JTλJT (0)[1−λT (0)]+T [1−λJT (0)]

1−λT (0)
+ λJT (0){(JT+1)[1−λ(0)]+λ(0)}

1−λ(0)

+ ρ[1−λJT (0)]
(1−ρ)[1−λT (0)]

{T + s[1 − λT (0)]} + ρλJT (0){1+s[1−λ(0)]}
(1−ρ)[1−λ(0)]

(14)

5 Optimal Policy

In this section, we will construct a total long-run average cost function per
customer per unit time for the system, in which T and J are all decision variables.
Our purpose is to determine the optimal T and J to minimize this cost function.
The following cost elements are considered: ch is the holding cost per unit time
for each present customer in the system; cs is the setup cost for per busy cycle;
ci is the cost per unit time for keeping the server off; cu is the startup cost per
unit time for the preparatory work of the server before starting the service.

Employing the definition of each cost element and its corresponding system
characteristics, the total long-run average cost per unit time is given by

F (J, T ) = chE[L] + cs
1

E[Cv]
+ ci

E[Iv]
E[Cv]

+ cu
s

E[Cv]

= chE[LGeo[X]/G/1] + ch{2λE[α(α−1)]−λ(2)E[α]}
2λE[α] + cs(1−ρ)(1−λ(0))[1−λT (0)]

A

+ ci(1−ρ)(1−λ(0))[1−λT (0)]E[Iv]
A + css(1−ρ)(1−λ(0))[1−λT (0)]

A
(15)
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where
E[LGeo[x]/G/1] = ρ +

λ2b(2) − λρ + bλ(2)

2(1 − ρ)

A = s(1 − ρ)[1 − λ(0)][1 − λT (0)] + (1 − ρ)[1 − λ(0)]{−JTλJT (0)[1 − λJT (0)]}
+T [1 − λJT (0)] + (1 − ρ)λJT (0)[1 − λT (0)]{(JT + 1)[1 − λ(0)] + λ(0)}
+ρ[1 − λ(0)][1 − λJT (0)]{T + s[1 − λT (0)]} + ρλJT (0)[1 − λJT (0)]{1 + s[1 − λ(0)]}

We consider the model with a minimum cost function. For fixed cs, ch, ci

and cu, the optimization problem is described as follows:

min F (J, T ) = chE[L] + cs
1

E[Cv]
+ ci

E[Iv]
E[Cv]

+ cu
s

E[Cv]
,

s.t. T ≥ 1, J ≥ 1, T, J ∈ N+, and (ch, cs ci, cu > 0)
(16)

We denote the solution by (J∗, T ∗) that minimizes the cost function F (J, T ).

6 Numerical Illustration

In the section, the first purpose is to study the effects of some parameters on
the expected values of the customers’ number and waiting time in the system.
We assume that the number of customers Λ in a single slot follows a poisson
distribution with a parameter λ, and that service time X of a customer and setup
time S follow geometric distributions with the parameters p1 and p2, respectively.

For convenience, we choose T = 1, 10, 20, J = 5, p1 = 0.8 and p2 = 0.8, vary
the value of λ from 0.3 to 0.7.
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Fig. 1. The expected system size
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Fig. 2. The expected waiting time

Figures 1 and 2 show that the expected system size and the expected waiting
time are all functions of the arrival rate λ. We find that whenever λ increases,
the expected system size and the expected waiting time increase at a higher
level. Meanwhile, the both increase faster with T increasing.
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Fig. 3. Mean waiting time E[Wv] versus traffic intensity ρ.

The second purpose is to study the effects of some parameters on the cost
function. We assume that the number of customers Λ in a single slot follows a
poisson distribution with a parameter λ, and that service time X of a customer
and setup time S follow geometric distributions with parameters p1 and p2,
respectively. We choose λ = 0.15, p1 = 0.3, p2 = 0.5, ch = 2, cs = 20, ci = 3 and
cu = 10, vary the values of T and J from 1 to 10 and 1 to 30, respectively.

Figure 3 shows that the minimum cost value per unit time of 5.5731 is
obtained at (T ∗, J∗) = (1, 3).

7 Conclusion

The paper introduces the optimal modified T vacation policy for the discrete-
time Geom[X]/G/1 queueing with startup. By using the embedded Markov chain
method, we obtain the PGFs and the expected values for the steady state system
size, waiting time, busy period and vacation cycle. Additionally, By constructing
a cost function, we determine the optimal values of T and J to minimize the
cost function. We will further try to study the N policy for the Geom[X]/G/1
queueing system.

Acknowledgements. Thanks to the support by National Natural Science Foundation
of China (No. 61175073).

Recommender: Professor Lv Shengli, School of Science, Yanshan University, Qin-
huangdao 066004 P.R. China.



424 X.-W. Lin et al.

References

1. Levy, Y., Yechiali, U.: Utilization of idle time in an M/G/1 queue. Manage. Sci.
22, 202–211 (1975)

2. Heyman, D.P.: The T policy for the M/G/1 queue. Manage. Sci. 23, 775–778
(1977)

3. Sen, K., Gupta, R.: Time dependent analysis of T -policy M/M/1 queues-A new
approach. Studia Scientiarum Mathematicarum Hungarica 34(4), 453–473 (1998)

4. Ke, J.C.: Modified T vacation policy for an M/G/1 queueing system with an unril-
iable server and startup. Mathe. Comput. Model. 41, 1267–1277 (2005)

5. Ke, J.C.: Two thresholds of a batch arrival queueing system under modified T
vacation policy with startup and closedown. Mathe. Methods Appl. Sci. 31(2),
229–247 (2008)

6. Tadj, L.: On an M/G/1 quorum queueing system under T policy. J. Oper. Res.
Soc. 54, 446–471 (2003)

7. Kim, D.J., Moon, S.A.: Randomized control of T policy for an M/G/1 system.
Comput. Ind. Eng. 51(4), 684–692 (2006)

8. Wang, K.H., Pearn, W.L.: Maximum entropy analysis to the T policy M/G/1
queue with server breakdowns and startup times. Int. J. Inf. Manage. Sci. 20(3),
395–414 (2009)

9. Wang, T.Y., Wang, K.H., Pearn, W.L.: Optimization of the T policy M/G/1 queue
with server breakdowns and general startup times. J. Comput. Appl. Math. 228,
270–278 (2009)

10. Luo, C.Y., Tang, Y.H., Chao, B.S., Xiang, K.L.: Performance analysis of a discrete-
time Geo/G/1 queue with randomized vacations and at most J vacations. Appl.
Math. Model. 37(9), 6489–6504 (2013)

11. Wu, C.H., Lee, W.C., Ke, J.C., Liu, T.H.: Optimization analysis of an unreliable
multi-server queue with a controllable repair policy. Comput. Oper. Res. 49, 83–96
(2014)

12. Wei, C.M., Cai, L., Wang, J.J.: A discrete-time Geom/G/1 retrial queue with
balking customers and second optional service. OPSEARCH 53, 344–357 (2016)

13. Zhang, X.L., Wang, J.T., Do, T.V.: Threshold properties of the M/M/1 queue
under T-policy with applications. Appl. Math. Comput. 261, 284–301 (2015)

14. Lim, D.E., Lee, D.H., Yang, W.S., Chae, K.C.: Analysis of the GI/Geo/1 queue
with N-policy. Appl. Math. Model. 37(7), 4643–4652 (2013). Original research
article

15. Takagi, H.: Queueing analysis-a foundation of performance evaluation, Discrete
time systems, vol. 3, North-holland, Amsterdam (1993)



Application of Fuzzy Comprehensive
Evaluation Model in Mentality Adaptive

Research of College Freshmen
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and Long-zhang Lin

School of Mathematics and Information Science,
Guangzhou University, Guangzhou 510006, China
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Abstract. This paper study thementality adaption of college freshmen. Based on
analysis and exception handling on the mentality adaption index data of freshmen
from Guangdong province, fuzzy comprehensive evaluation (FCE) model to the
mentality adaption index of college freshmen was established for evaluating
mentality adaption capacity of college freshmen. It plays a positive role in eval-
uating mentality adaption capacity, early intervention to freshmen with mental
crisis and preventing bad incident from happening. In further, it provides practical
method and rational assessing for improving college students’ comprehensive
quality and let them grow up healthy.

Keywords: Fuzzy comprehensive evaluation � College fresh � Mentality
adaption capacity

1 Introduction

College freshmen are the source of power in our developing country, they will achieve
prosperity of the Chinese nation. However, something stunning was happened in such
group, for example, poisoning cases from Tsinghua university, Pecking university and
Fudan university. It is mostly because the lack of the mentality adaption that cause such
mournful things. From the happening reasons point of view, we need to pay more
attention to mentality adaption capacity and psychological status of college freshmen in
order to ensure their physical and social well. Then make a contribution to cultivation
of comprehensive quality talents for our nation. For the college freshmen, most of
which are beginning their independent life journey, far away from their hometown and
parents, with unfamiliar environment, strange roommates, different lift style, different
cultures around, all elements are possible lead to going wrong in some freshmen
mentally. The adaption problems are becoming more and more in the meantime.

In order to achieve early intervention to freshmen coming up mental crisis and
further prevent and reduce adverse events recur. According to the diversity and the
complex reasons of mentality problems of college freshmen, this paper analysis the
mentality adaption related index data of college freshmen from Guangdong province
and deal with the bad testing data, further establish fuzzy comprehensive evaluation

© Springer International Publishing AG 2018
B.-Y. Cao (ed.), Fuzzy Information and Engineering and Decision,
Advances in Intelligent Systems and Computing 646, DOI 10.1007/978-3-319-66514-6_42



(FCE) model based on mentality adaption quantitative index of college freshmen,
which overall evaluate mental adaption status of college freshmen with multi factors
and levels. Do evaluation of college freshman mentality adaption capacity through the
fuzzy comprehensive evaluation model can not only avoid limitation and one-sidedness
of results but also provide quantitative basis and method for mental adaption capacity
evaluation of college freshmen. This paper take the college freshmen from one uni-
versity from Guangdong province as an example, sample data are 200 students major in
both art and science, of which 100 are boys and the others are girls, all students are
testing by teenager self-appraisal table worked out by nations health education
department, full score of 60.

2 Establishing of Index System and Data Processing

2.1 Establishing of Index System

In during the comprehensive evaluation of the college freshmen’s mentality adaption,
take three factors of mental adaption testing level (TL), academic performance (AP),
conduct quality assessment (CQS) as index according to the characteristics of the
students. Such index have 5 grades of excellent, very good, good, normal and poor. We
can do the fuzzy comprehensive evaluation after the testing and colleting all the index.

2.2 Data Processing

All testing index results are shown in Tables 1, 2 and 3.

Table 1. Grades evaluation of TL

Sex (major) Grades (scores)

51–60 41–50 31–40 21–30 0–20
No. % No. % No. % No. % No. %

Science Male 16 30.77 22 42.31 10 19.23 3 5.77 1 1.92
Female 17 35.42 20 41.67 8 16.67 2 4.17 1 2.08

Art Male 17 35.42 21 43.75 7 14.58 2 4.17 1 2.08
Female 18 34.62 22 42.31 10 19.23 1 1.92 1 1.92

Table 2. Grades evaluation of AP

Sex (major) Grades (scores)

Above 90 80–89 70–79 60–69 Below 60
No. % No. % No. % No. % No. %

Science Male 6 11.54 8 15.38 15 28.85 16 30.77 7 13.46
Female 3 6.25 6 12.5 17 35.42 19 39.58 3 6.25

Art Male 3 6.25 5 10.42 14 29.17 21 43.75 5 10.42
Female 5 9.62 8 15.38 20 38.46 16 30.77 3 5.77
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3 Theory and Algorithm of FCE Model Based on Mentality
Adaption of College Freshmen

3.1 Basic Theory [1, 2]

In recent years, theory of fuzzy comprehensive evaluation (FCE) has a widespread
application with rapid expansion due to its fast development. The primary advantage of
this approach is that it considers complexities of internal relationship between objective
things and fizziness of value system.

In order to evaluate object O (one college freshman), considering m factors of u1,
u2, …, um. We can construct mentality adaption evaluation index set of college
freshmen as below:

U ¼ u1; u2; . . .; umf g:

Take remark set of evaluation grades (excellent, very good, good, normal and poor)
as:

V ¼ v1; v2; . . .; vnf g:

Fuzzy relationship between factor domain and remark domain can be evaluate by
evaluation matrix:

R ¼
r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rm1 rm2 . . . rmn

2
664

3
775 ðin this paper; n ¼ 5;m ¼ 3Þ: ð1Þ

where, rij = U(ui vj) represents membership degree that factor ui can be evaluate as
vj, in other word, membership of factor ui to Grade vj. Row i of matrix R, R(i, :) =
(ri1, ri2, …, rin), is the single factor evaluation of ui, fuzzy subset of V.

Set fuzzy subset of factor domain as:

A ¼ a1
u1

þ a2
u2

þ � � � þ am
um

ð0\ai\1Þ: ð2Þ

Table 3. Grades evaluation of CQS

Sex (major) Grades (scores)

51–60 41–50 31–40 21–30 0–20
No. % No. % No. % No. % No. %

Science Male 10 19.23 16 30.77 8 15.38 15 28.85 3 5.77
Female 22 45.83 12 25.00 7 14.58 5 10.42 2 4.17

Art Male 12 25.00 15 31.25 10 20.83 9 18.75 2 4.17
Female 22 42.31 13 25.00 10 19.23 6 11.54 1 1.92
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where, ai is membership degree of ui to A, measurement of role that single factor ui
plays in total factor evaluation, A is usually called the fuzzy weighted vector of factor
set U.

Set fuzzy subset of remark domain as:

B ¼ b1
v1

þ b2
v2

þ � � � þ bn
vn

ð0\bj\1Þ: ð3Þ

where, bj is membership degree of object O to be rated as vj and B is comprehensive
evaluation result.

In fact, we can solve the comprehensive evaluation result B by operating the follow
formula of B = A • R when A and R to be known, where • is a certain fuzzy product
operation according to practical problem.

3.2 Algorithm

3.2.1 Determination of Fuzzy Weight
It is important and difficult issue to determine the weight in fuzzy comprehensive
evaluation. In this particular case analytic hierarchy process [3] is carried to figure out
the weighted vector A, which is A = (0.40 0.25 0.35), represent mental adaption testing
level (TL), academic performance (AP), conduct quality assessment (CQS) of college
freshmen respectively.

3.2.2 Determination of Fuzzy Matrix R

(1) Creation of evaluation set

Set evaluation factor set u = (TL, AP, CQS), set evaluation grade set v = (excellent,
very good, good, normal, poor). So the range of the factor grade evaluation can be easily
gotten, shown in Table 4.

(2) Distribution of factor grade evaluation of college freshmen major in science or art
(Table 5).

Table 4. Range of the factor grade evaluation

Factors Remarks
Excellent Very good Good Normal Poor

TL 51–60 41–50 31–40 21–30 0–20
AP Above 90 80–89 70–79 60–69 Below 60
CQS Excellent Good Middle Qualified Not qualified
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(3) Determination of fuzzy matrix R of relationship between evaluation factor set and
evaluation grade set (u � v)

Male majored in science: R ðMSÞ¼
0:3077 0:4231 0:1923 0:0577 0:0714
0:1154 0:1538 0:2885 0:3077 0:1346
0:1923 0:3077 0:1538 0:2885 0:0577

2
4

3
5;

Male majored in art: RðMAÞ¼
0:3542 0:4375 0:1458 0:0417 0:0208
0:0625 0:1042 0:2917 0:4375 0:1042
0:2500 0:3125 0:2083 0:1875 0:0417

2
4

3
5;

Female majored in science: RðFSÞ¼
0:3542 0:4167 0:1667 0:0417 0:0208

0:0625 0:1250 0:3542 0:3958 0:0625

0:4583 0:2500 0:1458 0:1042 0:0417

2
64

3
75;

Female majored in art: RðFAÞ¼
0:3462 0:4231 0:1923 0:0192 0:0192
0:0962 0:1538 0:3846 0:3077 0:0577
0:4231 0:2500 0:1923 0:1154 0:0192

2
4

3
5:

4 Calculation Results and Data Processing

4.1 Calculation Results

4.1.1 Calculation of Fuzzy Comprehensive Evaluation Result B
Operating B = A • R to calculate comprehensive evaluation result B due to the fuzzy
weight vector A = (0.40 0.25 0.35) and each fuzzy matrix R in the previous section.
where • is a certain fuzzy product operation according to this practical problem.

Fuzzy comprehensive evaluation result of male majored in science is

BðMSÞ¼A � RðMSÞ

¼ð 0:40 0:25 0:35 Þ �
0:3077 0:4231 0:1923 0:0577 0:0714

0:1154 0:1538 0:2885 0:3077 0:1346

0:1923 0:3077 0:1538 0:2885 0:0577

2
64

3
75

¼ð 0:2192 0:3154 0:2029 0:2010 0:0824 Þ:

Table 5. Percentage of factor grade evaluation of students majored in science and art

Major (factor) Sex (remark)

Male Female

Excellent Very
good

Good Normal Poor Excellent Very
good

Good Normal Poor

Science TL 30.77 42.31 19.23 5.77 7.14 35.42 41.67 16.67 4.17 2.08
AP 11.54 15.38 28.85 30.77 13.46 6.250 12.50 35.42 39.58 6.25

CQS 19.23 30.77 15.38 28.85 5.77 45.83 25.00 14.58 10.42 4.17
Art TL 35.42 43.75 14.58 4.17 2.08 34.62 42.31 19.23 1.920 1.92

AP 6.250 10.42 29.17 43.75 10.42 9.620 15.38 38.46 30.77 5.77
CQS 25.00 31.25 20.83 18.75 4.17 42.31 25.00 19.23 11.54 1.92
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Similarly, we can get:

BðMAÞ¼A � RðMAÞ¼ð 0:2448 0:3104 0:2042 0:1917 0:0490 Þ;
BðFSÞ¼A � RðFSÞ¼ð 0:3177 0:2854 0:2063 0:1521 0:0385 Þ;
BðFAÞ¼A � RðFAÞ¼ð 0:3106 0:2952 0:2404 0:1250 0:0288 Þ:

4.1.2 Calculation of Evaluation Total Score
If we give certain scores P(90, 80, 70, 60, 50) for evaluation grade set (excellent, very
good, good, normal, poor) and compound fuzzy comprehensive evaluation result B and
P, evaluation total score C can be obtained:

CðMSÞ ¼ BðMSÞ � P ¼ ð 0:2192 0:3154 0:2029 0:2010 0:0824 Þ �

90

80

70

60

50

2
6666664

3
7777775
¼ 75:3430:

Similarly, we can get:

CðMAÞ ¼ BðMAÞ � P ¼ 75:1100;

CðFSÞ ¼ BðFSÞ � P ¼ 76:9170;

CðFAÞ ¼ BðFAÞ � P ¼ 77:3380:

4.2 Data Processing

From the evaluation total score C, female (76.9170, 77.3380) are obviously larger than
male (75.3430, 75.1100), male majored in science 75.3430 are slightly larger than that
majored in art 75.1100, same rules for female majored in science 77.3380 to that
majored in art 76.9170. We get the final verdict only after Ridit analysis [4] to see
whether the difference has a significant difference.

Here is the steps:

(1) Transform fuzzy evaluation membership into fuzzy evaluation frequency by
multiplying the number of the male and female majored in science and art by
fuzzy evaluation membership, then the fuzzy evaluation frequency set Z can be
obtain:
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ZMS ¼ ð52� 0:2192 52� 0:3154 52� 0:2029 52� 0:2010 52� 0:0824 Þ
¼ ð 11 16 11 10 4 Þ;

ZMA ¼ ð48� 0:2448 48� 0:3104 48� 0:2042 48� 0:1917 48� 0:0490 Þ
¼ ð 12 15 10 9 2 Þ;

ZFS ¼ ð48� 0:3177 48� 0:2854 48� 0:2063 48� 0:1521 48� 0:0385 Þ
¼ ð 15 14 10 7 2 Þ;

ZFA ¼ ð52� 0:3106 52� 0:2952 52� 0:2404 52� 0:1250 52� 0:0288 Þ
¼ ð 16 15 13 7 1 Þ:

(2) Take male majored in science as criterion group, calculation of standard value �R
[5] can be seen in Table 6.

�RðMSÞ¼
X

fR/n

¼ 4� 0:0385þ 10� 0:1733þ 11� 0:3750þ 16� 0:6346þ 11� 0:8942
52

¼ 0:5000;

�RðMAÞ¼
X

fR/n

¼ 2� 0:0385þ 9� 0:1733þ 10� 0:3750þ 15� 0:6346þ 12� 0:8942
48

¼ 0:5341;

�RðFSÞ¼
X

fR/n

¼ 2� 0:0385þ 7� 0:1733þ 10� 0:3750þ 14� 0:6346þ 15� 0:8942
48

¼ 0:5695;

�RðFAÞ¼
X

fR/n

¼ 1� 0:0385þ 7� 0:1733þ 13� 0:3750þ 15� 0:6346þ 16� 0:8942
52

¼ 0:5760:

(3) Calculation of standard error of �R (S �R), and 95% confidence limit [6] of �R.

Table 6. Calculation results of standard value

Definition
and results

Calculation items

Number
of people

Cumulative number
down one line

Number of
people / 2

Accumulation (4) / total
number of
peopleCal. item

no.
(1) (2) (3) = (1) / 2 (4) = (2) + (3)

Poor 4 0 2 2 0.0385
Normal 10 4 5 9 0.1731
Good 11 14 5.5 19.5 0.3750
Very good 16 25 8 33 0.6346
Excellent 11 41 5.5 46.5 0.8942
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5 Analysis of Results

In Table 6, ranking the grade from poor to excellent, we calculate �R by take male
majored in science as criterion group. As for the data in Table 7, bigger �R means the
better students perform, vice is poorer. According to Table 7, considering horizontal
comparison, obvious conclusion can be obtained:

(1) �R value of female is larger than male and �R value of student majored in art is
larger than that majored in science. It reflects that mentality adaption of female is
better than male overall, while for the same-sex student, that majored in art is
better than that majored in science.

(2) In major, �R value of female is larger than male as well whatever the major. It
reflects that in same major, mentality adaption of female is better than male as
well.

(3) In both male and female, majored in science and art. �R value are overlapped
together in their 95% confidence limit. It means it has no different difference in
evaluation total score.

6 Conclusion

This paper considers fuzziness while doing evaluation, total evaluates several factors
that may affect mentality adaption of students. By utilizing time-point data, difference
of different function of object was described and development level, advantages and
disadvantages of functions of different object were compared. Results show that fuzzy
comprehensive evaluation method can evaluate the mentality adaption capacity of
college freshmen well.

By adapting fuzzy comprehensive evaluation method to evaluate mentality adap-
tion of college freshmen, conclusion were obtained:

(1) Mentality adaption of the male and female students in the discussed college is in
the same level, without significant difference.

(2) Mentality adaption of the sample students are in the grade of very good and
excellent, it shows good mentality adaption of this college. It reflects that men-
tality adaption of female is better than male regardless of what they major in.

Table 7. Calculation of standard error S �R and 95% confidence limit [6] of �R

Sex (major) Calculation items
�R S~R¼1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� N

p
95% confidence limit of �R = �R� 2S~R

Male Science 0.5000 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 52

p
(0.4200, 0.5800)

Art 0.5341 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 48

p
(0.4507, 0.6175)

Female Science 0.5695 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 52

p
(0.4895, 0.6495)

Art 0.5760 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 48

p
(0.4926, 0.6594)
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(3) Mentality adaption of the male and female students has no significant difference
after Ridit analysis, this conclusion differ from our intuition of that female is better
to mental adapt than male.

The reasons cause the differences of mentality adaption between male and female
are multifactorial, but their adaption capacity has no significant difference. So as an
educator, we should guild the students to form a vigorous mental state by tailoring
teaching. For each individual, grassroots organizations such as class, dormitory should
play its role to guild students to integrate into group quickly, clearing up their mental
difficulty effectively.

Acknowledgements. Thanks to the support by Outstanding Talent Training Plan of
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Abstract. Holistic tourism, as a new model of boosting regional competitive-
ness, can be applied in the concentration areas of tourism resources, led by the
tourism industry, target for optimizing the resource and regional economic
development. Hainan Island, with the pleasant tropical climate, has very rich
tourism resources of tropical and coastal scenery, has developed into a large-scale
tourist destination combining the natural scenery, folk customs, tropical rain
forest, cultural monuments. Additionally, in 2016, Chinese authority carried out
the work of developing first batch of holistic tourism demonstration area, which
Hainan Province was identified as pilot province, would enjoy the National
Tourism Administration launched a number of policy support. And assessment of
tourism resource is an essential link in the development process and the foun-
dation for the development of itself. Thus, this paper aim to build a compre-
hensive assessment model of holistic tourism resources, which based on fuzzy
mathematical theory and comprehensive analytical methods, and analyses the
tourism resources with the case study of Qionghai City, Hainan Province. The
results confirm the potential and drawbacks of the development of holistic
tourism in Hainan. Finally, based on our findings, the paper provides some
suggestions on how to develop holistic tourism in Hainan.

Keywords: Tourism resources � Fuzzy comprehensive evaluation � Holistic
tourism � Hainan island

1 Introduction

With the development of tourism, the traditional tourism forms have been far from
meeting the needs of tourists, while the holistic tourism model is built to cater to the
tourismmarket development demand. Holistic tourism refers to a new concept andmodel
of tourism development in a certain area, with tourism as the dominant industry, through
the comprehensive and systematic improving and optimizing the regional economic and
social resources, especially tourism resources, related industries, ecological environ-
ment, public services, system and mechanism, policies and regulations, to achieve
organic integration of regional resources, industrial integration and development, social
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co-construction and sharing [1–3]. In January 29, 2016, the National Tourism Work
Conference held in Haikou stated the issue of development of holistic tourism, this
indicates the development of holistic tourism officially started [4]. In May 26, 2016, the
National Holistic Tourism Creation Conference held in Tonglu Zhejiang marked the
development of China’s tourism industry into the holistic tourism era [5]. The devel-
opment of holistic tourism, is to solve the problems of imbalance on tourism supply, is
conducive to promoting tourism transformation and upgrading, makes scenic spots,
hotels, transportation to meet the needs of tourists. This paper will focusing on the
tourism resources and build a model and method of comprehensive evaluation of holistic
tourism resources, and take the Hainan International island as example for further
analysis, then presents some thoughts on development of holistic tourism.

2 Evaluation Method and Model Construction of Holistic
Tourism Resources

2.1 Theoretical Basis

Holistic tourism refers to a developing concept in specific administrative area, is to take
full advantage of all the attractive elements in the destination for providing visitors with
a full range of experience needs [3]. The aim of that is to promote the whole region, the
whole factor, the whole process, the whole industry chain of cross-tourism integration
in the specific context [4], and it has reality significance for the transformation of
tourism development, optimizing the tourism industry structure, enhancing the tourism
brand image and exploring tourism development potential.

While, in terms of academic researches, the concept of holistic tourism that is
derived from a certain degree of economics and applied to tourism. The central idea of
this concept has a high degree of fit with the theoretical system of Competitive Strategy
[6] by Michael E. Porter. It is the innovation of the fusion development of tourism
destination and industry under the framework of this theory. Its core is the combination
of diamond theory and location theory to build the holistic tourism industrial cluster.
Therefore, the local government should make efforts to eliminate the barriers that
hinder the growth of regional tourism industry, and promote the promotion of industrial
economic efficiency and innovation through effective competition. Holistic tourism
emphasizes the controlment of development of the tourism industry and the whole
socio-economic system, and applying with “point - axis - domain” space-time evolu-
tion system of space economics, through centralizing the major tourism projects,
facilities and tourism resources, to drive the local relative industries and formats to
spontaneously and cooperatively develop. And then promote the social and economic
development of entire region.

In this paper, the author believes that the core of holistic tourism is, led on the
tourism industry, reasonable allocate the productive elements, promote the regional
economic development, strengthen the regional competitiveness, and clear tourism
strategic position and social value.
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2.2 Practical Basis

The phrase “Holistic tourism” recently has been mentioned often in conference of
government, authorities and business sectors mentioned, and soon entered the relevant
industry planning and other activities [4, 5]. In August 2015, the China National
Tourism Administration issued “conducting national holistic tourism demonstration
area”, which indicated the government intention of developing holistic tourism, and
also mentioned assessment indicators of holistic tourism [7].

In 2016, in the National Tourism Work Conference, Hainan, Ningxia, were entitled
with the first two demonstration areas of holistic tourism, which has its development
significance, no matter for these two provinces and for the country. Practically
speaking, promoting the holistic tourism is conducive to separate from the highly
dependence on the traditional model of tourism resources and environment, expand the
space of tourism development, the enhance the attraction of different parts of the
tourism characteristics. In the following, the author takes Qionghai city of Hainan as an
example to try to find a comprehensive method and model for evaluating tourism
resources of holistic tourism.

2.3 Building Assessment Criteria of Holistic Tourism Resources

For building a comprehensive assessment of holistic tourism, should have a reliable
and accurate indexes system, which will directly influence the scientificity, reliability of
the result.

We build the assessment criteria of holistic tourism resources from two aspect:
tourism resource value and tourism development value, which is referenced to
“Classification, investigation and evaluation of tourism resources” [8] and other

Table 1. Assessment indexes of tourism resource value

Object
layer

First-order indexes Second-order indexes

Tourism
resource
value

Resource Element
Value (E1)

Weight Weight
0.4 Ornamental & Recreational Value

(X01)
0.35

Historical, Scientific, Cultural,
Artistic Value (X02)

0.3

Uniqueness (X03) 0.2
Scale, Abundance & Probability
(X04)

0.1

Completeness (X05) 0.05
Environmental
Value (E2)

0.4 Tourism Capacity (X06) 0.4
Greenland Coverage Rate (X07) 0.2
Safety And Stability (X08) 0.1
Comfort (X09) 0.2
Health Level (X10) 0.1

Influential Value
(E3)

0.2 Popularity & Influence (X11) 0.67
Appropriate Visit Period (X12) 0.33
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scholars’ models [9, 10]. The assessment indexes of tourism resources value contains 3
first-order value (resource element value, environmental value and influential value),
and 12 second-order indexes (as shown in Table 1), and the assessment indexes of
tourism development value include 8 first-order indexes (as shown in Table 2).

2.4 Assessment Method and Model

Using mathematical method to mature the assessment index has been recognized by
many international scholars [11, 12]. Due to the massive factors could influence
tourism evaluation and other practical problems, this paper focusing on quantify the
metric data by using the fuzzy mathematics method and the hierarchical analysis
method.

The attribute of the evaluation factor is divided into two categories: quantitative and
qualitative. Therefore, the membership function is divided into two categories: con-
tinuous membership function and discrete membership function.

With regard to the method of obtaining the membership degree of the index, this
article adopts the expert investigation method as follows:

– Step 1. Dividing and grading assessment factor index: based on the impact degree
of each index.

– Step 2. Quantification each factors

l represents the membership value of the each factor, and its flexible range can be
set between real number interval of [0,1]. When it reaches highest level l ¼ 1 and
when it reaches the lowest level l ¼ 0 the real number from this interval is corre-
sponding to a certain level (see Tables 1 and 2), it can be scoring by 0 to 1 line method,
specifically as follows:

Table 2. Assessment indexes of tourism development value

Object layer First-order indexes

Development value Weight
Market Location (X15) 0.15
Economic Foundation (X16) 0.2
Accessibility (X17) 0.15
Scale, Abundance & Probability (X18) 0.1
Completeness (X19) 0.05
Distance To Destination (X20) 0.2
Infrastructure (X21) 0.1
Measures Of Dispersion (X22) 0.05
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Each member of the evaluation expert group evaluates each factor of each scenic
spot according to the evaluation grade standard which has used the arithmetic mean to
calculate the membership degree of each scenic spot index, shown as (1):

lj ¼
1
n

Xn
i¼1

li; ð1Þ

where li is the value of each evaluation index, and i ¼ 1; 2; . . .; n;
lj is the membership of each attraction index, and j ¼ 1; 2; . . .;m:

2.5 Development Assessment Index

2.5.1 Market Location
According to Losch’s Location Theory, the market location is related with the popu-
lation of source area (Pi) and target area (Pj), and the distance(Dij) between them, the
expression is shown as (2):

Iij ¼ k � pi � pj
Dij

: ð2Þ

2.5.2 Distance to Destination
According to the characteristics of the elements, the lower half Cauchy function can be
used as the membership function.

x� a; lðxÞ ¼ 1; x[ a;
1

1þ aðx� aÞb
; ð3Þ

(x refers to the distance to the source area, and a refers to reference distance).

2.5.3 Measures of Dispersion
The degree of resource concentration has practical significance. So we refer to the
aggregation index.

Ri ¼ r0
re

¼ 2
ffiffiffiffi
D

p
� r0; re ¼ 1

.
ð2

ffiffiffiffiffiffiffiffi
n=A

p
Þ ¼ 1

.
ð2

ffiffiffiffi
D

p
Þ ; ð4Þ

where r0 is the average value of the distance to the nearest spot; re is the theoretical
closest distance; D is the point density; A is the attraction scenic area; n is a number of
attraction.

2.6 Tourism Resource Evaluation

2.6.1 Assessing Set: P ¼ fV ; IV ; III; II; Ig
Assessing set is qualitative description set for elements or factors to evaluate its levels,
which generally can be divided into five levels: V (excellent), IV (good), III (medium),
II (poor), I (very poor); and the set is constructed as P ¼ fV ; IV ; III; II; Ig .
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2.6.2 Factor Set: U
The evaluation factor set is the collection of influencing elements of tourism resources.
This paper combines the resource value, development conditions and influence of
tourism resources.

2.6.3 Weight Set: A
The weight set is used to represent the weight ratio between the factors.

2.6.4 Assessment Model of Holistic Tourism Resource
The comprehensive assessment model is expressed as (5):

B ¼ A � Rþ h ð5Þ

l : U ! P; u 7! lðuÞ
and u 2 U; lðuÞ 2 ½0; 1�;lðuÞ is a value corresponding to a level in the assessment

set P. hi is a adjusted value.
And the assessing level is corresponds with Table 3.

The fuzzy evaluation model given above is graded and evaluated, and the weighted
average calculation of the data is obtained. Using the following formula (6) to obtain
the evaluation value bi.

bi ¼
Xn
i¼1

airij þ hi; ð6Þ

where, ai is the weight coefficient of the i factor, bi is the burden evaluation on i factors,
rij is the evaluation i factors and j factors, hi is adjusted value.

It should be noted that the comprehensive assessment of tourism resources should
be carried out according to the size of the evaluation value. The larger the evaluation
value, the greater the value of tourism resources. If we mark the comprehensive score
of tourism resources as b, we can divide the scenic spots or attractions into a certain
level according to the range of the score and the level of the set.

Table 3. Assessing level

V IV III II I

B 2 0:9; 1½ Þ B 2 0:8; 0:9½ Þ B 2 0:7; 0:8½ Þ B 2 0:6; 0:7½ Þ B 2 0; 0:6½ Þ

Assessing Holistic Tourism Resources Based on Fuzzy Evaluation 439



3 Empirical Analysis of Holistic Tourism Resource
Assessment Model

According to the theoretical basis and practical basis stated above, this part is based on
the background of Hainan International Tourism Island, and specifically select
Qionghai City in Hainan Province as a case to clarify the use of the model.

3.1 Basic Profile and Development Status of Hainan and Qionghai

Hainan Island, located in the southernmost tip of China, is a typical tropical monsoon
climate zone, with fresh air, sunny, long period of summer and short period of winter,
is suitable for entertaining tourists for most of the year. The central region has a
relatively lower temperature, the southwest has relatively higher, the average temper-
ature is 22 to 27 °C, annual sunshine for more than 300 days. Hainan had rich
resources and products, the forest coverage rate of over 58%, has a large scale of
tropical rainforest, the coastline of 1528 km, with clear water in the most area, white
sand, shady trees, suitable water temperature, visitors can carry out various sea
activities for most of the year Time. In addition to the typical tropical coastal and forest
resources, Hainan is also a multi-ethnic cultural integration area, with exotic villages,
where retains their original lifestyles and habits, which gives Hainan a unique attrac-
tiveness. From the distribution of tourism resources, tourism resources in Hainan
Province are mainly concentrated in three regions Fig. 1: the provincial capital
Haikou, world famous destination Sanya and the arising hot spot Qionghai. Hainan

Fig. 1. Map of Hainan island.
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relies on the unique natural environment, vigorously developed the tourism industry,
real estate industry and tropical agriculture. In particular, the rapid growth of tourism,
has been initially built chain industry of “eating, living, traveling, recreation, shopping
and entertainment,” and a full range of resort tourism facilities and service system, with
a capacity of 30 million visitors per year, attracts large numbers of domestic and
international tourists with high quality and diverse resources [13].

Qionghai City is located in the east of Hainan Island, close the South China Sea.
With 82.3 km coastline, Qionghai has 4 major ports Fig. 2: Tanmen Port, Qionghai
Tourism Port, Longwan Port, Boao Port. The city is one favorite destination of
overseas Chinese, with 55 million people from Hong Kong, Macao, and other 28
countries, is one of the famous hometown of overseas Chinese [14]. Qionghai City has
a good economic foundation and great potentials, second only to Haikou and Sanya.

Fig. 2. Map of Qionghai city.
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3.2 Fuzzy Comprehensive Assessment of Holistic Tourism Resources
in Qionghai

In this part selects 17 representative tourism attractions (shown in Table 4) in Qionghai
to evaluate their tourism resources value and tourism development value.

Based on the weight of each index from Table 1, the weighted average method can
be used to obtain the evaluation results of the tourism resource value and tourism
development value, the results calculated as follows:

3.2.1 Results of Assessment of Resource Element Value
E1 = [0.92, 0.98, 0.95, 1, 0.95, 1, 0.98, 0.87, 0.96, 0.93, 0.81, 0.7, 0.9, 0.93, 0.82,
0.82, 1].

3.2.2 Results of Assessment of Environmental Value
E2 = [ 0.97, 0.95, 0.95, 0.94, 0.87, 0.99, 0.98, 0.66, 0.87, 0.9, 0.81, 0.7, 0.94, 0.8, 0.92,
0.86, 0.79]

3.2.3 Results of Assessment of Influential Value
E3 = [ 1, 1,, 1, 1, 1, 1, 0.99, 0.96, 0.91, 1, 1, 0.95, 0.93, 1, 0.85, 1, 1].

3.2.4 Results of Assessment of Tourism Resources Value
E = [ 0.96, 0.97, 0.96, 0.98, 0.93, 1, 0.98, 0.8, 0.92, 0.93, 0.85, 0.75, 0.92, 0.89,
0.87, 0.87, 0.91].

3.2.5 Results of Assessment of Tourism Development Value
D = [ 1, 0.99, 0.97, 0.73, 0.94, 0.99, 0.94, 0.87, 0.99, 0.79, 0.86, 0.78, 0.83, 0.83,
0.84, 0.85, 0.9]

Table 4. Tourism attractions in qionghai

Hot destination Non-hot destination

Name Rate Attractions
type

Code Name Rate Attractions
type

Code

Boao oriental cultural
centre

AAA Cultural D01 Jiaji Town Cultural D09

Yudai beach Natural D02 Baishi
Mountain

AAA Natural D10

BFA AAAA Cultural D03 Yezhai Village AA Cultural D11
BFA hote Cultural D04 Shazhou Island Natural D12

Red army memorial park AAA Cultural D05 Jiuqu River Natural D13
Wanquan river AAA Natural D06 Wanquan Lake AA Natural D14
Wanquan floating AAA Natural D07 Dongtainong Cultural D15

Duohe cultural village AA Cultural D08 Tanmen Port Natural D16
Guantan Natural D17

442 J. Ma et al.



3.2.6 Results of Assessment of Tourism Resource
B = [0.98, 0.98, 0.96, 0.88, 0.93, 1, 0.96, 0.83, 0.95, 0.87, 0.85, 0.76, 0.88, 0.87,
0.86, 0.86, 0.91].

According to the results and combing with the government report of ‘Classification,
investigation and evaluation of tourism resources’ [8], the 17 attractions in Qionghai
are classified into grades V ; IV and III (see Appendix 1 and 2).

3.3 The Holistic Tourism Development Potentials and Limits in Qionghai

According to the above analysis, we can see that the tourism resources and develop-
ment of Qionghai city have its potentials and limits..

3.3.1 Tourism Development Potentials
Qionghai City, its diverse natural resources such as the tropical coastal area, the eco-
logical graceful Wanquan river, lush tropical rain forest, high grade hot springs and
other forms of natural landscape; and identical and exotic ethnic minority villages and
cultural landscape, internationally known reputation of BFA Conference, also the
modern large-scale conference resorts, provides a solid foundation and support for
tourism development. Additionally, Qionghai had rich hot springs and eco-tourism
resources which are not fully developed yet, especially Wanquan River Tropical
Ecosystem conservation, provides a great potential for the development.

3.3.2 Tourism Development Limits
Qionghai tourism heavily tilted in the eastern part of the Boao area, even most of the
region has rich tourism resources, the development imbalance will hinder the tourism
development in long-term. And due to the transportation-dependency from Haikou and
Sanya, the tourists are dispelled from these two major destinations. This further limits
its market scale. Moreover, Qionghai has large-scale of coastal area but limited suitable
area for aquatic sports and activities on the beach. Compared with the Yalong Bay, etc.,
Qionghai coastal landscape is also inferior, which makes the local marine tourism at a
relative disadvantage.

4 Holistic Tourism Development Suggestions in Hainan

Generally speaking, Hainan has unique advantages to develop holistic tourism: a good
ecological environment, the country’s largest special economic zones, international
tourism island and other strategic advantages; various and high quality tourism
resources, the global reputation, etc. These advantages laid the basic conditions of
holistic tourism development. Here is few thorough on Hainan holistic tourism
development.

In the context of the holistic tourism concept, the development of Hainan tourism
could consider with the concept of “Internet +” and “Whole Vision +”, deeply inte-
grated the internet with the traditional industries, and accord with other industries as a
whole vision, to strengthen the development, construction and protection of Hainan
Eco-tourism park, Hainan cultural and ecological tourism park, and to speed up the
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improvement of urban transport, infrastructure and other public facilities, to achieve
marketing integration and information computerization.

In additionally, Hainan holistic tourism must adopt an overall point of view, to
create economic and industrial development zone, from the single spots to lines and
forms the faces, for restructuring tourism elements, transforming the tourism resources
advantages into industrial advantages, and forming the motive force of economic
development.

Moreover, the modern transport network is direct influential elements to the tourism
development, the railway (especially the east west line of high-speed rail), highways,
scenic Expressway loop shortens the tourists psychological distance. The
“Inner + outside” traffic system not only facilitate the local residents, but also make it
much easier for be involved into tourism industry. The next step could start with the
improvement of the road guidance mark, enhancing passageway system in the tourist
area and public transport system in the urban area.

5 Conclusion

One of the prerequisites for the development of holistic tourism is the tourism industry
as a dominant industry, that is, it need a higher resource abundance and characteristics.
Hainan Province, with appropriate climate and temperature, the “sun, sea, sand” and
other tropical coastal scenery, as well as the folk customs, tropical rain forest, cultural
monuments, etc., has rich tourism resources. With the inherent advantages of resources,
attracting a large number of tourists come to travel, making the rapid development of
local tourism, and become a pillar industry of regional development, which laid the
basis for the development of holistic tourism in Hainan. This paper adopts the math-
ematical basis of fuzzy evaluation, taking Hainan Qionghai as an example, trying to
construct the Hainan tourism resources evaluation model, and obtain the assessment
result and analysis present the development direction of holistic tourism.
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Appendix 1. Results of Tourism Resources Assessment

Hot attraction Non-hot attraction

Indexes D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17

X01 1.00 1.00 1.00 1.00 0.90 1.00 1.00 0.75 1.00 0.95 1.00 0.85 0.95 1.00 0.75 0.77 1.00

(continued)
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(continued)

Hot attraction Non-hot attraction

Indexes D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17

X02 1.00

X03 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.94 0.90 0.83 0.85 0.75 0.96 0.85 0.65 0.72 1.00

X04 1.00 0.96 1.00 1.00 0.93 1.00 0.90 0.80 0.98 0.87 0.90 0.75 1.00 1.00 0.75 0.98 1.00

X05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.95 0.92 0.96

X06 1.00 1.00 1.00 1.00 0.89 1.00 1.00 0.50 0.77 0.90 0.85 0.45 0.95 0.78 1.00 0.90 0.64

X07 1.00 1.00 1.00 0.80 0.84 1.00 0.95 0.75 0.86 0.83 0.88 0.85 0.85 0.75 0.87 0.80 0.76

X08 1.00 0.90 0.90 0.95 0.90 0.95 1.00 0.72 1.00 0.85 0.85 0.75 0.95 0.96 1.00 0.80 0.95

X09 0.87 0.80 0.78 0.94 0.79 0.98 1.00 0.67 1.00 0.98 0.53 0.89 0.97 0.77 0.75 0.87 0.96

X10 1.00 1.00 1.00 1.00 1.00 0.98 0.94 1.00 0.90 0.95 1.00 0.95 1.00 0.89 1.00 0.88 0.93

X11 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.96 0.95 1.00 1.00 0.92 0.89 1.00 0.78 1.00 1.00

X12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.83 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Results
E

0.96 0.97 0.96 0.98 0.93 1.00 0.98 0.80 0.92 0.93 0.85 0.75 0.92 0.89 0.87 0.87 0.91

levels V V V V V V V V V V IV III V IV IV IV V

Appendix 2. Results of Tourism Development Assessment

Hot attraction Non-hot attraction

Indexes D01 D02 D03 D04 D05 D06 D07 D08 D09 D10 D11 D12 D13 D14 D15 D16 D17

X15 1.00 1.00 1.00 0.70 1.00 1.00 1.00 0.91 1.00 0.76 0.90 0.70 1.00 0.86 1.00 0.85 0.93

X16 1.00 0.98 0.99 0.80 0.85 0.95 0.94 0.83 1.00 0.67 0.88 0.75 0.75 0.82 0.82 0.91 0.80

X17 1.00 1.00 0.91 0.60 1.00 1.00 0.85 0.75 1.00 0.85 0.90 0.67 0.98 0.75 0.75 0.70 0.95

X18 0.97 0.97 0.93 0.64 1.00 1.00 0.95 0.80 0.97 0.64 0.97 1.00 0.70 0.80 0.69 0.71 0.93

X19 1.00 1.00 1.00 0.85 0.94 1.00 0.85 0.95 0.95 0.87 0.93 0.75 0.89 0.75 0.82 0.97 0.90

X20 1.00 1.00 0.97 0.80 1.00 1.00 0.95 1.00 1.00 1.00 0.85 0.82 0.68 0.91 0.89 0.85 1.00

X21 1.00 1.00 1.00 0.60 0.80 1.00 1.00 0.80 1.00 0.70 0.60 0.90 0.80 0.80 0.80 1.00 0.80

X22 1.00 1.00 1.00 0.91 0.87 0.93 1.00 0.90 0.91 0.67 0.77 0.71 0.98 0.90 0.90 1.00 0.81

Results D 1.00 0.99 0.97 0.73 0.94 0.99 0.94 0.87 0.99 0.79 0.86 0.78 0.83 0.83 0.84 0.85 0.90

Results 0.98 0.98 0.96 0.88 0.93 1.00 0.96 0.83 0.95 0.87 0.85 0.76 0.88 0.87 0.86 0.86 0.91

Levels V V V IV V V V IV V IV IV III IV IV IV IV V
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Analysis of Flight Delays
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Abstract. This paper tries to analyze the problem D “The problems of flight
delay” of 2015’s Shenzhen Summer Camp College Students’ Mathematical
Contest in Modeling by establishing the relevant mathematical model to obtain
the pertinent reasons responsible for the flight delays, also to apply the Markov
chain model to forecast the delay of flight and to provide a theoretical basis for
airline delay management.

Keywords: Flight delay � Delay rate � Hierarchy analysis method � Markov
chain model

1 Background Information

This article discusses flight delays. With the development of China’s economy, more and
more people are choosing aircraft as a means of transport. However, the problem offlight
delays is becoming more and more prominent not only in China, but also is ubiquitous in
the global civil aviation industry. Hong Kong South China Morning Post claimed that
according to flightstats.com statistics, China has the most serious flight delays, among the
top 10 most frequent flight delays in the international airports, China accounted for seven,
including Shanghai Hongqiao, Shanghai Pudong, Guangzhou Baiyun, Chengdu Shuan-
gliu, Beijing International, Shenzhen Baoan, Hangzhou Xiaoshan and other airports, most
of these airports are located in China’s economically developed areas, with more popu-
lation flow. This article will study the following questions based on the above content:

(1) Is the above conclusion correct?
(2) What is the main reason for our country’s flight delays?
(3) What are the improvements?

2 Model Assumptions

Assumption 1: assuming that the collected data is true and reliable.
Assumption 2: assuming that the airport staffs’ personal reasons are negligible for
flight delays.
Assumption 3: assuming that the flights of national airlines are independent from
each other and without mutual influence.
Assumption 4: assuming that the departure time of the aircraft is not affected by
military activities.

Note: the following analysis and discussion are based on the above hypothesis.

© Springer International Publishing AG 2018
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3 Problem Analysis

The main objective of this paper is to analyze the factors that contribute to flight delays
and the corresponding measures to address it. Our overall research method is through
the Internet to find relevant data for statistical analysis, to identify the various factors
affecting flight delays and to make lists and draw pictures. Finally, for the third
question, through inquiring date and literature to understand the impact of flight delays
on passengers, combined with the model and method to have an early warning pro-
cessing for flight delays and accordingly put forward the corresponding management
measures. In view of this purpose, for the three questions in this paper, the following
analysis can be carried out.

3.1 Analysis of the First Problem

Question 1 requires us to collect data on our own, to determine whether the conclusion
is correct. First of all, we find the relevant flight information online, mainly focus on
the following points:

1. Take international as the object of study, to collect domestic and foreign major
aviation business data, including punctuality, delay rate and so on.

2. Take regions as the object of study, to collect large airlines’ date in the Asia-Pacific
region.

3. Take our country as the research object, to collect the data of our airlines.

So, with the above three points, we have done the work of analysis, statistics, and
then integration, comparison and other operations to all the data collected.

The following Fig. 1 is the relevant data of the major international shipping
enterprises in 2014. According to statistics, the international airline’s average punc-
tuality rate is 76.54%, while the three Chinese airlines’ (Air China, China Eastern
Airlines, China Southern Airlines) punctuality rate is lower than the average level [1].

Fig. 1. Relevant data of the major international shipping enterprises in 2014
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Figure 2 below is the data for the 2014 Asia Pacific Airline. According to the
regional statistics, 15 Chinese airlines still do not have good performance, the average
delay rate of flights in the Asia-Pacific region was 11.78%, while the delay rate of
China’s aviation enterprises is higher than the average level. And statistics found that
Chinese airlines prefer long-time delays [2].

Fig. 2. The data for the 2014 Asia Pacific Airline
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To sum up, through data comparison with the international aviation enterprises and
the Asia-Pacific region flight, we agree that the conclusion that China’s flight delays are
serious is correct.

According to the US air travel data provider aviation data network, among the
world’s 61 large airports, the seven worst performance airports are located in the
Chinese mainland. Among them, the punctuality rate of Shanghai Hongqiao Airport,
Shanghai Pudong Airport and Hangzhou Xiaoshan Airport is 37.17%, 37.26% and
37.74% respectively. Shenzhen Baoan Airport, Guangzhou Baiyun Airport, Beijing
International Airport and Chengdu Shuangliu Airport are also among the most Severe
ten airports. The 61 large airports, Tokyo, Japan Haneda airport punctuality rate is as
high as 89.76%, Japan Osaka Yidan airport punctuality rate is as high as 94.56%.

According to the above analysis of the data, we believe that the conclusion in title
of “the most serious flight delays problems in our Country occur in most of the airport
that located in the economic development zone,” is correct.

3.2 Analysis of Problem 2

Question 2 demands us to answer the main reason for flight delays. We first start
statistics and processing work on the original data get the total number of flights per
year, the number of normal flights, the number of abnormal flights, and on this basis,
we have a statistical analysis on various factors that have influenced the flight delays,
calculate the proportion of the distribution of factors, And then make a histogram of the
scale distribution table. Through the chart, so as to clearly prove the several factors that
have influenced the flight delays.

We first sort out all the data collected, and then get the total number of flights from
2009 to 2014, the total number of normal flights, the total number of abnormal flights
and the number of all kinds of total number of flights affected by various factors, at last,
we calculate the percentage [2]. as follows (Table 1):

Table 1. The total number of flights from 2009 to 2014

Year Category
Flights
number

Normal Abnormal Normal
rate

Self-reasons Flow Weather Other

2009 1759438 1437036 322601 81.68% 42.13% 22.49% 23.46% 11.92%
2010 2010652 1617150 393502 80.43% 41.63% 26.84% 20.03% 10.82%
2011 2204147 1701688 502459 77.20% 37.01% 26.00% 22.00% 14.99%
2012 2738472 2049198 689274 74.83% 38.50% 25.00% 21.60% 14.90%
2013 3442124 2413617 1028507 70.12% 37.00% 27.00% 21.60% 14.40%
2014 4013712 2626573 1387139 65.14% 38.00% 25.00% 21.60% 15.40%
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We calculated the histogram of the ratio distribution table by the ratio distribution
table of the above factors. as follows (Fig. 3):

Through the above steps to list the proportional distribution table and histograms
that influence the flight delays, we conclude that the main reason for the impact of flight
delays is the airline’s own reasons. Therefore, we believe that we should start from the
airline itself, to increase flight management efforts, to seize the key control points and
weaknesses about flight operation, refine the safeguards, thereby reducing the aircraft
delays.

3.3 Analysis of Problem Three

Question 3 requires us to propose a measure towards flight delays. We mainly target on
the four elements, which are concluded in problem 2, that influence flight delays, use the
Markov chain model to predict the delay of the flight, and then establish the simulation
results to obtain the prediction results. The results will have some errors, and then the
qualitative and quantitative analysis method is used to analyze the flight delay. (AHP),
to have error analysis, and early warning treatment towards flight delays, we come to a
way to help airlines management delays. At the same time, according to the law offlight
delays, we also give passengers some reasonable travel recommendations [3].

Analytic Hierarchy Process (AHP) is a systematic analysis method proposed by
Prof. A. L. Saaty of the University of Pittsburgh in the 1970s, which combines qual-
itative analysis and quantitative analysis. By clarifying the problems, it establishes the
hierarchical analysis structure model, constructs the judgment matrix, the hierarchical
single row and the hierarchical ranking. The five steps are used to calculate the
combined weights of the constituent elements for the total target, so as to obtain the
comprehensive evaluation value of different feasible schemes. To provide basis for the
best solution.

Fig. 3. The histogram of the ratio distribution table by the ratio distribution table of the above
factors
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According to the design of the above flight delay evaluation index, the AHP
method is used to establish the flight delay model for the airline, as shown in the Fig. 4.

According to the model, the occurrence and development of each evaluation index
(delay rate, average delay time, delay loss) can be investigated from the program layer
(four reasons for the flight delay), so as to provide the basis for the analysis.

According to the analytic hierarchy process model of flight delay state, combined
with the status quo of the current domestic assessment flight delay problem, we can
establish the warning level and basic index standard (as shown in the table below) for
the airline flight delay state (Table 2):

As a result, we can provide operational control strategies for flight companies
through early warning levels and index standard.

Flight delays status

Flight delay rate 

per day

Average delay time 

per day
Delay loss per day

Airline’s self-reasons Flow  reasonreasons Weather reasonsreasons Other reasons

Fig. 4. The airline

Table 2. The warning level and basic index standard

Warning
Level

Operation
Indicator

Delay Status Delay rate The average delay time
(min)

1 white warning normal delay <5% <20
2 Green warning mild delay 5%–10% 20–40
3 yellow warning medium delay 10%–20% 40–60
4 orange warning serious delay 20%–30% 60–120
5 red warning dangerous

delay
>30% >120
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Table 3 is the actual value of the flight delay rate in recent years. Based on these
data, the transfer probability matrix is calculated using the Markov chain:

p11 . . . p14
..
. . .

. ..
.

p41 � � � p44

0
B@

1
CA ¼

0:00 1:00 0:00 0:00
0:23 0:16 0:14 0:40
0:35 0:51 0:14 0:00
0:35 0:31 0:00 0:00

2
664

3
775:

To use the data from the last year of the latest years as the initial state, that is
p 0ð Þ ¼ (38.00%, 25.00%, 21.60%, 15.40%), with p mð Þ ¼ p 0ð Þpm, we can calculate the
delay rate in the next few years. The same method can be used to predict the average
delay time [4].

The results of the simulation can be compared from the four types of factors that
affect the flight delay, and also can analyze synthetically for one day’s situation.

Error Self Cause Flow Reason Weather Reason Other Reason Average (Table 4).

We can see from the forecast error value that the average error is very small to use
airline’s flight delay and the average delay time in the past few years to forecast the
next few years’, they are respectively 0.37% and 7 min.

The model is for the airline to deal with flight delays in the strategic model, and
passengers how to face flight delays is still a problem worthy of attention, then we will
provide some recommendations to passengers by analyzing the regular pattern of flight
delay (Table 5).

Table 3. The actual value of the flight delay rate in recent years

Year Category
Self-reasons Flow Weather Other

2009 42.13% 22.49% 23.46% 11.92%
2010 41.63% 26.84% 20.03% 10.82%
2011 37.01% 26.00% 22.00% 14.99%
2012 38.50% 25.00% 21.60% 14.90%
2013 37.00% 27.00% 21.60% 14.40%
2014 38.00% 25.00% 21.60% 15.40%
Average 39.05% 25.39% 21.71% 13.74%

Table 4. Error analysis of prediction results

Error Self-cause Flow
reason

Weather
reason

Other
reason

Average
value

Delay rate 0.30% 0.65% 0.33% 0.19% 0.37%
Average delay
time/min

7 6 3 11 7
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To table made according to the chart above (Fig. 5):

From the above figure we can see the average daily flight peak is on Saturday,
compared to other working days and Sundays, on Saturday, there are more passengers
choose to travel by flight, while the seat supply is fixed, therefore, it, is bound to cause
a certain the airline, and this pressure is just reflected in the following Fig. 6:

It can be seen from the figure that the daily delay time appears a large upward
volatility on Saturday, which reflects the pressure caused by the increase in the number
of passengers to the airline. Based on the above figure, we can come to the preliminary
conclusion that if passengers choose to travel on Saturday, the possibility of flight
delays will increase, and the length of time caused by delay will also accordingly be
longer.

Fig. 5. Average duration for an airline within one week

Table 5. Average duration and average delay time for an airline within one week

Category Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Endurance 14847 12920 18843 13712 13859 36020 14706
Average delay
duration/min

45 39 45 38 37 80 41

Fig. 6. Average delay time for an airline within one week
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4 Conclusion

Due to the limited amount of data collected, the relevant conclusions of this article can
only be given to airlines.
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