Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

1 Introduction

In the present work we develop dual variational formulations for the Kirchhoff–Love thin plate model. Earlier results establish the complementary energy under the hypothesis of positive definiteness of the membrane force tensor at a critical point (please see [3032, 36, 65] for details). In more recent works Gao has applied his triality theory to models in elasticity (see [3335] for details) obtaining duality principles which allow the optimal stress tensor to be negative definite. Here for the present case we have obtained a dual variational formulation which allows the global optimal point in question to be not only positive definite (for related results see Botelho [11, 13]) but also not necessarily negative definite. The approach developed also includes sufficient conditions of optimality for the primal problem. Moreover, a numerical example concerning the main duality principle application is presented in the last section.

It is worth mentioning that the standard tools of convex analysis used in this text may be found in [13, 25, 54], for example. Another relating result may be found in [14].

At this point we start to describe the primal formulation.

Let \(\varOmega \subset \mathbb{R}^{2}\) be an open, bounded, connected set which represents the middle surface of a plate of thickness h. The boundary of Ω, which is assumed to be regular, is denoted by ∂ Ω. The vectorial basis related to the Cartesian system {x 1, x 2, x 3} is denoted by (a α , a 3), where α = 1, 2 (in general Greek indices stand for 1 or 2) and where a 3 is the vector normal to Ω, whereas a 1 and a 2 are orthogonal vectors parallel to Ω. Also, n is the outward normal to the plate surface.

The displacements will be denoted by

$$\displaystyle{\hat{\mathbf{u}} =\{\hat{ u}_{\alpha },\hat{u}_{3}\} =\hat{ u}_{\alpha }\mathbf{a}_{\alpha } +\hat{ u}_{3}\mathbf{a}_{3}.}$$

The Kirchhoff–Love relations are

$$\displaystyle{\hat{u}_{\alpha }(x_{1},x_{2},x_{3}) = u_{\alpha }(x_{1},x_{2}) - x_{3}w(x_{1},x_{2})_{,\alpha }\;\mbox{ and }\hat{u}_{3}(x_{1},x_{2},x_{3}) = w(x_{1},x_{2}).}$$

Here − h∕2 ≤ x 3 ≤ h∕2 so that we have u = (u α , w) ∈ U where

$$\displaystyle\begin{array}{rcl} U& =& \left \{(u_{\alpha },w) \in W^{1,2}(\varOmega; \mathbb{R}^{2}) \times W^{2,2}(\varOmega ),\;u_{\alpha } = w = \frac{\partial w} {\partial \mathbf{n}} = 0\mbox{ on }\partial \varOmega \right \} {}\\ & =& W_{0}^{1,2}(\varOmega; \mathbb{R}^{2}) \times W_{ 0}^{2,2}(\varOmega ). {}\\ \end{array}$$

It is worth emphasizing that the boundary conditions here specified refer to a clamped plate.

We define the operator \(\varLambda: U \rightarrow Y \times Y\), where \(Y = Y ^{{\ast}} = L^{2}(\varOmega; \mathbb{R}^{2\times 2})\), by

$$\displaystyle{\varLambda (u) =\{\gamma (u),\kappa (u)\},}$$
$$\displaystyle{\gamma _{\alpha \beta }(u) = \frac{u_{\alpha,\beta } + u_{\beta,\alpha }} {2} + \frac{w_{,\alpha }w_{,\beta }} {2},}$$
$$\displaystyle{\kappa _{\alpha \beta }(u) = -w_{,\alpha \beta }.}$$

The constitutive relations are given by

$$\displaystyle{ N_{\alpha \beta }(u) = H_{\alpha \beta \lambda \mu }\gamma _{\lambda \mu }(u), }$$
(13.1)
$$\displaystyle{ M_{\alpha \beta }(u) = h_{\alpha \beta \lambda \mu }\kappa _{\lambda \mu }(u), }$$
(13.2)

where \(\{H_{\alpha \beta \lambda \mu }\}\) and \(\{h_{\alpha \beta \lambda \mu } = \frac{h^{2}} {12} H_{\alpha \beta \lambda \mu }\}\) are symmetric positive definite fourth-order tensors. From now on, we denote \(\{\overline{H}_{\alpha \beta \lambda \mu }\} =\{ H_{\alpha \beta \lambda \mu }\}^{-1}\) and \(\{\overline{h}_{\alpha \beta \lambda \mu }\} =\{ h_{\alpha \beta \lambda \mu }\}^{-1}\).

Furthermore {N α β } denote the membrane force tensor and {M α β } the moment one. The plate stored energy, represented by \((G\circ \varLambda ): U \rightarrow \mathbb{R}\), is expressed by

$$\displaystyle{ (G\circ \varLambda )(u) = \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }(u)\gamma _{\alpha \beta }(u)\;dx + \frac{1} {2}\int _{\varOmega }M_{\alpha \beta }(u)\kappa _{\alpha \beta }(u)\;dx, }$$
(13.3)

and the external work, represented by \(F: U \rightarrow \mathbb{R}\), is given by

$$\displaystyle{ F(u) =\langle w,P\rangle _{L^{2}(\varOmega )} +\langle u_{\alpha },P_{\alpha }\rangle _{L^{2}(\varOmega )}, }$$
(13.4)

where \(P,P_{1},P_{2} \in L^{2}(\varOmega )\) are external loads in the directions a 3, a 1, and a 2, respectively. The potential energy, denoted by \(J: U \rightarrow \mathbb{R}\), is expressed by

$$\displaystyle{J(u) = (G\circ \varLambda )(u) - F(u).}$$

It is important to emphasize that the existence of a minimizer (here denoted by u 0) related to J(u) has been proven in Ciarlet [22]. Some inequalities of Sobolev type are necessary to prove the above result. In particular, we assume the boundary ∂ Ω of Ω is regular enough so that the standard Gauss–Green formulas of integration by parts and the well-known Sobolev imbedding and trace theorems hold. Details about such results may be found in [1].

Finally, we also emphasize from now on, as their meaning is clear, we may denote L 2(Ω) and \(L^{2}(\varOmega; \mathbb{R}^{2\times 2})\) simply by L 2 and the respective norms by \(\|\cdot \|_{2}.\) Moreover derivatives are always understood in the distributional sense, θ denotes the zero vector in appropriate Banach spaces, and the following and relating notations are used:

$$\displaystyle{w_{,\alpha \beta } = \frac{\partial ^{2}w} {\partial x_{\alpha }\partial x_{\beta }},}$$
$$\displaystyle{u_{\alpha,\beta } = \frac{\partial u_{\alpha }} {\partial x_{\beta }},}$$
$$\displaystyle{N_{\alpha \beta,1} = \frac{\partial N_{\alpha \beta }} {\partial x_{1}},}$$

and

$$\displaystyle{N_{\alpha \beta,2} = \frac{\partial N_{\alpha \beta }} {\partial x_{2}}.}$$

2 The Main Duality Principle

In this section, we develop a duality principle presented in similar form in [13, 14]. The novelty here is its suitability for the Kirchhoff–Love plate model.

Theorem 13.2.1.

Let \(\varOmega \subset \mathbb{R}^{2}\) be an open, bounded, connected set with a regular boundary denoted by Γ. Suppose \((G\circ \varLambda ): U \rightarrow \mathbb{R}\) is defined by

$$\displaystyle\begin{array}{rcl} G(\varLambda u)& =& \frac{1} {2}\int _{\varOmega }H_{\alpha \beta \lambda \mu }\gamma _{\alpha \beta }(u)\gamma _{\lambda \mu }(u)\;dx \\ & & +\frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\kappa _{\alpha \beta }(u)\kappa _{\lambda \mu }(u)\;dx \\ & & +\frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx,{}\end{array}$$
(13.5)

and let \((F \circ \varLambda _{2}): U \rightarrow \mathbb{R}\) be expressed by

$$\displaystyle{F(\varLambda _{2}u) = \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx,}$$

where

$$\displaystyle{\gamma _{\alpha \beta }(u) =\varLambda _{1^{\alpha \beta }}(u) + \frac{1} {2}\varLambda _{2^{\alpha }}(u)\varLambda _{2^{\beta }}(u),}$$
$$\displaystyle{\{\varLambda _{1^{\alpha \beta }}(u)\} = \left \{\frac{u_{\alpha,\beta } + u_{\beta,\alpha }} {2} \right \},}$$
$$\displaystyle{\{\varLambda _{2^{\alpha }}(u)\} =\{ w_{,\alpha }\},}$$
$$\displaystyle{\{\kappa _{\alpha \beta }(u)\} =\{ -\varLambda _{3^{\alpha \beta }}(u)\} =\{ -w_{,\alpha \beta }\},}$$

where \(u = (u_{\alpha },w) \in U = W_{0}^{1,2}(\varOmega; \mathbb{R}^{2}) \times W_{0}^{2,2}(\varOmega ).\)

Also, define \(F_{1}: U \rightarrow \mathbb{R}\) by

$$\displaystyle{F_{1}(u) =\langle w,P\rangle _{L^{2}} +\langle u_{\alpha },P_{\alpha }\rangle _{L^{2}} \equiv \langle u,\tilde{P}\rangle _{L^{2}},}$$

where \(\tilde{P} = (P,P_{\alpha }),\) and let \(J: U \rightarrow \mathbb{R}\) be expressed by

$$\displaystyle{J(u) = (G\circ \varLambda )(u) - F(\varLambda _{2}u) - F_{1}(u).}$$

Under such hypotheses, we have

$$\displaystyle\begin{array}{rcl} \inf _{u\in U}\{J(u)\} \geq \sup _{v^{{\ast}}\in A^{{\ast}}}\left \{\inf _{z^{{\ast}}\in Y _{0}^{{\ast}}}\{\tilde{F}^{{\ast}}(z^{{\ast}}) - G^{{\ast}}(v^{{\ast}},z^{{\ast}})\}\right \},& &{}\end{array}$$
(13.6)

where, when the meaning is clear, denoting \(Y = Y ^{{\ast}} = L^{2}(\varOmega, \mathbb{R}^{2\times 2}) \equiv L^{2}\), \(Y _{1} = Y _{1}^{{\ast}} = L^{2}(\varOmega, \mathbb{R}^{2}) \equiv L^{2},\) \(v^{{\ast}} = (v_{1}^{{\ast}},v_{2}^{{\ast}},v_{3}^{{\ast}})\) , and \(v_{1}^{{\ast}} =\{ N_{\alpha \beta }\},\) \(v_{2}^{{\ast}} =\{ Q_{\alpha }\}\) , and \(v_{3}^{{\ast}} =\{ M_{\alpha \beta }\},\) we have

$$\displaystyle{A^{{\ast}} =\{ v^{{\ast}}\in Y ^{{\ast}}\;\vert \;\varLambda ^{{\ast}}v^{{\ast}} =\tilde{ P}\},}$$

that is, recalling that \(\tilde{P} = (P,P_{\alpha }),\) we may write

$$\displaystyle{A^{{\ast}} = A_{ 1} \cap A_{2}.}$$

Here

$$\displaystyle{A_{1} =\{ v^{{\ast}}\in Y ^{{\ast}}\;\vert \;M_{\alpha \beta,\alpha \beta } + Q_{\alpha,\alpha } + P = 0,\mbox{ in }\varOmega \},}$$
$$\displaystyle{A_{2} =\{ v^{{\ast}}\in Y ^{{\ast}}\;\vert \;N_{\alpha \beta,\beta } + P_{\alpha } = 0,\mbox{ in }\varOmega \},}$$

and

$$\displaystyle{Y _{0}^{{\ast}} =\{ z^{{\ast}}\in Y _{ 1}^{{\ast}}\;\vert \;\;z_{ 11}^{{\ast}} = z_{ 22}^{{\ast}} = 0\mbox{ and }\;(z_{ 11}^{{\ast}})_{ x}\mathbf{n}_{1} + (z_{22}^{{\ast}})_{ y}\mathbf{n}_{2} = 0\mbox{ on }\varGamma \}.}$$

Also,

$$\displaystyle\begin{array}{rcl} \tilde{F}^{{\ast}}(z^{{\ast}})& =& \sup _{ v\in Y _{1}}\{ -\langle v_{1},(z_{11}^{{\ast}})_{ x}\rangle _{L^{2}(\varOmega )} -\langle v_{2},(z_{22}^{{\ast}})_{ y}\rangle _{L^{2}(\varOmega )} \\ & & -\frac{K} {2} \int _{\varOmega }(v_{1})^{2}\;dx -\frac{K} {2} \int _{\varOmega }(v_{2})^{2}\;dx\} \\ & =& \frac{1} {2K}\int _{\varOmega }((z_{11}^{{\ast}})_{ x})^{2}\;dx + \frac{1} {2K}\int _{\varOmega }((z_{22}^{{\ast}})_{ y})^{2}\;dx,{}\end{array}$$
(13.7)

and

$$\displaystyle\begin{array}{rcl} G^{{\ast}}(v^{{\ast}},z^{{\ast}})& =& \sup _{ v\in Y }\{\langle v_{1},v_{1}^{{\ast}}\rangle _{ L^{2}} +\langle v_{2},v_{2}^{{\ast}}\rangle _{ L^{2}} \\ & & +\langle v_{3},v_{3}^{{\ast}} + z^{{\ast}}\rangle _{ L^{2}} - G(v)\} \\ & =& \frac{1} {2}\int _{\varOmega }\overline{h}_{\alpha \beta \lambda \mu }(M_{\alpha \beta } + z_{\alpha \beta }^{{\ast}})(M_{\lambda \mu } + z_{\lambda \mu }^{{\ast}})\;dx \\ & & +\frac{1} {2}\int _{\varOmega }\overline{H}_{\alpha \beta \lambda \mu }N_{\alpha \beta }N_{\lambda \mu }\;dx \\ & & +\frac{1} {2}\int _{\varOmega }\overline{N}_{\alpha \beta }^{K}Q_{\alpha }Q_{\beta }\;dx, {}\end{array}$$
(13.8)

if N K is positive definite, where

$$\displaystyle{ N^{K} = \left \{\begin{array}{ll} N_{11} + K &N_{12} \\ N_{21} & N_{22} + K \end{array} \right \}, }$$
(13.9)
$$\displaystyle{\{\overline{N}_{\alpha \beta }^{K}\} =\{ N_{\alpha \beta }^{K}\}^{-1}.}$$

Moreover,

$$\displaystyle{\{\overline{H}_{\alpha \beta \lambda \mu }\} =\{ H_{\alpha \beta \lambda \mu }\}^{-1},}$$

and

$$\displaystyle{\{\overline{h}_{\alpha \beta \lambda \mu }\} =\{ h_{\alpha \beta \lambda \mu }\}^{-1}.}$$

Here we recall that \(z_{12}^{{\ast}} = z_{21}^{{\ast}} = 0\mbox{ in }\varOmega.\)

Finally, if there is a point \((u_{0},v_{0}^{{\ast}},z_{0}^{{\ast}}) \in U \times A^{{\ast}}\times Y _{0}^{{\ast}}\) such that

$$\displaystyle{\delta \{\tilde{F}^{{\ast}}(z_{ 0}^{{\ast}}) - G^{{\ast}}(v_{ 0}^{{\ast}},z_{ 0}^{{\ast}}) +\langle u_{ 0},\varLambda ^{{\ast}}v_{ 0}^{{\ast}}-\tilde{ P}\rangle _{ L^{2}}\} =\theta,}$$

where K > 0 is such that

$$\displaystyle{ \tilde{F}^{{\ast}}(z^{{\ast}}) - G^{{\ast}}(z^{{\ast}}) > 0,\forall z^{{\ast}}\in Y _{ 0}^{{\ast}}\mbox{ such that }z^{{\ast}}\neq \theta, }$$
(13.10)

we have that

$$\displaystyle\begin{array}{rcl} J(u_{0})& =& \min _{u\in U}\{J(u)\} \\ & =& \sup _{v^{{\ast}}\in A^{{\ast}}}\left \{\inf _{z^{{\ast}}\in Y _{0}^{{\ast}}}\left \{\tilde{F}^{{\ast}}(z^{{\ast}}) - G^{{\ast}}(v^{{\ast}},z^{{\ast}})\right \}\right \} \\ & =& \tilde{F}^{{\ast}}(z_{ 0}^{{\ast}}) - G^{{\ast}}(v_{ 0}^{{\ast}},z_{ 0}^{{\ast}}). {}\end{array}$$
(13.11)

Proof.

Observe that

$$\displaystyle\begin{array}{rcl} G^{{\ast}}(v^{{\ast}},z^{{\ast}})& \geq & \langle \varLambda _{ 3}u,v_{3}^{{\ast}} + z^{{\ast}}\rangle _{ L^{2}} +\langle \varLambda _{1}u,v_{1}^{{\ast}}\rangle _{ L^{2}} \\ & & +\langle \varLambda _{1}u,v_{2}^{{\ast}}\rangle _{ L^{2}} - G(\varLambda u), {}\end{array}$$
(13.12)

\(\forall u \in U,v^{{\ast}}\in A^{{\ast}},z^{{\ast}}\in Y _{0}^{{\ast}}.\)

Thus,

$$\displaystyle\begin{array}{rcl} -\tilde{F}^{{\ast}}(z^{{\ast}}) + G^{{\ast}}(v^{{\ast}},z^{{\ast}})& \geq & -\tilde{F}^{{\ast}}(z^{{\ast}}) +\langle \varLambda _{ 3}u,z^{{\ast}}\rangle _{ L^{2}} \\ & & -G(\varLambda u) +\langle u,\tilde{P}\rangle _{L^{2}},{}\end{array}$$
(13.13)

\(\forall u \in U,v^{{\ast}}\in A^{{\ast}},z^{{\ast}}\in Y _{0}^{{\ast}},\) so that, taking the supremum in z at both sides of last inequality, we obtain

$$\displaystyle\begin{array}{rcl} & & \sup _{z^{{\ast}}\in Y _{0}^{{\ast}}}\{-\tilde{ F}^{{\ast}}(z^{{\ast}}) + G^{{\ast}}(v^{{\ast}},z^{{\ast}})\} \\ & & \quad \geq F(\varLambda _{2}u) - G(\varLambda u) +\langle u,\tilde{P}\rangle _{L^{2}} \\ & & \quad = F(\varLambda _{2}u) - G(\varLambda u) + F_{1}(u) \\ & & \quad = J(u), {}\end{array}$$
(13.14)

\(\forall u \in U,v^{{\ast}}\in A^{{\ast}}.\) Hence,

$$\displaystyle\begin{array}{rcl} \inf _{u\in U}\{J(u)\} \geq \sup _{v^{{\ast}}\in A^{{\ast}}}\left \{\inf _{z^{{\ast}}\in Y _{0}^{{\ast}}}\{\tilde{F}^{{\ast}}(z^{{\ast}}) - G^{{\ast}}(v^{{\ast}},z^{{\ast}})\}\right \}.& &{}\end{array}$$
(13.15)

Finally, suppose that \((u_{0},v_{0}^{{\ast}},z_{0}^{{\ast}}) \in U \times A^{{\ast}}\times Y _{0}^{{\ast}}\) is such that

$$\displaystyle{\delta \{\tilde{F}^{{\ast}}(z_{ 0}^{{\ast}}) - G^{{\ast}}(v_{ 0}^{{\ast}},z_{ 0}^{{\ast}}) +\langle u_{ 0},\varLambda ^{{\ast}}v_{ 0}^{{\ast}}-\tilde{ P}\rangle _{ L^{2}}\} =\theta.}$$

From the variation in v we obtain

$$\displaystyle{ \frac{\partial G^{{\ast}}(v_{0}^{{\ast}},z_{0}^{{\ast}})} {\partial v^{{\ast}}} -\varLambda (u_{0}) =\theta, }$$
(13.16)

that is,

$$\displaystyle{v_{0^{3}}^{{\ast}} + z_{ 0}^{{\ast}} = \frac{\partial G(\varLambda u_{0})} {\partial v_{3}},}$$
$$\displaystyle{v_{0^{1}}^{{\ast}} = \frac{\partial G(\varLambda u_{0})} {\partial v_{1}},}$$
$$\displaystyle{v_{0^{2}}^{{\ast}} = \frac{\partial G(\varLambda u_{0})} {\partial v_{2}},}$$

and

$$\displaystyle\begin{array}{rcl} G^{{\ast}}(v_{ 0}^{{\ast}},z_{ 0}^{{\ast}})& =& \langle \varLambda _{ 3}u_{0},v_{0^{3}}^{{\ast}} + z_{ 0}^{{\ast}}\rangle _{ L^{2}} +\langle \varLambda _{1}u_{0},v_{0^{1}}^{{\ast}}\rangle _{ L^{2}} \\ & & \langle \varLambda _{2}u_{0},v_{0^{2}}^{{\ast}}\rangle _{ L^{2}} - G(\varLambda u_{0}). {}\end{array}$$
(13.17)

From the variation in z we get

$$\displaystyle{ -((z_{0})_{11}^{{\ast}})_{ xx}/K -\frac{\partial G^{{\ast}}(v_{0}^{{\ast}},z_{0}^{{\ast}})} {\partial z_{11}^{{\ast}}} =\theta, }$$
(13.18)
$$\displaystyle{ -((z_{0})_{22}^{{\ast}})_{ yy}/K -\frac{\partial G^{{\ast}}(v_{0}^{{\ast}},z_{0}^{{\ast}})} {\partial z_{22}^{{\ast}}} =\theta, }$$
(13.19)

that is, from this and (13.16) we get

$$\displaystyle{-((z_{0})_{11}^{{\ast}})_{ x} = K(w_{0})_{x},}$$
$$\displaystyle{-((z_{0})_{22}^{{\ast}})_{ y} = K(w_{0})_{y},}$$

so that

$$\displaystyle{ \tilde{F}^{{\ast}}(z_{ 0}^{{\ast}}) =\langle (z_{ 0})_{11}^{{\ast}},(w_{ 0})_{xx}\rangle _{L^{2}(\varOmega )} +\langle (z_{0})_{22}^{{\ast}},(w_{ 0})_{yy}\rangle _{L^{2}(\varOmega )} - F(\varLambda _{2}u_{0}). }$$
(13.20)

From the variation in u, we get

$$\displaystyle{ \varLambda ^{{\ast}}v_{ 0}^{{\ast}}-\tilde{ P} = 0, }$$
(13.21)

so that \(v_{0}^{{\ast}}\in A^{{\ast}}\). Therefore, from (13.17), (13.20), and (13.21) we have

$$\displaystyle\begin{array}{rcl} & & \tilde{F}^{{\ast}}(z_{ 0}^{{\ast}}) - G^{{\ast}}(v_{ 0}^{{\ast}},z_{ 0}^{{\ast}}) \\ & & \quad = G(\varLambda u_{0}) - F_{2}(\varLambda u_{0}) -\langle u_{0},\tilde{P}\rangle _{L^{2}} \\ & & \quad = J(u_{0}). {}\end{array}$$
(13.22)

To complete the proof just observe that from the condition indicated in (13.10), the extremal relations (13.18) and (13.19) refer to a global optimization (in z , for a fixed v 0 ), so that the infimum indicated in the dual formulation is attained for the z 0 in question.

From this and (13.22), the proof is complete.

3 Another Duality Principle

In this section we present another result, which is summarized by the following theorem.

Theorem 13.3.1.

Considering the introduction statements, let \((G\circ \varLambda ): U \rightarrow \mathbb{R}\) be expressed by

$$\displaystyle\begin{array}{rcl} G(\varLambda u)& =& \frac{1} {2}\int _{\varOmega }H_{\alpha \beta \lambda \mu }\gamma _{\alpha \beta }(u)\gamma _{\lambda \mu }(u)\;dx \\ & & +\frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\kappa _{\alpha \beta }(u)\kappa _{\lambda \mu }(u)\;dx,{}\end{array}$$
(13.23)

where

$$\displaystyle{\varLambda (u) =\{\gamma (u),\kappa (u)\},}$$
$$\displaystyle{\gamma _{\alpha \beta }(u) = \frac{u_{\alpha,\beta } + u_{\beta,\alpha }} {2} + \frac{w_{,\alpha }w_{,\beta }} {2},}$$
$$\displaystyle{\kappa _{\alpha \beta }(u) = -w_{,\alpha \beta },}$$

where \(u = (u_{\alpha },w) \in U = W_{0}^{1,2}(\varOmega; \mathbb{R}^{2}) \times W_{0}^{2,2}(\varOmega ).\)

As above, define \(F: U \rightarrow \mathbb{R}\) by

$$\displaystyle{F(u) =\langle w,P\rangle _{L^{2}} +\langle u_{\alpha },P_{\alpha }\rangle _{L^{2}},}$$

and \(J: U \rightarrow \mathbb{R}\) by

$$\displaystyle{J(u) = (G\circ \varLambda )(u) - F(u).}$$

Under such assumptions, we have

$$\displaystyle{ \inf _{u\in U}\{J(u)\} \geq \sup _{N\in A^{{\ast}}}\{- G_{1}^{{\ast}}(N) -\tilde{ G}_{ 2}^{{\ast}}(-N)\}, }$$
(13.24)

where

$$\displaystyle{G_{1}(\gamma (u)) = \frac{1} {2}\int _{\varOmega }H_{\alpha \beta \lambda \mu }\gamma _{\alpha \beta }(u)\gamma _{\lambda \mu }(u)\;dx,}$$
$$\displaystyle{G_{2}(u) = \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\kappa _{\alpha \beta }(u)\kappa _{\lambda \mu }(u)\;dx - F(u),}$$

so that

$$\displaystyle{J(u) = G_{1}(\gamma (u)) + G_{2}(u).}$$

Moreover,

$$\displaystyle\begin{array}{rcl} G_{1}^{{\ast}}(N)& =& \sup _{ v\in Y }\{\langle v,N\rangle _{L^{2}} - G_{1}(v)\} \\ & =& \frac{1} {2}\int _{\varOmega }\overline{H}_{\alpha \beta \lambda \mu }N_{\alpha \beta }N_{\lambda \mu }\;dx, {}\end{array}$$
(13.25)

and

$$\displaystyle\begin{array}{rcl} \tilde{G}_{2}^{{\ast}}(-N)& =& \sup _{ u\in U}\{\langle \gamma (u),-N\rangle _{L^{2}} - G_{2}(u)\}, {}\\ & =& \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\hat{w}_{,\alpha \beta }\hat{w}_{,\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }\hat{w}_{,\alpha }\hat{w}_{,\beta }\;dx, {}\\ \end{array}$$

if

$$\displaystyle{N =\{ N_{\alpha \beta }\} \in A^{{\ast}} = A_{ 1} \cap A_{2},}$$

where \(\hat{w} \in W_{0}^{2,2}(\varOmega )\) is the solution of equation

$$\displaystyle{(h_{\alpha \beta \lambda \mu }\hat{w}_{,\lambda \mu })_{,\alpha \beta } - (N_{\alpha \beta }\hat{w}_{,\alpha })_{,\beta } - P = 0,\mbox{ in }\varOmega.}$$

Also,

$$\displaystyle{A_{1} =\{ N \in Y ^{{\ast}}\;\vert \;\tilde{J}(w) > 0,\forall w \in W_{ 0}^{2,2}(\varOmega )\mbox{ such that }w\neq \theta \},}$$
$$\displaystyle{\tilde{J}(w) = \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }w_{,\alpha \beta }w_{,\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx,}$$

and

$$\displaystyle{A_{2} =\{ N \in Y ^{{\ast}}\;\vert \;N_{\alpha \beta,\beta } + P_{\alpha } = 0\mbox{ in }\varOmega \}.}$$

Finally, if there exists u 0 ∈ U such that δJ(u 0 ) = θ and \(N_{0} =\{ N_{\alpha \beta }(u_{0})\} \in A_{1}\) , where \(N_{\alpha \beta }(u_{0}) = H_{\alpha \beta \lambda \mu }\gamma _{\lambda \mu }(u_{0}),\) then

$$\displaystyle\begin{array}{rcl} J(u_{0})& =& \min _{u\in U}\{J(u)\} \\ & =& \max _{N\in A^{{\ast}}}\{- G_{1}^{{\ast}}(N) -\tilde{ G}_{ 2}^{{\ast}}(-N)\} \\ & =& -G_{1}^{{\ast}}(N_{ 0}) -\tilde{ G}_{2}^{{\ast}}(-N_{ 0})\}.{}\end{array}$$
(13.26)

Proof.

Clearly

$$\displaystyle\begin{array}{rcl} J(u)& =& G_{1}(\gamma (u)) + G_{2}(u) \\ & =& -\langle \gamma (u),N\rangle _{L^{2}} + G_{1}(\gamma (u)) +\langle \gamma (u),N\rangle _{L^{2}} + G_{2}(u) \\ & \geq & \inf _{v\in Y }\{ -\langle v,N\rangle _{L^{2}} + G_{1}(v)\} +\inf _{u\in U}\{ -\langle \gamma (u),-N\rangle _{L^{2}} + G_{2}(u)\} \\ & =& -G_{1}^{{\ast}}(N) -\tilde{ G}_{ 2}^{{\ast}}(-N),\forall u \in U,\;N \in Y ^{{\ast}}. {}\end{array}$$
(13.27)

Hence,

$$\displaystyle{ \inf _{u\in U}\{J(u)\} \geq \sup _{N\in A^{{\ast}}}\{- G_{1}^{{\ast}}(N) -\tilde{ G}_{ 2}^{{\ast}}(-N)\}. }$$
(13.28)

Now suppose there exists u 0 ∈ U such that δ J(u 0) = θ and \(N_{0} =\{ N_{\alpha \beta }(u_{0})\} \in A_{1}\).

First, note that from δ J(u 0) = θ, the following extremal equation is satisfied:

$$\displaystyle{(N_{0})_{\alpha \beta,\beta } + P_{\alpha } = 0\mbox{ in }\varOmega,}$$

that is, N 0 ∈ A 2, so that \(N_{0} \in A_{1} \cap A_{2} = A^{{\ast}}.\)

Thus, from N 0 ∈ A 1, we obtain

$$\displaystyle\begin{array}{rcl} \tilde{G}_{2}^{{\ast}}(-N_{ 0})& =& \sup _{u\in U}\{\langle \gamma (u),-N_{0}\rangle _{L^{2}} - G_{2}(u)\}, \\ & =& \langle \gamma (\hat{u}),-N_{0}\rangle _{L^{2}} - G_{2}(\hat{u}) \\ & =& \left \langle \frac{\hat{w}_{,\alpha }\hat{w}_{,\beta }} {2},-(N_{0})_{\alpha \beta }\right \rangle _{L^{2}} -\frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\hat{w}_{,\alpha \beta }\hat{w}_{,\lambda \mu }\;dx \\ & & +\langle \hat{w},P\rangle _{L^{2}}, {}\end{array}$$
(13.29)

where \(\hat{w} \in W_{0}^{2,2}(\varOmega )\) is the solution of equation

$$\displaystyle{ \left ((N_{0})_{\alpha \beta }\hat{w}_{,\alpha }\right )_{,\beta } - (h_{\alpha \beta \lambda \mu }\hat{w}_{,\lambda \mu })_{,\alpha \beta } + P = 0,\mbox{ in }\varOmega. }$$
(13.30)

Replacing such a relation in (13.29), we obtain

$$\displaystyle\begin{array}{rcl} \tilde{G}_{2}^{{\ast}}(-N_{ 0}) = \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }\hat{w}_{,\alpha \beta }\hat{w}_{,\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }(N_{0})_{\alpha \beta }\hat{w}_{,\alpha }\hat{w}_{,\beta }\;dx.& & {}\\ \end{array}$$

Hence, also from the equation δ J(u 0) = θ and (13.30), we may get \(\hat{w} = w_{0},\) so that from this and (13.29), we obtain

$$\displaystyle\begin{array}{rcl} \tilde{G}_{2}^{{\ast}}(-N_{ 0}) =\langle \gamma (u_{0}),-N_{0}\rangle _{L^{2}} - G_{2}(u_{0}).& &{}\end{array}$$
(13.31)

Finally, considering that

$$\displaystyle{(N_{0})_{\alpha \beta } = H_{\alpha \beta \lambda \mu }\gamma _{\lambda \mu }(u_{0}),}$$

we get

$$\displaystyle{G_{1}^{{\ast}}(N_{ 0}) =\langle \gamma (u_{0}),N_{0}\rangle _{L^{2}} - G_{1}(\gamma (u_{0})),}$$

so that

$$\displaystyle\begin{array}{rcl} -G_{1}^{{\ast}}(N_{ 0}) -\tilde{ G}_{2}^{{\ast}}(-N_{ 0})& =& -\langle \gamma (u_{0}),N_{0}\rangle _{L^{2}} + G_{1}(\gamma (u_{0})) \\ & & -\langle \gamma (u_{0}),-N_{0}\rangle _{L^{2}} + G_{2}(u_{0}) \\ & =& G_{1}(\gamma (u_{0})) + G_{2}(u_{0}) \\ & =& J(u_{0}). {}\end{array}$$
(13.32)

From this and (13.28) and also from the fact that N 0 ∈ A , the proof is complete.

Remark 13.3.2.

From the last duality principle, we may write

$$\displaystyle{\inf _{u\in U}\{J(u)\} \geq \sup _{(M,N,u)\in \hat{A}}\{ -\tilde{ J}^{{\ast}}(M,N,u)\},}$$

where

$$\displaystyle\begin{array}{rcl} \tilde{J}^{{\ast}}(M,N,u)& =& G_{ 1}^{{\ast}}(N) +\tilde{ G}_{ 2}^{{\ast}}(-N) \\ & =& \frac{1} {2}\int _{\varOmega }\overline{H}_{\alpha \beta \lambda \mu }N_{\alpha \beta }N_{\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }\overline{h}_{\alpha \beta \lambda \mu }M_{\alpha \beta }M_{\lambda \mu }\;dx \\ & & +\frac{1} {2}\int _{\varOmega }N_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx, {}\end{array}$$
(13.33)

\(\hat{A} = A_{1} \cap A_{2} \cap A_{3} \cap A_{4},\)

$$\displaystyle{A_{3} =\{ (M,N,u) \in Y ^{{\ast}}\times Y ^{{\ast}}\times U\;\vert \;M_{\alpha \beta,\alpha \beta } + (N_{\alpha \beta }w_{,\alpha })_{,\beta } + P = 0,\mbox{ in }\varOmega \},}$$
$$\displaystyle{A_{4} =\{ (M,N,u) \in Y ^{{\ast}}\times Y ^{{\ast}}\times U\;\vert \;\{M_{\alpha \beta }\} =\{ h_{\alpha \beta \lambda \mu }(-w_{,\lambda \mu })\},\mbox{ in }\varOmega \},}$$

and A 1 and A 2 as above specified, that is,

$$\displaystyle{A_{1} =\{ N \in Y ^{{\ast}}\;\vert \;\tilde{J}(w) > 0,\forall w \in W_{ 0}^{2,2}(\varOmega )\mbox{ such that }w\neq \theta \},}$$

where

$$\displaystyle{\tilde{J}(w) = \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }w_{,\alpha \beta }w_{,\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx,}$$

and

$$\displaystyle{A_{2} =\{ (M,N,u) \in Y ^{{\ast}}\times Y ^{{\ast}}\times U\;\vert \;N_{\alpha \beta,\beta } + P_{\alpha } = 0\mbox{ in }\varOmega \}.}$$

Finally, we could suggest as a possible approximate dual formulation the problem of maximizing \(-J_{K}^{{\ast}}(M,N,u)\) on \(A_{1} \cap A_{2} \cap A_{3},\) where K > 0 and

$$\displaystyle\begin{array}{rcl} J_{K}^{{\ast}}(M,N,u)& =& \frac{1} {2}\int _{\varOmega }\overline{H}_{\alpha \beta \lambda \mu }N_{\alpha \beta }N_{\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }\overline{h}_{\alpha \beta \lambda \mu }M_{\alpha \beta }M_{\lambda \mu }\;dx \\ & & +\frac{1} {2}\int _{\varOmega }N_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx \\ & & +\frac{K} {2} \sum _{\alpha,\beta =1}^{2}\|M_{\alpha \beta } - h_{\alpha \beta \lambda \mu }(-w_{,\lambda \mu })\|_{2}^{2}.{}\end{array}$$
(13.34)

A study about the system behavior as K → + is planned for a future work. Anyway, big values for K > 0 allow the gap function \(\frac{1} {2}\int _{\varOmega }N_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx\) to be nonpositive at a possible optimal point inside the region of convexity of J K .

4 An Algorithm for Obtaining Numerical Results

In this section we develop an algorithm which we prove, under certain mild hypotheses; it is convergent up to a subsequence (the result stated in the next lines must be seen as an existence one and, of course, it is not the full proof of convergence from a numerical analysis point of view). Such a result is summarized by the following theorem.

Theorem 13.4.1.

Consider the system of equations relating the boundary value form of the Kirchhoff–Love plate model, namely

$$\displaystyle{ \left \{\begin{array}{lll} M_{\alpha \beta,\alpha \beta } + (N_{\alpha \beta }w_{,\alpha })_{,\beta } + P = 0,&\mbox{ in }\varOmega \\ \\ N_{\alpha \beta,\beta } + P_{\alpha } = 0 &\mbox{ in }\varOmega \\ \\ u_{\alpha } = w = \frac{\partial w} {\partial \mathbf{n}} = 0 &\mbox{ on }\partial \varOmega \end{array} \right. }$$
(13.35)

where

$$\displaystyle{ N_{\alpha \beta }(u) = H_{\alpha \beta \lambda \mu }\gamma _{\lambda \mu }(u), }$$
(13.36)
$$\displaystyle{ M_{\alpha \beta }(u) = h_{\alpha \beta \lambda \mu }\kappa _{\lambda \mu }(u). }$$
(13.37)

Define, as above,

$$\displaystyle\begin{array}{rcl} (G\circ \varLambda )(u)& =& \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }(u)\gamma _{\alpha \beta }(u)\;dx \\ & & +\frac{1} {2}\int _{\varOmega }M_{\alpha \beta }(u)\kappa _{\alpha \beta }(u)\;dx,{}\end{array}$$
(13.38)
$$\displaystyle{ F(u) =\langle w,P\rangle _{L^{2}} +\langle u_{\alpha },P_{\alpha }\rangle _{L^{2}} }$$
(13.39)

and \(J: U \rightarrow \mathbb{R}\) by

$$\displaystyle\begin{array}{rcl} J(u) = G(\varLambda u) - F(u),\forall u \in U.& &{}\end{array}$$
(13.40)

Assume \(\{\|P_{\alpha }\|_{2}\}\) are small enough so that (from [22] pages 285–287) if either

$$\displaystyle{\|u_{\alpha }\|_{W^{1,2}(\varOmega )} \rightarrow \infty }$$

or

$$\displaystyle{\|w\|_{W^{2,2}(\varOmega )} \rightarrow \infty,}$$

then

$$\displaystyle{J(u) \rightarrow +\infty.}$$

Let \(\{u_{n} = ((u_{n})_{\alpha },w_{n})\} \subset U\) be the sequence obtained through the following algorithm:

  1. 1.

    Set n = 1.

  2. 2.

    Choose \((z_{1}^{{\ast}})_{1},(z_{2}^{{\ast}})_{1} \in L^{2}(\varOmega ).\)

  3. 3.

    Compute u n by

    $$\displaystyle\begin{array}{rcl} u_{n}& =& \mbox{ argmin}_{u\in U}\left \{G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx\right. {}\\ & & \left.-\langle w_{x},(z_{1}^{{\ast}})_{ n}\rangle _{L^{2}} -\langle w_{y},(z_{2}^{{\ast}})_{ n}\rangle _{L^{2}}\right. {}\\ & & \left.+ \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})_{ n}^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})_{ n}^{2}\;dx - F(u)\right \}, {}\\ \end{array}$$

    which means to solve the equation

    $$\displaystyle{ \left \{\begin{array}{lll} M_{\alpha \beta,\alpha \beta } + (N_{\alpha \beta }w_{,\alpha })_{,\beta } + P + Kw_{,\alpha \alpha } - (z_{n}^{{\ast}})_{\alpha,\alpha } = 0,&\mbox{ in }\varOmega \\ \\ N_{\alpha \beta,\beta } + P_{\alpha } = 0 &\mbox{ in }\varOmega \\ \\ u_{\alpha } = w = \frac{\partial w} {\partial \mathbf{n}} = 0 &\mbox{ on }\partial \varOmega \end{array} \right. }$$
    (13.41)
  4. 4.

    Compute \(z_{n+1}^{{\ast}} = ((z_{1}^{{\ast}})_{n+1},(z_{2}^{{\ast}})_{n+1})\) by

    $$\displaystyle\begin{array}{rcl} z_{n+1}^{{\ast}}& =& \mbox{ argmin}_{ z^{{\ast}}\in L^{2}\times L^{2}}\left \{G(\varLambda u_{n}) + \frac{K} {2} \int _{\varOmega }(w_{n})_{x}^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{n})_{y}^{2}\;dx\right. {}\\ & & \left.-\langle (w_{n})_{x},z_{1}^{{\ast}}\rangle _{ L^{2}} -\langle (w_{n})_{y},z_{2}^{{\ast}}\rangle _{ L^{2}}\right. {}\\ & & \left.+ \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})^{2}\;dx - F(u_{ n})\right \}, {}\\ \end{array}$$

    that is,

    $$\displaystyle{(z_{1}^{{\ast}})_{ n+1} = K(w_{n})_{x},}$$

    and

    $$\displaystyle{(z_{2}^{{\ast}})_{ n+1} = K(w_{n})_{y}.}$$
  5. 5.

    Set n → n + 1 and go to step 3 till the satisfaction of a suitable approximate convergence criterion.

Assume \(\{u_{n} = ((u_{n})_{\alpha },w_{n})\} \subset U\) is such that for a sufficiently big K > 0 we have

$$\displaystyle\begin{array}{rcl} & & N_{11}(u_{n}) + K > 0,\;N_{22}(u_{n}) + K > 0, \\ & & \mbox{ and }(N_{11}(u_{n}) + K)(N_{22}(u_{n}) + K) - N_{12}^{2}(u_{ n}) > 0, \\ & & \mbox{ in }\varOmega,\;\forall n \in \mathbb{N}. {}\end{array}$$
(13.42)

Under such assumptions, the sequence {u n } is uniquely defined (depending only on \((z^{{\ast}})_{1}\) ), and such that, up to a subsequence not relabeled, for some \(u_{0} = ((u_{0})_{\alpha },w_{0}) \in U\) , we have

$$\displaystyle{(u_{n})_{\alpha } \rightharpoonup (u_{0})_{\alpha },\mbox{ weakly in }W_{0}^{1,2}(\varOmega ),}$$
$$\displaystyle{(u_{n})_{\alpha } \rightarrow (u_{0})_{\alpha },\mbox{ strongly in }L^{2}(\varOmega ),}$$
$$\displaystyle{w_{n} \rightharpoonup w_{0},\mbox{ weakly in }W_{0}^{2,2}(\varOmega ),}$$

and

$$\displaystyle{w_{n} \rightarrow w_{0},\mbox{ strongly in }W_{0}^{1,2}(\varOmega ),}$$

where

$$\displaystyle{u_{0} \in U}$$

is a solution for the system of equations indicated in (13.35).

Proof.

Since \(J: U \rightarrow \mathbb{R}\) is defined by

$$\displaystyle\begin{array}{rcl} J(u) = G(\varLambda u) - F(u),& &{}\end{array}$$
(13.43)

we have

$$\displaystyle\begin{array}{rcl} J(u)& =& G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx \\ & & -\langle w_{x},z_{1}^{{\ast}}\rangle _{ L^{2}} -\langle w_{y},z_{2}^{{\ast}}\rangle _{ L^{2}} \\ & & -\frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx -\frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx \\ & & +\langle w_{x},z_{1}^{{\ast}}\rangle _{ L^{2}} +\langle w_{y},z_{2}^{{\ast}}\rangle _{ L^{2}} - F(u) \\ & \leq & G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx\frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx \\ & & -\langle w_{x},z_{1}^{{\ast}}\rangle _{ L^{2}} -\langle w_{y},z_{2}^{{\ast}}\rangle _{ L^{2}} \\ & & +\sup _{v\in L^{2}\times L^{2}}\left \{-\frac{K} {2} \int _{\varOmega }v_{1}^{2}\;dx -\frac{K} {2} \int _{\varOmega }v_{2}^{2}\;dx\right. \\ & & \left.+\langle v_{1},z_{1}^{{\ast}}\rangle _{ L^{2}} +\langle v_{2},z_{2}^{{\ast}}\rangle _{ L^{2}}\right \} - F(u) \\ & =& G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx + \\ & & -\langle w_{x},z_{1}^{{\ast}}\rangle _{ L^{2}} -\langle w_{y},z_{2}^{{\ast}}\rangle _{ L^{2}} \\ & & + \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})^{2}\;dx - F(u),{}\end{array}$$
(13.44)

\(\forall u \in U,\;z^{{\ast}}\in L^{2}(\varOmega ) \times L^{2}(\varOmega ).\)

From the hypotheses, {u n } is inside the region of strict convexity of the functional in U (for z fixed) in question, so that it is uniquely defined for each z n (through the general results in [11] we may infer the region of convexity of the functional

$$\displaystyle\begin{array}{rcl} \overline{J}(u)& & = G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx + \\ & & \quad -\langle w_{x},(z_{1}^{{\ast}})_{ n}\rangle _{L^{2}} -\langle w_{y},(z_{2}^{{\ast}})_{ n}\rangle _{L^{2}} \\ & & \quad + \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})_{ n}^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})_{ n}^{2}\;dx - F(u),{}\end{array}$$
(13.45)

corresponds to the satisfaction of constraints

$$\displaystyle\begin{array}{rcl} & & N_{11}(u) + K > 0,\;N_{22}(u) + K > 0, \\ & & \mbox{ and }(N_{11}(u) + K)(N_{22}(u) + K) - N_{12}^{2}(u) > 0,\mbox{ in }\varOmega ).{}\end{array}$$
(13.46)

Denoting

$$\displaystyle\begin{array}{rcl} \alpha _{n}& =& G(\varLambda u_{n}) + \frac{K} {2} \int _{\varOmega }(w_{n})_{x}^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{n})_{y}^{2}\;dx + \\ & & -\langle (w_{n})_{x},(z_{1}^{{\ast}})_{ n}\rangle _{L^{2}} -\langle (w_{n})_{y},(z_{2}^{{\ast}})_{ n}\rangle _{L^{2}} \\ & & + \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})_{ n}^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})_{ n}^{2}\;dx - F(u_{ n}),{}\end{array}$$
(13.47)

we may easily verify that {α n } is a real nonincreasing sequence bounded below by \(\inf _{u\in U}\{J(u)\};\) therefore, there exists \(\alpha \in \mathbb{R}\) such that

$$\displaystyle{ \lim _{n\rightarrow \infty }\alpha _{n} =\alpha. }$$
(13.48)

From the hypotheses

$$\displaystyle{J(u) \rightarrow +\infty,}$$

\(\mbox{ if either }\|u_{\alpha }\|_{W_{0}^{1,2}(\varOmega )} \rightarrow \infty \) or \(\|w\|_{W_{0}^{2,2}(\varOmega )} \rightarrow \infty.\)

From this, (13.44), (13.47), and (13.48) we may infer there exists C > 0 such that

$$\displaystyle{\|w_{n}\|_{W_{0}^{2,2}(\varOmega )} < C,\forall n \in \mathbb{N},}$$

and

$$\displaystyle{\|(u_{\alpha })_{n}\|_{W_{0}^{1,2}(\varOmega )} < C,\forall n \in \mathbb{N}.}$$

Thus, from the Rellich–Kondrachov theorem, up to a subsequence not relabeled, there exists \(u_{0} = ((u_{0})_{\alpha },w_{0}) \in U\) such that

$$\displaystyle{(u_{n})_{\alpha } \rightharpoonup (u_{0})_{\alpha },\mbox{ weakly in }W_{0}^{1,2}(\varOmega ),}$$
$$\displaystyle{(u_{n})_{\alpha } \rightarrow (u_{0})_{\alpha },\mbox{ strongly in }L^{2}(\varOmega ),}$$
$$\displaystyle{w_{n} \rightharpoonup w_{0},\mbox{ weakly in }W_{0}^{2,2}(\varOmega ),}$$

and

$$\displaystyle{w_{n} \rightarrow w_{0},\mbox{ strongly in }W_{0}^{1,2}(\varOmega ),}$$

so that, considering the algorithm in question,

$$\displaystyle{z_{n} \rightarrow z_{0}^{{\ast}}\mbox{ strongly in }L^{2}(\varOmega; \mathbb{R}^{2}),}$$

where

$$\displaystyle{(z_{0}^{{\ast}})_{\alpha } = K(w_{ 0})_{,\alpha }.}$$

From these last results, the Sobolev imbedding theorem and relating results (more specifically, Korn’s inequality and its consequences; details may be found in [21]), we have that there exist K 1, K 2 > 0 such that

$$\displaystyle{\|(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }\|_{2} < K_{1},\forall n \in \mathbb{N},\;\alpha,\beta \in \{ 1,2\},}$$

and

$$\displaystyle{\|(w_{n})_{,\alpha }\|_{4} < K_{2},\forall n \in \mathbb{N},\;\alpha \in \{ 1,2\}.}$$

On the other hand, u n  ∈ U such that

$$\displaystyle\begin{array}{rcl} u_{n}& =& \mbox{ argmin}_{u\in U}\left \{G(\varLambda u) + \frac{K} {2} \int _{\varOmega }(w_{x})^{2}\;dx + \frac{K} {2} \int _{\varOmega }(w_{y})^{2}\;dx\right. \\ & & \left.-\langle w_{x},(z_{1}^{{\ast}})_{ n}\rangle _{L^{2}} -\langle w_{y},(z_{2}^{{\ast}})_{ n}\rangle _{L^{2}}\right. \\ & & \left.+ \frac{1} {2K}\int _{\varOmega }(z_{1}^{{\ast}})_{ n}^{2}\;dx + \frac{1} {2K}\int _{\varOmega }(z_{2}^{{\ast}})_{ n}^{2}\;dx - F(u)\right \}{}\end{array}$$
(13.49)

is also such that

$$\displaystyle\begin{array}{rcl} & & \left (h_{\alpha \beta \lambda \mu }(w_{n})_{,\lambda \mu }\right )_{,\alpha \beta } \\ & & \quad -\left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{n})_{\lambda,\mu } + (u_{n})_{\lambda,\mu }} {2} + \frac{(w_{n})_{,\lambda }(w_{n})_{,\mu }} {2} \right )(w_{n})_{,\beta }\right )_{,\alpha } \\ & & \quad - K(w_{n})_{,\alpha \alpha } + (z_{n}^{{\ast}})_{\alpha,\alpha } - P = 0\mbox{ in }\varOmega, {}\end{array}$$
(13.50)

and

$$\displaystyle\begin{array}{rcl} & & \left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{n})_{\lambda,\mu } + (u_{n})_{\lambda,\mu }} {2} + \frac{(w_{n})_{,\lambda }(w_{n})_{,\mu }} {2} \right )\right )_{,\beta } \\ & & \quad + P_{\alpha } = 0\mbox{ in }\varOmega, {}\end{array}$$
(13.51)

in the sense of distributions (theoretical details about similar results may be found in [25]).

Fix \(\phi \in C_{c}^{\infty }(\varOmega ).\) In the next lines, we will prove that

$$\displaystyle\begin{array}{rcl} & & \left \langle \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} + (w_{n})_{,\alpha }(w_{n})_{,\beta }\right )(w_{n})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}} \\ & \rightarrow & \left \langle \left (\frac{(u_{0})_{\alpha,\beta } + (u_{0})_{\beta,\alpha }} {2} + (w_{0})_{,\alpha }(w_{0})_{,\beta }\right )(w_{0})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}},{}\end{array}$$
(13.52)

as \(n \rightarrow \infty,\;\forall \alpha,\beta \in \{ 1,2\}\) (here the repeated indices do not sum).

Observe that, since

$$\displaystyle{(u_{n})_{\alpha } \rightharpoonup (u_{0})_{\alpha },\mbox{ weakly in }W_{0}^{1,2}(\varOmega ),}$$

from the Hölder inequality, we obtain

$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right )(w_{n})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}}\right. {}\\ & & \qquad -\left.\left \langle \left (\frac{(u_{0})_{\alpha,\beta } + (u_{0})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad = \left \vert \left \langle \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right )(w_{n})_{,\alpha } -\left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha }\right.\right. {}\\ & & \left.\left.\qquad + \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha } -\left (\frac{(u_{0})_{\alpha,\beta } + (u_{0})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \leq \left \|\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right \|_{2}\|(w_{n})_{,\alpha } - (w_{0})_{,\alpha }\|_{2}\|\phi _{,\beta }\|_{\infty } {}\\ & &\qquad + \left \vert \left \langle \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha } -\left (\frac{(u_{0})_{\alpha,\beta } + (u_{0})_{\beta,\alpha }} {2} \right )(w_{0})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \leq K_{1}\|(w_{n})_{,\alpha } - (w_{0})_{,\alpha }\|_{2}\|\phi _{,\beta }\|_{\infty } {}\\ & &\qquad + \left \vert \left \langle \left (\frac{(u_{n})_{\alpha,\beta } + (u_{n})_{\beta,\alpha }} {2} \right ) -\left (\frac{(u_{0})_{\alpha,\beta } + (u_{0})_{\beta,\alpha }} {2} \right ),(w_{0})_{,\alpha }\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \rightarrow 0,\mbox{ as }n \rightarrow \infty. {}\\ \end{array}$$

Moreover, from the generalized Hölder inequality, we get

$$\displaystyle\begin{array}{rcl} & & \left \vert \left \langle (w_{n})_{,\alpha }(w_{n})_{,\beta }(w_{n})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}} -\left \langle (w_{0})_{,\alpha }(w_{0})_{,\beta }(w_{0})_{,\alpha },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad = \left \vert \left \langle (w_{n})_{,\alpha }^{2}(w_{ n})_{,\beta } - (w_{n})_{,\alpha }^{2}(w_{ 0})_{,\beta } + (w_{n})_{,\alpha }^{2}(w_{ 0})_{,\beta } - (w_{0})_{,\alpha }^{2}(w_{ 0})_{,\beta },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \leq \left \vert \left \langle (w_{n})_{,\alpha }^{2}((w_{ n})_{,\beta } - (w_{0})_{,\beta }),\phi _{,\beta }\right \rangle _{L^{2}}\right \vert + \left \vert \left \langle (w_{n})_{,\alpha }^{2} - (w_{ 0})_{,\alpha }^{2})(w_{ 0})_{,\beta },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \leq \left \vert \left \langle (w_{n})_{,\alpha }^{2}((w_{ n})_{,\beta } - (w_{0})_{,\beta }),\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\qquad + \left \vert \left \langle ((w_{n})_{,\alpha } + (w_{0})_{,\alpha })((w_{n})_{,\alpha } - (w_{0})_{,\alpha })(w_{0})_{,\beta },\phi _{,\beta }\right \rangle _{L^{2}}\right \vert {}\\ & &\quad \leq \| (w_{n})_{,\alpha }\|_{4}^{2}\|(w_{ n})_{,\alpha } - (w_{0})_{,\alpha }\|_{2}\|\phi _{,\beta }\|_{\infty } {}\\ & &\qquad +\| (w_{n})_{,\alpha } + (w_{0})_{,\alpha }\|_{4}\|(w_{n})_{,\alpha } - (w_{0})_{,\alpha }\|_{2}\|(w_{0})_{,\beta }\|_{4}\|\phi _{,\beta }\|_{\infty } {}\\ & &\quad \leq (K_{2}^{2} + 2K_{ 2}K_{2})\|(w_{n})_{,\alpha } - (w_{0})_{,\alpha }\|_{2}\|\phi _{,\beta }\|_{\infty } {}\\ & &\quad \rightarrow 0,\mbox{ as }n \rightarrow \infty, {}\\ \end{array}$$

where also up to here the repeated indices do not sum.

Thus (13.52) has been proven, so that we may infer that

$$\displaystyle\begin{array}{rcl} & & \left \langle \left (h_{\alpha \beta \lambda \mu }(w_{0})_{,\lambda \mu }\right )_{,\alpha \beta }\right. {}\\ & & \left.-\left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{0})_{\lambda,\mu } + (u_{0})_{\lambda,\mu }} {2} + \frac{(w_{0})_{,\lambda }(w_{0})_{,\mu }} {2} \right )(w_{0})_{,\beta }\right )_{,\alpha } - P,\phi \right \rangle _{L^{2}} {}\\ & =& \lim _{n\rightarrow \infty }\left \{\left \langle \left (h_{\alpha \beta \lambda \mu }(w_{n})_{,\lambda \mu }\right )_{,\alpha \beta }\right.\right. {}\\ & & -\left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{n})_{\lambda,\mu } + (u_{n})_{\lambda,\mu }} {2} + \frac{(w_{n})_{,\lambda }(w_{n})_{,\mu }} {2} \right )(w_{n})_{,\beta }\right )_{,\alpha } {}\\ & & \left.\left.-K(w_{n})_{,\alpha \alpha } + (z_{n}^{{\ast}})_{\alpha,\alpha } - P,\phi \right \rangle _{L^{2}}\right \} {}\\ & =& \lim _{n\rightarrow \infty }\;0 = 0. {}\\ \end{array}$$

Since \(\phi \in C_{c}^{\infty }(\varOmega )\) is arbitrary, we obtain

$$\displaystyle\begin{array}{rcl} & & (h_{\alpha \beta \lambda \mu }(w_{0})_{,\lambda \mu })_{,\alpha \beta } {}\\ & & \quad -\left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{0})_{\lambda,\mu } + (u_{0})_{\lambda,\mu }} {2} + \frac{(w_{0})_{,\lambda }(w_{0})_{,\mu }} {2} \right )(w_{0})_{,\beta }\right )_{,\alpha } - P = 0,\mbox{ in }\varOmega {}\\ \end{array}$$

in the distributional sense.

Similarly,

$$\displaystyle\begin{array}{rcl} & & \left (H_{\alpha \beta \lambda \mu }\left (\frac{(u_{0})_{\lambda,\mu } + (u_{0})_{\lambda,\mu }} {2} + \frac{(w_{0})_{,\lambda }(w_{0})_{,\mu }} {2} \right )\right )_{,\beta } \\ & & \quad + P_{\alpha } = 0,\mbox{ in }\varOmega, {}\end{array}$$
(13.53)

for α ∈ { 1, 2}, also in the distributional sense.

From the convergence in question, we also get in a weak sense

$$\displaystyle{(u_{0})_{\alpha } = w_{0} = \frac{\partial w_{0}} {\partial \mathbf{n}} = 0,\mbox{ on }\partial \varOmega.}$$

The proof is complete.

Remark 13.4.2.

We emphasize that for each \(n \in \mathbb{N}\), from the condition indicated in (13.42), {u n } is obtained through the minimization of a convex functional. Therefore the numerical procedure translates into the solution of a sequence of convex optimization problems.

5 Numerical Results

In this section we present some numerical results. Let \(\varOmega = [0,1] \times [0,1]\) and consider the problem of minimizing \(J: U \rightarrow \mathbb{R}\) where

$$\displaystyle{J(u) = G(\varLambda u) - F(u),}$$
$$\displaystyle{ (G\circ \varLambda )(u) = \frac{1} {2}\int _{\varOmega }N_{\alpha \beta }(u)\gamma _{\alpha \beta }(u)\;dx + \frac{1} {2}\int _{\varOmega }M_{\alpha \beta }(u)\kappa _{\alpha \beta }(u)\;dx, }$$
(13.54)

{N α β } denote the membrane force tensor and {M α β } the moment one, so that from the constitutive relations,

$$\displaystyle{ N_{\alpha \beta }(u) = H_{\alpha \beta \lambda \mu }\gamma _{\lambda \mu }(u), }$$
(13.55)
$$\displaystyle{ M_{\alpha \beta }(u) = h_{\alpha \beta \lambda \mu }\kappa _{\lambda \mu }(u). }$$
(13.56)

Also, \(F: U \rightarrow \mathbb{R}\) is given by

$$\displaystyle{ F(u) =\langle w,P\rangle _{L^{2}} +\langle u_{\alpha },P_{\alpha }\rangle _{L^{2}}. }$$
(13.57)

Here

$$\displaystyle{U =\{ (u_{\alpha },w) \in W^{1,2}(\varOmega; \mathbb{R}^{2}) \times W^{2,2}(\varOmega )\;\vert \;u_{\alpha } = 0\mbox{ on }\varGamma _{ 0},\;w = 0\mbox{ on }\partial \varOmega \},}$$

\(\varGamma _{0} =\{ [0,y] \cup [x,0],\;0 \leq x,y \leq 1\},\) and \(P,P_{1},P_{2} \in L^{2}\) denote the external loads in the directions a 3, a 1, and a 2, respectively.

We consider the particular case where all entries of {H α β λ μ } and {h α β λ μ } are zero, except for H 1111 = H 2222 = H 1212 = 105 and \(h_{1111} = h_{2222} = h_{1212} = 10^{4}\). Moreover P = 1000, P 1 = −100, and P 2 = −100 (units refer to the international system). In a first moment, define the trial functions \(w:\varOmega \rightarrow \mathbb{R}\), \(u_{1}:\varOmega \rightarrow \mathbb{R}\), and \(u_{2}:\varOmega \rightarrow \mathbb{R}\) by

$$\displaystyle{w(x,y) = a_{1}\sin (\pi x)\sin (\pi y) + a_{2}\sin (2\pi x)\sin (2\pi y),}$$
$$\displaystyle{u_{1}(x,y) = a_{3}\sin (\pi x/2)\sin (\pi y/2),}$$
$$\displaystyle{u_{2}(x,y) = a_{4}\sin (\pi x/2)\sin (\pi y/2),}$$

respectively.

The coefficients {a 1, a 2, a 3, a 4} will be found through the extremal points of J.

We have obtained only one real critical point, namely,

$$\displaystyle{(a_{0})_{1} = 0.000832}$$
$$\displaystyle{(a_{0})_{2} = -1.038531 {\ast} 10^{-8}}$$
$$\displaystyle{(a_{0})_{3} = -0.000486}$$
$$\displaystyle{(a_{0})_{4} = -0.000486}$$

so that the candidate to optimal point is \(((u_{0})_{1},(u_{0})_{2},w_{0})\) where

$$\displaystyle{w_{0}(x,y) = (a_{0})_{1}\sin (\pi x)\sin (\pi y) + (a_{0})_{2}\sin (2\pi x)\sin (2\pi y),}$$
$$\displaystyle{(u_{0})_{1}(x,y) = (a_{0})_{3}\sin (\pi x/2)\sin (\pi y/2),}$$
$$\displaystyle{(u_{0})_{2} = (a_{0})_{4}\sin (\pi x/2)\sin (\pi y/2).}$$

With such values for the coefficients, it is clear that N 11(u 0) and N 22(u 0) are negative in Ω so that \(\{N_{\alpha \beta }(u_{0})\}\) is not positive definite. Even so, as we shall see in the next lines, the optimality criterion of the second duality principle developed may be applied. Let

$$\displaystyle{w(x,y) = a_{1}\sin (\pi x)\sin (\pi y) + a_{2}\sin (2\pi x)\sin (2\pi y).}$$

We have that

$$\displaystyle\begin{array}{rcl} W(a_{1},a_{2})& =& \frac{1} {2}\int _{\varOmega }h_{\alpha \beta \lambda \mu }w_{,\alpha \beta }w_{,\lambda \mu }\;dx + \frac{1} {2}\int _{\varOmega }(N(u_{0}))_{\alpha \beta }w_{,\alpha }w_{,\beta }\;dx \\ & =& 360319.a_{1}^{2} + 191.511a_{ 1}a_{2} + 5.7668 {\ast} 10^{6}a_{ 2}^{2}.{}\end{array}$$
(13.58)

Now observe that

$$\displaystyle{s_{11} = \frac{\partial ^{2}W(a_{1},a_{2})} {\partial a_{1}^{2}} = 720638.0,}$$
$$\displaystyle{s_{22} = \frac{\partial ^{2}W(a_{1},a_{2})} {\partial a_{2}^{2}} = 1.15336 {\ast} 10^{7},}$$
$$\displaystyle{s_{12} = \frac{\partial ^{2}W(a_{1},a_{2})} {\partial a_{1}\partial a_{2}} = 191.511.}$$

Therefore s 11 > 0,  s 22 > 0, and \(s_{11}s_{22} - s_{12}^{2} = 8.31155 {\ast} 10^{12} > 0\) so that W(a 1, a 2) is a positive definite quadratic form.

Hence, from the second duality principle, we may conclude that \(((u_{0})_{1},(u_{0})_{2},w_{0})\) is indeed the optimal solution (approximate global minimizer for J).

Refining the results through finite differences using the algorithm of last section, we obtain again the field of displacements w 0(x, y) (please see Fig. 13.1).

Fig. 13.1
figure 1

Vertical axis: w 0(x, y)-field of displacements

6 Conclusion

In this chapter, we develop duality principles for the Kirchhoff–Love plate model. The results are obtained through the basic tools of convex analysis and include sufficient conditions of optimality. It is worth mentioning that earlier results require the membrane force tensor to be positive definite in a critical point in order to guarantee global optimality, whereas from the new results here presented, we are able to guarantee global optimality for a critical point such that N 11(u 0) < 0 and \(N_{22}(u_{0}) < 0,\mbox{ in }\varOmega\). Finally, the methods developed here may be applied to many other nonlinear models of plates and shells. Applications to related areas (specially to the shell models found in [23]) are planned for future works.