Fabio Botelho

Functional Analysis
and Applied
Optimization in
Banach Spaces

Applications to Non-Convex Variational
Models

.. | - @) Springer
- L



Functional Analysis and Applied Optimization
in Banach Spaces






Fabio Botelho

Functional Analysis
and Applied Optimization
in Banach Spaces

Applications to Non-Convex Variational
Models

With Contributions by Anderson Ferreira
and Alexandre Molter

@ Springer



Fabio Botelho

Department of Mathematics and Statistics
Federal University of Pelotas

Pelotas, RS-Brazil

ISBN 978-3-319-06073-6 ISBN 978-3-319-06074-3 (eBook)
DOI 10.1007/978-3-319-06074-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014938037
Mathematics Subject Classification: 46N10, 46E15, 46N50, 49J40, 49K20

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

Preface

The first objective of this work is to present, to some extent, a deep introduction
to the basic concepts on real and functional analysis.

In principle, the text is written for applied mathematicians and postgraduate stu-
dents in applied mathematics, with interest in applications of functional analysis,
calculus of variations, and optimization to problems in physics and engineering.

However, engineers, physicists, and other professionals in related areas may
find the text very interesting by the possibility of background development towards
graduate-level mathematics applicable in their respective work fields.

We have proven almost all results presented. The proofs are rigorous, but we
believe are almost all very clear and relatively easy to read, even at the most complex
text parts.

The material presented in Parts I and II concerns standard real and functional
analysis. Hence in these two parts the results in general are not new, with the excep-
tion of some sections on domains of class €} and relating Sobolev spaces and some
sections about Lagrange multiplier results and the basic theorem about relaxation
for the scalar case, where we show a different proof concerning the original one
in the book Convex Analysis and Variational Problems (indeed such a book is the
theoretical base of the present work) by Ekeland and Témam’s.

About the basic part, specifically Chaps. 1-3 correspond to standard functional
analysis. In Chaps. 4-6 we present basic and advanced concepts in measure and in-
tegration which will be relevant in subsequent results (in fact perhaps a little more
than the minimum necessary). Moreover, Chaps. 7 and 8 correspond to a basic expo-
sition on Sobolev spaces and again, the fundamental results presented are relevant
for subsequent developments. In Chaps.9-11 we introduce some basic and more
advanced concepts on calculus of variations, convex analysis, and optimization.

Finally, the applications presented in Chaps. 12-23 correspond to the work of
the present author along the last years, and almost all results including the applica-
tions of duality for micro-magnetism, composites in elasticity, and conductivity and
phase transitions are extensions and natural developments of prior ones presented
in the author’s Ph.D. thesis at Virginia Tech, USA, and the previous book Topics
on Functional Analysis, Calculus of Variations and Duality published by Academic
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Publications. The present book overlaps to some extent with the previous one just
on a part concerning standard mathematics. The applications in the present one are
almost all new developments.

Anyway, a key feature of the present work is that while all problems studied
here are nonlinear with corresponding non-convex variational formulation, it has
been almost always possible to develop convex (in fact concave) dual variational
formulations, which in general are more amenable to numerical computations.

The section on relaxation for the vectorial case, as its title suggests, presents du-
ality principles that are valid even for vectorial problems. It is worth noting that
such results were used in this text to develop concave dual variational formulations
in situations such as for conductivity in composites and vectorial examples in phase
transitions. In Chap. 15 we present the generalized method of lines, a numerical pro-
cedure in which the solution of the partial differential equation in question is written
on lines as functions of boundary conditions and boundary shape. In Chap.22 we
develop some examples concerning the Navier—Stokes system.

Summary of Main Results

The main results of this work are summarized as follows.

Duality Applied to Elasticity

Chapter 12 develops duality for a model in finite elasticity. The dual formulations
obtained allow the matrix of stresses to be nonpositive or nonnegative definite. This
is, in some sense, an extension of earlier results (which establish the complementary
energy as a perfect global optimization duality principle only if the stress tensor is
positive definite at the equilibrium point). The results are based on standard tools of
convex analysis and the concept of the Legendre transform.

Duality Applied to a Plate Model

Chapter 13 develops dual variational formulations for the two-dimensional equa-
tions of the nonlinear elastic Kirchhoff-Love plate model. We obtain a convex dual
variational formulation which allows nonpositive definite membrane forces. In the
third section, similar to the triality criterion introduced in [36], we obtain sufficient
conditions of optimality for the present case. Again the results are based on the fun-
damental tools of convex analysis and the Legendre transform, which can easily be
analytically expressed for the model in question.
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Duality Applied to Ginzburg—Landau-Type Equations

Chapters 14-16 are concerned with existence theory and the development of dual
variational formulations for Ginzburg—Landau-type equations. Since the primal for-
mulations are non-convex, we use specific results for distance between two convex
functions to obtain the dual approaches. Note that we obtain a convex dual formula-
tion for the simpler real case. For such a formulation optimality conditions are also
established.

Duality Applied to Multi-well Variational Problems

The main focus of Chaps. 17 and 18 is the development of dual variational formu-
lations for multi-well optimization problems in phase transitions, conductivity, and
elasticity. The primal formulation may not have minimizers in the classical sense.
In this case, the solution through the dual formulation is a weak limit of minimizing
sequences for the original problem.

Duality for a Model in Quantum Mechanics

In Chap. 19 we develop a duality principle and computation for a class of nonlin-
ear eigenvalue problems found in quantum mechanics models. We present numeri-
cal results for one- and two-dimensional problems. We highlight that this chapter is
coauthored by myself and my colleague Professor Anderson Ferreira.

Duality Applied to the Optimal Design in Elasticity

The first part of Chap. 20 develops a dual variational formulation for the optimal
design of a plate of variable thickness. The design variable, namely the plate thick-
ness, is supposed to minimize the plate deformation work due to a given external
load. The second part is concerned with the optimal design for a two-phase problem
in elasticity. In this case, we are looking for the mixture of two constituents that
minimizes the structural internal work. In both applications the dual formulations
were obtained through basic tools of convex analysis. Finally, we highlight that this
chapter is coauthored by myself and my colleague Professor Alexandre Molter.
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Duality Applied to Micro-magnetism

The main focus of Chap.21 is the development of dual variational formulations
for functionals related to ferromagnetism models. We develop duality principles for
the so-called hard and full (semi-linear) uniaxial cases. It is important to emphasize
that the dual formulations here presented are convex and are useful to compute the
average behavior of minimizing sequences, specially as the primal formulation has
no minimizers in the classical sense. Once more the results are obtained through
standard tools of convex analysis.

Duality Applied to Fluid Mechanics

In Chap.22 we develop approximate solutions for the incompressible Navier—
Stokes system through the generalized method of lines. We also obtain a linear
system whose solution solves the steady-state incompressible Euler equations.

Duality Applied to the Optimal Control and Optimal Design
of a Beam Model

Chapter 23 develops duality for the optimal control and design of a beam model.
We emphasize the dual formulation is useful to obtain numerical results. Finally,
numerical examples of optimal design are provided, concerning the maximization
of buckling load and fundamental frequency, respectively.
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Chapter 1
Topological Vector Spaces

1.1 Introduction

The main objective of this chapter is to present an outline of the basic tools of
analysis necessary to develop the subsequent chapters. We assume the reader has
a background in linear algebra and elementary real analysis at an undergraduate
level. The main references for this chapter are the excellent books on functional
analysis: Rudin [58], Bachman and Narici [6], and Reed and Simon [52]. All proofs
are developed in details.

1.2 Vector Spaces

We denote by I a scalar field. In practice this is either R or C, the set of real or
complex numbers.

Definition 1.2.1 (Vector Spaces). A vector space over F is a set which we will de-
note by U whose elements are called vectors, for which are defined two operations,
namely, addition denoted by (4) : U x U — U and scalar multiplication denoted by
(1) :Fx U — U, so that the following relations are valid:

.u+v=v+uVYu,ve U,
cu+(v+w)=w+v)+wVu,v,we U,

. there exists a vector denoted by 0 such thatu+ 0 = u, Vu € U,
. foreachu € U, there exists a unique vector denoted by
—usuch that u+ (—u) =0,

o (B-u)y=(a-B) uNVo, eF,uecl,
o-(utv)=a-ut+a-vwwaelF, uvel,
(a+B)u=a-u+p-uVo, eF, ucU,
dru=uVuel.

AW N~
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4 1 Topological Vector Spaces

Remark 1.2.2. From now on we may drop the dot (-) in scalar multiplications and
denote « - u simply as ctu.

Definition 1.2.3 (Vector Subspace). Let U be a vector space. A set V C U is said
to be a vector subspace of U if V is also a vector space with the same operations as
those of U. If V 2 U, we say that V is a proper subspace of U.

Definition 1.2.4 (Finite-Dimensional Space). A vector space is said to be of finite

dimension if there exists fixed uy,un,...,u, € U such that for each u € U there are
corresponding ¢, ... ., o, € I for which
n
u=y oju;. (1.1)
i=1

Definition 1.2.5 (Topological Spaces). A set U is said to be a topological space if it
is possible to define a collection ¢ of subsets of U called a topology in U, for which
the following properties are valid:

1.U € o,

2.0€o0,

3.ifAcocandBe o, thenANBE o,

4. arbitrary unions of elements in ¢ also belong to .

Any A € o is said to be an open set.

Remark 1.2.6. When necessary, to clarify the notation, we shall denote the vector
space U endowed with the topology ¢ by (U, o).

Definition 1.2.7 (Closed Sets). Let U be a topological space. A set A C U is said to
be closed if U \ A is open. We also denote U\NA=A“={uc U |u g A}.

Remark 1.2.8. For any sets A, B C U we denote
A\B={u€cA|u¢B}.
Also, when the meaning is clear we may denote A\ Bby A — B.

Proposition 1.2.9. For closed sets we have the following properties:

1. U and 0 are closed,
2. if A and B are closed sets, then AUB is closed,
3. arbitrary intersections of closed sets are closed.

Proof.

1. Since 0 is open and U = 0°, by Definition 1.2.7, U is closed. Similarly, since U
isopenand @ = U \ U = U*, 0 is closed.

2. A,B closed implies that A and B¢ are open, and by Definition 1.2.5, A U B¢ is
open, so that ANB = (A°UB*)“ is closed.
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3. Consider A = Ny ¢ A, where L is a collection of indices and A, is closed,
VA € L. We may write A = (U; ;A9 )¢ and since A is open VA € L we have,
by Definition 1.2.5, that A is closed.

Definition 1.2.10 (Closure). Given A C U we define the closure of A, denoted by

A, as the intersection of all closed sets that contain A.

Remark 1.2.11. From Proposition 1.2.9 item 3 we have that A is the smallest closed
set that contains A, in the sense that if C is closed and A C C, then A C C.

Definition 1.2.12 (Interior). Given A C U we define its interior, denoted by A°, as
the union of all open sets contained in A.

Remark 1.2.13. Tt is not difficult to prove that if A is open, then A = A°.

Definition 1.2.14 (Neighborhood). Given uy € U we say that ¥ is a neighborhood
of ug if such a set is open and contains uy. We denote such neighborhoods by 7.

Proposition 1.2.15. If A C U is a set such that for each u € A there exists a neigh-
borhood ¥, > u such that ¥,, C A, then A is open.

Proof. This follows from the fact that A = U,c4 ¥, and any arbitrary union of open
sets is open.

Definition 1.2.16 (Function). Let U and V be two topological spaces. We say that
f:U — V isafunction if f is a collection of pairs (u,v) € U x V such that for each
u € U there exists only one v € V such that (u,v) € f.

Definition 1.2.17 (Continuity at a Point). A function f: U — V is continuous at
u € U if for each neighborhood ¥}y C V of f(u), there exists a neighborhood
¥u C U of usuch that (%) C V().

Definition 1.2.18 (Continuous Function). A function f : U — V is continuous if it
is continuous at each u € U.

Proposition 1.2.19. A function f : U — V is continuous if and only if f~1(¥) is
open for each open V' C V, where

) ={uecU]|flu)er}. (1.2)

Proof. Suppose f~!(7) is open whenever ¥ C V is open. Pick u € U and any
open ¥ such that f(u) € 7. Since u € f~1(¥) and f(f~'(¥)) C ¥, we have that
f is continuous at u € U. Since u € U is arbitrary we have that f is continuous.
Conversely, suppose f is continuous and pick ¥ C V open. If f~1(¥) = 0, we
are done, since @ is open. Thus, suppose u € f -1 (¥), since f is continuous, there
exists 7;, a neighborhood of u such that f(#,) C #. This means ¥, C f~!(#) and
therefore, from Proposition 1.2.15, f -1 (¥) is open.
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Definition 1.2.20. We say that (U, o) is a Hausdorff topological space if, given uy,
up € U, uy # uy, there exists 71, %, € o such that

uy €M, up € ¥ and 1N =0. (1.3)

Definition 1.2.21 (Base). A collection 6’ C o is said to be a base for o if every
element of ¢ may be represented as a union of elements of ¢’.

Definition 1.2.22 (Local Base). A collection & of neighborhoods of a point u € U
is said to be a local base at u if each neighborhood of u contains a member of 6.

Definition 1.2.23 (Topological Vector Space). A vector space endowed with a
topology, denoted by (U, o), is said to be a topological vector space if and only if

1. every single point of U is a closed set,
2. the vector space operations (addition and scalar multiplication) are continuous
with respect to .

More specifically, addition is continuous if given u,v € U and ¥ € o such that
u-+v e Y, then there exists ¥, > u and ¥, > v such that ¥}, + ¥, C ¥ . On the other
hand, scalar multiplication is continuous if given ¢ € F, u € U and ¥ 5 o - u, there
exists 0 > 0 and ¥, © u such that V3 € I satisfying |3 — | < § we have B¥, C V.

Given (U, 0), let us associate with each ug € U and o € F (ot # 0) the functions

Ty, : U — U and My, : U — U defined by

Tuy(u) =up+u (1.4)
and

Moy, (u) =0 - u. (1.5)

The continuity of such functions is a straightforward consequence of the continuity
of vector space operations (addition and scalar multiplication). It is clear that the
respective inverse maps, namely 7, and My 4, are also continuous. So if ¥ is
open, then ug + ¥, that is, (T_,,) " '(¥) = T,,(¥) = uo + 7 is open. By analogy
oY is open. Thus o is completely determined by a local base, so that the term local
base will be understood henceforth as a local base at 0. So to summarize, a local
base of a topological vector space is a collection £2 of neighborhoods of 6, such that
each neighborhood of 8 contains a member of £2.
Now we present some simple results.

Proposition 1.2.24. [f A C U is open, then Yu € A, there exists a neighborhood V'
of 0 such thatu+ 7V C A.

Proof. Justtake ¥ =A —u.

Proposition 1.2.25. Given a topological vector space (U, ©), any element of 6 may
be expressed as a union of translates of members of €2, so that the local base (2
generates the topology ©.
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Proof. Let A C U openandu € A. ¥ = A —u is a neighborhood of 6 and by defi-
nition of local base, there exists a set ¥, C ¥ such that ¥, € . Thus, we may
write

A=Uea(u+7g,)- (1.6)

1.3 Some Properties of Topological Vector Spaces

In this section we study some fundamental properties of topological vector
spaces. We start with the following proposition.

Proposition 1.3.1. Any topological vector space U is a Hausdorf{f space.

Proof. Pick ug,u; € U such that ug # u. Thus ¥ = U \ {u; —up} is an open neigh-
borhood of zero. As 6 + 6 = 0, by the continuity of addition, there exist ¥ and ¥,
neighborhoods of 0 such that

N+ CV (1.7)

define = 1NN (=9)N(—Y3), thus % = —% (symmetric)and % +% CV

and hence

uo+ U +U% Cup+¥ CU\{u} (1.8)
so that
ug+vi+vy £up, Yy, €%, (1.9
or
uy+vy #Fu—vy, Yi,vo €%, (1.10)
and since % = —%
(uo+ )N (w1 +%) = 0. (1.11)

Definition 1.3.2 (Bounded Sets). A set A C U is said to be bounded if to each
neighborhood of zero ¥ there corresponds a number s > 0 such that A C t¥ for
eacht > s.

Definition 1.3.3 (Convex Sets). A set A C U such that
ifu;yeAthen Au+(1—A)ve€A, VA €][0,1], (1.12)

is said to be convex.

Definition 1.3.4 (Locally Convex Spaces). A topological vector space U is said to
be locally convex if there is a local base €2 whose elements are convex.
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Definition 1.3.5 (Balanced Sets). A set A C U is said to be balanced if A C A,
Voo € F such that |or| < 1.

Theorem 1.3.6. In a topological vector space U we have:

1. every neighborhood of zero contains a balanced neighborhood of zero,
2. every convex neighborhood of zero contains a balanced convex neighborhood of
zero.

Proof.

1. Suppose % is a neighborhood of zero. From the continuity of scalar multiplica-
tion, there exist ¥ (neighborhood of zero) and & > 0, such that ¥ C % when-
ever || < 8. Define #' = Uy 5075 thus # C % is a balanced neighborhood
of zero.

2. Suppose % is a convex neighborhood of zero in U. Define

A={na% |aeC, |o| =1}. (1.13)

As 0-0 = 0 (where 6 € U denotes the zero vector) from the continuity of scalar
multiplication there exists 6 > 0 and there is a neighborhood of zero ¥ such that
if |B| < &, then B C % . Define # as the union of all such 3% Thus # is
balanced and o' # = # as || = 1, s0 that # = a# C a% , and hence ¥ C
A, which implies that the interior A° is a neighborhood of zero. Also A° C % .
Since A is an intersection of convex sets, it is convex and so is A°. Now we will
show that A° is balanced and complete the proof. For this, it suffices to prove that
A is balanced. Choose r and 8 such that 0 < r < 1 and |3| = 1. Then

rﬁA:ﬁ‘a‘:lrﬁa% :ﬂ‘a‘:lra%. (1.14)

Since 0% 1is a convex set that contains zero, we obtain roa% C aZ , so that
rBA C A, which completes the proof.

Proposition 1.3.7. Let U be a topological vector space and ¥ a neighborhood of
zero in U. Given u € U, there exists r € RY such that Bu € ¥,V such that |B| < r.

Proof. Observe that u+ ¥ is a neighborhood of 1 - u, and then by the continuity of
scalar multiplication, there exists # neighborhood of u and r > 0 such that

BYW Cu+ 7Y VB suchthat | — 1| <r, (1.15)
so that
Bucut ¥, (1.16)
or

(B—1Nue?, where | —1|<r, (1.17)
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and thus
Bu e ¥ VB such that || < r, (1.18)

which completes the proof.

Corollary 1.3.8. Let ¥ be a neighborhood of zero in U; if {r,} is a sequence such
that r, >0, Vn €N, and lim r, = oo, then U C U;,_ 1, V.
n—soo

Proof. Letu € U,then au € ¥ for any o sufficiently small, from the last proposition
ue é“//. As r, — oo we have that r;, > é for n sufficiently big, so that u € r, /", which
completes the proof.

Proposition 1.3.9. Suppose {8,} is a sequence such that 8, — 0, 6, < 8,1, Vn € N
and V" a bounded neighborhood of zero in U, then {8,V '} is a local base for U.

Proof. Let % be a neighborhood of zero; as ¥ is bounded, there exists fo € R™ such
that ¥ C % for any t > ty. As lim &, = 0, there exists ny € N such that if n > ny,
n—soo

then 6, < %, so that 6, C % ,Vn such that n > ny.

Definition 1.3.10 (Convergence in Topological Vector Spaces). Let U be a topo-
logical vector space. We say {u,} converges to uy € U, if for each neighborhood ¥
of ug, then there exists N € N such that

u, € ¥ ,¥Yn>N.

1.4 Compactness in Topological Vector Spaces

We start this section with the definition of open covering.

Definition 1.4.1 (Open Covering). Given B C U we say that {0, o € A} is a
covering of B if B C UgeaOy. If Oy is open Vo € A, then {0y} is said to be an
open covering of B.

Definition 1.4.2 (Compact Sets). A set B C U is said to be compact if each open
covering of B has a finite subcovering. More explicitly, if B C Ugeca Oy, Where Oy
is open Vo € A, then there exist ¢,...,0, € A such that BC Oy U...U O, for
some n, a finite positive integer.

Proposition 1.4.3. A compact subset of a Hausdorff space is closed.

Proof. LetU be a Hausdorff space and consider A C U, A compact. Given x € A and
y € A€, there exist open sets &, and ﬁ; suchthatx € O,y € 0¥, and O, N ﬁ; =0.1t
is clear that A C Uyep Oy, and since A is compact, we may find {x{,x2,...,x,} such
that A C U!_, O,,. For the selected y € A° we have y € N, 0y and (N, 0y') N
(U, 0,) = 0. Since N_, Oy' is open and y is an arbitrary point of A° we have that
A€ is open, so that A is closed, which completes the proof.

The next result is very useful.
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Theorem 1.4.4. Let {K, o0 € L} be a collection of compact subsets of a Hausdorff
topological vector space U, such that the intersection of every finite subcollection
(of {Ka, o € L}) is nonempty.
Under such hypotheses
NaerKy # 0.

Proof. Fix o € L. Suppose, to obtain contradiction, that

NoerKo = 0.
That is,
Koy N[N ngol{a] 0.
Thus,
Mot Ko © Ky,
so that

KO‘O [ gégﬂKa] ’

Koy C[U 3?2‘%&]

However, K, is compact and K, is open, Vot € L.
Hence, there exist ¢y, ..., 0, € L such that

Koy C UL Ky,
From this we may infer that
Koo N[MiZ1 Koy ] = 0,

which contradicts the hypotheses.
The proof is complete.

Proposition 1.4.5. A closed subset of a compact space U is compact.

Proof. Consider {0y, 0 € L} an open cover of A. Thus {A¢, Oy, o0 € L} is a cover
of U. As U is compact, there exist &, 0, ..., 0, such that AU (U, Oy,) D U, so
that {0, i€ {1,...,n}} covers A, so that A is compact. The proof is complete.

Definition 1.4.6 (Countably Compact Sets). A set A is said to be countably com-
pact if every infinite subset of A has a limit point in A.

Proposition 1.4.7. Every compact subset of a topological space U is countably
compact.

Proof. Let B an infinite subset of A compact and suppose B has no limit point.
Choose {x1,x3,....} C B and define F = {x,x),x3,...}. It is clear that F has no
limit point. Thus, for each n € N, there exist &, open such that &, NF = {x,}.
Also, for each x € A — F, there exist &, such that x € 0, and 0, NF = 0. Thus
{Oy, x€A—F; 0),0,,...} is an open cover of A without a finite subcover, which
contradicts the fact that A is compact.
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1.5 Normed and Metric Spaces

The idea here is to prepare a route for the study of Banach spaces defined below.
We start with the definition of norm.

Definition 1.5.1 (Norm). A vector space U is said to be a normed space, if it is pos-
sible to define a function || - ||y : U — R = [0,4-<0), called a norm, which satisfies
the following properties:

1. |lully >0, ifus06and ||lul|ly =0<u=0,
2. lu+vllu < lullv+|vlv,V u,veU,
3. low|ly = |al||ul|u,Yue U, o € F.

Now we present the definition of metric.

Definition 1.5.2 (Metric Space). A vector space U is said to be a metric space if it
is possible to define a functiond : U x U — R™, called a metric on U, such that

1.0<d(u,v), Yu,ve U,

2.duy) =0 u=yv,
3.d(u,v)=d(v,u), Vu,ve U,

4. d(u,w) <d(u,v)+d(v,w),Yu,v,w € U.

A metric can be defined through a norm, that is,
d(u,v) = |lu—v|u. (1.19)

In this case we say that the metric is induced by the norm.
The set B,(u) = {v € U | d(u,v) < r} is called the open ball with center at u and
radius r. A metric d : U x U — R™ is said to be invariant if

du+wyv+w)=d(u,v),Yu,v,w e U. (1.20)
The following are some basic definitions concerning metric and normed spaces:

Definition 1.5.3 (Convergent Sequences). Given a metric space U, we say that
{un} C U converges to ug € U as n — oo, if for each € > 0, there exists ng € N,
such that if n > ny, then d(uy,uo) < €. In this case we write u, — ug as n — —+-oo.

Definition 1.5.4 (Cauchy Sequence). {u,} C U is said to be a Cauchy sequence if
for each £ > 0 there exists ng € N such that d(uy, un) < €,Ym,n > ny

Definition 1.5.5 (Completeness). A metric space U is said to be complete if each
Cauchy sequence related to d : U x U — R converges to an element of U.

Definition 1.5.6 (Limit Point). Let (U,d) be a metric space and let E C U. We say
that v € U is a limit point of E if for each r > 0 there exists w € B.(v) N E such that

w#£ .
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Definition 1.5.7 (Interior Point, Topology for (U,d)). Let (U,d) be a metric space
and let E C U. We say that u € E is interior point if there exists » > 0 such that
B,(u) C E. We may define a topology for a metric space (U,d) by declaring as
open all set E C U such that all its points are interior. Such a topology is said to be
induced by the metric d.

Definition 1.5.8. Let (U,d) be a metric space. The set o of all open sets, defined
through the last definition, is indeed a topology for (U,d).

Proof.

1. Obviously @ and U are open sets.

2. Assume A and B are open sets and define C = ANB. Let u € C = AN B; thus,
from u € A, there exists r; > 0 such that B, (u) C A. Similarly from u € B there
exists r, > 0 such that B,, (u) C B.

Define r = min{r,r2}. Thus, B,(#) C ANB = C, so that u is an interior point of
C. Since u € C is arbitrary, we may conclude that C is open.

3. Suppose {Aq, & € L} is a collection of open sets. Define E = UgerAg, and we

shall show that E is open.
Choose u € E = Uy Aq. Thus there exists ¢ € L such that u € Ag,. Since Ay,
is open there exists r > 0 such that B,(#) C Ay, C UgerAq = E. Hence u is an
interior point of E, since u € E is arbitrary, we may conclude that £ = Uger Ay
is open.

The proof is complete.

Definition 1.5.9. Let (U,d) be a metric space and let E C U. We define E as the set
of all the limit points of E.

Theorem 1.5.10. Let (U,d) be a metric space and let E C U. Then E is closed if
and only if E' CE.

Proof. Suppose E' C E. Letu € E¢; thus u & E and u ¢ E'. Therefore there exists
r > 0 such that B.(u) NE = 0, so that B,(u) C E¢. Therefore u is an interior point
of E€. Since u € E€ is arbitrary, we may infer that E is open, so that E = (E€)¢ is
closed.

Conversely, suppose that E is closed, that is, E€ is open.

If E' = 0, we are done.

Thus assume E’ # 0 and choose u € E'. Thus, for each r > 0, there exists v €
B,(u) NE such that v # u. Thus B,(u) € E,Vr > 0 so that u is not a interior point
of E€. Since E€ is open, we have that u € E€ so that u € E. We have thus obtained,
u€ENucE' sothat E' CE.

The proof is complete.

Remark 1.5.11. From this last result, we may conclude that in a metric space, E C U
is closed if and only if E' C E.

Definition 1.5.12 (Banach Spaces). A normed vector space U is said to be a Banach
space if each Cauchy sequence related to the metric induced by the norm converges
to an element of U.
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Remark 1.5.13. We say that a topology ¢ is compatible with a metricd ifanyA C o
is represented by unions and/or finite intersections of open balls. In this case we say
thatd : U x U — R™ induces the topology ©.

Definition 1.5.14 (Metrizable Spaces). A topological vector space (U, 0) is said to
be metrizable if ¢ is compatible with some metric d.

Definition 1.5.15 (Normable Spaces). A topological vector space (U, o) is said to
be normable if the induced metric (by this norm) is compatible with ©.

1.6 Compactness in Metric Spaces

Definition 1.6.1 (Diameter of a Set). Let (U,d) be a metric space and A C U. We
define the diameter of A, denoted by diam(A) by

diam(A) = sup{d(u,v) | u,v € A}.

Definition 1.6.2. Let (U,d) be a metric space. We say that {F;} C U is a nested
sequence of sets if
FFOFRLDFD....

Theorem 1.6.3. If (U,d) is a complete metric space, then every nested sequence of
nonempty closed sets {Fy.} such that

i diam(E) —
kidelam( ) =0

has nonempty intersection, that is,
M1 Fi # 0.

Proof. Suppose {F;} is a nested sequence and lim diam(F;) = 0. For each n € N,

k—yoo
select u, € F,. Suppose given € > 0. Since

}gl; diam(F,) =0,
there exists N € N such that if n > N, then
diam(F,) < e.
Thus if m,n > N we have u,,, u, € Fy so that
d(un,um) < €.

Hence {u,} is a Cauchy sequence. Being U complete, there exists u € U such that

Uy, —> U AS N — oo,
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Choose m € N. We have that u,, € F,,,Vn > m, so that
ueFE,=F,.
Since m € N is arbitrary we obtain
u€ My 1Fy.
The proof is complete.

Theorem 1.6.4. Let (U,d) be a metric space. If A C U is compact, then it is closed
and bounded.

Proof. We have already proved that A is closed. Suppose, to obtain contradiction,
that A is not bounded. Thus for each K € N there exists u,v € A such that

d(u,v) > K.
Observe that
AC UueABl(u).
Since A is compact there exists uy,u, ..., u, € A such that
A=C Uzlel(uk).
Define

R =max{d(uj,u;)|i,j€{l,...,n}}.
Choose u,v € A such that
d(u,v) > R+2. (1.21)
Observe that there exist i, j € {1,...,n} such that
u € Bi(u;), v € B (uj).
Thus

d(u,v) < d(u,u;)+d(u,u;)+d(uj,v)
< 2+R, (1.22)
which contradicts (1.21). This completes the proof.

Definition 1.6.5 (Relative Compactness). In a metric space (U,d), aset A C U is
said to be relatively compact if A is compact.

Definition 1.6.6 (¢-Nets). Let (U,d) be a metric space. A set N C U is sat to be a
e-net with respect to a set A C U if for each u € A there exists v € N such that

d(u,v) < e.
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Definition 1.6.7. Let (U,d) be a metric space. A set A C U is said to be totally
bounded if for each € > 0, there exists a finite €-net with respect to A.

Proposition 1.6.8. Let (U,d) be a metric space. If A C U is totally bounded, then it
is bounded.

Proof. Choose u,v € A. Let {uy,...,u,} be the 1-net with respect to A. Define
R =max{d(uj,u;)|i,j€{1,...,n}}.
Observe that there exist i, j € {1,...,n} such that
d(u,u;) <1, d(vu;) < 1.
Thus

d(u,v) < d(u,u;)+d(u,u;)+d(uj,v)
<R42. (1.23)

Since u,v € A are arbitrary, A is bounded.

Theorem 1.6.9. Let (U,d) be a metric space. If from each sequence {u,} C A we
can select a convergent subsequence {uy, }, then A is totally bounded.

Proof. Suppose, to obtain contradiction, that A is not totally bounded. Thus there
exists & > 0 such that there exists no &-net with respect to A. Choose u; € A; hence
{u1} is not a gy-net, that is, there exists u, € A such that

d(uy,up) > &.
Again {uy,uy} is not a g-net for A, so that there exists u3 € A such that
d(uy,uz) > € and d(up,u3) > €.
Proceeding in this fashion we can obtain a sequence {u,} such that
d(un,um) > &, if m# n. (1.24)

Clearly we cannot extract a convergent subsequence of {u,}; otherwise such a sub-
sequence would be Cauchy contradicting (1.24). The proof is complete.

Definition 1.6.10 (Sequentially Compact Sets). Let (U,d) be a metric space. A set
A C U is said to be sequentially compact if for each sequence {u,} C A, there exist
a subsequence {u,, } and u € A such that

Up, — U, as k — oo,

Theorem 1.6.11. A subset A of a metric space (U,d) is compact if and only if it is
sequentially compact.
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Proof. Suppose A is compact. By Proposition 1.4.7 A is countably compact. Let
{u,} C A be a sequence. We have two situations to consider:

1. {u,} has infinitely many equal terms, that is, in this case we have
Upy =Upy = ... = Uy = ... =UEA.

Thus the result follows trivially.

2. {u,} has infinitely many distinct terms. In such a case, being A countably com-
pact, {u, } has alimit point in A, so that there exist a subsequence {u,, } and u € A
such that

Up, — U, as k — oo,

In both cases we may find a subsequence converging to some u € A.

Thus A is sequentially compact.

Conversely suppose A is sequentially compact, and suppose {Gg, o € L} is an
open cover of A. For each u € A define

6(u) = sup{r| B,(u) C Gg, for some & € L}.

First we prove that §(u) > 0,Vu € A. Choose u € A. Since A C UgerGq, there
exists o € L such that u € Go,. Being G, open, there exists 7o > 0 such that
By, (1) C Gg-
Thus,
S6(u) >ry>0.
Now define &y by
0o = inf{6(u) |u e A}.

Therefore, there exists a sequence {u,} C A such that
O (un) — 8 as n — oo.

Since A is sequentially compact, we may obtain a subsequence {uy,, } and uy € A
such that
O(ttn,) — 6o and u,, — uo,

as k — oo. Therefore, we may find K € N such that if k > K, then

(1.25)

We claim that
0 (uo)

6(”’%) Z 4

, if k> Kp.
To prove the claim, suppose

2 € B sy (Un, ), Vk > Ko,
4
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(observe that in particular from (1.25)

Up € BM (I/lnk),Vk > Ko).
T

Since
0 (uo)
2

< 6(1,!()),
there exists some o € L such that

B sy (u0) C Gay.-
2

However, since
S (uo)

d(unu0) < ==, if k> Ko,
we obtain
B 5(ug) (U0) D B sug) (tny), if k > Ko,
2 4
so that 5
6(u”k) > (ZO) ;Vk > K.
Therefore 6( )
. uo
lim & - & > '
kglclo (u”k) 60 = 4
Choose € > 0 such that
& >¢e>0.

From the last theorem since A is sequentially compact, it is totally bounded. For the
€ > 0 chosen above, consider an £-net contained in A (the fact that the £-net may be
chosen contained in A is also a consequence of the last theorem) and denote it by N
that is,

N=A{v,...,v} €A.

Since & > &, there exists
ap,...,0, €L

such that
BS(V[) C G(xi,vi € {1,...,”},

considering that
S(vi) > 8 >e>0,vie{l,...,n}.

For u € A, since N is an €-net we have
u e U Be(vi) CUL Gy,
Since u € U is arbitrary we obtain

A CUL,Gg,.
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Thus
{Goys---,Ga, }

is a finite subcover for A of
{Gy, o € L}.

Hence, A is compact.
The proof is complete.

Theorem 1.6.12. Let (U,d) be a metric space. Thus A C U is relatively compact if
and only if for each sequence in A, we may select a convergent subsequence.

Proof. Suppose A is relatively compact. Thus A is compact so that from the last
theorem, A is sequentially compact.

Thus from each sequence in A we may select a subsequence which converges
to some element of A. In particular, for each sequence in A C A, we may select a
subsequence that converges to some element of A.

Conversely, suppose that for each sequence in A, we may select a convergent sub-
sequence. It suffices to prove that A is sequentially compact. Let {v, } be a sequence
in A. Since A is dense in A, there exists a sequence {u,} C A such that

1
d(un,vn) < e

From the hypothesis we may obtain a subsequence {u,, } and ug € A such that
Uy, — U, a8 k — oo.
Thus,
Vi, —> g €A, as k — oo,

Therefore A is sequentially compact so that it is compact.

Theorem 1.6.13. Let (U,d) be a metric space.

1. If A C U is relatively compact, then it is totally bounded.
2. 1If (U,d) is a complete metric space and A C U is totally bounded, then A is
relatively compact.

Proof.

1. Suppose A C U is relatively compact. From the last theorem, from each sequence
in A, we can extract a convergent subsequence. From Theorem 1.6.9, A is totally
bounded.

2. Let (U,d) be a metric space and let A be a totally bounded subset of U.

Let {uy,} be a sequence in A. Since A is totally bounded for each k € N we find a
g-net where & = 1/k, denoted by N; where

Ny = {vik),vgm,...,vy?}.
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In particular for k = 1 {u,} is contained in the 1-net N;. Thus at least one ball
of radius 1 of N; contains infinitely many points of {u,}. Let us select a subse-

quence {uS,?}keN of this infinite set (which is contained in a ball of radius 1).
Similarly, we may select a subsequence here just partially relabeled {ug)}leN
of {u,%) } which is contained in one of the balls of the %-net. Proceeding in this

fashion for each k € N we may find a subsequence denoted by {us,lf,? }men of the
original sequence contained in a ball of radius 1/k.

Now consider the diagonal sequence denoted by {“r(zi)}keN = {z}. Thus
2 .
d(zn,zm) < o if m,n >k,

thatis, {z;} is a Cauchy sequence, and since (U, d) is complete, there exists u € U
such that
Zx — uas k — oo,

From Theorem 1.6.12, A is relatively compact.

The proof is complete.

1.7 The Arzela—Ascoli Theorem

In this section we present a classical result in analysis, namely the Arzela—Ascoli
theorem.

Definition 1.7.1 (Equicontinuity). Let .% be a collection of complex functions de-
fined on a metric space (U,d). We say that .% is equicontinuous if for each € > 0,
there exists 6 > 0 such that if u,v € U and d(u,v) < 8, then

If(u) — f(v)| < &,Vf € .Z.

Furthermore, we say that .% is point-wise bounded if for each u € U there exists
M(u) € R such that
[f()] <M(u),¥f € 7.

Theorem 1.7.2 (Arzela—Ascoli). Suppose .F is a point-wise bounded equicontinu-
ous collection of complex functions defined on a metric space (U,d). Also suppose
that U has a countable dense subset E. Thus, each sequence {f,} C % has a sub-
sequence that converges uniformly on every compact subset of U.

Proof. Let {u,} be a countable dense set in (U,d). By hypothesis, {f,(u;)} is a
bounded sequence; therefore, it has a convergent subsequence, which is denoted by
{fn, (u1)}. Let us denote

Foe(ur) = fix(ur),Vk € N.
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Thus there exists g; € C such that
fl’k(ul) — &1, as k — oo.

Observe that { f,, (u2)} is also bounded and also it has a convergent subsequence,
which similarly as above we will denote by { /> x(u2)}. Again there exists g, € C
such that

fz)k(ul) — g1, as k — oo,

Fru(u2) — g2, as k — .
Proceeding in this fashion for each m € N we may obtain { fm’k} such that
Fuk(uj) = gj, ask — oo Vj € {1,...,m},

where the set {g1,£2,...,8&m} is obtained as above. Consider the diagonal sequence

{fex}s

and observe that the sequence

{ e (tm) s

is such that
Sei(um) — gm € C, as k — oo, Vm € N.

Therefore we may conclude that from {f,,} we may extract a subsequence also de-
noted by

{fn} = {Jex
which is convergent in
E= {Mn}neN-

Now suppose K C U, being K compact. Suppose given € > 0. From the equiconti-
nuity hypothesis there exists 6 > 0 such that if u,v € U and d(u,v) < & we have

| fog () = fr, (V)] < g,Vk €N.

Observe that
K C UMEKB% (u),

and being K compact we may find {y, ...,y } such that
K C U.Il‘ilBg (ﬁj)
Since E is dense in U, there exists

\Zi EBg(ﬁj)ﬁE,VjE {1,...,M}.
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Fixing j € {1,...,M}, from v; € E we obtain that
lim £y, (v;)
exists as k — eo. Hence there exists Ko; € N such that if k,/ > Ko, then
€
|f”k(vj) _fnz (Vj)l < 5

Pick u € K; thus

ue B%(ﬁ;)
for some j € {1,...,M}, so that
d(u,v;) < 8.
Therefore if
k.1 >max{Ky,,...,Ko, },
then

|f”k (u) —Ju (”)l < |f”k (u) —fue (Vf)l + |f"k (Vf) —Ju (Vf)l
1 (v7) = Sy (1)

& € €
< 8. 1.26
=373737°¢ (1.26)

Since u € K is arbitrary, we conclude that { f;,, } is uniformly Cauchy on K.
The proof is complete.

1.8 Linear Mappings

Given U,V topological vector spaces, a function (mapping) f: U — V, A C U,
and B C V, we define

fA) ={f(u) [ucA}, (1.27)
and the inverse image of B, denoted f~!(B) as

f'(B)={ucU]| f(u) €B}. (1.28)

Definition 1.8.1 (Linear Functions). A function f : U — V is said to be linear if

flou+Bv)=of(u)+Bfv),Yu,veU, a,p €F. (1.29)
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Definition 1.8.2 (Null Space and Range). Given f : U — V, we define the null
space and the range of f, denoted by N(f) and R(f), respectively, as

N(f)={ucU]f(u) =6} (1.30)
and
R(f)={v eV |3ueU suchthat f(u) =v}. (1.31)

Note that if f is linear, then N(f) and R(f) are subspaces of U and V, respectively.

Proposition 1.8.3. Let U,V be topological vector spaces. If f : U — V is linear and
continuous at 0, then it is continuous everywhere.

Proof. Since f is linear, we have f(0) = 0. Since f is continuous at 0, given ¥ C V
a neighborhood of zero, there exists % C U neighborhood of zero, such that

fw)ycy. (1.32)
Thus
v—ueU = fv—u)=fv)—fu) e, (1.33)
or
vEu+u% = fv)eflu)+7v, (1.34)

which means that f is continuous at u. Since u is arbitrary, f is continuous every-
where.

1.9 Linearity and Continuity

Definition 1.9.1 (Bounded Functions). A function f : U — V is said to be bounded
if it maps bounded sets into bounded sets.

Proposition 1.9.2. A set E is bounded if and only if the following condition is sat-
isfied: whenever {u,} C E and {0y} C F are such that o, — 0 as n — e we have
Oty —> 0 as n — oo,

Proof. Suppose E is bounded. Let % be a balanced neighborhood of 6 in U and
then E C 1% for some ¢. For {u,} C E, as &, — 0, there exists N such thatif n > N,
thent < ﬁ. Sincet " E C % and % is balanced, we have that ot,u, € %, ¥n > N,
and thus o,u, — 0. Conversely, if E is not bounded, there is a neighborhood ¥ of
0 and {r,} such that r, — e and E is not contained in r, ¥, that is, we can choose

uy, such that r,, 'u, is notin ¥, ¥n € N, so that {r, 'u,} does not converge to 6.

Proposition 1.9.3. Let f : U — V be a linear function. Consider the following
Statements:
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1. f is continuous,

2. f is bounded,

3. ifup, — 0, then {f(un)} is bounded,
4. ifu, — 0, then f(u,) — 0.

Then,

o 1 implies 2,

o 2 implies 3,

o ifU is metrizable, then 3 implies 4, which implies 1.
Proof.

1. 1 implies 2: Suppose f is continuous, for %" C V neighborhood of zero, there
exists a neighborhood of zero in U, denoted by ¥/, such that

fycw. (1.35)
If E is bounded, there exists fyp € R* such that E C t¥, Vt > 1y, so that
FE)CFeV)=tf(V)CtW, Vt>1, (1.36)
and thus f is bounded.

2. 2 implies 3: Suppose u, — 6 and let % be a neighborhood of zero. Then, there
exists N € N such that if n > N, then u, € ¥ C # where ¥ is a balanced
neighborhood of zero. On the other hand, for n < N, there exists K,, such that
u, € K, 7. Define K = max{1,Kj,...,K,}. Then, u, € K¥,Vn € N and hence
{uy} is bounded. Finally from 2, we have that { f(u,)} is bounded.

3. 3 implies 4: Suppose U is metrizable and let u, — 6. Given K € N, there exists
ng € N such that if n > ng, then d(u,,0) < 2. Define ¥, = 1 if n < n; and
Y =K, if ng <n <ng4 so that

d(Yitn,0) = d(Ku,,0) < Kd(u,,0) < K. (1.37)

Thus since 2 implies 3 we have that {f(ynu,)} is bounded so that, by
Proposition 1.9.2, f(u,) = ¥, ' f (Yattn) — 6 as n — oo,

4. 4 implies 1: suppose 1 fails. Thus there exists a neighborhood of zero # C V
such that f~!(#) contains no neighborhood of zero in U. Particularly, we can
select {uy,} such that u, € By/,(8) and f(u,) notin %" so that { f(uy)} does not
converge to zero. Thus 4 fails.

1.10 Continuity of Operators on Banach Spaces

Let U,V be Banach spaces. We call a function A : U — V an operator.

Proposition 1.10.1. Let U,V be Banach spaces. A linear operator A : U — V is
continuous if and only if there exists K € R" such that

[A@)llv < Kllully,Yu e U.



24 1 Topological Vector Spaces
Proof. Suppose A is linear and continuous. From Proposition 1.9.3,
if {un} C U is such that u, — 0 then A(u,) — 6. (1.38)

We claim that for each € > 0 there exists 0 > 0 such that if |ul|y < 3, then
JAw)lly <.

Suppose, to obtain contradiction, that the claim is false.

Thus there exists & > 0 such that for each n € N there exists u,, € U such that
lunlle < 5 and A (un)[lv > &o.

Therefore u, — 6 and A(u,) does not converge to 8, which contradicts (1.38).

Thus the claim holds.

In particular, for € = 1, there exists 6 > 0 such that if |lu|ly < O, then
[|A(u)|lv < 1. Thus given an arbitrary not relabeled u € U, u # 0, for

Su
w=—
2| ullu
we have 6||A( )H
u)|lv
[AW)lv = —77— <1,
2||ullu
that is 5
4@y < 240 vy ey,
Defining
2
K==
o

the first part of the proof is complete. Reciprocally, suppose there exists K > 0 such
that
lA()|lv < K||u|lu,YueU.

Hence u, — 6 implies ||A(u,)||y — 6, so that from Proposition 1.9.3, A is continu-
ous.
The proof is complete.

1.11 Some Classical Results on Banach Spaces

In this section we present some important results in Banach spaces. We start with
the following theorem.

Theorem 1.11.1. Let U and V be Banach spaces and let A : U — V be a linear
operator. Then A is bounded if and only if the set C C U has at least one interior
point, where

C=A"{veV||lv <1}
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Proof. Suppose there exists ug € U in the interior of C. Thus, there exists 7 > 0 such
that
Br(up) ={uecU]||u—uo|luv <r}CC.

Fix u € U such that ||u||y < r. Thus, we have

[A@)[lv < [|A(u+uo)lv + [[A(uo)|v-
Observe also that
| (u+uo) —uollv <,

so that u + ug € B,(up) C C and thus
[A(u+uo)llv <1
and hence
[AG)|lv < 1+ [|A(uo)lv, (1.39)

Vu € U such that ||u|ly < r. Fix an arbitrary not relabeled u € U such that u # 6.

From (1.39)
u r

W=
lullu 2

is such that

_ A@) v

-
lAw)llv = Tl 2 < 1+ [|A(uo)|lv,

so that 5
1AGO) v < (1 + [[A(uo)llv) Jully—.

Since u € U is arbitrary, A is bounded.
Reciprocally, suppose A is bounded. Thus

[A(u)|lv < K||ul|u,Yu e U,

for some K > 0. In particular
1
D=quelU] ||u||U§E ccC.

The proof is complete.

Definition 1.11.2. A set S in a metric space U is said to be nowhere dense if S has
an empty interior.

Theorem 1.11.3 (Baire Category Theorem). A complete metric space is never the
union of a countable number of nowhere dense sets.
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Proof. Suppose, to obtain contradiction, that U is a complete metric space and
U == U;OZIAn,

where each A, is nowhere dense. Since A; is nowhere dense, there exist u; € U
which is not in A|; otherwise we would have U = A, which is not possible since
U is open. Furthermore, Af is open, so that we may obtain u; € A and 0 <r; <1
such that

B, =B, (u1)

satisfies
B NA; =0.

Since A, is nowhere dense we have B is not contained in A,. Therefore we may
select up € By \ A, and since B; \ A is open, there exists 0 < r, < 1/2 such that

By =B,,(u2) C B\ A,,
that is,
B,NA; =0.

Proceeding inductively in this fashion, for each n € N, we may obtain u, € B, 1\ A,
such that we may choose an open ball B, = B,, (u,) such that

Bn Canlv

B,NA, =0,
and
0<r, <27

Observe that {uy, } is a Cauchy sequence, considering that if m,n > N, then up, u, €
By, so that
d(up,um) < 2(217N).

Define
u=lim u,.
n—yoo
Since
u, € By,Yn >N,
we get

u€ By CBy_1.

Therefore u is not in Ay_1,VN > 1, which means u is not in U;_ A, = U, a
contradiction.
The proof is complete.

Theorem 1.11.4 (The Principle of Uniform Boundedness). Let U be a Banach
space. Let F be a family of linear bounded operators from U into a normed linear
space V. Suppose for each u € U there exists a K,, € R such that
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IT(u)|lv < Ku,VT € F.
Then, there exists K € R such that
IT)| < KVT € Z.

Proof. Define
B,={ucU||T(u)|y <n VT e .ZF}.

By the hypotheses, given u € U, u € B, for all n is sufficiently big. Thus,
U = U:::IBV!'

Moreover each By, is closed. By the Baire category theorem there exists ny € N such
that B,,, has nonempty interior. That is, there exists ug € U and r > 0 such that

B,(up) C By,.
Thus, fixing an arbitrary 7 € %, we have
IT (w)|lv < no,Yu € B, (up).
Thus if ||ul|y < r then || (u + 1) — uo||v < r, so that
IT (u+uo)[lv < no,

that is,
1T @)lv = [T (uo)[lv < no.

Thus,
IT (w)|lv < 2ng, if ||ul|lv < r. (1.40)

For u € U arbitrary, u # 0, define

ru
w=—
2| ullv
from (1.40) we obtain
T (u)llv
ITW)llv = =57 < 2no,
2| ullu
so that
4
1T ()|l < M,\m ev.
Hence
4I’l()

i< vre g,
r

The proof is complete.
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Theorem 1.11.5 (The Open Mapping Theorem). Let U and V be Banach spaces
and let A : U — V be a bounded onto linear operator. Thus, if O C U is open, then
A(O) is openinV.

Proof. First we will prove that given r > 0, there exists ' > 0 such that

A(B,(9)) D B(0). (1.41)
Here BX (6) denotes a ball in V of radius ' with center in 6. Since A is onto

V =UL1A(nB1(0)).

By the Baire category theorem, there exists np € N such that the closure of
A(noB1(0)) has nonempty interior, so that A(B;(6)) has nonempty interior. We
will show that there exists > 0 such that

5(0) C AT (@)
Observe that there exists yo € V and r; > 0 such that

By (vo) CA(Bi(6)). (1.42)
Define ug € B;(0) which satisfies A(ug) = yo. We claim that

A(B,(6)) > B, (6),
where ry = 1 + ||ug||y. To prove the claim, pick

y € A(B1(9))
thus there exists u € U such that ||u||y < 1 and A(u) = y. Therefore
A(u) = A(u—up~+up) =Au—uo) +A(uo).

But observe that

| —uolly < [Jullu + [|uollu

<1+ uollu
=, (1.43)
so that
A(u—ug) € A(B,,(0)).
This means
y=A(u) € A(uog) +A(Br,(8)),
and hence

A(B1(0)) C A(up) +A(Br,(0)).
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That is, from this and (1.42), we obtain

A(uo) +A(B,,(8)) D A(B1(8)) D By, (vo) = A(uo) +BJ, (),

and therefore
A(B,,(0)) > B, (6).

Since
A(B,(0)) =rA(Bi(0)),

we have, for some not relabeled r; > 0, that
A(B1(6)) D By (6).
Thus it suffices to show that
A(B1(0)) C A(Bx(0)),

to prove (1.41). Lety € A(B1(6)); since A is continuous, we may select u; € By ()
such that

y—A(u) € B ,(8) CA(B2(0)).
Now select up € By /»(8) so that
y—=A(ur) —A(uz) € B, ,(6).
By induction, we may obtain
U, € le,n(9)7
such that

y— Y Aluy) € BY, 1(6).

~.
™M=
L

Define
u= 2 Up,
n=1

we have that u € B(6), so that

Therefore
A(B1(0)) C A(B2(0)).

The proof of (1.41) is complete.
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To finish the proof of this theorem, assume & C U is open. Let vo € A(0). Let
up € O be such that A(ug) = vo. Thus there exists r > 0 such that

Br(uo) CcO.

From (1.41),
A(B,(8)) > BY(8).

for some ¥ > 0. Thus
A(0) D A(up) +A(B-(8)) D vo+BL(0).

This means that vy is an interior point of A(&). Since vy € A(0) is arbitrary, we
may conclude that A(&) is open.
The proof is complete.

Theorem 1.11.6 (The Inverse Mapping Theorem). A continuous linear bijection
of one Banach space onto another has a continuous inverse.

Proof. Let A : U — V satisfying the theorem hypotheses. Since A is open, A~! is
continuous.

Definition 1.11.7 (Graph of a Mapping). Let A : U — V be an operator, where U
and V are normed linear spaces. The graph of A denoted by I'(A) is defined by

I'A) ={(u,v) eUxV|v=A(u)}.

Theorem 1.11.8 (The Closed Graph Theorem). Let U and V be Banach spaces
andlet A : U — V be a linear operator. Then A is bounded if and only if its graph is
closed.

Proof. Suppose I'(A) is closed. Since A is linear, I'(A) is a subspace of U & V. Also,
being I'(A) closed, it is a Banach space with the norm

1, A(u) | = [Juallr + 1A ) [[v-
Consider the continuous mappings
M (u,Au)) = u

and
I A () = A(u).

Observe that IT; is a bijection, so that by the inverse mapping theorem, II;” s
continuous. As
A=ThLoll ",

it follows that A is continuous. The converse is trivial.
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1.12 Hilbert Spaces

At this point we introduce an important class of spaces, namely the Hilbert
spaces.

Definition 1.12.1. Let H be a vector space. We say that H is a real pre-Hilbert space
if there exists a function (-,-)y : H X H — R such that

1. (u,v)g = (v,u)u, Yu,v € H,

2. (u+v,w)g = (u,w)g + (v,w)u, Yu,v,w € H,

3. (qu,v)g = a(u,v)u, Yu,ve H, ot € R,

4. (u,u)y >0, Yu € H, and (u,u)y =0, if and only if u = 6.

Remark 1.12.2. The function (-,-)y : H x H — R is called an inner product.
Proposition 1.12.3 (Cauchy—Schwarz Inequality). Let H be a pre-Hilbert space.

Defining
lullg =/ (u,u)n,Vu € H,

we have
|(uv)u| < [lulla|v]H, Vu,v € H.

Equality holds if and only if u = o for some oo € R orv=0.
Proof. 1If v = 0, the inequality is immediate. Assume v # 6. Given o € R we have

0< (u—ovu—ov)y
= (u,u)y + ocz(v, Vg —20(u,v)g
= |lullz; + o (Ivl|F — 20e(u, v)ar. (1.44)

In particular, for & = (u,v)p /||v||, we obtain

(V)

2
H

that is,
[(u, V)| < [[ulla|v]|a-

The remaining conclusions are left to the reader.
Proposition 1.12.4. On a pre-Hilbert space H, the function
Iz :H—=R

is a norm, where as above
[l = /(e u).

Proof. The only nontrivial property to be verified, concerning the definition of
norm, is the triangle inequality.
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Observe that given u,v € H, from the Cauchy—Schwarz inequality, we have

lu+vllE = (utv,u+v)g

= (u,u)n + (v v)u +2(u,v)n

(w,u)m + (v,v)m +2|(u, V)|

all 7+ 1V 11 + 2l el v 2

(Nlullez + |[vIle)>. (1.45)

<
<

Therefore
lu+vlag < lullg+v]aYu,v € H.

The proof is complete.

Definition 1.12.5. A pre-Hilbert space H is to be a Hilbert space if it is complete,
that is, if any Cauchy sequence in H converges to an element of H.

Definition 1.12.6 (Orthogonal Complement). Let H be a Hilbert space. Consider-
ing M C H we define its orthogonal complement, denoted by M=, by

={ucH|(umpy=0,VmeMj}.

Theorem 1.12.7. Let H be a Hilbert space and M a closed subspace of H and sup-
pose u € H. Under such hypotheses there exists a unique mo € M such that

|t —mol|n = rlglelﬂl}{llu—mHH}-

Moreover ny = u—mgy € M so that
u = mq + no,

where mg € M and ny € M*. Finally, such a representation through M & M* is
unique.

Proof. Define d by
d = inf {||u—m|z}.

Let {m;} C M be a sequence such that
Hu—m,'||H — d, as i — oo,
Thus, from the parallelogram law, we have

(lmi—ml[z = llmi—u—(mj—u)|f
= 2||m; — ullf +2[m; —ullF

=2 —2u+mi+mj|\%1
2 2
= 2lm; —ully +2[lm; —ully
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=4l = u+ (mit m;) /2|3
— 2d*+2d*—4d* =0, as i, j — oo (1.46)
Thus {m;} C M is a Cauchy sequence. Since M is closed, there exists ny € M such

that
m; — mg, as i — oo,

so that
lu—millg — |lu—molln =d.
Define
nog = u—my.

We will prove that ng € M.
Pick m € M and t € R, and thus we have

d* < Ju— (mo—tm)||f;

= |lno+tml|F
= |0/l +2(no,m)at + [|m|| 1. (1.47)
Since
2 2 2
ol = llu—mol|g =d~,
we obtain
2(ng,m)yt + ||m||52> > 0,vt € R
so that
(n()am)H =0.
Being m € M arbitrary, we obtain
no eM*-.

It remains to prove the uniqueness. Let m € M, and thus

lu—m|[f = [lu—mo+mo—m|F
= J|u—mol|7; + [[m — mo |3, (1.48)
since
(w—mo,m—mo)pg = (no,m —mp)g = 0.

From (1.48) we obtain
e = mllz > |u— mol|7; = d?,

if m = my.
Therefore my is unique.
Now suppose
u=my+ny,
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where m; € M and n; € M+. As above, form € M

llu—mllz; = [lu—my+mi —m|z
2 2
= |u—mu|lgg + [lm—m |,
> ||u—m|lu (1.49)

and thus since mg such that
is unique, we get

and therefore
ny = u—mgy = ny.

The proof is complete.
Theorem 1.12.8 (The Riesz Lemma). Let H be a Hilbert space and let f: H — R
be a continuous linear functional. Then there exists a unique uy € H such that
f(u) = (u,up)n,Yu e H.
Moreover
(12 = l[uollz-

Proof. Define N by
N={ueH]| f(u)=0}.

Thus, as f is a continuous and linear, N is a closed subspace of H. If N = H, then
f(u) =0=(u,0)y,Vu € H and the proof would be complete. Thus, assume N # H.
By the last theorem there exists v # 6 such that v € N*.
Define
)

VIl

Uo
Thus,if u € N we have
f(u) =0= (u,up)y =0.
On the other hand, if u = v for some o € R, we have
flu) = af(v)
Jv)(av,v)u

V117

_ f(V)V>
<°‘V’ M ) &
= (ov,uo)u- (1.50)

Therefore f(u) equals (u,uq)y in the space spanned by N and v. Now we show that
this last space (then span of N and v) is in fact H. Just observe that given u € H we
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may write
(LY | fy
”‘( 70 )* 0K
Since Fa)
“o) Y

we have finished the first part of the proof, that is, we have proven that

f(u) = (u,uo)n,Yu € H.
To finish the proof, assume u; € H is such that

f(u) = (u,u)y,Yu € H.
Thus,

o — ur||3; = (uo — ur,uo — ur)m

= (“O_ulauo)H_ (uo_ulaul)H

= f(uo—uy) — f(up—uy) =0.

Hence u; = ug.
Let us now prove that
(£ 11+ = lluollz-

First observe that

Al = sup{f(u) | u € H, [lullz <1}
= sup{|(u,uo)u| [ u € H, |[ullx <1}
< sup{[ulluluollz [u € H, [Julla <1}

< luolln-

On the other hand

[fllz+ = sup{f(u) |ueH, [lullz <1}

Uo
27 ( ||u0||H)

_ (1o, uo)H
l|uol| 1
= |luolln-

From (1.53) and (1.54)
£+ = l[uolla-

The proof is complete.
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(1.51)

(1.52)

(1.53)

(1.54)
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Remark 1.12.9. Similarly as above we may define a Hilbert space H over C, that is,
a complex one. In this case the complex inner product (-, )y : H x H — C is defined
through the following properties:

1. (u,v)g = (v,u)u, Yu,v € H,

2. (u+v,w)g = (u,w)g + (v,w)u, Yu,v,w € H,

3. (ou,v)g =(u,v)y, Yu,ve H, o0 € C,

4. (u,u)y >0, Vu € H, and (u,u) =0, if and only if u = 6.

Observe that in this case we have
(u,ov)g = a(u,v)y, Yu,v € H, a € C,

where for oo = a + bi € C, we have @ = a — bi. Finally, similar results as those
proven above are valid for complex Hilbert spaces.

1.13 Orthonormal Basis

In this section we study separable Hilbert spaces and the related orthonormal
bases.

Definition 1.13.1. Let H be a Hilbert space. A set S C H is said to be orthonormal if
lulla =1,

and
(u,v)g =0,Vu,v € S, such that u # v.

If S is not properly contained in any other orthonormal set, it is said to be an or-
thonormal basis for H.

Theorem 1.13.2. Let H be a Hilbert space and let {u,,}ﬁl\’:1 be an orthonormal set.
Then, for all u € H, we have

2

N
2 2
lullfy = D 1w ) |* +
n=1

N
(uty ) run + (tytty)ttn | -
1 n=1

Furthermore, we may easily obtain that

N
2 Uy U ) H Uy

H

Proof. Observe that

u=

M=

n

N

(ut, )y and u — 2 (1, ) Uy
1 n=1

M=

n
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are orthogonal vectors so that

2
lulliz = (u,u)n

N 2 N 2
= Z | (s ) 2 (st Uty
n=1 H n=1 H
N N 2
Z )i |* + (1= () (1.55)
n=1 n=1 H

Corollary 1.13.3 (Bessel Inequality). Let H be a Hilbert space and let {u,}"_, be
an orthonormal set. Then, for all u € H, we have

N
2
ullfy > 3 (s un) e
n=1

Theorem 1.13.4. Each Hilbert space has an orthonormal basis.

Proof. Define by C the collection of all orthonormal sets in H. Define an order in C
by stating S < S» if §1 C S». Then, C is partially ordered and obviously nonempty,
since

v/|[v|lm € C,YveH,v#8.

Now let {Sq } oL be alinearly ordered subset of C. Clearly, Ug Sy is an orthonor-
mal set which is an upper bound for {S¢ } e

Therefore, every linearly ordered subset has an upper bound, so that by Zorn’s
lemma C has a maximal element, that is, an orthonormal set not properly contained
in any other orthonormal set.

This completes the proof.

Theorem 1.13.5. Let H be a Hilbert space and let S = {uy }ocr. be an orthonormal
basis. Then for each v € H we have

V= 2 (MOHV)HMOH

acL

and

WlIE =3 (e v)n

acL

Proof. Let L' C L be a finite subset of L. From Bessel’s inequality we have

2 (e, V)| < HV”H

acl’

From this, we may infer that the set A, = {&t € L | |(ug,v)m| > 1/n} is finite, so that

A={aeL||(ug,v)u| >0} =U, A,
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is at most countable.
Thus (ug,v)y # 0 for at most countably many o's € L, which we order by
{00 }nen- Since the sequence

N
SN = 2 |(u06i=v)1'1|27
-1

is monotone and bounded, it is converging to some real limit as N — oo. Define
n
Vn = z (MOC,' 9 v)H”(X,’?
i=1

so that for n > m we have

2
n
||Vn—Vm||%1 = 2 (MOCNV)HMOQ
i=m+1 H
n
= 2 |(”06i7V)H|2
i=m+1
= |5y — Sml- (1.56)

Hence, {v,} is a Cauchy sequence which converges to some v/ € H.
Observe that

(v—V,ug)g = lim (v—

Nesvoo (uﬂtivv)Hulli;“(X])H

™=

I
—

l

—~

= (Va “OC])H_ Vvull])H
=0. (1.57)

Also, if o # oy, VI € N, then

(v—v,ug)y = lim (v— Z(Ltai,v)yuai,ua)g =0.
Nzl 15

Hence
v—v1lugy, Yo € L.

If
v—v'#£80,

then we could obtain an orthonormal set

v—y
{ ok ||v—v'||H}
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which would properly contain the complete orthonormal set

{uﬂh o€ L}a
a contradiction.
Therefore, v — V' = 0, that is,
N
v = Alllglozwai,v)yum.

i=1

1.13.1 The Gram—Schmidt Orthonormalization

Let H be a Hilbert space and {u,} C H be a sequence of linearly independent
vectors. Consider the procedure

wi
wy=up, Vi =—0,
[willa
wa
wy =uy — (vi,u2)gvi, v2 = ,
w2l
and inductively,
n—1 w
Wy = Uy — 2 (Vs n) VR, Vo= ——,¥n € N,n>2.
k=1 lwnllm

Observe that clearly {v,} is an orthonormal set and for each m € N, {v}}", and
{ux}7, span the same vector subspace of H.

Such a process of obtaining the orthonormal set {v,} is known as the Gram—
Schmidt orthonormalization.

We finish this section with the following theorem.

Theorem 1.13.6. A Hilbert space H is separable if and only if it has a countable
orthonormal basis. If dim(H) = N < oo, the H is isomorphic to CN. If dim(H) = oo,
then H is isomorphic to 12, where

n=1

= {{yn} | ya € C,Vn € N and z lya|* < +oo},

Proof. Suppose H is separable and let {u,} be a countable dense set in H. To ob-
tain an orthonormal basis it suffices to apply the Gram—Schmidt orthonormalization
procedure to the greatest linearly independent subset of {u, }.

Conversely, if B = {v,} is an orthonormal basis for H, the set of all finite linear
combinations of elements of B with rational coefficients are dense in H, so that H is
separable.
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Moreover, if dim(H) = oo, consider the isomorphism F : H — [? given by
F(u) = {(un,u) }nen.
Finally, if dim(H) = N < oo, consider the isomorphism F : H — CV given by
F (1) = { (un, )11 11

The proof is complete.



Chapter 2

The Hahn-Banach Theorems and Weak
Topologies

2.1 Introduction

The notion of weak topologies and weak convergence is fundamental in the
modern variational analysis. Many important problems are non-convex and have
no minimizers in the classical sense. However, the minimizing sequences in reflex-
ive spaces may be weakly convergent, and it is important to evaluate the average
behavior of such sequences in many practical applications. Finally, we emphasize
the main reference for this chapter is Brezis [16], where more details may be found.

2.2 The Hahn-Banach Theorem

In this chapter U denotes a Banach space, unless otherwise indicated. We start
this section by stating and proving the Hahn—Banach theorem for real vector spaces,
which is sufficient for our purposes.

Theorem 2.2.1 (The Hahn-Banach Theorem). Consider a functional p : U — R
satisfying

p(Au)=Ap(u),YueU,A >0, (2.1)

plu+v) <pu)+p©),Yu,veU. (2.2)
Let V C U be a vector subspace and let g : V — R be a linear functional such that
glu) < pu),YueV. (2.3)

Then there exists a linear functional f : U — R such that

gu)=f(u),Yuev, (2.4)

F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces: Applications 41
to Non-Convex Variational Models, DOI 10.1007/978-3-319-06074-3_2,
© Springer International Publishing Switzerland 2014
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and
fu) < p(u),YueU. (2.5)
Proof. Pick z € U —V. Denote by V the space spanned by V and z, that is,
V={v+az|veVandacR}. (2.6)
We may define an extension of g to V, denoted by g, as
glaz+v)=ag(z)+g(v), 2.7

where g(z) will be appropriately defined. Suppose given vi,v, € V, a >0, § > 0.
Then

Bsg(v1) +ag(va) = g(Bvi+avz)

~ (a+ P+~ g

<@+l 2 02+2)

< Bp(vi—oaz)+ap(v2+Bz) (2.8)

(vi—oz)+

and therefore

S lP =000 < 50+ B =gl P2V, f>0. 29

Thus, there exists a € R such that

%w%Jévww—aa+awnSas%ggJ§@w+a@—mwn (2.10)

If we define §(z) = a, we obtain g(u) < p(u),Vu € V. Define by & the set of ex-
tensions e of g, which satisfy e(u#) < p(u) on the subspace where e is defined. We
define a partial order in & by setting e; < ey if e, is defined in a larger set than e;
and e; = e, where both are defined. Let {ey}xea be a linearly ordered subset of
&. Let V,, be the subspace on which e, is defined. Define e on UV, by setting
e(u) = eq on V. Clearly ey < e so each linearly ordered set of & has an upper
bound. By Zorn’s lemma, & has a maximal element f defined on some set U such
that f(u) < p(u),Vu € U. We can conclude that U = U; otherwise, if there was an

z1 € U —U, as above, we could have a new extension f; to the subspace spanned by
z1 and U, contradicting the maximality of f.

Definition 2.2.2 (Topological Dual Space). For a Banach space U, we define its
topological dual space as the set of all linear continuous functionals defined on U.
We suppose that such dual space of U may be identified with a space denoted by U*
through a bilinear form (-,-)}y : U x U* — R (here we are referring to the standard
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representations of dual spaces concerning Lebesgue and Sobolev spaces). That is,
given f : U — R linear continuous functional, there exists u* € U* such that

() = (u,u")y,YueU. (2.11)
The norm of f, denoted by || f||y+, is defined as

1 fllo- = sug{|<u7u*>ul [ ully <1} (2.12)
ue

Corollary 2.2.3. Let V C U be a vector subspace of U and let g : V — R be a linear
continuous functional of norm

lgllv- = sup{lg@)| [ luflv < 1}. (2.13)

Then, there exists an u* in U* such that
(w,u*yy = g(u),Yu €V, (2.14)
and
lu*llo= = 1lgllv= (2.15)
Proof. Apply Theorem 2.2.1 with p(u) = ||g||v= ||ul|v-
Corollary 2.2.4. Given ug € U there exists ujy € U* such that
gl = lluollu and (o, ug)v = lluoll? (2.16)

Proof. Apply Corollary 2.2.3 with V = {aug | o € R} and g(tug) = t||uo||? so that
18llv+ = lluollv-

Corollary 2.2.5. Given u € U we have

l[ullu = sup {1, uol | u[lo- < 1} (2.17)
u*eU*

Proof. Suppose u # 6. Since
(w0 )u| < lullullullv,Vu € U,u™ € U
we have

sup {lw o] ]l floe <1} < flufly. (2.18)
u*e *

However, from last corollary, we have that there exists uj € U* such that ||ujj||y+ =
||ully and (u,ul)y = ||u||?. Define u} = ||ul|; u. Then |jui]|y = 1 and (u,ul)y =
[ullor-
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Definition 2.2.6 (Affine Hyperplane). Let U be a Banach space. An affine
hyperplane H is a set of the form

H={ueU|{(uu*)y=a} (2.19)
for some u* € U* and o € R.

Proposition 2.2.7. A hyperplane H defined as above is closed.

Proof. The result follows from the continuity of (u,u*)y as a functional defined
inU.

Definition 2.2.8 (Separation). Given A, B C U we say that a hyperplane H, defined
as above, separates A and B if

(u,u*y < a,Vu €A, and (u,u*)y > a,Vu € B. (2.20)
We say that H separates A and B strictly if there exists € > 0 such that
(u, ")y <a—e,Yu€eA, and (u,u™)y > o0+ €,Vu € B, (2.21)

Theorem 2.2.9 (Hahn-Banach Theorem, Geometric Form). Consider A,B C U
two convex disjoint nonempty sets, where A is open. Then there exists a closed hy-
perplane that separates A and B.

We need the following lemma.

Lemma 2.2.10. Consider C C U a convex open set such that 6 € C. Given u € U,

define
p(u) =inf{oe >0, o 'ueC}. (2.22)
Thus, p is such that there exists M € R satisfying
0<p(u) <M|ully,vVue U, (2.23)
and
C={ucU]|pu)<l1}. (2.24)
Also

pu+v)<pu)+p©v),Yu,veU.
Proof. Let r > 0 be such that B(6,r) C C; thus

p(u) < M,Vu eu (2.25)
r

which proves (2.23). Now suppose u € C. Since C is open, (1 4 €)u € C for € is
sufficiently small. Therefore p(u) < L < 1. Conversely, if p(u) < 1, there exists

T+e
0 < o < 1 such that o' € C and therefore, since C is convex, u = ot( ot~ u) + (1 —
)0 €C.
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!
’ A)lso, let u,v € C and € > 0. Thus m € C and W € C so that p(ug’ﬂ +
—1)v

: _ (u)+e
sorie € GVt €[0,1]. Particularly for t = m

which means p(u+v) < p(u) + p(v) +2¢,Ve >0

: u+v
we obtain Tz © C,

Lemma 2.2.11. Consider C C U a convex open set and let uy € U be a vector not
in C. Then there exists u* € U™ such that (u,u™)y < (up,u”*)y,Vu € C

Proof. By a translation, we may assume 6 € C. Consider the functional p as in the
last lemma. Define V = {0 | o € R}. Define g on V by

g(tug) =t, t € R. (2.26)

We have that g(u) < p(u),Vu € V. From the Hahn-Banach theorem, there exists a
linear functional f on U which extends g such that

fu) < p(u) <Mlully. (2.27)

Here we have used Lemma 2.2.10. In particular, f(up) = 1 and (also from the last
lemma) f(u) < 1,Vu € C. The existence of u* satisfying the theorem follows from
the continuity of f indicated in (2.27).

Proof of Theorem 2.2.9. Define C = A+ (—B) so that C is convex and 6 ¢ C. From
Lemma 2.2.11, there exists u* € U* such that (w,u*)y < 0,Vw € C, which means

(u,u™yy < (v,u*)y,Yu € A, vEB. (2.28)
Thus, there exists o € R such that

sup(u,u*)y < o < inf(v,u”)y, (2.29)
ucA veB

which completes the proof.

Theorem 2.2.12 (Hahn-Banach Theorem, Second Geometric Form). Consider
A,B C U two convex disjoint nonempty sets. Suppose A is closed and B is compact.
Then there exists a hyperplane which separates A and B strictly.

Proof. There exists € > 0 sufficiently small such that A, = A+ B(0,¢) and B, =
B+ B(0, ) are convex disjoint sets. From Theorem 2.2.9, there exists u* € U* such
that u* = 6 and

(u+ew,u")y < (u+ewy,u*)y,YueA, veB, wi,w, €B(0,1). (2.30)
Thus, there exists o € R such that

(u,u)y +elullv- < o < (vu')y —€llu’||y-,Yu €A, veB. (2.31)
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Corollary 2.2.13. Suppose V C U is a vector subspace such that V # U. Then there
exists u* € U* such that u* # 0 and

(u,u*)y =0,Yu € V. (2.32)

Proof. Consider uy € U such that ug € V. Applying Theorem 2.2.9 to A =V and
B = {up} we obtain u* € U* and o € R such that u* # 6 and

(u,u™)y < a < (ug,u™)y,Yu ev. (2.33)

Since V is a subspace we must have (u,u*)y =0,Yu e V.

2.3 Weak Topologies

Definition 2.3.1 (Weak Neighborhoods and Weak Topologies). For the topologi-
cal space U and up € U, we define a weak neighborhood of ug, denoted by %, as

Y ={ucU|[{(u—up,u)y|<eVie{l,...,m}}, (2.34)

for some m € N, € >0, and u} € U*, Vi€ {1,...,m}. Also, we define the weak
topology for U, denoted by o(U,U*), as the set of arbitrary unions and finite inter-
sections of weak neighborhoodsin U.

Proposition 2.3.2. Consider Z a topological vector space and y a function of Z
into U. Then y is continuous as U is endowed with the weak topology, if and only if
u* oy is continuous, for all u* € U*.

Proof. 1t is clear that if y is continuous with U endowed with the weak topology,
then u* o y is continuous for all u* € U*. Conversely, consider % a weakly open set
in U. We have to show that y~!(%) is open in Z. But observe that % = U, ., 73,
where each 7, is a weak neighborhood. Thus ! (%) = U, v~ ! (#;). The result
follows considering that u* o y is continuous for all u* € U*, so that y~!(7}) is
open, forall A € L.

Proposition 2.3.3. A Banach space U is Hausdorff as endowed with the weak topol-
ogy o(U,U*).

Proof. Pick uy,uy € U such that u; # up. From the Hahn—Banach theorem, second
geometric form, there exists a hyperplane separating {u;} and {u,}. That is, there
exist u* € U* and o € R such that

<M1,M*>U <oa< <M2,u*>(]. (2.35)
Defining

Yot ={uelU| |{u—u,u’)| <oa—{u,u*)y}, (2.36)
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and

Y ={ucU||[(u—uy,u")y| < (u,u")y — o}, (2.37)
we obtain u; € ¥,1, up € ¥,n and %1 N ¥ = 0.

Remark 2.3.4. If {u,,} € U is such that u, converges to u in 6(U,U*), then we write
Up — u.

Proposition 2.3.5. Let U be a Banach space. Considering {u,} C U we have

1. uy — u, for o(U,U*) < (up,u*Yy — (u,u*)y,Vu* € U*,
2. if uy, — u strongly (in norm), then u, — u weakly,
3. if upn — uweakly, then {||un||v} is bounded and |
4.

if up — u weakly and u, — u* strongly in U*, then (un,u})y — (u,u™)y.

ully < liminf||u,|
n—soo

U,

Proof.

1. The result follows directly from the definition of topology o (U,U*).
2. This follows from the inequality

g, u*yo = ()| < [l o i — - (2.38)

3. Since for every u* € U* the sequence {{(u,,u*)y} is bounded, from the uni-
form boundedness principle, we have that there exists M > 0 such that ||u, ||y <
M, Vn € N. Furthermore, for u* € U*, we have

[ (s )y | < [ [ lunl | (2.39)

and taking the limit, we obtain

[y | < Timinf e [l a0 (2.40)
Thus
lulg = sup |{u,u™)y| < liminf]||u||y. (2.41)
flully«=<1 e

4. Just observe that

[t v — (u,u" Yo | < [Qun,uy, — )y
+ (1 = s, u")u |
< Nl — |||l
+|(un — u,u)u|
< Mlu, — u™||u=
+|(up — u,u*)y | (2.42)
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Theorem 2.3.6. Consider A C U a convex set. Thus A is weakly closed if and only
if it is strongly closed.

Proof. Suppose A is strongly closed. Consider uy ¢ A. By the Hahn—Banach the-
orem there exists a closed hyperplane which separates u( and A strictly. Therefore
there exists o € R and u* € U* such that

(uo,u™ )y < a < (v,u")y,Vv €A. (2.43)
Define
VYV ={uelU]| (uu"y < a}, (2.44)

so that ug € ¥, ¥ C U — A. Since ¥ is open for 6(U,U*) we have that U — A is
weakly open; hence A is weakly closed. The converse is obvious.

2.4 The Weak-Star Topology

Definition 2.4.1 (Reflexive Spaces). Let U be a Banach space. We say that U is
reflexive if the canonical injection J : U — U** defined by

(u,uyy = (W, J(u))y=,Yue U, u* €U, (2.45)
is onto.

The weak topology for U* is denoted by o(U*,U**). By analogy, we can define
the topology 6 (U*,U ), which is called the weak-star topology. A standard neighbor-
hood of u; € U* for the weak-star topology, which we denoted by %+, is given by

Ve ={u" € U™ | [{ui,u”* —up)u| < e,Vie{l,...,m}} (2.46)

forsome € >0,me N, u; e U,Vi € {1,...,m}. Itis clear that the weak topology for
U™ and the weak-star topology coincide if U is reflexive.

Proposition 2.4.2. Let U be a Banach space. U* as endowed with the weak-star
topology is a Hausdorff space.

Proof. The proof is similar to that of Proposition 2.3.3.

2.5 Weak-Star Compactness

We start with an important theorem about weak-star compactness.

Theorem 2.5.1 (Banach-Alaoglu Theorem). The set By« = {f € U* | || fllu= < 1}
is compact for the topology o(U*,U) (the weak-star topology).
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Proof. Foreachu € U, we will associate a real number @, and denote ® = [],cyy @u-
We have that @ € RY and let us consider the projections P, : RV — R, where
P,(®) = m,. Consider the weakest topology o for which the functions P, (u € U)
are continuous. For U*, with the topology ¢(U*,U), define ¢ : U* — RY by

o) =[] (uu*)u,Vu* € U". (2.47)

uclU

Since for each fixed u the mapping u* — (u,u*)y is weakly star continuous, we
see that ¢ is o continuous, since weak-star convergence and convergence in ¢ are
equivalent in U*. To prove that ¢! is continuous, from Proposition 2.3.2, it suf-
fices to show that the function @ — (u,¢~!(®))y is continuous on ¢(U*). This is
true because (1, ¢~ (®))y = @, on ¢(U*). On the other hand, it is also clear that
¢(By+) = K, where

K={0ecRY||w, < ||ulv,
Oyry = O+ Oy, Oy, =Aw,,Yu,veU, AL €R}. (2.48)

To finish the proof, it is sufficient, from the continuity of ¢!, to show that K is
compact in RY, concerning the topology o. Observe that K = K| N K5, where

K ={0wcRY ||, <|ully,Yuc U}, (2.49)
and
K ={0eRY | w,, =w,+ o, 0, =A0,Vu,veU, L €R}. (2.50)

The set K3 = [1,cy[—||lullu, ||u||v] is compact as a cartesian product of compact
intervals. Since K; C K3 and K is closed, we have that K; is compact (for the
topology in question). On the other hand, K is closed, because defining the closed
sets Ay, and By , as

Ay ={0 eRY | 0y, — @, — @, =0}, (2.51)
and
By, ={oeRY|w;, — Aw, =0} (2.52)
we may write
Ky = (NuyevAuy) V(N2 uyerxuBau)- (2.53)

We recall that the K, is closed because arbitrary intersections of closed sets are
closed. Finally, we have that K| N K, is compact, which completes the proof.

Theorem 2.5.2 (Kakutani). Let U be a Banach space. Then U is reflexive if and
only if
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v={uecU||ullv<1} (2.54)
is compact for the weak topology o (U,U*).

Proof. Suppose U is reflexive, and then J(By ) = By++. From the last theorem By« is
compact for the topology o (U**,U*). Therefore it suffices to verify that J~! : U** —
U is continuous from U** with the topology o(U**,U*) to U, with the topology
o(U,U").

From Proposition 2.3.2 it is sufficient to show that the function u — (J~'u, f)y
is continuous for the topology o(U**,U*), for each f € U*. Since (J 'u,f)y =
(f,u)y= we have completed the first part of the proof. For the second we need two
lemmas.

Lemma 2.5.3 (Helly). Let U be a Banach space, fi,...,fn € U*, and ay,...,04 €
R, and then 1 and 2 are equivalent, where:

1.
Given € > 0, there exists ug € U such that ||u¢||y < 1 and

[{ue, fily —ou| < e,Vie{l,...,n}.

il ,VBL,...,Br €R. (2.55)

n
Y Bioi| <
i=1

Proof. 1= 2:Fix f,...,B, € R, € >0and define S =¥ | |fB;|. From 1, we have

n
> Bilue. fidu Zﬁ,a, <eS (2.56)
i=1
and therefore
Zﬁzaz - Z (ug, fi)u| < €S (2.57)
i=1
or
n
0| < Sill  Nuellu+eS<||D Bifi|| +eS (2.58)
i:1 U*
so that
0| < ifi (2.59)

since € is arbitrary. Now let us show that 2 = 1. Define o = (¢ty,...,04) € R” and
consider the function @ (u) = ((u, fi)v,---,{u, fu)v)- Item 1 implies that o belongs
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to the closure of @(By). Let us suppose that o does not belong to the closure of
¢(By) and obtain a contradiction. Thus we can separate o and the closure of @(By)
strictly, that is, there exists § = (By,...,8,) € R" and y € R such that

ou)-B<y<a-B,YueBy (2.60)

Taking the supremum in u we contradict 2.
Also we need the lemma.

Lemma 2.5.4. Let U be a Banach space. Then J(By ) is dense in By+ for the topol-
ogy o(U*,U*).

Proof. Let u™* € By« and consider %, a neighborhood of u** for the topology
o (U**,U*). It suffices to show that J(By) N %, # 0. As ¥+ is a weak neighbor-
hood, there exists fi,..., fn € U* and € > 0 such that

Vo = N €U | (fn —upe| <eVie {1,...,n}}. 2.61)

Define o; = (f;,u**)y+ and thus for any given fy,..., 3, € R we have

iﬁt%‘ = ‘<iﬁiﬁau**> < iﬁifi : (2.62)
i=1 i=1 U i=1 U
so that from Helly lemma, there exists u, € U such that |Jug||y < 1 and
[ue, fi)u — 04| < e,Yie{1,...,n} (2.63)
or,
[(fi,J(ue) —u™")y=| < e,Vie{l,...,n} (2.64)
and hence
T(ug) € Vi (2.65)

Now we will complete the proof of Kakutani theorem. Suppose By is weakly com-
pact (i.e., compact for the topology 6(U,U*)). Observe that J : U — U** is weakly
continuous, that is, it is continuous with U endowed with the topology o(U,U*)
and U™ endowed with the topology o(U**,U*). Thus as By is weakly com-
pact, we have that J(By) is compact for the topology ¢(U**,U*). From the last
lemma, J(By) is dense By for the topology o (U**,U*). Hence J(By) = By, or
J(U) = U**, which completes the proof.

Proposition 2.5.5. Let U be a reflexive Banach space. Let K C U be a convex closed
bounded set. Then K is weakly compact.

Proof. From Theorem 2.3.6, K is weakly closed (closed for the topology o (U,U*)).
Since K is bounded, there exists o € R such that K C aBy. Since K is weakly
closed and K = K N aBy, we have that it is weakly compact.
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Proposition 2.5.6. Let U be a reflexive Banach space and M C U a closed subspace.
Then M with the norm induced by U is reflexive.

Proof. We can identify two weak topologies in M:
o (M,M") and the trace of 6(U,U™). (2.66)

It can be easily verified that these two topologies coincide (through restrictions and
extensions of linear forms). From Theorem 2.5.2, it suffices to show that By, is
compact for the topology ¢(M,M*). But By is compact for 6(U,U*) and M C
U is closed (strongly) and convex so that it is weakly closed; thus, from the last
proposition, By is compact for the topology o(U,U*), and therefore it is compact
for o(M,M*).

2.6 Separable Sets

Definition 2.6.1 (Separable Spaces). A metric space U is said to be separable if
there exists a set K C U such that K is countable and dense in U.

The next proposition is proved in [16].
Proposition 2.6.2. Let U be a separable metric space. IfV C U, then'V is separable.

Theorem 2.6.3. Let U be a Banach space such that U* is separable. Then U is
separable.

Proof. Consider {u} a countable dense set in U*. Observe that
gl = sup{[{up,u)u| | w€ U and |luly =1} (2.67)

so that for each n € N, there exists u, € U such that |ju,||y = 1 and (u};,un)y >
a3l

Define Uy as the vector space on Q spanned by {u,} and U, as the vector space
on R spanned by {u,}. It is clear that Uy is dense in U; and we will show that U;
is dense in U, so that Uy is a dense set in U. Suppose u* is such that (u,u*)y =
0,Vu € U;. Since {u} is dense in U*, given € > 0, there exists n € N such that
||lu — u*||u= < €, so that

1 * * * * %
EH“nHU* < <un7un>U = <“na“n_u >U+<Mn,“ >U
< Jup — u* ||y Junllu +0 < € (2.68)
or

[ o= < |luj — u™||= + ||u)||o- < €+2€ = 3e. (2.69)
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Therefore, since € is arbitrary, ||u*||y« = 0, that is, u* = 6. By Corollary 2.2.13 this
completes the proof.

Proposition 2.6.4. U is reflexive if and only if U™ is reflexive.

Proof. Suppose U is reflexive; as By is compact for 6(U*,U) and c(U*,U) =
o(U*,U*), we have that By~ is compact for o (U*,U**), which means that U* is
reflexive.

Suppose U* is reflexive; from above U** is reflexive. Since J(U) is a closed
subspace of U**, from Proposition 2.5.6, J(U) is reflexive. Thus, U is reflexive,
since J is an isometry.

Proposition 2.6.5. Let U be a Banach space. Then U is reflexive and separable if
and only if U* is reflexive and separable.

Our final result in this section refers to the metrizability of By+.

Theorem 2.6.6. Let U be separable Banach space. Under such hypotheses By« is
metrizable with respect to the weak-star topology o(U*,U). Conversely, if By~ is
mertizable in o(U*,U), then U is separable.

Proof. Let {u,} be a dense countable set in By. For each u* € U* define

* - 1 *
||y = z | (un,u")u |-

o
It may be easily verified that || - ||,, is @ norm in U* and
[l <l |-
So, we may define a metric in U* by
du*v*) = |lu" —v*||w.

Now we shall prove that the topology induced by d coincides with 6(U*,U) in U*.
Let u; € By+ and let V be neighborhood of u in o(U*,U).
We need to prove that there exists r > 0 such that

Vi ={u" € By~ | d(ug,u™) <r} C V.
Observe that for V we may assume the general format
V={u U ||(viyu’ —ul)u| < &Vie{l,..k}}

for some € > 0 and vy,..., vy € U.
There is no loss in generality in assuming

Ivillo < 1,Vie {1,...,k}.
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Since {u,} is dense in U, for each i € {1,...,k}, there exists n; € N such that
€
e, = villo < 7
Choose r > 0 small enough such that
e .
2Mir < E’VZ e{l,...,k}.
We are going to show that V;, C V, where
Vi = {M* € By | d(u(*),u*) < r} cV.
Observe that if u* € V,,, then
d(ugy,u™) <r,

so that 1
7 (U, 0" —ugyy| < nVie{l,... .k},

so that
[(visu” —ug)u| < [(vi— it u" — ug)u| + | (un;, u” — ug)u |
< ([ o= + llugllo)vi — wn, || + [t 0™ — ug)u |

e €
2—4+—-=¢. 2.7
<2 t+5=e (2.70)

Therefore, u* € V, so that V,, C V.
Now let ug € By~ and fix r > 0. We have to obtain a neighborhood V € ¢(U*U)
such that
vV cV,={u" €By |d(uj,u”) <r}.

We shall define £ € N and € > 0 in the next lines so that V C V,,,, where
V ={u* € By | |(uj,u" —up)u| < e, Vie{l,...,k}}.

For u* € V,, we have

=&+ 2.71)
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Hence, it suffices to take € = r/2, and k sufficiently big such that
1
F < r/2

The first part of the proof is finished.

Conversely, assume By« is metrizable in o(U*,U). We are going to show that U
is separable.

Define,

V, = {u* € By | d(u*,0) < %}
From the first part, we may find V,, a neighborhood of zero in ¢(U*,U) such that
V, C V.
Moreover, we may assume that V, has the form
Vo= {u" € By« | [{u,u” — 0)y| < &,Yu € C,},

where C,, is a finite set.
Define
D = U?ozlcn.

Thus D is countable and we are going to prove that such a set is dense in U.
Suppose u* € U™ is such that

(u,u"yy =0,Yu € D.

Hence,
u* eV, CV,VneN,

so that u* = 0.
The proof is complete.

2.7 Uniformly Convex Spaces

Definition 2.7.1 (Uniformly Convex Spaces). A Banach space U is said to be uni-
formly convex if for each € > 0, there exists § > 0 such that:

fu,veU, [ully <1, |[v]o <1, and [ju—v|y > &, then 120 <1 5.
Theorem 2.7.2 (Milman Pettis). Every uniformly convex Banach space is reflexive.

Proof. Let 1 € U** be such that ||n||y= = 1. It suffices to show that n € J(By).
Since J(By) is closed in U**, we have only to show that for each € > 0 there exists
u € U such that [ —J(u)|lu~ < €.
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Thus, suppose given € > 0. Let § > 0 be the corresponding constant relating the
uniformly convex property.
Choose f € U* such that || f||y= = 1 and

5
(fimu->1-7. (2.72)

Define 5
v={¢evl-nwl<3}.

Observe that V is neighborhood of 1 in o(U**,U*). Since J(By ) is dense in By«
concerning the topology o(U**,U*), we have that V NJ(By) # 0 and thus there
exists u € By such that J(u) € V. Suppose, to obtain contradiction, that

I = J ()| > e

Therefore, defining
W = (J(u) 4+ eBy=)©,

we have that 1 € W, where W is also a weak neighborhood of 1 in o(U**,U*),
since By« is closed in o(U**,U™).

Hence VW NJ(By) # 0, so that there exists some v € By such that J(v) €
VNW. Thus, J(u) € V and J(v) € V, so that

s fu — (o] < 2

57
and
6
|(v, flu = (fimu+| < 7
Hence,

2<f7n>U* < <M+V,f>U+6
< |lu+vl|y+38. (2.73)

From this and (2.72) we obtain

llutvllu

165
2

and thus from the definition of uniform convexity, we obtain
|u—v|v<e. (2.74)
On the other hand, since J(v) € W, we have
() =)o = lu—vllu > &

which contradicts (2.74). The proof is complete.



Chapter 3
Topics on Linear Operators

The main references for this chapter are Reed and Simon [52] and Bachman and
Narici [6].

3.1 Topologies for Bounded Operators

First we recall that the set of all bounded linear operators, denoted by .Z(U,Y),
is a Banach space with the norm

[A[] = sup{[[Aully | [|ulle <1}

The topology related to the metric induced by this norm is called the uniform oper-
ator topology.

Let us introduce now the strong operator topology, which is defined as the weak-
est topology for which the functions

E,:ZUY)—=Y

are continuous where
E,(A) =AuNA € L (U,Y).

For such a topology a base at origin is given by sets of the form
{AlAc 2W.Y), |Auly <eVie{l,... n}},

where uy,...,u, € U and € > 0.
Observe that a sequence {A,} C .Z(U,Y) converges to A concerning this last
topology if
|Anu —Aully — 0, asn — o, Vu € U.
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In the next lines we describe the weak operator topology in -2 (U,Y). Such a topol-
ogy is weakest one such that the functions

E,,:Z(UY)—=C
are continuous, where
E,v(A) = (Au,v)y VA€ Z(U,Y),ueU,veY™.
For such a topology, a base at origin is given by sets of the form
{Ae 2U,Y) ||[{Au;,vj)y| < e Vie{l,...,n}, je{l,...,m}},

where € > 0, uy,...,u, €U, vi,...,v, €Y".
A sequence {A,} C .Z(U,Y) convergesto A € Z(U,Y) if

[{Apu,v)y — (Au,v)y| — 0,

asn—oo,YuclU,veY™.

3.2 Adjoint Operators

We start this section recalling the definition of adjoint operator.

Definition 3.2.1. Let U,Y be Banach spaces. Given a bounded linear operator A :
U — Y and v* € Y*, we have that T (u) = (Au,v*)y is such that

T ()| < [[Aully - [ < [JAT Vv [l

Hence T (u) is a continuous linear functional on U and considering our fundamental
representation hypothesis, there exists u* € U™ such that

T(u) = (u,u’)y,YueU.
We define A* by setting u* = A*v*, so that
T(u) = (u,u")y = (w,A"V)y

that is,
(u, A"V )y = (Au, vy, Yu e U, v €Y*.
We call A* : Y* — U* the adjoint operator relating A : U — Y.

Theorem 3.2.2. Let U,Y be Banach spaces and let A : U — Y be a bounded linear
operator. Then
IA[F= [[A%]].
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Proof. Observe that

[All = sup{[[Au]| | ||ully =1}
uclU

= Sup{ sup {{Au, v )y | [v¥[[y+ =1}, [Jullv =