Skip to main content

Routes of Formation for Porous Silicon

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon
  • 194 Accesses

Abstract

This updated review summarizes, from a chronological perspective, how about 40 distinguishable fabrication routes have been developed to create different types of porous silicon. Porous silicon has been fabricated by both “top-down” techniques from solid silicon and “bottom-up” routes from silicon atoms and silicon-based molecules. Over the last 50 years, electrochemical etching has been the most developed approach for chip-based applications and has been utilized to create highly directional mesoporosity (pore diameters in the range 2–50 nm) and macroporosity (pore diameters >50 nm). Recently, chemical conversion of porous or solid silica using magnesium vapor has received much attention for applications that require inexpensive mesoporous silicon in powder form. Very few techniques are currently available for creating wholly microporous silicon with pore size below 2 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abburi M, Bostrom T, Olefjord I (2010) Electrochemical texturing of multicrystalline silicon wafers in alkaline solutions. In: Proceedings of the 24th European photovoltaic solar energy conference, Hamburg, pp 1779–1783

    Google Scholar 

  • Abdi Y, Derakhshandeh J, Hashemi P, Mohajerzadeh S, Karbassian F, Nayeri F, Arzi E, Robertson MD, Radamson H (2005) Light emitting nano-porous silicon structures fabricated using a plasma hydrogenation technique. Mater Sci Eng B124-125:483–487

    Article  Google Scholar 

  • Archer RJ (1960) Stain films on silicon. J Phys Chem Solids 14:104–110

    Article  Google Scholar 

  • Ashruf CMA, French PJ, Bressers PMMC, Kelly JJ et al (1999) Galvanic porous silicon formation without external contacts. Sens Actuat A 74:118–122

    Article  Google Scholar 

  • Bao Z, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang Z, Abernathy HW III, Summers CJ, Liu M, Sandhage KH (2007) Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nat Lett 446:172

    Article  Google Scholar 

  • Beydaghyan G, Kaminska K, Brown T, Robbie K (2004) Enhanced birefringence in vacuum evaporated silicon thin films. Appl Opt 43(28):5343–5349

    Article  Google Scholar 

  • Canham LT, Groszek AJ (1992) Characterization of microporous silicon by flow calorimetry - comparison with a hydrophobic silica molecular sieve. J Appl Phys 72:1558

    Article  Google Scholar 

  • Chen Q, Zhou G, Zhu J, Fan C, Li X-G, Zhang Y (1996) Ultraviolet light emission from porous silicon hydrothermally prepared. Phys Lett A 224:133–136

    Article  Google Scholar 

  • Dai F, Zai J, Yi R, Gordin ML, Sohn H, Wang D (2014) Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nat Commun 5:3605

    Google Scholar 

  • Deng T, Chen J, Wu CN, Liu ZW (2013) Fabrication of inverted pyramid silicon nanopore arrays with three step wet etching. ECS J Solid State Sci Technol 2(11):419–422

    Article  Google Scholar 

  • Dimova-Malinovska D, Sendova-Vassileva M, Tzenov N, Kamenova M (1997) Preparation of thin porous silicon layers by stain etching. Thin Solid Films 297:285–290

    Article  Google Scholar 

  • Fang DZ, Striemer CC, Gaborski TR, JL MG, Fauchet PM (2010) Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes. J Phys Cond Mater 22:454134

    Article  Google Scholar 

  • Fukatani K, Ishida Y, Aiba T, Miyata H, Den T (2005) Characterization of nanoporous Si thin films obtained by al-Si phase separation. Appl Phys Lett 87:253112

    Article  Google Scholar 

  • Godhino V, Caballero-Hernandez J, Jamon D, Rojas TC, Schierholz R, Garcia-Lopez J, Ferrer FJ, Fernandez A (2013) A new bottom-up methodology to produce silicon layers with a closed porosity nanostructure and reduced refractive index. Nanotechnology 24:275604

    Article  Google Scholar 

  • Huang X, Gonzalo-Rodriguez R, Rich R, Gryczynski Z, Coffer JL (2013) Fabrication and size dependent properties of porous silicon nanotube arrays. Chem Commun 49(51):5760–5762

    Article  Google Scholar 

  • Hummel RE, Chang S-S (1992) Novel technique for preparing porous silicon. Appl Phys Lett 61(16):1965–1967

    Article  Google Scholar 

  • Jakubowicz J, Smardz K, Smardz L (2007) Characterisation of porous silicon prepared by powder technology. Physica E38:139–143

    Article  Google Scholar 

  • Kabashin AV, Meunier M (2002) Fabrication of photoluminescent Si-based layers by air optical breakdown near the silicon surface. Appl Surf Sci 186:578–582

    Article  Google Scholar 

  • Kalkan AK, Bae S, Li H, Hayes DJ, Fosash SJ (2000) Nanocrystalline Si thin films with arrayed void-column network deposited by high density plasma. J Appl Phys 88(1):555–561

    Article  Google Scholar 

  • Kaniukov EY, Ustarroz J, Yakimchuk DV, Petrova M, Terryn H, Sivakov V, Petrov AV (2016) Tunable nanoporous silicon oxide templates by swift heavy ion tracks technology. Nanotechnology 27(11):115305

    Article  Google Scholar 

  • Kim H, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high performance lithium secondary batteries. Angew Chem Int Ed 47:10151–10154

    Article  Google Scholar 

  • Kolasinski KW, Gimbar NJ, Yu H, Aindow M, Makila E, Salonen J (2017) Regenerative electroless etching of silicon. Angew Chem Int Ed 56:624–627

    Article  Google Scholar 

  • Korotcenkov G, Cho BK (2010) Silicon porosification : state of the art. Crit Rev Solid State Mater Sci 35(3):153–260

    Article  Google Scholar 

  • Krishnamurthy A, Rasmussen DH, Suni II (2011) Galvanic deposition of nanoporous Si onto 6061 A1 alloy from aqueous HF. J Electrochem Soc 158(2):D68–D71

    Article  Google Scholar 

  • Li X, Xiao Y, Yan C, Song JW, Talvev V, Schweizer SL, Pielkieska K, Sprafke A, Lee JH, Wehrspoon RB (2013) Fast electroless fabrication of uniform mesoporous silicon layers. Electrochim Acta 94:57–61

    Article  Google Scholar 

  • Liang J, Li X, Hou Z, Qian Y (2015) Nanoporous silicon prepared through air oxidation demagnesiation of Mg2Si and its lithium ion batteries property. Chem Commun 51(33):7230

    Article  Google Scholar 

  • Liebes-Peer Y, Bandalo V, Sokmen U, Tornow M, Ashkenasy N (2016) Fabrication of nanopores in multilayered silicon-based membranes using focused electron beam induced etching with XeF2 gas. Microchim Acta 183:987–994

    Article  Google Scholar 

  • Mahmood AS, Sivakumar M, Venkatakrishnan K, Tan B (2009) Enhancement in optical absorption of silicon fibrous nanostructure produced using femtosecond laser ablation. Appl Phys Lett 95:034107

    Article  Google Scholar 

  • Nakahata T, Nakajima H (2004) Fabrication of lotus-type porous silicon by unidirectional solidification in hydrogen. Mater Sci Eng A 384:373

    Article  Google Scholar 

  • Noguchi N, Suemune I (1993) Luminescent porous silicon synthesized by visible light irradiation. Appl Phys Lett 62:1429–1431

    Article  Google Scholar 

  • Rouquerol J et al (1994) Recommendations for the characterization of porous solids. Pure Appl Chem 66(8):1739–1758

    Article  Google Scholar 

  • Sadadoun M, Mliki N, Kaabi H, Daoudi K, Bessais B, Ezzaouia H, Bennaceur R (2002) Vapour-etching-based porous silicon: a new approach. Thin Solid Films 405:29–34

    Article  Google Scholar 

  • Savin DP et al (1996) Properties of laser ablated porous silicon. Appl Phys Lett 69(20):3048–3050

    Article  Google Scholar 

  • Skorb EV, Andreeva DB, Mohwald H (2012) Generation of a porous luminescent structure through ultrasonically induced pathways of silicon modification. Angew Chem Int Ed Engl 51(21):5138–5142

    Article  Google Scholar 

  • Smith RL, Collins SD (1992) Porous silicon formation mechanisms. Appl Phys Rev 71:R1–R22

    Article  Google Scholar 

  • Smith BD, Patil JJ, Ferralis N, Grossman JC (2016) Catalyst self-assembly for scalable patterning of sub 10nm ultrahigh aspect ratio nanopores in silicon. ACS Appl Mater Interfaces 8(12):8043–9049

    Article  Google Scholar 

  • Stepanov AL, Trifonov AA, Osin YN, Valeev VF, Nuzhdin VI (2013) Fabrication of nanoporous silicon by ag + ion implantation. Nanosci Nanoeng 1(3):134–138

    Google Scholar 

  • Theunissen MJJ (1972) Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J Electrochem Soc 119:351–360

    Article  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87(9–10):1051–1069

    Google Scholar 

  • Tian L, Ram KB, Ahmad I, Menon L, Holtz M (2005) Optical properties of a nanoporous array in silicon. J Appl Phys 97:026101

    Article  Google Scholar 

  • Uhlir A (1956) Electrolytic shaping of germanium and silicon. Bell Syst Tech J 35:333–347

    Article  Google Scholar 

  • Voigt F, Bruggemann R, Unold T, Huisken F, Bauer GH (2005) Porous thin films grown from size-selected silicon nanocrystals. Mater Sci Eng 25(5–8):584–589

    Article  Google Scholar 

  • Wada T, Ichitsubo T, Yubuta K, Segawa H, Yoshida H, Kato H (2014) Bulk nanoporous silicon negative electrode with extremely high cyclability for lithium ion batteries prepared using a top-down process. Nano Lett 14:4505–4510

    Article  Google Scholar 

  • Wang JF, Wang KX, Du FH, Guo XX, Jiang YM, Chen JS (2013) Amorphous silicon with high specific surface area prepared by a sodiothermic reduction method for supercapacitors. Chem Commun 49:5007–5009

    Article  Google Scholar 

  • Woldering LA, Tjerkstra RW, Jansen HV, Setija ID, Vos WL (2008) Periodic arrays of deep nanopores made in silicon with reactive ion etching and deep UV lithography. Nanotechnology 19:145304

    Article  Google Scholar 

  • Yang X, Zhang P, Shi C, Wen Z (2012) Porous graphite/silicon micro-sphere prepared by in-situ carbothermal reduction and spray drying for lithium ion batteries. ECS Solid Lett 1(2):M5–M7

    Article  Google Scholar 

  • Zhang Z, Wang Y, Ren W, Tan Q, Chen Y, Li H, Zhong Z, Su F (2014) Scalable synthesis of interconnected porous silicon/carbon composites by the Rochow reaction as high performance anodes of lithium ion batteries. Angew Chem Int Ed Eng 53(20):5165–5169

    Google Scholar 

  • Zheng Y, Yang J, Wang J, NuLi Y (2007) Nano-porous Si/C composites for anode material of lithium ion batteries. Electrochim Acta 52:5863–5867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Canham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Canham, L. (2017). Routes of Formation for Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_1-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_1-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Routes of Formation for Porous Silicon
    Published:
    11 July 2017

    DOI: https://doi.org/10.1007/978-3-319-04508-5_1-2

  2. Original

    Routes of Formation for Porous Silicon
    Published:
    11 July 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_1-1