Skip to main content

Human Centered Mathematics: A Framework for Medical Applications Based on Extended Reality and Artificial Intelligence

  • Chapter
  • First Online:
Enabling Person-Centric Healthcare Using Ambient Assistive Technology

Abstract

Many of the called fourth revolution technologies have managed to venture into the field of health care, allowing the possibility of generating spaces and environments focused on the well-being of society. Consequently, artificial intelligence (AI), the internet of things and extended reality (XR), among other technologies, have the potential to improve people’s quality of life, achieving innovative developments that accompany the daily lives of people. People, in this case we look for the accompaniment of people's health, relying on doctors and health personnel in general. HuMath is a general framework for developing medical applications using XR and AI that has been in development for the past five years. This chapter extends the concept of Human-Centered Mathematics and develops the basic architecture of developments in physical and emotional rehabilitation, prioritization, and decision support using highly complex images. Our main contribution is materialized in the flexibility and adaptability of our developments, in addition to the applications made in the areas of emotional and physical rehabilitation and in the context of the COVID-19 pandemic in radiology. Additionally, we establish the method for the design of our cyber-physical systems under the Biodesign methodology oriented to the regulations in health systems, in an ethical context in the age of data, privacy and security. Some of our most outstanding results are the development of an upper limb rehabilitation framework, using intelligent adaptive control using virtual reality, a user interface for vIvAmed and the HuMAth-Curie user interface. They are all projects that have allowed the focus on people's health care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. In IEICE (Trans.). On information and sytems (Special Issue on Networked Reality) (pp. 1321–1329).

    Google Scholar 

  2. Mao, R. Q., Lan, L., Kay, J., Lohre, R., Ayeni, O. R., Goel, D. P., & de SA, D. (2021). Immersive virtual reality for surgical training: A systematic review. Journal of Surgical Research, 268, 40–58. https://doi.org/10.1016/j.jss.2021.06.045

    Article  Google Scholar 

  3. Wang, H., & Wu, J. (2021). A virtual reality based surgical skills training simulator for catheter ablation with real-time and robust interaction. Virtual Reality & Intelligent Hardware, 3(4), 302–314. https://doi.org/10.1016/j.vrih.2021.08.004

    Article  Google Scholar 

  4. Spiegel, B. (2020). VRx: How virtual therapeutics will revolutionize medicine. Basic Books.

    Google Scholar 

  5. Chivilgina, O., Elger, B., & Jotterand, F. (2021). Digital technologies for schizophrenia manage-ment: A descriptive review. Science and Engineering Ethics, 27. https://doi.org/10.1007/s11948-021-00302-z

  6. Anderson, P. L., & Molloy, A. (2020). Maximizing the impact of virtual reality exposure therapy for anxiety disorders. Current Opinion in Psychology, 36, 153–157. https://doi.org/10.1016/j.copsyc.2020.10.001

  7. Huang, Q., Lin, J., Han, R., Peng, C., & Huang, A. (2021). Using virtual reality exposure therapy in pain management: A systematic review and meta-analysis of randomized controlled trials. Value in Health. https://doi.org/10.1016/j.jval.2021.04.1285

    Article  Google Scholar 

  8. Zahabi, M., & Razak, A. M. A. (2020). Adaptive virtual reality-based training: A systematic liter-ature review and framework. Virtual Reality, 24, 725–752. https://doi.org/10.1007/s10055-020-00434-w

    Article  Google Scholar 

  9. Diaz, C. (2016). Handling heterogeneity in collaborative networked surgical simulators (PhD thesis), Universidad EAFIT.

    Google Scholar 

  10. Riva, G., Wiederhold, B., & Mantovani, F. (2019). Neuroscience of virtual reality: From virtual exposure to embodied medicine. Cyberpsychology, Behavior, and Social Networking, 22(1), 82–103. https://doi.org/10.1089/cyber.2017.29099.gri

    Article  Google Scholar 

  11. Jahn, F. S., Skovbye, M., Obenhausen, K., Jespersen, A. E., & Miskowiak, K. W. (2021). Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials. Psychiatry Research, 300, 113928. https://doi.org/10.1016/j.psychres.2021.113928

    Article  Google Scholar 

  12. Bond, S., Laddu, D. R., Ozemek, C., Lavie, C. J., & Arena, R. (2021). Exergaming and virtual reality for health: Implications for cardiac rehabilitation. Current Problems in Cardiology, 46(3), 100472. https://doi.org/10.1016/j.cpcardiol.2019.100472

    Article  Google Scholar 

  13. Van Eck, R. (2006). Digital game-based learning: It’s not just the digital natives who are restless. EDUCAUSE Review, 41, 16–30.

    Google Scholar 

  14. Squire, K. (2020). Cultural framing of computer/video games. International Journal of Computer Game Research, 2(1), 1–14.

    Google Scholar 

  15. Squire, K., & Jenkins, H. (2003). Harnessing the power of games in education. Insight, 3(1), 5–33.

    Google Scholar 

  16. Initiative, S. G. Serious game initiative. https://www.wilsoncenter.org/program/serious-games-initiative

  17. Chen, S., & Michael, D. (2005). Serious games: Games that educate, train and inform. Muska & Lipman/Premier-Trade.

    Google Scholar 

  18. Susi, T., Johannesson, M., & Backlund, P. (2007). Serious games—An overview. Technology Representatives of School of Humanities and Informatics. University of Skovde.

    Google Scholar 

  19. Wattanasoontorn, V., Boada, I., García, R., & Sbert, M. (2013). Serious games for health. Entertainment Computing, 4, 231–247.

    Article  Google Scholar 

  20. Rego, P. A., Moreira, P. M., & Reis, L. P. (2010). Serious games for rehabilitation: A survey and a classification towards a taxonomy. Proceeding of 5th Iberian Conference on Information Systems and Tech- nologies (CISTI) (pp. 349–354).

    Google Scholar 

  21. Drummond, D., Hadchouel, A., & Tesnière, A. (2017). Serious games for health: Three steps forwards. Advances in Simulation, 2(1), 1–8.

    Article  Google Scholar 

  22. Wattanasoontorn, V., Hern ́andez, R. J. G., & Sbert, M. (2014). Serious games for e-health care. Simulations, serious games and their applications. Springer.

    Google Scholar 

  23. Boon, J. S. T., & Fung, D. S. S. (2014). Serious games for e-health care. Trends and applications of serious gaming and social media. Springer. https://doi.org/10.1007/978-981-4560-26-9

  24. Scolari, C. (2009). Transmedia storytelling: Implicit consumers, narrative worlds, and branding in contemporary media production. International Journal of Communication, 3, 589–606.

    Google Scholar 

  25. Jerald, J. (Ed.). (2006). The VR book: Human centered design for virtual reality. ACM Press.

    Google Scholar 

  26. Landers, R. N. (2014). Developing a theory of gamified learning: Linking serious games and gamification of learning. Simulation & Gaming, 45(6), 752–768. https://doi.org/10.1177/1046878114563660

    Article  Google Scholar 

  27. Xu, F., Tian, F., Buhalis, D., Weber, J., & Zhang, H. (2016). Tourists as mobile gamers: Gamification for tourism marketing. Journal of Travel & Tourism Marketing, 33(8), 1124–1142. https://doi.org/10.1080/10548408.2015.1093999

    Article  Google Scholar 

  28. Jia, Y., Xu, B., Karanam, Y., & Voida, S. (2016). Personality-targeted gamification: A survey study on personality traits and motivational affordances (pp. 2001–2013). Association for Computing Machinery. https://doi.org/10.1145/2858036.2858515

  29. Adlakha, S., Chhabra, D., & Shukla, P. (2020). Effectiveness of gamification for the rehabilitation of neurodegenerative disorders. Chaos, Solitons & Fractals, 140, 110192. https://doi.org/10.1016/j.chaos.2020.110192

    Article  Google Scholar 

  30. Xie, S., Girshick, R., Doll ́ar, P., Tu, Z., & He, K. (2016). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1492–1500).

    Google Scholar 

  31. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2015). Learning deep features for discriminative localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2921–2929).

    Google Scholar 

  32. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., Shpanskaya, K., et al. (2017). Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225

  33. Lizarralde-Bejarano, D. P., Arboleda-S ́anchez, S., & Puerta-Yepes, M. E. (2017). Understanding epidemics from mathematical models: Details of the 2010 dengue epidemic in bello (antioquia, colombia). Applied Mathematical Modelling, 43, 566–578. https://doi.org/10.1016/j.apm.2016.11.022

    Article  MathSciNet  MATH  Google Scholar 

  34. Catano-Lopez, A., Rojas-Diaz, D., Laniado, H., Arboleda-S ́anchez, S., Puerta-Yepes, M. E., & Lizarralde-Bejarano, D. P. (2019). An alternative model to explain the vectorial capacity using as example aedes aegypti case in dengue transmission. Heliyon, 5(10), e02577. https://doi.org/10.1016/j.heliyon.2019.e02577

    Article  Google Scholar 

  35. Parra-Amaya, M. E., Puerta-Yepes, M. E., Lizarralde-Bejarano, D. P., Arboleda-S ́anchez, S. (2016). Early detection for dengue using local indicator of spatial association (lisa) analysis. Diseases, 4(2). https://doi.org/10.3390/diseases4020016

  36. Shahmoradi, L., Almasi, S., Ahmadi, H., Bashiri, A., Azadi, T., Mirbagherie, A., Ansari, N. N., & Honarpishe, R. (2021). Virtual reality games for rehabilitation of upper extremities in stroke patients. Journal of Bodywork and Movement Therapies, 26, 113–122. https://doi.org/10.1016/j.jbmt.2020.10.006

    Article  Google Scholar 

  37. Charles, S. K. (2009). It’s all in the wrist: A quantitative characterization of human wrist control. Dissertation Abstracts International: Section B: The Sciences and Engineering, 70(2-B), 1292. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N&AN=2009-99160-307

  38. Gard, G., & Gyllensten, A. L. (2000). The importance of emotions in physiotherapeutic practice. Physical Therapy Reviews, 5(3), 155–160. https://doi.org/10.1179/ptr.2000.5.3.15522

    Article  Google Scholar 

  39. Harischandra, D., & Abeykoon, A. M. H. S. (2019). Intelligent bimanual rehabilitation robot with fuzzy logic based adaptive assistance. International Journal of Intelligent Robotics and Applications, 3, 59–70. https://doi.org/10.1007/s41315-019-00080-9

    Article  Google Scholar 

  40. Keller, U., & Riener, R. (2014). Design of the pediatric arm rehabilitation robot ChARMin. Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 530–535). https://doi.org/10.1109/biorob.2014.6913832

  41. Cimolin, V., Germiniasi, C., Galli, M., Condoluci, C., Beretta, E., & Piccinini, L. (2019). Robot assisted upper limb training for hemiplegic children with cerebral palsy. Journal of Developmental and Physical Disabilities, 31(1), 89–101. https://doi.org/10.1007/s10882-018-9632-y

    Article  Google Scholar 

  42. Hamasaki, T., Pelletier, R., Bourbonnais, D., Harris, P., & Choini`ere, M. (2018). Painrelated psychological issues in hand therapy. Journal of Hand Therapy, 31(2), 215–226. https://doi.org/10.1016/j.jht.2017.12.009.doi:10.1016/j.jht.2017.12.009

    Article  Google Scholar 

  43. Ferreira-Brito, F., Fialho, M., Virgolino, A., Neves, I., Miranda, A. C., Sousa-Santos, N., Caneiras, C., Carri ̧co, L., Verdelho, A., & Santos, O. (2019). Game-based interventions for neuropsychological assessment, training and rehabilitation: Which game-elements to use? A systematic review. Journal of Biomedical Informatics, 98(August), 103287. https://doi.org/10.1016/j.jbi.2019.103287

    Article  Google Scholar 

  44. Huang, X., Naghdy, F., Naghdy, G., Du, H., & Todd, C. (2018). The combined effects of adaptive control and virtual reality on robot-assisted fine hand motion rehabilitation in chronic stroke patients: A case study. Journal of Stroke and Cerebrovascular Diseases, 27(1), 221–228. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.027

    Article  Google Scholar 

  45. Canudas de Wit, C., Siciliano, B., & Bastin, G. E. (1996). Theory of robot control. Great Britain.

    Google Scholar 

  46. Luo, J., Lin, Z., Li, Y., & Yang, C. (2020). A teleoperation framework for mobile robots based on shared control. IEEE Robotics and Automation Letters, 5(2), 377–384. https://doi.org/10.1109/LRA.2019.2959442

    Article  Google Scholar 

  47. Su, H., Hu, Y., Karimi, H. R., Knoll, A., Ferrigno, G., & De Momi, E. (2020). Improved recurrent neural network-based manipulator control with remote center of motion constraints: Experimental results. Neural Networks, 131, 291–299. https://doi.org/10.1016/j.neunet.2020.07.033

    Article  MATH  Google Scholar 

  48. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). Chestx-ray8: Hospital scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2097–2106).

    Google Scholar 

  49. Villar, B. V., ̃nas, P., Turiel, J., & Fraile-Marinero, J. G. A. (2020). Influence on the user’s emotional state of the graphic complexity level in virtual therapies based on a robot-assisted neuro rehabilitation platform. Computer Methods and Programs in Biomedicine, 190, 1–12. https://doi.org/10.1016/j.cmpb.2020.105359

    Article  Google Scholar 

  50. Wang, P. T., King, C. E., Do, A. H., & Nenadic, Z. (2011). A durable, low-cost electrogoniometer for dynamic measurement of joint trajectories. Medical Engineering & Physics, 33(5), 546–552. https://doi.org/10.1016/j.medengphy.2010.12.008

    Article  Google Scholar 

  51. Liao, Y., Vakanski, A., Xian, M., Paul, D., & Baker, R. (2020). A review of computational approaches for evaluation of rehabilitation exercises. Computers in Biology and Medicine, 119, 103687. https://doi.org/10.1016/j.compbiomed.2020.103687

    Article  Google Scholar 

  52. Daponte, P., De Vito, L., Riccio, M., & Sementa, C. (2014). Design and validation of a motion tracking system for rom measurements in home rehabilitation. Measurement, 55, 82–96. https://doi.org/10.1016/j.measurement.2014.04.021

    Article  Google Scholar 

  53. Ganesan, Y., Gobee, S., & Durairajah, V. (2015). Development of an upper limb exoskeleton for rehabilitation with feedback from emg and imu sensor. Procedia Computer Science, 76, 53–59. https://doi.org/10.1016/j.procs.2015.12.275. 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IEEE IRIS2015)

  54. Tian, Y., Meng, X., Tao, D., Liu, D., & Feng, C. (2015). Upper limb motion tracking with the integration of imu and kinect. Neurocomputing, 159, 207–218. https://doi.org/10.1016/j.neucom.2015.01.071

    Article  Google Scholar 

  55. Pandita, S., & Stevenson Won, A. (2020). Chapter 7—Clinical applications of virtual reality in patient-centered care. In J. Kim & H. Song (Eds.), Technology and health (pp. 129–148). Academic Press. https://doi.org/10.1016/B978-0-12-816958-2.00007-1.

  56. Arora, S., Bhaskara, A., Ge, R., & Ma, T. (2014). Provable bounds for learning some deep representations. In E. P. Xing & T. Jebara (Eds.), Proceedings of the 31st International Conference on Machine Learning, Proceedings of Machine Learning Research (vol. 32, pp. 584–592). PMLR, Bejing, China. http://proceedings.mlr.press/v32/arora14.html

  57. G ́omez, A., Quintero, L., L ́opez, N., Castro, J., Villa, L., & Mej ́ıa, G. (2016, October 16–18). An approach to emotion recognition in single-channel EEG signals using stationary wavelet transform. In I. Torres, J. Bustamante, & D. A. Sierra (Eds.), VII Latin American congress on biomedical engineering CLAIB 2016 (pp. 654–657). Bucaramanga, Santander, Colombia. Springer Singapore, Singapore.

    Google Scholar 

  58. Gomez, A. L. E. J. A. N. D. R. O., Quintero, L., López, N. A. T. A. L. I. A., & Castro, J. A. I. M. E. (2016). An approach to emotion recognition in single-channel EEG signals: A mother child interaction. Journal of Physics: Conference Series, 705, 1–4. https://doi.org/10.1088/1742-6596/705/1/012051

    Article  Google Scholar 

  59. Sierra-Sosa, D., Bastidas, M., Ortiz, D. P., & Quintero, O. (2016). Double fourier analysis for emotion identification in voiced speech. Journal of Physics: Conference Series, 705, 012035. https://doi.org/10.1088/1742-6596/705/1/012035

    Article  Google Scholar 

  60. Schwartz, J. G., Kumar, U. N., Azagury, D. E., Brinton, T. J., & Yock, P. G. (2016). Needs-based innovation in cardiovascular medicine: The stanford biodesign process. JACC: Basic to Translational Science, 1(6), 541–547. https://doi.org/10.1016/j.jacbts.2016.06.011

  61. Steinberger, J. D., Denend, L., Azagury, D. E., Brinton, T. J., Makower, J., & Yock, P. G. (2017). Needs-based innovation in interventional radiology: The biodesign process. Techniques in Vascular and Interventional Radiology, 20(2), 84–89. https://doi.org/10.1053/j.tvir.2017.04.006

    Article  Google Scholar 

  62. Chinzei, K., Shimizu, A., Mori, K., Harada, K., Takeda, H., Hashizume, M., Ishizuka, M., Kato, N., Kawamori, R., Kyo, S., Nagata, K., Yamane, T., Sakuma, I., Ohe, K., & Mitsuishi, M. (2018). Regulatory science on ai-based medical devices and systems. Advanced Biomedical Engineering, 7, 118–123. https://doi.org/10.14326/abe.7.118

    Article  Google Scholar 

  63. Praveen, S. P., Murali Krishna, T. B., Anuradha, C. H., Mandalapu, S. R., Sarala, P., & Sindhura, S. (2022). A robust framework for handling health care information based on machine learning and big data engineering techniques. International Journal of Healthcare Management, 1–18. https://doi.org/10.1080/20479700.2022.2157071

  64. Hoffman, H. G., Boe, D. A., Rombokas, E., Khadra, C., LeMay, S., Meyer, W. J., Patterson, S., Ballesteros, A., & Pitt, S. W. (2020). Virtual reality hand therapy: A new tool for nonopioid analgesia for acute procedural pain, hand rehabilitation, and VR embodiment therapy for phantom limb pain. Journal of Hand Therapy, 33(2), 254–262. https://doi.org/10.1016/j.jht.2020.04.001

    Article  Google Scholar 

  65. Karvouniari, A., Michalos, G., Dimitropoulos, N., & Makris, S. (2018). An approach for exoskeleton integration in manufacturing lines using virtual reality techniques. Procedia CIRP, 78, 103–108. https://doi.org/10.1016/j.procir.2018.08.315

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the ColombianMinistry of Science, Technology, and Innovation (Minciencias-Ministerio de Ciencia, Tecnología e Innovación) with the project ”Exoskeleton for upper limb rehabilitation using intelligent control and virtual reality” (Exoesqueleto para rehabilitación de miembro superior usando control inteligente y realidad virtual) with code 120684468213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yarlin A. Ortiz-Toro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ortiz-Toro, Y.A., Quintero, O.L., León, C.A.D. (2023). Human Centered Mathematics: A Framework for Medical Applications Based on Extended Reality and Artificial Intelligence. In: Barsocchi, P., Parvathaneni, N.S., Garg, A., Bhoi, A.K., Palumbo, F. (eds) Enabling Person-Centric Healthcare Using Ambient Assistive Technology. Studies in Computational Intelligence, vol 1108. Springer, Cham. https://doi.org/10.1007/978-3-031-38281-9_3

Download citation

Publish with us

Policies and ethics