Keywords

1 Fuzzy-Random Functions and Stochastic Processes Background

See also [18], Ch. 22, pp. 497–501.

We start with

Definition 1

(see [35]). Let \(\mu :\mathbb {R}\rightarrow \left[ 0,1\right] \) with the following properties:

  1. (i)

    is normal, i.e., \(\exists \) \(x_{0}\in \mathbb {R}:\mu \left( x_{0}\right) =1.\)

  2. (ii)

    \(\mu \left( \lambda x+\left( 1-\lambda \right) y\right) \ge \min \{ \mu \left( x\right) ,\mu \left( y\right) \}\), \(\forall \) \(x,y\in \mathbb {R},\) \(\forall \) \(\lambda \in \left[ 0,1\right] \) (\(\mu \) is called a convex fuzzy subset).

  3. (iii)

    \(\mu \) is upper semicontinuous on \(\mathbb {R}\), i.e., \(\forall \) \(x_{0}\in \mathbb {R}\) and \(\forall \) \(\varepsilon >0\), \(\exists \) neighborhood \(V\left( x_{0}\right) :\mu \left( x\right) \le \mu \left( x_{0}\right) +\varepsilon \), \(\forall \) \(x\in V\left( x_{0}\right) .\)

  4. (iv)

    the set \(\overline{\text {supp}\left( \mu \right) }\) is compact in \( \mathbb {R}\) (where supp\(\left( \mu \right) :=\{x\in \mathbb {R};\mu \left( x\right) >0\}\)).

We call \(\mu \) a fuzzy real number. Denote the set of all \(\mu \) with \( \mathbb {R}_{\mathcal {F}}.\)

E.g., \(\chi _{\{x_{0}\}}\in \mathbb {R}_{\mathcal {F}}\), for any \(x_{0}\in \mathbb {R},\) where \(\chi _{\{x_{0}\}}\) is the characteristic function at \( x_{0}\).

For \(0<r\le 1\) and \(\mu \in \mathbb {R}_{\mathcal {F}}\) define \(\left[ \mu \right] ^{r}:=\{x\in \mathbb {R}:\mu \left( x\right) \ge r\}\) and \(\left[ \mu \right] ^{0}:=\overline{\{x\in \mathbb {R}:\mu \left( x\right) >0\}}.\)

Then it is well known that for each \(r\in \left[ 0,1\right] \), \(\left[ \mu \right] ^{r}\) is a closed and bounded interval of \(\mathbb {R}\). For \(u,v\in \mathbb {R}_{\mathcal {F}}\) and \(\lambda \in \mathbb {R}\), we define uniquely the sum \(u\oplus v\) and the product \(\lambda \odot u\) by

$$\begin{aligned} \left[ u\oplus v\right] ^{r}=\left[ u\right] ^{r}+\left[ v\right] ^{r},\text { }\left[ \lambda \odot u\right] ^{r}=\lambda \left[ u\right] ^{r},\text { }\forall \text { }r\in \left[ 0,1\right] , \end{aligned}$$

where \(\left[ u\right] ^{r}+\left[ v\right] ^{r}\) means the usual addition of two intervals (as subsets of \(\mathbb {R}\)) and \(\lambda \left[ u\right] ^{r}\) means the usual product between a scalar and a subset of \(\mathbb {R}\) (see, e.g., [35]). Notice \(1\odot u=u\) and it holds \(u\oplus v=v\oplus u \), \(\lambda \odot u=u\odot \lambda \). If \(0\le r_{1}\le r_{2}\le 1\) then \(\left[ u\right] ^{r_{2}}\subseteq \left[ u\right] ^{r_{1}}\). Actually \( \left[ u\right] ^{r}=\left[ u_{-}^{\left( r\right) },u_{+}^{\left( r\right) } \right] \), where \(u_{-}^{\left( r\right) }<u_{+}^{\left( r\right) }\), \( u_{-}^{\left( r\right) },u_{+}^{\left( r\right) }\in \mathbb {R}\), \(\forall \) \(r\in \left[ 0,1\right] .\)

Define

$$\begin{aligned} D:\mathbb {R}_{\mathcal {F}}\times \mathbb {R}_{\mathcal {F}}\rightarrow \mathbb { R}_{+}\cup \{0\} \end{aligned}$$

by

$$\begin{aligned} D\left( u,v\right) :=\underset{r\in \left[ 0,1\right] }{\sup }\max \left\{ \left| u_{-}^{\left( r\right) }-v_{-}^{\left( r\right) }\right| ,\left| u_{+}^{\left( r\right) }-v_{+}^{\left( r\right) }\right| \right\} , \end{aligned}$$

where \(\left[ v\right] ^{r}=\left[ v_{-}^{\left( r\right) },v_{+}^{\left( r\right) }\right] ;\) \(u,v\in \mathbb {R}_{\mathcal {F}}\). We have that D is a metric on \(\mathbb {R}_{\mathcal {F}}\). Then \(\left( \mathbb {R}_{\mathcal {F} },D\right) \) is a complete metric space, see [35], with the properties

$$\begin{aligned} \begin{array}{c} D\left( u\oplus w,v\oplus w\right) =D\left( u,v\right) ,\text { }\forall \text { }u,v,w\in \mathbb {R}_{\mathcal {F}}, \\ D\left( k\odot u,k\odot v\right) =\left| k\right| D\left( u,v\right) \text {, }\forall \text { }u,v\in \mathbb {R}_{\mathcal {F}}\text { , }\forall \text { }k\in \mathbb {R}, \\ D\left( u\oplus v,w\oplus e\right) \le D\left( u,w\right) +D\left( v,e\right) \text {, }\forall \text { }u,v,w,e\in \mathbb {R}_{\mathcal {F}}.\end{array} \end{aligned}$$
(1)

Let \(\left( M,d\right) \) metric space and \(f,g:M\rightarrow \mathbb {R}_{ \mathcal {F}}\) be fuzzy real number valued functions. The distance between fg is defined by

$$\begin{aligned} D^{*}\left( f,g\right) :=\underset{x\in M}{\sup }D\left( f\left( x\right) ,g\left( x\right) \right) . \end{aligned}$$

On \(\mathbb {R}_{\mathcal {F}}\) we define a partial order by “\(\le \)”: \(u,v\in \mathbb {R}_{\mathcal {F}}\), \(u\le v\) iff \(u_{-}^{\left( r\right) }\le v_{-}^{\left( r\right) }\) and \(u_{+}^{\left( r\right) }\le v_{+}^{\left( r\right) }\), \(\forall \) \(r\in \left[ 0,1\right] .\)

\(\sum \limits ^{*}\) denotes the fuzzy summation, \(\widetilde{o}:=\chi _{\{0\}}\in \mathbb {R}_{\mathcal {F}}\) the neutral element with respect to \( \oplus \). For more see also [36, 37].

We need

Definition 2

(see also [30], Definition 13.16, p. 654). Let \(\left( X, \mathcal {B},P\right) \) be a probability space. A fuzzy-random variable is a \( \mathcal {B}\)-measurable mapping \(g:X\rightarrow \mathbb {R}_{\mathcal {F}}\) (i.e., for any open set \(U\subseteq \mathbb {R}_{\mathcal {F}},\) in the topology of \(\mathbb {R}_{\mathcal {F}}\) generated by the metric D, we have

$$\begin{aligned} g^{-1}\left( U\right) =\{s\in X;g\left( s\right) \in U\} \in \mathcal {B} \text {).} \end{aligned}$$
(2)

The set of all fuzzy-random variables is denoted by \(\mathcal {L}_{\mathcal {F} }\left( X,\mathcal {B},P\right) \). Let \(g_{n},g\in \mathcal {L}_{\mathcal {F} }\left( X,\mathcal {B},P\right) \), \(n\in \mathbb {N}\) and \(0<q<+\infty \). We say if

$$\begin{aligned} \underset{n\rightarrow +\infty }{\lim }\int _{X}D\left( g_{n}\left( s\right) ,g\left( s\right) \right) ^{q}P\left( ds\right) =0. \end{aligned}$$
(3)

Remark 1

(see [30], p. 654). If \(f,g\in \mathcal {L}_{\mathcal {F}}\left( X,\mathcal {B},P\right) \), let us denote \(F:X\rightarrow \mathbb {R}_{+}\cup \{0\}\) by \(F\left( s\right) =D\left( f\left( s\right) ,g\left( s\right) \right) \), \(s\in X\). Here, F is \(\mathcal {B}\)-measurable, because \( F=G\circ H\), where \(G\left( u,v\right) =D\left( u,v\right) \) is continuous on \(\mathbb {R}_{\mathcal {F}}\times \mathbb {R}_{\mathcal {F}}\), and \( H:X\rightarrow \mathbb {R}_{\mathcal {F}}\times \mathbb {R}_{\mathcal {F}}\), \( H\left( s\right) =\left( f\left( s\right) ,g\left( s\right) \right) \), \(s\in X\), is \(\mathcal {B}\)-measurable. This shows that the above convergence in q -mean makes sense.

Definition 3

(see [30], p. 654, Definition 13.17). Let \(\left( T, \mathcal {T}\right) \) be a topological space. A mapping \(f:T\rightarrow \mathcal {L}_{\mathcal {F}}\left( X,\mathcal {B},P\right) \) will be called fuzzy-random function (or fuzzy-stochastic process) on T. We denote \( f\left( t\right) \left( s\right) =f\left( t,s\right) \), \(t\in T\), \(s\in X\).

Remark 2

(see [30], p. 655). Any usual fuzzy real function \( f:T\rightarrow \mathbb {R}_{\mathcal {F}}\) can be identified with the degenerate fuzzy-random function \(f\left( t,s\right) =f\left( t\right) \), \( \forall \) \(t\in T\), \(s\in X\).

Remark 3

(see [30], p. 655). Fuzzy-random functions that coincide with probability one for each \(t\in T\) will be consider equivalent.

Remark 4

(see [30], p. 655). Let \(f,g:T\rightarrow \mathcal {L}_{ \mathcal {F}}\left( X,\mathcal {B},P\right) \). Then \(f\oplus g\) and \(k\odot f\) are defined pointwise, i.e.,

$$\begin{aligned} \left( f\oplus g\right) \left( t,s\right)= & {} f\left( t,s\right) \oplus g\left( t,s\right) , \\ \left( k\odot f\right) \left( t,s\right)= & {} k\odot f\left( t,s\right) \text { , }t\in T,s\in X,\text { }k\in \mathbb {R}. \end{aligned}$$

Definition 4

(see also Definition 13.18, pp. 655–656, [30]). For a fuzzy-random function \(f:W\subseteq \mathbb {R}^{N}\rightarrow \mathcal {L}_{ \mathcal {F}}\left( X,\mathcal {B},P\right) \), \(N\in \mathbb {N}\), we define the (first) fuzzy-random modulus of continuity

$$\begin{aligned} \varOmega _{1}^{\left( \mathcal {F}\right) }\left( f,\delta \right) _{L^{q}}= \end{aligned}$$
$$\begin{aligned} \sup \left\{ \left( \int _{X}D^{q}\left( f\left( x,s\right) ,f\left( y,s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}:x,y\in W,\text { } \left\| x-y\right\| _{\infty }\le \delta \right\} , \end{aligned}$$

\(0<\delta ,\) \(1\le q<\infty .\)

Definition 5

[16]. Here \(1\le q<+\infty \). Let \(f:W\subseteq \mathbb {R} ^{N}\rightarrow \mathcal {L}_{\mathcal {F}}\left( X,\mathcal {B},P\right) \), \( N\in \mathbb {N}\), be a fuzzy random function. We call f a (q-mean) uniformly continuous fuzzy random function over W, iff \(\forall \) \( \varepsilon >0\) \(\exists \) \(\delta >0:\)whenever \(\left\| x-y\right\| _{\infty }\le \delta ,\) \(x,y\in W,\) implies that

$$\begin{aligned} \int _{X}\left( D\left( f\left( x,s\right) ,f\left( y,s\right) \right) \right) ^{q}P\left( ds\right) \le \varepsilon . \end{aligned}$$

We denote it as \(f\in C_{FR}^{U_{q}}\left( W\right) .\)

Proposition 1

[16]. Let \(f\in C_{FR}^{U_{q}}\left( W\right) ,\) where \( W\subseteq \mathbb {R}^{N}\) is convex.

Then \(\varOmega _{1}^{\left( \mathcal {F}\right) }\left( f,\delta \right) _{L^{q}}<\infty \), any \(\delta >0.\)

Proposition 2

[16]. Let \(f,g:W\subseteq \mathbb {R}^{N}\rightarrow \mathcal {L}_{\mathcal {F}}\left( X,\mathcal {B},P\right) \), \(N\in \mathbb {N}\), be fuzzy random functions. It holds

  1. (i)

    \(\varOmega _{1}^{\left( \mathcal {F}\right) }\left( f,\delta \right) _{L^{q}} \) is nonnegative and nondecreasing in \(\delta >0.\)

  2. (ii)

    \(\underset{\delta \downarrow 0}{\lim }\varOmega _{1}^{\left( \mathcal {F} \right) }\left( f,\delta \right) _{L^{q}}=\varOmega _{1}^{\left( \mathcal {F} \right) }\left( f,0\right) _{L^{q}}=0\), iff \(f\in C_{FR}^{U_{q}}\left( W\right) .\)

We mention

Definition 6

(see also [6]). Let \(f\left( t,s\right) \) be a random function (stochastic process) from \(W\times \left( X,\mathcal {B},P\right) ,\) \(W\subseteq \mathbb {R}^{N},\) into \(\mathbb {R}\), where \(\left( X,\mathcal {B} ,P\right) \) is a probability space. We define the q-mean multivariate first modulus of continuity of f by

$$\begin{aligned} \varOmega _{1}\left( f,\delta \right) _{L^{q}}:= \end{aligned}$$
$$\begin{aligned} \sup \left\{ \left( \int _{X}\left| f\left( x,s\right) -f\left( y,s\right) \right| ^{q}P\left( ds\right) \right) ^{\frac{1}{q}}:x,y\in W,\text { }\left\| x-y\right\| _{\infty }\le \delta \right\} , \end{aligned}$$
(4)

\(\delta >0,\) \(1\le q<\infty \).

The concept of f being (q-mean) uniformly continuous random function is defined the same way as in Definition 5, just replace D by \( \left| \cdot \right| \), etc. We denote it as \(f\in C_{\mathbb {R} }^{U_{q}}\left( W\right) .\)

Similar properties as in Propositions 1, 2 are valid for \( \varOmega _{1}\left( f,\delta \right) _{L^{q}}.\)

Also we have

Proposition 3

[3]. Let \(Y\left( t,\omega \right) \) be a real valued stochastic process such that Y is continuous in \(t\in \left[ a,b\right] \). Then Y is jointly measurable in \(\left( t,\omega \right) .\)

According to [28], p. 94 we have the following

Definition 7

Let \(\left( Y,\mathcal {T}\right) \) be a topological space, with its \(\sigma \)-algebra of Borel sets \(\mathcal {B}:=\mathcal {B}\left( Y,\mathcal {T}\right) \) generated by \(\mathcal {T}\). If \(\left( X,\mathcal {S} \right) \) is a measurable space, a function \(f:X\rightarrow Y\) is called measurable iff \(f^{-1}\left( B\right) \in \mathcal {S}\) for all \(B\in \mathcal {B}\).

By Theorem 4.1.6 of [28], p. 89 f as above is measurable iff

$$\begin{aligned} f^{-1}\left( C\right) \in \mathcal {S}\text { for all }C\in \mathcal {T}\text {.} \end{aligned}$$

We mention

Theorem 1

(see [28], p. 95). Let \(\left( X,\mathcal {S}\right) \) be a measurable space and \(\left( Y,d\right) \) be a metric space. Let \(f_{n}\) be measurable functions from X into Y such that for all \(x\in X\), \( f_{n}\left( x\right) \rightarrow f\left( x\right) \) in Y. Then f is measurable. I.e., \(\underset{n\rightarrow \infty }{\lim }f_{n}=f\) is measurable.

We need also

Proposition 4

[16]. Let fg be fuzzy random variables from \(\mathcal {S}\) into \(\mathbb {R}_{\mathcal {F}}\). Then

  1. (i)

    Let \(c\in \mathbb {R}\), then \(c\odot f\) is a fuzzy random variable.

  2. (ii)

    \(f\oplus g\) is a fuzzy random variable.

Proposition 5

Let \(Y\left( \overrightarrow{t},\omega \right) \) be a real valued multivariate random function (stochastic process) such that Y is continuous in \(\overrightarrow{t}\in \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \). Then Y is jointly measurable in \(\left( \overrightarrow{t},\omega \right) \) and \(\int _{\prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] }Y\left( \overrightarrow{t},\omega \right) d \overrightarrow{t}\) is a real valued random variable.

Proof

Similar to Proposition 18.14, p. 353 of [7].

2 About Neural Networks Background

2.1 About the Arctangent Activation Function

We consider the

$$\begin{aligned} \arctan x=\int _{0}^{x}\frac{dz}{1+z^{2}},\text { }x\in \mathbb {R}. \end{aligned}$$
(5)

We will be using

$$\begin{aligned} h\left( x\right) :=\frac{2}{\pi }\arctan \left( \frac{\pi }{2}x\right) =\frac{2}{\pi }\int _{0}^{\frac{\pi x}{2}}\frac{dz}{1+z^{2}}\text {, }x\in \mathbb {R}, \end{aligned}$$
(6)

which is a sigmoid type function and it is strictly increasing. We have that

$$\begin{aligned} h\left( 0\right) =0\text {, }h\left( -x\right) =-h\left( x\right) \text {, }h\left( +\infty \right) =1\text {, }h\left( -\infty \right) =-1, \end{aligned}$$

and

$$\begin{aligned} h^{\prime }\left( x\right) =\frac{4}{4+\pi ^{2}x^{2}}>0\text {, all }x\in \mathbb {R}. \end{aligned}$$
(7)

We consider the activation function

$$\begin{aligned} \psi _{1}\left( x\right) :=\frac{1}{4}\left( h\left( x+1\right) -h\left( x-1\right) \right) \text {, }x\in \mathbb {R}, \end{aligned}$$
(8)

and we notice that

$$\begin{aligned} \psi _{1}\left( -x\right) =\psi _{1}\left( x\right) , \end{aligned}$$
(9)

it is an even function.

Since \(x+1>x-1\), then \(h\left( x+1\right) >h\left( x-1\right) \), and \(\psi _{1}\left( x\right) >0\), all \(x\in \mathbb {R}\).

We see that

$$\begin{aligned} \psi _{1}\left( 0\right) =\frac{1}{\pi }\arctan \frac{\pi }{2}\cong 0.319. \end{aligned}$$
(10)

Let \(x>0\), we have that

$$\begin{aligned} \psi _{1}^{\prime }\left( x\right) =\frac{1}{4}\left( h^{\prime }\left( x+1\right) -h^{\prime }\left( x-1\right) \right) = \end{aligned}$$
$$\begin{aligned} \frac{-4\pi ^{2}x}{\left( 4+\pi ^{2}\left( x+1\right) ^{2}\right) \left( 4+\pi ^{2}\left( x-1\right) ^{2}\right) }<0. \end{aligned}$$
(11)

That is

$$\begin{aligned} \psi _{1}^{\prime }\left( x\right) <0\text {, for }x>0. \end{aligned}$$
(12)

That is \(\psi _{1}\) is strictly decreasing on \([0,\infty )\) and clearly is strictly increasing on \((-\infty ,0]\), and \(\psi _{1}^{\prime }\left( 0\right) =0.\)

Observe that

$$\begin{aligned} \begin{array}{l} \underset{x\rightarrow +\infty }{\lim }\psi _{1}\left( x\right) =\frac{1}{4} \left( h\left( +\infty \right) -h\left( +\infty \right) \right) =0, \\ \text {and} \\ \underset{x\rightarrow -\infty }{\lim }\psi _{1}\left( x\right) =\frac{1}{4} \left( h\left( -\infty \right) -h\left( -\infty \right) \right) =0. \end{array} \end{aligned}$$
(13)

That is the x-axis is the horizontal asymptote on \(\psi _{1}\).

All in all, \(\psi _{1}\) is a bell symmetric function with maximum \(\psi _{1}\left( 0\right) \cong 18.31.\)

We need

Theorem 2

([19], p. 286). We have that

$$\begin{aligned} \sum _{i=-\infty }^{\infty }\psi _{1}\left( x-i\right) =1\text {, }\forall \text { }x\in \mathbb {R}. \end{aligned}$$
(14)

Theorem 3

([19], p. 287). It holds

$$\begin{aligned} \int _{-\infty }^{\infty }\psi _{1}\left( x\right) dx=1. \end{aligned}$$
(15)

So that \(\psi _{1}\left( x\right) \) is a density function on \(\mathbb {R}.\)

We mention

Theorem 4

([19], p. 288). Let \(0<\alpha <1\), and \(n\in \mathbb {N}\) with \(n^{1-\alpha }>2\). It holds

$$\begin{aligned} \sum _{\left\{ \begin{array}{l} k=-\infty \\ :\left| nx-k\right| \ge n^{1-\alpha } \end{array} \right. }^{\infty }\psi _{1}\left( nx-k\right) <\frac{2}{\pi ^{2}\left( n^{1-\alpha }-2\right) }=:c_{1}\left( \alpha ,n\right) . \end{aligned}$$
(16)

Denote by \(\left\lfloor \cdot \right\rfloor \) the integral part of the number and by \(\left\lceil \cdot \right\rceil \) the ceiling of the number.

We need

Theorem 5

([19], p. 289). Let \(x\in \left[ a,b\right] \subset \mathbb {R} \) and \(n\in \mathbb {N}\) so that \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). It holds

$$\begin{aligned} \frac{1}{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{1}\left( nx-k\right) }\mathbf {<}\frac{1}{\psi _{1}\left( 1\right) }\mathbf {\cong 4.9737=:\alpha }_{1}\textbf{,}\text { }\mathbf { \forall }\text { }\mathbf {x\in }\left[ a,b\right] \mathbf {.} \end{aligned}$$
(17)

Note 1

([19], pp. 290–291).

  1. i)

    We have that

    $$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{1}\left( nx-k\right) \ne 1, \end{aligned}$$
    (18)

    for at least some \(x\in \left[ a,b\right] .\)

  2. ii)

    For large enough \(n\in \mathbb {N}\) we always obtain \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). Also \(a\le \frac{k}{n}\le b\), iff \(\left\lceil na\right\rceil \le k\le \left\lfloor nb\right\rfloor \).

In general, by Theorem 2, it holds

$$\begin{aligned} \sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{1}\left( nx-k\right) \le 1. \end{aligned}$$
(19)

We introduce (see [24])

$$\begin{aligned} Z_{1}\left( x_{1},...,x_{N}\right) :=Z_{1}\left( x\right) :=\prod _{i=1}^{N}\psi _{1}\left( x_{i}\right) \text {, }x=\left( x_{1},...,x_{N}\right) \in \mathbb {R}^{N},\text { }N\in \mathbb {N}. \end{aligned}$$
(20)

Denote by \(a=\left( a_{1},...,a_{N}\right) \) and \(b=\left( b_{1},...,b_{N}\right) .\)

It has the properties:

  1. (i)

    \(Z_{1}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}^{N},\)

  2. (ii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{1}\left( x-k\right) :=\sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }Z_{1}\left( x_{1}-k_{1},...,x_{N}-k_{N}\right) =1,\text { } \end{aligned}$$
    (21)

    where \(k:=\left( k_{1},...,k_{n}\right) \in \mathbb {Z}^{N}\), \(\forall \) \( x\in \mathbb {R}^{N},\)

    hence

  3. (iii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{1}\left( nx-k\right) =1, \end{aligned}$$
    (22)

    \(\forall \) \(x\in \mathbb {R}^{N};\) \(n\in \mathbb {N}\),

    and

  4. (iv)
    $$\begin{aligned} \int _{\mathbb {R}^{N}}Z_{1}\left( x\right) dx=1, \end{aligned}$$
    (23)

    that is \(Z_{1}\) is a multivariate density function.

  5. (v)

    It is clear that

    $$\begin{aligned} \sum _{\left\{ \begin{array}{c} k=-\infty \\ \left\| \frac{k}{n}-x\right\| _{\infty }>\frac{1}{n^{\beta }} \end{array} \right. }^{\infty }Z_{1}\left( nx-k\right) <\frac{2}{\pi ^{2}\left( n^{1-\beta }-2\right) }=c_{1}\left( \beta ,n\right) \text {, } \end{aligned}$$
    (24)

    \(0<\beta <1,\) \(n\in \mathbb {N}:n^{1-\beta }>2\), \(x\in \mathbb {R}^{N}.\)

  6. (vi)

    By Theorem 5 we get that

    $$\begin{aligned} 0<\frac{1}{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{1}\left( nx-k\right) }<\frac{1}{\left( \psi _{1}\left( 1\right) \right) ^{N}}\cong \left( 4.9737\right) ^{N}=:\gamma _{1}\left( N\right) , \end{aligned}$$
    (25)

    \(\forall \) \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(n\in \mathbb {N}\).

Furthermore it holds

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{1}\left( nx-k\right) \ne 1, \end{aligned}$$
(26)

for at least some \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) .\)

Above it is \(\left\| x\right\| _{\infty }:=\max \left\{ \left| x_{1}\right| ,...,\left| x_{N}\right| \right\} \), \(x\in \mathbb {R}^{N}\), also set \(\infty :=\left( \infty ,...,\infty \right) \), \( -\infty =\left( -\infty ,...-\infty \right) \) upon the multivariate context.

2.2 About the Algebraic Activation Function

Here see also [20].

We consider the generator algebraic function

$$\begin{aligned} \varphi \left( x\right) =\frac{x}{\root 2m \of {1+x^{2m}}},\text { }m\in \mathbb {N}\text {, }x\in \mathbb {R}\text {,} \end{aligned}$$
(27)

which is a sigmoidal type of function and is a strictly increasing function.

We see that \(\varphi \left( -x\right) =-\varphi \left( x\right) \) with \( \varphi \left( 0\right) =0\). We get that

$$\begin{aligned} \varphi ^{\prime }\left( x\right) =\frac{1}{\left( 1+x^{2m}\right) ^{\frac{ 2m+1}{2m}}}>0\text {, }\forall \text { }x\in \mathbb {R}\text {,} \end{aligned}$$
(28)

proving \(\varphi \) as strictly increasing over \(\mathbb {R},\varphi ^{\prime }\left( x\right) =\varphi ^{\prime }\left( -x\right) .\) We easily find that \( \underset{x\rightarrow +\infty }{\lim }\varphi \left( x\right) =1\), \(\varphi \left( +\infty \right) =1\), and \(\underset{x\rightarrow -\infty }{\lim } \varphi \left( x\right) =-1\), \(\varphi \left( -\infty \right) =-1.\)

We consider the activation function

$$\begin{aligned} \psi _{2}\left( x\right) =\frac{1}{4}\left[ \varphi \left( x+1\right) -\varphi \left( x-1\right) \right] . \end{aligned}$$
(29)

Clearly it is \(\psi _{2}\left( x\right) =\psi _{2}\left( -x\right) ,\) \( \forall \) \(x\in \mathbb {R}\), so that \(\psi _{2}\) is an even function and symmetric with respect to the y-axis. Clearly \(\psi _{2}\left( x\right) >0\) , \(\forall \) \(x\in \mathbb {R}\).

Also it is

$$\begin{aligned} \psi _{2}\left( 0\right) =\frac{1}{2\root 2m \of {2}}. \end{aligned}$$
(30)

By [20], we have that \(\psi _{2}^{\prime }\left( x\right) <0\) for \(x>0\). That is \(\psi _{2}\) is strictly decreasing over \(\left( 0,+\infty \right) . \)

Clearly, \(\psi _{2}\) is strictly increasing over \(\left( -\infty ,0\right) \) and \(\psi _{2}^{\prime }\left( 0\right) =0\).

Furthermore we obtain that

$$\begin{aligned} \underset{x\rightarrow +\infty }{\lim }\psi _{2}\left( x\right) =\frac{1}{4} \left[ \varphi \left( +\infty \right) -\varphi \left( +\infty \right) \right] =0, \end{aligned}$$
(31)

and

$$\begin{aligned} \underset{x\rightarrow -\infty }{\lim }\psi _{2}\left( x\right) =\frac{1}{4} \left[ \varphi \left( -\infty \right) -\varphi \left( -\infty \right) \right] =0. \end{aligned}$$
(32)

That is the x-axis is the horizontal asymptote of \(\psi _{2}\).

Conclusion, \(\psi _{2}\) is a bell shape symmetric function with maximum

$$\begin{aligned} \psi _{2}\left( 0\right) =\frac{1}{2\root 2m \of {2}},\text { }m\in \mathbb {N}. \end{aligned}$$
(33)

We need

Theorem 6

[20]. We have that

$$\begin{aligned} \sum \limits _{i=-\infty }^{\infty }\psi _{2}\left( x-i\right) =1\text {, } \forall \text { }x\in \mathbb {R}. \end{aligned}$$
(34)

Theorem 7

[20]. It holds

$$\begin{aligned} \int _{-\infty }^{\infty }\psi _{2}\left( x\right) dx=1. \end{aligned}$$
(35)

Theorem 8

[20]. Let \(0<\alpha <1\), and \(n\in \mathbb {N}\) with \( n^{1-\alpha }>2\). It holds

$$\begin{aligned} \sum \limits _{\left\{ \begin{array}{c} k=-\infty \\ :\left| nx-k\right| \ge n^{1-\alpha } \end{array} \right. }^{\infty }\psi _{2}\left( nx-k\right) <\frac{1}{4m\left( n^{1-\alpha }-2\right) ^{2m}}=:c_{2}\left( \alpha ,n\right) ,\text { }m\in \mathbb {N}. \end{aligned}$$
(36)

We need

Theorem 9

[20]. Let \(\left[ a,b\right] \subset \mathbb {R}\) and \(n\in \mathbb {N}\) so that \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). It holds

$$\begin{aligned} \frac{1}{\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{2}\left( nx-k\right) }<2\left( \root 2m \of {1+4^{m}} \right) =:\alpha _{2}, \end{aligned}$$
(37)

\(\forall \) \(x\in \left[ a,b\right] \), \(m\in \mathbb {N}.\)

Note 2

  1. 1)

    By [20] we have that

    $$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{2}\left( nx-k\right) \ne 1, \text { } \end{aligned}$$
    (38)

    for at least some \(x\in \left[ a,b\right] .\)

  2. 2)

    Let \(\left[ a,b\right] \subset \mathbb {R}\). For large \(n\in \mathbb {N}\) we always have \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). Also \(a\le \frac{k}{n}\le b\), iff \(\left\lceil na\right\rceil \le k\le \left\lfloor nb\right\rfloor \).

In general it holds that

$$\begin{aligned} \sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{2}\left( nx-k\right) \le 1. \end{aligned}$$
(39)

We introduce (see also [25])

$$\begin{aligned} Z_{2}\left( x_{1},...,x_{N}\right) :=Z_{2}\left( x\right) :=\prod _{i=1}^{N}\psi _{2}\left( x_{i}\right) \text {, }x=\left( x_{1},...,x_{N}\right) \in \mathbb {R}^{N},\text { }N\in \mathbb {N}. \end{aligned}$$
(40)

It has the properties:

  1. (i)

    \(Z_{2}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}^{N},\)

  2. (ii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{2}\left( x-k\right) :=\sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }Z_{2}\left( x_{1}-k_{1},...,x_{N}-k_{N}\right) =1,\text { } \end{aligned}$$
    (41)

    where \(k:=\left( k_{1},...,k_{n}\right) \in \mathbb {Z}^{N}\), \(\forall \) \( x\in \mathbb {R}^{N},\)

    hence

  3. (iii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{2}\left( nx-k\right) =1, \end{aligned}$$
    (42)

    \(\forall \) \(x\in \mathbb {R}^{N};\) \(n\in \mathbb {N}\),

    and

  4. (iv)
    $$\begin{aligned} \int _{\mathbb {R}^{N}}Z_{2}\left( x\right) dx=1, \end{aligned}$$
    (43)

    that is \(Z_{2}\) is a multivariate density function.

  5. (v)

    It is clear that

    $$\begin{aligned} \sum _{\left\{ \begin{array}{c} k=-\infty \\ \left\| \frac{k}{n}-x\right\| _{\infty }>\frac{1}{n^{\beta }} \end{array} \right. }^{\infty }Z_{2}\left( nx-k\right) <\frac{1}{4m\left( n^{1-\beta }-2\right) ^{2m}}=c_{2}\left( \beta ,n\right) \text {, } \end{aligned}$$
    (44)

    \(0<\beta <1,\) \(n\in \mathbb {N}:n^{1-\beta }>2\), \(x\in \mathbb {R}^{N}\), \(m\in \mathbb {N}\mathbf {.}\)

  6. (vi)

    By Theorem 9 we get that

    $$\begin{aligned} 0<\frac{1}{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{2}\left( nx-k\right) }<\frac{1}{\left( \psi _{2}\left( 1\right) \right) ^{N}}\cong \left[ 2\left( \root 2m \of {1+4^{m}}\right) \right] ^{N}:=\gamma _{2}\left( N\right) , \end{aligned}$$
    (45)

    \(\forall \) \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(n\in \mathbb {N}\).

Furthermore it holds

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{2}\left( nx-k\right) \ne 1, \end{aligned}$$
(46)

for at least some \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) .\)

2.3 About the Gudermannian Activation Function

See also [21, 34].

Here we consider \(gd\left( x\right) \) the Gudermannian function [34], which is a sigmoid function, as a generator function:

$$\begin{aligned} \sigma \left( x\right) =2\arctan \left( \tanh \left( \frac{x}{2}\right) \right) =\int _{0}^{x}\frac{dt}{\cosh t}=:gd\left( x\right) \text {, }x\in \mathbb {R}\text {.} \end{aligned}$$
(47)

Let the normalized generator sigmoid function

$$\begin{aligned} f\left( x\right) :=\frac{2}{\pi }\sigma \left( x\right) =\frac{2}{\pi } \int _{0}^{x}\frac{dt}{\cosh t}=\frac{4}{\pi }\int _{0}^{x}\frac{1}{ e^{t}+e^{-t}}dt,\text { }x\in \mathbb {R}. \end{aligned}$$
(48)

Here

$$\begin{aligned} f^{\prime }\left( x\right) =\frac{2}{\pi \cosh x}>0,\text { }\forall \text { }x\in \mathbb {R}, \end{aligned}$$

hence f is strictly increasing on \(\mathbb {R}.\)

Notice that \(\tanh \left( -x\right) =-\tanh x\) and \(\arctan \left( -x\right) =-\arctan x\), \(x\in \mathbb {R}.\)

So, here the neural network activation function will be:

$$\begin{aligned} \psi _{3}\left( x\right) =\frac{1}{4}\left[ f\left( x+1\right) -f\left( x-1\right) \right] \text {, }x\in \mathbb {R}. \end{aligned}$$
(49)

By [21], we get that

$$\begin{aligned} \psi _{3}\left( x\right) =\psi _{3}\left( -x\right) ,\text { }\forall \text { }x\in \mathbb {R}, \end{aligned}$$
(50)

i.e. it is even and symmetric with respect to the y-axis. Here we have \( f\left( +\infty \right) =1\), \(f\left( -\infty \right) =-1\) and \(f\left( 0\right) =0\). Clearly it is

$$\begin{aligned} f\left( -x\right) =-f\left( x\right) \text {, }\forall \text { }x\in \mathbb { R}, \end{aligned}$$
(51)

an odd function, symmetric with respect to the origin. Since \(x+1>x-1\), and \( f\left( x+1\right) >f\left( x-1\right) \), we obtain \(\psi _{3}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}.\)

By [21], we have that

$$\begin{aligned} \psi _{3}\left( 0\right) =\frac{1}{\pi }gd\left( 1\right) \cong 0.2757. \end{aligned}$$
(52)

By [21] \(\psi _{3}\) is strictly decreasing on \(\left( 0,+\infty \right) \), and strictly increasing on \(\left( -\infty ,0\right) \), and \(\psi _{3}^{\prime }\left( 0\right) =0\).

Also we have that

$$\begin{aligned} \underset{x\rightarrow +\infty }{\lim }\psi _{3}\left( x\right) =\underset{ x\rightarrow -\infty }{\lim }\psi _{3}\left( x\right) =0, \end{aligned}$$
(53)

that is the x-axis is the horizontal asymptote for \(\psi _{3}\).

Conclusion, \(\psi _{3}\) is a bell shaped symmetric function with maximum \( \psi _{3}\left( 0\right) \cong 0.551\).

We need

Theorem 10

[21]. It holds that

$$\begin{aligned} \sum \limits _{i=-\infty }^{\infty }\psi _{3}\left( x-i\right) =1\text {, } \forall \text { }x\in \mathbb {R}. \end{aligned}$$
(54)

Theorem 11

[21]. We have that

$$\begin{aligned} \int _{-\infty }^{\infty }\psi _{3}\left( x\right) dx=1. \end{aligned}$$
(55)

So \(\psi _{3}\left( x\right) \) is a density function.

Theorem 12

[21]. Let \(0<\alpha <1\), and \(n\in \mathbb {N}\) with \( n^{1-\alpha }>2\). It holds

$$\begin{aligned} \sum \limits _{\left\{ \begin{array}{c} k=-\infty \\ :\left| nx-k\right| \ge n^{1-\alpha } \end{array} \right. }^{\infty }\psi _{3}\left( nx-k\right) <\frac{2}{\pi e^{\left( n^{1-\alpha }-2\right) }}=\frac{2e^{2}}{\pi e^{n^{1-\alpha }}}=:c_{3}\left( \alpha ,n\right) . \end{aligned}$$
(56)

Theorem 13

[21]. Let \(\left[ a,b\right] \subset \mathbb {R}\) and \(n\in \mathbb {N},\) so that \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). It holds

$$\begin{aligned} \frac{1}{\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{3}\left( nx-k\right) }<\frac{2\pi }{gd\left( 2\right) }\cong 4.824=:\alpha _{3}, \end{aligned}$$
(57)

\(\forall \) \(x\in \left[ a,b\right] .\)

We make

Remark 5

[21].

  1. (i)

    We have that

    $$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{3}\left( nx-k\right) \ne 1, \text { } \end{aligned}$$
    (58)

    for at least some \(x\in \left[ a,b\right] .\)

  2. (ii)

    Let \(\left[ a,b\right] \subset \mathbb {R}\). For large n we always have \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). Also \(a\le \frac{k}{n}\le b\), iff \(\left\lceil na\right\rceil \le k\le \left\lfloor nb\right\rfloor \).

In general it holds

$$\begin{aligned} \sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{3}\left( nx-k\right) \le 1. \end{aligned}$$
(59)

We introduce (see also [23])

$$\begin{aligned} Z_{3}\left( x_{1},...,x_{N}\right) :=Z_{3}\left( x\right) :=\prod _{i=1}^{N}\psi _{3}\left( x_{i}\right) \text {, }x=\left( x_{1},...,x_{N}\right) \in \mathbb {R}^{N},\text { }N\in \mathbb {N}. \end{aligned}$$
(60)

It has the properties:

  1. (i)

    \(Z_{3}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}^{N},\)

  2. (ii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{3}\left( x-k\right) :=\sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }Z_{3}\left( x_{1}-k_{1},...,x_{N}-k_{N}\right) =1,\text { } \end{aligned}$$
    (61)

    where \(k:=\left( k_{1},...,k_{n}\right) \in \mathbb {Z}^{N}\), \(\forall \) \( x\in \mathbb {R}^{N},\)

    hence

  3. (iii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{3}\left( nx-k\right) =1, \end{aligned}$$
    (62)

    \(\forall \) \(x\in \mathbb {R}^{N};\) \(n\in \mathbb {N}\),

    and

  4. (iv)
    $$\begin{aligned} \int _{\mathbb {R}^{N}}Z_{3}\left( x\right) dx=1, \end{aligned}$$
    (63)

    that is \(Z_{3}\) is a multivariate density function.

  5. (v)

    It is also clear that

    $$\begin{aligned} \sum _{\left\{ \begin{array}{c} k=-\infty \\ \left\| \frac{k}{n}-x\right\| _{\infty }>\frac{1}{n^{\beta }} \end{array} \right. }^{\infty }Z_{3}\left( nx-k\right) <\frac{2e^{2}}{\pi e^{n^{1-\beta }}}=c_{3}\left( \beta ,n\right) , \end{aligned}$$
    (64)

    \(0<\beta <1\), \(n\in \mathbb {N}:n^{1-\beta }>2\), \(x\in \mathbb {R}^{N},\) \(m\in \mathbb {N}.\)

  6. (vi)

    By Theorem 13 we get that

    $$\begin{aligned} 0<\frac{1}{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{3}\left( nx-k\right) }<\left( \frac{2\pi }{gd\left( 2\right) }\right) ^{N}\cong \left( 4.824\right) ^{N}=:\gamma _{3}\left( N\right) , \end{aligned}$$
    (65)

    \(\forall \) \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(n\in \mathbb {N}\).

Furthermore it holds

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{3}\left( nx-k\right) \ne 1, \end{aligned}$$
(66)

for at least some \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) .\)

2.4 About the Generalized Symmetrical Activation Function

Here we consider the generalized symmetrical sigmoid function [22, 29]

$$\begin{aligned} f_{1}\left( x\right) =\frac{x}{\left( 1+\left| x\right| ^{\mu }\right) ^{\frac{1}{\mu }}},\text { }\mu >0\text {, }x\in \mathbb {R}\text {.} \end{aligned}$$
(67)

This has applications in immunology and protection from disease together with probability theory. It is also called a symmetrical protection curve.

The parameter \(\mu \) is a shape parameter controling how fast the curve approaches the asymptotes for a given slope at the inflection point. When \( \mu =1\) \(f_{1}\) is the absolute sigmoid function, and when \(\mu =2,\) \(f_{1}\) is the square root sigmoid function. When \(\mu =1.5\) the function approximates the arctangent function, when \(\mu =2.9\) it approximates the logistic function, and when \(\mu =3.4\) it approximates the error function. Parameter \(\mu \) is estimated in the likelihood maximization [29]. For more see [29].

Next we study the particular generator sigmoid function

$$\begin{aligned} f_{2}\left( x\right) =\frac{x}{\left( 1+\left| x\right| ^{\lambda }\right) ^{\frac{1}{\lambda }}},\text { }\lambda \text { is an odd number, } x\in \mathbb {R}. \end{aligned}$$
(68)

We have that \(f_{2}\left( 0\right) =0\), and

$$\begin{aligned} f_{2}\left( -x\right) =-f_{2}\left( x\right) , \end{aligned}$$
(69)

so \(f_{2}\) is symmetric with respect to zero.

When \(x\ge 0\), we get that [22]

$$\begin{aligned} f_{2}^{\prime }\left( x\right) =\frac{1}{\left( 1+x^{\lambda }\right) ^{ \frac{\lambda +1}{\lambda }}}>0, \end{aligned}$$
(70)

that is \(f_{2}\) is strictly increasing on \([0,+\infty )\) and \(f_{2}\) is strictly increasing on \((-\infty ,0]\). Hence \(f_{2}\) is strictly increasing on \(\mathbb {R}\).

We also have \(f_{2}\left( +\infty \right) =f_{2}\left( -\infty \right) =1.\)

Let us consider the activation function [22]:

$$\begin{aligned} \psi _{4}\left( x\right) =\frac{1}{4}\left[ f_{2}\left( x+1\right) -f_{2}\left( x-1\right) \right] = \end{aligned}$$
$$\begin{aligned} \frac{1}{4}\left[ \frac{\left( x+1\right) }{\left( 1+\left| x+1\right| ^{\lambda }\right) ^{\frac{1}{\lambda }}}-\frac{\left( x-1\right) }{ \left( 1+\left| x-1\right| ^{\lambda }\right) ^{\frac{1}{\lambda }} }\right] . \end{aligned}$$
(71)

Clearly it holds [22]

$$\begin{aligned} \psi _{4}\left( x\right) =\psi _{4}\left( -x\right) ,\text { }\forall \text { }x\in \mathbb {R}. \end{aligned}$$
(72)

and

$$\begin{aligned} \psi _{4}\left( 0\right) =\frac{1}{2\root \lambda \of {2}}, \end{aligned}$$
(73)

and \(\psi _{4}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}\).

Following [22], we have that \(\psi _{4}\) is strictly decreasing over \( [0,+\infty )\), and \(\psi _{4}\) is strictly increasing on \((-\infty ,0]\), by \( \psi _{4}\)-symmetry with respect to y-axis, and \(\psi _{4}^{\prime }\left( 0\right) =0.\)

Clearly it is

$$\begin{aligned} \underset{x\rightarrow +\infty }{\lim }\psi _{4}\left( x\right) =\underset{ x\rightarrow -\infty }{\lim }\psi _{4}\left( x\right) =0, \end{aligned}$$
(74)

therefore the x-axis is the horizontal asymptote of \(\psi _{4}\left( x\right) .\)

The value

$$\begin{aligned} \psi _{4}\left( 0\right) =\frac{1}{2\root \lambda \of {2}},\text { }\lambda \text { is an odd number,} \end{aligned}$$
(75)

is the maximum of \(\psi _{4}\), which is a bell shaped function.

We need

Theorem 14

[22]. It holds

$$\begin{aligned} \sum \limits _{i=-\infty }^{\infty }\psi _{4}\left( x-i\right) =1\text {, } \forall \text { }x\in \mathbb {R}. \end{aligned}$$
(76)

Theorem 15

[22]. We have that

$$\begin{aligned} \int _{-\infty }^{\infty }\psi _{4}\left( x\right) dx=1. \end{aligned}$$
(77)

So that \(\psi _{4}\left( x\right) \) is a density function on \(\mathbb {R}.\)

We need

Theorem 16

[22]. Let \(0<\alpha <1\), and \(n\in \mathbb {N}\) with \( n^{1-\alpha }>2\). It holds

$$\begin{aligned} \sum \limits _{\left\{ \begin{array}{c} j=-\infty \\ :\left| nx-j\right| \ge n^{1-\alpha } \end{array} \right. }^{\infty }\psi _{4}\left( nx-j\right) <\frac{1}{2\lambda \left( n^{1-\alpha }-2\right) ^{\lambda }}=:c_{4}\left( \alpha ,n\right) ,\text { } \end{aligned}$$
(78)

where \(\lambda \in \mathbb {N}\) is an odd number.

We also need

Theorem 17

[22]. Let \(\left[ a,b\right] \subset \mathbb {R}\) and \(n\in \mathbb {N}\) so that \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). Then

$$\begin{aligned} \frac{1}{\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{4}\left( \left| nx-k\right| \right) }<2 \root \lambda \of {1+2^{\lambda }}=:\alpha _{4}, \end{aligned}$$
(79)

where \(\lambda \) is an odd number, \(\forall \) \(x\in \left[ a,b\right] .\)

We make

Remark 6

[22]. (1) We have that

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{4}\left( nx-k\right) \ne 1, \text { for at least some }x\in \left[ a,b\right] . \end{aligned}$$
(80)

(2) Let \(\left[ a,b\right] \subset \mathbb {R}\). For large enough n we always obtain \(\left\lceil na\right\rceil \le \left\lfloor nb\right\rfloor \). Also \(a\le \frac{k}{n}\le b\), iff \(\left\lceil na\right\rceil \le k\le \left\lfloor nb\right\rfloor \).

In general it holds that

$$\begin{aligned} \sum \limits _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\psi _{4}\left( nx-k\right) \le 1. \end{aligned}$$
(81)

We introduce (see also [26])

$$\begin{aligned} Z_{4}\left( x_{1},...,x_{N}\right) :=Z_{4}\left( x\right) :=\prod _{i=1}^{N}\psi _{4}\left( x_{i}\right) \text {, }x=\left( x_{1},...,x_{N}\right) \in \mathbb {R}^{N},\text { }N\in \mathbb {N}. \end{aligned}$$
(82)

It has the properties:

  1. (i)

    \(Z_{4}\left( x\right) >0\), \(\forall \) \(x\in \mathbb {R}^{N},\)

  2. (ii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{4}\left( x-k\right) :=\sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }Z_{4}\left( x_{1}-k_{1},...,x_{N}-k_{N}\right) =1,\text { } \end{aligned}$$
    (83)

    where \(k:=\left( k_{1},...,k_{n}\right) \in \mathbb {Z}^{N}\), \(\forall \) \( x\in \mathbb {R}^{N},\)

    hence

  3. (iii)
    $$\begin{aligned} \sum _{k=-\infty }^{\infty }Z_{4}\left( nx-k\right) =1, \end{aligned}$$
    (84)

    \(\forall \) \(x\in \mathbb {R}^{N};\) \(n\in \mathbb {N}\),

    and

  4. (iv)
    $$\begin{aligned} \int _{\mathbb {R}^{N}}Z_{4}\left( x\right) dx=1, \end{aligned}$$
    (85)

    that is \(Z_{4}\) is a multivariate density function.

  5. (v)

    It is clear that

    $$\begin{aligned} \sum _{\left\{ \begin{array}{c} k=-\infty \\ \left\| \frac{k}{n}-x\right\| _{\infty }>\frac{1}{n^{\beta }} \end{array} \right. }^{\infty }Z_{4}\left( nx-k\right) <\frac{1}{2\lambda \left( n^{1-\beta }-2\right) ^{\lambda }}=c_{4}\left( \beta ,n\right) , \end{aligned}$$
    (86)

    \(0<\beta <1\), \(n\in \mathbb {N}:n^{1-\beta }>2\), \(x\in \mathbb {R}^{N},\) \( \lambda \) is odd.

  6. (vi)

    By Theorem 17 we get that

    $$\begin{aligned} 0<\frac{1}{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{4}\left( nx-k\right) }<\left( 2\root \lambda \of {1+2^{\lambda }} \right) ^{N}=:\gamma _{4}\left( N\right) , \end{aligned}$$
    (87)

    \(\forall \) \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(n\in \mathbb {N}\), \(\lambda \) is odd.

Furthermore it holds

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{4}\left( nx-k\right) \ne 1, \end{aligned}$$
(88)

for at least some \(x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) .\)

Set

$$\begin{aligned} \begin{array}{c} \left\lceil na\right\rceil :=\left( \left\lceil na_{1}\right\rceil ,...,\left\lceil na_{N}\right\rceil \right) , \\ \\ \left\lfloor nb\right\rfloor :=\left( \left\lfloor nb_{1}\right\rfloor ,...,\left\lfloor nb_{N}\right\rfloor \right) , \end{array} \end{aligned}$$

where \(a:=\left( a_{1},...,a_{N}\right) \), \(b:=\left( b_{1},...,b_{N}\right) \), \(k:=\left( k_{1},...,k_{N}\right) .\)

Let \(f\in C\left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) ,\) and \( n\in \mathbb {N}\) such that \(\left\lceil na_{i}\right\rceil \le \left\lfloor nb_{i}\right\rfloor \), \(i=1,...,N.\)

We define the multivariate averaged positive linear quasi-interpolation neural network operators (\(x:=\left( x_{1},...,x_{N}\right) \in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \)); \(j=1,2,3,4\):

$$\begin{aligned} _{j}A_{n}\left( f,x_{1},...,x_{N}\right) :=\text { }_{j}A_{n}\left( f,x\right) :=\frac{\sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }f\left( \frac{k}{n}\right) Z_{j}\left( nx-k\right) }{ \sum _{k=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }= \end{aligned}$$
(89)
$$\begin{aligned} \frac{\sum _{k_{1}=\left\lceil na_{1}\right\rceil }^{\left\lfloor nb_{1}\right\rfloor }\sum _{k_{2}=\left\lceil na_{2}\right\rceil }^{\left\lfloor nb_{2}\right\rfloor }...\sum _{k_{N}=\left\lceil na_{N}\right\rceil }^{\left\lfloor nb_{N}\right\rfloor }f\left( \frac{k_{1}}{n},...,\frac{k_{N}}{n}\right) \left( \prod _{i=1}^{N}\psi _{j}\left( nx_{i}-k_{i}\right) \right) }{\prod _{i=1}^{N}\left( \sum _{k_{i}=\left\lceil na_{i}\right\rceil }^{\left\lfloor nb_{i}\right\rfloor }\psi _{j}\left( nx_{i}-k_{i}\right) \right) }. \end{aligned}$$

For large enough \(n\in \mathbb {N}\) we always obtain \(\left\lceil na_{i}\right\rceil \le \left\lfloor nb_{i}\right\rfloor \), \(i=1,...,N\). Also \(a_{i}\le \frac{k_{i}}{n}\le b_{i}\), iff \(\left\lceil na_{i}\right\rceil \le k_{i}\le \left\lfloor nb_{i}\right\rfloor \), \( i=1,...,N\).

When \(f\in C_{B}\left( \mathbb {R}^{N}\right) \) we define (\(j=1,2,3,4\))

$$\begin{aligned} _{j}B_{n}\left( f,x\right) :=\text { }_{j}B_{n}\left( f,x_{1},...,x_{N}\right) :=\sum _{k=-\infty }^{\infty }f\left( \frac{k}{n} \right) Z_{j}\left( nx-k\right) := \end{aligned}$$
(90)
$$\begin{aligned} \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }f\left( \frac{k_{1}}{n},\frac{k_{2}}{n} ,...,\frac{k_{N}}{n}\right) \left( \prod _{i=1}^{N}\psi _{j}\left( nx_{i}-k_{i}\right) \right) , \end{aligned}$$

\(n\in \mathbb {N}\), \(\forall \) \(x\in \mathbb {R}^{N},\) \(N\in \mathbb {N}\), the multivariate full quasi-interpolation neural network operators.

Also for \(f\in C_{B}\left( \mathbb {R}^{N}\right) \) we define the multivariate Kantorovich type neural network operators (\(j=1,2,3,4\))

$$\begin{aligned} _{j}C_{n}\left( f,x\right) :=\text { }_{j}C_{n}\left( f,x_{1},...,x_{N}\right) :=\sum _{k=-\infty }^{\infty }\left( n^{N}\int _{\frac{k}{n}}^{\frac{k+1}{n}}f\left( t\right) dt\right) Z_{j}\left( nx-k\right) := \end{aligned}$$
(91)
$$\begin{aligned} \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }\left( n^{N}\int _{\frac{k_{1}}{n}}^{\frac{ k_{1}+1}{n}}\int _{\frac{k_{2}}{n}}^{\frac{k_{2}+1}{n}}...\int _{\frac{k_{N}}{n }}^{\frac{k_{N}+1}{n}}f\left( t_{1},...,t_{N}\right) dt_{1}...dt_{N}\right) \end{aligned}$$
$$\begin{aligned} \cdot \left( \prod _{i=1}^{N}\psi _{j}\left( nx_{i}-k_{i}\right) \right) , \end{aligned}$$

\(n\in \mathbb {N},\ \forall \) \(x\in \mathbb {R}^{N}.\)

Again for \(f\in C_{B}\left( \mathbb {R}^{N}\right) ,\) \(N\in \mathbb {N},\) we define the multivariate neural network operators of quadrature type \( _{j}D_{n}\left( f,x\right) \), \(n\in \mathbb {N},\) as follows. Let \(\theta =\left( \theta _{1},...,\theta _{N}\right) \in \mathbb {N}^{N},\) \(\overline{r}=\left( r_{1},...,r_{N}\right) \in \mathbb {Z}_{+}^{N}\), \(w_{\overline{r}}=w_{r_{1},r_{2},...r_{N}}\ge 0\), such that \(\sum \limits _{\overline{r}=0}^{\theta }w_{\overline{r}}=\sum \limits _{r_{1}=0}^{\theta _{1}}\sum \limits _{r_{2}=0}^{\theta _{2}}...\sum \limits _{r_{N}=0}^{\theta _{N}}w_{r_{1},r_{2},...r_{N}}=1;\) \(k\in \mathbb {Z}^{N}\) and

$$\begin{aligned} \delta _{nk}\left( f\right) :=\delta _{n,k_{1},k_{2},...,k_{N}}\left( f\right) :=\sum \limits _{\overline{r}=0}^{\theta }w_{\overline{r}}f\left( \frac{k}{n}+\frac{\overline{r}}{n\theta }\right) := \end{aligned}$$
$$\begin{aligned} \sum \limits _{r_{1}=0}^{\theta _{1}}\sum \limits _{r_{2}=0}^{\theta _{2}}...\sum \limits _{r_{N}=0}^{\theta _{N}}w_{r_{1},r_{2},...r_{N}}f\left( \frac{k_{1}}{n}+\frac{r_{1}}{n\theta _{1}},\frac{k_{2}}{n}+\frac{r_{2}}{ n\theta _{2}},...,\frac{k_{N}}{n}+\frac{r_{N}}{n\theta _{N}}\right) , \end{aligned}$$
(92)

where \(\frac{\overline{r}}{\theta }:=\left( \frac{r_{1}}{\theta _{1}},\frac{ r_{2}}{\theta _{2}},...,\frac{r_{N}}{\theta _{N}}\right) \); \(j=1,2,3,4.\)

We put

$$\begin{aligned} _{j}D_{n}\left( f,x\right) :=\text { }_{j}D_{n}\left( f,x_{1},...,x_{N}\right) :=\sum _{k=-\infty }^{\infty }\delta _{nk}\left( f\right) Z_{j}\left( nx-k\right) := \end{aligned}$$
(93)
$$\begin{aligned} \sum _{k_{1}=-\infty }^{\infty }\sum _{k_{2}=-\infty }^{\infty }...\sum _{k_{N}=-\infty }^{\infty }\delta _{n,k_{1},k_{2},...,k_{N}}\left( f\right) \left( \prod _{i=1}^{N}\psi _{j}\left( nx_{i}-k_{i}\right) \right) , \end{aligned}$$

\(\forall \) \(x\in \mathbb {R}^{N}.\)

For the next we need, for \(f\in C\left( \prod _{i=1}^{N}\left[ a_{i},b_{i} \right] \right) \) the first multivariate modulus of continuity

$$\begin{aligned} \omega _{1}\left( f,h\right) :=\underset{ \begin{array}{c} x,y\in \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \\ \left\| x-y\right\| _{\infty }\le h \end{array} }{\sup }\left| f\left( x\right) -f\left( y\right) \right| \text {, }h>0. \end{aligned}$$
(94)

It holds that

$$\begin{aligned} \underset{h\rightarrow 0}{\lim }\omega _{1}\left( f,h\right) =0. \end{aligned}$$
(95)

Similarly it is defined for \(f\in C_{B}\left( \mathbb {R}^{N}\right) \) (continuous and bounded functions on \(\mathbb {R}^{N}\)) the \(\omega _{1}\left( f,h\right) \), and it has the property (95), given that \( f\in C_{U}\left( \mathbb {R}^{N}\right) \) (uniformly continuous functions on \( \mathbb {R}^{N}\)).

We mention

Theorem 18

(see [23,24,25,26]). Let \(f\in C\left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) ,\) \(0<\beta <1\), \( x\in \left( \prod _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) ,\) \(N,n\in \mathbb {N}\) with \(n^{1-\beta }>2;\) \(j=1,2,3,4\). Then

  1. 1)
    $$\begin{aligned} \left| _{j}A_{n}\left( f,x\right) -f\left( x\right) \right| \le \gamma _{j}\left( N\right) \left[ \omega _{1}\left( f,\frac{1}{n^{\beta }} \right) +2c_{j}\left( \beta ,n\right) \left\| f\right\| _{\infty } \right] =:\lambda _{j1}, \end{aligned}$$
    (96)

    and

  2. 2)
    $$\begin{aligned} \left\| _{j}A_{n}\left( f\right) -f\right\| _{\infty }\le \lambda _{j1}. \end{aligned}$$
    (97)

    We notice that \(\underset{n\rightarrow \infty }{\lim }\) \(_{j}A_{n}\left( f\right) =f\), pointwise and uniformly.

In this article we extend Theorem 18 to the fuzzy-random level.

We mention

Theorem 19

(see [23,24,25,26]). Let \(f\in C_{B}\left( \mathbb {R}^{N}\right) ,\) \(0<\beta <1\), \(x\in \mathbb {R}^{N},\) \( N,n\in \mathbb {N}\) with \(n^{1-\beta }>2;\) \(j=1,2,3,4\). Then

  1. 1)
    $$\begin{aligned} \left| _{j}B_{n}\left( f,x\right) -f\left( x\right) \right| \le \omega _{1}\left( f,\frac{1}{n^{\beta }}\right) +2c_{j}\left( \beta ,n\right) \left\| f\right\| _{\infty }=:\lambda _{j2}, \end{aligned}$$
    (98)
  2. 2)
    $$\begin{aligned} \left\| _{j}B_{n}\left( f\right) -f\right\| _{\infty }\le \lambda _{j2}. \end{aligned}$$
    (99)

    Given that \(f\in \left( C_{U}\left( \mathbb {R}^{N}\right) \cap C_{B}\left( \mathbb {R}^{N}\right) \right) \), we obtain \(\underset{n\rightarrow \infty }{ \lim }\) \(_{j}B_{n}\left( f\right) =f\), uniformly.

We also need

Theorem 20

(see [23,24,25,26]). Let \(f\in C_{B}\left( \mathbb {R}^{N}\right) \), \(0<\beta <1\), \(x\in \mathbb {R}^{N},\) \(N,n\in \mathbb {N}\) with \(n^{1-\beta }>2;\) \(j=1,2,3,4\). Then

  1. 1)
    $$\begin{aligned} \left| _{j}C_{n}\left( f,x\right) -f\left( x\right) \right| \le \omega _{1}\left( f,\frac{1}{n}+\frac{1}{n^{\beta }}\right) +2c_{j}\left( \beta ,n\right) \left\| f\right\| _{\infty }=:\lambda _{j3}, \end{aligned}$$
    (100)
  2. 2)
    $$\begin{aligned} \left\| _{j}C_{n}\left( f\right) -f\right\| _{\infty }\le \lambda _{j3}. \end{aligned}$$
    (101)

    Given that \(f\in \left( C_{U}\left( \mathbb {R}^{N}\right) \cap C_{B}\left( \mathbb {R}^{N}\right) \right) ,\) we obtain \(\underset{n\rightarrow \infty }{ \lim }\) \(_{j}C_{n}\left( f\right) =f\), uniformly.

We also need

Theorem 21

(see [23,24,25,26]). Let \(f\in C_{B}\left( \mathbb {R}^{N}\right) ,\) \(0<\beta <1\), \(x\in \mathbb {R}^{N},\) \( N,n\in \mathbb {N}\) with \(n^{1-\beta }>2;\) \(j=1,2,3,4\). Then

  1. 1)
    $$\begin{aligned} \left| _{j}D_{n}\left( f,x\right) -f\left( x\right) \right| \le \omega _{1}\left( f,\frac{1}{n}+\frac{1}{n^{\beta }}\right) +2c_{j}\left( \beta ,n\right) \left\| f\right\| _{\infty }=\lambda _{j3}, \end{aligned}$$
    (102)
  2. 2)
    $$\begin{aligned} \left\| _{j}D_{n}\left( f\right) -f\right\| _{\infty }\le \lambda _{j3}. \end{aligned}$$
    (103)

Given that \(f\in \left( C_{U}\left( \mathbb {R}^{N}\right) \cap C_{B}\left( \mathbb {R}^{N}\right) \right) ,\) we obtain \(\underset{n\rightarrow \infty }{ \lim }\) \(_{j}D_{n}\left( f\right) =f\), uniformly.

In this article we extend Theorems 19, 20, 21 to the random level.

We are also motivated by [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] and continuing [17]. For general knowledge on neural networks we recommend [31,32,33].

3 Main Results

I) q -mean Approximation by Fuzzy-Random arctangent, algebraic, Gudermannian and generalized symmetric activation functions based Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sects. 1, 2.

Let \(f\in C_{\mathcal{F}\mathcal{R}}^{U_{q}}\left( \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(1\le q<+\infty \), \(n,N\in \mathbb {N}\), \( 0<\beta <1,\) \(\overrightarrow{x}\in \left( \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(\left( X,\mathcal {B},P\right) \) probability space, \(s\in X\); \(j=1,2,3,4.\)

We define the following multivariate fuzzy random arctangent, algebraic, Gudermannian and generalized symmetric activation functions based quasi-interpolation linear neural network operators

$$\begin{aligned} \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) :=\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor *}f\left( \frac{ \overrightarrow{k}}{n},s\right) \odot \frac{Z_{j}\left( n\overrightarrow{x}- \overrightarrow{k}\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( n\overrightarrow{ x}-\overrightarrow{k}\right) }, \end{aligned}$$
(104)

(see also (89).

We present

Theorem 22

Let \(f\in C_{\mathcal{F}\mathcal{R}}^{U_{q}}\left( \prod \limits _{i=1}^{N} \left[ a_{i},b_{i}\right] \right) ,\) \(0<\beta <1,\) \(\overrightarrow{x}\in \left( \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) \), \(n,N\in \mathbb {N},\) with \(n^{1-\beta }>2,\) \(1\le q<+\infty .\) Assume that \(\int _{X}\left( D^{*}\left( f\left( \cdot ,s\right) ,\right. \right. \left. \left. \widetilde{o}\right) \right) ^{q}P\left( ds\right) <\infty ;\) \(j=1,2,3,4.\) Then

  1. 1)
    $$\begin{aligned} \left( \int _{X}D^{q}\left( \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) ,f\left( \overrightarrow{x} ,s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}\le \end{aligned}$$
    (105)
    $$\begin{aligned} \gamma _{j}\left( N\right) \left\{ \varOmega _{1}\left( f,\frac{1}{n^{\beta }} \right) _{L^{q}}+2c_{j}\left( \beta ,n\right) \left( \int _{X}\left( D^{*}\left( f\left( \cdot ,s\right) ,\widetilde{o}\right) \right) ^{q}P\left( ds\right) \right) ^{\frac{1}{q}}\right\} =:\lambda _{j1}^{\left( \mathcal {FR }\right) }, \end{aligned}$$
  2. 2)
    $$\begin{aligned} \left\| \left( \int _{X}D^{q}\left( \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) ,f\left( \overrightarrow{ x},s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}\right\| _{\infty ,\left( \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) }\le \lambda _{j1}^{\left( \mathcal{F}\mathcal{R}\right) }, \end{aligned}$$
    (106)

    where \(\gamma _{j}\left( N\right) \) as in (25), (45), (65), (87) and \(c_{j}\left( \beta ,n\right) \) as in (24), (44), (64), (86).

Proof

We notice that

$$\begin{aligned} D\left( f\left( \frac{\overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) \le D\left( f\left( \frac{ \overrightarrow{k}}{n},s\right) ,\widetilde{o}\right) +D\left( f\left( \overrightarrow{x},s\right) ,\widetilde{o}\right) \end{aligned}$$
(107)
$$\begin{aligned} \le 2D^{*}\left( f\left( \cdot ,s\right) ,\widetilde{o}\right) . \end{aligned}$$

Hence

$$\begin{aligned} D^{q}\left( f\left( \frac{\overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) \le 2^{q}D^{*q}\left( f\left( \cdot ,s\right) ,\widetilde{o}\right) , \end{aligned}$$
(108)

and

$$\begin{aligned} \left( \int _{X}D^{q}\left( f\left( \frac{\overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) P\left( ds\right) \right) ^{ \frac{1}{q}}\le 2\left( \int _{X}\left( D^{*}\left( f\left( \cdot ,s\right) ,\widetilde{o}\right) \right) ^{q}P\left( ds\right) \right) ^{ \frac{1}{q}}. \end{aligned}$$
(109)

We observe that

$$\begin{aligned} D\left( \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) ,f\left( \overrightarrow{x},s\right) \right) = \end{aligned}$$
(110)
$$\begin{aligned} D\left( \sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor *}f\left( \frac{\overrightarrow{k}}{n} ,s\right) \odot \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{ \overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) },f\left( \overrightarrow{x},s\right) \odot 1\right) = \end{aligned}$$
$$\begin{aligned} D\left( \sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor *}f\left( \frac{\overrightarrow{k}}{n} ,s\right) \odot \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{ \overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) },f\left( \overrightarrow{x},s\right) \odot \frac{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }{\sum \limits _{ \overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) = \end{aligned}$$
(111)
$$\begin{aligned} D\left( \sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor *}f\left( \frac{\overrightarrow{k}}{n} ,s\right) \odot \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{ \overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) },\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor *}f\left( \overrightarrow{x},s\right) \odot \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) \end{aligned}$$
$$\begin{aligned} \le \sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) D\left( f\left( \frac{ \overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) . \end{aligned}$$
(112)

So that

$$\begin{aligned} D\left( \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) ,f\left( \overrightarrow{x},s\right) \right) \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) D\left( f\left( \frac{ \overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) = \end{aligned}$$
(113)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }}\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) D\left( f\left( \frac{\overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) + \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }}\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) D\left( f\left( \frac{\overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) . \end{aligned}$$

Hence it holds

$$\begin{aligned} \left( \int _{X}D^{q}\left( \left( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\left( f\right) \right) \left( \overrightarrow{x},s\right) ,f\left( \overrightarrow{x} ,s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}\le \end{aligned}$$
(114)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }}\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) \left( \int _{X}D^{q}\left( f\left( \frac{ \overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}+ \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }}\left( \frac{Z_{j}\left( nx-k\right) }{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) \left( \int _{X}D^{q}\left( f\left( \frac{ \overrightarrow{k}}{n},s\right) ,f\left( \overrightarrow{x},s\right) \right) P\left( ds\right) \right) ^{\frac{1}{q}}\le \end{aligned}$$
$$\begin{aligned} \left( \frac{1}{\sum \limits _{\overrightarrow{k}=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }Z_{j}\left( nx-k\right) }\right) \cdot \left\{ \varOmega _{1}^{\left( \mathcal {F}\right) }\left( f,\frac{1}{ n^{\beta }}\right) _{L^{q}}+\right. \end{aligned}$$
(115)
$$\begin{aligned} \left. 2\left( \int _{X}\left( D^{*}\left( f\left( \cdot ,s\right) , \widetilde{o}\right) \right) ^{q}P\left( ds\right) \right) ^{\frac{1}{q} }\left( \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x} \right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k }=\left\lceil na\right\rceil }^{\left\lfloor nb\right\rfloor }} Z_{j}\left( nx-k\right) \right) \right\} \end{aligned}$$

(by (24), (25); (44), (45); (64), (65); (86), (87))

$$\begin{aligned} \le \gamma _{j}\left( N\right) \left\{ \varOmega _{1}^{\left( \mathcal {F} \right) }\left( f,\frac{1}{n^{\beta }}\right) _{L^{q}}+2c_{j}\left( \beta ,n\right) \left( \int _{X}\left( D^{*}\left( f\left( \cdot ,s\right) , \widetilde{o}\right) \right) ^{q}P\left( ds\right) \right) ^{\frac{1}{q} }\right\} . \end{aligned}$$
(116)

We have proved claim.

Conclusion 6

By Theorem 22 we obtain the pointwise and uniform convergences with rates in the q-mean and D-metric of the operator \( _{j}A_{n}^{\mathcal{F}\mathcal{R}}\) to the unit operator for \(f\in C_{\mathcal{F}\mathcal{R} }^{U_{q}}\left( \prod \limits _{i=1}^{N}\left[ a_{i},b_{i}\right] \right) ,\) \( j=1,2,3,4.\)

II) 1-mean Approximation by Stochastic arctangent, algebraic, Gudermannian and generalized symmetric activation functions based full Quasi-Interpolation Neural Network Operators

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(0<\beta <1\) , \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \( \left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty \), \(\left( X, \mathcal {B},P\right) \) probability space, \(s\in X.\)

We define

$$\begin{aligned} _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \left( \overrightarrow{ x},s\right) :=\sum \limits _{\overrightarrow{k}=-\infty }^{\infty }g\left( \frac{\overrightarrow{k}}{n},s\right) Z_{j}\left( n\overrightarrow{x}- \overrightarrow{k}\right) ,\text { }j=1,2,3,4, \end{aligned}$$
(117)

(see also (90)).

We give

Theorem 23

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) ,\) \( 0<\beta <1\), \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \(n^{1-\beta }>2,\) \(\left\| g\right\| _{\infty ,\mathbb {R} ^{N},X}<\infty ;\) \(j=1,2,3,4.\) Then

  1. 1)
    $$\begin{aligned} \int _{X}\left| \left( _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{ x},s\right) \right| P\left( ds\right) \le \end{aligned}$$
    (118)
    $$\begin{aligned} \left\{ \varOmega _{1}\left( g,\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty ,\mathbb {R}^{N},X}\right\} =:\mu _{j1}^{\left( \mathcal {R}\right) }, \end{aligned}$$
  2. 2)
    $$\begin{aligned} \left\| \int _{X}\left| \left( _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right\| _{\infty ,\mathbb {R}^{N}}\le \mu _{j1}^{\left( \mathcal {R}\right) }. \end{aligned}$$
    (119)

Proof

Since \(\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty \), then

$$\begin{aligned} \left| g\left( \frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(120)

Hence

$$\begin{aligned} \int _{X}\left| g\left( \frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(121)

We observe that

$$\begin{aligned} \left( _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }g\left( \frac{ \overrightarrow{k}}{n},s\right) Z_{j}\left( nx-k\right) -g\left( \overrightarrow{x},s\right) \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }Z_{j}\left( nx-k\right) = \end{aligned}$$
(122)
$$\begin{aligned} \left( \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }g\left( \frac{ \overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right) Z_{j}\left( nx-k\right) . \end{aligned}$$

However it holds

$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left| g\left( \frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( nx-k\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(123)

Hence

$$\begin{aligned} \left| \left( _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x} ,s\right) \right| \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left| g\left( \frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( nx-k\right) = \end{aligned}$$
(124)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left| g\left( \frac{\overrightarrow{k}}{n} ,s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( nx-k\right) + \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left| g\left( \frac{\overrightarrow{k}}{n} ,s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( nx-k\right) . \end{aligned}$$

Furthermore it holds

$$\begin{aligned} \left( \int _{X}\left| \left( _{j}B_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) \le \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left( \int _{X}\left| g\left( \frac{ \overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) Z_{j}\left( nx-k\right) + \end{aligned}$$
(125)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left( \int _{X}\left| g\left( \frac{ \overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) Z_{j}\left( nx-k\right) \le \end{aligned}$$
$$\begin{aligned} \varOmega _{1}\left( g,\frac{1}{n^{\beta }}\right) _{L^{1}}+2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}\underset{\left\| \frac{ \overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{ n^{\beta }}}{\sum \limits _{\overrightarrow{k}=-\infty }^{\infty }} Z_{j}\left( nx-k\right) \le \end{aligned}$$
$$\begin{aligned} \varOmega _{1}\left( g,\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty ,\mathbb {R}^{N},X}, \end{aligned}$$

proving the claim.

Conclusion 7

By Theorem 23 we obtain pointwise and uniform convergences with rates in the 1-mean of random operators \( _{j}B_{n}^{\left( \mathcal {R}\right) }\) to the unit operator for \(g\in C_{ \mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(j=1,2,3,4.\)

III) 1-mean Approximation by Stochastic arctangent, algebraic, Gudermannian and generalized symmetric activation functions based multivariate Kantorovich type neural network operator

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(0<\beta <1\) , \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \( \left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty \), \(\left( X,\mathcal {B},P\right) \) probability space, \(s\in X.\)

We define (\(j=1,2,3,4\)):

$$\begin{aligned} _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \left( \overrightarrow{ x},s\right) :=\sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n} }g\left( \overrightarrow{t},s\right) d\overrightarrow{t}\right) Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) , \end{aligned}$$
(126)

(see also (91).

We present

Theorem 24

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) ,\) \( 0<\beta <1\), \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \(n^{1-\beta }>2;\) \(j=1,2,3,4,\) \(\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty .\) Then

  1. 1)
    $$\begin{aligned} \int _{X}\left| \left( _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{ x},s\right) \right| P\left( ds\right) \le \end{aligned}$$
    $$\begin{aligned} \left[ \varOmega _{1}\left( g,\frac{1}{n}+\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty , \mathbb {R}^{N},X}\right] =:\gamma _{j1}^{\left( \mathcal {R}\right) }, \end{aligned}$$
    (127)
  2. 2)
    $$\begin{aligned} \left\| \int _{X}\left| \left( _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right\| _{\infty ,\mathbb {R}^{N}}\le \gamma _{j1}^{\left( \mathcal {R}\right) }. \end{aligned}$$
    (128)

Proof

Since \(\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty \), then

$$\begin{aligned} \left| n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}g\left( \overrightarrow{t},s\right) d\overrightarrow{t}-g\left( \overrightarrow{x},s\right) \right| =\left| n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}\left( g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right) d\overrightarrow{t}\right| \le \end{aligned}$$
$$\begin{aligned} n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n} }\left| g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x} ,s\right) \right| d\overrightarrow{t}\le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(129)

Hence

$$\begin{aligned} \int _{X}\left| n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{ \overrightarrow{k}+1}{n}}g\left( \overrightarrow{t},s\right) d\overrightarrow{t}-g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(130)

We observe that

$$\begin{aligned} \left( _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}g\left( \overrightarrow{t},s\right) d\overrightarrow{t}\right) Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) -g\left( \overrightarrow{x} ,s\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}g\left( \overrightarrow{t},s\right) d\overrightarrow{t}\right) Z_{j}\left( n \overrightarrow{x}-\overrightarrow{k}\right) -g\left( \overrightarrow{x} ,s\right) \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }Z_{j}\left( n \overrightarrow{x}-\overrightarrow{k}\right) = \end{aligned}$$
(131)
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left[ \left( n^{N}\int _{ \frac{\overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}g\left( \overrightarrow{t},s\right) d\overrightarrow{t}\right) -g\left( \overrightarrow{x},s\right) \right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left[ n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}\left( g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right) d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k} \right) . \end{aligned}$$

However it holds

$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left[ n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}\left| g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}- \overrightarrow{k}\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R }^{N},X}<\infty . \end{aligned}$$
(132)

Hence

$$\begin{aligned} \left| \left( _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x} ,s\right) \right| \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left[ n^{N}\int _{\frac{ \overrightarrow{k}}{n}}^{\frac{\overrightarrow{k}+1}{n}}\left| g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}- \overrightarrow{k}\right) = \end{aligned}$$
(133)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{ \overrightarrow{k}+1}{n}}\left| g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) + \end{aligned}$$
(134)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{\frac{\overrightarrow{k}}{n}}^{\frac{ \overrightarrow{k}+1}{n}}\left| g\left( \overrightarrow{t},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) = \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{0}^{\frac{1}{n}}\left| g\left( \overrightarrow{t}+\frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) + \end{aligned}$$
(135)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{0}^{\frac{1}{n}}\left| g\left( \overrightarrow{t}+\frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| d\overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) . \end{aligned}$$

Furthermore it holds

$$\begin{aligned} \left( \int _{X}\left| \left( _{j}C_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) \underset{ \text {(by Fubini's theorem)}}{\le } \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{0}^{\frac{1}{n}}\left( \int _{X}\left| g\left( \overrightarrow{t}+\frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) d \overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k} \right) + \end{aligned}$$
(136)
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left[ n^{N}\int _{0}^{\frac{1}{n}}\left( \int _{X}\left| g\left( \overrightarrow{t}+\frac{\overrightarrow{k}}{n},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) d \overrightarrow{t}\right] Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k} \right) \le \end{aligned}$$
$$\begin{aligned} \varOmega _{1}\left( g,\frac{1}{n}+\frac{1}{n^{\beta }}\right) _{L^{1}}+2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}\underset{\left\| \frac{ \overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{ n^{\beta }}}{\sum \limits _{\overrightarrow{k}=-\infty }^{\infty }} Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) \le \end{aligned}$$
$$\begin{aligned} \varOmega _{1}\left( g,\frac{1}{n}+\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty , \mathbb {R}^{N},X}, \end{aligned}$$
(137)

proving the claim.

Conclusion 8

By Theorem 24 we obtain pointwise and uniform convergences with rates in the 1-mean of random operators \( _{j}C_{n}^{\left( \mathcal {R}\right) }\) to the unit operator for \(g\in C_{ \mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(j=1,2,3,4.\)

IV) 1-mean Approximation by Stochastic arctangent, algebraic, Gudermannian and generalized symmetric activation functions based multivariate quadrature type neural network operator

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(0<\beta <1\) , \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \( \left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty \), \(\left( X, \mathcal {B},P\right) \) probability space, \(s\in X\), \(j=1,2,3,4.\)

We define

$$\begin{aligned} _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \left( \overrightarrow{ x},s\right) :=\sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) , \end{aligned}$$
(138)

where

$$\begin{aligned} \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) :=\sum \limits _{\overrightarrow{\overline{r}}=0}^{\overrightarrow{\theta } }w_{\overrightarrow{\overline{r}}}g\left( \frac{\overrightarrow{k}}{n}+\frac{ \overrightarrow{\overline{r}}}{n\overrightarrow{\theta }},s\right) , \end{aligned}$$
(139)

(see also (92), (93)).

We finally give

Theorem 25

Let \(g\in C_{\mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) ,\) \( 0<\beta <1\), \(\overrightarrow{x}\in \mathbb {R}^{N}\), \(n,N\in \mathbb {N}\), with \(n^{1-\beta }>2;\) \(j=1,2,3,4,\) \(\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty .\) Then

  1. 1)
    $$\begin{aligned} \int _{X}\left| \left( _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{ x},s\right) \right| P\left( ds\right) \le \end{aligned}$$
    $$\begin{aligned} \left\{ \varOmega _{1}\left( g,\frac{1}{n}+\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty , \mathbb {R}^{N},X}\right\} =:\gamma _{j1}^{\left( \mathcal {R}\right) }, \end{aligned}$$
    (140)
  2. 2)
    $$\begin{aligned} \left\| \int _{X}\left| \left( _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right\| _{\infty ,\mathbb {R}^{N}}\le \gamma _{j1}^{\left( \mathcal {R}\right) }. \end{aligned}$$
    (141)

Proof

Notice that

$$\begin{aligned} \left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| = \end{aligned}$$
$$\begin{aligned} \left| \sum \limits _{\overrightarrow{\overline{r}}=0}^{\overrightarrow{ \theta }}w_{\overrightarrow{\overline{r}}}\left( g\left( \frac{ \overrightarrow{k}}{n}+\frac{\overrightarrow{\overline{r}}}{n\overrightarrow{ \theta }},s\right) -g\left( \overrightarrow{x},s\right) \right) \right| \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{\overline{r}}=0}^{\overrightarrow{\theta }}w_{ \overrightarrow{\overline{r}}}\left| g\left( \frac{\overrightarrow{k}}{n }+\frac{\overrightarrow{\overline{r}}}{n\overrightarrow{\theta }},s\right) -g\left( \overrightarrow{x},s\right) \right| \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(142)

Hence

$$\begin{aligned} \int _{X}\left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R} ^{N},X}<\infty . \end{aligned}$$
(143)

We observe that

$$\begin{aligned} \left( _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( \delta _{n \overrightarrow{k}}\left( g\right) \right) \left( s\right) Z_{j}\left( n \overrightarrow{x}-\overrightarrow{k}\right) -g\left( \overrightarrow{x} ,s\right) = \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left( \left( \delta _{n \overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right) Z_{j}\left( n\overrightarrow{x}- \overrightarrow{k}\right) . \end{aligned}$$
(144)

Thus

$$\begin{aligned} \left| _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( n \overrightarrow{x}-\overrightarrow{k}\right) \le 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}<\infty . \end{aligned}$$
(145)

Hence it holds

$$\begin{aligned} \left| \left( _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x} ,s\right) \right| \le \end{aligned}$$
$$\begin{aligned} \sum \limits _{\overrightarrow{k}=-\infty }^{\infty }\left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) = \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) + \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\left| \left( \delta _{n\overrightarrow{k}}\left( g\right) \right) \left( s\right) -g\left( \overrightarrow{x},s\right) \right| Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) . \end{aligned}$$
(146)

Furthermore we derive

$$\begin{aligned} \left( \int _{X}\left| \left( _{j}D_{n}^{\left( \mathcal {R}\right) }\left( g\right) \right) \left( \overrightarrow{x},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) \le \end{aligned}$$
$$\begin{aligned} \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x}\right\| _{\infty }\le \frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k} =-\infty }^{\infty }}\sum \limits _{\overrightarrow{\overline{r}}=0}^{ \overrightarrow{\theta }}w_{\overrightarrow{\overline{r}}}\left( \int _{X}\left| g\left( \frac{\overrightarrow{k}}{n}+\frac{ \overrightarrow{\overline{r}}}{n\overrightarrow{\theta }},s\right) -g\left( \overrightarrow{x},s\right) \right| P\left( ds\right) \right) Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k}\right) \end{aligned}$$
(147)
$$\begin{aligned} +\left( \underset{\left\| \frac{\overrightarrow{k}}{n}-\overrightarrow{x} \right\| _{\infty }>\frac{1}{n^{\beta }}}{\sum \limits _{\overrightarrow{k }=-\infty }^{\infty }}Z_{j}\left( n\overrightarrow{x}-\overrightarrow{k} \right) \right) 2\left\| g\right\| _{\infty ,\mathbb {R}^{N},X}\le \end{aligned}$$
$$\begin{aligned} \varOmega _{1}\left( g,\frac{1}{n}+\frac{1}{n^{\beta }}\right) _{L^{1}}+2c_{j}\left( \beta ,n\right) \left\| g\right\| _{\infty , \mathbb {R}^{N},X}, \end{aligned}$$
(148)

proving the claim.

Conclusion 9

From Theorem 25 we obtain pointwise and uniform convergences with rates in the 1-mean of random operators \(_{j}D_{n}^{\left( \mathcal {R}\right) }\) to the unit operator for \(g\in C_{ \mathcal {R}}^{U_{1}}\left( \mathbb {R}^{N}\right) \), \(j=1,2,3,4\).