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Multivariate Fuzzy-Random
and Stochastic Arctangent, Algebraic,

Gudermannian and Generalized
Symmetric Activation Functions Induced

Neural Network Approximations

George A. Anastassiou(B)

Department of Mathematical Sciences, University of Memphis,
Memphis, TN 38152, USA

ganastss@memphis.edu

Abstract. In this article we study the degree of approximation of
multivariate pointwise and uniform convergences in the q-mean to
the Fuzzy-Random unit operator of multivariate Fuzzy-Random Quasi-
Interpolation arctangent, algebraic, Gudermannian and generalized sym-
metric activation functions based neural network operators. These mul-
tivariate Fuzzy-Random operators arise in a natural way among mul-
tivariate Fuzzy-Random neural networks. The rates are given through
multivariate Probabilistic-Jackson type inequalities involving the multi-
variate Fuzzy-Random modulus of continuity of the engaged multivariate
Fuzzy-Random function. The plain stochastic extreme analog of this the-
ory is also met in detail for the stochastic analogs of the operators: the
stochastic full quasi-interpolation operators, the stochastic Kantorovich
type operators and the stochastic quadrature type operators.

Keywords: Fuzzy-Random analysis · Fuzzy-Random neural networks
and operators · Fuzzy-Random modulus of continuity · Fuzzy-Random
functions · Stochastic processes · Jackson type fuzzy and probabilistic
inequalities

1 Fuzzy-Random Functions and Stochastic Processes
Background

See also [18], Ch. 22, pp. 497–501.
We start with

Definition 1 (see [35]). Let μ : R → [0, 1] with the following properties:

(i) is normal, i.e., ∃ x0 ∈ R : μ (x0) = 1.
(ii) μ (λx + (1 − λ) y) ≥ min{μ (x) , μ (y)}, ∀ x, y ∈ R, ∀ λ ∈ [0, 1] (μ is called

a convex fuzzy subset).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 1–32, 2023.
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2 G. A. Anastassiou

(iii) μ is upper semicontinuous on R, i.e., ∀ x0 ∈ R and ∀ ε > 0, ∃ neighborhood
V (x0) : μ (x) ≤ μ (x0) + ε, ∀ x ∈ V (x0) .

(iv) the set supp (μ) is compact in R (where supp(μ) := {x ∈ R;μ (x) > 0}).

We call μ a fuzzy real number. Denote the set of all μ with RF .
E.g., χ{x0} ∈ RF , for any x0 ∈ R, where χ{x0} is the characteristic function

at x0.
For 0 < r ≤ 1 and μ ∈ RF define [μ]r := {x ∈ R : μ (x) ≥ r} and [μ]0 :=

{x ∈ R : μ (x) > 0}.

Then it is well known that for each r ∈ [0, 1], [μ]r is a closed and bounded
interval of R. For u, v ∈ RF and λ ∈ R, we define uniquely the sum u ⊕ v and
the product λ 	 u by

[u ⊕ v]r = [u]r + [v]r , [λ 	 u]r = λ [u]r , ∀ r ∈ [0, 1] ,

where [u]r + [v]r means the usual addition of two intervals (as subsets of R) and
λ [u]r means the usual product between a scalar and a subset of R (see, e.g., [35]).
Notice 1 	 u = u and it holds u ⊕ v = v ⊕ u, λ 	 u = u 	 λ. If 0 ≤ r1 ≤ r2 ≤ 1
then [u]r2 ⊆ [u]r1 . Actually [u]r =

[
u
(r)
− , u

(r)
+

]
, where u

(r)
− < u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R,

∀ r ∈ [0, 1] .
Define

D : RF × RF → R+ ∪ {0}
by

D (u, v) := sup
r∈[0,1]

max
{∣∣∣u(r)

− − v
(r)
−
∣∣∣ ,
∣∣∣u(r)

+ − v
(r)
+

∣∣∣
}

,

where [v]r =
[
v
(r)
− , v

(r)
+

]
; u, v ∈ RF . We have that D is a metric on RF . Then

(RF ,D) is a complete metric space, see [35], with the properties

D (u ⊕ w, v ⊕ w) = D (u, v) , ∀ u, v, w ∈ RF ,
D (k 	 u, k 	 v) = |k| D (u, v) , ∀ u, v ∈ RF , ∀ k ∈ R,

D (u ⊕ v, w ⊕ e) ≤ D (u,w) + D (v, e) , ∀ u, v, w, e ∈ RF .
(1)

Let (M,d) metric space and f, g : M → RF be fuzzy real number valued func-
tions. The distance between f, g is defined by

D∗ (f, g) := sup
x∈M

D (f (x) , g (x)) .

On RF we define a partial order by “≤”: u, v ∈ RF , u ≤ v iff u
(r)
− ≤ v

(r)
− and

u
(r)
+ ≤ v

(r)
+ , ∀ r ∈ [0, 1] .

∗∑
denotes the fuzzy summation, õ := χ{0} ∈ RF the neutral element with

respect to ⊕. For more see also [36,37].
We need
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Definition 2 (see also [30], Definition 13.16, p. 654). Let (X,B, P ) be a prob-
ability space. A fuzzy-random variable is a B-measurable mapping g : X → RF
(i.e., for any open set U ⊆ RF , in the topology of RF generated by the metric
D, we have

g−1 (U) = {s ∈ X; g (s) ∈ U} ∈ B). (2)

The set of all fuzzy-random variables is denoted by LF (X,B, P ). Let gn, g ∈
LF (X,B, P ), n ∈ N and 0 < q < +∞. We say gn (s)

“q-mean”→
n→+∞ g (s) if

lim
n→+∞

∫

X

D (gn (s) , g (s))q
P (ds) = 0. (3)

Remark 1 (see [30], p. 654). If f, g ∈ LF (X,B, P ), let us denote F : X →
R+ ∪ {0} by F (s) = D (f (s) , g (s)), s ∈ X. Here, F is B-measurable, because
F = G ◦ H, where G (u, v) = D (u, v) is continuous on RF × RF , and H : X →
RF × RF , H (s) = (f (s) , g (s)), s ∈ X, is B-measurable. This shows that the
above convergence in q -mean makes sense.

Definition 3 (see [30], p. 654, Definition 13.17). Let (T, T ) be a topological
space. A mapping f : T → LF (X,B, P ) will be called fuzzy-random function (or
fuzzy-stochastic process) on T . We denote f (t) (s) = f (t, s), t ∈ T , s ∈ X.

Remark 2 (see [30], p. 655). Any usual fuzzy real function f : T → RF can be
identified with the degenerate fuzzy-random function f (t, s) = f (t), ∀ t ∈ T ,
s ∈ X.

Remark 3 (see [30], p. 655). Fuzzy-random functions that coincide with proba-
bility one for each t ∈ T will be consider equivalent.

Remark 4 (see [30], p. 655). Let f, g : T → LF (X,B, P ). Then f ⊕ g and k 	 f
are defined pointwise, i.e.,

(f ⊕ g) (t, s) = f (t, s) ⊕ g (t, s) ,

(k 	 f) (t, s) = k 	 f (t, s) , t ∈ T, s ∈ X, k ∈ R.

Definition 4 (see also Definition 13.18, pp. 655–656, [30]). For a fuzzy-random
function f : W ⊆ R

N → LF (X,B, P ), N ∈ N, we define the (first) fuzzy-random
modulus of continuity

Ω
(F)
1 (f, δ)Lq =

sup

{(∫

X

Dq (f (x, s) , f (y, s)) P (ds)
) 1

q

: x, y ∈ W, ‖x − y‖∞ ≤ δ

}
,

0 < δ, 1 ≤ q < ∞.

Definition 5 [16]. Here 1 ≤ q < +∞. Let f : W ⊆ R
N → LF (X,B, P ), N ∈ N,

be a fuzzy random function. We call f a (q-mean) uniformly continuous fuzzy
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random function over W , iff ∀ ε > 0 ∃ δ > 0 :whenever ‖x − y‖∞ ≤ δ, x, y ∈ W,
implies that ∫

X

(D (f (x, s) , f (y, s)))q
P (ds) ≤ ε.

We denote it as f ∈ C
Uq

FR (W ) .

Proposition 1 [16]. Let f ∈ C
Uq

FR (W ) , where W ⊆ R
N is convex.

Then Ω
(F)
1 (f, δ)Lq < ∞, any δ > 0.

Proposition 2 [16]. Let f, g : W ⊆ R
N → LF (X,B, P ), N ∈ N, be fuzzy

random functions. It holds

(i) Ω
(F)
1 (f, δ)Lq is nonnegative and nondecreasing in δ > 0.

(ii) lim
δ↓0

Ω
(F)
1 (f, δ)Lq = Ω

(F)
1 (f, 0)Lq = 0, iff f ∈ C

Uq

FR (W ) .

We mention

Definition 6 (see also [6]). Let f (t, s) be a random function (stochastic process)
from W × (X,B, P ) , W ⊆ R

N , into R, where (X,B, P ) is a probability space.
We define the q-mean multivariate first modulus of continuity of f by

Ω1 (f, δ)Lq :=

sup

{(∫

X

|f (x, s) − f (y, s)|q P (ds)
) 1

q

: x, y ∈ W, ‖x − y‖∞ ≤ δ

}
, (4)

δ > 0, 1 ≤ q < ∞.

The concept of f being (q-mean) uniformly continuous random function is
defined the same way as in Definition 5, just replace D by |·|, etc. We denote it
as f ∈ C

Uq

R
(W ) .

Similar properties as in Propositions 1, 2 are valid for Ω1 (f, δ)Lq .
Also we have

Proposition 3 [3]. Let Y (t, ω) be a real valued stochastic process such that Y
is continuous in t ∈ [a, b]. Then Y is jointly measurable in (t, ω) .

According to [28], p. 94 we have the following

Definition 7. Let (Y, T ) be a topological space, with its σ-algebra of Borel sets
B := B (Y, T ) generated by T . If (X,S) is a measurable space, a function f :
X → Y is called measurable iff f−1 (B) ∈ S for all B ∈ B.

By Theorem 4.1.6 of [28], p. 89 f as above is measurable iff

f−1 (C) ∈ S for all C ∈ T .

We mention
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Theorem 1 (see [28], p. 95). Let (X,S) be a measurable space and (Y, d) be
a metric space. Let fn be measurable functions from X into Y such that for
all x ∈ X, fn (x) → f (x) in Y . Then f is measurable. I.e., lim

n→∞fn = f is
measurable.

We need also

Proposition 4 [16]. Let f, g be fuzzy random variables from S into RF . Then

(i) Let c ∈ R, then c 	 f is a fuzzy random variable.
(ii) f ⊕ g is a fuzzy random variable.

Proposition 5. Let Y
(−→

t , ω
)

be a real valued multivariate random function

(stochastic process) such that Y is continuous in
−→
t ∈

N∏
i=1

[ai, bi]. Then Y is

jointly measurable in
(−→

t , ω
)

and
∫

N∏

i=1
[ai,bi]

Y
(−→

t , ω
)

d
−→
t is a real valued random

variable.

Proof. Similar to Proposition 18.14, p. 353 of [7].

2 About Neural Networks Background

2.1 About the Arctangent Activation Function

We consider the
arctan x =

∫ x

0

dz

1 + z2
, x ∈ R. (5)

We will be using

h (x) :=
2
π

arctan
(π

2
x
)

=
2
π

∫ πx
2

0

dz

1 + z2
, x ∈ R, (6)

which is a sigmoid type function and it is strictly increasing. We have that

h (0) = 0, h (−x) = −h (x) , h (+∞) = 1, h (−∞) = −1,

and
h′ (x) =

4
4 + π2x2

> 0, all x ∈ R. (7)

We consider the activation function

ψ1 (x) :=
1
4

(h (x + 1) − h (x − 1)) , x ∈ R, (8)

and we notice that
ψ1 (−x) = ψ1 (x) , (9)
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it is an even function.
Since x + 1 > x − 1, then h (x + 1) > h (x − 1), and ψ1 (x) > 0, all x ∈ R.
We see that

ψ1 (0) =
1
π

arctan
π

2
∼= 0.319. (10)

Let x > 0, we have that

ψ′
1 (x) =

1
4

(h′ (x + 1) − h′ (x − 1)) =

−4π2x(
4 + π2 (x + 1)2

)(
4 + π2 (x − 1)2

) < 0. (11)

That is
ψ′
1 (x) < 0, for x > 0. (12)

That is ψ1 is strictly decreasing on [0,∞) and clearly is strictly increasing on
(−∞, 0], and ψ′

1 (0) = 0.
Observe that

lim
x→+∞ψ1 (x) = 1

4 (h (+∞) − h (+∞)) = 0,

and
lim

x→−∞ψ1 (x) = 1
4 (h (−∞) − h (−∞)) = 0.

(13)

That is the x-axis is the horizontal asymptote on ψ1.
All in all, ψ1 is a bell symmetric function with maximum ψ1 (0) ∼= 18.31.
We need

Theorem 2 ([19], p. 286). We have that

∞∑
i=−∞

ψ1 (x − i) = 1, ∀ x ∈ R. (14)

Theorem 3 ([19], p. 287). It holds
∫ ∞

−∞
ψ1 (x) dx = 1. (15)

So that ψ1 (x) is a density function on R.
We mention

Theorem 4 ([19], p. 288). Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
⎧
⎨

⎩

k = −∞
: |nx − k| ≥ n1−α

ψ1 (nx − k) <
2

π2 (n1−α − 2)
=: c1 (α, n) . (16)
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Denote by �·� the integral part of the number and by �·� the ceiling of the
number.

We need

Theorem 5 ([19], p. 289). Let x ∈ [a, b] ⊂ R and n ∈ N so that �na� ≤ �nb�.
It holds

1∑	nb

k=�na� ψ1 (nx − k)

<
1

ψ1 (1)
∼= 4.9737 =: α1, ∀ x ∈ [a, b] . (17)

Note 1 ([19], pp. 290–291).

i) We have that

lim
n→∞

	nb
∑
k=�na�

ψ1 (nx − k) �= 1, (18)

for at least some x ∈ [a, b] .
ii) For large enough n ∈ N we always obtain �na� ≤ �nb�. Also a ≤ k

n ≤ b, iff
�na� ≤ k ≤ �nb�.

In general, by Theorem 2, it holds

	nb
∑
k=�na�

ψ1 (nx − k) ≤ 1. (19)

We introduce (see [24])

Z1 (x1, ..., xN ) := Z1 (x) :=
N∏

i=1

ψ1 (xi) , x = (x1, ..., xN ) ∈ R
N , N ∈ N. (20)

Denote by a = (a1, ..., aN ) and b = (b1, ..., bN ) .
It has the properties:

(i) Z1 (x) > 0, ∀ x ∈ R
N ,

(ii)

∞∑
k=−∞

Z1 (x − k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z1 (x1 − k1, ..., xN − kN ) = 1,

(21)
where k := (k1, ..., kn) ∈ Z

N , ∀ x ∈ R
N ,

hence
(iii)

∞∑
k=−∞

Z1 (nx − k) = 1, (22)

∀ x ∈ R
N ; n ∈ N,

and
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(iv) ∫

RN

Z1 (x) dx = 1, (23)

that is Z1 is a multivariate density function.
(v) It is clear that

∞∑
⎧
⎨

⎩

k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z1 (nx − k) <
2

π2 (n1−β − 2)
= c1 (β, n) , (24)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ R
N .

(vi) By Theorem 5 we get that

0 <
1∑	nb


k=�na� Z1 (nx − k)
<

1

(ψ1 (1))N
∼= (4.9737)N =: γ1 (N) , (25)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

Furthermore it holds

lim
n→∞

	nb
∑
k=�na�

Z1 (nx − k) �= 1, (26)

for at least some x ∈
(∏N

i=1 [ai, bi]
)

.

Above it is ‖x‖∞ := max {|x1| , ..., |xN |}, x ∈ R
N , also set ∞ := (∞, ...,∞),

−∞ = (−∞, ... − ∞) upon the multivariate context.

2.2 About the Algebraic Activation Function

Here see also [20].
We consider the generator algebraic function

ϕ (x) =
x

2m
√

1 + x2m
, m ∈ N, x ∈ R, (27)

which is a sigmoidal type of function and is a strictly increasing function.
We see that ϕ (−x) = −ϕ (x) with ϕ (0) = 0. We get that

ϕ′ (x) =
1

(1 + x2m)
2m+1
2m

> 0, ∀ x ∈ R, (28)

proving ϕ as strictly increasing over R, ϕ′ (x) = ϕ′ (−x) . We easily find that
lim

x→+∞ϕ (x) = 1, ϕ (+∞) = 1, and lim
x→−∞ϕ (x) = −1, ϕ (−∞) = −1.
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We consider the activation function

ψ2 (x) =
1
4

[ϕ (x + 1) − ϕ (x − 1)] . (29)

Clearly it is ψ2 (x) = ψ2 (−x) , ∀ x ∈ R, so that ψ2 is an even function and
symmetric with respect to the y-axis. Clearly ψ2 (x) > 0 , ∀ x ∈ R.

Also it is
ψ2 (0) =

1
2 2m

√
2
. (30)

By [20], we have that ψ′
2 (x) < 0 for x > 0. That is ψ2 is strictly decreasing over

(0,+∞) .
Clearly, ψ2 is strictly increasing over (−∞, 0) and ψ′

2 (0) = 0.
Furthermore we obtain that

lim
x→+∞ψ2 (x) =

1
4

[ϕ (+∞) − ϕ (+∞)] = 0, (31)

and
lim

x→−∞ψ2 (x) =
1
4

[ϕ (−∞) − ϕ (−∞)] = 0. (32)

That is the x-axis is the horizontal asymptote of ψ2.
Conclusion, ψ2 is a bell shape symmetric function with maximum

ψ2 (0) =
1

2 2m
√

2
, m ∈ N. (33)

We need

Theorem 6 [20]. We have that

∞∑
i=−∞

ψ2 (x − i) = 1, ∀ x ∈ R. (34)

Theorem 7 [20]. It holds
∫ ∞

−∞
ψ2 (x) dx = 1. (35)

Theorem 8 [20]. Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
⎧
⎨

⎩

k = −∞
: |nx − k| ≥ n1−α

ψ2 (nx − k) <
1

4m (n1−α − 2)2m =: c2 (α, n) , m ∈ N.

(36)

We need
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Theorem 9 [20]. Let [a, b] ⊂ R and n ∈ N so that �na� ≤ �nb�. It holds

1
	nb
∑

k=�na�
ψ2 (nx − k)

< 2
(

2m
√

1 + 4m
)

=: α2, (37)

∀ x ∈ [a, b], m ∈ N.

Note 2. 1) By [20] we have that

lim
n→∞

	nb
∑
k=�na�

ψ2 (nx − k) �= 1, (38)

for at least some x ∈ [a, b] .
2) Let [a, b] ⊂ R. For large n ∈ N we always have �na� ≤ �nb�. Also a ≤ k

n ≤ b,
iff �na� ≤ k ≤ �nb�.
In general it holds that

	nb
∑
k=�na�

ψ2 (nx − k) ≤ 1. (39)

We introduce (see also [25])

Z2 (x1, ..., xN ) := Z2 (x) :=
N∏

i=1

ψ2 (xi) , x = (x1, ..., xN ) ∈ R
N , N ∈ N. (40)

It has the properties:

(i) Z2 (x) > 0, ∀ x ∈ R
N ,

(ii)

∞∑
k=−∞

Z2 (x − k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z2 (x1 − k1, ..., xN − kN ) = 1,

(41)
where k := (k1, ..., kn) ∈ Z

N , ∀ x ∈ R
N ,

hence
(iii)

∞∑
k=−∞

Z2 (nx − k) = 1, (42)

∀ x ∈ R
N ; n ∈ N,

and
(iv) ∫

RN

Z2 (x) dx = 1, (43)

that is Z2 is a multivariate density function.
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(v) It is clear that

∞∑
⎧
⎨

⎩

k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z2 (nx − k) <
1

4m (n1−β − 2)2m = c2 (β, n) , (44)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ R
N , m ∈ N.

(vi) By Theorem 9 we get that

0 <
1∑	nb


k=�na� Z2 (nx − k)
<

1

(ψ2 (1))N
∼=
[
2
(

2m
√

1 + 4m
)]N

:= γ2 (N) , (45)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

Furthermore it holds

lim
n→∞

	nb
∑
k=�na�

Z2 (nx − k) �= 1, (46)

for at least some x ∈
(∏N

i=1 [ai, bi]
)

.

2.3 About the Gudermannian Activation Function

See also [21,34].
Here we consider gd (x) the Gudermannian function [34], which is a sigmoid

function, as a generator function:

σ (x) = 2 arctan
(
tanh

(x

2

))
=
∫ x

0

dt

cosh t
=: gd (x) , x ∈ R. (47)

Let the normalized generator sigmoid function

f (x) :=
2
π

σ (x) =
2
π

∫ x

0

dt

cosh t
=

4
π

∫ x

0

1
et + e−t

dt, x ∈ R. (48)

Here
f ′ (x) =

2
π cosh x

> 0, ∀ x ∈ R,

hence f is strictly increasing on R.
Notice that tanh (−x) = − tanh x and arctan (−x) = − arctan x, x ∈ R.
So, here the neural network activation function will be:

ψ3 (x) =
1
4

[f (x + 1) − f (x − 1)] , x ∈ R. (49)

By [21], we get that
ψ3 (x) = ψ3 (−x) , ∀ x ∈ R, (50)
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i.e. it is even and symmetric with respect to the y-axis. Here we have f (+∞) = 1,
f (−∞) = −1 and f (0) = 0. Clearly it is

f (−x) = −f (x) , ∀ x ∈ R, (51)

an odd function, symmetric with respect to the origin. Since x + 1 > x − 1, and
f (x + 1) > f (x − 1), we obtain ψ3 (x) > 0, ∀ x ∈ R.

By [21], we have that

ψ3 (0) =
1
π

gd (1) ∼= 0.2757. (52)

By [21] ψ3 is strictly decreasing on (0,+∞), and strictly increasing on (−∞, 0),
and ψ′

3 (0) = 0.
Also we have that

lim
x→+∞ψ3 (x) = lim

x→−∞ψ3 (x) = 0, (53)

that is the x-axis is the horizontal asymptote for ψ3.
Conclusion, ψ3 is a bell shaped symmetric function with maximum ψ3 (0) ∼=

0.551.
We need

Theorem 10 [21]. It holds that

∞∑
i=−∞

ψ3 (x − i) = 1, ∀ x ∈ R. (54)

Theorem 11 [21]. We have that
∫ ∞

−∞
ψ3 (x) dx = 1. (55)

So ψ3 (x) is a density function.

Theorem 12 [21]. Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
⎧
⎨

⎩

k = −∞
: |nx − k| ≥ n1−α

ψ3 (nx − k) <
2

πe(n1−α−2)
=

2e2

πen1−α =: c3 (α, n) . (56)

Theorem 13 [21]. Let [a, b] ⊂ R and n ∈ N, so that �na� ≤ �nb�. It holds

1
	nb
∑

k=�na�
ψ3 (nx − k)

<
2π

gd (2)
∼= 4.824 =: α3, (57)

∀ x ∈ [a, b] .



Multivariate Fuzzy-Random 13

We make

Remark 5 [21].

(i) We have that

lim
n→∞

	nb
∑
k=�na�

ψ3 (nx − k) �= 1, (58)

for at least some x ∈ [a, b] .
(ii) Let [a, b] ⊂ R. For large n we always have �na� ≤ �nb�. Also a ≤ k

n ≤ b, iff
�na� ≤ k ≤ �nb�.

In general it holds
	nb
∑

k=�na�
ψ3 (nx − k) ≤ 1. (59)

We introduce (see also [23])

Z3 (x1, ..., xN ) := Z3 (x) :=
N∏

i=1

ψ3 (xi) , x = (x1, ..., xN ) ∈ R
N , N ∈ N. (60)

It has the properties:

(i) Z3 (x) > 0, ∀ x ∈ R
N ,

(ii)

∞∑
k=−∞

Z3 (x − k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z3 (x1 − k1, ..., xN − kN ) = 1,

(61)
where k := (k1, ..., kn) ∈ Z

N , ∀ x ∈ R
N ,

hence
(iii)

∞∑
k=−∞

Z3 (nx − k) = 1, (62)

∀ x ∈ R
N ; n ∈ N,

and
(iv) ∫

RN

Z3 (x) dx = 1, (63)

that is Z3 is a multivariate density function.
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(v) It is also clear that
∞∑

⎧
⎨

⎩

k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z3 (nx − k) <
2e2

πen1−β = c3 (β, n) , (64)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ R
N , m ∈ N.

(vi) By Theorem 13 we get that

0 <
1∑	nb


k=�na� Z3 (nx − k)
<

(
2π

gd (2)

)N

∼= (4.824)N =: γ3 (N) , (65)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N.

Furthermore it holds

lim
n→∞

	nb
∑
k=�na�

Z3 (nx − k) �= 1, (66)

for at least some x ∈
(∏N

i=1 [ai, bi]
)

.

2.4 About the Generalized Symmetrical Activation Function

Here we consider the generalized symmetrical sigmoid function [22,29]

f1 (x) =
x

(1 + |x|μ)
1
μ

, μ > 0, x ∈ R. (67)

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter μ is a shape parameter controling how fast the curve
approaches the asymptotes for a given slope at the inflection point. When μ = 1
f1 is the absolute sigmoid function, and when μ = 2, f1 is the square root
sigmoid function. When μ = 1.5 the function approximates the arctangent func-
tion, when μ = 2.9 it approximates the logistic function, and when μ = 3.4
it approximates the error function. Parameter μ is estimated in the likelihood
maximization [29]. For more see [29].

Next we study the particular generator sigmoid function

f2 (x) =
x

(
1 + |x|λ

) 1
λ

, λ is an odd number, x ∈ R. (68)

We have that f2 (0) = 0, and

f2 (−x) = −f2 (x) , (69)

so f2 is symmetric with respect to zero.
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When x ≥ 0, we get that [22]

f ′
2 (x) =

1

(1 + xλ)
λ+1

λ

> 0, (70)

that is f2 is strictly increasing on [0,+∞) and f2 is strictly increasing on (−∞, 0].
Hence f2 is strictly increasing on R.

We also have f2 (+∞) = f2 (−∞) = 1.
Let us consider the activation function [22]:

ψ4 (x) =
1
4

[f2 (x + 1) − f2 (x − 1)] =

1
4

⎡
⎢⎣ (x + 1)
(
1 + |x + 1|λ

) 1
λ

− (x − 1)
(
1 + |x − 1|λ

) 1
λ

⎤
⎥⎦ . (71)

Clearly it holds [22]
ψ4 (x) = ψ4 (−x) , ∀ x ∈ R. (72)

and
ψ4 (0) =

1
2 λ
√

2
, (73)

and ψ4 (x) > 0, ∀ x ∈ R.
Following [22], we have that ψ4 is strictly decreasing over [0,+∞), and ψ4

is strictly increasing on (−∞, 0], by ψ4-symmetry with respect to y-axis, and
ψ′
4 (0) = 0.

Clearly it is
lim

x→+∞ψ4 (x) = lim
x→−∞ψ4 (x) = 0, (74)

therefore the x-axis is the horizontal asymptote of ψ4 (x) .
The value

ψ4 (0) =
1

2 λ
√

2
, λ is an odd number, (75)

is the maximum of ψ4, which is a bell shaped function.
We need

Theorem 14 [22]. It holds

∞∑
i=−∞

ψ4 (x − i) = 1, ∀ x ∈ R. (76)

Theorem 15 [22]. We have that
∫ ∞

−∞
ψ4 (x) dx = 1. (77)
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So that ψ4 (x) is a density function on R.
We need

Theorem 16 [22]. Let 0 < α < 1, and n ∈ N with n1−α > 2. It holds

∞∑
⎧
⎨

⎩

j = −∞
: |nx − j| ≥ n1−α

ψ4 (nx − j) <
1

2λ (n1−α − 2)λ
=: c4 (α, n) , (78)

where λ ∈ N is an odd number.

We also need

Theorem 17 [22]. Let [a, b] ⊂ R and n ∈ N so that �na� ≤ �nb�. Then

1
	nb
∑

k=�na�
ψ4 (|nx − k|)

< 2 λ
√

1 + 2λ =: α4, (79)

where λ is an odd number, ∀ x ∈ [a, b] .

We make

Remark 6 [22]. (1) We have that

lim
n→∞

	nb
∑
k=�na�

ψ4 (nx − k) �= 1, for at least some x ∈ [a, b] . (80)

(2) Let [a, b] ⊂ R. For large enough n we always obtain �na� ≤ �nb�. Also
a ≤ k

n ≤ b, iff �na� ≤ k ≤ �nb�.
In general it holds that

	nb
∑
k=�na�

ψ4 (nx − k) ≤ 1. (81)

We introduce (see also [26])

Z4 (x1, ..., xN ) := Z4 (x) :=
N∏

i=1

ψ4 (xi) , x = (x1, ..., xN ) ∈ R
N , N ∈ N. (82)

It has the properties:

(i) Z4 (x) > 0, ∀ x ∈ R
N ,
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(ii)

∞∑
k=−∞

Z4 (x − k) :=
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

Z4 (x1 − k1, ..., xN − kN ) = 1,

(83)
where k := (k1, ..., kn) ∈ Z

N , ∀ x ∈ R
N ,

hence
(iii)

∞∑
k=−∞

Z4 (nx − k) = 1, (84)

∀ x ∈ R
N ; n ∈ N,

and
(iv) ∫

RN

Z4 (x) dx = 1, (85)

that is Z4 is a multivariate density function.
(v) It is clear that

∞∑
⎧
⎨

⎩

k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ

Z4 (nx − k) <
1

2λ (n1−β − 2)λ
= c4 (β, n) , (86)

0 < β < 1, n ∈ N : n1−β > 2, x ∈ R
N , λ is odd.

(vi) By Theorem 17 we get that

0 <
1∑	nb


k=�na� Z4 (nx − k)
<
(
2 λ
√

1 + 2λ
)N

=: γ4 (N) , (87)

∀ x ∈
(∏N

i=1 [ai, bi]
)
, n ∈ N, λ is odd.

Furthermore it holds

lim
n→∞

	nb
∑
k=�na�

Z4 (nx − k) �= 1, (88)

for at least some x ∈
(∏N

i=1 [ai, bi]
)

.

Set
�na� := (�na1� , ..., �naN�) ,

�nb� := (�nb1� , ..., �nbN�) ,

where a := (a1, ..., aN ), b := (b1, ..., bN ), k := (k1, ..., kN ) .
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Let f ∈ C
(∏N

i=1 [ai, bi]
)

, and n ∈ N such that �nai� ≤ �nbi�, i = 1, ..., N.

We define the multivariate averaged positive linear quasi-interpolation neural
network operators (x := (x1, ..., xN ) ∈

(∏N
i=1 [ai, bi]

)
); j = 1, 2, 3, 4:

jAn (f, x1, ..., xN ) := jAn (f, x) :=

∑	nb

k=�na� f

(
k
n

)
Zj (nx − k)

∑	nb

k=�na� Zj (nx − k)

= (89)

∑	nb1

k1=�na1�

∑	nb2

k2=�na2� ...

∑	nbN 

kN=�naN � f

(
k1
n , ..., kN

n

) (∏N
i=1 ψj (nxi − ki)

)

∏N
i=1

(∑	nbi

ki=�nai� ψj (nxi − ki)

) .

For large enough n ∈ N we always obtain �nai� ≤ �nbi�, i = 1, ..., N . Also
ai ≤ ki

n ≤ bi, iff �nai� ≤ ki ≤ �nbi�, i = 1, ..., N .
When f ∈ CB

(
R

N
)

we define (j = 1, 2, 3, 4)

jBn (f, x) := jBn (f, x1, ..., xN ) :=
∞∑

k=−∞
f

(
k

n

)
Zj (nx − k) := (90)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

f

(
k1
n

,
k2
n

, ...,
kN

n

)( N∏
i=1

ψj (nxi − ki)

)
,

n ∈ N, ∀ x ∈ R
N , N ∈ N, the multivariate full quasi-interpolation neural

network operators.
Also for f ∈ CB

(
R

N
)

we define the multivariate Kantorovich type neural
network operators (j = 1, 2, 3, 4)

jCn (f, x) := jCn (f, x1, ..., xN ) :=
∞∑

k=−∞

(
nN

∫ k+1
n

k
n

f (t) dt

)
Zj (nx − k) :=

(91)
∞∑

k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

(
nN

∫ k1+1
n

k1
n

∫ k2+1
n

k2
n

...

∫ kN +1
n

kN
n

f (t1, ..., tN ) dt1...dtN

)

·
(

N∏
i=1

ψj (nxi − ki)

)
,

n ∈ N, ∀ x ∈ R
N .

Again for f ∈ CB

(
R

N
)
, N ∈ N, we define the multivariate neural net-

work operators of quadrature type jDn (f, x), n ∈ N, as follows. Let θ =
(θ1, ..., θN ) ∈ N

N , r = (r1, ..., rN ) ∈ Z
N
+ , wr = wr1,r2,...rN

≥ 0, such that
θ∑

r=0

wr =
θ1∑

r1=0

θ2∑
r2=0

...
θN∑

rN=0
wr1,r2,...rN

= 1; k ∈ Z
N and

δnk (f) := δn,k1,k2,...,kN
(f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)
:=
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θ1∑
r1=0

θ2∑
r2=0

...

θN∑
rN=0

wr1,r2,...rN
f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, ...,
kN

n
+

rN

nθN

)
, (92)

where r
θ :=

(
r1
θ1

, r2
θ2

, ..., rN

θN

)
; j = 1, 2, 3, 4.

We put

jDn (f, x) := jDn (f, x1, ..., xN ) :=
∞∑

k=−∞
δnk (f) Zj (nx − k) := (93)

∞∑
k1=−∞

∞∑
k2=−∞

...

∞∑
kN=−∞

δn,k1,k2,...,kN
(f)

(
N∏

i=1

ψj (nxi − ki)

)
,

∀ x ∈ R
N .

For the next we need, for f ∈ C
(∏N

i=1 [ai, bi]
)

the first multivariate modulus
of continuity

ω1 (f, h) := sup
x, y ∈

∏N
i=1 [ai, bi]

‖x − y‖∞ ≤ h

|f (x) − f (y)| , h > 0. (94)

It holds that
lim
h→0

ω1 (f, h) = 0. (95)

Similarly it is defined for f ∈ CB

(
R

N
)

(continuous and bounded functions
on R

N ) the ω1 (f, h), and it has the property (95), given that f ∈ CU

(
R

N
)

(uniformly continuous functions on R
N ).

We mention

Theorem 18 (see [23–26]). Let f ∈ C
(∏N

i=1 [ai, bi]
)

, 0 < β < 1, x ∈(∏N
i=1 [ai, bi]

)
, N, n ∈ N with n1−β > 2; j = 1, 2, 3, 4. Then

1)

|jAn (f, x) − f (x)| ≤ γj (N)
[
ω1

(
f,

1
nβ

)
+ 2cj (β, n) ‖f‖∞

]
=: λj1, (96)

and
2)

‖jAn (f) − f‖∞ ≤ λj1. (97)

We notice that lim
n→∞ jAn (f) = f , pointwise and uniformly.

In this article we extend Theorem 18 to the fuzzy-random level.
We mention

Theorem 19 (see [23–26]). Let f ∈ CB

(
R

N
)
, 0 < β < 1, x ∈ R

N , N, n ∈ N

with n1−β > 2; j = 1, 2, 3, 4. Then
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1)

|jBn (f, x) − f (x)| ≤ ω1

(
f,

1
nβ

)
+ 2cj (β, n) ‖f‖∞ =: λj2, (98)

2)
‖jBn (f) − f‖∞ ≤ λj2. (99)

Given that f ∈
(
CU

(
R

N
)

∩ CB

(
R

N
))

, we obtain lim
n→∞ jBn (f) = f , uni-

formly.

We also need

Theorem 20 (see [23–26]). Let f ∈ CB

(
R

N
)
, 0 < β < 1, x ∈ R

N , N, n ∈ N

with n1−β > 2; j = 1, 2, 3, 4. Then

1)

|jCn (f, x) − f (x)| ≤ ω1

(
f,

1
n

+
1
nβ

)
+ 2cj (β, n) ‖f‖∞ =: λj3, (100)

2)
‖jCn (f) − f‖∞ ≤ λj3. (101)

Given that f ∈
(
CU

(
R

N
)

∩ CB

(
R

N
))

, we obtain lim
n→∞ jCn (f) = f , uni-

formly.

We also need

Theorem 21 (see [23–26]). Let f ∈ CB

(
R

N
)
, 0 < β < 1, x ∈ R

N , N, n ∈ N

with n1−β > 2; j = 1, 2, 3, 4. Then

1)

|jDn (f, x) − f (x)| ≤ ω1

(
f,

1
n

+
1
nβ

)
+ 2cj (β, n) ‖f‖∞ = λj3, (102)

2)
‖jDn (f) − f‖∞ ≤ λj3. (103)

Given that f ∈
(
CU

(
R

N
)

∩ CB

(
R

N
))

, we obtain lim
n→∞ jDn (f) = f , uniformly.

In this article we extend Theorems 19, 20, 21 to the random level.
We are also motivated by [1–16] and continuing [17]. For general knowledge

on neural networks we recommend [31–33].
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3 Main Results

I) q-mean Approximation by Fuzzy-Random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
Quasi-Interpolation Neural Network Operators

All terms and assumptions here as in Sects. 1, 2.

Let f ∈ C
Uq

FR

(
N∏

i=1

[ai, bi]
)

, 1 ≤ q < +∞, n,N ∈ N, 0 < β < 1, −→x ∈
(

N∏
i=1

[ai, bi]
)

, (X,B, P ) probability space, s ∈ X; j = 1, 2, 3, 4.

We define the following multivariate fuzzy random arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based quasi-
interpolation linear neural network operators

(
jA

FR
n (f)

)
(−→x , s) :=

	nb
∗∑
−→
k =�na�

f

(−→
k

n
, s

)
	

Zj

(
n−→x − −→

k
)

	nb
∑
−→
k =�na�

Zj

(
n−→x − −→

k
) , (104)

(see also (89).
We present

Theorem 22. Let f ∈ C
Uq

FR

(
N∏

i=1

[ai, bi]
)

, 0 < β < 1, −→x ∈
(

N∏
i=1

[ai, bi]
)

,

n,N ∈ N, with n1−β > 2, 1 ≤ q < +∞. Assume that
∫

X
(D∗ (f (·, s) ,

õ))q
P (ds) < ∞; j = 1, 2, 3, 4. Then

1) (∫

X

Dq
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

≤ (105)

γj (N)

{
Ω1

(
f,

1

nβ

)
Lq

+ 2cj (β, n)

(∫
X

(D∗ (f (·, s) , õ))
q
P (ds)

) 1
q

}
=: λ

(FR)
j1 ,

2)
∥∥∥∥∥
(∫

X

Dq
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

∥∥∥∥∥
∞,

(
N∏

i=1
[ai,bi]

) ≤ λ
(FR)
j1 ,

(106)
where γj (N) as in (25), (45), (65), (87) and cj (β, n) as in (24), (44), (64),
(86).

Proof. We notice that

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ D

(
f

(−→
k

n
, s

)
, õ

)
+ D (f (−→x , s) , õ) (107)
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≤ 2D∗ (f (·, s) , õ) .

Hence

Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
≤ 2qD∗q (f (·, s) , õ) , (108)

and
(∫

X

Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

≤ 2
(∫

X

(D∗ (f (·, s) , õ))q
P (ds)

) 1
q

.

(109)
We observe that

D
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
= (110)

D

⎛
⎜⎜⎜⎜⎝

	nb
∗∑
−→
k =�na�

f

(−→
k

n
, s

)
	 Zj (nx − k)

	nb
∑
−→
k =�na�

Zj (nx − k)

, f (−→x , s) 	 1

⎞
⎟⎟⎟⎟⎠

=

D

⎛
⎜⎜⎜⎜⎝

�nb�∗∑
−→
k =�na�

f

(−→
k

n
, s

)
� Zj (nx − k)

�nb�∑
−→
k =�na�

Zj (nx − k)

, f (−→x , s) �

�nb�∑
−→
k =�na�

Zj (nx − k)

�nb�∑
−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠ =

(111)

D

⎛
⎜⎜⎜⎜⎝

�nb�∗∑
−→
k =�na�

f

(−→
k

n
, s

)
� Zj (nx − k)

�nb�∑
−→
k =�na�

Zj (nx − k)

,

�nb�∗∑
−→
k =�na�

f (−→x , s) � Zj (nx − k)
�nb�∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

≤
	nb
∑

−→
k =�na�

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
	nb
∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
. (112)

So that
D
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
≤

	nb
∑
−→
k =�na�

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
	nb
∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
= (113)
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	nb
∑
−→
k =�na�

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
	nb
∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
+

	nb
∑
−→
k =�na�

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
	nb
∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

D

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
.

Hence it holds
(∫

X

Dq
((

jA
FR
n (f)

)
(−→x , s) , f (−→x , s)

)
P (ds)

) 1
q

≤ (114)

�nb�∑
−→
k =�na�

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

≤ 1
nβ

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
�nb�∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

(∫
X

Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

+

�nb�∑
−→
k =�na�

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

> 1
nβ

⎛
⎜⎜⎜⎜⎝

Zj (nx − k)
�nb�∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

(∫
X

Dq

(
f

(−→
k

n
, s

)
, f (−→x , s)

)
P (ds)

) 1
q

≤

⎛
⎜⎜⎜⎜⎝

1
	nb
∑

−→
k =�na�

Zj (nx − k)

⎞
⎟⎟⎟⎟⎠

·
{

Ω
(F)
1

(
f,

1
nβ

)

Lq

+ (115)

2
(∫

X

(D∗ (f (·, s) , õ))q
P (ds)

) 1
q

⎛
⎜⎜⎜⎜⎜⎜⎝

	nb
∑
−→
k =�na�

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

Zj (nx − k)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(by (24), (25); (44), (45); (64), (65); (86), (87))

≤ γj (N)

{
Ω

(F)
1

(
f,

1
nβ

)

Lq

+ 2cj (β, n)
(∫

X

(D∗ (f (·, s) , õ))q
P (ds)

) 1
q

}
.

(116)
We have proved claim.
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Conclusion 6. By Theorem 22 we obtain the pointwise and uniform conver-
gences with rates in the q-mean and D-metric of the operator jA

FR
n to the unit

operator for f ∈ C
Uq

FR

(
N∏

i=1

[ai, bi]
)

, j = 1, 2, 3, 4.

II) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
full Quasi-Interpolation Neural Network Operators

Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1 , −→x ∈ R

N , n,N ∈ N, with ‖g‖∞,RN ,X < ∞,
(X,B, P ) probability space, s ∈ X.

We define

jB
(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

g

(−→
k

n
, s

)
Zj

(
n−→x − −→

k
)

, j = 1, 2, 3, 4, (117)

(see also (90)).
We give

Theorem 23. Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1, −→x ∈ R

N , n,N ∈ N, with n1−β >
2, ‖g‖∞,RN ,X < ∞; j = 1, 2, 3, 4. Then

1) ∫

X

∣∣∣
(

jB
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds) ≤ (118)

{
Ω1

(
g,

1
nβ

)

L1

+ 2cj (β, n) ‖g‖∞,RN ,X

}
=: μ

(R)
j1 ,

2) ∥∥∥∥
∫

X

∣∣∣
(

jB
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds)
∥∥∥∥

∞,RN

≤ μ
(R)
j1 . (119)

Proof. Since ‖g‖∞,RN ,X < ∞, then

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ ≤ 2 ‖g‖∞,RN ,X < ∞. (120)

Hence ∫

X

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣P (ds) ≤ 2 ‖g‖∞,RN ,X < ∞. (121)

We observe that (
jB

(R)
n (g)

)
(−→x , s) − g (−→x , s) =

∞∑
−→
k =−∞

g

(−→
k

n
, s

)
Zj (nx − k) − g (−→x , s)

∞∑
−→
k =−∞

Zj (nx − k) = (122)
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⎛
⎝

∞∑
−→
k =−∞

g

(−→
k

n
, s

)
− g (−→x , s)

⎞
⎠Zj (nx − k) .

However it holds
∞∑

−→
k =−∞

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ Zj (nx − k) ≤ 2 ‖g‖∞,RN ,X < ∞. (123)

Hence ∣∣∣
(

jB
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Zj (nx − k) = (124)

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Zj (nx − k) +

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

∣∣∣∣∣g
(−→

k

n
, s

)
− g (−→x , s)

∣∣∣∣∣Zj (nx − k) .

Furthermore it holds
(∫

X

∣∣∣
(

jB
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds)
)

≤

∞∑

−→
k =−∞

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

≤ 1
nβ

(∫

X

∣∣∣∣∣g
(−→

k

n
, s

)
− g

(−→x , s
)
∣∣∣∣∣ P (ds)

)
Zj (nx − k)+ (125)

∞∑

−→
k =−∞

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

> 1
nβ

(∫

X

∣∣∣∣∣g
(−→

k

n
, s

)
− g

(−→x , s
)
∣∣∣∣∣ P (ds)

)
Zj (nx − k) ≤

Ω1

(
g,

1
nβ

)

L1

+ 2 ‖g‖∞,RN ,X

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

Zj (nx − k) ≤

Ω1

(
g,

1
nβ

)

L1

+ 2cj (β, n) ‖g‖∞,RN ,X ,

proving the claim.
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Conclusion 7. By Theorem 23 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jB

(R)
n to the unit operator for

g ∈ CU1
R
(
R

N
)
, j = 1, 2, 3, 4.

III) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate Kantorovich type neural network operator

Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1 , −→x ∈ R

N , n,N ∈ N, with ‖g‖∞,RN ,X < ∞,
(X,B, P ) probability space, s ∈ X.

We define (j = 1, 2, 3, 4):

jC
(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

⎛
⎝nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t

⎞
⎠Zj

(
n−→x − −→

k
)

, (126)

(see also (91).
We present

Theorem 24. Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1, −→x ∈ R

N , n,N ∈ N, with n1−β >
2; j = 1, 2, 3, 4, ‖g‖∞,RN ,X < ∞. Then

1) ∫

X

∣∣∣
(

jC
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds) ≤
[
Ω1

(
g,

1
n

+
1
nβ

)

L1

+ 2cj (β, n) ‖g‖∞,RN ,X

]
=: γ

(R)
j1 , (127)

2) ∥∥∥∥
∫

X

∣∣∣
(

jC
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds)
∥∥∥∥

∞,RN

≤ γ
(R)
j1 . (128)

Proof. Since ‖g‖∞,RN ,X < ∞, then
∣∣∣∣∣∣
nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t − g (−→x , s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
nN

∫ −→
k +1

n

−→
k
n

(
g
(−→

t , s
)

− g (−→x , s)
)

d
−→
t

∣∣∣∣∣∣
≤

nN

∫ −→
k +1

n

−→
k
n

∣∣∣g
(−→

t , s
)

− g (−→x , s)
∣∣∣ d−→

t ≤ 2 ‖g‖∞,RN ,X < ∞. (129)

Hence

∫

X

∣∣∣∣∣∣
nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t − g (−→x , s)

∣∣∣∣∣∣
P (ds) ≤ 2 ‖g‖∞,RN ,X < ∞. (130)

We observe that (
jC

(R)
n (g)

)
(−→x , s) − g (−→x , s) =
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∞∑
−→
k =−∞

⎛
⎝nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t

⎞
⎠Zj

(
n−→x − −→

k
)

− g (−→x , s) =

∞∑
−→
k =−∞

⎛
⎝nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t

⎞
⎠ Zj

(
n−→x − −→

k
)

− g (−→x , s)

∞∑
−→
k =−∞

Zj

(
n−→x − −→

k
)
=

(131)
∞∑

−→
k =−∞

⎡
⎣
⎛
⎝nN

∫ −→
k +1

n

−→
k
n

g
(−→

t , s
)

d
−→
t

⎞
⎠− g (−→x , s)

⎤
⎦Zj

(
n−→x − −→

k
)

=

∞∑
−→
k =−∞

⎡
⎣nN

∫ −→
k +1

n

−→
k
n

(
g
(−→

t , s
)

− g (−→x , s)
)

d
−→
t

⎤
⎦Zj

(
n−→x − −→

k
)

.

However it holds

∞∑
−→
k =−∞

⎡
⎣nN

∫ −→
k +1

n

−→
k
n

∣∣∣g (−→
t , s

)
− g (−→x , s)

∣∣∣ d
−→
t

⎤
⎦ Zj

(
n−→x − −→

k
)

≤ 2 ‖g‖∞,RN ,X < ∞.

(132)
Hence ∣∣∣

(
jC

(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

⎡
⎣nN

∫ −→
k +1

n

−→
k
n

∣∣∣g
(−→

t , s
)

− g (−→x , s)
∣∣∣ d−→

t

⎤
⎦Zj

(
n−→x − −→

k
)

= (133)

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

⎡
⎣nN

∫ −→
k +1

n

−→
k
n

∣∣∣g
(−→

t , s
)

− g (−→x , s)
∣∣∣ d−→

t

⎤
⎦Zj

(
n−→x − −→

k
)

+ (134)

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

⎡
⎣nN

∫ −→
k +1

n

−→
k
n

∣∣∣g
(−→

t , s
)

− g (−→x , s)
∣∣∣ d−→

t

⎤
⎦Zj

(
n−→x − −→

k
)

=

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

[
nN

∫ 1
n

0

∣∣∣∣∣g
(

−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ d
−→
t

]
Zj

(
n−→x − −→

k
)

+

(135)
∞∑

−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

[
nN

∫ 1
n

0

∣∣∣∣∣g
(

−→
t +

−→
k

n
, s

)
− g (−→x , s)

∣∣∣∣∣ d
−→
t

]
Zj

(
n−→x − −→

k
)

.
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Furthermore it holds
(∫

X

∣∣∣
(

jC
(R)
n (g)

) (−→x , s
) − g

(−→x , s
)∣∣∣ P (ds)

)
≤

(by Fubini’s theorem)

∞∑

−→
k =−∞

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

≤ 1
nβ

[
nN

∫ 1
n

0

(∫

X

∣∣∣∣∣g
(

−→
t +

−→
k

n
, s

)
− g

(−→x , s
)
∣∣∣∣∣ P (ds)

)
d
−→
t

]
Zj

(
n−→x − −→

k
)
+

(136)
∞∑

−→
k =−∞

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

> 1
nβ

[
nN

∫ 1
n

0

(∫

X

∣∣∣∣∣g
(

−→
t +

−→
k

n
, s

)
− g

(−→x , s
)
∣∣∣∣∣ P (ds)

)
d
−→
t

]
Zj

(
n−→x − −→

k
)

≤

Ω1

(
g,

1

n
+

1

nβ

)

L1
+ 2 ‖g‖∞,RN ,X

∞∑

−→
k =−∞

∥
∥
∥
∥

−→
k
n

−−→x
∥
∥
∥
∥∞

> 1
nβ

Zj

(
n−→x − −→

k
)

≤

Ω1

(
g,

1

n
+

1

nβ

)

L1
+ 2cj (β, n) ‖g‖∞,RN ,X , (137)

proving the claim.

Conclusion 8. By Theorem 24 we obtain pointwise and uniform convergences
with rates in the 1-mean of random operators jC

(R)
n to the unit operator for

g ∈ CU1
R
(
R

N
)
, j = 1, 2, 3, 4.

IV) 1-mean Approximation by Stochastic arctangent, algebraic,
Gudermannian and generalized symmetric activation functions based
multivariate quadrature type neural network operator

Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1 , −→x ∈ R

N , n,N ∈ N, with ‖g‖∞,RN ,X < ∞,
(X,B, P ) probability space, s ∈ X, j = 1, 2, 3, 4.

We define

jD
(R)
n (g) (−→x , s) :=

∞∑
−→
k =−∞

(
δ
n

−→
k

(g)
)
(s) Zj

(
n−→x − −→

k
)

, (138)

where
(
δ
n

−→
k

(g)
)
(s) :=

−→
θ∑

−→
r =0

w−→
r
g

(−→
k

n
+

−→
r

n
−→
θ

, s

)
, (139)

(see also (92), (93)).
We finally give

Theorem 25. Let g ∈ CU1
R
(
R

N
)
, 0 < β < 1, −→x ∈ R

N , n,N ∈ N, with n1−β >
2; j = 1, 2, 3, 4, ‖g‖∞,RN ,X < ∞. Then
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1) ∫

X

∣∣∣
(

jD
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds) ≤
{

Ω1

(
g,

1
n

+
1
nβ

)

L1

+ 2cj (β, n) ‖g‖∞,RN ,X

}
=: γ

(R)
j1 , (140)

2) ∥∥∥∥
∫

X

∣∣∣
(

jD
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds)
∥∥∥∥

∞,RN

≤ γ
(R)
j1 . (141)

Proof. Notice that ∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣ =
∣∣∣∣∣∣

−→
θ∑

−→
r =0

w−→
r

(
g

(−→
k

n
+

−→
r

n
−→
θ

, s

)
− g (−→x , s)

)∣∣∣∣∣∣
≤

−→
θ∑

−→
r =0

w−→
r

∣∣∣∣∣g
(−→

k

n
+

−→
r

n
−→
θ

, s

)
− g (−→x , s)

∣∣∣∣∣ ≤ 2 ‖g‖∞,RN ,X < ∞. (142)

Hence ∫

X

∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣P (ds) ≤ 2 ‖g‖∞,RN ,X < ∞. (143)

We observe that (
jD

(R)
n (g)

)
(−→x , s) − g (−→x , s) =

∞∑
−→
k =−∞

(
δ
n

−→
k

(g)
)
(s) Zj

(
n−→x − −→

k
)

− g (−→x , s) =

∞∑
−→
k =−∞

((
δ
n

−→
k

(g)
)
(s) − g (−→x , s)

)
Zj

(
n−→x − −→

k
)

. (144)

Thus ∣∣∣jD(R)
n (g) (−→x , s) − g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣Zj

(
n−→x − −→

k
)

≤ 2 ‖g‖∞,RN ,X < ∞. (145)

Hence it holds ∣∣∣
(

jD
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣ ≤
∞∑

−→
k =−∞

∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣Zj

(
n−→x − −→

k
)

=
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∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣Zj

(
n−→x − −→

k
)

+

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

∣∣(δ
n

−→
k

(g)
)
(s) − g (−→x , s)

∣∣Zj

(
n−→x − −→

k
)

. (146)

Furthermore we derive
(∫

X

∣∣∣
(

jD
(R)
n (g)

)
(−→x , s) − g (−→x , s)

∣∣∣P (ds)
)

≤

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
≤ 1

nβ

−→
θ∑

−→
r =0

w−→
r

(∫

X

∣∣∣∣∣g
(−→

k

n
+

−→
r

n
−→
θ

, s

)
− g (−→x , s)

∣∣∣∣∣P (ds)

)
Zj

(
n−→x − −→

k
)

(147)

+

⎛
⎜⎜⎜⎜⎜⎝

∞∑
−→
k =−∞

∥
∥
∥

−→
k
n −−→x

∥
∥
∥

∞
> 1

nβ

Zj

(
n−→x − −→

k
)

⎞
⎟⎟⎟⎟⎟⎠

2 ‖g‖∞,RN ,X ≤

Ω1

(
g,

1
n

+
1
nβ

)

L1

+ 2cj (β, n) ‖g‖∞,RN ,X , (148)

proving the claim.

Conclusion 9. From Theorem 25 we obtain pointwise and uniform conver-
gences with rates in the 1-mean of random operators jD

(R)
n to the unit operator

for g ∈ CU1
R
(
R

N
)
, j = 1, 2, 3, 4.
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Abstract. In this chapter, Koeller’s original idea on polynomial frac-
tional operators with singular (Riesz) kernels and solutions to a few
viscoelasticity relaxation issues is highlighted. Now, we show how this
concept can be directly related to how relaxation relationships are pre-
sented using fractional operators with non-singular kernels. Additionally,
it shows that viscoelastic interactions that defy singular (power-law)
behavior may be described by polynomial operators with non-singular
memory.

Keywords: fractional calculus · polynomial operators · viscoelasticity

1 Introduction

The main idea of this study is to demonstrate the applicability of the so-called
polynomial fractional operators which in general can be presented as

Pc (t) =
N∑

0

anDαn
t [f (t)] (1)

where Dαn
t [f (t)] are fractional derivatives with any type of memory kernels rel-

evant to modeled relaxation process. The concept of these polynomial fractional
operators (PFOs) was inspired by research done by Bagley and Torvik [1] on the
use of fractional calculus in viscoelastic models, although it is based on the work
of Koeller [2] (see also [3,4], and [5]). The Bagley-Torvik equation will be cov-
ered in this chapter, but for now, to better understand the rationale behind how
polynomial fractional operators are created, we had want to go over some key
fractional calculus principles. The chapter addresses a new modelling philosophy
allowing relaxation functions (memory kernels) to be expressed as finite sums
(polynomial operators) of elementary kernels, either of singular (power-law) or
non-singular (exponential) kernels. This gives an advantages in modelling when
single kernel fractional operators are not applicable for modeling of real-world
phenomena such as viscoelasticity and diffusions.
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1.1 The Koeller Main Idea and Its Background

Now, following Koeller [2] we present step-by step his idea (in the original nota-
tions which to some extent may differ from the contemporary expressions in the
literature).

N-Fold Iterated Integral and Its Consequences. The n-fold iterated inte-
gral can be presented as single integrals as [2]

D−nx (t) =

t∫

0

tn−1∫

0

. . .

t1∫

0

x (t0)dt0dt1 . . . dtn−2dtn−1

=

t∫

0

(t − τ)n−1

(n − 1)!
, n = 0, 1, 2 . . . , N

(2)

where x (t) is a Heaviside function of class HN if

x (t) =

{
x (t) = 0, t ∈ (−∞, 0]

x (t) ∈ CN , t ∈ (0,∞)
(3)

where CN is the class of all N time continuously differentiable functions on the
open interval (0,∞) and N is appositive integer. The integral of fractional order
n between the limits 0 and t is commonly defined by replacing the factorials by
the Gamma function, that is [2]

D−nx (t) =

t∫

0

(t − τ)n−1

Γ (n)
x (t) dτ, n ∈ [0,∞) (4)

This is the well-known as the Riemann-Liouville (RL) fractional integral [6].
The differentiation for n = α ∈ [0, 1] is defined as (in the original Koeller’s

notations) [2]

Dαx (t) = DDα−1 [x (t)] = D

t∫

0

(t − τ)−α

Γ (1 − α)
, D =

d

dt
(5)

The Riesz Distribution. In linear viscoelasticity of the creep compliance is
taken as

Rn (t) =
tn

Γ (n + 1)
(6)

Then we have the so-called Riesz distribution [7] Rn (t) is valid for all values of
n, that is

Rn (t) = 0, t ∈ (−∞, 0) (7)
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and for Rn (t) ≡ t−n we have

Rn (t) =
t−n

Γ (1 − n)
, t ∈ (0,∞) (8)

The integration of the Riesz distribution in order to obtain the Stieltjes integral
representation of the fractional integral we may integrate the Riemann-Liouville
integral (4) by parts. Then, for α ≥ 0 we get [2]

D−αx (t) =

t∫

0

(t − τ)α

Γ (1 + α)
dx (τ) + x (0)

tα

Γ (1 + α)
(9)

In terms of Riesz distribution we may present this result as [2]

D−αx (t) =

t∫

0

R(−α) (t − τ) dx (τ) + x (0) R(−α) (t)

=
(
R(−α) ∗ dx

)
(t) + x (0) R(−α) (t) , α ∈ [0, 1]

(10)

where
(
R(−α) ∗ dx

)
(t) is a Stieltjes convolution. In a similar way, applying the

Leibniz rule to the definition of the RL fractional derivative [6] we get [2]

Dαx (t) =

t∫

0

(t − τ)−α

Γ (1 − α)
dx (τ) + x (0)

t−α

Γ (1 − α)

=

t∫

0

R(α) (t − τ) dx (τ) + x (0)

t∫

0

R(α) (t)

=

t∫

0

(
R(α) ∗ dx

)
(t) + x (0) R(α) (t) , α ∈ [0, 1]

(11)

Further, since Dλ1Dλ2 = Dλ1+λ2 then it follows that R(−λ) is Stieltjes inverse
of R(λ), that is

R(λ) ∗ dR(−λ) = R(−λ) ∗ dR(λ) = h (12)

In accordance with Koeller [2] both the fractional derivative (Riemann-Liouville)
and fractional integral can be expressed as Stieltjes convolution in the form

Dλ = R(λ) ∗ dx, λ ∈ (−∞,∞) (13)

D−λ = R−λ ∗ dx, λ ∈ (−∞,∞) (14)
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1.2 The Koeller’s Polynomial Operators

The examples developed by Koeller are from the area of linear viscoelasticity
(following the works of Bagley ad Torvik [1]) where the general form of the
constitutive equations is

P (D) σ = Q (D) ε (15)

where P (D) and Q (D) are polynomial operators defined as

P (D) =
N∑

n=0

pnDαn , Q (D) =
N∑

n=0

qnDβn (16)

with fractional (memory) parameters (orders) αn and βn.

Note: When αn and βn are positive integers, then (15) is the standard differ-
ential operator constitutive law .

Further, when σ (t) and ε (t) are specified, then (15) is a fractional differential
equation without jump initial conditions. Hence, the solutions of (15) for any
action as input shear stress (or input shear strain) requires knowledge of the
entire history of the shear stress (shear strain). The general formulation (15)
can be developed as a linear hereditary law if we consider the properties of the
Stieltjes convolution and the Riesz distribution [2], namely

N∑

n=0

pnR(αn) ∗ dσ =
N∑

n=0

qnR(βn) ∗ dε (17)

Then, we may define fractional polynomials B (t) and D (t) [2]

B (t) =
N∑

n=0

pnR(αn) (t) =
N∑

n=0

pn
t−αn

Γ (1 − αn)
(18)

D (t) =
N∑

n=0

qnR(βn) (t) =
N∑

n=0

qn
t−βn

Γ (1 − αn)
(19)

and the constitutive law (15) can be presented in two forms [2]

B ∗ dσ = D ∗ dε (20)

t∫

−∞
B (t − τ)dσ (τ) =

t∫

−∞
D (t − τ)dε (τ) (21)

If B−1 and D−1 are defined as Stieltjes inverse of B and D, then applying the
associative property of the Stieltjes convolution we have

σ = G ∗ dε, ε = J ∗ dσ (22)

where G = B−1 ∗ D and J = D−1 ∗ B are the relaxation modulus and the creep
compliance, respectively.
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1.3 Koeller Example of a Polynomial Operator

The Koeller example developed in [2] selects only one memory parameter β
(which actually is violation of the causality principle [8], since the input and
output should have different time delays). Anyway, the following expansion was
considered (three component Kelvin-Voigt model)

(
p0 + p1D

β + p2D
2β

)
σ =

(
q0 + q1D

β + q2D
2β

)
ε (23)

which possesses symmetry, that is no preference is given to the stress or strain.
The solution of (23) is [2] by Laplace transforms yields

J (t) =
1

E0
+

1
E1

{
1 − Eβ

[
−

(
t

t1

)β
]}

+
1

E2

{
1 − Eβ

[
−

(
t

t2

)β
]}

(24)

G (t) = E0 − E0R1

{
1 − Eβ

[
−

(
t

t1

)β
]}

− E0R2

{
1 − Eβ

[
−

(
t

t2

)β
]}

(25)

where E0, E1 and E2 are the moduli of the springs and t1,t2 are relaxation times,
and

Eβ (x) =
∞∑

n=0

(−1)n xn

Γ (1 + βn)
, t > 0, 0 < β ≤ 1 (26)

is the Mittag-Leffler function; When βn = 0, 1, ....N classical results are recov-
ered.

After this example Koeller clearly stated [2] “The final determination of
whether fractional calculus is a valuable tool in the study of viscoelastic materials
could be answered if specific data were taken over long periods of time and it
(they) were fitted to one of these functions”.

To complete this section let us turn on the formulation of the polynomial
fractional operator. From the definitions (18) and (19) we may see that the
memory functions can be presented as sums of Riesz distributions, namely

MB =
∞∑

0

pn
t−αn

Γ (1 − αn)
, MD =

∞∑

0

qn
t−βn

Γ (1 − βn)
(27)

Therefore, the relaxation functions, the shear stress modulus and the shear
strain compliance are decomposed as sums of elementary kernels (Riesz dis-
tributions).

1.4 Outcomes of the Koeller’s Approach and Beyond

The findings of (27) provide a useful framework for decomposing response (relax-
ation) functions into sums of basic functions acting as memory kernels in relevant
fractional operators. For instance, two possibilities are offered in the context of
the fractional operators with the non-singular kernels, namely:
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• A sums of exponential (Maxwell or Debay) memories which be easily obtained
by applying the Prony’s decomposition approach of experimental data [9] (see
also [10] and [11]). That is

Bβ (t) ≡
N∑

0

bn exp
(

− t

τn

)
(28)

where τn are discrete relaxation times.

• Approximations as Mittag-Leffler functions [6]

Bβ (t) ≡ Eβ

(−tβ
)

=
∞∑

n=0

(−1)n x−βn

Γ (1 + βn)
= 1 − x−β

Γ (1 + β)
+

x−2β

Γ (1 + 2β)
. . .

(29)
which actually resembles the idea of Koeller to present the operators as sums
of Riesz distributions.

According to Koeller’s remark above, the appropriate approximations of the
experimental data by these sums have a significant impact on the choice of
decomposition (approximation). We will now investigate how models, particu-
larly the constitutive equations in the linear viscoelasticity, can be represented
using polynomial fractional operators.

2 Fractional Calculus in Viscoelasticity

2.1 Stress-Strain Viscoelasticity Response and Hereditary Integral
Construction

The superposition of the material’s single-step reactions enables the creation of
functional relationships between stress and strain while taking into account the
fact that there is a temporal lag in both G (t) and J (t) following the application
of the stress or strain. Convolution integrals, such as the stress integral (30), and
creep integral (31), are effective in representing these interactions [12–14]

σ (t) =

t∫

0

G (t − s)dε (s) (30)

ε (t) =

t∫

0

J (t − s)dσ (s) (31)

In the convolution integrals the lower limit is at t = 0 since both σ (t) a and
ε (t) are causal functions. Now, consider the application of the fading memory
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concept applicable to stress and strain relationships which can be presented as
[12,14]

σ (t) = G∞ +

t∫

0

G (t − s)
dε

ds
ds (32)

ε (t) = J∞ +

t∫

0

J (t − s)dσ (s) (33)

The values of G∞ and J∞ are the instantaneous responses or in other words, the
equilibrium values established for long time when the effects of the second terms
in (32) and (33) disappear, that is when G (t − s) and J (t − s) will approach
zero.

The relationships (32) and (33) contain Stieltjes integrals [12,14] because

σ (t) = G∞ +

0∫

−∞
G (t − s)dk (s) +

t∫

0

G (t − s)dk (s) (34)

However, due the causality of G (t) [8], i.e. G(t) > 0 for 0 < t < ∞ and G(t) = 0
for −∞ < t < 0, the first integral is zero.

The appropriate viscoelastic kernel G (t) should be able to account for short-
and long-term strains to the applied stress and must satisfy the conditions for
complete monotonicity following the general constraints set on the relaxation
function.

(−1)n ∂n

∂tn
G (t) ≥ 0, n = 1, 2, ... (35)

2.2 Discrete Spectra as Sums of Exponents

An exponential series (formerly cited as Prony’s series) can be used to depict a
non-linear monotonous response [9]

G (t) = G∞ +
N∑

i=0

Gi exp
(

− t

τi

)
(36)

The amount of molecular freedom in a material is measured by the number
of independent relaxation periods, which may reach exceptionally high values
for high polymers. When there are a lot of terms in (36), the total can be
approximated by an integral that contains the distribution function Me (x) [15–
17], namely

G (t) = G∞ +

∞∫

0

exp (−xt)Me (x) dx, Me (x) ≥ 0 (37)
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Prony’s Series Decompositions: Discrete Relaxation Spectra. Through
a decomposition into a Prony series, the viscoelastic relaxation function may be
described as a discrete relaxation spectrum φP (t) with Nφ with rate constants
βi [15–17], namely

φP (t) = φ∞ +
Nφ∑

i=1

φie
−βit = φ∞ +

Nφ∑

i=1

φie
− t

τi , βi =
1
τi

≥ 0 (38)

Alternatively using weighted averages (amplitudes or normalized relaxation
moduli) λi as

λ (t) =
φP (t)
φ∞

= 1 +
Nφ∑

i=1

λi

(
e−βit − 1

)
, λi =

φi

φ∞
(39)

In (38) and (39) the parameters φ∞ and φi are equilibrium (at large times) and
relaxation moduli (stiffness), respectively, constrained according to [16,17],

φ∞ +
Nφ∑

1

φi = 1 (40)

The generalized Maxwell viscoelastic body, also known as the Maxwell-
Wiechert model [16,17,20], is analogous to this popular Prony series expression.
It consists of Nφ parallel spring-dashpot components, with a final parallel spring
determining the equilibrium behavior. This formula takes into consideration dis-
sipative effects, which appear as creep and stress relaxations that are load-rate
dependent. Through its time-dependent shear and bulk moduli, the Prony series
representation provides a crude method for representing any viscoelastic model
[15–17,20].

Polynomial Fractional Operators with the Caputo-Fabrizio Derivative.
Applying the Prony approximation of the relaxation curve and substituting in
the convolution integral the following approximation is obtained [16,17]

σ =

t∫

0

Ei exp
(

− t − s

τi

)
dε

ds
ds (41)

Since σ (t) is assumed as a finite sum of elements it is possible to invert the
summation and the integral that leads to the expression [16,17]

σ (t) =

t∫

0

N∑

i=0

Eie
− (t−s)

τi
dε

ds
ds =

N∑

i=0

Ei

⎡

⎣
t∫

0

e
− (t−s)

τi
dε

ds
ds

⎤

⎦ (42)

This makes it simple to include the memory effect from the convolution integral
in each term of the Prony series. This result’s obvious physical meaning is that
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the strain εi (t) at a given time t is described as a convolution integral with an
exponential kernel.

Through the relation α = 1/(1 − τ/t0 ), the fractional parameter α is related
to the dimensionless relaxation time τ/t0, where t0 is the whole duration of the
experiment. With a spectrum of relaxation times then we get [15–17]

αi =
1

1 − τi/t0
(43)

This allows to present εi (t) in way close to the basic construction of the Caputo-
Fabrizio operator [18], namely [15–17]

εi (t) = (1 − αi)

t∫

0

e
− α1

1−αi
(t̄−s̄) dε

ds̄
ds̄ = (1 − αi) Dαi

t ε (t) (44)

Thus, the constitutive equation can be presented as [16,17]

σ (t) =
N∑

i=0

Ei (1 − αi)Dαi
t ε (t) (45)

In the context of the initial definition of a polynomial fractional operators we
may write

σ (t) = Bαn
t [ε (t)] , Bαn

t =
N∑

i=0

Ei (1 − αi) Dαi
t (46)

and

ε (t) = P βn

t [σ (t)] , P βn

t =
N∑

i=0

Ei (1 − βi) Dβi

t (47)

2.3 Viscoelastic Polynomial Fractional Model in Terms
of Atangana-Baleanu Derivative

The Atangana-Baleanu derivative of Caputo sense (ABC) [19] can be rewritten
(assuming for convenience of the explanations with B (α) = 1) as

ABCDα
a+f (t) =

1
1 − α

z∫

0

df (s̄)
ds̄

Eα

[
−

(
t̄ − s̄

τ̄

)α]
ds̄ (48)

where 1−α
α =

(
τ
t0

)α

= (τ̄)α
, t̄ = t

t0
.

That is through a nondimesionalization of the times [16,17] we get

ABCDα
a+f (t) =

1
1 − α

z∫

0

df (s̄)
ds̄

⎧
⎨

⎩

∞∑

j=0

1
Γ (αj + 1)

[
−

(
t̄ − s̄

τ̄

)α]j
⎫
⎬

⎭ds̄ (49)
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were the argument of the Mittag-Leffler kernel Eα (−z) is z = [α/(1 − α) ]
(t − s)α and the following relationship exists [16,17]

(
1 − α

α

)j

=
(

τ

t0

)j

⇒ α =
1

1 + (τ/t0 )
(50)

which is the same as that established for the Caputo-Fabrizio operator.
Since the data fitting process practically requires a finite number in the series

defining the Mittag-Leffler function, we obtain a discrete spectrum that approxi-
mates the relaxation (compliance) function made up of power-law terms (t/τ )αj .
Further, with f (ε) = ε (t), we have [16,17]

ABCDα
a+ε (t) =

1
1 − α

z∫

0

Eα

[
−

(
t̄ − z̄

τ̄

)α]
dε (s̄)

ds̄
ds̄ (51)

As a result, the stress-strain convolution integral has the following form [16,17]

σ (t) =
N∑

k=1

Ek (t)

t∫

0

Gk (t − s)
d

ds
ε (s)

=
N∑

k=1

Ek (t) (1 − αk)

⎡

⎣ 1
1 − αk

z∫

0

Eαk

[
−

(
t̄ − s̄

τ̄

)αk
]
dε (s̄)

ds̄
ds̄

⎤

⎦

(52)

As commented above the values of N in the sum of relaxation kernels and J
(the number of terms of Eα depends on the approximation approach accepted
in data fitting. Hence, in a more compact form (52) can be expressed as

σ (t) =
N∑

k=1

Ek (t)
[
(1 − αk) ABCDαk

a+ε (t)
]

(53)

because the, the relaxation spectrum is a sum of weighted ABC derivatives of
ε (t) [16,17], namely

1 − αk

αk
= τ̄k =

τ

t0
⇒ αk =

1
1 + τk/t0

(54)

If only one term in the right-hand side of (52) is enough (that is N = 1 to
approximate the stress relaxation function, then (53) takes the form

σ (t) = E (t)
[
(1 − α) ABCDα

t ε (t)
]

(55)

and α follows from α = 1/(1 + τ/t0 ) Now, (55) defines a polynomial fractional
operator with ABC derivatives, namely

σ (t) = ABCBα
t [ε (t)] , ABCBα

t = E (t)
[
(1 − α) ABCDα

t

]
(56)

If the simple case (55) (with N = 1 in the right-hand side of (52)) is not enough to
fit the stress relaxation function, then a weighted sum of polynomials (truncated
series of Mittag-Leffler function) should be used. Obviously, in this case the
parameter estimation should need specific data.
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3 Some Comments on the Bagley-Torvik Equation

3.1 The Initial Formulation and Assumed Approximations

Bagley and Torvik began their investigation using Rouse’s idea [21] concerning
the effective dynamic shear modulus of rarefied coiled polymers [1]. The sum of
exponential decay modes (57) served as the Rouse model’s representation [21] of
the stress relaxation with decay times τi.

G (t) =
N∑

i=1

G0e
− t

τi (57)

It is simple to spot the Prony series decomposition in the context of the
current investigation. However, if the distribution of τi is proportional to t−α−1,
then we get (58) defining a fractional derivative (with singular kernel) from ε of
order α (in the original notations of [1])

σα =

t∫

a

G (t − s)
d

ds
ε (s) ds (58)

Hence, the total stress σα in the generalized Maxwell model, for instance, can

be expressed as σα =
N∑

i=1

σi where σi is the stress in the ith Maxwell element,

namely

σi = ki (ε − εi) = ηi
dεi

dt
⇒ dσi

dt
+

1
τi

σ =
d (kiε)

dt
, i = 1, ...N (59)

As a result, if the material relaxes in a power-law fashion, a fractional deriva-
tive model may be developed within the framework of weakly singular kernels, that
is t−α, which leads to

σα (t) = μADα
a 	kε (t)
 , σα = limN→∞

N∑

i=1

σi, σα = limN→∞
N∑

i=1

ki (60)

where μA is a positive constant.
After this simple explanation let us see the original construction of Bagley

and Torvik represented as [17]

σ (t) +
N∑

m=1

bmDβmσ = E0ε (t) +
N∑

n=1

EnDαmε (t) (61)

In (61) the fractional derivatives are Riemann-Liouville derivatives (originally
used by Bagley and Torvik) and in case of N = 1 this relationship reduces to a
simple expression (see comments below)
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σ (t) + bDβσ (t) = E0ε (t) + E1D
αε (t) (62)

containing two fractional derivatives with different orders.
Now, if the retardation spectrum corresponds to Riesz distribution and

σ(t) = G1D
αε(t) then the stress relaxation modulus G(t) and the creep compli-

ance J(t) are

G(t) =
G1

Γ (1 − α)
t−α, J(t) =

1
G1

1
Γ (1 − α)

tα (63)

Therefore, with a power-law relaxation we get α = β in (62) thus making it a
single-fractional order equation.

According to arguments made by Bagley and Torvik, the condition alpha =
beta, which naturally results from the power-law stress relaxation kernel and the
interconversion, is occasionally taken for granted as a norm. When the stress and
strain relaxations in the model (60) are each represented by a single fractional
derivative, correspondingly, we obtain a single-order equation in this instance,
which is an exception when only one power-law term models the entire stress
relaxation. This reduces the model to (61).

3.2 Bagley-Torvik Equation in Terms of Polynomial Caputo-Fabrizio
Operators

It is normal to have concerns about properly simulating dynamic processes in
non-power law media. Now, we could create a constitutive relationship in the
manner of Bagley and Torvik and demonstrate how to reduce the relaxation
(57) to (61), which naturally results in the application of the Caputo-Fabrizio
operator [17].

σ (t) = E0ε (t) + E1D
μ
t [ε (t)] , 0 < μ < 1 (64)

In (64) the fractional operator Dμ
t [ε (t)] is based on a memory kernel different

from the power-law, in this specific case we use exponential memory [17].

σ (t) +
N∑

i=1

bi

[
CF Dβiσ

]
= E0ε (t) +

N∑

i=1

Ei

[
CF Dαiε (t)

]
(65)

The Prony decomposition’s fundamental principle is the source of the fractional
order series, which has an equal number of terms on both sides of the equation.
Moreover, the retardation times λi and the relaxation times τi obey the condi-
tions [17,20]

τ1 < λ1 < .... < τi < λi < ...τN < λN (66)

In light of the connections between the relaxation (retardation) times and the
fractional orders αi = 1/(1 + τi/t0 ) and βi = 1/(1 + λi/t0 ) we have the
following requirement:

0 < β1 < α1 < ... < βi < αi < ... < βN < αN < 1 (67)
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Further, a discrete relaxation spectrum (a series of exponents) with an accumu-
lation point at zero, behaves like a power-law for brief periods of time in the
context of polymer rheology [16,17,22], that is:

∞∑

i=0

exp (−iγξ) → t−
1
γ , t → 0, γ > 1 (68)

Therefore, when for t → 0 we may expect that (65) reduces to (68) and (62). This
response explains how the model (65) reduces to the Bagley-Torvik equation with
power-law-based derivatives and when this occurs: the discrete the relaxation
spectrum asymptotic behaviour for short times. When N = 1, we get [17]

σ(t) + b
[
CF Dβσ(t)

]
= E0ε(t) + E1

[
CF Dασ(t)

]
, 1 > β > α > 0 (69)

Equation (69) contains two fractional derivatives of different orders as in (62)
and this is the generalized Zener type model. Moreover, for α = β = 1, this model
reduces to

σ + τε
dσ

dt
= Mr

(
ε + τσ

dε

dt

)
, τσ/τε < 1 (70)

with a relaxation modulus Mr. In general, τ < λ because this the basic causality
requirement, meaning that the reaction occurs after the cause of it, but not the
other way around, then the ratio τ/λ is always is less than 1.

4 Polynomial-Based Relationships Between Fractional
Operators with Various Kernels

Now, the major goal of this section is to show that there are connections between
popular fractional operators with single-memory kernels and the polynomial
operator under discussion. The option to use various techniques (approxima-
tions) of the system responses (relations function) enables for showing the pri-
mary notion of this chapter because memory kernels in the hereditary integrals
match (or approximate) the relaxation response of the system modelled.

4.1 Riemann-Liouville and Caputo Formulations as Fractional
Caputo-Fabrizio Polynomials

Let us have a look at the Riemann construction for the integral (4) and derivative
(5). The Riesz distributions, which act as memory kernels, (6) or (8), are the
cores of these convolutions, that is, single power-law functions are used to model
the system’s relaxations (responses) based on this idea.

Since there is now a “competition” between the fractional operators with
singular and those with non-singular kernels, the exponential sum approximation
of the power-law function is quite an intriguing topic. The primary findings will
be stated as follows after we quote McLean’s study [23] (see also [24]) next.
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Power-Law Function Approximation by a Sum of Exponentials. We
can think about a convolution operator with a kernel of k (t) [23] and specified
points of time to address the power-law approximation by a sum exponentials
[23,24].

K [u (t)] =

t∫

0

k (t − s) u (s)ds 0 = t0 < t1 < t2 · · · < tNt
= T (71)

Thus, allowing to attain a sufficient accuracy when only a moderate number
of terms (moderate value of L) for a choice of δ that should be smaller than
the time interval (tn − tn−1) between the sampling points. If Δtn ≥ δ it follows
than δ ≤ tn − s ≤ T when 0 ≤ s ≤ tn−1. With k (t) = t−β , β > 0, the following
transform is considered [23,24]

k (t) ≈
L∑

l=1

wl exp (blt) (72)

As a result, it is possible to achieve an acceptable level of accuracy using just
a moderate number of terms (moderate value of L) and a δ value that is chosen
to be less than the time gap (tn − tn−1) between the sample points. If Δtn ≥ δ,
it is evident that δ ≤ tn − s ≤ T occurs when 0 ≤ s ≤ tn−1. The following
transform is said to [23] if k (t) = t−β and β > 0.

t−β =
1

Γ (β)

∞∫

0

e−ptpβ dp

p
, t > 0, β > 0 (73)

By application the trapezoidal rule with a step h > 0 the following approximation
can be obtained [23,24]

t−β ≈ 1
Γ (β)

∞∑

n=−∞
wn exp (−ant) , an = ehn, wn = heβhn (74)

with a relative error [23,24]

ρ̄ (t) = 1 − tβ

Γ (β)

∞∑

n=−∞
wn exp (−ant), 0 < t < ∞ (75)

When t ∈ [δ, t] with δ ∈ (0, T = ∞) and a finite number of terms we get [23,24]

t−β ≈ 1
Γ (β)

N∑

n=−M

wn exp (−ant) , δ ≤ t ≤ T (76)

with a bounded error of approximation. In addition, the terms an = exp (nh)
approach zero when n → −∞.
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If g (t) ≈
N∑

p=1
w̃p exp (−ãpt) , 2N −1 < L, w̃l > 0, ãl > 0 consequently 2N

parameters from 2N conditions have to be determined, such that

g (t) ≈
N∑

p=1

w̃p exp (−ãpt) , 2N − 1 < L, w̃l > 0, ãl > 0 (77)

The approximation (76) is a finite sum with many small exponents an. Now,
the task is to develop more efficient approximations with as much as fewer N

terms and acceptable accuracy, such that g (t) ≈
N∑

p=1
w̃p exp (−ãpt) , 2N − 1 <

L, w̃l > 0, ãl > 0. The test for β = 3/4 (carried out with δ = 10−6 and T = 10)
revealed that with M = 65 and N = 36 the relative error of approximation is
≤ 0.92 × 10−8 (δ ≤ t ≤ T ). The data summarized in Table 1 of [23] indicate
that for L = 65 and N = 6 the maximum relative error is about 1.66e−9. The
same maximum relative error

(
1.66e−9

)
appears when L = 62 and N = 3, as

well as for L = 56 and N = 2 (two exponential terms). In all these cases the
condition 2N − 1 < L is obeyed. Similar analysis was thoroughly performed in
[10]. Further, if the appropriate coefficients in (72) are scaled as [25,26]

bi = b0/qi−1, wl = Cβ (q) kβ(t)
bβ
l

Γ (1 − β)
(78)

such as the inverse relaxation times bl and the constants wl, where q is a scaling
parameters and Cβ (q) is a fitting dimensionless constant.

In this way, the power-law can be approximated over about r = Llog10q − 2
temporal decades, where q is a scaling parameter related to the inverse relaxation
time (rate constants) bl = b0/qi−1, between two limits [25,26]: τl = 1/b0 < t <
τh = τlq

L−1; and these restrictions always apply in physical situations. Hence, as
mentioned by Goychuk [26] this approximation is not only natural but in some
cases desirable (see comments in [27] where effects of fractional kennels on the
type differentiable functions and emerging problems are discussed). As a result,
as indicated by Goychuk in [26] this approximation is not only reasonable in
some circumstances but also does so naturally (see the comments in [27] where
the effects of fractional values on the type differentiable functions and new issues
are examined). According to Goychuk [26], if the scaling parameter q is properly
selected, even a decade scaling with q = 10, approximations with 1% accuracy
can be developed. For instance, Goychuk’s example [26] shows a nice fit of t−0.5

over 14 time decades with a sum of 16 exponential terms.

Riemann-Liouville Operators Approximated by Fractional Caputo-
Fabrizio Polynomials. Therefore, the Riemann-Liouville integral (4) can be
approximated as fractional Caputo-Fabrizio polynomials if the kernel function
t−β , where β = (1 − α) < 1, and therefore α = 1−β, is approximated as a series
(76) or (76)), then we get an approximated Riemann-Liouville integral, namely
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Iαf (t) = D−αf (t) ≈ 1
Γ (α)

t∫

0

g (t) f (t)ds

=
1

Γ (α)

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
f (s)ds

(79)

and an approximated Riemann-Liouville derivative, that is

RLDα
t ≈ 1

Γ (β)
d

dt

t∫

0

g (t) f (t)

=
1

Γ (β)
d

dt

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
f (s)ds, β = 1 − α

(80)

In both approximations, the discrete fractional orders are related to the rate coef-
ficients ãp (having dimensions s−1), which are the dimensionless inverse relax-
ation times, that is ãp = 1/τ̄rp, where τ̄rp = τrp/t0 (t0 is macroscopic time scale)
(see Eq. (43) as an example of this)

ãp =
αp

1 − αp
(81)

Caputo Derivative Approximated by Fractional Caputo-Fabrizio Poly-
nomials. Further, using the same approximation for the Caputo derivative we
get

CDβf(t) ≈ 1
Γ (1 − β)

t∫

0

[
N∑

p=1

ω̃p exp (−ãp (t − s))

]
df (s)

ds
ds (82)

where ãp are defined by (81). Changing the order of the integration and sum-
mation in (82) we get (see the same operation in (42))

CDβf (t) ≈ 1
Γ (1 − β)

N∑

p=1

t∫

0

[ω̃p exp (−ãp (t − s))]
df (s)

ds
ds

=
1

Γ (1 − β)

N∑

p=1

CF D
αp

t f (t)

(83)

The essential principle of the fractional polynomial approximation, that we
can approximate derivatives with the power-law kernel as a finite sum of Caputo-
Fabrizio derivatives, is further illustrated by this conclusion. Regarding the
Riemann-Liouville structures, the conclusion is not immediately apparent. It
is straightforward to demonstrate the reasonableness of the polynomial approx-
imations, though, because a simple integration by parts makes it possible to see
the links between the Caputo and Riemann-Liouville derivatives [6].
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Generally speaking, the Caputo construction, which is seen in other fractional
operators with non-singular kernels, enables a more convincing demonstration
of the rationality in approximation by fractional polynomials.

4.2 Fractional Operator with a Mittag-Leffler Kernel and Fractional
Caputo-Fabrizio Polynomials

Mittag-Leffler Function Approximation by Exponential Sums. We shall
now briefly discuss the exponential sums approach or the Mittag-Leffler function
approximation method [28]

Eα (−tα) =
∞∑

k=0

(−1)k
tkα

Γ (αk + 1)
, 0 < α < 1, t > 0 (84)

as

Eα (−tα) ≈
N∑

i=1

wi exp (−pit), 0 < α < 1, t > 0 (85)

Following Lam [28] (see more details in [24]) we have

E (−tα) =

∞∫

0

sin (απ)
x2 + 2 cos (απ) x + 1

exp
(
−x1/α

)
dx (86)

Then, expressing the integral in (86) as a sum of sub-integrals [28]

Eα (−tα) =

b−N∫

0

+
N∑

j=1

b−j+1∫

b−j

+
M∑

j=1

bj∫

bj−1

+

∞∫

bM

(87)

allows in each sub-interval- the Gauss-Legendre quadrature to be applied. And,
the result is [28]

Eα (−tα) ≈ S (t) =
N+M∑

j=1

nj∑

i=1

wij exp (−sijt) (88)

with

wij = ω
(nj)
ij

sin c (απ)
x2

ij + 2 cos (απ) xij + 1
, sij =

[
x
(nj)
ij

]1/α

, sin c (x) =
sin (x)

x

(89)
where and ω

(nj)
ij x

(nj)
ij are the Gauss-Legendre quadrature nodes and weights of

order nj of the jth interval
[
bj−N , bj−N+1

]
.
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A Constitutive Equation with Mittag-Leffler Memory Approximated
by Caputo-Fabrizio Polynomials. It is feasible to give a single convolution
constitutive equation using the Mittag-Leffler function as a memory kernel, as
an approximation, using the desired presentation (85) and the result (88), that
is

G (t) = Eα1

[(
− t

τk

)αk
]

≈ Eα (−tα) ≈
N+M∑

j=1

nj∑

i=1

wij exp (−sijt) (90)

where simple relations link αij = 1/(1 + τij/t0 ) terms of relaxation periods
sij = 1/τij to fractional orders αijof the Caputo-Fabrizio operators.

This replacement of the Mittag-Leffler kernel with a Prony’s series in the
convolution integral results in [24]

σ (t) = G∞ +

t∫

0

Eα1

(
t − s

τk

)αk d

ds
ε (s) ds ⇒ σ (t)

≈ G∞ +

t∫

0

⎡

⎣
N+M∑

j=1

nj∑

i=1

wij exp (−sijt)

⎤

⎦ d

ds
ε (s) ds

(91)

As a result of the integration and summation orders being reversed in (91), [24]
we get

σ (t) ≈ G∞ +
N+M∑

j=1

nj∑

i=1

⎡

⎣
t∫

0

wij exp (−sijt)
d

ds
ε (s) ds

⎤

⎦ (92)

Now, we may express (92) in terms of Caputo-Fabrizio operators with fractional
orders αij as [24]

G (t) ≈ G∞ +
N+M∑

j=1

nj∑

i=1

[
(1 − αij) D

αij

t ε (t)
]

(93)

This is comparable to the stress relaxation function that Prony’s series
directly approximates. Such an approach may facilitate the calculation tech-
niques and avoid the problems with slow convergence of the Mittag-Leffler func-
tion. Moreover, from a practical point of view, when high precisions in the
approximations requiring too many terms to be involved in the series (defined
by the condition (89) are not attainable due to the experimental techniques
restrictions, less accuracy in approximation results in less number of Prony’s
series approximating the Mittag-Leffler function. Thus this end, these comments
only draw a perspective that needs thorough investigations. Such a method
might simplify the calculation processes and prevent issues with the Mittag-
Leffler function’s sluggish convergence. Additionally, from a practical standpoint,
reduced accuracy in approximation leads to fewer Prony’s series approximating
the Mittag-Leffler function when high precisions in approximations, indicated
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by the condition (89), are not achievable due to the experimental procedure
limitations. To that aim, these remarks just highlight a viewpoint that requires
in-depth research.

5 Final Remarks

The author’s view on fractional polynomial operators is presented in this chapter.
It starts with Koeller’s theory and is then expanded to include some recent
advancements in fractional calculus, particularly the non-singular kernel opera-
tors. This initial step makes it possible to connect operators with singular and
non-singular kernels, which in some situations with a practical orientation may
ease with computation. However, the primary goal is to demonstrate that all new
operators, like Mittag-Leffler (it is simple to develop this line also for Prabhakar,
Rabotnov, and others functions, albeit they are not provided here), with mem-
ory kernels based on entire functions (of polynomial type converging completely
at the complex plane), are in reality polynomial operators.

With satisfaction, we may mention the following from this vantage point and
at the date and time that such a position is taken: We may occasionally unearth
inspired ideas by looking at what has already been done, even though they were
not acknowledged in the original source. By having the ability to discern the
invisible in previously seen results, science is being pushed into new frontiers.
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Abstract. In recent study, we develop the weighted generalized Hilfer-
Prabhakar fractional derivative operator and explore its key properties.
It unifies many existing fractional derivatives like Hilfer-Prabhakar and
Riemann-Liouville. The weighted Laplace transform of the newly defined
derivative is obtained. By involving the new fractional derivative, we
modeled the free-electron laser equation and kinetic equation and then
found the solutions of these fractional equations by applying the weighted
Laplace transform.

Keywords: weighted Hilfer-Prabhakar fractional derivative · weighted
Laplace transform · free-electron laser equation · fractional kinetic
equation

1 Introduction

Fractional calculus is a natural development of classical calculus with a long
mathematical history. The fractional calculus concept has been applied in numer-
ous models. In a variety of domains, fractional models can be utilized to cap-
ture and comprehend complex processes (see related literature [1,2]). Fractional
calculus has progressed significantly as a result of its applications in practical
mathematics such as chemistry, mechanics, physics, engineering, and biology [3–
7]. In literature, several fractional operators exist with wide applications such as
the Riemann-Liouville [8], the ψ-Hilfer fractional derivative and its properties
[9], generalized Hilfer-Prabhakar fractional derivative with arising physical mod-
els [31], the fractional calculus iteration procedure on conformable derivatives
[10], the Hadamard fractional calculus and Hadamard-type fractional differen-
tial equations [11], kernel Hilbert space method for nonlinear partial differential
equations [12].

The generalization of fractional integral and derivative operators have
achieved remarkable attention in recent decades [13–20]. Various special func-
tions arise in the kernels of fractional operators, including the Wright function,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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the Gauss hypergeometric function, Mittag-Leffler function, Fox H-function and
Meijer G-function. The Hilfer-Prabhakar fractional derivative, which is an exten-
sion of the Caputo and the Riemann-Liouville fractional derivatives was pre-
sented by R. Hilfer in [13]. The fractional Prabhakar integral and derivative
operators are established by involving the generalized Mittag-Leffler function in
the kernel of the Riemann-Liouville fractional operators [14].

This research is inspired by the widespread use of fractional differential equa-
tions in engineering, economics, physics, and a variety of other fields of science
[21–27]. The purpose of this work is to enhance the existing literature on frac-
tional calculus and to provide the strong applicability in sciences.

We start this study by recalling some relevant definitions and notions.

Definition 1. [28] The j-gamma function is defined as:

Γj(ϑ) =

∞∫

0

xϑ−1e
−xj

j dx, R(ϑ) > 0, j > 0.

Note that Γ (ϑ) = limj→1 Γj(ϑ) and Γj(ϑ) = j
ϑ
j −1Γ (ϑ

j ).

Definition 2. [28] For �(ϑ) > 0, j > 0 and �(ς) > 0, the j-beta function is
defined as

Bj(ϑ, ς) =
1
j

∫ 1

0

τ
ϑ
j −1(1 − τ)

ς
j −1dτ.

Γj and Bj functions are related as Bj(ϑ, ς) = Γj(ϑ)Γj(ς)
Γj(ϑ+ς) .

Definition 3. For � ∈ Cn[â, �] and �
′(ς) > 0 on [â, �]. Then

ACn
�[â, �] =

{
Ψ : [â, �] → C Ψ [n−1] ∈ AC[â, �]

}
,

where Ψ [n−1] =
(

1
g′(ς)

d
dς

)n−1

Ψ.

Definition 4. [29] Let n ∈ N , j ∈ R
+, α, �, ε ∈ C, �(�) > 0, �(α) > 0, then

j-Mittag-Leffler function is defined by

Eε
j,�,α(ϑ) =

∞∑
n=0

(ε)n,jϑ
n

Γj(�n + α)n!
.

Weighted generalized fractional integral operator involving j-Mittag-Leffler func-
tion introduced in [30] is described in the following definition.

Definition 5. For s ∈ R\{−1}, j ∈ R
+, α, �, ω, ε ∈ C, �(�) > 0, �(ε) >

0, �(α) > 0. Let Φ be a positive increasing function on (δ, �], δ > 0 having
continuous derivative Φ′ on (0, �), and Ψ ∈ L1[δ, �], then

(Φ,sj J
ω,w,ε
δ+;�,αΨ)(ϑ) = (s+1)

1− α
j

j w−1(ϑ)
∫ ϑ

δ
(Φs+1(ϑ) − Φs+1(ς))

α
j −1Φs(ς)

×Eε
j,�,α(ω(Φs+1(ϑ) − Φs+1(ς))

�
j )Φ′(ς)w(ς)Ψ(ς)dς. (1)



On Weighted Fractional Operators 55

Definition 6. [31] Let Ψ ∈ C1[δ, �], δ > 0, 0 < ϑ < � < ∞, s ∈ R\{−1},
j, � > 0, ω, ε ∈ R, α ∈ (0, 1), k ∈ [0, 1] and

(
Ψ ∗ s

jJ
ω,−ε(1−k)
0+;�,(1−k)(j−α)

)
(ϑ) ∈ AC1[δ, �],

then generalized Hilfer-Prabhakar derivative is defined as

s
jD

ε,α,�
δ+;�,ωΨ(ϑ) = j

(
s
jJ

ω,−ε�
δ+;�,�(j−α)

( 1
ϑs

d

dϑ

)
s
jJ

ω,−ε(1−�)
δ+;�,(1−�)(j−α)Ψ

)
(ϑ).

Weighted generalized Laplace transform introduced in [32] is defined as follows:

Definition 7. For the real valued functions Ψ, w(x) �= 0 and Φ is such that
Φ′(ξ) > 0 on [a,∞), the weighted generalized Laplace transform of Ψ is given by

Lw
Φ{Ψ(t)}(u) =

∫ ∞

a

e−u(Φ(t)−Φ(a))w(t)Ψ(t)Φ′(t)dt, (2)

for all values of u.

Definition 8. [33] For some α ∈ R, the Caputo derivative of non integer order
α with Ψ(x) ∈ ACn([a, b]) is given by

(CDα
a+Ψ)(ϑ) = 1

Γ (n−α)

∫ ϑ

a
(ϑ − x)n−α−1Ψ (n)(x)dx, n ∈ N (3)

where n = [α] + 1.

Definition 9. [20] Let Ψ, ψ ∈ C1[δ, �], δ > 0, 0 < ϑ < � < ∞, � > 0, ε ∈ R,
α ∈ (0, 1), � ∈ [0, 1] and

(
Ψ ∗ J

−ε(1−�)
δ+;�,(1−�)(1−α)

)
(ϑ) ∈ AC1[δ, �], then weighted

generalized Hilfer-Prabhakar fractional derivative is defined as

Dε,α,�
δ+;�,ωΨ(ϑ) =

(
Jω,−ε�

δ+;�,�(1−α)

( d

dϑ

)
J

ω,−ε(1−�)
δ+;�,(1−�)(1−α)Ψ

)
(ϑ),

Samraiz et al. [34] proposed the modified weighted (j, s)-Riemann-Liouville frac-
tional integral of order ρ, which is stated as follows:

Definition 10. Suppose that Ψ be a continuous function on [a, b] and Φ
is strictly increasing differentiable function. Then modified weighted (j, s)-
Riemann-Liouville fractional integral of order ρ is given by

(Φ,sj J
ρ
a+,wΨ)(ϑ)

= (s+1)
1− ρ

j w−1(ϑ)
jΓj(ρ)

∫ ϑ

a
(Φs+1(ϑ) − Φs+1(t))

ρ
j −1Φs(t)Φ′(t)w(t)Ψ(t)dt, ϑ ∈ [a, b],

where ρ, j > 0, ω(ϑ) �= 0 and s ∈ R\{−1}.
Theorem 1. [32] Let Dj

wΨ , j = 0, 1, 2, ...,m−1 be weighted Φ-exponential order
with Ψ ∈ ACm−1

w [a, ξ). Furthermore, if the function Dn
wΨ is piecewise continuous

on an [a, T ], then the weighted Laplace transform of Dn
wΨ is defined by

Lw
Φ{Dn

wΨ}(u) = unLw
Φ{Ψ(ξ)}(u) −

n−1∑
j=0

un−j−1Ψj(a).
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Definition 11. [32] The convolution of Ψ and Φ is defined by

(Ψ ∗w
Φ h)(ξ) = w−1(ξ)

∫ ξ

a
w(Φ−1(Φ(ξ) + Φ(a) − Φ(t)))

×Ψ(Φ−1(Φ(ξ) + Φ(a) − Φ(t)))w(t)h(t)Φ
′
(t)dt.

Theorem 2. [30] Let Ψ be a piecewise continuous w-weighted Φ-exponential
order function on interval [a, ϑ]. Then

Lw
Φ{Ψ ,sj J

w,ω,ε
δ+;�,αΨ(ϑ)}(s)

= (s + 1)1− α
j (js)− α

k

(
1 − kω(ks)− �

k

)− ε
k

Lw
Φ{Ψ(ϑ)}(s),

with |jω(js)− �
j | < 1.

The present work is one in a sequence of studies starting by Garra et al. [20]
in 2014, then modified by Samraiz et al. [31] in 2020.

2 Weighted Generalized Hilfer-Prabhakar Fractional
Derivative and Weighted Laplace Transform

In the current section, we describe the weighted generalized Hilfer-Prabhakar
fractional derivative. The weighted Laplace transform of the novel operator is
also evaluated.

Definition 12. Let Ψ, ψ ∈ C1[δ, �], δ > 0, 0 < ϑ < � < ∞, s ∈ R\{−1}, η, � >

0, ω, ε ∈ R, α ∈ (0, 1), � ∈ [0, 1] and
(
Ψ ∗ ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)

)
(ϑ) ∈ AC1[δ, �],

then weighted generalized Hilfer-Prabhakar fractional derivative is defined as

ψ,
s
η D

ε,w,α,�

δ+;�,ω
Ψ(ϑ) = η

(
ψ,

s
η J

ω,w,−ε�

δ+;�,�(η−α)

( w−1(ϑ)

ψs(ϑ)ψ′ (ϑ)
d

dϑ

)
w(ϑ)ψ,

s
η J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)

Ψ
)
(ϑ), (4)

where ψs(ϑ) = (ψ(ϑ))s, ψs(ϑ) �= 0 and w(ϑ) �= 0.
We observe that, the generalized Hilfer-Prabhakar fractional derivative oper-

ator given in [31] can be achieved with choice of parameters ψ(ϑ) = ϑ and
w(ϑ) = 1 in (4). The choice of the parameters ψ(ϑ) = ϑ,w(ϑ) = 1, η = 1, s = 0,
gives Hilfer-Prabhakar fractional derivative introduced by Garra et al. in [20]
presented in Definition 9. If we set ψ(ϑ) = ϑ, w(ϑ) = 1, � = 0 and ε = 0
in (4), we get (η, s)-Riemann-Liouville fractional derivative operator given in
[35]. Corresponding to the choice of the parameters ψ(ϑ) = ϑ, w(ϑ) = 1 and
� = 0 in (4), we obtain (η, s)-Prabhakar fractional derivative given in [36]. If
we substitute ψ(ϑ) = ϑ, w(ϑ) = 1, � = 0, and s = 0 in (4), we get η-Prabhakar
fractional derivative operator given in [8], the choice of the parameters ψ(ϑ) = ϑ,
w(ϑ) = 1, � = 0, s = 0 and η = 1 in (4) gives Prabhakar fractional derivative
operator presented in [14].
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Proposition 1. Let s ∈ R\{−1}, η ∈ R
+, α, �, ω, ε ∈ C, �(�) > 0, �(α) > 0

and � > 0 then integral operator ψ,sη J
ω,w,ε
δ+;�,α is bounded on C[δ, �], δ ≥ 0 i.e.,

|(ψ,sη J
ω,w,ε
δ+;�,αΨ)(ϑ)| ≤ G‖wΨ‖C[δ,�],

where

‖wΨ‖C[δ,�] = max{|wΨ | : 0 < x < �}

and

G = (s+1)
− α

η (ψs+1(�)−ψs+1(δ))
α
η

η

∑∞
m=0

|(ε)m,ηωm|
|Γη(�m+α)|m!

× (ψs+1(�)−ψs+1(δ))
�
η

m[
m
η (�+α)

] . (5)

Proof. We first prove that the series in the Eq. (5) is convergent. Let bm denotes
the mth term of the series, then we have

bm+1
bm

= |(ε)m+1,ηωm+1(ψs+1(�)−ψs+1(δ))
�(m+1)

η |
|(ε)m,ηωm(ψs+1(�)−ψs+1(δ))

�(m)
η |

×
[

m�+α
η

]
|Γη(�m+α)|m![

(m+1)�+α
η

]
|Γη(�(m+1)+α)|(m+1)!

= η
−�
η

|m+ ε
η |

m+1

∣∣∣Γ(
�m
η +α

η

)∣∣∣∣∣∣Γ(
�m
η + �

η +α
η

)∣∣

×
[

m�+α
η

]
|
[

(m+1)�+α
η

]
|
ω|(ψs+1(�) − ψs+1(δ))

�
η |

∼ ω|(ψs+1(�)−ψs+1(δ))
�
η |

(
∣∣ �

η m|
) �

η
→ 0(m → ∞).

This implies that the series on the right side of (5) is convergent and hence G is
finite.

Now, Consider

|(ψ,sη J
ω,w,ε
δ+;�,αΨ)(ϑ)| ≤ (s+1)

1− α
η

η w−1(ϑ)
∫ ϑ

δ
(ψs+1(ϑ) − ψs+1(ς))

α
η −1ψs(ς)

×∣∣Eε
η,�,α(ω(ψs+1(ϑ) − ψs+1(ς))

�
η )w(ς)Ψ(ς)

∣∣ψ′(ς)dς. (6)
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Substitute u = ψs+1(ϑ) − ψs+1(ς) on the right side of (6), we get

|(ψ,sη J
ω,w,ε
δ+;�,αΨ)(ϑ)| ≤ (s+1)

− α
η

η w−1(ϑ)
∫ ψs+1(ϑ)−ψs+1(δ)

0
u

α
η −1

×|Eε
η,�,α(ω(u)

�
η )|‖wΨ‖C[δ,�]du

≤ ‖wΨ‖C[δ,�]
(s+1)

− α
η

η w−1(�)
∫ ψs+1(�)−ψs+1(δ)

0
u

α
η −1

×|Eε
η,�,α(ω(u)

�
η )|du

≤ ‖wΨ‖C[δ,�]
(s+1)

− α
η

η w−1(�)
∑∞

m=0
|(ε)m,ηωm|

|Γη(�m+α)|m!

× ∫ ψs+1(�)−ψs+1(δ)

0
(u)(

�
kη )m+(α

η )−1du

≤ ‖wΨ‖C[δ,�]
(s+1)

− α
η (ψs+1(�)−ψs+1(δ))

( α
η

)

η

∑∞
m=0

|(ε)m,ηωm|
|Γη(�m+α)|m!

× (ψs+1(�)−ψs+1(δ))
( �

η
)m[

m
η (�+α)

] ,

which gives

|(ψ,sη J
ω,w,ε
δ+;�,αΨ)(ϑ)| ≤ G‖wΨ‖C[δ,�].

This completes the proof of Proposition 1.

Theorem 3. Let s be any real number except −1, η, � > 0, ω, ε ∈ R, α ∈
(0, 1), � ∈ [0, 1]. If Ψ ∈ L1[δ, �], then the weighted generalized Hilfer-Prabhakar
fractional derivative ψ,sη D

ε,w,α,�
δ+;�,ω is bounded on C[δ, �]

‖ψ,sη D
ε,α,�
δ+;�,ωΨ(ϑ)‖ ≤ A1A2‖wΨ‖[δ,�],

where

A1 = (s+1)
− �(η−α)

η (ψs+1(�)−ψs+1(δ))
�(η−α)

η

η

×∑∞
n=0

|(−ε�)n,ηωn|
|Γη(�n+�(η−α))|n!

(ψs+1(�)−ψs+1(δ))
�n
η[

�n
η +

�(η−α
η )

] , (7)

and

A2 = (s+1)
− (1−�)(η−α)−η

η (ψs+1(�)−ψs+1(δ))
(1−�)(η−α)−η

η

η

×∑∞
m=0

|(ε(�−1))m,ηωm|
|Γη(�m+(1−�)(η−α))|m!

(ψs+1(�)−ψs+1(δ))
�m
η[

�m
η +

(1−�)(η−α
η )

] . (8)
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Proof. Using Proposition 1, we have

‖ψ,sη D
ε,w,α,�
δ+;�,ω Ψ(ϑ)‖

=
∥∥∥η

(
ψ,sη J

ω,w,−ε�
δ+;�,�(η−α)

(
w−1(ϑ)

ψs(ϑ)ψ′(ϑ)
d

dϑ

)
w(ϑ)

(
ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ

)
(ϑ)

∥∥∥
≤ ηA1

∥∥∥
(

w−1(ϑ)
ψs(ϑ)ψ′(ϑ)

d
dϑ

)
w(ϑ)

(
ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ

)
(ϑ)

∥∥∥
= A1

∥∥∥
(

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)−ηΨ

)
(ϑ)

∥∥∥
≤ A1A2‖Ψ‖[δ,�],

where both A1 and A2 are given by (7) and (8).

Proposition 2. Let s ∈ R \ −1, η, �, ρ > 0, ω, ε, σ ∈ R, α ∈ (0, 1), � ∈ [0, 1],
ρ > α + �η − α� and Ψ ∈ L1[δ, �], then

(
ψ,sη D

ε,w,α,�
δ+;�,ω (ψ,sη J

ω,w,σ
δ+;�,ρΨ)

)
(ϑ) = (ψ,sη J

ω,w,σ−ε
δ+;�,ρ−αΨ)(ϑ).

In particular
(

ψ,sη D
ε,w,α,�
δ+;�,ω (ψ,sη J

ω,w,ε
δ+;�,αΨ)

)
(ϑ) = Ψ(ϑ).

Proof. Using the Definition 12 and semi group property of (5) given in [30], we
have (

ψ,sη D
ε,w,α,�
δ+;�,ω (ψ,sη J

ω,w,σ
δ+;�,ρΨ)

)
(ϑ)

= η
(

ψ,sη J
ω,w,−ε�
δ+;�,�(η−α)

(
w−1(ϑ)

ψs(ϑ)ψ′(ϑ)
d

dϑw(ϑ)
)

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)(ψ,sη J

ω,w,σ
δ+;�,ρΨ)

)
(ϑ)

= η
(

ψ,sη J
ω,w,−ε�
δ+;�,�(η−α)

(
w−1(ϑ)

ψs(ϑ)ψ′(ϑ)
d

dϑw(ϑ)
)(

ψ,sη J
ω,w,−ε(1−�)+σ
δ+;�,(1−�)(η−α)+ρΨ)

)
(ϑ)

=
(

ψ,sη J
ω,w,−ε�
δ+;�,�(η−α)

(
ψ,sη J

ω,−ε(1−�)+σ
δ+;�,(1−�)(η−α)+ρ−ηΨ)

)
(ϑ)

=
(

ψ,sη J
ω,σ−ε
δ+;�,ρ−αΨ)

)
(ϑ).

The proof of the Proposition 2 is completed.

Theorem 4. For s ∈ R\{−1}, η, �, ρ > 0, ω, ε ∈ R, α ∈ (0, 1), � ∈ [0, 1],
ρ > α + �η − α� and Ψ ∈ L1[δ, �] then

(
ψ,sη J

ρ
δ+,w(ψ,sη D

ε,w,α,�
δ+;�,ω Ψ)

)
(ϑ) = (ψ,sη J

ω,w,−ε
δ+;�,ρ−αΨ)(ϑ).
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Proof. Using the Definition 12 and Theorem 2.5 given in [36], we get
(

ψ,sη J
ρ
δ+,w(ψ,sη D

ε,w,α,�
δ+;�,ω )Ψ)

)
(ϑ)

= η
(

ψ,sη J
ρ
δ+,wψ,sη J

ω,w,−ε�
δ+;�,�(η−α)

(
w−1(ϑ)

ψs(ϑ)ψ′(ϑ)
d

dϑw(ϑ)
)

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ

)
(ϑ)

= η
(

ψ,sη J
ω,w,−ε�
δ+;�,�(η−α)+ρ

(
w−1(ϑ)

ψs(ϑ)ψ′(ϑ)
d

dϑw(ϑ)
)

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ

)
(ϑ)

=
(

ψ,sη J
ω,w,−ε�
δ+;�,�(η−α)+ρ

(
ψ,sη J

ω,−ε(1−�)
δ+;�,(1−�)(η−α)−ηΨ

))
(ϑ)

=
(

ψ,sη J
ω,−ε
δ+;�,ρ−αΨ

)
(ϑ).

This completes the proof.

Theorem 5. The weighted Laplace transform of generalized Hilfer-Prabhakar
fractional derivative is given by

Lw
ψ{ψ,sη D

ε,w,α,�
δ+;�,ω Ψ(ϑ)}(u) = (s + 1)

α−η
η (ηu)

α
η

(
1 − ηω(ηu)− �

η

) ε
η

×Lw
ψ{Ψ(ϑ)}(u) − η(s + 1)− �(η−α)

η (ηu)
−�(η−α)

η

×
(
1 − ηω(ηu)− �

η

) ε�
η

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+).

Proof. Using the Definition 12 and Theorem 1, we have

Lw
ψ{ψ,sη D

ε,w,α,�
δ+;�,ω Ψ(ϑ)}(u)

= η(s + 1)− �(η−α)
η (ηu)

−�(η−α)
η

(
1 − ηω(ηu)− �

η

) ε�
η

×Lw
ψ

{
ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)

[1]
Ψ(ϑ)

}
(u)

= η(s + 1)− �(η−α)
η (ηu)

−�(η−α)
η

(
1 − ηω(ηu)− �

η

) ε�
η

×
[
uLw

ψ{ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(ϑ)}(u) − ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+)

]

= (ηu)(s + 1)− �(η−α)
η (ηu)

−�(η−α)
η

(
1 − ηω(ηu)− �

η

) ε�
η

×Lw
ψ{ψ,sη J

ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(ϑ)}(u) − η(s + 1)− �(η−α)

η (ηu)
−�(η−α)

η

×
(
1 − ηω(ηu)− �

η

) ε�
η

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+)

= (ηu)(s + 1)− �(η−α)
η (ηu)

−�(η−α)
η

(
1 − ηω(ηu)− �

η

) ε�
η

×
[
(s + 1)− (1−�)(η−α)

η (ηu)
−(1−�)(η−α)

η

(
1 − ηω(ηu)− �

η

) ε(1−�)
η
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×Lw
ψ{Ψ(ϑ)}(u)

]
− η(s + 1)− �(η−α)

η (ηu)
−�(η−α)

η

(
1 − ηω(ηu)− �

η

) ε�
η

×ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+)

= (s + 1)
α−η

η (ηu)
α
η

(
1 − ηω(ηu)− �

η

) ε
η

Lw
ψ{Ψ(ϑ)}(u) − η(s + 1)− �(η−α)

η

×(ηu)
−�(η−α)

η

(
1 − ηω(ηu)

−�
η

) ε�
η

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+),

this proves the proof of the Theorem 5.

3 Free-Electron Laser Equation Involving Weighted
Generalized Fractional Operators

In recent decades, several methods for tackling the generalized fractional integro-
differential free-electron laser problem have been proposed. In the present
section, we offer a more generalized model of the free-electron laser problem
involving the newly defined operator.

Theorem 6. The solution of free-electron laser problem

ψ,sη D
ε,α,�
δ+;�,ω,wΨ(ϑ) = ρψ,sη J

σ,ω,w
δ+;�,αΨ(ϑ) + f(ϑ), (9)

ψ,sη J
ω,−ε(1−�)
δ+;�,(1−�)(η−α),wΨ(δ+) = D, D ≥ 0, (10)

where ϑ ∈ (0,∞), f ∈ L1[0,∞), α ∈ (0, 1), � ∈ [0, 1], ω, ρ ∈ R, δ > 0, � > 0,
ε, σ ≥ 0 is given by

Ψ(ϑ) = D
∑∞

m=0 ρm(s + 1)− �(η−α)+α−η
η (ψs+1(ϑ) − ψs+1(δ))

�(η−α)+α(1+2m)
η −1

×E
(ε+σ)m−ε(�−1)
η,�,�(η−α)+α(1+2m)(ω(ψs+1(ϑ) − ψs+1(δ))

�
η )

+
∑∞

m=0 ρm(s + 1)2m
(
ψ
,sη J

ω,w,(ε+σ)m+ε
η,�,α(1+2m) f

)
(ϑ).

Proof. Applying weighted Laplace transform on both sides of (9) and using The-
orems 2 and 5, we get

Lw
ψ{ψ,sη D

ε,α,�
δ+;�,ω,wΨ(ϑ)}(u) = ρLw

ψ{ψ,sη J
σ,ω,w
δ+;�,αΨ(ϑ)}(u) + Lw

ψ{f(ϑ)}(u). (11)

The Eq. (11) can be presented as

Lw
ψ{Ψ(ϑ)}(u) =

Dη(s+1)
− �(η−α)

η (ηu)
−�(η−α)

η

(
1−ηω(ηu)

�
η

) ε�
η

(s+1)
α−η

η (ηu)
α
η

(
1−ηω(ηu)

−�
η

) ε
η

+ Lw
ψ {f(ϑ)}(u)

(s+1)
α−η

η (ηu)
α
η

(
1−ηω(ηu)

−�
η

) ε
η

×
(
1 − ρ(ηu)− 2α

η

(
1 − ηω(ηu)

−�
η

)− ε+σ
η

)−1

.
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By using the binomial expansion, we get

Lw
ψ{Ψ(ϑ)}(u)

=
Dη(s+1)

− �(η−α)
η (ηu)

−�(η−α)
η

(
1−ηω(ηu)

�
η

) ε�
η

(s+1)
α−η

η (ηu)
α
η

(
1−ηω(ηu)

−�
η

) ε
η

+ Lw
ψ {f(ϑ)}(u)

(s+1)
α−η

η (ηu)
α
η

(
1−ηω(ηu)

−�
η

) ε
η

×∑∞
m=0 ρm(ηu)−2αm

η
(
1 − ηω(ηu)

−�
η

)− (ε+σ)
η m

,

= Dη
∑∞

m=0 ρm(s + 1)− �(η−α)+α−η
η

×(ηu)− �(η−α)+α(1+2m)
η

(
1 − ηω(ηu)

−�
η

)− (ε+σ)m−ε(�−1)
η

+
∑∞

m=0 ρm(s + 1)− α−η
η (ηu)− α(1+2m)

η

×(
1 − ηω(ηu)

−�
η

)− ε+m(ε+σ)
η Lw

ψ{f(ϑ)}(u).

Applying inverse Laplace transform, we obtain

Ψ(ϑ) = D
∑∞

m=0 ρm(s + 1)− �(η−α)+α−η
η (ψs+1(ϑ) − ψs+1(δ))

�(η−α)+α(1+2m)
η −1

×E
(ε+σ)m−ε(�−1)
η,�,�(η−α)+α(1+2m)(ω(ψs+1(ϑ) − ψs+1(δ))

�
η )

+
∑∞

m=0 ρm(s + 1)2m
(
ψ,sη J

ω,w,(ε+σ)m+ε
η,�,α(1+2m) f

)
(ϑ).

Hence the proof is completed.

Remark 1. Let s = 0, ψ(ϑ) = 1, w(ϑ) = 1, η = 1, ε = � = 0, σ = � = 1, α → 1,
f(ϑ) = 0, ω = ir, ρ = −iΠp with r, p ∈ R, then the Theorem 6 convert to the
following free-electron laser equation

d

dϑ
Ψ(ϑ) = −ipΠ

∫ ϑ

0

(ϑ − t)eir(ϑ−t)Ψ(t)dt, Ψ(0) = 1.

Corollary 1. Let ψ(ϑ) = 1, w(ϑ) = 1, s = 0 and η = 1, then we have the
problem given in [20] is defined as follows:

Dε,α,�
δ+;�,ωΨ(ϑ) = ρJσ,ω

δ+;�,αΨ(ϑ) + f(ϑ), (12)

J
ω,−ε(1−�)
δ+;�,(1−�)(η−α)Ψ(δ+) = A, A ≥ 0,

where ϑ ∈ (0,∞), f ∈ L1[0,∞); α ∈ (0, 1), � ∈ [0, 1], ω, ρ ∈ R, � > 0, ε, σ ≥ 0.
The solution to the fractional equation is

Ψ(ϑ) = C
∑∞

m=0 ρm(ϑ)�(1−α)+α(1+2m)−1

×E
(ε+σ)m−ε(�−1)
�,�(1−α)+α(1+2m)(ω(ϑ)�)

+
∑∞

m=0 ρm
(
J

ω,(ε+σ)m+ε
δ+,�,α(1+2m)f

)
(ϑ).
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4 Fractional Kinetic Equation Involving Weighted
Generalized Fractional Operators

Physics, control systems, dynamic systems, and engineering have all become
more interested in developing mathematical models of various physical phenom-
ena due to their importance in the field of applied research. The fundamental
equations of mathematical physics and the natural sciences known as the kinetic
equations, define the continuation of a substance’s motion. In the present seg-
ment, we establish a generalization of the kinetic equation. The reader is referred
to related literature [37–40].

Theorem 7. Then solution to the Cauchy fractional problem

cψ,sη D
ε,α,�
δ+;�,ω,wM(t) − M0f(t) = bψ,sη J

ω,w,σ
δ+;�,qM(t), f ∈ L1[0,∞); (13)

subject to

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)M(δ) = d, d ≥ 0,

with s ∈ [0,∞), � ∈ [0, 1] ω ∈ C, c, b ∈ R(c �= 0), α, �, q, η > 0, δ, ε, σ ≥ 0 is
given by

M(t) = d
∑∞

n=0

(
b
c

)n
(s + 1)

− �(η−α)+(α−η)(n+1)+qn
η (ψs+1(t) − ψs+1(δ))

�(η−α)+α+(q+α)n
η

−1

×E
(ε+σ)n+ε(1−�)
η,�,�(η−α)+α+(q+α)n

(ω(ψs+1(t) − ψs+1(δ))
�
η )

+
M0

c

∑∞
n=0

(
b
c

)n
(s + 1)n+1

ψ,sη J
ω,(ε+σ)n+ε

δ+;�,(q+α)n+α
f(t).

Proof. Applying weighted generalized Laplace transform on both sides of (14),
we have

cLw
ψ{ψ,sη D

ε,α,�
δ+;�,ωM(t)}(u) − M0L

w
ψ{f(t)}(u) = bLw

ψ{ψ,sη J
ω,σ
δ+;�,qM(t)}(u).

By considering the hypothesis of Theorems 2 and 5, we get

c
[
(s + 1)

α−η
η (ηu)

α
η

(
1 − ηω(ηu)

− �
η

) ε
η Lw

ψ {M(t)}(u) − η(s + 1)
− �(η−α)

η (ηu)
−�(η−α)

η

×
(
1 − ηω(ηu)

− �
η

) ε�
η

ψ,sη J
ω,−ε(1−�)
δ+;�,(1−�)(η−α)

M(δ+)
]

− M0L
w
ψ {f(t)}(u) = b(s + 1)

− α
η (ηu)

−α
η

×
(
1 − ηω(ηu)

−�
η

) −σ
η Lw

ψ {M(t)}.
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We can rewrite the above equations as
⎡
⎢⎣ c−b(s+1)

− α−η+q
η (ηu)

− α+q
η

(
1−ηω(ηu)

−�
η

)− ε+σ
η

(s+1)
− α−η

η (ηu)
− α

η

(
1−ηω(ηu)

−�
η

)− ε
η

⎤
⎥⎦Lw

ψ{M(t)}(u)

= cηd(s + 1)− �(η−α)
η (ηu)− �(η−α)

η

(
1 − ηω(ηu)− �

η

) ε�
η

+ M0L
w
ψ{f(t)}(u),

Lw
ψ{M(t)}(u) = cηd

⎡
⎢⎣ (s+1)

− �(η−α)+(α−η)
η (ηu)

− �(η−α)+α
η

(
1−ηω(ηu)

− �
η

) ε(�−1)
η

c−b(s+1)
− α−η+q

η (ηu)
− α+q

η

(
1−ηω(ηu)

−�
η

)− ε+σ
η

⎤
⎥⎦

+

⎡
⎢⎣ (s+1)

− α−η
η (ηu)

− α
η

(
1−ηω(ηu)

−�
η

)− ε
η

c−b(s+1)
− α−η+q

η (ηu)
− α+q

η

(
1−ηω(ηu)

−�
η

)− ε+σ
η

⎤
⎥⎦M0L

w
ψ{f(t)}(u).

Taking
∣∣ b
c (s + 1)− α−η+q

η (ηu)− α+q
η

(
1 − ηω(ηu)

−�
η

)− ε+σ
η ∣∣ < 1, we get

Lw
ψ{M(t)}(u) =

[
ηd(s + 1)− �(η−α)+(α−η)

η (ηu)− �(η−α)+α
η

(
1 − ηω(ηu)− �

η

) ε(�−1)
η

+(s + 1)− α−η
η (ηu)− α

η

(
1 − ηω(ηu)

−�
η

)− ε
η

c−1M0L
w
ψ{f(t)}(u)

]

×∑∞
n=0

(
b
c

)n
(s + 1)

− (α−η+q)n
η (ηu)

− (α+q)n
η

(
1− ηω(ηu)

−�
η

)− (ε+σ)n
η

= dη
∑∞

n=0

(
b
c

)n
(s + 1)

− �(η−α)+(α−η)(n+1)+qn
η (ηu)

− �(η−α)+α+(α+q)n
η

×
(
1− ηω(ηu)

−�
η

)− (ε+σ)n+ε(1−�)
η

+ M0
c

∑∞
n=0

(
b
c

)n
(s + 1)

− (α−η)(n+1)+qn
η (ηu)

− α+(α+q)n
η

×
(
1− ηω(ηu)

−�
η

)− (ε+σ)n+ε
η

.

Applying inverse Laplace transform, we get

M(t) = d
∑∞

n=0

(
b
c

)n
(s+1)

− �(η−α)+(α−η)(n+1)+qn
η (ψs+1(t)− ψs+1(δ))

�(η−α)+α+(q+α)n
η

−1

×E
(ε+σ)n+ε(1−�)
η,�,�(η−α)+α+(q+α)n

(ω(ψs+1(t)− ψs+1(δ))
�
η )

+M0
c

∑∞
n=0

(
b
c

)n
(s + 1)n+1

ψ ,sη J
ω,(ε+σ)n+ε

δ+;�,(q+α)n+α
f(t).

Hence the proof is done.

In next example, we establish the corresponding growth model and shows
the behaviour by sketching its graph.

Example 1. The solution to the growth model

ψ,sη D
ε,α,�
δ+;�,ω,wM(t) − M(t) = 0 (14)
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subject to

ψ,sη J
ω,w,−ε(1−�)
δ+;�,(1−�)(η−α)M(0) = d◦,

is

M(t) =
∞∑

n=0

t2n

Γ2(n + 0.5)
, 0 ≤ t ≤ 1. (15)

Solution 1. By setting c = b = 1, s = 0, ψ(t) = t, � = 0, η = 1, σ = 0, ε = 0,
δ = 0, α = 1, q = 1, d = d0 = 1 M0 = 0, we obtained Eq. (15). The graph of
this equation is

0.2 0.4 0.6 0.8 1.0
t

0.5

1.0

1.5

M t

Fig. 1. For ψ(t) = t the graph in Fig. 1 shows the increasing behaviour with 0+ ≤ t ≤ 1.

Remark 2. [37] If we take s = 0, ψ(t) = 1, w(t) = 1, η = 1, σ = ε = � = 0,
α → 0, and b = −cp, then we have

M(t) − M0f(t) = −cpDp
δ+M(t), M(0) = d, d ≥ 0,

where Dp
δ+ is the Riemann-Liouville fractional derivative operator.

Corollary 2. Let s = 0 ψ(t) = 1, w(t) = 1 and � = 0, then we obtain the
Cauchy problem given in [40] and is defined by

cηD
ε,α
δ+;�,ω(t) − M0f(t) = bηJ

ω,σ
δ+;�,qM(t), f ∈ L1[0,∞);

ηJ
ω,−ε
δ+;�,η−αM(0) = d, d ≥ 0,

with ω ∈ C, c, b ∈ R(c �= 0), α, �, q, η > 0, ε, σ ≥ 0. The resolution to the
equation is given by

M(t) = d
∑∞

n=0

(
b
c

)n

t
α+(q+α)n

η −1E
(ε+σ)n+ε
η,�,α+(q+α)n(ω(t)

�
η )

+M0
c

∑∞
n=0

(
b
c

)n

ηJ
ω,(ε+σ)n+ε
δ+;�,(q+α)n+αf(t).
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5 Conclusions

In this article, we introduced a new weighted generalized Hilfer-Prabhakar frac-
tional derivative operator. This operator generalized many existing fractional
derivatives. The novel operator was applied to the kinetic differintegral equation
and the free-electron laser equation to create their fractional models as appli-
cations. The classical Laplace fails to find the solutions to these models, so we
utilized a weighted Laplace transform. By using the specific values of the param-
eters the fractional growth model is presented that is strongly applicable in the
field of science. The graph of the explored model is sketched that has increasing
behaviour. We conclude, that the results presented in this article are more gen-
eral and this idea may use to explore new weighted version of Furthermore, such
fractional operators will be helpful to developed physical models. Then these
new operators can be utilized to modeled physical problems like free electron
laser equation and kinetic equation. The solutions to these models can be found
by using Laplace transform of some other significant ways.
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Abstract. In this paper, the eighth order boundary value problems
(BVPs) are solved by utilizing the Vieta-Lucas polynomials based
scheme. The operational matrix of derivative of shifted Vieta-Lucas poly-
nomials is used. The corresponding algebraic equations are handled by
taking the roots of Vieta-Lucas polynomials as collocation points. The
illustrative examples provide the favorable comparison with other exist-
ing methods that demonstrates the efficiency and accuracy of the scheme.

Keywords: Vieta-Lucas polynomials · collocation method · Eighth
order BVPs

1 Introduction

Higher-order BVPs have a variety of usage in engineering and sciences [1]. These
kind of equations can be found in fluid dynamics, hydrodynamics, astrophysics,
beam theory, astronomy, induction motors, and other fields [2]. The physics of
various hydrodynamic stability issues are governed by eighth-order differential
equations [3]. In this paper, we offer a strategy based on Vieta-Lucas poly-
nomials for solving eighth order boundary value problems. Numerous scholars
have worked on eighth order BVPs using diverse approaches. Using finite differ-
ence methods Boutayeb and Twizell [4] solved these kind of problems, Wazwaz
[5] proposed a numerical technique that employed the Adomian decomposition
method as well as a modified Adomian decomposition approach. Siddiqi and
Twizell [6] introduced differential quadrature and generalised differential quadra-
ture rules, Nonic spline and nonpolynomial nonic spline methods were utilised
by Siddiqi and Akram [7], variational iteration decomposition was suggested by
Noor and Mohyud-Din [8], and homotopy perturbation was employed by Gol-
babai and Javidi [9]. Costabile and Napoli [10] employed collocation techniques
and particular classes of polynomials to solve ninth order BVPs, whereas Akram
and Rehman [11] used the reproducing kernel space approach. Xu et al. [12]
introduced a collocation approach based on second kind Chebyshev wavelets.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Elahi et al. [13] employed the Legendre Galerkin approach to solve eighth order
boundary value problems, whereas Islam et al. [14] used the Galerkin method.
Agarwal [1] investigated the existence and uniqueness of these equations.

Different kinds of differential equations are handled analytically [15–19] how-
ever it is not always possible to find the analytical solutions, thus the researchers
are interested in the development of new numerical schemes that provide better
approximations such as the operational matrix approach [20–24] has been widely
used for the approximation purposes. Vieta-Lucas polynomials (VLPs) and their
shifted forms have recently become popular for numerically solving several types
of differential equations [25,26]. In this paper, we solved eighth order boundary
value problems using a Vieta-Lucas polynomials based scheme.

This work is organised as follows: In Sect. 2, we discuss the necessary back-
ground and terminologies. Section 3 describes the mathematical model and
the proposed method. Section 4 gives the estimates for convergence and error.
Section 5 includes various illustrated examples to demonstrate the proposed app-
roach’s simplicity and applicability. In Sect. 6, the obtained results are com-
pared to the approximate solutions of other known techniques. A reliable excel-
lent degree of accuracy is achieved in all of the circumstances tested. The final
remarks are found in Sect. 7.

2 Preliminaries

In this part, we will go through some of the fundamental definitions and prop-
erties of Vieta-Lucas polynomials, which are used in this study.

Definition 2.1. The Vieta-Lucas polynomials VLn(ζ) of degree n (n ∈ N ∪ {0})
can be defined as [27]:

VLn(ζ) = 2 cos(nδ), (1)

where δ = arccos ( ζ
2 ) and | ζ |∈ [−2, 2], δ ∈ [0, π].

The recurrence relation for Vieta-Lucas polynomials VLn(ζ) is given by [27]:

VLn(ζ) = ζVLn−1(ζ) − VLn−2(ζ), m ≥ 2, (2)

with VL0(ζ) = 2 and VL1(ζ) = ζ.
The first few Vieta-Lucas polynomials are given as:

VL0(ζ) = 2,
VL1(ζ) = ζ,

VL2(ζ) = ζ2 − 2,

VL3(ζ) = ζ3 − 3ζ,

VL4(ζ) = ζ4 − 4ζ2 + 2,

VL5(ζ) = ζ5 − 5ζ3 + 5ζ,

VL6(ζ) = ζ6 − 6ζ4 + 9ζ2 − 2.
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In terms of power series expansion, the Vieta-Lucas polynomials are
expressed as [27]:

VLn(ζ) =
�n/2�∑

j=0

(−1)j
n(n − j − 1)!
j!(n − 2j)!

ζn−2j, n ≥ 1. (3)

The Vieta-Lucas polynomials VLn(ζ) and VLm(ζ) are orthogonal over [−2, 2]
with respect to weight function w(ζ) = 1√

4−ζ2
and satisfy the following condition

[25]:

〈VLn(ζ),VLm(ζ)〉w(ζ) =
∫ 2

−2

VLn(ζ)VLm(ζ)w(ζ) dζ =

⎧
⎪⎨

⎪⎩

4π, n = m = 0,

2π, n = m �= 0,

0, n �= m.

(4)

Proposition 2.1. The basic properties of Vieta-Lucas polynomials are given
as:

(i) VLn(ζ)(VLm(ζ)) = VLnm(ζ).
(ii) VLn(ζ) VLm(ζ) = VLn+m(ζ) + VL|n−m|(ζ).
(iii) ζVLn(ζ) = VLn+1(ζ) + VLn−1(ζ).
(iv) (4 − ζ2)VLn(ζ) = −VLn+2(ζ) + 2VLn(ζ) − VLn−2(ζ).

Proof. Omitted 	


2.1 Shifted Vieta-Lucas Polynomials and Its Operational Matrix
of Differentiation

Definition 2.2. The shifted VLPs VL∗
n(ζ) over [0, 1] with degree n ∈ N ∪ {0}

can be defined as [25]:
VL∗

n(ζ) = VLn(4ζ − 2). (5)

The recurrence relation of shifted VLPs is [25]:

VL∗
n(ζ) = (4ζ − 2)VL∗

n−1(ζ) − VL∗
n−2(ζ), (6)

provided VL∗
0(ζ) = 2 and VL∗

1(ζ) = 4ζ − 2.
The power series expansion of shifted VLPs are [25]:

VL∗
n(ζ) = 2n

n∑

j=0

(−1)j
4n−j(2n − j − 1)!

j!(2n − 2j)!
ζn−j, n ≥ 1. (7)

The shifted VLPs satisfy the following orthogonality property [25]:

〈VL∗
n(ζ),VL∗

m(ζ)〉w∗(ζ) =
∫ 1

0

VL∗
n(ζ)VL∗

m(ζ)w∗(ζ) dζ =

⎧
⎪⎨

⎪⎩

4π, n = m = 0,

2π, n = m �= 0,

0, n �= m,

(8)
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where w∗(ζ) = 1√
ζ−ζ2

is the weight function of shifted Vieta-Lucas polynomi-

als. Assume y(ζ) defined on the interval [0,1] be a Lebesgue square integrable
function. So it can be written in terms of shifted VLPs as

y(ζ) =
∞∑

j=0

cjVL∗
j (ζ), (9)

where cj are unknown coefficients and can be obtained by following expressions

cj =
1

αjπ

∫ 1

0

y(ζ)VL∗
j (ζ)

√
ζ − ζ2

dζ, (10)

where

αj =

{
4, j = 0,

2, j ≥ 1.

Now, the truncated series can be written as

yN (ζ) =
N∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ),

where

CT = [c0, c1, c2, . . . , cN], Φ(ζ) = [VL∗
0(ζ),VL∗

1(ζ),VL∗
2(ζ), . . . ,VL∗

N(ζ)].

The shifted VLPs operation matrix is defined as

dyN

dζ
= CT D(1)Φ(ζ), (11)

where D(1) is the operation matrix of differentiation of shifted VLPs of order
(N + 1) × (N + 1) are given as:

D(1) = dij =

⎧
⎪⎨

⎪⎩

4i
αj

, j = i − h

{
h = 1, 3, · · · , N if N even,

h = 1, 3, · · · , N − 1 if N odd,

0, otherwise.

(12)

where α0 = 2 and αk = 1(k ≥ 1).
For any n ∈ N, it can be generalized as:

dnΦ(ζ)
dζn

= (D(1))nΦ(ζ) = D(n)Φ(ζ), where n ∈ N. (13)

For example: for N = 6, we get

D(1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
2 0 0 0 0 0
0 8 0 0 0 0
6 0 12 0 0 0
0 16 0 16 0 0
10 0 20 0 20 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.
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3 Mathematical Model and Numerical Scheme

This section includes the mathematical description of the model followed by the
numerical scheme that describes the utility of differentiation matrix of shifted
Vieta-Lucas polynomial to solve the eighth order BVPs. The eight order differ-
ential equation is formulated as

d8y

dζ8
+

7∑

j=0

aj
djy

dζj
= f(ζ), ζ ∈ [0, 1], (14)

where f(ζ) and aj are the continuous functions on the interval [0, 1]. Subject to
supplementary conditions

diy

dζi
|ζ=0= ui,

diy

dζi
|ζ=1= vi, i = 0, 1, 2, 3. (15)

Let yN (ζ) be the shifted Vieta-Lucas polynomials approximation given as

yN (ζ) =
N∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ), (16)

where the unknowns are C = [c0, c1, c2, . . . , cN ]T .
Using shifted Vieta-Lucas polynomial operational matrix of derivative,

Eq. (14) can be expressed as

CT D(8)Φ(ζ) +
7∑

j=0

ajC
T D(j)Φ(ζ) = f(ζ). (17)

Thus, the residual term can be written as

RN (ζ) = CT D(8)Φ(ζ) +
7∑

j=0

ajC
T D(j)Φ(ζ) − f(ζ). (18)

Now, by using collocation method, we get

RN (ζi) = 0, i = 0, 1, 2, . . . , N − 8. (19)

where collocation points are taken as

ζi =
1 + cos ( (2i+1)π

2(N−8) )

2
, i = 0, 1, . . . , N − 8. (20)

The corresponding boundary conditions gives

diy

dζi
|ζ=0= CT Φ(0) = ui,

diy

dζi
|ζ=1= CT Φ(1) = vi, i = 0, 1, 2, 3. (21)

This yields N nonlinear equations. This nonlinear system can be solved to deter-
mine the values of coefficients of vector C. By substituting the value of C, we
obtain the numerical solution yN (ζ).
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4 Convergence and Error Analysis

Theorem 4.1 [25]. Let y(ζ) ∈ L2
ω[0, 1] and d2y

dζ2 ≤ H, where H is arbitrary
constant. Then y(ζ) can be expressed as

y(ζ) =
∞∑

j=0

cjVL∗
j (ζ), (22)

and yN (ζ) is defined in (16). Furthermore, this numerical solution uniformly
converges to y(ζ)(yN (ζ) → y(ζ) as N → ∞). Also, the coefficients ci are
bounded, i.e.,

|ci| ≤ H

4i(i2 − 1)
. (23)

Lemma 4.2 [28]. Let f(ζ) be a function such that f(k) = ck and assume the
following:

1. f(ζ) is a continuous, decreasing, positive function for ζ ≥ N .
2.

∑
cN is convergent, and RN =

∑∞
k=N+1 ck.

Then
RN ≤

∫ ∞

N

f(ζ)dζ. (24)

Theorem 4.3 [25]. If Theorem (4.1) is satisfied by the function y(ζ), and
yN (ζ) =

∑n
i=0 ciV L∗

i (ζ), then the estimated error(in L
2[0, 1] norm) can be given

as:
||y(ζ) − yN (ζ)|| <

H

12N
3
2
. (25)

5 Numerical Examples

We provide the following test examples in this section to validate the accuracy
and efficiency of the proposed method.

Example 5.1. Let us consider the eighth order differential equation as

d8y

dζ8
+ ζy = −(48 + 15ζ + ζ3)eζ , ζ ∈ [0, 1]. (26)

with

y |ζ=0= 0,
dy

dζ
|ζ=0= 1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= −3,

y |ζ=1= 0,
dy

dζ
|ζ=1= −e,

d2y

dζ2
|ζ=1= −4e,

d3y

dζ3
|ζ=1= −9e.
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Apply our proposed method as follows

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (27)

Now using operational matrix of derivative approach

d8yN

dζ8
= CT D(8)Φ(ζ), (28)

where

D(1) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0
6 0 12 0 0 0 0 0 0
0 16 0 16 0 0 0 0 0
10 0 20 0 20 0 0 0 0
0 24 0 24 0 24 0 0 0
14 0 28 0 28 0 28 0 0
0 32 0 32 0 32 0 32 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D(8) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1321205760 0 0 0 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

Φ(ζ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2

4ζ − 2

2 − 16ζ + 16ζ2

−2 + 36ζ − 96ζ2 + 64ζ3

2 − 64ζ + 320ζ2 − 512ζ3 + 256ζ4

−2 + 100ζ − 800ζ2 + 2240ζ3 − 2560ζ4 + 1024ζ5

2 − 144ζ + 1680ζ2 − 7168ζ3 + 13824ζ4 − 12288ζ5 + 4096ζ6

−2 + 196ζ − 3136ζ2 + 18816ζ3 − 53760ζ4 + 78848ζ5 − 57344ζ6 + 16384ζ7

2 − 256ζ + 5376ζ2 − 43008ζ3 + 168960ζ4 − 360448ζ5 + 425984ζ6 − 262144ζ7 + 65536ζ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Substituting these values in Eq. (26), we get residual function as:

RN (ζ) = CT D(8)Φ(ζ) + ζ(CT Φ(ζ)) + (48 + 15ζ + ζ3)eζ . (29)

Now using the collocation method, we get

c0 − c2 + c4 − c6 + 2642411521c8 +
445

√
e

8
= 0. (30)
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and from the boundary conditions, we have

CT Φ(0) = 0, CTD(1)Φ(0) = 1, CTD(2)Φ(0) = 0, CTD(3)Φ(0) = −3, (31)

CT Φ(1) = 0, CTD(1)Φ(1) = −e, CTD(2)Φ(1) = −4e, CTD(3)Φ(1) = −9e.
(32)

On solving Eqs. (30) together with (31) and (32), we get the values of unknown
coefficients and which leads to the required solution as

yN (ζ) = 4.20 × 10−17 + ζ + 8.32 × 10−17ζ2 − 0.49ζ3 + · · · − 0.002ζ8. (33)

Example 5.2. Consider the following eighth order differential equation

d8y

dζ8
+

d7y

dζ7
+2

d6y

dζ6
+ 2

d5y

dζ5
+ 2

d4y

dζ4
+ 2ζ

d3y

dζ3
+ 2

d2y

dζ2
+ ζ2 dy

dζ
+ ζy(ζ)

= − (ζ4 − 2ζ3 + 14ζ − 27) cos ζ − (3ζ3 − 13ζ2 + 11ζ + 17) sin ζ, ζ ∈ [0, 1].

with

y |ζ=0= 0,
dy

dζ
|ζ=0= −1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= 7,

y |ζ=1= 0,
dy

dζ
|ζ=1= 2 sin 1,

d2y

dζ2
|ζ=1= 4 cos 1 + 2 sin 1,

d3y

dζ3
|ζ=1= 6 cos 1 − 6 sin 1.

Similarly, using the approximation

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (34)

which gives the required solution as

yN (ζ) = 3.95 × 10−18 − ζ − 5.50 × 10−17ζ2 + 1.16ζ3 + · · · − 0.0006ζ8. (35)

Example 5.3. The eighth order differential equation is considered as

d8y

dζ8
+

d7y

dζ7
+ 2

d6y

dζ6
+ 2

d5y

dζ5
+ 2

d4y

dζ4
+ 2ζ

d3y

dζ3
+ 2

d2y

dζ2
+

dy

dζ
+ y(ζ)

= 14 cos ζ − 16 sin ζ − 4ζ sin ζ, ζ ∈ [0, 1].

with conditions

y |ζ=0= 0,
dy

dζ
|ζ=0= −1,

d2y

dζ2
|ζ=0= 0,

d3y

dζ3
|ζ=0= 7,

y |ζ=1= 0,
dy

dζ
|ζ=1= 2 sin 1,

d2y

dζ2
|ζ=1= 4 cos 1 + 2 sin 1,

d3y

dζ3
|ζ=1= 6 cos 1 − 6 sin 1.

For

yN (ζ) =
9∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (36)

Hence, the required solution are obtained as

yN (ζ) = 1.73 × 10−18 − ζ − 1.94 × 10−16ζ2 + 1.16ζ3 + · · · − 0.00082ζ8. (37)
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Example 5.4. Assume the nonlinear eighth order differential equation as

d8y

dζ8
= e−ζy2(ζ), ζ ∈ [0, 1].
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Fig. 1. Solution curves for (a) Example 5.1, (b) Example 5.2, (c) Example 5.3 and (d)
Example 5.4.

with supplementary conditions

y |ζ=0= 1,
dy

dζ
|ζ=0= 1,

d2y

dζ2
|ζ=0= 1,

d3y

dζ3
|ζ=0= 1,

y |ζ=1= e,
dy

dζ
|ζ=1= e,

d2y

dζ2
|ζ=1= e,

d3y

dζ3
|ζ=1= e.

Let

yN (ζ) =
11∑

j=0

cjVL∗
j (ζ) = CTΦ(ζ). (38)

Which leads to the desired solution as

yN (ζ) = 5.58×10−17 −0.99ζ −1.14×10−16ζ2 −0.49ζ3 + · · ·−0.000041ζ8. (39)
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6 Results and Discussions

Figure 1a, 1b, 1c and 1d demonstrates the solution plots of the exact solution
and approximate solution (yN (ζ)) obtained from the proposed numerical scheme
for Example 5.1, 5.2, 5.3 and 5.4 respectively. It is observed from the figure that
the approximate solution is in good agreement with the exact solution. Which
signifies that the proposed numerical scheme is capable to solve the problem
effectively.
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Fig. 2. Absolute error plots for (a) Example 5.1, (b) Example 5.2, (c) Example 5.3
and (d) Example 5.4.

Figure 2a, 2b, 2c and 2d depicts the absolute error plots on the interval [0, 1]
for Example 5.1, 5.2, 5.3 and 5.4 respectively. Which shows that the order of
error is less and the error is bounded in the interval [0, 1] that clearly represents
the reliability of the proposed numerical scheme.

Table 1 compares the absolute errors obtained by the proposed method and
from the other existing methods. From Table 1, it is observed that the proposed
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Table 1. Absolute error comparisons for Example 5.1, Example 5.2, Example 5.3 and
Example 5.4.

Example 5.1

ζ Exact Solution Viswanadham [29] Elahi et al. [13] | y(ζ) − yN(ζ) |
0.1 0.09946 5.21 × 10−8 1.44 × 10−7 5.55 × 10−9

0.2 0.19542 2.22 × 10−6 1.45 × 10−6 3.57 × 10−8

0.3 0.28347 7.00 × 10−6 4.38 × 10−6 4.55 × 10−8

0.4 0.35803 1.11 × 10−5 7.59 × 10−6 2.79 × 10−8

0.5 0.41218 1.22 × 10−5 9.06 × 10−6 1.60 × 10−7

0.6 0.43730 8.88 × 10−6 7.81 × 10−6 2.47 × 10−7

0.7 0.42288 2.53 × 10−6 4.64 × 10−6 2.11 × 10−7

0.8 0.35608 1.81 × 10−6 1.58 × 10−6 9.44 × 10−8

0.9 0.22136 2.04 × 10−6 1.61 × 10−7 1.18 × 10−8

Example 5.2

0.1 -0.09883 4.23 × 10−6 5.03 × 10−8 1.08 × 10−8

0.2 -0.19072 9.98 × 10−6 5.14 × 10−7 1.20 × 10−7

0.3 -0.26892 5.09 × 10−6 1.55 × 10−6 3.88 × 10−7

0.4 -0.32711 7.62 × 10−6 2.71 × 10−6 7.18 × 10−7

0.5 -0.35956 1.49 × 10−5 3.26 × 10−6 9.09 × 10−7

0.6 -0.36137 2.28 × 10−5 2.82 × 10−6 8.25 × 10−7

0.7 -0.32855 2.27 × 10−5 1.68 × 10−6 5.14 × 10−7

0.8 -0.25824 1.94 × 10−5 5.77 × 10−7 1.83 × 10−7

0.9 -0.14883 1.32 × 10−5 5.88 × 10−8 1.93 × 10−8

Example 5.3

0.1 -0.09883 3.79 × 10−7 5.03 × 10−8 3.98 × 10−9

0.2 -0.19072 2.14 × 10−6 5.14 × 10−7 2.86 × 10−8

0.3 -0.26892 5.63 × 10−6 1.55 × 10−6 5.22 × 10−8

0.4 -0.32711 9.74 × 10−6 2.71 × 10−6 3.40 × 10−8

0.5 -0.35956 1.13 × 10−5 3.26 × 10−6 2.36 × 10−8

0.6 -0.36137 1.01 × 10−5 2.82 × 10−6 7.32 × 10−8

0.7 -0.32855 7.27 × 10−6 1.68 × 10−6 7.35 × 10−8

0.8 -0.25824 3.87 × 10−6 5.77 × 10−7 3.48 × 10−8

0.9 -0.14883 1.43 × 10−6 5.88 × 10−8 4.48 × 10−9

Example 5.4

ζ Exact Solution Bernstein poly. [14] Legendre poly. [14] | y(ζ) − yN(ζ) |
0.1 1.10517 5.43 × 10−7 8.54 × 10−6 8.57 × 10−11

0.2 1.22140 7.34 × 10−7 1.73 × 10−6 5.75 × 10−10

0.3 1.34986 9.54 × 10−7 1.33 × 10−6 8.60 × 10−10

0.4 1.49182 1.73 × 10−7 2.97 × 10−6 8.45 × 10−12

0.5 1.64872 4.99 × 10−8 9.49 × 10−7 1.78 × 10−9

0.6 1.82212 2.40 × 10−7 1.24 × 10−6 3.05 × 10−9

0.7 2.01375 4.30 × 10−8 9.54 × 10−6 2.70 × 10−9

0.8 2.22554 7.75 × 10−7 7.75 × 10−7 1.22 × 10−9

0.9 2.45960 3.20 × 10−7 2.32 × 10−6 1.55 × 10−10
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numerical method provides less error in comparison to the other existing meth-
ods. Thus, it clearly demonstrates the accuracy and efficiency of the proposed
numerical scheme.

7 Conclusion

In this work, we presented a reliable strategy for solving eighth order boundary
value problems numerically. Based on a class of shifted VLPs, this approach
is developed. The operational matrix of derivative of shifted VLPs are used to
formulate the numerical scheme. From the illustrative examples, it is observed
that the method is efficient for solving linear/nonlinear eighth order BVPs effec-
tively. The resulting findings are also compared to the previous results, which
show good agreement. Which demonstrates the efficiency and reliability of the
proposed approach.
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Abstract. The theory of wavelet analysis is used to characterize func-
tions and distribution spaces intrinsically. It is a field that is constantly
evolving and is a mathematical approach widely used for many applica-
tions. Recently, the theory of Mexican hat wavelet transform (MHWT)
on distributions and its properties are derived by Pathak et al. [10]. Fur-
ther, Singh et al. [18] constructed Representation theorems for the same
transform with some applications.

In this chapter, we study the Mexican hat wavelet transform (MHWT)
to the space of generalized quotients with its operational properties and
applications. We extend MHWT as a continuous linear map between the
spaces of generalized quotients. An inversion and a characterization the-
orem for the MHWT of generalized quotients are also discussed. Further,
Mexican hat wavelet transformation is defined on the space of tempered
generalized quotients by employing the structure of exchange property.
We study the exchange property for the Mexican hat wavelet trans-
form by applying the theory of the Mexican hat wavelet transform of
distributions. Furthermore, different properties of Mexican hat wavelet
transform are discussed on the space of tempered generalized quotients
with applications.
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1 Introduction

The field of wavelet has lately drawn a substantial amount of attention from
mathematical scientists from domains of different subject areas. That is form-
ing a generic bond among physicists, mathematicians, and electrical engineers.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 82–99, 2023.
https://doi.org/10.1007/978-3-031-29959-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29959-9_5&domain=pdf
https://doi.org/10.1007/978-3-031-29959-9_5


The Mexican Hat Wavelet Transform on Generalized Quotients 83

The topic of wavelets has always been a prevalent cause of discussion in numer-
ous engineering and scientific gatherings at present. Few considered wavelets as
a unique basis for representing functions, others view it as a method for the
analysis of time-frequency, and rest believe that it is an advanced topic of math-
ematics. Indeed, all of these theories are correct, given the fact that “wavelets”
are flexible mechanisms that are extremely rich in mathematical scope and have
a significant number of applications.

Wavelets are the latest area in the frontiers of mathematics, signal process-
ing, image processing, and scientific computing. It is a versatile tool in every
aspect of mathematical context and possesses great potential for applications,
as wavelets can be viewed as a unique basis for representing functions for time-
frequency analysis. The theory of Fourier analysis is well established and popular
subject at the core of pure and applied mathematical analysis. The basic build-
ing blocks of the Fourier transform (complex exponentials: ei2πtu) oscillate over
all of the time (−∞ < t < ∞). As a result, it is difficult for the Fourier trans-
form to represent signals that are localized in time. Thus, it fails to accumulate
information that varies with time. As it does not provide the time at which
frequency exists hence, it is only ideal for stationary signals. Hence, Fourier
methods are not very effective in recapturing the non-smooth signal. In these
cases, wavelet analysis is often very efficient, as it presents a simple approach for
dealing with the local aspects of a signal. For the last two decades, the advance-
ment of wavelet transform in the field of signal analysis is expanding making
it an important mathematical tool. The main reason is wavelet transform can
represent a function of the time domain in a time-frequency plane. Therefore, it
works as a frequency and time localization operator. Also, wavelets can change
according to time intervals to obtain high and low-frequency components. Hence,
enhancing the study of signal analysis with localized impulses and oscillations.
In particular, wavelet analysis is efficient in extracting noise from signals that
complement the classical methods of Fourier analysis. Wavelet analysis has been
one of the major research directions in both pure and applied mathematics and
is still undergoing rapid growth.

The wavelets were developed mostly during the last three decades and are
associated with the classical theories of different disciplines, including pure and
applied mathematics and engineering. The theory of wavelets can be seen as syn-
theses of different ideas that started from various areas, including physics (coher-
ent states formalism in quantum mechanics), mathematics (Calderòn Zygmund
operators and Littlewood - Paley theory), and engineering (in signal and image
processing). The mathematical interpretation of the wavelet transform started
in the year 1985 when Y. Meyer discovered the results given by Morlet and the
Marseille group. He noticed a link of Morlet’s algorithm to the resolution of iden-
tity in the harmonic analysis due to A. Calderón in 1964. Therefore, Meyer built
the mathematical foundation of wavelet analysis and hence may be regarded as
the founder of it. He still actively promotes the field of wavelet analysis as an
interdisciplinary area of research. Recently, applications of wavelet analysis have
been extended across various fields of mathematics, physics, computer science,
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and engineering. The term wavelet refers to a short wave. This indicates that
every wavelet is localized and has to have at least some oscillations. Wavelets
were introduced to represent functions more efficiently than the Fourier series.
Further, wavelets comprise a family which contains functions indexed by two
parameters, one for scaling and the other for positioning. They are developed
from one single function called the mother wavelet. A function ψ is called wavelet
if it satisfies ∫ ∞

−∞
ψ(t)dt = 0. (1.1)

This condition indicates that ψ switches sign in (−∞,∞), and it fades at ±∞.
By applying position and scaling parameters on the basic function ψ ∈ L2(R),
the wavelet ψb,a(t) is defined by

ψb,a(t) = (
√

a)−1ψ

(
t − b

a

)
, t ∈ R, (1.2)

where the normalizing factor (
√|a|)−1 ensures that ||ψb,a(x)|| is independent

of the position parameter b and scaling parameter a. Also, ψb,a(t) is called the
mother wavelet and it satisfies the admissibility condition given by [9] as follows:

Cψ =
∫ ∞

−∞

|ψ̂(u)|2
|u| du < ∞. (1.3)

The wavelet is called admissible if Cψ < ∞. Therefore,

Ψ(0) =
∫ ∞

−∞
ψ(t)dt = 0. (1.4)

The wavelet ψ(t) acts as a impulse response of a band-pass filter that decays
as fast as |t|1−ε. Practically, the wavelet ψ(t) should decay much faster to pro-
vide good time-localization. The mother wavelet emerges as a local oscillation
such that the energy of each oscillation in the physical space is discovered in the
limited province. Then by the uncertainty principle, the positioning of the func-
tion in the physical space restricts the positioning in the frequency domain. The
dilation or scaling parameter ‘a’controls the width and the frequency of ψb,a(t).
The position or translation parameter ‘b’relocates the wavelet across the whole
domain and is beneficial for identifying the location of the wavelets.

The wavelet transform of φ ∈ L2(R), with respect to (1.2), is defined by [9]

(Wφ)(b, a) =
∫
R

φ(t)ψb,a(t)dt, t, b ∈ R, a > 0. (1.5)

and the inversion for (1.5) is given by

φ(x) =
2

Cψ

∫ ∞

0

[∫ ∞

−∞

1√
a
(Wφ)(b, a)ψ

(
x − b

a

)
db

]
da

a2
, x ∈ R, (1.6)
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where,

Cψ

2
=

∫ ∞

0

|ψ̂(v)|2
|v| dv =

∫ ∞

0

|ψ̂(−v)|2
|v| dv < ∞ [3, p. 64]. (1.7)

If (1.5) exists, then (Wφ)(b, a) maps each square integrable function φ on R to
wavelet transform function W on R × R+. Therefore, from (1.5),

(Wφ)(b, a) = (φ ∗ ha,0)(b), (1.8)

where h(t) = ψ̄(−t).
If φ ∈ Lp(R) and ψ ∈ Lq(R), then

φ ∗ ha,0(b) ∈ Lr(R),
1
p

+
1
q

=
1
r

+ 1. (1.9)

Now, applying Fourier transform to (1.8), we get

(Wφ)(b, a) =
|a|1/2

(2π)

∫
R

eiωbψ̂(aω)φ̂(ω)dω (1.10)

=
|a|1/2

(2π)
F−1

[
φ̂(ω)ψ̂(aω)

]
(b, a).

Hence,
F [(Wφ)(b, a)] (ω) = |a|1/2φ̂(ω)ψ̂(aω). (1.11)

This relation holds in general, for φ ∈ Lp(R) and ψ ∈ Lq(R), where
1
p

+
1
q

=

1
r

+ 1; 1 ≤ p, q, r ≤ 2.

The Mexican hat wavelet is constructed by taking the negative normalized
second derivative of a Gaussian function which, up to scale and normalization,
is the second Hermite function. It is a special case of the family of continuous
wavelets known as Hermitian wavelets and is defined by [10,29]

ψ(t) = e−( t2
2 )(1 − t2) = − d2

dt2
e−( t2

2 ) (1.12)

such that

ψb,a(t) = −a
3
2 D2

t e− (b−t)2

2a2 ,

(
Dt =

d

dt

)
. (1.13)

Thus, the wavelet transform (1.5) can be written as:

(Wφ)(b, a) = −a
3
2

∫
R

φ(t) D2
t e− (b−t)2

2a2 dt, a > 0 (1.14)

which then, under certain conditions on φ is

(Wφ)(b, a) = −a
3
2

∫
R

φ(2)(t) e− (b−t)2

2a2 dt, a > 0. (1.15)
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From the above two equations, the MHWT can also be considered as the Weier-
strass transform of D2

t φ(t) = φ(2)(t). Hence, we may infer various properties of
MHWT from the known theory of the Weierstrass transform. The distributional
Weierstrass transform has been studied in [8]. For a suitable space of generalized
functions (W γ

α,β)
′
the generalized MHWT is given by [10]

(Wφ)(b, a) = −a
3
2

〈
φ(t), D2

t exp

(
− (b − t)2

2a2

)〉
,

α

γ
< Re b <

β

γ
. (1.16)

A function k(b, a) is defined by

k(b, a) =
1√
2πa

e

(
−b2
2a

)
, (1.17)

where a ∈ (0,∞) and b = σ + iω. Then

D2
t k(b − t, a2) =

1√
2πa

D2
t

(
e

−(b−t)2

2a2

)
. (1.18)

Therefore, by (1.13)

ψb,a(t) = −(2π)
1
2 a

5
2 D2

t k(b − t, a2)

and (Wφ)(b, a) = (2π)
1
2 a

5
2

∫
R

φ(t) D2
t k(b − t, a2) dt. (1.19)

The most general theory of the MHWT is investigated on the generalized func-
tion space (W γ

α,β)
′
developed by Pathak et al. [10]. It is proved that the MHWT

(Wφ)(b, a) of φ ∈ (W γ
α,β)

′
, is given by 〈φ(2)(t), ka2(b − t)〉 is an analytic function

in the strip α
γ < Re b < β

γ for some α, β, γ ∈ R. Therefore, it follows that the

MHWT of φ ∈ (W γ
α,β)

′
is an entire function and hence its restriction to the real

axis is in C∞(R) and further this restriction uniquely determines the analytic
function (Wφ)(b, a). For our purposes the MHWT of φ denotes this restriction
only.

1.1 Generalized Quotients

In recent years the theory of distributions or generalized functions is at its peak
bringing a great revolution in mathematical analysis. In 1935, Sergei L. Sobolev
derived the theory of generalized functions while working on the second-order
hyperbolic partial differential equations. But in the 1950s, L. Schwartz intro-
duced the concept of distributions that opened a new area of mathematical
research [28]. This concept supported the development of several mathematical
disciplines, such as transformation theory, operational calculus, ordinary and
partial differential equations, and functional analysis. Another approach for this
theory was given by S. Bochner around 1930s, to generalize the Fourier trans-
formation for functions f(t) that grow as t approaches infinity. The concept of
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distribution gives a better mechanism for analysing various entities, such as the
delta function, which arise naturally in several mathematical sciences and which
can be corrected using distributions. The idea behind distribution is assign-
ing a function not by its values but by its behaviour as a functional on some
space of testing functions. Here the space of testing functions is represented by
D which contains all complex-valued functions that are infinitely smooth and
have compact support. A continuous linear functional on the space D is called a
distribution and space of all distributions is dual of the space D, denoted by D′.

In the theory of distributional analysis, differentiation is a continuous oper-
ation as every distribution has derivatives of all orders. Consequently, distribu-
tional differentiation commutes with different limiting processes such as integra-
tion and infinite summation. This is the contrast to classical analysis wherein
either such operations cannot be interchanged or the inversion of the order must
be justified by an additional argument. Though not very recently, yet during the
last five decades the theory of generalized functions and integral transforms has
been combined, which gave rise to fruitful results in the theory of integral trans-
forms associated with distributions, known as distributional transform analysis.
Recently, there were many applications of wavelet and other transforms in distri-
bution spaces [11–15,17]. Further, the investigation of the wavelet transform of
distributions, tempered distributions, and ultra-distributions has extended the
applications of the wavelet transform [7,19–21].

One of the recent generalizations of L. Schwartz’s theory of distributions is
the Mikusiński’s algebraic approach or the sequential approach, used to define
generalized quotient spaces (Boehmians). The theory of generalized quotients
in 1973 by T. K. Boehme, brought a new change in the theory of applicable
functional analysis [2]. The motivation for the development of the theory of gen-
eralized quotients lies in the core of regular operators, proposed by J. Mikusiński
and P. Mikusiński in [4–6], which form a subalgebra of the field of Mikusiński
operators.

The generalized quotients are defined by an abstract algebraic construction
which is the same as the construction of the field of quotients. Instead of the
normal quotients, here we use quotients of sequences where the numerator is a
sequence of some set G and the denominator is a delta sequence. This space of
generalized quotients includes all regular operators, all distributions, and some
objects which are neither operators nor distributions. Also, it is possible to con-
struct generalized quotients even if there are zero divisors, such as the space of all
continuous functions, say C. Application of this construction to function spaces
with the convolution product provides different spaces of generalized functions.
Therefore, different integral transforms have been defined for various spaces of
generalized quotients and their properties are investigated in [1,16,22–25].

In the next section, we discuss some of the basic results required for the
investigation of MHWT on the generalized quotient space. Also we show the
MHWT becomes a continuous linear map from one space of generalized quotient
into another. The operational properties of MHWT and an inversion formula
in the context of generalized quotients is also discussed in this section. In the
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last section, we deals with Mexican hat wavelet transformation on the space of
tempered generalized quotients by employing the structure of exchange property.
Furthermore, different properties of Mexican hat wavelet transform are discussed
on the space of tempered generalized quotients with applications.

2 The Mexican Hat Wavelet Transform (MHWT)
on the Space H

Now, we take suitable generalized quotient spaces on which the MHWT can be
derived. The construction of the space B(C∞,Δ) is given by Pathak [8] and the
construction of B(H,Δ) is as follows:

Let the space H consists of functions φ ∈ C∞ such that

sup
x∈R

e
−x2
2 ρ−1

p,q(x) |φ(x)| ≤ M(p, q) for all − ∞ < p < 0 < q < ∞,

where ρp,q(x) =

{
e

−px
2 , x < 0

e
−qx
2 , x ≥ 0

and M(p, q) is a constant which depends on p and q. The nth semi norm for
N = 0, 1, 2, ... on H is defined as,

‖φ‖N = sup
x∈R

|e−x2
2 ρ−1

−N,N (x)φ(x)|, (2.1)

where H becomes a Fréchet space under the above mentioned family of semi
norms. A sub semi group of H, denoted by S is taken as a testing function space
i.e., S = D and let Δ be a class of sequences (δn) from D which satisfies the
following conditions:

(i)
∫
R

δn = 1,
(ii)

∫
R
|δn| ≤ M,

(iii) supp δn → 0 as n → ∞.

The set of all continuous linear functionals defined on D is denoted by D′.
Now we consider the Mexican hat wavelet transform of the function φ(t) as

the convolution of φ(2)(t) with the function ka2(b). Hence, the classical inverse
wavelet transform will produce the second derivative of the function φ(t). If
φ(t), ϕ(t) ∈ H, then the convolution product φ ∗ ϕ is given by

(φ ∗ ϕ)(x) =
∫
R

φ(u)ϕ(x − u)du. (2.2)

The MHWT of φ ∈ H, is given by,

(Wφ)(b, a) = (2π)
1
2 a

5
2 (φ(2) ∗ ka2)(b) (2.3)

= (2π)
1
2 a

5
2

∫
R

φ(2)(t)ka2(b)dt, b ∈ C, a ∈ R
+,

where ka2(b) = k(b − t, a2) = 1√
2πa

e
−(b−t)2

2a2 .
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Theorem 1. For a function φ ∈ H and t ∈ R,

(Wφ)(b, a) = (2π)
1
2 a

5
2 (φ(2) ∗ ka2)(b) = (2π)

1
2 a

5
2 lim

n→∞((φ(2) ∗ ka2) e− t2
2n )(b).

Proof. Consider,

(2π)
1
2 a

5
2 lim

n→∞((φ(2) ∗ka2) e− t2
2n )(b) = (2π)

1
2 a

5
2 lim

n→∞

∫
R

φ(2)(t) k(b− t, a2) e− t2
2n dt

= a
3
2 lim

n→∞

∫
R

φ(2)(t) e− (b−t)2

2a2 e− t2
2n dt

= a
3
2

∫
R

φ(2)(t)e− (b−t)2

2a2 dt,

(by Lebesgue dominated convergence theorem).
Therefore,

(Wφ)(b, a) = (2π)
1
2 a

5
2 lim

n→∞((φ(2) ∗ ka2) e− t2
2n )(b).

�
Theorem 2. For φ ∈ W ′

(−∞,∞) and ϕ ∈ D, we have

(W (φ ∗ ϕ))(b, a) = (Wφ)(b, a) ∗ ϕ.

Theorem 3. Let φ
(2)
n → φ(2) uniformly as n → ∞ in H, then (Wφn)(b, 1) →

(Wφ)(b, 1) as n → ∞, for b = σ + iω.

Lemma 1. Let φ, g ∈ H such that (Wφ)(b, a) = (Wg)(b, a), then φ(2) = g(2) in
H.

Proof. The proof is similar to [[27], Lemma 4.4.4], in the case of Weierstrass
transform. �

Definition 1. Let X =
[

φn

ϕn

]
∈ B(H,Δ), then the MHWT of X as a general-

ized quotient is defined by,

Y = (WX)(b, a) =
[
(Wφn)(b, a)

ϕn

]
.

It is well defined since, if X =
[

φn

ϕn

]
= Y =

[
gn

ψn

]
in B(H,Δ), then

φm ∗ ψn = gn ∗ ϕm ∀m,n ∈ N

(W (φm ∗ ψn))(b, a) = (W (gn ∗ ϕm))(b, a)
(Wφm)(b, a) ∗ ψn = (Wgn)(b, a) ∗ ϕm (by Theorem 2)[

(Wφn)(b, a)
ϕn

]
=

[
(Wgn)(b, a)

ψn

]
.
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Theorem 4. For φ ∈ W ′
(−∞,∞), Definition 3 is consistent with the classical

definition.

Proof. By considering the map φ →
[

φ∗δn

δn

]
, any φ ∈ W ′

(−∞,∞) can be
considered as an element of B(H,Δ) by [27, Theorem 4.3.9], i.e.,
if X =

[
φ∗δn

δn

]
, then

(WX)(b, a) =
[
W (φ ∗ δn)(b, a)

δn

]
=

[
(Wφ)(b, a) ∗ δn

δn

]
= (Wφ)(b, a).

�

3 Operational Properties

This section introduces the operational properties of the MHWT on general-
ized quotient space. Further, through inversion it is shown that the generalized
quotient in B(H,Δ) approximates to a function in C∞ in a distributional sense.

Theorem 5. (i) For X,Y ∈ B(H,Δ), X +Y ∈ B(H,Δ) and (W (X +Y ))(b, a)
= (WX)(b, a) + (WY )(b, a).

(ii) For X ∈ B(H,Δ) and α(�= 0) ∈ C, αX ∈ B(H,Δ)
and (W (αX))(b, a) = α(WX)(b, a).

Theorem 6. For X ∈ B(H,Δ) andψ ∈ D, (W (X ∗ ψ))(b, a) = (WX)(b, a) ∗ ψ.

Proof. Let X =
[

φn

ϕn

]
∈ B(H,Δ) and ψ ∈ D, then

X ∗ ψ =
[
φn ∗ ψ

ϕn

]
∈ B(H,Δ). (3.1)

Thus,

(W (X ∗ ψ))(b, a) =
[
(W (φn ∗ ψ))(b, a)

ϕn

]

=
[
(Wφn)(b, a) ∗ ψ

ϕn

]

=
[
(Wφn)(b, a)

ϕn

]
∗ ψ

= (WX)(b, a) ∗ ψ.

�
Now, we show that the MHWT on B(H,Δ) is continuous in the sense that it
carries δ-convergent sequences onto δ-convergent sequences.
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Theorem 7. Let (Xn) be a sequence of generalized quotients such that Xn
δ−−→

X in B(H,Δ), then (WXn)(b, 1) δ−−→ (WX)(b, 1) in B(C∞,Δ).

In the next theorem we show the inversion of the MHWT of generalized
quotients belonging to the space B(H,Δ).

Theorem 8. Let Y =
[

gn

ϕn

]
∈ B(C∞,Δ) be such that Y = (WX)(b, a) for

some X ∈ B(H,Δ). Then X =
[

φn

ϕn∗ϕn

]
where φn’s are defined as follows:

φn,k(t) =
1√
2π

∫ k

−k

gn(iy, a)k(y + it, a) dy

and F (2)
n = limk→∞φn,k,

where the limit is taken in D′, then φn = Fn ∗ ϕn.

The next theorem indicates the characterization of MHWT for generalized
quotients on compact subsets of R.

Theorem 9. A generalized quotient Y =
[

gn

ψn

]
in B(C∞,Δ) is the MHWT of

a generalized quotient X =
[

φn

ϕn

]
in B(H,Δ) if and only if for each n, gn can

be extended as an entire function satisfying |gn(b, a)| ≤ Cne
ω2
2 Pn(|ω|), where

b = σ + iω as σ varies on compact subsets of R and Pn(|ω|) is a polynomial
in |ω| depending on both n and on the compact set in which σ varies.

Proof. Let Y = (WX)(b, a), then by applying Mexican hat wavelet transform
on Theorem 1.3.15 of [27],

|gn(b, a)| ≤ Cne
ω2
2 Pn(|ω|) for every n ∈ N. (3.2)

Conversely, let gn can be extended as an entire function which satisfies (3.2)
for every n ∈ N, and by the same Theorem there exists, hn ∈ W ′

(−∞,∞) such
that (Whn)(b, a) = gn . Since hn ∈ W ′

(−∞,∞) and ψn ∈ Δ, therefore, by
Lemma 4.3.8 of [27], hn ∗ ψn ∈ G.

Now, put φn = hn ∗ ψn and ϕn = ψn ∗ ψn so that φn ∈ H and (ϕn) ∈ Δ.
Clearly, φn

ϕn
is a quotient in B(H,Δ), as gn

ψn
is a quotient in B(H,Δ).
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Also, gn = (Whn)(b, a), i.e., X =
[

φn

ϕn

]
∈ B(H,Δ) and

(WX)(b, a) =
[
(Wφn)(b, a)

ϕn

]

=
[
W (hn ∗ ψn)(b, a)

ψn ∗ ψn

]

=
[
(Whn)(b, a) ∗ ψn

ψn ∗ ψn

]

=
[

gn ∗ ψn

ψn ∗ ψn

]

=
[

gn

ψn

]

= Y.

�

4 The Exchange Property

In this section, the space of tempered generalized quotients is constructed by
applying the exchange property. This construction for generalized quotients indi-
cates that the role of convergence is not necessary.

Let the space of rapidly decreasing smooth functions on R
n and R

n ×R+ be
denoted by S (Rn) and S (Rn×R+). The dual of S is the space of tempered dis-
tributions, represented by S ′. The spaces S and S ′ have been introduced and
developed in [1]. The class S ′ of t empered distributions is contained in (W γ

α,β)
′
.

Therefore the Mexican hat wavelet transform theory can be made applicable to
S ′. Further, the Mexican hat wavelet transform can be expanded to the space of
tempered generalized quotient, as the space is a natural expansion of tempered
distributions. In this paper, we extend the Mexican hat wavelet transformation
to a class of generalized quotient space that have quotients of sequences in the
form of φn/ϕn, where the numerator contains terms of the sequence from some
set S ′ and the denominator is a delta sequence such that it satisfies the following
condition

φn ∗ ϕm = φm ∗ ϕm, ∀m,n ∈ N. (4.1)

Further, the delta sequences are defined as sequences of functions {ϕn} ∈ S
such that

1.
∫
Rn ϕn(x)dx = 1 for all n = 1, 2, 3, · · ·.

2. There exists a constant C > 0 such that
∫
Rn

|ϕn(x)| dx ≤ C for all n = 1, 2, 3, · · · .

3. limn→∞
∫

‖x‖≥ε
‖x‖k |(ϕj(x))| dx = 0 for every k ∈ N and ε > 0.
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In particular, we extend the transformation to generalized quotient space by
defining an exchange property for the Mexican hat wavelet transform. We dis-
cuss some of the basic results required for the investigation of MHWT on the
generalized quotient space. Further, we describes some algebraic properties of
MHWT in the context of tempered generalized quotients.

Theorem 10. For a function φ ∈ S ′ and t ∈ R,

(Wφ)(b, a) = (2π)
1
2 a

5
2 (φ(2) ∗ ka2)(b) = (2π)

1
2 a

5
2 lim

n→∞((φ(2) ∗ ka2)e− t2
2n )(b).

Proof. Consider,

(2π)
1
2 a

5
2 lim

n→∞((φ(2) ∗ ka2)e− t2
2n )(b) = (2π)

1
2 a

5
2 lim

n→∞

∫
R

φ(2)(t)ka2(b)e− t2
2n dt

= a
3
2 lim

n→∞

∫
R

φ(2)(t)e− (b−t)2

2a2 e− t2
2n dt

= a
3
2

∫
R

φ(2)(t)e− (b−t)2

2a2 dt.

Therefore,
(Wφ)(b, a) = (2π)

1
2 a

5
2 lim

n→∞((φ(2) ∗ ka2)e− t2
2n )(b).

�
Theorem 11. For φ ∈ S

′
and ϕ ∈ S , we have

(W (φ ∗ ϕ))(b, a) = (Wf)(b, a) ∗ ϕ.

Proof. By using [[27], Lemma 4.3.8], (φ ∗ ϕ) ∈ S ′ and hence (W (φ ∗ ϕ))(b, a) is
defined. Also, by Theorem 10

(W (φ ∗ ϕ))(b, a) = (2π)
1
2 a

5
2 lim

n→∞(((φ(2) ∗ ϕ) ∗ ka2)e− t2
2n )(b).

Consider,

(2π)
1
2 a

5
2 (((φ(2) ∗ ϕ) ∗ ka2)e− t2

2n )(b) = (2π)
1
2 a

5
2

∫
R

(φ(2) ∗ ϕ)(t)k(b − t, a2)e− t2
2n dt

= a
3
2

∫
R

(φ(2) ∗ ϕ)(t)e− (b−t)2

2a2 e− t2
2n dt

= a
3
2

∫
R

〈φ(2)(s), ϕ(t − s)〉e− (b−t)2

2a2 e− t2
2n dt

= a
3
2

∫
R

〈φ(2)(s), ϕ(t − s)〉ψn(t)dt, (4.2)

where ψn(t) = e− (b−t)2

2a2 e− t2
2n .

By [10, Lemma 4.3], we have

a
3
2

∫ m

−m

〈φ(2)(s), ϕ(t−s)〉ψn(t)dt = a
3
2

〈
φ(2)(s),

∫ m

−m

ϕ(t − s)ψn(t)dt

〉
, ∀m > 0,
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which converges to

a
3
2

〈
φ(2)(s),

∫ m

−m

ϕ(t − s)ψn(t)dt

〉
as m → ∞,

Therefore,
∫ ∞

−∞
〈φ(2)(s), ϕ(t − s)〉e− (b−t)2

2a2 e− t2
2n dt =

〈
φ(2)(s),

∫ ∞

−∞
ϕ(t − s)ψn(t) dt

〉

= 〈φ(2)(s), (ϕ ∗ ψn)(s)〉. (4.3)

Let us now consider,

(2π)
1
2 a

5
2 ((φ(2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫
R

(φ(2) ∗ ka2)(b − t)ϕ(t) dt

= (2π)
1
2 a

5
2

∫ M

−M

〈φ(2)(s), ka2(b − t − s)〉ϕ(t) dt,

where supp ϕ ⊆ [−P, P ]. Now by [10, Lemma 4.3],

(2π)
1
2 a

5
2 ((φ(2) ∗ ka2) ∗ ϕ)(b) = (2π)

1
2 a

5
2

∫ M

−M

〈φ(2)(s), ka2(b − t − s)〉ϕ(t) dt

= (2π)
1
2 a

5
2

〈
φ(2)(s),

∫ ∞

−∞
ka2(b − t − s)ϕ(t) dt

〉

= (2π)
1
2 a

5
2

〈
φ(2)(s),

∫ ∞

−∞

1√
2πa

ψ(t − s)ϕ(t) dt

〉

= a
3
2

〈
φ(2)(s),

∫ ∞

−∞
ψ(t − s)ϕ(t) dt

〉

= a
3
2 〈φ(2)(s), (ϕ ∗ ψ)(s)〉. (4.4)

From (4.3) and (4.4), we obtain

(W (φ ∗ ϕ))(b, a) = (Wφ)(b, a) ∗ ϕ.

�
Definition 2. For a family {ϕj}j∈J , where ϕj ∈ S, we define

M

(
{ϕj}J

)
= {x ∈ R

n : ϕj(x) = 0, ∀j ∈ J} . (4.5)

A family of pairs {(φj , ϕj)}J , where φj ∈ S ′ and ϕj ∈ S, have the exchange
property if

φj ∗ ϕk = φk ∗ ϕj ,∀j, k ∈ J. (4.6)

Let set A denotes the collection of {(φj , ϕj)}J , where φj ∈ S ′(Rn) and ϕj ∈
S(Rn), ∀j ∈ J , with exchange property such that M

(
{ϕj}J

)
= ∅.
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Lemma 2. If M
({ϕj}J

)
= ∅ and M ({λk}K) = ∅, then M

(
{ϕj ∗ λk}J×K

)
=

∅.

Theorem 12. If {(φj , ϕj)}J ∈ A, then there exists a unique F ∈ S ′ (Rn × R+)
such that F is the Mexican hat wavelet transform of the family of functions
{(φj , ϕj)}J , i.e., F = (W{(φj , ϕj)}J ) .

Proof. Let us consider family of sequences {(φj , ϕj)}J ∈ A, where φj ∈ S ′(Rn)
and ϕ ∈ S , ∀j ∈ J, with exchange property such that for some ε > 0, we have
|ϕ(x)|> ε, ∀x ∈ M ({ϕj}J )c. Then, in some open neighborhood of x, we define

F =
(Wφj)

ϕj
. (4.7)

Case 1: We show that for some open neighborhood of x we have a quotient
F that is unique in that neighborhood, i.e., F does not depend on j ∈ J. Let
U and V be some open neighborhood of x such that |ϕj(x)|> ε, ∀x ∈ U and
|ϕk(x)|> ε, ∀x ∈ V. Then since {(φj , ϕj)} ∈ A, hence it satisfy the exchange
property and therefore,

φj ∗ ϕk = φk ∗ ϕj , ∀j, k ∈ J. (4.8)

Applying Mexican hat wavelet transform to (4.8), we get

(W (φj ∗ ϕk)) = (W (φk ∗ ϕj))
(Wφj) ∗ ϕk = (Wφk) ∗ ϕj (by Theorem 11)

(Wφj)
ϕj

=
(Wφk)

ϕk
. (4.9)

Hence, we get a unique quotient F =
(Wφj)

ϕj
on U ∩ V .

Case 2: We need to show that there exists a unique quotient F ∈ S ′(Rn ×R+).
From (4.7) and (4.9), for any j, k ∈ J, we have

(Wφk) = Fϕk, ∀k ∈ J (4.10)

such that there exists a unique F ∈ S ′(Rn ×R+) which implies exchange prop-
erty.

Clearly, for a total sequence, say {ϕj}N, where ϕj ∈ S(Rn) for all j ∈ N,
there is an φj ∈ S ′(Rn) such that (Wφj) = ϕjF. Hence, {(φj , ϕj)}N ∈ A and
F = (W ({(φj , ϕj)}N)). �
Lemma 3. For the family of pairs of sequences {(φj , ϕj)}J , {(gk, λk)}K ∈ A
has an Equivalence Relation, i.e., {(φj , ϕj)}J {(gk, φk)}K if

φj ∗ λk = gk ∗ ϕj , ∀j ∈ J, k ∈ K. (4.11)
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Theorem 13. Let {(φj , ϕj)}J , {(gk, λk)}K ∈ A. Then {(φj , ϕj)}J ∼
{(gk, λk)}K iff (W ({(φj , ϕj)}J )) = (W ({(gk, λk)}K)).

Proof. Let {(φj , ϕj)}J ∼ {(gk, λk)}K , hence, they satisfy the exchange property,
defined as

φj ∗ λk = gk ∗ ϕk, ∀j ∈ J, k ∈ K.

Let F and G denotes the Mexican hat wavelet transform of some family of
sequences such that F = (W ({(φj , ϕj)}J)) and G = (W ({(gk, λk)}K)). Now,
consider,

ϕjF ∗ λk = (Wφj) ∗ λk

= (W (φj ∗ λk))
= (W (gk ∗ ϕj))
= (Wgk) ∗ ϕj

= λkG ∗ ϕj .

Now, by applying Lemma 2, we get F = G.
Conversely, we need to show that the family of sequences {(φj , ϕj)}J and

{(gk, λk)}K are equivalent. Let us consider

F = G

=⇒ (Wφj) ∗ λk = (Wgk) ∗ ϕj

=⇒ (W (φj ∗ λk)) = (W (gk ∗ ϕj))
=⇒ φj ∗ λk = gk ∗ ϕj . (4.12)

Hence, {(φj , ϕj)}J ∼ {(gk, λk)}K . �
From the above theorem it is shown that there is an equivalence relation on

A and hence splits A into equivalence classes. The equivalence class contains the

generalized quotient
φn

ϕn
and is denoted by

[
φn

ϕn

]
. These equivalence classes are

called generalized quotients or Boehmians and the space of all such generalized
quotients is denoted by B.

Definition 3. Let X =
[

φn

ϕn

]
∈ B, then the MHWT of X as a generalized

quotient is defined by,

Y = (WX)(b, a) =
[
(Wφn)(b, a)

ϕn

]
.
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It is well defined since, if X =
[

φn

ϕn

]
= Y =

[
gn

ψn

]
in B, then

φm ∗ ψn = gn ∗ ϕm ∀m,n ∈ N

(W (φm ∗ ψn))(b, a) = (W (gn ∗ ϕm))(b, a)
(Wφm)(b, a) ∗ ψn = (Wgn)(b, a) ∗ ϕm (by Theorem 11)[

(Wφn)(b, a)
ϕn

]
=

[
(Wgn)(b, a)

ψn

]
.

Further, by considering the map φ →
[

φ∗δn

δn

]
, any φ ∈ W ′

(−∞,∞) can be

considered as an element of B by [27, Theorem 4.3.9], i.e., if X =
[

f∗δn

δn

]
, then

(WX)(b, a) =
[
W (φ ∗ δn)(b, a)

δn

]
=

[
(Wφ)(b, a) ∗ δn

δn

]
= (Wφ)(b, a).

This definition extends the theory of MHWT to more general spaces than
(W γ

α,β)
′
.

From Theorem 12 and Theorem 13, it is clear that the Mexican hat wavelet
transform is a bijection from the space of generalized quotients to the space of
distributions.

Theorem 14. For every X ∈ BS ′ (Rn) there exists a delta sequence (ϕn) such
that X = [{(φn, ϕn)}

N
] for some φn ∈ S ′(Rn).

Proof. Let (φn) ∈ S (Rn), be a delta sequence and X ∈ BS ′(Rn). Then, (WX) ∗
φn ∈ S ′, since (WX) ∈ S ′. Consequently, (WX) ∗ φn = (Wgn) for some
gn ∈ S ′. Therefore, we have

X =
[

gn ∗ φn

φn ∗ φn

]
. (4.13)

Hence, φn = (gn ∗ φn) ∈ S ′ and by using the property of delta sequences
φn ∗ φn ∈ S is a delta sequence. This completes the proof. �

5 Conclusions

Wavelet analysis is a field that is constantly evolving and is a mathematical
approach widely used for many applications. The Mexican hat wavelet trans-
form (MHWT) is considered to have one of the most appropriate wavelet basis
constructed by using Gaussian function. Therefore, it is symmetrical and sat-
isfies the Gaussian decays in both space and frequency, which helps to extract
data in the space-frequency window. The space of generalized quotients includes
regular operators, distributions, ultra-distributions and also objects which are
neither regular operators nor distributions. It may be concluded here that the
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space of tempered generalized quotient is constructed in a simple way by using
the exchange property.

In this chapter, the MHWT has been investigated explicitly on general-
ized quotient space and its operational properties are obtained with its inverse.
The characterization of the MHWT for generalized quotients is also achieved.
Further, the Mexican hat wavelet has one of the most appropriate wavelet
basis functions which is localized in both space and frequency, hence it can
give strong applications for the analysis of space-frequency and other digital
modulation. This generalized quotient space can be used to examine Mexican
hat wavelet transformation on various manifolds. Moreover, the results can be
applied to solving ordinary and partial differential equations, Cauchy problem,
mixed boundary value problems, approximation theory, mathematical modeling
and computation. Moreover, the aforesaid analysis can be used to obtain approx-
imation theory, mixed boundary value problems, and Paley-Wiener-Schwartz
theorem for the MHWT.
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I and II are republished by Actualitées Scientifiques et Industrilles, Herman & Cie,
Paris, (1957, 1959)

29. Srivastava, H.M., Singh, A., Rawat, A., Singh, S.: A family of Mexican hat wavelet
transforms associated with an isometry in the heat equation. Math. Methods Appl.
Sci. 44(14), 11340–11349 (2021)

https://doi.org/10.1007/s41478-022-00428-8
https://doi.org/10.1007/s41478-022-00428-8
https://doi.org/10.1007/s40010-021-00733-0
https://doi.org/10.1007/s40010-021-00733-0
https://doi.org/10.1007/s40010-016-0329-2


Second-Order Nonlinearity of a Boolean
Function Class with Low Spectra

Kezia Saini(B) and Manish Garg

Department of Mathematics, The LNM Institute of Information Technology,
Jaipur 302031, Rajasthan, India

{18pmt001,manishgarg}@lnmiit.ac.in

Abstract. In 2015, Cao and Hu (Cao, X., Hu, L.: Two boolean functions
with five-valued walsh spectra and high nonlinearity. International Jour-
nal of Foundations of Computer Science, pp. 537–556 (2015)) introduced
a certain class of Boolean functions, possessing low Walsh spectra, high
nonlinearity, and high algebraic degree. For this class of Boolean func-
tions, computation of higher-order nonlinearities (even second-order) is a
tedious task. Therefore, in this article, we study the lower bound on the
second-order nonlinearity of the above-mentioned class of Boolean func-
tions for n = 4. Also, we deduce that the bound, thus obtained is the
maximum possible bound. We also demonstrated that our lower bound
is greater than the lower bound on the second-order nonlinearity of other
classes of cubic Boolean functions.

Keywords: Boolean Functions · Walsh Hadamard Transform · Trace
Representation · Linearized Polynomial · Primitive Element

1 Introduction

For given n ∈ N, an n-variable Boolean function is a function from the finite
field F2n to one of its subfield F2, where F2n denotes an n-degree field extension
of a prime field of characteristic 2 i.e., F2. The set Bn collects all n-variable
Boolean functions. The Hamming distance between two functions f , g ∈ Bn,
denoted by d(f, g) is defined as |{x ∈ F2n : f(x) �= g(x)}|, where |E| gives
the cardinality of the set E. Further, the set or collection of n-variable Boolean
functions of algebraic degree at most r is known as the Reed-Muller code of
length 2n and order r, denoted by RM(r, n). For every integer r, 0 < r ≤ n,
the rth-order nonlinearity of a given Boolean function f ∈ Bn, nlr(f) is defined
as the minimum Hamming distance of f from all the functions of RM(r, n). For
r ranging from 1 to (n − 1), the sequence of values of nlr(f) is defined as the
nonlinearity profile of f .

The Boolean functions having high rth-order nonlinearity is preferred over
others when the security and design of symmetric cryptosystems are considered
since the Boolean functions having high rth-order nonlinearity can resist several

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 100–109, 2023.
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known attacks like best affine approximation attacks and linear cryptanalytic
attacks [4,5,18]. The nonlinearity of a Boolean function can be easily computed
using the algorithm of Fast Fourier Transform (FTT). On the contrary, not much
is known for nlr(f), for given f ∈ Bn, even for r = 2 since, there is no efficient
algorithm, for n > 11 for computing the second-order nonlinearities. Forquet
and Tavernier [6] have given the most effective algorithm, which works for the
case r = 2 and n ≤ 11 (and up to n ≤ 13 for some notable functions).

In the direction of computing the bounds on the second and third-order non-
linearities of different classes of cryptographic Boolean functions, several authors
have played their part, some of them being [7–9,11–15,17]. Thus, identifying and
studying the classes of Boolean functions possessing “good” nonlinearity profile
is a salient problem.

In 2015, Cao and Hu [1] have introduced a new class of n-variable Boolean
function with low Walsh spectra, high nonlinearity (near optimal) as well as high
algebraic degree given by,

fλ,μ(x) = Tr(λx2m+1) + Tr(x)Tr(μx2m−1) (1)

with n = 2m, λ ∈ F2n satisfying λ + λ2m

= 1 and μ ∈ F
∗
2m . Unlike other

Boolean functions (i.e, functions with a single trace term or sum of multiple
trace terms), computing the higher-order nonlinearity (even the second order
nonlinearity) of functions possessing the product of trace terms is computation-
ally a difficult task (even for a fixed number of variables n). In consideration of
the importance of studying Boolean functions for their nonlinearity profile, we
will further study functions (1) for their higher-order nonlinearity (in particular
second-order nonlinearity) for the case m = 2 and prove that the computed value
attains the maximum known Hamming distance, as mentioned in [6]. Also, we
will compare the computed result with the bounds on the second-order nonlin-
earity of other cubic Boolean functions provided by Tang et al. [16], and Garg
and Gangopadhyay [10], proving it to be better.

2 Preliminaries

In this section, we introduce some preliminary notations, definitions and results.
For n ∈ N, F

n
2 denotes an n-dimensional vector space over the field F2

and F
∗
2n , the multiplicative cyclic group consisting of invertible elements of

F2n . The Galois field F2n can be identified with the vector space F
n
2 over F2

because of the natural F2-vector space isomorphism between the two. Thus, an
n-variable Boolean function can also be viewed as a mapping F

n
2 → F2. The

support of an n-variable Boolean function f can be defined as {(x1, x2, ..., xn) ∈
F

n
2 |f(x1, x2, ..., xn) = 1}, denoted by supp(f). We define the Hamming weight

of a Boolean function f as wt(f) = |supp(f)|. A given Boolean function f ∈ Bn

can be uniquely expressed as a multivariate polynomial over F2 as follows
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f(x1, x2, ..., xn) =
∑

a=(a1,a2,...,an)∈F
n
2

νa(
n∏

i=1

xai
i )

where, νa ∈ F2. This form is known as the Algebraic Normal Form (ANF)
of f and it is useful in studying the algebraic properties of a Boolean func-
tion for its cryptographic applications. Given ANF of a Boolean function f ,
its algebraic degree, deg(f) is defined as deg(f) = maxa∈F

n
2
{wt(a)|νa �= 0},

where wt(a) represents weight of a binary vector a ∈ F
n
2 and is defined as

wt(a) = |{i|ai �= 0, 1 ≤ i ≤ n}|. Boolean functions with an algebraic degree
at most 1 and, respectively 2 are said to be affine functions and, respectively
quadratic functions. The set An denotes the set of all affine functions in n-
variables.

The trace function, Trn
m : F2n → F2m is given as

Trn
m(x) = x + x2m

+ x22m

+ x23m

+ ... + x2n−m

for all x ∈ F2n

where, m is a positive divisor of n. We will consider the case of m = 1. In such a
case, the trace function is known as absolute trace function, which follows certain
vital properties of linearity, surjectivity and Trn

1 (x2) = Trn
1 (x) ∀x ∈ F2n . For

x, y ∈ F
n
2 , the inner product, denoted by x · y is given by x · y =

∑n
j=1 xjyj .

We can also identify F2n with an inner product as x · y = Trn
1 (xy). The Walsh

Hadamard transform of f ∈ Bn, Wf : F2n → [−2n, 2n] is given by

Wf (λ) =
∑

x∈F2n

χ(f(x) + Trn
1 (λx))

where, λ ∈ F2n and χ(f) = (−1)f denotes the sign function of f ∈ Bn. The mul-
tiset {Wf (λ) : λ ∈ F2n} is called the Walsh spectrum of f . Following we have the
relation between Walsh spectrum and nonlinearity (i.e, rth-order nonlinearity for
r = 1) of an n-variable Boolean function f

nl(f) = 2n−1 − 1
2

max
λ∈F2n

|Wf (λ)|.

By Parseval’s identity we have,
∑

λ∈F2n
Wf (λ)2 = 22n, from which we can say

that max{Wf (λ) : λ ∈ F2n} ≥ 2
n
2 and, thus nl(f) ≤ 2n−1 − 2

n
2 −1. Let n be an

even positive integer then the Boolean function f such that nl(f) = 2n−1−2
n
2 −1

is said to be a bent function.
For given f ∈ Bn, the derivative of f with respect to b ∈ F

n
2 is the function

Dbf ∈ Bn and is defined as Dbf : x → f(x) + f(x + b) for all x ∈ F
n
2 . Adding

to the concept of derivative, suppose, Vk is a k-dimensional subspace of F
n
2 ,

generated by elements a1, a2, ..., ak then the kth-order derivative of f ∈ Bn with
respect to Vk is defined as

DVk
f(x) = Da1Da2 ...Dak

f(x) for all x ∈ F
n
2 .

A Boolean function f ∈ Bn is said to be affine equivalent to another function
g ∈ Bn if there exist a matrix A ∈ GL(n,F2) (where, GL(n,F2) denotes the set
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of all non-singular matrices of order n × n with entries 0 or 1), b, α ∈ F
n
2 and

ε ∈ F2 such that

f(x) = g(Ax + b) + α · x + ε.

Suppose, q is any prime power, then a linearized polynomial over Fqs (an s
degree field extension of Fq) is

L(x) =
s∑

i=0

βix
qi

.

Given a quadratic function f ∈ Bn, the associated bilinear form is defined
as Ω(x, y) = f(0) + f(x) + f(y) + f(x + y). The kernel K of the bilinear form
Ω(x, y) associated with f forms a subspace of F2n , given by

K = {x ∈ F2n : Ω(x, y) = 0 ∀y ∈ F2n}.

Following results, proved by Canteaut et al. [2] holds a significant role in
determining the dimension k of the kernel and, hence the Walsh spectrum asso-
ciated with a quadratic Boolean function.

Lemma 1. [2] Let U be a vector space over a field Fq of characteristic 2 and
Q : U → Fq be a quadratic form on U . Then the dimension of U and the
dimension of the kernel of the bilinear form Ω(x, y) on U have the same parity.

Lemma 2. [2] Let f : F2n → F2 be a quadratic Boolean function, α ∈ F2n

and Ω(x, y) be the associated bilinear form with f . Then the Walsh spectrum
of f depends only on the dimension d of the kernel of Ω(x, y) and the weight
distribution of the Walsh spectrum of f is given by

Wf (α) Number of α

0 2n − 2n−d

2
n+d
2 2

n−d−1
2 + (−1)f(0)2

n−d−2
2

−2
n+d
2 2

n−d−1
2 − (−1)f(0)2

n−d−2
2

For the first time, Carlet [3] has proposed lower bounds on the nonlinearity
profile of a given Boolean function, recursively in terms of the nonlinearity profile
of derivatives of that function.

Lemma 3. [3] Let f be an n-variable Boolean function and r be a positive
integer smaller than n. Then for every positive integer k < r we have

nlr(f) ≥ 1
2k

max
a1,a2,...,ak∈F2n

nlr−k(Da1Da2 ...Dak
f).

Let, q be a prime power. Then, a generator of the multiplicative cyclic group
F

∗
q is called a primitive element of Fq. Moreover, for given m ∈ N, a minimal

polynomial g ∈ Fq[x] of degree m ≥ 1, of a primitive element of Fqm over Fq is
known as a primitive polynomial over Fq.
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3 Main Result

Following we have our main result, which is based on obtaining the bounds for
the second-order nonlinearity of functions, introduced by Cao and Hu [1], as
mentioned in Eq. (1) for the case m = 2.

Theorem 1. Define a class of Boolean functions on F2n(n = 4) of the form

fλ,μ(x) = Tr(λx2m+1) + Tr(x)Tr(μx2m−1)

with m = n/2 = 2, λ ∈ F2n and μ ∈ F2m \ F2. Then, nl2(fλ,μ) ≥ 2.

Proof. Suppose, a0 is a zero of monic irreducible polynomial x4 + x + 1 ∈ F2[x],
then we can say a0 is a primitive element of F24 such that Tr(a0) = 0. Also,
μ ∈ F22 \ F2 and F22 is isomorphic to a subfield of F24 . Therefore, μ can be
considered as an element of F24 . Moreover, since μ3 = 1 and μ �= 1, which
implies that μ = a5

0 or μ = a10
0 . Without loss of generality, we can assume that

μ = a5
0.

Note that, algebraic degree of fλ,μ is 3. Thus, by Lemma 3 we have

nl2(fλ,μ) ≥ 1
2

max
a∈F24

nl(Dafλ,μ). (2)

For x, a ∈ F24

Dafλ,μ(x) = fλ,μ(x) + fλ,μ(x + a)

= Tr(λx22+1) + Tr(x)Tr(μx22−1) + Tr(λ(x + a)2
2+1) + Tr(x)Tr(μ(x + a)2

2−1)

= Tr(λ(x22a + xa22 + a22+1)) + Tr(x)Tr(μ(xa2 + x2a + a1+2))

+ Tr(a)Tr(μ(x1+2 + xa2 + x2a + a1+2)) (3)

which implies,

gμ(x) = Tr(x)Tr(μ(xa2 + x2a)) + Tr(a)Tr(μx1+2)

where, the function gμ is affine equivalent to Dafλ,μ, obtained by eliminating
affine part from Eq. (3), concluding that gμ is a quadratic Boolean function.
Hence from now, we need to work on the Walsh spectrum of gμ so, according to
Lemma 3, we first need to compute the associated Bilinear form Ω(x, y), given as

Ω(x, y) = gμ(0) + gμ(x) + gμ(y) + gμ(x + y)

= Tr(x)Tr(μ(xa2 + x2a)) + Tr(a)Tr(μx1+2) + Tr(y)Tr(μ(ya2 + y2a)) + Tr(a)Tr(μy1+2)

+ Tr(x + y)Tr(μ(xa2 + ya2 + x2a + y2a)) + Tr(a)Tr(μ(x1+2 + xy2 + x2y + y1+2))

= Tr(x)Tr(μ(ya2 + y2a)) + Tr(y)Tr(μ(xa2 + x2a)) + Tr(a)Tr(μ(xy2 + x2y))

= Tr(x)Tr(y(μa2 + μ2a23 )) + Tr(y)Tr(μ(xa2 + x2a)) + Tr(a)Tr(y(μ2x23 + μx2))

= Tr(x)Tr(by) + Tr(y)Tr(bx) + Tr(a)Tr(y(μx2 + μ2x8))
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where, b = μa2 + μ2a23 . The associated kernel K is given by

K = {x ∈ F24 |Ω(x, y) = 0∀y ∈ F24}.

To get the result, we need to find the lowest possible cardinality (or dimension)
of K. We shall discuss it in further two cases.

Case 1 : When Tr(a) = 0
In this case, we have

Ω(x, y) = Tr(x)Tr(by) + Tr(y)Tr(bx)

Subcase 1 : When b = 0 (possible case for a = 0)
Thus, Ω(x, y) = 0 for all x, y ∈ F24 , which implies K = F24 , which is a trivial
case.

Subcase 2 : When b = 1
Then, Ω(x, y) = 0 for all x, y ∈ F24 , which gives K = F24 . Again, a trivial case.

Subcase 3 : When b �= 0, 1 (possible for many values of a ∈ F24 , in particular
holds for a = a0)

Here, Ω(x, y) = 0 for all y ∈ F24 , holds with the following three possibilities.

(a1) Tr(x)Tr(by) = 0 and Tr(y)Tr(bx) = 0 for all y ∈ F24 .
(a2) Tr(x)Tr(by) = 1 and Tr(y)Tr(bx) = 1 for all y ∈ F24 .
(a3) There exist ∅ �= B1, B2 ⊆ F24 such that B1 ∩ B2 = ∅, B1 ∪ B2 = F24 for

which
Tr(x)Tr(by) = 0, Tr(y)Tr(bx) = 0 for all y ∈ B1

and, Tr(x)Tr(by) = 1, Tr(y)Tr(bx) = 1 for all y ∈ B2, holds simultaneously.

Let,

Ka1 = {x ∈ F24 |Tr(x)Tr(by) = 0 and Tr(y)Tr(bx) = 0 ∀y ∈ F24}
Ka2 = {x ∈ F24 |Tr(x)Tr(by) = 1 and Tr(y)Tr(bx) = 1 ∀y ∈ F24}
Ka3 = {x ∈ F24 |Tr(x)Tr(by) = 0, T r(y)Tr(bx) = 0 ∀y ∈ B1 (4)
and, Tr(x)Tr(by) = 1, T r(y)Tr(bx) = 1 ∀y ∈ B2, holds simultaneously}

Then, K =
⋃3

i=1 Kai
.

For Ka1 : Let A = {x ∈ F24 |Tr(x) = 0} and B = {x ∈ F24 |Tr(bx) = 0}.
It is easy to observe that Ka1 = A ∩ B. Also, A and B being the set of

zeroes of linearized polynomials x8 + x4 + x2 + x and b8x8 + b4x4 + b2x2 + bx
respectively, becomes the subspaces of F24 , when observed as a vector space over
F2. Moreover, Ka1 = A∩B forms a subspace, being the intersection of subspaces.

Therefore, dim(Ka1) can be 0, 1, 2, 3. However, dim(Ka1) = 3 if and only if
A = B if only if b = 1, which is not so.

Hence, dim(Ka1) ≤ 2, which implies |Ka1 | ≤ 4.

Remark 1. In fact, |A∩B| = 4, which can be verified for each a ∈ F24 such that
b �= 0, 1.
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For Ka2 : Since, Tr(y) is an onto function therefore, there exist some y0 ∈ F24

such that Tr(y0) = 0. Thus, equations in Ka2 fails for all x ∈ F24 . Hence, Ka2 = ∅
For Ka3 : By definition of Ka3 , one can observe that A,B ⊆ F24 \Ka3 , which

implies that A ∪ B ⊆ F24 \ Ka3 i.e., Ka3 ⊆ F24 \ (A ∪ B).
Hence, |Ka3 | ≤ |F24 \ (A ∪ B)| = 16 − 12 = 4 i.e., |Ka3 | ≤ 4.
Collecting all we get,

|K| ≤ |Ka1 | + |Ka2 | + |Ka3 | ≤ 8 = 23.

Case 2 : When Tr(a) = 1 then,

Ω(x, y) = Tr(x)Tr(by) + Tr(y)Tr(bx) + Tr(y(μx2 + μ2x8)

where, b = μa2 + μ2a8.

Claim: b �= 0, 1
If b = 0 then, μa2 + μ2a8 = 0 i.e., μa2(1 + μa6) = 0, which implies a = 0 or
a6 = μ2. But Tr(0) = 0 and we are in the case Tr(a) = 1 therefore, a6 = μ2.
Cubing both sides and using μ3 = 1 and a15 = 1 we have, a3 = 1. Hence, any
a ∈ F

∗
24 for which b = 0 must satisfy a3 = 1. Therefore, possibilities of a are

1, μ, μ2. However, Tr(a) = 0 for a = 1, μ, μ2. Hence, b cannot be 0.
Also, by putting values of each a such that Tr(a) = 1, we verified that b �= 1.

Thus, from now onwards, we will assume that b �= 0, 1.
Now, Ω(x, y) = 0 for all y ∈ F24 hold with the following possibilities.

(b1) Tr(x)Tr(by) = Tr(y)Tr(bx) = Tr(y(μx2 + μ2x8) = 0∀y ∈ F24 .
(b2) Tr(x)Tr(by) = Tr(y)Tr(bx) = 1∀y ∈ F24 and, Tr(y(μx2 + μ2x8) = 0∀y ∈

F24 .
(b3) Tr(x)Tr(by) = Tr(y(μx2 + μ2x8) = 1∀y ∈ F24 and, Tr(y)Tr(bx) = 0∀y ∈

F24 .
(b4) Tr(y)Tr(bx) = Tr(y(μx2 + μ2x8) = 1∀y ∈ F24 and, Tr(x)Tr(by) = 0∀y ∈

F24 .
(b5) There exist ∅ �= B3, B4 ⊆ F24 such that B3 ∩ B4 = ∅, B3 ∪ B4 = F24 for

which
Tr(x)Tr(by) = Tr(y)Tr(bx) = 0 for all y ∈ B3,
Tr(x)Tr(by) = Tr(y)Tr(bx) = 1 for all y ∈ B4 and
Tr(y(μx2 + μ2x8) = 0 for all y ∈ F24 .

(b6) There exist ∅ �= B5, B6 ⊆ F24 such that B5 ∩ B6 = ∅, B5 ∪ B6 = F24 for
which
Tr(x)Tr(by) = Tr(y(μx2 + μ2x8) = 0 for all y ∈ B5,
Tr(x)Tr(by) = Tr(y(μx2 + μ2x8) = 1 for all y ∈ B6 and
Tr(y)Tr(bx) = 0 for all y ∈ F24 .

(b7) There exist ∅ �= B7, B8 ⊆ F24 such that B7 ∩ B8 = ∅, B7 ∪ B8 = F24 for
which
Tr(y)Tr(bx) = Tr(y(μx2 + μ2x8) = 0 for all y ∈ B7,
Tr(y)Tr(bx) = Tr(y(μx2 + μ2x8) = 1 for all y ∈ B8 and
Tr(x)Tr(by) = 0 for all y ∈ F24 .
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For convenience, let us denote

Kbi
= {x ∈ F24 |x satisfies the condition(bi)}.

for 1 ≤ i ≤ 7. Then, clearly K =
⋃7

i=1 Kbi
or |K| ≤ ∑7

i=1|Kbi
|.

Now, Tr(y(μx2+μ2x8) = 0 for all y ∈ F24 if and only if μx2+μ2x8 = 0 if and
only if x = 0. Further, x = 0 satisfies the other two equations in (b1) therefore,
|Kb1 | = 1. But x = 0 does not satisfies Tr(x)Tr(by) = 1∀y ∈ F24 , which gives
Kb5 = ∅ and hence, |Kb5 | = 0.

Following, the similar arguments as in Case 1, Subcase 2 we get, Kb2 =
Kb3 = Kb4 = ∅ i.e., |Kb2 | = |Kb3 | = |Kb4 | = 0.

Also, the equation Tr(x)Tr(by) = 0 for all y ∈ F24 holds if and only if
Tr(x) = 0 if and only if x ∈ A = {x ∈ F24 |Tr(x) = 0}. As already men-
tioned, B = {x ∈ F24 |Tr(bx) = 0}. Note that, if x ∈ B then, the equa-
tion Tr(y)Tr(bx) = 1 for all y ∈ B8 fails. Hence, we can conclude that
Kb7 ⊆ A ∩ Bc = A \ (A ∩ B), which means |Kb7 | ≤ |A| − |A ∩ B| = 8 − 4 = 4.
Similarly, we can prove that |Kb6 | ≤ 4.

Hence, |K| ≤ ∑7
i=1|Kbi

| = 9.
Thus, from Case 1 and Case 2, we can say that there exist a ∈ F24 such that

K ≤ 8, which implies that dim(K) = k ≤ 3.
Since, n is even, thus in view of Lemma 1 and Lemma 2, we can say k ≤ 2

and, hence WDafλ,μ
(x) ≤ 2

n+k
2 = 8 for any x ∈ F24 .

So, nl(Dafλ,μ) ≥ 2n−1 − 1
2 (8) = 4.

Finally, Eq. (2) concludes the required result i.e., nl2(fλ,μ) ≥ 2.
Further, we will provide the comparison among the computed lower bound on

the second-order nonlinearity of the considered cubic Boolean function obtained
in Theorem 1 with the maximum noted Hamming distance, as given in [6],
concluding that the obtained bound attains the maximum known Hamming
distance. We will also show that the results obtained is better than the ones,
given by Garg and Gangopadhyay [10], and Tang et al. [16] on the second-order
nonlinearity of other cubic Boolean functions.

Table 1. Comparison of lower bounds on the second-order nonlinearity

n = 2m 4

Order of nonlinearity (r = m) 2

Lower bound obtained in Theorem 1 2

Lower bound obtained by Tang et al. (for k = n/2 = 2) [16] 0

Lower bound obtained by Garg and Gangopadhyay (for e = n/2 = 2) [10] 1.272

Maximum noted Hamming distance [6] 2
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4 Conclusion

The computation of the rth-order nonlinearity (r > 1), theoretically as well
as computationally is a difficult task. It becomes more complicated when the
Boolean function contains the product of two or more trace terms. Here, we
considered the boolean function class from [1] for n = 4 and computed the
lower bound for second-order nonlinearity of these Boolean functions, given by
Theorem 1. However, for n = 4, the functions in Eq. (1) become cubic. Therefore,
we compared our bounds with already available bounds of other cubic Boolean
functions and found them to be better, as mentioned in Table 1. Moreover, we
are also working on the higher-order nonlinearity of this class of functions for
general values of n, where n is an even positive integer. Further, we encourage
other researchers to study this class of Boolean functions for general values of n
to get more interesting results on higher-order nonlinearity.

Acknowledgment. The author would like to thank the Council of Scientific and
Industrial Research for providing the financial support.
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Abstract. In 1981, Stone conjectured that a fully semimonotone Q0

matrix is contained in P0. In 1995, Murthy proved that for n = 5, if
A ∈ R

n×n ∩ Ef
0 ∩ Q0 and aii > 0, then A ∈ P0. Here, we show that for

matrices with some specific sign patterns this conjecture is true. Murthy
showed that fully semimonotone Z-matrices are P0, that is E

f
0 ∩Z ⊆ P0.

Here, we show that semimonotone Z-matrices are contained in P0, that
is, we exempt the condition of fully semimonotone with semimonotone.
Further, we show the equivalency of E0-matrices and Ef

0 -matrices for Z-
matrices. Precisely, we are characterizing the matrices in P0 ∩Q0. These
classes have been found to be interesting in view of the fact that these
are processable by Lemke’s algorithm.

Keywords: Q0-matrices · E0-matrices · Two-person finite game ·
Completely mixed game · Principal Pivot Transform
MSC(2010): 91A05 · 90C33

1 Introduction

Given a matrix A ∈ R
n×n. Let q ∈ R

n be a vector. The linear complementarity
problem, LCP (q,A) can be described as follows:

We want to find x ∈ R
n such that

x ≥ 0, (1)
Ax + q = w ≥ 0, (2)

xtw = 0. (3)

If such a vector exists, we call this x as a solution to the LCP (q,A). For a
given q ∈ R

n, if some vector x ∈ R
n satisfies (1) and (2), we call it as a feasible

solution for LCP (q,A). We call a matrix Q0 if for all q, whenever LCP (q,A)
has a feasible solution, it also has a solution satisfying (1), (2), and (3). We call
A to be a Q-matrix if LCP (q,A) has a solution for every q. We call A to be an
R0-matrix, if LCP (0, A) has a unique solution. If all the principal minors of a
matrix A are positive (nonnegative), then we call A to be a P (P0)-matrix. We
call A to be a Z-matrix, if aij ≤ 0 for i �= j. We denote the classes of matrices
in each of the above cases by Q, Q0, R0, P , P0, and Z respectively. For further
references, the reader may refer to [3,5,10] and the results therein.
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Characterizing the number of solutions to an LCP has been found to be
interesting among the researchers. LCP associated to a P -matrix has a unique
solution for every vector q. In 1983, Cottle and Stone introduced a new class
U known as the class of U -matrices. We say a matrix U if LCP (q,A) has a
unique solution whenever q is in the interior of the union of complementary
cones. Further, the class is expanded for the unique solution of LCP (q,A) for q
in the interior of any non-degenerate complementary cone. This class is known
as the class of fully semimonotone matrices, denoted by Ef

0 . The class of Ef
0 was

introduced by Stone. For further results refer to [9].
In [4], Cottle and Stone proved P ⊆ U ⊆ Ef

0 . In [13], Stone proved that
U ∩Q0 ⊆ P0. Further, he raised the conjecture Ef

0 ∩Q0 ⊆ P0. For matrices with
some specific sign patterns, we show that this conjecture is true. In particular,
we show that semimonotone Z-matrices are contained in P0. In addition, we also
prove that fully semimonotone matrices having specific sign patterns are P0.

In proving some of our results we use the concept from the Completely mixed
matrix games. A two person zero-sum game may be described as following:

Let Player 1 and player 2 choose integers i ∈ m̄ and j ∈ n̄ respectively. Then
Player 2 receives an amount aij from Player 1. This amount aij may be negative,
positive, or zero. A mixed strategy for Player 1 and 2 are the probability vectors
x = (x1, x2, ..., xm)t, and y = (y1, y2, ..., yn)t, respectively, where xi ≥ 0 for all
i and

∑m
i=1 xi = 1 and yj ≥ 0 for all j and

∑n
i=1 yj = 1. We call (x∗, y∗) to

be the optimal strategies for Player 1 and Player 2 respectively, if the following
conditions hold

∑

i

x∗
i aij ≤ v for j = 1, 2, .., n, (4)

∑

j

y∗
j aij ≥ v for i = 1, 2, ..,m. (5)

It is known that such a v exists and is unique. We denote v = val(A) and call it
the value of the matrix game A = (aij). In describing (4) and (5), we assumed
Player 1 to be the minimizer where Player 2 to be the maximizer. If each entry
of the vector x = (x1, x2, ..., xm)t is positive, then we call such a vector x as
a completely mixed strategy for player 1. Similarly, if each entry of the vector
y = (y1, y2, ..., yn)t is positive, then we call such a vector y as a completely mixed
strategy for player 2. If each of the optimal pair (x∗, y∗) is completely mixed for
a game associated with A, then we call it a completely mixed game.

Kaplansky [7] has characterized a completely mixed (c.m.) matrix game. He
showed the following:

Consider a game associated with matrix A ∈ R
m×n and suppose val(A) = 0,

then the game associated with matrix A is c.m. if and only if m = n, r(A) = n−1,
and each of the cofactor of A is nonzero and have same sign.

The organisation of this manuscript is as following: In Sect. 2, we present a
few basic results that are used in further sections. In Sect. 3, we provide our main
theorem regarding the Z-matrices. Section 4 contains some more results related



112 K. Sunil and R. Gomatam

to Ef
0 . In Sect. 5, we provide some open problem for future work and conclude

the paper.

2 Preliminaries

Notation: In this manuscript, we used signs at many places instead of a fix
value. The meaning for these signs is as following: + implies positive, � means
nonpositive, − denotes negative, ⊕ means nonnegative, and ∗ denotes any real
value.

A ∈ R
m×n = (aij); i = 1, 2, ...,m and j = 1, 2, ..., n denotes a matrix. n̄

denotes the set {1, 2, ..., n}. Let α, β ⊆ n̄ and the complements are ᾱ = n̄\α
and β̄ = n̄\β. If we delete rows of A corresponding to ᾱ and columns of A
corresponding to β̄, then the resulting matrix is a submatrix of A, denoted
by Aαβ . We call Aαβ to be a principal submatrix of A if α = β. |α| denotes
the cardinality of the set α. The determinant of the matrix A is denoted as
|A| = det(A). We say a vector x ≥ 0 (x > 0), if every coordinate of x is
nonnegative (positive). Similarly, we say a matrix A ≥ 0 (A > 0), if each entry
of A is nonnegative (positive).r(A) denotes the rank of matrix A.

This section contains some basic definitions and results from the literature.
These results are used in the next sections.

A.W. Tucker introduced the concept of PPTs. PPTs (principal pivot trans-
forms) play a crucial role in the consideration of LCP. A detailed treatment of
PPT was given by Tsatsomeros [14].

Let A ∈ R
n×n and α ⊆ n̄.

A =
(

Aαα Aαᾱ

Aᾱα Aᾱᾱ

)

If A−1
αα exists, then for such an α, the PPT is defined. We denote such a PPT of

A as ppt(A,α).

ppt(A,α) =
(

A−1
αα −A−1

ααAαᾱ

AᾱαA−1
αα A/Aαα

)

,

where A/Aαα = Aᾱᾱ − AᾱαA−1
ααAαᾱ is known as the Schur complement. For

any α, if Aαα is invertible, then PPT exists for the corresponding α. We call all
those PPTs as legitimate PPTs.

Semimonotone matrices were first initiated by Eaves [5], and initially these
are denoted by L1. Later, in [3], this class was denoted by E0. The name “semi-
monotone” was initiated by Karamardian. It is known that P0 ⊆ E0.

Definition 1. We call A ∈ R
n×n to be a semimonotone matrix if, for any

nonzero nonnegative vector x, there is some k in such a manner that xk is
positive and (Ax)k is nonnegative. We call A as a fully semimonotone matrix,
denoted by Ef

0 , if A and all its legitimate principal pivot transforms are in E0.

Some of the useful properties of semimonotone matrices from [3,10] are stated
below.
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Theorem 1. If A ∈ R
n×n ∩ E0, then we can conclude the following:

1. Aαα ∈ E0 for all α ⊆ n̄.
2. At ∈ E0.
3. aii are nonnegative for all i = 1, 2, ..., n.
4. For any vector q > 0, there is a unique solution for LCP (q,A), that is x = 0.
5. val(A) ≥ 0.

Tsatsomeros and Wendler [15] provided the following result:

Theorem 2. Let A ∈ R
2×2 and aii > 0. Then A ∈ E0 if and only if either

A ≥ 0 or det(A) ≥ 0.

Definition 2. We call A ∈ R
n×n to be a copositive matrix if for any nonnegative

vector x, xtAx ≥ 0. We denote the class of such matrices by C0. A matrix A
is called fully copositive matrix, denoted by Cf

0 , if A and each of its legitimate
PPTs is in C0.

The class Ef
0 includes the class Cf

0 . In [8], Murthy and Parthasarathy provide
a result for Cf

0 .

Theorem 3. Let A ∈ Cf
0 ∩ Q0 ∩ R

n×n. Then A ∈ P0.

Next we state a few known results for fully semimonotone Q0 matrices from
[11].

Theorem 4. Let A ∈ Ef
0 ∩ Q0 ∩ R

n×n. Further, assume det(Aαα) ≥ 0 for all
|α| = n − 1. Then A ∈ P0.

Theorem 5. Let A ∈ R
n×n ∩ Ef

0 ∩ R0 . Then A is a P0-matrix.

The following corollary is proved already. Here we provide another proof.

Corollary 1. Let A ∈ R
n×n ∩ Ef

0 ∩ Q0. Further, suppose that Aαα ∈ P for
|α| ≤ (n − 2). Then A ∈ P0.

Proof. Let B = Aαα where |α| = n − 1. We claim that det(B) ≥ 0.
Suppose det(B) < 0. Since Aαα ∈ P for |α| ≤ (n − 2), that is each proper

principal submatrix of B is also a P -matrix. Hence, the diagonal entries of B−1

are negative.
Since A ∈ Ef

0 , observe that B ∈ E0 and B−1 ∈ E0. It is not possible for
E0-matrix to have negative diagonal entry. Hence, det(B) ≥ 0. Therefore, using
Theorem 4, A ∈ P0. ��
Remark 1. We have used the fact that if A ∈ Ef

0 , then any proper principal
submatrix is E0. If some proper principal submatrix (say B) is non-singular,
then B−1 ∈ E0.

The result given below is the Theorem 4.1.2 in [3]. This result is useful in
proving next theorem.
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Theorem 6. [3] Let M = ppt(A,α). Then for any submatrix Mββ of M

det(Mββ) = det(Aγγ)
det(Aαα)

where γ = α  β.

We need the following result.

Theorem 7. Let A be a P0-matrix. Then any PPT of A is also a P0-matrix.

Proof. Let A ∈ R
n×n ∩ P0 and α ⊆ n̄ such that det(Aαα) �= 0. Therefore,

ppt(A,α) exists. Let us call it M . Now for any β ⊆ {1, 2, ..., n}, using Theorem
6, we have

det(Mββ) =
det(Aγγ)
det(Aαα)

(6)

where γ = α  β. Observe that Aαα and Aγγ are principal submatrices of A.
Since A ∈ P0. Hence, det(Aαα) > 0, det(Aγγ) ≥ 0. Therefore, on putting these
in 6, we have det(Mββ) ≥ 0. Since β was arbitrary, hence M ∈ P0. Therefore,
ppt of a P0-matrix is also a P0-matrix. ��
Remark 2 [3]. It is known that P ⊆ P0 ⊆ Ef

0 ⊆ E0. In the next section we show
that for the Z-matrices, P0, E

f
0 and E0 are equal.

The following two results of game theory are used in proving our results.

Theorem 8 [2]. Let A ∈ R
n×n ∩Z. Consider a game is associated with matrix

A. Suppose val(A) > 0. Then A has to be a P -matrix.

Theorem 9 [7]. Consider a game associated with matrix A ∈ R
m×n and

val(A) = 0. Then A is c.m. if and only if m = n, r(A) = n − 1, and each
of the cofactor of A is nonzero and have same sign.

The next two results are known for Q and R0 matrices.

Theorem 10 [1]. Let A ∈ R
n×n ∩ P0. Then A ∈ Q if and only if A ∈ R0.

Theorem 11 [6]. Let A ∈ R0 ∩ R
n×n and LCP (q,A) has a unique solution,

for some q > 0. Then A ∈ Q.

3 Main Results

Murthy and Parthasarathy [9] showed that Ef
0 ∩ Z ⊆ P0. In this section, we

show that the condition of fully semimonotone is not necessary. In particular,
we show that the semimonotone, Z-matrices are P0.

Theorem 12. Let A ∈ R
n×n ∩ E0 ∩ Z, then A ∈ P0.
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Proof. This proof is done using the mathematical induction. For n = 1, it is
obvious.

For n = 2, the sign pattern would be
(⊕ �

� ⊕
)

.

Since the diagonal entries are nonnegative, both proper principal minors are
nonnegative. If any of the off-diagonal entry is zero, then the determinant would
be nonnegative. Hence, A ∈ P0. If both the off-diagonal entries are negative,
then using Theorem 2, the determinant of the matrix A is nonnegative. Hence,
A ∈ P0.

Now for n = 3. Since A ∈ E0, using Theorem 1, each of its principal sub-
matrix is E0 and the diagonal entries are nonnegative. From Theorem 2, either
Aαα ≥ 0 for |α| = 2 or det(A) ≥ 0. That means Aαα ∈ P0 for all |α| = 2.
Consider x ≥ 0 be an optimal for A, so Ax ≥ 0,

⎛

⎝
⊕ � �
� ⊕ �
� � ⊕

⎞

⎠

⎛

⎝
x1

x2

x3

⎞

⎠ ≥
⎛

⎝
0
0
0

⎞

⎠

a) If exactly one coordinate of x is non-zero (say x1), then A ∈ E0 implies that
A must be of the type

A =

⎛

⎝
⊕ � �
0 ⊕ �
0 � ⊕

⎞

⎠ .

Here, det(A) ≥ 0. Hence, A ∈ P0.
b) If exactly two coordinates of x are non-zero (say x1, x2), then A ∈ E0 implies

that A must be of the type

A =

⎛

⎝
⊕ � �
� ⊕ �
0 0 ⊕

⎞

⎠ .

Since, A ∈ E0, using 1, the submatrix B of A, on omitting last row and last
column, is also E0. Using the Theorem 2, either B ≥ 0 or det(B) ≥ 0. Hence,
det(A) ≥ 0. Therefore, A ∈ P0.

c) Let x > 0. Then the game associated with A is c.m. We have the hypothesis
that A is a semimonotone matrix, hence using Theorem 1, val(A) ≥ 0. Now,
we will check for both the cases when the value is zero or the value is positive.
If val(A) > 0, then by Theorem 8, A ∈ P . Therefore, A ∈ P0.
Now for val(A) = 0, from Theorem 9, rank(A) = n − 1. That means one
of the row is linear combination of others. Hence det(A) = 0 and therefore
A ∈ P0.

Hence, it is true for n = 3. Now for the induction hypothesis, let it is true
up to any n − 1 order. Now we will show that it is true for n.
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a) Let all the coordinates of x be positive, that is, the game is completely mixed.
Since A ∈ E0, hence val(A) ≥ 0. If val(A) > 0, then by Theorem 8, A ∈ P .
Therefore, A ∈ P0. If val(A) = 0, then using Theorem 9, rank(A) = n − 1.
That means one of the row is linear combination of others. Hence det(A) = 0
and therefore A ∈ P0.

b) Let x has k non-zero coordinates such that k ≤ n − 1. We can partition our
given matrix as

A =
(

C B
0 D

)

where C ∈ R
k×k, B ∈ R

k×n−k,D ∈ R
n−k×n−k and 0 is null matrix of order

n − k × k. From partitioned matrix properties, we know that det(A) =
det(C).det(D). Since from induction we know that for any k ≤ n − 1,
det(C) ≥ 0, det(D) ≥ 0. Hence, det(A) ≥ 0. Therefore, A ∈ P0.

Hence, for any n, A ∈ R
n×n ∩ E0 ∩ Z implies A ∈ P0. ��

In the above theorem, both the conditions of A being E0 and Z are necessary.
We can see this by the following two examples.

Example 1. Let

A =
(

1 −2
−1 0

)

.

It can be seen that A ∈ Z and A is not an E0-matrix (since Ax < 0 for some
vector x = (1, 1)t). Notice that det(A) = −2. Therefore, it is not a P0-matrix. ��
Example 2. Let

A =
(

1 2
1 1

)

Since A is a nonnegative matrix, it can be easily verified that A ∈ E0. Since
off-diagonal entries are positive, A �∈ Z. But the determinant of A is negative,
hence A is not a P0-matrix. ��
Remark 3. It is known that P0 ⊆ E0. From Theorem 12, we can conclude that
within Z-matrices, P0 is equivalent to E0. From Example 2, it can be seen that
the Z-property is necessary for the equivalence to hold. From this result, we can
conclude the next two theorems.

In [12], Parthasarathy, Ravindran and Sunil showed that within the class of
E0, R0-matrices and Q-matrices are equivalent for matrices up to order 3. They
provided counter examples of matrices which are E0 ∩ Q but not R0 for order
4 and above. But here we prove the equivalence with the additional assumption
of Z for any order of matrices.

Theorem 13. Let A ∈ R
n×n ∩ E0 ∩ Z. Then A ∈ Q iff A ∈ R0.

Proof. Let A ∈ R
n×n ∩ E0 ∩ Z. Using Theorem 12, A ∈ P0. Then Theorem 10

states that within P0, Q is equivalent to R0. Hence, A ∈ Q if and only if A ∈ R0.
Therefore, within the class of E0 and Z-matrices, R0 is equivalent to Q ��
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Theorem 14. Let A ∈ R
n×n ∩ Z. Then A ∈ E0 if and only if A ∈ Ef

0 .

Proof. Whenever A ∈ Ef
0 , it is obvious A is an E0-matrix. Now for the converse

part let us assume A ∈ E0. Since A ∈ Z, by Theorem 12, A ∈ P0. Using remark
2, it is known that P0 ⊆ Ef

0 . Therefore, A ∈ Ef
0 .

Hence, within the class of Z-matrices, E0 is equivalent to Ef
0 . ��

In general, E0-matrix are not equivalent to Ef
0 . Hence, in the above theorem,

the condition of matrix being a Z-matrix is necessary. It can be seen by the
example below.

Example 3. Let

A =

⎛

⎝
1 2 0
1 1 1
1 0 0

⎞

⎠ .

Since A is a nonnegative matrix, it can be easily verified that A ∈ E0. Let
α = {1, 2}. Consider ppt(A,α).

ppt(A,α) =

⎛

⎝
−1 2 −2
1 −1 1

−1 2 −2

⎞

⎠ .

Observe that the diagonal entries of the ppt corresponding to the above α
are negative. Using Theorem 1, ppt(A,α) is not an E0-matrix. Therefore,
A �∈ Ef

0 . ��

4 Results for Matrices with Specific Sign Patterns

In this section, we consider matrices with some specific sign patterns and show
some properties of such matrices.

Theorem 15. Let A ∈ R
n×n and aii > 0. Further suppose that all the entries

below the diagonal are nonnegative. Then A ∈ Q.

Proof. First we show that A ∈ R0 for the given sign pattern of A. On the
contrary, suppose A �∈ R0. That is, there is a non-zero vector x ≥ 0 such that
Ax = w ≥ 0 and xtw = 0.

Ax =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

+ ∗ ∗ . . . ∗
⊕ + ∗ . . . ∗
⊕ ⊕ + . . . ∗
...

...
...

. . .
...

⊕ ⊕ ⊕ . . . +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x1

...
xk

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

w1

...
wk

...
wn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= w

WLOG, let xk > 0 for any 1 ≤ k ≤ n, and xm = 0 for m > k. Then it is easy to
observe that wk is positive. Hence, xkwk �= 0. Hence, xk cannot be positive for
any k. Therefore, A ∈ R0.
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Let d ∈ R
n be any positive vector. Similarly, we can show thatx = 0 is the

only solution for LCP (d,A). Hence, using Theorem 11, it can be concluded that
A ∈ Q. ��
Theorem 16. Let A ∈ R

n×n and aii > 0. Further suppose that all the entries
below the diagonal are nonnegative and all the entries above the diagonal are
non-positive. Then A ∈ P0.

Proof. Since A has all its diagonal entries positive. Hence, for n = 1, A ∈ P0.
Now for n = 2,

A =
(

+ �
⊕ +

)

Here, det(A) > 0 , hence A ∈ P as well as A ∈ P0.
For n = 3, every proper principal submatrix have the same sign pattern.

Since we have seen such a matrix is P0 up to n = 2, that is, proper principal
minor are nonnegative. Hence, from Theorem 4, A ∈ P0.

Assume it is true for the matrices up to order n − 1, that is, every matrix
of the given sign pattern up to order n − 1 is P0. For n, every proper principal
minor is nonnegative. Therefore, using Theorem 4, such a matrix A is always a
P0-matrix. ��
Remark 4. Since we know that P0 ⊆ Ef

0 , the matrices with given sign pattern
in the above theorem are Ef

0 . Therefore, Stone’s conjecture holds for the matri-
ces with all its diagonal entries positive, all the entries below the diagonal are
nonnegative, and all the entries above the diagonal are non-positive.

Next, we show another sign pattern such that the conjecture holds for that
pattern too. This pattern is almost similar to the above. But for the sake of
completeness we are also giving an another way of proving it.

Theorem 17. Let A ∈ R
n×n and aii > 0. Further suppose that all the entries

above the diagonal are nonnegative. Then A ∈ R0.

Proof. For given A, consider LCP (0, A).

Ax =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

+ ⊕ ⊕ . . . ⊕
∗ + ⊕ . . . ⊕
∗ ∗ + . . . ⊕
...

...
...

. . .
...

∗ ∗ ∗ . . . +

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

xk

...
xn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= w

where ∗ is any real number and w ∈ R
n. Here for least value of k such that xk > 0,

(Ax)k = wk is also positive. It contradicts the condition of complementarity.
Hence, no xk is positive. Therefore, A ∈ R0. ��
Remark 5. In the above theorem, if we further assume that A is fully semimono-
tone, then A ∈ P0.
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Theorem 18. Let A ∈ R
n×n ∩ Ef

0 and aii > 0. Further suppose that all the
entries above the diagonal are nonnegative. Then A ∈ P0.

Proof. Let A ∈ R
n×n and aii > 0. All the entries above the diagonal are non-

negative. Theorem 17 implies that A ∈ R0. Since A ∈ Ef
0 , Theorem 5 implies

that A ∈ P0. ��

5 Conclusions

We have proved that a fully semimonotone and Q0-matrix with specific sign
patterns is a P0-matrix. We also have proved that a matrix that is semimonotone
and Z is contained in the class of P0-matrices. Further, we have shown that for
Z-matrices, the semimonotone matrices are the fully semimonotone matrices.
Observe that these classes are subsets of P0 ∩ Q0, and hence these classes are
processable by Lemke’s algorithm, that is, for each q, either Lemke’s algorithm
gives a solution or terminates in a ray.

Open Problem: Now, we state an open problem. The following conjecture is
due to R.E. Stone.

Let A ∈ R
n×n. Further assume that A is a fully semimonotone Q0-matrix. Can

we say A is a P0-matrix?
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Abstract. The present paper addresses the rheological perspective of
blood flow with the suspension of Au/GO nanoparticles through the
curved artery with multiple stenosis and thrombosis. The influences of
hematocrit-dependent viscosity and Hall effects are taken into account.
The flow is subjected to a strong radial magnetic field. Using the mild
stenosis and axi-directional flow assumptions, the governing equations
are simplified and then the reduced equations are discretize using the
Crank-Nicholson technique to get the tridiagonal systems of equations
which are further solved by employing the Tri-diagonal Matrix Algo-
rithm (TDMA) at each time step. The flow patterns are also shown by
plotting velocity contours. It has been observed that raising the Hall
parameter induces an increase in fluid velocity owing to an increase in
collision time or electron frequency, hence assisting fluid flow. Further,
Au-GO/blood hybrid nanoparticles have a higher velocity profile than
pure blood and unitary nanoparticles. Current findings may have appli-
cations in the biomedical field, particularly in imaging techniques like
magnetic resonance angiography (MRA), which analyses an image of an
artery to detect problems. The current findings are consistent with recent
findings in earlier blood flow research studies.

Keywords: Stenosis · Hybrid nanoparticles · Hall effect · Clot

1 Introduction

Among the various cardiovascular diseases, arteriosclerosis/stenosis is the major
cause of morbidity and mortality worldwide [1]. Arteriosclerosis is a condition
in which plaque gets deposited at the arterial wall and constricts the blood
flow. The plaque is the composition of fats/lipids, cholesterol, greasy substances,
and other cellular wastes. The constriction may trigger thrombosis (blood clot)
upon rupture and lead to a heart attack. Doffin et al. [2] experimented with
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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studying the oscillatory flow between the clot and stenosis model. The oscillation
is produced by the two pistons moving in the oscillate phase. They determined
the velocity and streamlined pattern by visualising the suspended aluminium
particles in water glycerol fluid. Strony et al. [3] investigated the high shear
stress effect and hemodynamic factors for the thrombus deposition in the stenotic
region. According to their study, the shear stress would be higher in the stenotic
region, which causes the platelets to get aggregated at the vessel wall damage
and from the occlusive thrombosis. Elnaqeeb et al. [4] explored the copper blood
model due to its application in biomedicine. They also discovered the blood
tapering phenomenon in catheterised stenosis arteries. The time-variant stenosis
with an aneurysm was numerically explored by Sultan et al. [5]. They considered
the non-Newtonian Eyring Powell fluid model and curvilinear coordinate system
to study the blood flow through the curved artery. Akthar et al. [6] developed
a mathematical model to simulate the blood flow through multiple thromboses
with the Peristaltic wall.

In the magnetic field, moving conducting fluids experience a resistive force
known as Lorentz force. When the moving fluid is ionised gas, or the strong mag-
netic field is applied, the conductivity normal to the magnetic field is reduced.
This reduction is due to the free spinning of the electrons. Thus, it induces the
electric current normal to the magnetic and electric field. This phenomenon is
known as Hall current. Mekheimer et al. [7] studied the Hall effect with viscous
dissipation on the micropolar fluid through the stenosis artery. Mishra et al.
[8] experimented to understand the Hall and magnetic field effect on the MHD
flow through the rotating channel. Das et al. [9] conducted theoretical research
to investigate peristaltic blood pumping. They examined the Hall and ion slip
effects by using Casson fluid to mimic the rheological properties of blood.

Nanotechnology advancements and designing techniques help researchers
probe into the nanoscale particles’ properties and features. In the biomedical field,
the advancement of nanotechnology helps design nanomedicine to diagnose and
treat diseases. Nanoparticles are small tiny particles, and with the suspension in
the base fluid, they enhance the characteristics and properties of the base fluid. In
this study, we have considered the hybrid nanofluid by the suspension of Graphene
Oxide and Gold nanoparticles in the base fluid (blood). Elnaqeeb et al. [10] studied
the gold nanoparticle’s blood flow through the tapered artery and did a compar-
ative study for gold, Cu, and TiO2 nanoparticles. They looked at temperature-
dependent viscosity and observed that the velocity of gold nanoparticles in a
stenosed blood artery is greater than the other two nanoparticles. Thus, explain-
ing the enhancement in the hemodynamic performance of blood in the diseased
artery. Changdar et al. developed a single and discrete phase model to observe
the effect of gold, Cu, and silver nanoparticles as drug carriers. They have con-
sidered multiple stenoses and spherical-shaped nanoparticles. According to their
findings, cylindrical nanoparticles are more effective than spherical nanoparticles
in drug delivery. Mekheimer et al. [11] examined the gold nanoparticles in the peri-
staltic flow between the two coaxial tubes. They contemplated the gold nanopar-
ticles due to their application in treating cancerous cells. Seo Kyung et al. [12]
formed the hybrid sheet of Au-GO nanoparticles to enhance the photothermic
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effect helpful in cancer therapy. Further, Liu et al. [13] studied graphene-based
nanoparticles in their work. They considered graphene nanoparticles due to their
photothermal effect beneficial in cancer treatment. Khazayinejad et al. [14] ana-
lytically solved the mathematical model portraying graphene nanoparticles’ sus-
pension in a tube with wavy walls. Through the use of particle shape factor, slip,
and convective regime, Sindhu et al. [15] analysed the flow of a hybrid nanoliq-
uid in a microchannel. Rishu et al. [16] considered the bell-shaped artery with
temperature-dependent viscosity to explore the effect of hybrid nanoparticles (Au-
Al2O3) on blood flow. Furthermore, they [17] investigated the entropy analysis of
the MHD slip flow with tapered multiple-stenosis artery.

Blood flow is greatly influenced by pressure, viscosity, and other external
and internal elements in the human circulatory system. Blood’s hemodynamic
properties are constantly changing due to its shear-thinning feature. As a result,
blood viscosity cannot be assumed to be constant. Singh et al. [18] explored the
Jeffery-Hamel flow in the non-parallel walls by adopting the hybrid computa-
tional approach. By employing a hybrid analytical approach, Sushila et al. [19]
examined the thin film flow issue. Bhavya et al. [20] studied the inclination and
hematocrit dependent viscosity effect on the MHD blood flow. Further, Chandan
et al. [21] developed the model by considering the two phase blood flow. Their
findings show that radial curvature increases the risk of atherosclerosis whereas
heat radiation decreases it. Khanduri and Sharma [22] investigated the entropy
generation on the MHD flow by considering the variable viscosity and thermal
conductivity. Several other researchers [23–29] developed a mathematical model
to illustrate the effect of variable viscosity on MHD flow.

From a bioengineering perspective, it is crucial to research the behaviour of
hybrid nanoparticles (Au-GO) suspended by streaming blood flow on the curved
stenosed artery in the presence of a strong radial magnetic field; however, no
such study has yet been published. The multiple stenosis and thrombosis at
the catheter walls hinder the hemodynamic flow. The curvilinear coordinate is
customised to simulate blood flow. The current study may be beneficial in radi-
ological examinations such as magnetic resonance angiography (MRA) to detect
vascular abnormalities. The hybrid nanoparticles Au-GO/blood have been stud-
ied due to their potential applicability in nanomedicine and biomedicine. The
inert nature, stability, and anti-bacterial capabilities makes the Au nanoparti-
cles to have the wide range of applications. As a result, the current study sheds
light on the treatment of stenosis and other anomalies without surgery while also
reducing post-surgical problems. In the future work, the researchers can explored
the effect of nanoparticle shapes with the permeable arterial walls along with
the different shapes of stenosis (example, triangular and elliptical shapes) with
tapering effects can be explored.

The novelty of the present work includes:

– The influence of (Au-GO/blood) hybrid nanoparticles on diseased segments
characterized by multiple stenosis and thrombosis.

– To analyze the hematocrit-dependent viscosity model with the combined
effect of Hall and body acceleration in the porous medium.
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2 Mathematical Formulation

Considered the unsteady, laminar, incompressible, two-dimensional blood flow
with suspension of Au/GO nanoparticles through the two coaxial tube forming
the constriction due to the thromosis and stenosis. The blood flow is assumed to
be Newtonian and axisymmetric. The (r1, θ1, z1) curvilinear coordinate is chosen
to mimic the blood flow through a diseased artery. The r and z represent the
radial and axial direction respectively. Figure 1 represent the pictorial represen-
tation of diseased artery in which the outer tube has the multiple stenosis with
radius η and the inner tube has the clot on the catheter with radius ψ.

Fig. 1. Diseased artery segment

The mathematical representation of diseased segment [17]:
Stenosis:

η(z∗
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R0 − 2 δ
λ (z∗

1 − d), d ≤ z∗
1 ≤ d + λ

2

R0 + 2 δ
λ (z∗

1 − d − λ), d + λ
2 ≤ z∗

1 ≤ d + λ

R0 + δ
λSin(π(z∗

1 − d)), d + λ ≤ z∗
1 ≤ d + 2λ

R0 otherwise.

(1)
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Clot:

ε(z∗
1) =

{
R0(c + σ exp(−π2

λ (z∗
1 − z∗

d − 0.5λ)2)), d < z∗
1 < d + 3λ

2 ,

cR0, otherwise.
(2)

where, σ is the maximum height of the clot at the axial position z∗
d , cR0 is the

radius of the inner tube with c << 1. In Eq. (1), δ represents the maximum
height of the stenosis, d is the location of diseased segment.

Blood is assumed to be the suspension of red blood cells(RBCs), platelets,
white blood cells, and plasma, etc. The migration of RBCs towards the center of
the tube due to fluid shear resulted in the variation of viscosity and increase the
fluid velocity towards the center resulting in more variation of RBCs distribution
in the tube. To account for this variation of the blood viscosity due to spatial
variation of RBCs, we proposed the hematocrit-dependent viscosity model:

μf = μ0[1 + γ1h(r∗
1)], (3)

where, h(r∗
1) = hm[1− ( r∗

1
R0

)m], hm represent the maximum hematocrit at center
with γ1 as constant and m ≥ 2 represent the exact shape of velocity profile.

2.1 Governing Equations

A uniform radial magnetic field B is applied on the diseased segment. The
induced magnetic field is assumed to be negligible as it is very small as compared
to the applied magnetic field. Subject to the above mention assumption with the
MHD flow interaction, the resultant governing equations becomes [30]:

Continuity
∂u∗

1

∂r∗
1

+
u∗
1

r∗
1 + R∗ +

R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

= 0. (4)

Momentum (in r∗
1-direction)

ρhnf

[
∂u∗

1

∂t∗
1

+ u
∗
1

∂u∗
1

∂r∗
1

+
w∗

1R∗

r∗
1 + R∗

∂u∗
1

∂z∗
1

− w∗
1
2

r∗
1 + R∗

]
= − ∂p

∂r∗
1

+ μhnf

(
∂2u∗

1

∂r∗
1
2

+
1

r∗
1 + R∗

∂u∗
1

∂r∗
1

+

(
R∗

r∗
1 + R∗

)2 ∂2u∗
1

∂z2
− u∗

1

(r∗
1 + R∗)2

− 2R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

)
− σhnfB0(−u∗

1 + βew∗
1 )

(1 + β2
e)

(
R∗

r∗
1 + R∗

)2

+

(
4

3

∂u∗
1

∂r∗
1

− 2

3

(
R∗

R∗ + r∗
1

∂w∗
1

∂z∗
1

+
u∗
1

R∗ + r∗
1

))
∂μhnf

∂r∗
1

. (5)
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Momentum (in z∗
1 -direction)

ρhnf

[
∂w∗

1

∂t∗1
+ u∗

1

∂w∗
1

∂r∗
1

+
R∗

r∗
1 + R∗

∂w∗
1

∂z∗
1

+
u∗
1w∗

1

r∗
1 + R∗

]
= −

(
R∗

r∗
1 + R∗

)
∂p

∂z∗
1

+ μhnf

(
∂2w∗

1

∂r∗
1
2

+
1

r∗
1 + R∗

∂w∗
1

∂r∗
1

+

(
R∗

r∗
1 + R∗

)2 ∂2w∗
1

∂z∗
1
2

− w∗
1

(r∗
1 + R∗)2

+
2R∗

r∗
1 + R∗

∂u∗
1

∂z∗
1

)

+

(
R∗

R∗ + r∗
1

∂u∗
1

∂z∗
1

+
∂w∗

1

∂r∗
1

− w∗
1

R∗ + r∗
1

)
∂μhnf

∂r∗
1

+ G(t∗1)−
μhnf

K
w∗

1

− σhnf B2
0(βeu∗

1 + w∗
1)

(1 + β2
e )

(
R∗

r∗
1 + R∗

)2

. (6)

where, the velocity (u,w) represent the velocity along the radial and axial direc-
tion respecively. The flow is independent in θ∗

1 direction due to axi-symmetry
blood flow in the artery. R∗ represent the radius of curvature, t∗1 represent the
time, βe represent the Hall parameter, and K represent the permeability.

The associate dimensional boundary conditions are:
{

w∗
1 = 0 at t∗1 = 0,

w∗
1 = 0 at r∗

1 = η(z∗
1) and r∗

1 = ε(z∗
1).

(7)

The arterial hemodynamic involves the analysis of pressure and waveform
that are continuously changing due to the propogation of blood flow from central
to peripheral arteries. The expression for axial pressure gradient is represented
as [30]:

− ∂p

∂z∗
1

= A0 + A1cos(2πωpt
∗
1), t > 0. (8)

where, ωpt
∗
1 = 2πfp with frequency fp, A0 and A1 represents the mean and

pulsatile component of pressure gradient, respectively. The extrinsic periodic
body acceleration applied on the axial direction is given as [30]:

G(t∗1) = B0cos(ωqt
∗
1 + ψ), (9)

where, ψ is the phase angle, ωqt
∗
1 = 2πfq with fq as frequency and B0 as the

amplitude for body acceleration, respectively. Table 1 represents the thermophys-
ical parameters for nanofluid and hybrid nanofluid.

2.2 Non-dimensionalization of Governing Equations

Apply the non-dimensional variables into Eqs. 1–2, one can obtain non-
dimensionalize form of diseased artery:

Stenosis region:

η(z∗
1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 − 2δ∗(z∗
1 − d), d ≤ z∗

1 ≤ d + 1
2

1 + 2δ∗(z∗
1 − d − 1), d + 1

2 ≤ z∗
1 ≤ d + 1

1 + δ∗Sin(π(z∗
1 − d)), d + 1 ≤ z∗

1 ≤ d + 2
1 otherwise.

(10)
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Clot region:

ε(z∗
1) =

{
c + σ exp(−π2(z∗

1 − z∗
d − 0.5)2), d < z∗

1 < d + 3/2,

c, otherwise,
(11)

Table 1. Properties & Mathematical expression for nanofluid and hybrid nanofluid

Viscosity μnf =
μf

(1−φ1)2.5

μhnf =
μnf

(1−φ1)2.5(1−φ2)2.5

Density ρnf = (1 − φ1)ρf + φ1ρs1

ρhnf = [(1 − φ2){(1 − φ1)ρf + φ1ρs1}] + φ2ρs2

Electrical Conductivity
σnf

σf
=

σs1+(m−1)σf−(m−1)φ1(σf−σs1 )

σs1+(m−1)σf+φ1(σf−σs1 )

σhnf

σnf
=

σs2+(m−1)σf−(m−1)φ2(σf−σs2 )

σs2+(m−1)σf+φ2(σf−σs2 )

Table 2. Non-dimensional parameters

r̄∗
1 =

r∗
1

R0
z̄∗
1 =

z∗
1
λ

ū∗
1 =

λu∗
1

δ∗U0
w̄∗

1 =
w∗

1
U0

δ = δ∗
R0

t̄∗
1 =

U0t∗
1

R0
R̄c = Rc

R0
p̄ =

R2
0p

μ0U0λ

Re =
U0ρfR0

μf
M2 =

σfB2
0R2

0
μ0

Z = K
R2

0
βe = ωeτe

Again, use the non-dimensionalize parameters into Eqs. 4–6, neglecting the
bar, and assuming the assumption of fully developed flow, mild stenosis (δ∗ <<
1) with O(1) = α = R0

λ , the governing equations become:

dp

dr∗
1

= 0, (12)

ρhnf

ρf
Re

∂w∗
1

∂t∗1
= − Rc

Rc + r∗
1

∂p

∂z∗
1

+
μhnf

μ0

(
∂2w∗

1

∂r∗
1
2 +

1
r∗
1 + Rc

∂w∗
1

∂r∗
1

− w∗
1

(r∗
1 + Rc)2

)

−
(

∂w∗
1

∂r∗
1

+
∂w

Rc + r∗
1

)
mβ1hmr∗

1
m−1

(1 − φ1)2.5(1 − φ2)2.5

+ G(t∗1) − μhnf

μ0

w∗
1

Z
− σhnf

σf

(
Rc

r∗
1 + Rc

)2 (
1

1 + β2
e

)

M2w∗
1 , (13)
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The associate boundary conditions are:
{

w∗
1 = 0 at t∗1 = 0,

w∗
1 = 0, at r∗

1 = η(z∗
1) and r∗

1 = ε(z∗
1).

(14)

The non-dimensionalize formed for pressure gradient and body acceleration are
given as follows:

∂p
∂z∗

1
= B1(1 + e cos c1t

∗
1), G(t∗1) = B2 cos(c2t∗1 + χ), where B1 = A0R2

0
μ0U0

, e =
A1
A0

, B2 = Ā0R2
0

μ0U0
, c2 = ω̄2R0

U0
.

In hemodynamic flow, the progression of arterial diseases can easily be under-
stood by studying the basic hemodynamic factors like flow rate, impedance and
wall shear stress. The mathematical expression for important hemodynamical
factors such as wall shear stress, flow rate and resistive impedance are illus-
trated as [17,21]:

τw∗
1

=
(

∂w∗
1

∂r∗
1

)

r∗
1=η

, (15)

Q =
∫ η

ε

w∗
1r

∗
1dr∗

1 , (16)

λ =
L( ∂p

∂z∗
1
)

Q
. (17)

3 Solution Process

The governing equations are highly non-linear and coupled, so a robust tech-
nique is used to solve these equations. To solve these equations, we employed
the Crank-Nicholson method, which is unconditionally stable and second-order
convergent in space and time. The partial and spatial derivatives are given as:

∂w

∂r
=

wk
i+1 − wk

i−1

2Δr
,
∂2w

∂2r
=

wk
i+1 − 2wk

i + wk
i−1

(Δx)2
,
∂w

∂t
=

wk+1
i − wk

i

Δt
. (18)

The flow chart of the schematic representation of the work plan is depicted in
Fig. 2. The domain is divided into N + 1 × M + 1 grid points, where N denotes
the grid point in the spatial direction and M denotes the grid point in the time
direction. The subscript i and j-designate for the nodal point in spatial and
time direction, respectively. The value of w at initial time t = 0 is known due to
the given condition. Every nodal point in the ith level constitutes the tridiagonal
system, which is solved using the Tri-diagonal Matrix Algorithm (TDMA). Thus,
the value of w is known for each (j+1)th time level. Default values of parameters
and thermodynamical properties of nanoparticles used in the present study are
depicted in Table 3 and the Table 4 respectively.
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Fig. 2. Flow chart

Table 3. Dimensionless parameters

Parameter φ1 φ2 δ hm Re M Rc βe e B1 B2 Z

Value 0.02 0.02 0.1 1 2 1 3 0.5 0.2 0.25 5 3

Table 4. Thermophysical Properties

Thermophysical Properties Blood Gold Graphene

Density [ρ(Kg/m3)] 1063 19320 1800

Electrical Conductivity [σ(S/m)] 6.67×10−1 4.52×107 6.3×107

4 Result and Discussion

The current study is validated using the published work of Elnaqeeb et al. [4], as
shown in Fig. 3. To validate the result of present study with [4], we have reduced
our model by considering striaght artery assumption Rc = 0. The Copper blood
flow model is considered instead of (Au-GO). We ignore the multiple stenosis
and used the stenosis model for n = 2 used by [4]. The velocity profile is drawn
by assuming the same set of values as in [4]. There is a good agreement between
velocity trend in our research work and trend of velocity profile in ref. [4]. In the
present model, we have considered the curved artery as in more generalized cases,
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the artery is not straight. Furthermore, we have included hematocrit dependent
viscosity model on which very researchers published their work. It is one of the
most essential parameter as its depict the picture of the spatial distribution of
RBCs. The influence of hematocrit parameter on the velocity profile is depicted
in the Fig. 4.
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Fig. 3. Velocity profile for stensois shape
parameter n = 2
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Fig. 4. Velocity profile for varying hm

4.1 Velocity Profile

Blood undergoes a significant electromotive force when an external magnetic
field is present. Haemoglobin contains magnetic iron ions, which significantly
react to the surrounding magnetic field and affect blood flow. Red blood cells
(RBCs) are magnetically repelled due to their inherent paramagnetic compo-
sition. From Fig. 4, we can inferred that the velocity profile decreases as the
hematocrit parameter hm enhances. The reduction in velocity profile is due to
the increase in the blood viscosity. Figure 5 depicts the relationship between
velocity profiles and magnetic field parameter M for clot and stenotic regions.
The graph shows that the velocity profile in both cases will be higher in the
absence of a magnetic field. As the value of the M increases from 0 to 4, the
fluid velocity decreases as it experiences a resistive force known as Lorentz force.
Figure 6 illustrates the effect of Hall parameter βe on the velocity profile. The
hall currents are induced due to the collision of the electrons under the action
of a strong magnetic field that generates electromagnetic forces resulting in the
modifying nature of the current density. It is observed from the figure that the
velocity increases with an increase in the Hall parameter. This has happened
because an upsurge in the Hall parameter signifies escalation in collision time or
electron frequency, thus, assisting in the fluid velocity.
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4.2 Flow Rate, Wall Shear Stress and Impedance

Figure 7 depicts the increment in flow rate with an upsurge in the radius of
curvature parameter Rc. This increase may be explained by the fact that when
the parameter Rc increases, the curved channel shrinks to a straight tube. The
higher the value of Rc, the less obstruction comes in the fluid path, resulting
in an upsurge in velocity profile with an increase in Rc. This study is helpful
as its show that for smaller value of Rc, there is a significant growth in fear of
deposition of plaque (lipid). A very less study has been conducted to show the
radius of curvature effect, as in more generalised cases the artery is not always
straight. Thus, it is essential to consider this effect into the model. It is noted
from the Fig. 8 that the flow rate decreases as the magnetic field parameter M
increases from 0 to 4. The non-dimensional velocity profile for M follows the
same pattern as that of [28,29]. The flow rate is constant till z = 2; afterwards,
the flow rate varies due to clot and stenosis, and it again attains its constant
values after z = 4.
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The existence of haemoglobin and magnetic iron oxide particles makes the
blood to be profoundly impacted by a magnetic field. When a magnetic field
is applied to an artery carrying blood, a strong electromotive field is generated
known as the Lorentz force that results in the slowing down of the blood’s flow.
Thus, the fluid experiences the retarding force with an increment in parameter
M, which resists the fluid flow, as observed in Fig. 8. The effect of the perme-
ability parameter Z on the Impedance profile is demonstrated in Fig. 9. The
ratio of the empty space to the total volume of the fluid medium is the porosity
of the material [31]. Due to the dispersion of artery-clogging fatty cholesterol,
blood clots, and plaques in the arterial lumen, blood is thought of as a porous
medium. Increases in porosity result in more empty space, which in turn leads to
less resistance to flow and increased blood velocity. As a result, the fluid velocity
increases with the rise in the permeability parameter due to the less obstruc-
tion in its path. Thus, the impedance profile shows the declining nature as the
permeability parameter Z increases. Figure 10 is plotted to see the variation of
impedance profile with hematocrit dependent viscosity hm. From these plots, it
can be inferred that the impedance profile also increases with an increase in hm.
This has happened due to increases in fluid viscosity that resist the fluid motion
and amplify the impedance profile. In arterial blood flow, the term “wall shear
stress” refers to the force exerted per unit area on the fluid by the arterial wall
(and vice versa) in a direction that is parallel to the local tangent plane. It is
generally known that regions of arteries with either low or fluctuating wall shear
stress seem more susceptible to atherosclerosis. The influence of the pressure
gradient parameter B1 on the WSS profile is seen in Fig. 11. The figure demon-
strates the periodic nature and enhances with an increment in the B1 parameter.
The role of WSS with body acceleration parameter B2 is depicted in Fig. 12. It
is observed that the WSS profile varies periodically with time. As the magnitude
of B2 increases, the fluid velocity also increases, which leads to an enhancement
in the amplitude of B2.
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4.3 Velocity Contour

Figure 13 illustrates the velocity contour for the varying height of stenosis and
clot. It can be noted from the figure that the velocity decreases with an increase
in the clot and stenosis height. There is a difference in the centre area that is
occupied by the clot and the stenosis, despite the fact that the greatest velocity
that can be achieved in each of the three scenarios being the same, which is
16× 10−4. As shown in the figure, the amplitude of the fluid velocity falls as the
height of the clot and stenosis grows, which makes the flow of fluid more difficult
to navigate.
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Fig. 13. Variation in blood flow patterns for diseased artery segment (a) σ∗ = 0.1, δ∗ =
0.2, (b) σ∗ = 0.2, δ∗ = 0.1 (c) σ∗ = 0.2, δ∗ = 0.2.
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Fig. 14. Variation in blood flow patterns for different volume fractions of nanoparticles,
(a) φ1 = 0, φ2 = 0, (b) φ1 = 0.02, φ2 = 0, (c) φ1 = 0.02, φ2 = 0.02.

Figure 14 highlights the effect of nanoparticles concentration φ1 and φ2 on
the velocity contour. Figure 14a signifies the situation of pure blood when no
nanoparticle is added. As we insert the gold nanoparticles into the blood, the
fluid velocity decreases, as depicted in Fig. 14b. Further, the magnitude of the
fluid velocity in the core area of the diseased artery is reduced as a result of the
incorporation of graphene oxide with gold nanoparticles. Therefore, it could be
beneficial for surgeons to manage the flow of blood.

5 Conclusion

A detailed study has been carried out to study the multiple stenotic arteries
with thrombosis. The flow is subjected to the strong radial magnetic field, and
the curvilinear coordinate is adapted to mimic the blood flow. There has been
some thought given to the possibility of using a hybrid nanofluid created by
suspending Au-GO nanoparticles in blood. Because of the extreme non-linearity
of the governing equations, the robust implicit Crank-Nicholson method has been
used. Starting with a discretization of the governing equations, a tridiagonal
system is constructed for each nodal point on the (i + 1)th level, and then the
Tri-diagonal Matrix Algorithm (TDMA) is used to solve it. The velocity w at
each mesh point may be calculated by using this method again for every (j+1)th

time step. The effect of different pertinent parameters on velocity, temperature,
wall shear stress, Impedance and velocity contour is displayed. The significant
outcomes of the study are summarised below:

– The significant decline in flow velocity is observed for an increase in the
stenosis and clot height.

– It has been observed that raising the Hall parameter induces an increase in
fluid velocity owing to an increase in collision time or electron frequency,
hence assisting fluid flow.



Mathematical Analysis of Hall Effect and Hematocrit Dependent Viscosity 135

– Au-GO/blood hybrid nanoparticles have a higher velocity profile than pure
blood and unitary nanoparticles.

– Increasing the permeability parameter Z allows the fluid to travel more freely,
aiding the flow and decreasing the impedance profile.

The findings of this research may be useful in diagnostic imaging tech-
niques for identifying vascular anomalies, such as magnetic resonance angiog-
raphy (MRA). The hybrid nanoparticles Au-GO/blood have been studied due
to their potential applicability in nanomedicine and biomedicine. Various steno-
sis forms (such as triangular and elliptical) and their tapering effects may be
investigated in future studies, as can the interaction of nanoparticle shapes with
permeable artery walls.
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Abstract. In this study, we analyze the effects of velocity slips and con-
vective boundary conditions in the flow and heat transfer of Maxwell
nanofluid across a stretching sheet considering magnetic field, ther-
mal radiation, chemical reaction, and activation energy. The influence
of Brownian diffusion and thermophoresis are considered using Buon-
giorno’s nanofluid model. By applying suitable similarity variables, the
governing Maxwell nanofluid flow equations, which include the momen-
tum, energy, and nanoparticle volume fraction are simplified to nonlinear
differential equations. MATLAB’s bvp4c finite difference tool is used to
solve the nondimensionalized differential equations. In order to illustrate
the influence of physical factors on velocity, temperature, and nanopar-
ticle volume fraction, the numerical solutions are shown graphically. In
addition, the skin friction, rate of heat transmission, and mass transfer
are all given physical interpretations. The current analysis demonstrates
that the velocity slip and suction parameters significantly reduce the
velocity. Increased thermal radiation and Biot number for temperature
raise the temperature profile. Further, the activation energy and ther-
mophoresis factors lead to a decrease in the mass transfer rate, while the
Lewis number and Biot number due to concentration contribute to an
increase.
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Nomenclature

T Temperature K1 Chemical reaction parameter

c Velocity ratio parameter h2 Convective mass transfer coefficient

u, v, w Velocity components k2
r Chemical reaction coefficient

M Magnetic parameter B0 Constant magnetic field

x, y, z Space coordinates DT Coefficient of thermal diffusion

K Deborah number Bi1 Biot number for temperature

n Fitted rate constant Bi2 Biot number for concentration

Le Lewis number w0 Suction velocity

uw, vw Stretching velocities Greek Symbols

E Dimensionless activation energy α1 Velocity slip parameter

k Thermal conductivity μ Dynamic viscosity

k∗ Mean absorption coefficient θw Temperature ratio parameter

T∞, C∞ Ambient temperature and concentration κ Boltzmann constant

S Suction parameter ρ Density

Rd Thermal radiation parameter θ Dimensionless temperature

Pr Prandtl number λ Fluid relaxation time

cp Specific heat α Thermal diffusivity

C Concentration ν Kinematic viscosity

Nt Thermophoresis parameter φ Dimensionless concentration

Tw, Cw Surface temperature and concentration σ∗ Stefan-Boltzmann constant

Nb Brownian motion parameter β Slip coefficient

Ea Activation energy σ Electrical conductivity

DB Mass diffusivity τ Ratio between effective heat capacity

h1 Convective heat transfer coefficient of nanoparticles and base fluid

1 Introduction

In the petroleum industry and engineering applications, non-Newtonian fluid
flow coupled with heat and mass transfer is of significant interest. Desalination,
refrigeration and air conditioning, compact heat exchangers, chemical process-
ing equipment, solid matrix heat exchangers, solar power collectors, and other
applications [1,2] are examples. The Laplace and Hankel transforms were used
to calculate the velocity field and shear stress field of a generalised Maxwell
fluid that flows between two infinite coaxial circular cylinders [3]. By employing
the multi-step differential transform approach, Keimanesh et al. [4] investigated
third grade non-Newtonian fluid flow between two parallel plates. Nadeem et
al. [5] presented a model of a two-dimensional Williamson fluid past a stretched
sheet that they had developed. Seyedi et al. [6] investigated effect of natural con-
vection on non-Newtonian fluid flow between two vertical plates using Galerkin
interpolation scaling functions.
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Thermal radiation effects on nanofluid flow and heat transfer are becom-
ing increasingly popular because nanofluids have a variety of characteristics. In
addition, the influence of radiative heat transfer has increased dramatically in
the design of modern energy conversion systems [7], plasma studies, agricul-
ture, and petroleum industries [8,9]. Numerous research have been conducted
in this area to investigate the impacts of heat radiation in various areas. A
two-dimensional MHD mixed convection viscoelastic fluid flow across a porous
wedge with heat radiation was investigated by Rashidi et al. [10], who sought
an analytical solution. Daniel and Daniel [11] did research on the theoretical
impact of buoyancy and heat radiation on MHD flow past a stretched porous
sheet. Pal and Mandal [12] discussed the influence of thermal radiation, non-
uniform heat source/sink and suction on MHD micropolar nanofluid flow across
a stretched sheet. MHD viscous fluid was flowed over a horizontally rotating disc,
and Shah et al. [13] explored the effect of non-linear thermal radiations on the
unsteady flow of the fluid. Effect of thermal radiation on MHD stagnation-point
flow over a nonlinearly moving sheet was described by Jamaludin et al. [14] with
mathematical solutions. Tarakaramu et al. [15] investigated the impact of non-
linear thermal radiation and Joule heating on the flow of a three-dimensional
viscoelastic nanofluid via a stretched surface.

In various physical scenarios involving suspensions, foams and polymer solu-
tions [16], the assumption of slip flow boundary condition is necessary. The no-
slip boundary condition is involved in the research listed above. With the Soret
and Dufoue effect, Babu and Sandeep [17] investigated multiple slip effects on the
magnetohydrodynamic Williamson fluid flow past a variable thickness stretch-
ing sheet. Using a non-isothermal radiate wedge submerged in ferrofluid, Rashad
[18] analysed the impact of partial slip and thermal radiation on MHD boundary
layer flow in his research. With entropy analysis, Ellahi et al. [19] looked at the
combined impact of MHD and slip on a flat moving plate over a wide range of
physical factors. Das et al. [20] examined multiple slips as well as nonlinearly
changing thermal radiation on a 3D MHD nonlinear convective tangent hyper-
bolic nanofluid flow generated by a bidirectional stretching surface with Soret
and Dufour impacts.

In the investigation of a number of physical phenomena, including engineering
and oil storage, activation energy is often taken into consideration. A few the-
oretical studies that discuss the function of activation energy in fluid dynamics
are currently available. Numerous uses of Arrhenius activation energy, as well as
chemical reactions, have made fluid dynamics an appealing area for researchers.
The least amount of energy required to stimulate the particles or molecules in
which physical transit occurs is known as activation energy. This is due to the
fact that different chemical processes need some amount of energy merely to
begin. Other uses of activation energy include atomic processes, the discovery of
compounds, and thermal lubricant recovery [21–23]. Fayyadh et al. [24] investi-
gated the magneto-flow and heat transfer of the Carreau nanofluids model in the
presence of Arrhenius activation energy and chemical reaction toward a stretch-
ing/shrinking surface. Akbar et al. [25] studied the effects of gyrotactic motile
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microorganisms and Arrhenius activation on the bioconvection peristaltic trans-
port of nanofluid. They also considered variable viscosity, Brownian diffusion,
porous medium, mixed convection, nonuniform heat absorption/generation, vis-
cous dissipation, and thermophoresis diffusion. Shoaib et al. [26] examined the
significance of activation energy during chemical reactions, temperature gradi-
ent, and thermal radiations of 3-D steady magnetite Casson nanofluid flow over
an oscillating disk.

Convective heating is very common in engineering practises such as nuclear
reactors, gas turbines and thermal energy storage [27,28]. These activities gen-
erate a high temperature, which is transferred to the flow via the convective
boundary condition. To better understand the impact of convective boundary
conditions on the MHD flow of nanofluids near a stretching rotaing disc with
partial slip effects, Mustafa and Khan [29] carried out a numerical study. On
mixed convection MHD micropolar fluid with non-linear stretched sheet, Patel
and Singh [30] investigated the impacts of convective heat boundary condition,
viscous dissipation and Joule heating, among other things. MHD Casson fluid
flow across an exponentially extending curved sheet was studied by Kumar et al.
[31] and shown to be affected by convective heating, thermal radiation and Joule
heating. Das et al. [32] explored effects of convective heating, velocity slips, and
activation energy on unsteady MHD 3D Carreau nanofluid flow over a stretch-
ing sheet. Mandal et al. [33] examined the convective heat transfer and entropy
generation of magnetohydrodynamic Maxwell nanofluid flow including gyrotac-
tic microorganisms along a stretching cylinder with heat source and chemical
reaction.

To the best of the authors’ knowledge, no studies have reported the impacts of
velocity slip, activation energy, and convective heating on Maxwell nanofluid to
this day. Hence, the purpose of this study is to investigate the effects of velocity
slip, activation energy, and convective heating on MHD Maxwell nanofluid flow
via a permeable stretching surface when thermal radiation is present. The prob-
lem of non Newtonian nanofluid flow across a stretched surface is extremely help-
ful in gas turbines, aerodynamic heating, food processes, biomedicines, polymer
processing, and other fields. In order to convert the dimensional governing equa-
tions into their dimensionless counterparts, proper similarity transformations
have been used. The bvp4c solver in MATLAB is applied to simulate reduced
highly nonlinear ordinary differential equations. The effects of significant factors
on the momentum, temperature, concentration, and skin friction coefficients, as
well as the Nusselt and Sherwood numbers, are graphically depicted.
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2 Mathematical Modelling

Fig. 1. Geometry of the flow problem

Consider a 3D Maxwell nanofluid flow across a stretched surface in the xy-plane,
with the fluid at z ≥ 0. In the x-direction, the sheet is stretched with a linear
velocities of uw = ax and vw = by (a and b being positive constants). We’ll
call these two values Tw and Cw, the surface temperatures and concentrations.
T∞ and C∞, on the other hand, represent the temperature and concentration
far away from the surface, as illustrated in Fig. 1. The stretched surface is sub-
jected to a magnetic force of strength B0, which is applied normal to the sur-
face. Thermal radiation and activation energy are considered to study the fluid
flow. Another consideration is that the flow field does not have any polarization
of charges since no external electric field is applied, which corresponds to the
condition when no energy is injected or withdrawn from the fluid by electrical
methods. Furthermore, a fluid with a low magnetic Reynolds number is thought
to be a metallic liquid or partly ionized. So fluid motion’s effect on the induced
magnetic field is minuscule in compared to the applied magnetic field. The gov-
erning equations may be reconstructed on the basis of the aforementioned flow
assumptions [34,35]:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)
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u
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u2 ∂2u

∂x2
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+ 2uv

∂2u
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∂2u
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)
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(
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)
, (2)

u
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(
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u
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DT
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)n

e(
−Ea
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(5)
The following are the physical boundary conditions for the present problem
[36–38]:

u − ax + λ

(
u

∂u

∂x
− au + v

∂u

∂y
+ w

∂u

∂z

)
= β

∂u

∂z
, v − by + λ

(
u

∂v

∂x
− bv + v

∂v

∂y
+ w

∂v

∂z

)
= β

∂v

∂z
, w = w0,

− k
∂T

∂z
= h1 (Tw − T ) , − DB

∂C

∂z
= h2 (Cw − C) , at z = 0,

u → 0, v → 0, T → T∞, C → C∞ as z → ∞.

⎫⎪⎬
⎪⎭

(6)
The following Rosseland’s estimate for an optically thick fluid is used to approx-
imate the radiative heat flux qr [39]:

qr = −16σ∗T 3

3k∗
∂T

∂z
. (7)

The energy equation has the following form when expression (7) is applied to
Eq. (4):

u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
=α

∂2 T

∂z2
+ τ

{
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(
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(
3ρcp

)
f

k∗

{
T

∂2 T

∂Z2
+ 3

(
∂T

∂Z

)2
}

.

(8)
The following similarity variables are included in order to achieve similar solu-
tions for Eqs. (2), (3), (8), and (5), subject to the boundary constraints (6):

u = axf
′
(η), v = ayg(η), w = −√

aν(f(η) + g(η)), θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C − C∞
Cw − C∞

, η = z

√
a

ν
.

(9)
The following ordinary differential equations result from substituting the afore-
mentioned similarity variables in Eqs. (2), (3), (8), and (5):

f ′′′ − f ′2 + (MK + 1)(f + g)f ′′ + K(2f ′(f + g)f ′′ − (f + g)2f ′′′) − Mf ′ = 0,
(10)

g′′′ − g′2 + (MK + 1)(f + g)g′′ + K(2g′(f + g)g′′ − (f + g)2g′′′) − Mg′ = 0,
(11)
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θ
′′

+ Pr(f + g)θ
′
+ PrNbθ

′
φ

′
+ PrNt

(
θ

′)2
+

4

3
Rd {1 + θ (θw − 1)}2

[
3

(
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′)2
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+ {1 + θ (θw − 1)} θ
′′]

= 0, (12)

φ′′ + PrLe(f + g)φ′ +
Nt

Nb
θ′′ − PrLeK1(1 + (θw − 1)θ)ne(− E

1+(θw−1)θ )φ = 0.

(13)
The dimensionless boundary conditions are written as follows:

f
′
(0) = 1 − K

{
f

′2 − f
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′′}
+ α1f

′′
, g

′
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′′}
+ α1g

′′
,

f(0) = S, g(0) = 0, θ
′
(0) = −Bi1 (1 − θ(0)) , φ

′
(0) = −Bi2 (1 − φ(0)) ,

f
′
(∞) → 0, g(∞) → 0, θ(∞) → 0, φ(∞) → 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(14)
where
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a
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3 Local Skin-Friction Coefficients, Nusselt Number
and Sherwood Number

In this fluid flow problem, the local skin-friction coefficients (Cfx, Cfy), Nusselt
number (Nux), and Sherwood number (Shx) are the relevant physical quantities,
and their expressions are as follows:

Cfx =
ν

u2
w

[
(1 + K)

∂u

∂z

]
z=0

, (15)

Cfy =
ν

v2
w

[
(1 + K)

∂v

∂z

]
z=0

, (16)

Nux = − x
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[(
k +

16σ∗T 3

3k∗

)
∂T

∂z

]
z=0

, (17)

Shx = − xDB

DB (Cw − C∞)

(
∂C

∂z

)
z=0

. (18)

Using the dimensionless variables provided in (9), the aforementioned physical
quantities may be stated in non-dimensional form

Cfx

√
Rex = (1 + K)f ′′(0), (19)

Cfy

√
Rey = (c)− 3

2 (1 + K)g′′(0), (20)

Nux√
Rex

= −
[
1 +

4
3
Rd {1 + (θw − 1) θ(0)}3

]
θ′(0), (21)



Maxwell Nanofluid 145

Shx√
Rex

= −φ′(0), (22)

where Rex =
uwx

ν
and Rey =

vwy

ν
are the local Reynolds numbers.

4 Implementation of Numerical Technique

4.1 Solution Procedure

MATLAB’s bvp4c code is used to solve the nonlinear ordinary differential equa-
tions (ODE) that govern flow Eqs. (10–13) with boundary conditions 14. Other
researchers have extensively implemented this code to tackle the boundary value
issue. The MATLAB routine is a representation of a finite difference algorithm
that achieves fourth-order precision. For the solver to work, the equations need
to be rewritten as a system of equivalent first-order differential equations.

4.2 Results Validation

To validate the employed technique, we got −f ′′(0) and −g′′(0) values and com-
pared them to earlier reported results by Hayat and Awais [40] and Kumar et
al. [8] in Tables 1 and 2 where M = K = α1 = S = 0.0 for a variety of c values.
It is recognized that the comparison is realistic, which provides assurance of the
accuracy of the numerical results presented in this study.

Table 1. Comparison of −f ′′(0)’s numerical findings with previously published data

−f ′′(0)

c Hayat and Awais [40] Kumar et al. [8] Present result

0 1 1.000003 1

0.2 1.039495 1.039498 1.039498

0.4 1.075788 1.075789 1.075789

0.6 1.109946 1.109948 1.109947

0.8 1.142488 1.142490 1.142488

1.0 1.173720 1.173722 1.173720

Table 2. Comparison of −g′′(0)’s numerical findings with previously published data

−g′′(0)

c Hayat and Awais [40] Kumar et al. [8] Present result

0 0 0 0

0.2 0.148736 0.148738 0.148738

0.4 0.349208 0.349209 0.349210

0.6 0.590528 0.590526 0.590529

0.8 0.866682 0.866679 0.866683

1.0 1.173720 1.173717 1.173720
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5 Results and Discussion

Many important factors have been looked at in this section. They have an effect
on velocities, temperature, concentration, skin friction, rate of heat transfer, and
rate of mass transfer. To do the calculations, we chose K = 0.1, Pr = S = 2.0,
Nt = n = 0.5, M = 1, Rd = K1 = 0.2, Nb = α1 = 0.4, Le = 1, θw = 1.3,
Bi1 = Bi2 = 0.3, E = 0.6 and c = 0.7.

Figures 2 and 3 demonstrate the non-dimensional velocities f ′(η) and g′(η)
for different magnetic field parameter values M . The velocities f ′(η) and g′(η)
decrease as the magnetic parameter M increases. The physical explanation for
this behavior is that increasing the magnetic parameter operating transverse
to the flow enhances the Lorentz force, which tends to resist the fluid motion.
The velocity slip parameter α1 has a significant impact on fluid flow, as seen
in Figs. 4 and 5. By raising the velocity parameter α1, the velocities f ′(η) and
g′(η) decrease. The slip between the fluid and the sheet surface increases as the
velocity slip parameters rise. As a result, a partial slip velocity is transferred to
the flow-field that tends to minimize fluid velocities. Figures 6 and 7 express that
enhanced values of S imply the decreasing nature of flow velocities. Suction is
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utilized to regulate the nanofluid flow physically, with the purpose of reducing
velocities by minimizing drag on nanoparticles in an external flow.

Figure 8 illustrates the effect of the thermal radiation parameter Rd on the
temperature distribution. The graphic clearly shows that with increasing Rd
values, θ(η) is upsurged. In general, increasing radiative characteristics promote
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molecular mobility within the system, resulting in frequent collisions between
particles that convert to heat energy. As a result, the temperature has risen.
The effect of Biot number for temeperature on the temperature field is explored
in Fig. 9. The increase in Bi1 indicates that conduction dominates convection
heat transfer at the surface. Consequently, for higher Bi1 values, temperature
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curves are accelerated. According to Figs. 10 and 11, an increase in Nb results in
an increase in θ(η) and a decrease in φ(η) over the boundary layer area. When
microscopic particles in the flow field come into contact with one other, they
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create thermal energy, raising the fluid temperature. As a result of Brownian
diffusion, the volume fraction of nanoparticles in the boundary layer decreases as
they recede from the sheet’s surface. It is clear from Figs. 12 and 13 that when Nt
grows, θ(η) and φ(η) rise with it. When a nanoparticle in touch with a stretched
sheet is heated by the sheet’s temperature, it exhibits a thermophoretic force that
causes it to push back other nanoparticles in its vicinity. An increase in Nt raises
the thermophoretic force, which drives the nanoparticles from a hot location to
a cool one inside the boundary layer, increasing he temperature of the nanofluid
and the volume fraction of the nanoparticles. Figure 14 shows the influence of
Bi2 on the dispersion of concentration. The graphic demonstrates that there is a
direct relationship between φ(η) and Bi2. As the Brownian diffusivity coefficient
is inversely proportional to the Bi2, this means the velocity-dependent diffusion
of momentum is more powerful than the temperature-dependent diffusion. So,
φ(η) is amplified. Figure 15 depicts the relationship between the Lewis number
Le and the concentration profile. φ(η) decelerates as Le increases throughout
the boundary layer area. The Lewis number is the ratio of heat diffusivity to
mass diffusivity, according to its definition. Increasing the Lewis number means
that there is more thermal diffusion and less mass diffusion, which makes the
concentration boundary layer thinner. The influence of the chemical reaction
parameter K1 on species concentration is depicted in Fig. 16. We can observe
from this graph that as K1 increases, φ(η) falls. This is because there is more
thermal energy available to obtain the activation energy required to compensate
for the breakdown of atoms’ bonds. The activation energy parameter E has
been displayed in Fig. 17 to show how it affects concentration distribution. This
diagram clearly shows that φ(η) and E have a direct relationship. As E increases,
the pace of a chemical reaction physically increases. Hence, φ(η) is heightened.

The differences in the local surface drag coefficients −Cfx

√
Rex and

−Cfy

√
Rey scatterings of Maxwell nanofluid as a function of M , α1, and S

are depicted in Figs. 18, 19, 20 and 21. The figures demonstrate that −Cfx

√
Rex

and −Cfy

√
Rey degrade with increasing α1 values, but M and S exhibit the

opposite pattern. Figures 22 and 23 illustrate the effects of Rd, Bi1, Nt and
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Nb on the local Nusselt number Nux√
Rex

. On the basis of the figures, it can be

concluded that Nux√
Rex

is directly proportional to Rd and Bi1, however an inverse
relationship can be noticed between Nt and Nb. The effects of Nt, Nb, Le, Bi2,
K1, and E on local mass transfer rate Shx√

Rex
scattering are displayed in Figs. 24,

25 and 26. Figures show that Shx√
Rex

is heightened with increasing amounts of Nb,
Le, Bi2, and K1, whereas an inverse association is noticed with Nt and E.

6 Conclusions

The effects of velocity slip, activation energy, and convective heating on MHD
Maxwell nanofluid flow across a permeable stretched surface heated by thermal
radiation are examined computationally in this study using MATLAB’s bvp4c
solver. The following conclusions are made from the findings:

– For increasing levels of the velocity slip and suction parameters, the velocity
decreases in magnitude.

– Increasing the Biot number for temperature and thermal radiation can
enhance temperature profiles.

– Concentration field increases with an elevation in the Biot number for con-
centration and the activation energy parameter.

– Increases in the magnetic field and suction parameter augment the shear
stress function, whilst velocity slip lowers it.

– The combination of radiation absorption, thermal radiation, and convection
heating can all help to boost the heat transmission rate.

– Activation energy can uplift mass transfer rate while chemical reaction slows
it down.
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Abstract. The present study aims to perform computer simulations of
two-dimensional hemodynamics of blood flow through an overlapping
stenosed artery considering the non-Newtonian Casson fluid model to
simulate the arterial region’s hemorheological properties and hematocrit-
dependent viscosity to mimic the realistic behavior of blood with a uni-
form magnetic field applied in the radial direction of the blood flow,
motivated by magneto-hemodynamics effects. This study is influenced
by drug delivery applications and proposes a mathematical model for
unsteady blood flow using hybrid biocompatible nanoparticles (Gold and
Copper). The Crank-Nicolson method solves the transformed governing
equations with accompanying boundary conditions. For a given criti-
cal height of the stenosis, key hemodynamic variables such as velocity,
wall shear stress, temperature, and flow rate are computed. The velocity
and temperature profiles show enhancement as the Casson fluid param-
eter (β) increases. The velocity, wall shear stress, and flow rate of the
fluid (blood) decline with an increment in the hematocrit parameter
(hm). A comparative study with published work is done to validate
the current model, which is in good accord with the previous work.
The findings may act as a benchmark for formulating the best regi-
mens for the targeted treatment of atherosclerosis, obstructed hemo-
dynamics, nano-hemodynamics, nano-pharmacology, blood purification
systems, and treatment of hemodynamic ailments.

Keywords: Hematocrit-dependent viscosity · Overlapping stenosis ·
Au-Cu/Blood hybrid nanofluid · Pulsatile blood flow

1 Introduction

Nanofluids have gained popularity as a significant development in biomedical
engineering in recent years. Theoretical and practical studies on the possible
applications of nanoparticles in blood flow issues have significantly influenced
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Nomenclature

r∗
1 Radial direction d location of stenosis

z∗
1 Axial direction L0 length of stenosis

t∗
1 Time M2 Magnetic Number

u∗
1 Velocity component in radial direction Re Reynold’s Number

w∗
1 Velocity component in axial direction Gr Grashof Number

U0 Reference velocity Pr Prandtl Number

R Radius of artery in stenotic region Q1 Flow Rate

R0 Radius of artery in non-stenotic region Greek Letters

g Acceleration by virtue of gravity δ Stenosis depth

h(r∗
1) volume fraction of RBCs β Casson Fluid Parameter

hm maximum hematocrit at artery’s center σ Electrical conductivity

T̃ ∗ Temperature of the base fluid θ̃ Non-dimensional temperature

T̃ ∗
1 Reference temperature ρ Density

T̃ ∗
w Temperature at the wall φ1 Volume fraction of Au-NPs

B0 Uniform Magnetic Field φ2 Volume fraction of Cu-NPs

C̃∗
p Specific heat at constant pressure γ Thermal expansion coefficient

kf Thermal conductivity τw Shear stress at the wall

p∗
1 Pressure μ0 coefficient of viscosity of plasma

ws Wall slip velocity μf Blood’s viscosity

current bio-science literature. Many nanoparticle applications include gene ther-
apy, MRI, tracking agents, and surgical tools for treating hyperthermia. Gold
nanoparticles transport and unload drugs using their unique physical and chemi-
cal properties. Ghosh et al. [1] investigated the role of gold nanoparticles in drug
administration. Gentile et al. [2] investigated the effects of vascular permeability
on blood transport with nanoparticle suspension via blood vessels. The impact
of the slip condition on blood flow through a tapering stenosed artery in the
presence of nanoparticles was examined by Nadeem and Ijaz [3]. Using nanopar-
ticles, Bahrami et al. [4] studied cancer therapy through targeted drug delivery.
They found that nanoparticles have proven to be a successful technique that can
lessen the side effects of current anti-cancer drugs. Gupta et al. [5] examined
the MHD 2D-flow of Williamson-type nanofluid using nonlinear thermal radia-
tion, Cattaneo-Christov heat and mass flux models. Under the influence of the
magnetic field, Umadevi et al. [6] examined the blood flow suspended with Cu-
nanoparticles via an inclined artery having overlapping stenosis. Gandhi et al.
[7] constructed a mathematical model for drug delivery using Au-Al2O3/Blood
hybrid nanoparticles via a bell-shaped stenosed artery. Gandhi and Sharma [8]
studied the influence of hybrid nanoparticles on two-dimensional pulsatile blood
flow through a vertical artery with irregular stenosis with an inclined exter-
nal magnetic field. Using Au and GO nanoparticles, Khanduri and Sharma [9]
investigated the influence of Hall and ion slips on MHD blood flow through a
catheterized multi-stenosis artery with thrombosis.
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A frequent cause of cardiovascular disease in coronary arteries is the buildup
of fatty substances inside the artery wall lumen. This mechanism limits the
amount of oxygenated blood that may leave the heart and travel to the rest
of the body by decreasing the radius of blood arteries while raising blood flow
resistance. The hemodynamical study in stenosed arteries is a crucial field of
research because of its vital applications in cardiovascular illnesses like angina,
heart attacks, atherosclerosis, and aneurysms, which are among the world’s top
causes of death. Numerous theoretical and practical research efforts have been
conducted to gain a deeper understanding of the factors contributing to steno-
sis formation and its effects on blood flow dynamics. Several researchers [10–13]
have mathematically explored the blood flow via arteries with overlapping steno-
sis. Sharma et al. [14] utilized blood as biomagnetic fluid to explore Soret and
Dufour’s effects via a stenosed artery having tapering effects. Under the impact
of a uniform magnetic field, Das et al. [15] investigated the physical repercussions
of suspension of hybrid nanoparticles in blood moving via porous artery with
inclination having minor stenosis. Using a two-phase mixing approach, Zhang et
al. [16] studied the impacts of nanoparticle volume fraction on plaque disintegra-
tion during transit. Basha et al. [17] investigated the fluid transport behavior of
Au-Cu/Blood hybrid nanofluid via an artery having the inclination and irregular
stenosis. Gandhi et al. [18] performed entropy generation analysis for blood flow
through an irregular stenosed artery utilizing hybrid nanoparticles of different
shapes. Using hematocrit-dependent viscosity, Sharma et al. [19] examined the
effects of heat transfer and body acceleration on unsteady MHD blood flow in a
curved artery in the presence of stenosis and aneurysm.

Most of the research described above examined the connection between artery
stenosis and blood flow dynamics while treating blood as a Newtonian fluid.
The blood behaves in the larger-diameter arteries with an assertive Newtonian
behavior when shear rates are greater than 100 s−1. However, because blood
is a suspension of cells, it is widely known that arteries with smaller diame-
ters and lower shear rates exhibit greater non-Newtonian blood behavior. The
Casson fluid flow model has acquired popularity recently due to its fascinating
application in human life. In today’s science, the Casson fluid flow model has
significant demand. Casson fluid demonstrates yield stress features. When the
yield stress is high enough, the Casson fluid transforms into the Newtonian fluid.
Sarifuddin et al. [20] explored the effect of two-dimensional blood flow, consid-
ering blood to be Casson fluid via an irregular stenosed artery employing the
Marker and Cell approach for solving the equations numerically. Debnath et al.
[21] studied the influence of a 1st-order homogeneous-heterogeneous chemical
reaction in an annular pipe, using the Casson model to characterize the liquid’s
non-Newtonian viscosity. Ali et al. [22] used Darcy’s law to investigate the flow
behavior of Casson fluid via a 2-D porous channel employing a vorticity-stream
function approach. Tassaddiq et al. [23] examined the Newtonian heating effects
for the generalized Casson fluid flow utilizing a Mittag-Leffler fractional oper-
ator. Using the Elzaki transform method and Elzaki decomposition approach,
Sushila et al. [24] studied the thin film flow of a third-grade fluid down an inclined
plane. Das et al. [25] investigated solute dispersion through a stenotic tube with
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an absorptive wall, and Casson fluid describes the rheology of blood. Padma et
al. [26] aimed to investigate how yield stress affected the EMHD motion of Cas-
son fluid and nanoparticles as they flow via a mildly blocked inclined tapering
artery.

The present research is inspired by the potential for nanoparticles to serve
as efficient drug delivery and transport systems, given their capacity to hold
significant quantities of therapeutic substances. Since blood is considered a non-
Newtonian fluid, small-sized nanoparticles are becoming increasingly common in
biomedical applications. Therefore, nanoparticles can either stimulate or inhibit
blood vessel formation. Although some medications can increase or decrease
blood-capillary expansion in some conditions, they only work for a short dura-
tion. Recently, researchers found that using these nanoparticles might resolve
previously identified medication administration problems. Based on the litera-
ture survey performed above, no effort has been yet made to study the two-
dimensional pulsatile hybrid nanofluid flow through an overlapping stenosed
artery incorporating gold and copper nanoparticles considering blood as non-
Newtonian Casson fluid with variable viscosity dependent on hematocrit under
the influence of radiation and magnetic field effects. The present study seeks
to perform computer simulations of two-dimensional hemodynamics of blood
flow through an overlapping stenosed artery using the non-Newtonian Casson
fluid model to simulate the arterial region’s hemorheological properties and
hematocrit-dependent viscosity to mimic the realistic behavior of blood with
a uniform magnetic field applied in the radial direction of the blood flow. The
pulsatile pressure gradient effects portray actual blood flow in unsteady flow
situations. The novelty of the mathematical model formulated in the present
analysis is as follows:

– To evaluate the impact of hybrid nanoparticles (Au + Cu) through an over-
lapping stenotic artery influenced by an external magnetic field and radiation,
considering wall slip effects.

– Utilizing the Casson fluid model to address the non-Newtonian features of
blood along with the hematocrit-dependent viscosity model to analyze the
variable viscosity.

2 Mathematical Formulation

An unsteady, laminar, incompressible, viscous electrically conducting MHD
blood flow through an inclined artery with overlapping stenosis is considered. A
cylindrical coordinate system (r∗

1 , θ̃, z∗
1) is employed with r∗

1 and z∗
1 as radial

and axial directions respectively. The axial symmetry of the artery corresponds
to the independence of flow in the azimuthal (θ̃) direction. The blood behavior
is assumed non-Newtonian and is represented using Casson fluid model. The
variable viscosity which is dependent on hematocrit is employed. A uniform
magnetic field B0 is applied to the blood flow in the radial direction. The mag-
netic Reynold’s number is assumed very small (Re � 1); therefore, the induced
magnetic field is neglected compared to the applied magnetic field.
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Fig. 1. The overlapping stenotic artery doped with hybrid nanoparticles

The geometry of the overlapping stenosis is assumed as [13]:

R(z∗
1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

R0

[

1 − 64
10η1

(
11
32L3

0(z
∗
1 − d) + 47

48L2
0(z

∗
1 − d)2 − L0(z∗

1 − d)3

+ 1
3 (z∗

1 − d)4
)]

, d ≤ z∗
1 ≤ d + 3L0/2,

R0, otherwise.
(1)

The parameter η1 is defined as:

η1 =
4δ

R0L4
0

where δ is the critical height of the stenosis occuring at two different
positions, i.e.,

z∗
1 = d +

8L0

25
, and z∗

1 = d +
61L0

50
The blood viscosity is affected by several parameters, including plasma viscos-
ity, protein level, red blood cell concentration, strain rate and temperature. The
concentration of red blood cells or hematocrit is one of these factors that sig-
nificantly impact blood viscosity. Blood viscosity at a distance of r∗

1 from an
artery’s axis can be described as
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μf = μ0[1 + β1h(r∗
1)], (2)

and the expression for the hematocrit, h(r∗
1) is given as -

h(r∗
1) = hm

[

1 −
(

r∗
1

R0

)m]

(3)

where β1 has value 2.5 for blood and m is the control parameter for the shape
of the blood velocity profile (m ≥ 2).

2.1 Governing Equations

The blood flow through an inclined overlapping stenosed artery (Fig. 1) is
assumed to be bidirectional. Therefore, the velocity and temperature fields are
represented as:

Ṽ ∗ = Ṽ ∗[u∗
1(r

∗
1 , z

∗
1 , t∗1), 0, w∗

1(r
∗
1 , z

∗
1 , t∗1)] , T̃ ∗ = T̃ ∗(r∗

1 , z
∗
1 , t∗1)

The Casson fluid model’s rheological equation of state for an incompressible flow
is as follows:

τ∗
ij =

⎧
⎪⎪⎨

⎪⎪⎩

2
(

μ∗
b + p∗

y√
2π∗

)

e∗
ij , π∗ > π∗

c

2
(

μ∗
b + p∗

y√
2π∗

c

)

e∗
ij , π∗ ≤ π∗

c

(4)

where π∗ = e∗
ij .e

∗
ij is the product of deformation rate with itself, π∗

c is a critical
value based on the non-Newtonian model, μ∗

b is the plastic dynamic viscosity of
the non-Newtonian fluid, and p∗

y is the yield stress of the fluid.
When π∗ ≤ π∗

c , Eq. (4) can be expressed as:

τ∗
ij = 2μ∗

b

(

1 +
1
β

)

e∗
ij (5)

where β =
μ∗

b

√
2π∗

c

p∗
y

is the Casson fluid parameter.
Under the above assumptions and invoking the Boussinesq approximation,

the continuity equation, momentum equation and energy equation are repre-
sented as:
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Continuity Equation:

∂u∗
1

∂r∗
1

+
u∗
1

r∗
1

+
∂w∗

1

∂z∗
1

= 0, (6)

Momentum Equation:

r-direction:

ρhnf

[
∂u∗

1

∂t∗1
+ u∗

1

∂u∗
1

∂r∗
1

+ w∗
1

∂u∗
1

∂z∗
1

]
= −∂p∗

1

∂r∗
1

+
1

r∗
1

∂

∂r∗
1

[
μhnf

(
1 +

1

β

)
r∗
1

∂u∗
1

∂r∗
1

]

+
1

2

∂

∂z∗
1

[
μhnf

(
1 +

1

β

)(
∂w∗

1

∂r∗
1

+
∂u∗

1

∂z∗
1

)]
− μhnf

(
1 +

1

β

)
u∗
1

r∗2
1

, (7)

z-direction:

ρhnf

[
∂w∗

1

∂t∗1
+ u∗

1

∂w∗
1

∂r∗
1

+ w∗
1

∂w∗
1

∂z∗
1

]
= −∂p∗

1

∂z∗
1

+
1

2

1

r∗
1

∂

∂r∗
1

[
μhnf

(
1 +

1

β

)
r∗
1

(
∂u∗

1

∂z∗
1

+
∂w∗

1

∂r∗
1

)]

+
∂

∂z∗
1

[
μhnf

(
1 +

1

β

)
∂w∗

1

∂z∗
1

]
+ (ργ)hnf g(T̃ ∗ − T̃ ∗

1 )− σhnf B2
0w∗

1 , (8)

Energy Equation:

(ρCp)hnf

[
∂T̃ ∗

∂t∗1
+ u∗

1

∂T̃ ∗

∂r∗
1

+ w∗
1

∂T̃ ∗

∂z∗
1

]

= khnf

[
∂2T̃ ∗

∂r∗2
1

+
1
r∗
1

∂T̃ ∗

∂r∗
1

+
∂2T̃ ∗

∂z∗2
1

]

− ∂q∗
r

∂r∗
1

,

(9)
where

q∗
r = −4σe

3ke

∂T 4

∂r∗
1

, (10)

It is assumed that there are minimal temperature changes within the blood flow.
Therefore, T̃ 4 in Eq. (10) is linearized by disregarding higher-order terms and is
expanded using Taylor series around T̃ ∗

1 :

T̃ ∗4 = 4T̃ ∗3
1 T̃ − 3T̃ ∗4

1 ,

Hence, Eq. (10) becomes

q∗
r = −16T̃ ∗3

1 σe

3kekf

∂T̃

∂r∗
1

.

The boundary conditions are:

∂w∗
1

∂r∗
1

= 0,
∂T̃ ∗

∂r∗
1

= 0 at r∗
1 = 0, (11)

w∗
1 = ws, T̃

∗ = T̃ ∗
w at r∗

1 = −R,R, (12)

The initial assumptions regarding velocity and temperature are considered as:

w∗
1 = 0, T̃ ∗ = 0 at t∗1 = 0. (13)
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Table 1. Thermophysical parameters of nanofluid and hybrid nanofluid [18,27]

Properties Mathematical expression for nanofluid and hybrid nanofluid

Viscosity μhnf =
μnf

(1−φ1)2.5(1−φ2)2.5

Density ρhnf = [(1 − φ2){(1 − φ1)ρf + φ1ρs1}] + φ2ρs2
Heat Capacity (ρCp)hnf = [(1 − φ2){(1 − φ1)(ρCp)f + φ1(ρCp)s1}]

Thermal Conductivity
khnf
kbf

=
ks2+(m−1)kf −(m−1)φ2(kf −ks2 )

ks2+(m−1)kf +φ2(kf −ks2 )

where
kbf
kf

=
ks1+(m−1)kf −(m−1)φ1(kf −ks1 )

ks1+(m−1)kf +φ1(kf −ks1 )

Electrical Conductivity
σhnf
σbf

=
σs2+(m−1)σf −(m−1)φ2(σf −σs2 )

σs2+(m−1)σf +φ2(σf −σs2 )

where
σbf
σf

=
σs1+(m−1)σf −(m−1)φ1(σf −σs1 )

σs1+(m−1)σf +φ1(σf −σs1 )

Thermal Expansion Coefficient γhnf = [(1 − φ2){(1 − φ1)γf + φ1γs1}] + φ2γs2

Table 2. Default Values of emerging parameters

Parameters φ1 φ2 d B1 c1 e δ β ws β1 hm

Value 0.03 0.03 1 1.41 1 0.2 0.1 2 0.1 2.5 0.5

Table 3. Thermophysical properties of nanoparticles

Thermophysical Properties Blood Gold Copper

Density [ρ(kg/m3)] 1063 19320 8933

Thermal Conductivity [K(W/mK)] 0.492 314 400

Electrical Conductivity [σ(S/m)] 0.667 4.10 ×107 5.96 ×107

Thermal Expansion Coefficient [γ × 10−5(K−1)] 0.18 1.4 1.67

Heat Capacitance [Cp(J/kgK)] 3594 129 385

2.2 Non-dimensionalization

The governing equations given by (6)–(9) need to be transformed into dimen-
sionless form so that a numerical solution for these equations can be obtained.
The following dimensionless variables are introduced:

r̄∗
1 =

r∗
1

R0
, w̄∗

1 =
w∗

1

U0
, ū∗

1 =
L0u

∗
1

δ∗U0
, t̄∗

1 =
U0t

∗
1

R0
, z̄∗

1 =
z∗
1

L0
, p̄∗

1 =
R2

0p
∗
1

U0L0μf
, θ̃ =

T̃ ∗ − T̃ ∗
1

T̃ ∗
w − T̃ ∗

1

,

R̄ =
R

R0
, α =

α∗L0

R0
, d̄ =

d

L0
, w̄s =

ws

U0
, Re =

U0ρfR0

μf
, M2 =

σfB2
0R2

0

μf
,

Gr =
ρfR2

0 gγf (T̃ ∗
w − T̃ ∗

1 )

μfU0
, P r =

μfCp

kf
, Nr =

16σeT̃
∗3
1

3kfke
. (14)

The insertion of the above non-dimensional parameters mentioned in (14),
disregarding the bars and using the mild stenotic hypotheses that the maximal
stenosis height is less than the artery’s radius, i.e., δ(= δ∗/R0) << 1, and
the artery’s radius and the stenotic region’s length are proportionate, i.e., ε(=
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R0/L0) = O(1) leads to the modified form of governing Eqs. (6)–(9), which are
as follows:

Continuity Equation:
∂w∗

1

∂z∗
1

= 0, (15)

Momentum Equation:
r-direction:

∂p∗
1

∂r∗
1

= 0, (16)

z-direction:

Re
ρhnf

ρf

∂w∗
1

∂t∗
1

= −∂p∗
1

∂z∗
1

+
1

2r∗
1

∂

∂r∗
1

[
μhnf

μf

(
1 +

1

β

)
r∗
1
∂w∗

1

∂r∗
1

]
+

(ργ)hnf

(ργ)f
Grθ̃ − σhnf

σf
M2w∗

1 ,

(17)

Energy Equation:

(ρCp)hnf

(ρCp)f

∂θ̃

∂t∗1
=

1
RePr

khnf

kf

[
∂2θ̃

∂r∗2
1

+
1
r∗
1

∂θ̃

∂r∗
1

]

+
Nr

RePr

∂2θ̃

∂r∗2
1

. (18)

The geometry of stenosis in the dimensionless form can be described as:

R(z∗
1) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 64
10η1

(
11
32 (z∗

1 − d) + 47
48 (z∗

1 − d)2 − (z∗
1 − d)3 + 1

3 (z∗
1 − d)4

)

,

d ≤ z∗
1 ≤ d + 3/2,

1, otherwise.
(19)

where
η1 = 4δ, δ =

δ∗

R0
.

Blood flows through the cardiovascular system due to the heart’s pumping
motion, causing a pressure gradient across the vascular network. The pressure
gradient is separated into two parts: non-fluctuating (continuous) and fluctuat-
ing (pulsatile) [28] as given below:

− ∂p∗
1

∂z∗
1

= A0 + A1cos(wpt
∗
1), t

∗
1 > 0, (20)

where, A0 and A1 signify the amplitudes of the steady-state and pulsatile pres-
sure gradient components, respectively, and wp = 2πfp, fp depicts the heart
pulse frequency.

On the substitution of dimensionless variables given in (14), the modified
equation for the pressure gradient becomes:

− ∂p∗
1

∂z∗
1

= B1[1 + ecos(c1t∗1)], (21)
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where

e =
A1

A0
, B1 =

A0R
2
0

μ0U0
, c1 =

2πR0fp

U0
. (22)

Using Eq. (21) in Eq. (17), we have:

Re
ρhnf

ρf

∂w∗
1

∂t∗1
= B1[1 + ecos(c1t∗1)] − 1

2

(

1 +
1
β

)
mβ1hm(r∗

1)
m−1

(1 − φ1)2.5(1 − φ2)2.5

∂w∗
1

∂r∗
1

+
1
2

μhnf

μf

(

1 +
1
β

)
1
r∗
1

∂

∂r∗
1

(

r∗
1

∂w∗
1

∂r∗
1

)

+
(ργ)hnf

(ργ)f
Grθ̃ − σhnf

σf
M2w∗

1 . (23)

2.3 Radial Coordinate Transformation

The physical geometry taken into account in the formulated problem is cylindri-
cal, i.e., a cylindrical coordinate system is considered. However, in order to use
the computational approach, the considered geometry needs to be transformed

into a rectangular domain by employing the transformation
(

x∗
1 = r∗

1
R(z∗

1 )

)

. On

applying this transformation, the Eqs. (23) and (18) become:

Re
ρhnf

ρf

∂w∗
1

∂t∗1
= B1[1 + ecos(c1t∗1)] − 1

2

(

1 +
1
β

)
mβ1hmRm−2(x∗

1)
m−1

(1 − φ1)2.5(1 − φ2)2.5

∂w∗
1

∂x∗
1

+
1
2

1 + β1hm[1 − Rm(x∗
1)

m]
(1 − φ1)2.5(1 − φ2)2.5

(

1 +
1
β

)(
1

R2

)[
∂2w̃∗

1

∂x∗2
1

+
1
x∗
1

∂w̃∗
1

∂x∗
1

]

+
(ργ)hnf

(ργ)f
Grθ̃

− σhnf

σf
M2w∗

1 ,

(24)

(ρCp)hnf

(ρCp)f

∂θ̃

∂t∗1
=

1
RePr

khnf

kf

(
1

R2

)[
∂2θ̃

∂x∗2
1

+
1
x∗
1

∂θ̃

∂x∗
1

]

+
(

1
R2

)
Nr

RePr

∂2θ̃

∂x∗2
1

. (25)

The boundary conditions mentioned in Eq. (11) and (12) are reduced as follows:

∂w∗
1

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0, w∗
1 |x∗

1=−1,1 = ws,
∂θ̃

∂x∗
1

∣
∣
∣
∣
x∗
1=0

= 0, θ̃|x∗
1=−1,1 = 1. (26)

The wall shear stress (WSS) and volumetric flow rate are expressed as:

τw = − 1
R

(

1 +
1
β

)(
∂w∗

1

∂x∗
1

)

x∗
1=1

(27)

Q1 = 2πR2

∫ 1

0

w∗
1x

∗
1dx∗

1, (28)
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3 Solution Process

The partial differential Eqs. (24) and (25) are coupled differential equations;
therefore, obtaining an analytic solution is too difficult. On the other hand,
numerical approaches can yield a highly accurate solution. An unconditionally
stable implicit finite difference (Crank-Nicolson) approach is used in this case.
The subscripts and superscripts in Eqs. (24) and (25) are ignored for discretiza-
tion.

3.1 Discretization

On employing the values of thermophysical parameters of hybrid nanofluid from
Table 1 and discretizing the governing Eqs. (24) and (25) using the Crank-
Nicolson scheme, the desired form of equations is:

[

(1 − φ2)
[

(1 − φ1) + φ1
ρs1

ρf

]

+ φ2
ρs2

ρf

]

Re

[
wk+1

i − wk
i

dt

]

= B1[1 + ecos(c1tk)]

− 1
2

(

1 +
1
β

)
mβ1hmRm−2(x(i))m−1

(1 − φ1)2.5(1 − φ2)2.5

[
1
2

(
wk+1

i+1 − wk+1
i−1

2dx
+

wk
i+1 − wk

i−1

2dx

)]

+
1
2

(

1 +
1
β

)
1 + β1hm[1 − Rm(x(i))m]

(1 − φ1)2.5(1 − φ2)2.5

(
1

R2

)[
1
2

(
wk+1

i+1 − 2wk+1
i + wk+1

i−1

dx2

+
wk

i+1 − 2wk
i + wk

i−1

dx2

)

+
1

2x(i)

(
wk+1

i+1 − wk+1
i−1

2dx
+

wk
i+1 − wk

i−1

2dx

)]

+
[

(1 − φ2)
[

(1 − φ1) + φ1
(ργ)s1

(ργ)f

]

+ φ2
(ργ)s2

(ργ)f

]

Grθ̃k
i − 1

2
σhnf

σf
M2(wk

i + wk+1
i ),

(29)

[

(1 − φ2)
[

(1 − φ1) + φ1
(ρCp)s1

(ρCp)f

]

+ φ2
(ρCp)s2

(ρCp)f

][
θ̃k+1

i − θ̃k
i

dt

]

=
1

RePr

(
khnf

kf
+ Nr

)(
1

R2

)[
1
2

(
θ̃k+1

i+1 − 2θ̃k+1
i + θ̃k+1

i−1

dx2
+

θ̃k
i+1 − 2θ̃k

i + θ̃k
i−1

dx2

)

+
1

2x(i)

(
θ̃k+1

i+1 − θ̃k+1
i−1

2dx
+

θ̃k
i+1 − θ̃k

i−1

2dx

)]

. (30)

The Crank-Nicolson scheme employed in the current analysis is, however, sta-
ble for all values for dt and dx still, a minimal value is considered with great
precision as dt = 10−4 and dx = 10−4. It is noticed that no further change
occurs in the values of hemodynamical parameters studied in the research with
decreasing values of dt and dx. A total of N +1 grid points have been considered
in the spatial direction, with x = 1/N + 1 being the step size, whereas M + 1
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grid points are considered temporal. The value at any time instant tk is given
as tk = (k − 1)dt, dt being a small increment in time. As the scheme employed
is an implicit one; therefore a system of equations is obtained, and it is in the
form of a tri-diagonal system which can be solved with the Tri-diagonal Matrix
Algorithm (TDMA) [29].

The tri-diagonal system corresponding to Eq. (29) is given by

Ak
i wk+1

i−1 + Bk
i wk+1

i + Ck
i wk+1

i+1 = A
′k
i wk

i−1 + B
′k
i wk

i + C
′k
i wk

i+1 + Dk
i , (31)

where
Ak

i = − 1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5

(
1

4R2

)(
dt

dx2 − 1
2x(i)

dt
dx

)
− dt

8dx

(
1+ 1

β

)
mβ1hmRm−2(x(i))m−1

(1−φ1)2.5(1−φ2)2.5 ,

Bk
i = Re

[
(1−φ2)

[
(1−φ1)+φ1

ρs1
ρf

]
+φ2

ρs2
ρf

]
+

1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5
1

2R2
dt

dx2 + dt
2

σhnf

σf
M2,

Ck
i = − 1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5

(
1

4R2

)(
dt

dx2 + 1
2x(i)

dt
dx

)
+ dt

8dx

(
1+ 1

β

)
mβ1hmRm−2(x(i))m−1

(1−φ1)2.5(1−φ2)2.5 ,

A
′k
i =

1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5

(
1

4R2

)(
dt

dx2 − 1
2x(i)

dt
dx

)
+ dt

8dx

(
1 + 1

β

)
mβ1hmRm−2(x(i))m−1

(1−φ1)2.5(1−φ2)2.5 ,

B
′k
i = Re

[
(1−φ2)

[
(1−φ1)+φ1

ρs1
ρf

]
+φ2

ρs2
ρf

]
− 1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5
1

2R2
dt

dx2 − dt
2

σhnf

σf
M2,

C
′k
i =

1+β1hm[1−Rm(x(i))m]

(1−φ1)2.5(1−φ2)2.5

(
1

4R2

)(
dt

dx2 + 1
2x(i)

dt
dx

)
− dt

8dx

(
1 + 1

β

)
mβ1hmRm−2(x(i))m−1

(1−φ1)2.5(1−φ2)2.5 ,

Dk
i = dtB1[1 + ecos(c1tk)] + dt

[
(1− φ2)

[
(1− φ1) + φ1

(ργ)s1
(ργ)f

]
+ φ2

(ργ)s2
(ργ)f

]
Grθ̃k

i .

The tri-diagonal system corresponding to Eq. (30) is given by

P k
i θk+1

i−1 + Qk
i θk+1

i + Sk
i θk+1

i+1 = P
′k
i θk

i−1 + Q
′k
i θk

i + S
′k
i θk

i+1 + F k
i , (32)

where

P k
i = − 1

RePr

(
1

2R2

)(
khnf

kf
+ Nr

)(
dt

dx2 − 1
2x(i)

dt
dx

)

,

Qk
i =

[

(1 − φ2)
[

(1 − φ1) + φ1
(ρCp)s1
(ρCp)f

]

+ φ2
(ρCp)s2
(ρCp)f

]

+ 1
RePr

1
R2

dt
dx2

(
khnf

kf
+ Nr

)

,

Sk
i = − 1

RePr

(
1

2R2

)(
khnf

kf
+ Nr

)(
dt

dx2 + 1
2x(i)

dt
dx

)

,

P
′k
i = 1

RePr

(
1

2R2

)(
khnf

kf
+ Nr

)(
dt

dx2 − 1
2x(i)

dt
dx

)

,

Q
′k
i =

[

(1 − φ2)
[

(1 − φ1) + φ1
(ρCp)s1
(ρCp)f

]

+ φ2
(ρCp)s2
(ρCp)f

]

− 1
RePr

1
R2

dt
dx2

(
khnf

kf
+ Nr

)

,

S
′k
i = 1

RePr

(
1

2R2

)(
khnf

kf
+ Nr

)(
dt

dx2 + 1
2x(i)

dt
dx

)

,

F k
i = 0.
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4 Results and Graphical Analysis

The effect of various flow-related parametric parameters, including the hemat-
ocrit parameter (hm), wall slip velocity (ws), Casson fluid parameter (β), volume
fractions of both nanoparticles (φ1, φ2), radiation parameter (Nr), and Prandtl
number (Pr), on non-dimensional velocity, non-dimensional temperature, wall
shear stress, and flow rate, are covered in this section. Au-Blood, a unitary
nanofluid, and Au-Cu/Blood, a hybrid nanofluid, have been compared. The val-
ues of the emergent parameters employed in the analysis are shown in Table 2.
Table 3 lists the values for the thermophysical characteristics of the blood, Au,
and Cu nanoparticles.

To validate the study conducted, the numerical scheme (Crank-Nicolson)
used must be verified. In the absence of a few physical parameters, the current
model reduces the ones published in the literature. As the Casson fluid parameter
in the current work approaches infinity (β → ∞), the current model approaches
the Newtonian model in [27]. The hematocrit parameter (hm) in the present
analysis and viscosity parameter (β0) in [27] have been neglected to verify the
results. The numerical scheme has also been validated for Au-nanoparticles used
in both research works. The effect of inclination of the magnetic field, Joule
heating, and viscous dissipation in [27] has been ignored. Figure 2a & 2b have
been plotted for verification. The findings of comparison with existing literature
results [27] indicate good agreement, which supports the validity of the current
solutions.
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Fig. 2. Comparative study (a) velocity profile (M2 = 1), (b) temperature profile (Ec
= 0.2).

The effect of various flow parameters such as hematocrit parameter (hm),
wall slip velocity (ws), Casson fluid parameter (β), and volume fractions of both
the nanoparticles (φ1, φ2) on non-dimensional velocity profiles is portrayed in
Fig. 3. A comparative analysis has been performed between unitary nanofluid
(Au-Blood) and hybrid nanofluid (Au-Cu/Blood). Blood velocity distribution
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for various hm values is shown in a radial direction in Fig. 3a. Blood viscosity is
significantly influenced by the hematocrit measure (hm). Both the hematocrit-
dependent (hm �= 0) and constant (hm = 0) scenarios have been studied. The
hybrid blood velocity is larger when hm = 0 and falls as hm increases, according
to Fig. 3a. With an increase in hm levels, the viscosity of the blood increases,
which impedes blood flow; a drop in velocity profiles is examined with hm.
Additionally, greater magnitudes of the hybrid nanofluid (Au-Cu/Blood) have
been observed than those of the unitary nanofluid (Au-Blood). The velocity is at
its peak near the artery’s centerline, gradually decreasing until it approaches the
vessel wall, reaching the wall slip velocity (ws). Figure 3b depicts the effect of
ws on non-dimensional velocity profiles. With an increase in the slip parameter
ws, the axial flow accelerates significantly as the hydrodynamic wall slip effect
increases. No-slip velocity is typically considered at the artery wall, which has
the least significance. As a result, the wall slip has been introduced at the arterial
wall in the current investigation using boundary conditions. The artery’s core
region exhibits the highest flow velocity, which decreases as it gets closer to the
arterial wall. Figure 3c shows how β affects the non-dimensional velocity profile.
The velocity field rises as the β expands since the velocity field’s boundary layer
thickness decreases. It is so because HNF becomes more viscous, and its elasticity
increases as the value of β rise. Figure 3d displays the non-dimensional velocity
profiles for various values of φ1, φ2. The volume fraction of both Au- and Cu-
nanoparticles rises along with the velocity profiles. When φ1 = 0.01, φ2 = 0.01,
the velocity value is the lowest, and when φ1 = 0.05, φ2 = 0.05, the velocity
value is the highest.

Figure 4 illustrates the impact of several flow parameters, including the radi-
ation parameter (Nr), Prandtl number (Pr), Casson fluid parameter (β), and
volume fractions of both the nanoparticles (φ1, φ2) on non-dimensional tem-
perature profiles. The effect of Nr on non-dimensional temperature profiles is
depicted in Fig. 4a. With rising values of Nr, there is an increase in temperature
profiles. Additionally, Au-Cu/Blood hybrid nanofluid reaches higher magnitudes
than Au-Blood nanofluid. The system emits the most heat due to the inverse
effect of Nr on thermal conductivity. Radiation serves as a heat source within
the bloodstream. Hence an increase in radiation exposure elevates body temper-
ature. When light with the proper wavelength interacts with nanoparticles, the
free electrons within the nanoparticles vibrate. These oscillations generate heat
that kills malignant cells by spreading over the surrounding environment. This
discovery has extensive thermal therapeutic applications. Figure 4b highlights
how Pr affects the non-dimensional temperature profile. An increase in Pr val-
ues accompanies the declination of the temperature profiles since the thermal
boundary layer thickness decreases with Pr. The viscosity and thermal diffu-
sivity of the fluid determine Pr. The momentum transport is linked to heat
transport through this dimensionless quantity. The Prandtl number tells us how
heat diffuses faster, i.e., whether heat conduction or convection is more promi-
nent in a fluid. The physical importance of the Prandtl number is that when it
is smaller than 1, conductive heat transfer becomes the more prominent process,
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Fig. 3. Effect of (a) hematocrit parameter (hm), (b) wall slip velocity (ws), (c) Cas-
son fluid parameter (β), (d) volume fractions of both nanoparticles (φ1, φ2) on non-
dimensional velocity at z∗

1 = 1.31 and t∗
1 = 1.2

i.e., conduction transfers a higher proportion of heat than convection. Convec-
tive heat transfer is more significant than conduction when the Prandtl value is
greater than 1. The effect of β on the temperature profile is illustrated in Fig.
4c. The fluid’s temperature increases with an increase in β because the thick-
ness of the thermal boundary layer increases with an increment in values of β.
Figure 4d shows the impact of φ1, φ2 on non-dimensional temperature profiles.
When the volume percentage of both nanoparticles increases, the temperature
profiles also show enhancement. The temperature demonstrates minimal value
for φ1 = 0.01, φ2 = 0.01, and a maximum value for φ1 = 0.05, φ2 = 0.05, high-
lighting the importance of both nanoparticles in regulating the temperature.

The time series plots for wall shear stress (WSS) and volumetric flow rate
at the stenosis region are shown in Fig. 5. These graphs depict the oscillating
character of blood flow in the stenotic zone as time passes. The graphs demon-
strate that the magnitude initially declines before exhibiting an ascending trend
sustained throughout time after a crucial point in time. The influence of ws

on WSS and flow rate is represented in Fig. 5a and 5b. Figure 5a depicts that
WSS decreases dramatically with increment in ws values, with minor backflow.
As a result, as ws rises, the beginning value of WSS profiles lowers by a cer-
tain amount. Figure 5b illustrates that raising the wall slip parameter causes a
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Fig. 4. Effect of (a) Radiation parameter (Nr), (b) Prandtl number (Pr), (c) Cas-
son fluid parameter (β), (d) different concentrations of both nanoparticles (φ1, φ2) on
temperature profiles at z∗

1 = 1.31 and t∗
1 = 1.2

significantly more pronounced increase in volumetric flow rate, implying that sig-
nificant growth in flux is driven by increasing wall slip. The impact of the volume
fraction of Au-nanoparticles (φ1) on WSS and volumetric flow rate is depicted
in Fig. 5c and 5d. It is analyzed that there is a decrement in WSS and flow rate
initially up to a certain point of time with increasing values of φ1, but then it
rises over time. Figures 5e and 5f highlight the variations of WSS and flow rate
profiles for various hybrid nanoparticle combinations. The patterns show that
when the nanoparticles’ volume fraction rises simultaneously, the oscillatory wall
shear stress profiles reduce in magnitude up to a certain threshold, increasing
with time. The profiles for flow rate exhibit the same trend as that of WSS, as
presented in Fig. 5f.

The influence of the hematocrit parameter (hm) and stenotic depth (δ) on
wall shear stress and flow rate concerning arterial length is highlighted in Fig. 6.
The WSS profiles for hm are depicted in Fig. 6a. A declination in WSS values is
analyzed with increasing hm values since the fluid’s viscosity is enhanced. More-
over, Fig. 6b manifests that the flow rate profiles also decline with an increment
in hm values since the increased viscosity hinders the flow of the fluid (blood).
Figure 6c depicts the influence of δ on WSS profiles. According to Zhang et al.
[30], the WSS reduces as δ increases, indicating that lower shear stress levels are
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Fig. 5. Effect of (a, b) wall slip velocity (ws), (c, d) volume fraction of Au-nanoparticles
(φ1) (e,f) volume fraction of both nanoparticles (φ1, φ2) on wall shear stress and flow
rate with respect to time

more harmful. The effect of δ on flow rate profiles is presented in Fig. 6d. It is
seen that flow rate profiles decline with an increase in δ values.

This section aims to analyze how the blood flows in the stenotic zone and how
it behaves in other parts of the artery. Also, hybrid nanoparticles are inserted to
boost drug delivery and treat atherosclerosis. The impact of flow parameters such
as hematocrit parameter (hm), Casson fluid parameter (β), and volume fraction
of both the nanoparticles (φ1,φ2) is illustrated via velocity contours in Fig. 7,
8, 9. The effect of hm is highlighted in Fig. 7. Figure 7a depicts the constant
viscosity case (hm=0), and the maximum velocity value is observed in this case.
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Fig. 6. Effect of Effect of (a, b) hematocrit parameter (hm), and (c, d) stenotic depth
(δ) on wall shear stress and flow rate at t∗
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Fig. 7. Velocity contours for (a) hm = 0.0, (b) hm = 0.5, (c) hm = 1.0

The velocity profiles decline with increasing hm values since viscosity enhances
and flow retardation occurs. The velocity contours for β are represented by Fig.
8. As β increases, the boundary layer thickness of the velocity field decreases,
increasing velocity. Figure 9 highlights the velocity contours for different combi-
nations of φ1 and φ2. It is analyzed that the velocity increases with an increase
in the volume fraction of both nanoparticles. Figure 9a shows the contour for the
pure-blood case, i.e., when no nanoparticle is injected into the bloodstream. The
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Fig. 8. Velocity contours for (a) β = 1, (b) β = 2, (c) β → ∞
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Fig. 9. Velocity contours for (a) φ1 = 0.0, φ2 = 0.0, (b) φ1 = 0.01, φ2 = 0.0, (c) φ1 =
0.03, φ2 = 0.0, (d) φ1 = 0.01, φ2 = 0.01, (e) φ1 = 0.03, φ2 = 0.03

formation of the trapped bolus is visible in the stenotic zone when comparing
the pure-blood and nanoparticle cases. Also, the trapped bolus’s size increases
with an increase in the volume fraction of both nanoparticles.
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5 Conclusions

In this study, hybrid nanoparticles (Au+Cu) of various shapes are used to evalu-
ate the impacts of wall slip effects on blood flow through an overlapping stenosed
artery. It is assumed that the blood viscosity varies with hematocrit. Addition-
ally, as blood is thought to be non-Newtonian, it is modeled using the Casson
fluid model, which accurately captures the properties of real blood. The Crank-
Nicolson approach is used to discretize the governing equations before MATLAB
is used to solve them. Graphical representations of the results, including con-
tour plots, are used. According to the findings mentioned above, the following
observations are made:

– The Au-Cu/Blood hybrid nanofluid reaches constantly higher magnitudes
than Au-Blood nanofluid for the velocity and temperature profiles.

– The velocity profile show declination with hm whereas the opposite trend is
noticed for β.

– The WSS profiles elevate with ws while the reverse trend is analyzed for flow
rate profiles.

– WSS and flow rate profiles show elevation with φ1.
– The temperature profiles show enhancement with β and Nr.
– There is an increment in velocity and temperature profile with increase in φ1

and φ2 simultaneously.

Future Work. The current study may be extended to include a permeable bifur-
cated artery with stenosis in the parent and daughter artery while considering
the shape and size of the nanoparticles influenced by external factors such as an
applied electric field, Joule heating, heat source, and viscous dissipation.
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Abstract. In this article, we study the non-linear partial differential
equation given by ut+Pukux+Quxxx+Su = f(t), where P , Q, S denote
non-linear coefficient, dispersion coefficient, and damping coefficient,
respectively; f(t) denotes external hyperbolic forcing term, f0cosh(ωt).
The parameter ‘k’ denotes the non-linear exponent. For k = n, where
n ∈ N , the equation represents the Generalized Damped Forced KdV
(GDFKdV) equation, and for k = n/2, it can be referred to as the
Generalized Modified Damped Forced KdV (GMDFKdV) equation. Ini-
tially, analytical solution of the Generalized KdV (GKdV) equation and
the Generalized modified KdV (GMKdV) equation are derived employ-
ing sine-cosine method. Further, we obtain the solitary wave analytical
solutions to the GDFKdV and GMDFKdV equations by using the direct
assumption technique. We construct the generalized forms of the solu-
tions, which involve two new parameters, ‘a’ and ‘b’. In the first instance,
the solutions to GDFKdV, and GMDFKdV may look very similar. How-
ever, in this article, it has been shown that the nature of solitons and
their topological structures emerging from these two equations are very
different. Using the method of dynamical systems, we analyse the bifur-
cation and nature of the solutions. Finally, the pseudo-spectral method,
which we employed to approximate the solutions, is proven to be ineffec-
tive concerning time and the increasing value of exponent power n. Our
theoretical results are supported by our numerical experiments.

Keywords: GDFKdV · GDFMKdV · the sine-cosine method ·
Bifurcation analysis · the basic Pseudo-spectral method

1 Introduction

Nonlinear evolution equations (NLEEs) can be used to represent a wide range of
complicated physical processes and have applications in many areas of research,
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including physics, chemistry, biology, astronomy, and others [1,3,8,10,15,20].
Several researchers have suggested different approaches to find its analytical solu-
tions, e.g., the Hirota bilinear method [22], the generalized exponential rational
function technique [6], the local fractional natural homotopy analysis method
[4], the semi analytical method [19], the simple equation method [9], the Exp
(–φ(ξ)) expansion method [11,12], the sine-cosine method [21] to name a few.
Finding approximate analytical solutions to NLEEs may present some difficulties
if a highly nonlinear term appears in these equations. For example, the scenario
may become more complicated if damping or forcing terms are present [13,17].

Recently, enormous interest began to investigate the NLEEs under a local-
ized disturbance in the dynamic system [14,16]. Actually, some excellent obser-
vations in the astronomical space plasma environment motivated the researchers
for examining the NLEES under the influence of external forces [2,18]. Again,
damping is a common phenomenon that exists in all real physical systems. Thus,
the non-autonomous system containing damping and forcing terms is much more
realistic than its autonomous counterpart.

In this paper, we take into account a highly nonlinear evolution equation and
use the direct assumption method to generate approximate analytical solutions
that contain both damping and forcing terms, and we study the bifurcation
analysis while considering the forcing and the damping terms equal to zero.
For this generalized setting, it exhibits different-different topological structures
for a range of values of the parameters which are supported by the numeri-
cal technique, the Pseudo-spectral method [5]. The spectral approach can be
used to approximately correlate the numerical results to the analytical results.
Accuracy is provided using spectral approaches with an exponential convergence
rate. With this approach, the partial differential equation can be represented as
a linear combination of basis functions, with the coefficient chosen so that the
resulting linear combination closely approximates the solution. This approach
has a number of constraints, including boundary conditions. To support our
theoretical findings in this study, we are using the fundamental Pseudo-spectral
approach.

We consider the non-linear evolution equation

ut + Pukux + Quxxx + Su = f(t), (1.1)

where f(t) stands for the external hyperbolic forcing term and P , Q, and S stand
for the non-linear coefficients, dispersion coefficient, and damping coefficient,
respectively. The non-linear exponent is denoted by the parameter k, for which
if k = n, it represents the GDFKdV equation and if k = n/2, it is the GMDFKdV
equation, where n ∈ N . equal to zero.

In this paper, Sect. 2 represents the analytical solutions for k = n, and
k = n/2 which are obtained by the sine-cosine method for the simplified case
i.e. ut + Pukux + Quxxx = 0. It appears that there is no significant difference
in the solution profile except for varied values of P. However, when this equa-
tion is transformed into a dynamical system, it becomes clear that the solutions
of GKdV and GMKdV behave very differently near their equilibrium points
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for the same value of the parameters, which is investigated by the standard
tools of the bifurcation analysis in Sect. 3. By using the direct assumption tech-
nique, an approximative analytical solution for a generalized situation Eq. (1.1)
is obtained. It can be seen that the parameters have a dramatically different
effect on the solutions of GDFKdV and GMDFKdV, which are displayed using
contour plots and three-dimensional surface graphs. This is the subject matter
of Sect. 4. In Sect. 5, we extend the study by introducing two new parameters, a
and b in the solution of Eq. (1.1), which is referred to as the generalized solution
of the GDFKdV and the GMDFKdV here. It is observed that for the different
values of these parameters, one can obtain multiple types of solitons which may
depict Gaussian-type pulses, multiple humps, and twisted curved sheet-like topo-
logical structures. These results are supported by the Pseudo-spectral method,
described in Sect. 6. The conclusion of this study is summarized in Sect. 7.

2 Approximate Analytical Solutions of GKdV
and GMKdV Equations

Consider the case of a general non-linear partial differential equation with an
unknown u = u(x, t) as,

N (u, ut, ux, uxx, utx, uxxx, ...) = 0. (2.1)

Now introducing a new stretching variable ζ by combining the real variables x
and t such that,

u(x, t) = V (ζ), ζ = ω0(x − ct). (2.2)

Eq. (2.1) is converted into an ordinary differential equation (ODE) with the help
of the above transformation,

M(V, V ′, V ′′, V ′′′, · · · ) = 0, (2.3)

where (′) signifies a derivative with respect to ζ and M is a polynomial in terms
of V and its derivatives.

The sine-cosine approach suggests that the solutions could take the following
form of

V = λ0sin
γ(ζ), (2.4)

or in the form
V = λ0cos

γ(ζ). (2.5)

where λ0, γ and ζ are included parameters to be determined. Substituting
Eq.(2.4) or Eq.(2.5) into Eq.(2.3), and solving the system of equations to obtain
all possible values of the parameters λ0, γ, and ζ. Put the values into Eq.(2.4)
or Eq.(2.5), will present a new solutions of Eq.(2.3).

We employ sine-cosine method to find the analytical solutions of GKdV and
GMKdV equation. Here, a suitable transform is chosen to reduced the partial
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differential equation into an ordinary differential equation (ODE). We consider
a generalized form of KdV equation given by

ut + Pukux + Quxxx = 0. (2.6)

Using the wave transformation u(x, t) = V (ζ), ζ = w0(x − ct), and taking inte-
gration, we find

− cV ′ +
PV k+1

k + 1
+ Qw2

0V
′′ = 0. (2.7)

According to the sine-cosine method the solutions of Eq. (2.7) can be expressed
in the form

V = λ0cos
γ(ζ). (2.8)

By substituting Eq.(2.8) into Eq.(2.7) gives the system of algebraic equations

γ − 2 = γ(k + 1), (2.9)
Qw2γ2λ0(k + 1) − cλ0(k + 1) = 0,
Qw2

0λ0γ
2k − Qw2

0λ0γn − Qw2
0λ0γ + Qw2

0λ0γ
2 + Pλk+1

0 = 0.

Solving this system, we have

γ = − 2
n

, w0 =
k

2

√
− c

Q
, λ0 =

(
c(k + 1)(k + 2)

2P

) 1
k

. (2.10)

From Eq. (2.10),the analytical solution of Eq.(2.6) is obtained and given by

V (ζ) = u(x, t) =
[
c(k + 1)(k + 2)

2P
sech2

(
k

2

√
c

Q
(x − ct)

)] 1
k

. (2.11)

Now, we have two cases: for (a) k = n, and k = n/2; they correspond to GKdV
and GMKdV equations, respectively. Their solutions are as follows

– Case 1 k = n (GKdV equation), the solution is

u(x, t) =
[
c(n + 1)(n + 2)

2P
sech2

(
n

2

√
c

Q
(x − ct)

)] 1
n

. (2.12)

– Case 2 k = n/2 (mGKdV equation), the solution is

u(x, t) =
[
c
(n + 2)(n + 4)

8P
sech2

(
n

4

√
c

Q
(x − ct)

)] 2
n

. (2.13)

These solutions are plotted in Fig. 1 for the parameters P = 0.5, Q = 2.5, t =
0.5, c = 0.5. For Fig. 1 (a), (e), n is varied and rest of the figures n = 3 is
kept fixed and P , and Q are varied. From the comparison of these figures, it
seems there is no significant difference in the analytical behaviour of the solitons
obtained for both GKdV and GMKdV except for the parameter P . In the next
section, we employ certain tools such as eigenvalues and phase portraits from
bifurcation analysis to investigate the impact of the parameters on the solution
profiles.
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a b c d

e f g h

Fig. 1. The solutions of GKdV and Modified KdV are compared. The parameters used
are: P = 0.5, Q = 2.5, t = 0.5, c = 0.5, and n = 3 is fixed except for the figure where n
is varied.

3 Bifurcation Analysis of GKdV Equation and GMKdV
Equation

By following the [7], the dynamical system corresponding to Eq.(2.7) is as follows

u′ = v, v′ =
1

Qw2
0

(
cu − P

uk+1

k + 1

)
. (3.1)

The determinant of Jacobian matrix is |J | = − 1
Qw2

0

(
c − Puk

)
, we have two

equilibrium points for this system: (0, 0) and
((

(k+1)c
P

)1/k

, 0
)

, n ∈ N . The

corresponding eigenvalues are

λ1,2 = ±
√

c − Puk

Qw2
0

. (3.2)

In the dynamical system given by Eq. (3.1), we have a exponent k, different
values of k = n or n/2 will produce different sets of equilibrium points. In this
study, we are considering n = [1, 3, 5].
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a b c

d e f

Fig. 2. Behaviour of Dynamical system (3.1) for GKdV and GMKdV equation. For
odd values of n = [1, 3, 5] and other parameter are c = 1; P = 0.4; Q = 0.35; w0 = 1.

Let us consider two cases:

– For k = n, the dynamical system corresponds to GKdV equation. The phase
portraits corresponding to n = [1, 3, 5] are shown in Fig. 2 a, b, c for fixed value
of the parameters P = 0.4, Q = 0.35, c0 = 1, and w0 = 1. For n = 1, the
system will have two equilibrium points (0, 0) and

(
2c
P , 0

)
. There is a center in

the vicinity of point
(
2c
P , 0

)
, and trajectories show periodic behaviour around

this center. These trajectories move away from each other when they move
further towards (0, 0) which implies that the system becomes unstable in
the neighborhood of (0, 0) and enters into unbounded open orbits. For fixed
values of the parameters, the system will always remain unstable in this orbit.
Similar conclusions can be drawn for n = 3, 5.

– For k = n
2 , the dynamical system will correspond to the GMKdV equation.

For n = [1, 3, 5], we will have a fractional exponent. The phase portraits are
shown in Fig. 2 d, e, f corresponding to these values of n, considering the same
values of the parameters used to plot phase portraits Fig. 2 a, b, c. This system

will have one saddle point at (0, 0) and one centre point at
((

(n
2 +1)c

P

)2/n

, 0
)

.

In the neighborhood of the center point, these trajectories show periodic
behaviour. Proceeding further, the system becomes unstable near the saddle
point, and trajectories stop moving forward at this unstable point. For the
higher value of n i.e., n = [3, 5], these trajectories are showing compressive
behaviour and moving towards an unstable point.
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For GKdV and GMKdV, the equilibrium point, corresponding eigenvalues, and
expected topological properties are summarized in Table 1 and Table 2. Complex
equilibrium points are omitted here as they may not be very useful for practical
purposes.

Table 1. Behaviour of equilibrium points and corresponding eigenvalues with respect
to values of n = [1, 3, 5] for GKdV.

k Equilibrium points Eigenvalues Nature Topological property

1 (0, 0), ( 2c
P

, 0) λ1,2 = ±i
√

c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

3 (0, 0), ( 3
√

4c
P

, 0) λ1,2 = ±i
√

3c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

5 (0, 0), ( 5
√

6c
P

, 0) λ1,2 = ±i
√

5c
Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

Table 2. Behaviour of equilibrium points and corresponding eigenvalues with respect
to values of n = [1, 3, 5] for GMKdV equations.

k Equilibrium points Eigenvalues Nature Topological property
1
2

(0, 0), (
(
3c
P

)2
, 0) λ1,2 = ±i

√
c

2Qw2
0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

3
2

(0, 0), ( 2/3
√

5c
2P

, 0) λ1,2 = ±i
√

3c
2Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

5
2

(0, 0), ( 2/5
√

7c
2P

, 0) λ1,2 = ±i
√

5c
2Qw2

0
, λ1,2 = ±

√
c

Qw2
0

1-SADDLE 1-CENTRE 1-unstable, 1-stable

4 Approximate Analytical Solutions of GDFKDV
and GMDFKDV Equations

In this section, we shall derive approximate analytical solutions of GDFKDV
and GMDFKDV equations by using direct assumption technique. Recall, a gen-
eralized form of equation as

ut + Pukux + Quxxx + Su = f(t), (4.1)

where S is damping coefficient, and f(t) denotes the forcing term. We take the
solution for the above equation as

u =

[
c(t)(k + 1)(k + 2)

2P
sech2

(
k

2

√
c(t)
Q

(x − c(t)t)

)] 1
k

. (4.2)

We know that I =
∫ ∞

−∞ u2dx is conserved. Thus, we have

I =
∫ ∞

−∞
u(x, t)2dx =

2
4
k+1c(t)

2
k − 1

2 β
(
2
k , 2

k

) (
k

√
(k+1)(k+2)

2P

)2

k
√

1
Q

. (4.3)
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Differentiating the Eq. (4.3) with respect to t and taking Eq. (4.1) and Eq. (4.3)
together with differential value as,

dI

dt
= 2

∫ ∞
−∞

u(x, t)
∂u

∂t
dx = −2

∫ ∞
−∞

u
(

P u
k

ux + Quxxx + Su − f(t)
)

dx

= −2S

2
4
k

+1
c(t)

2
k

− 1
2 β

(
2
k

, 2
k

) (
k
√

(k+1)(k+2)
2P

)2

k

√
1
Q

+ 2f(t)

[
c(t)

1
k

− 1
2

(
k
√

(k+1)(k+2)
2P

)
2
2
k

+1
β

(
1
k

, 1
k

)]

k

√
1
Q

.

(4.4)

(Since
∫ ∞

−∞ ukuuxdx = 0 and
∫ ∞

−∞ uuxxxdx = 0 both holds true.)
By simplifying the Eq. (4.4), we obtain following differential equation for c(t) as

1
k

c(t)
1
k −1 dc(t)

dt
+

4S

(4 − k)
c(t)

1
k =

4β( 1
k , 1

k )

(4 − k)
(

k

√
(k+1)(k+2)

2P

)
2

2
k β( 2

k , 2
k )

f(t). (4.5)

For the forcing term f(t) = f0 cosh(ωt), the solution is

u(x, t) =

[
c(t)(n + 1)(n + 2)

2P
sech2

(
n

2

√
c(t)
Q

(x − c(t)t)

)] 1
n

, (4.6)

where

c(t)
1
k =

2β
(
1
k
, 1
k

)
f0

2
2
k β

(
2
k
, 2
k

)
k
√

(k+1)(k+2)
2P

[
8Scosh(ωt)− 2ω(4− k)sinh(ωt)

16S2 − ω2(4− k)2

]
+ c1e

− 4S
(4−k) t,

and the constant

c1 = c
1/k
0 − 2β

(
1
k , 1

k

)
f0

2
2
k β

(
2
k , 2

k

)
k

√
(k+1)(k+2)

2P

8S

16S2 − ω2(4 − k)2
.

– Case1. k = n, Solitary Wave Solution of GDFKDV For the forcing
term f(t) = f0 cosh(ωt), the solution is

u =

[
c(t)(n + 1)(n + 2)

2P
sech2

(
n

2

√
c(t)
Q

(x − c(t)t)

)] 1
n

, (4.7)

where

c(t)
1
n =

2β
(
1
n

, 1
n

)
f0

2
2
n β

(
2
n

, 2
n

)
n
√

(n+1)(n+2)
2P

[
8Scosh(ωt)− 2ω(4− n)sinh(ωt)

16S2 − ω2(4− n)2

]
+ c1e

− 4S
(4−n) t,

and the constant

c1 = c
1/n
0 − 2β

(
1
n , 1

n

)
f0

2
2
n β

(
2
n , 2

n

)
n

√
(n+1)(n+2)

2P

8S

16S2 − ω2(4 − n)2
.
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– Case2. k = n/2, Solitary Wave Solution of GMDFKDV For the forcing
term f(t) = f0 cosh(ωt), the solution is

u =

[
c(t)(n + 2)(n + 4)

8P
sech2

(
n

4

√
c(t)
Q

(x − c(t)t)

)] 2
n

, (4.8)

where

c(t)
2
n =

4fβ
(
2
n

, 2
n

)

2
4
n β

(
4
n

, 4
n

)
(

n
√

(n+2)(n+4)
8P

)2

[
16Scosh(ωt)− 2ω(8− n)sinh(ωt)

64S2 − ω2(8− n)2

]
+c1e

− 8S
(8−n) t,

and the constant

c1 = c
2/n
0 − 4fβ

(
2
n , 2

n

)

2
4
n β

(
4
n , 4

n

) (
n

√
(n+2)(n+4)

8P

)2

16S

64S2 − ω2(8 − n)2
.

The impact of the damping coefficient on the solutions of GDFKdV and
GMDFKdV is shown in Fig. 3. The damping coefficient is considered for these
discrete values S = [0.1, 0.2, 0.5, 0.8], and the rest of the parameters are kept
fixed as c0 = 0.5, P = 0.5, Q = 2.5, ω = 0.5, n = 3, f = 0.01. It is very
clear from the plots that the profiles corresponding to GDFKdV and GMD-
FKdV are very different. For GDFKdV, with an increase in damping coefficient,
the soliton, which has a Gaussian-pulse type structure, tends to flatten down
from the backside. The impact is clearly visible in the contour plots also. A
similar impact can also be observed for GMDFKdV. The impact of frequency
coefficient ω on the solution profiles of GDFKdV and GMDFKdV is shown in
Fig. 4. The values of ω are ω = [0.05, 2.0, 2.5, 3.0], and rest of the parameters are
c0 = 0.5, P = 0.5, Q = 2.5, f = 0.02, n = 3, S = 0.01. For both GDFKdV and
GMDFKdV, it can be seen that with an increase in frequency coefficient, the
soliton acquires curvature, which is visible in surface plots and corresponding
contour plots.

5 Generalized Solutions of GDFKDV and GMDFKDV
Equations

For our generalized problem

ut + Pukux + Quxxx + Su = f(t), (5.1)

we consider the solution in more generalized form given as follows

u = ca(t)
[
(k + 1)(k + 2)

2P
sech2

((
k

2

√
1
Q

(x − c(t)t)
)

cb(t)
)] 1

k

. (5.2)

For the hyperbolic forcing term of the form, f(t) = f cosh(ωt), the generalized
solution is as follows:
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a b c d

e f g h

i j k l

m n o p

Fig. 3. The solutions of GDFKdV and GMDFKdV are compared for different values
of damping parameter S = [0.1, 0.2, 0.5, 0.8]. Other parameters used are: c0 = 0.5, P =
0.5, Q = 2.5, ω = 0.5, n = 3, f = 0.01.

– Case1. k = n, Solitary Wave Solution of GDFKDV

u = ca(t)
[
(n + 1)(n + 2)

2P
sech2

((
n

2

√
1
Q

(x − c(t)t)
)

cb(t)
)] 1

n

. (5.3a)
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a b c d

e f g h

i j k l

m n o p

Fig. 4. The solutions of the GDFKdV and GMDFKdV are compared for different
values of frequency coefficient ω = [0.05, 2.0, 2.5, 3.0]. Other parameters used are: c0 =
0.5, P = 0.5, Q = 2.5, f = 0.02, n = 3, S = 0.01.

where

ca(t) =
aβ

(
1
n

, 1
n

)
f

2
2
n β

(
2
n

, 2
n

) n
√

(n+1)(n+2)
2P

[
4aScosh(ωt)− 2ω(2a − b)sinh(ωt)

4a2S2 − ω2(2a − b)2

]
+ c1e

− 2aS
(2a−b) t,

(5.3b)
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and the constant

c1 = ca
0 − aβ

(
1
n , 1

n

)
f

2
2
n β

(
2
n , 2

n

)
n

√
(n+1)(n+2)

2P

4aS

4a2S2 − ω2(2a − b)2
. (5.3c)

– Case2. k = n/2, Solitary Wave Solution of GMDFKDV

u = ca(t)
[
(n + 2)(n + 4)

8P
sech2

((
n

4

√
1
Q

(x − c(t)t)
)

cb(t)
)] 2

n

. (5.4)

where

c
a
(t) =

aβ
( 2

n , 2
n

)
f

2
4
n β

( 4
n , 4

n

) (
n
√

(n+2)(n+4)
8P

)2

[
4aScosh(ωt) − 2ω(2a − b)sinh(ωt)

4a2S2 − ω2(2a − b)2

]
+ c1e

− 2aS
(2a−b) t

,

and the constant

c1 = ca
0 − aβ

(
2
n , 2

n

)
f

2
4
n β

(
4
n , 4

n

) (
n

√
(n+2)(n+4)

8P

)2

4aS

4a2S2 − ω2(2a − b)2
.

Various topological structures within the framework of solitons corresponding
to various combinations of a, and b are shown in Fig. 5 and Fig. 6. The value
of other parameters are kept fixed as c0 = 0.5, P = 0.5, Q = 2.5, f = 0.01, ω =
0.5, S = 0.05, n = 3 to generate these plots.

6 Analysis of GKdV and GMKdV Equation
with the Help of Pseudo-spectral Method

Consider a Generalized nonlinear evolution equation

ut + Pukux + Quxxx = 0,

u(x, 0) =

(
c(k + 1)(k + 2)

2P
sech

(
k

2

√
c

Q
(x − x0)

)2
)1/n

, u(−L, t) = u(L, t).

(6.1)

To apply Fourier transformation and employ inverse Fourier transformation, let
us consider: x = Xb, and u(x, t) = v(x/b, t) = v(X, t), where b = L1/L Then,
the GKdV equation becomes

vt +
P

b
vkvx +

Q

b3
vxxx = 0. (6.2)

Let the Fourier function is

F(f(a)) = f̂(k) =
∫ ∞

∞
f(a)e−2πikadt. (6.3)
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a b c d

e f g h

Fig. 5. Analytical solution of the Generalized KdV Equation for different combinations
of a and b. Other parameters are: c0 = 0.5, P = 0.5, Q = 2.5, f = 0.01, ω = 0.5, S =
0.05, n = 3.

a b c d

e f g h

Fig. 6. Analytical solution of the Generalized Modified KdV Equation for different
combinations of a and b. Other parameters are: c0 = 0.5, P = 0.5, Q = 2.5, f =
0.01, ω = 0.5, S = 0.05, n = 3.
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a b c

d e f

Fig. 7. Pseudo-spectral method with k = n i.e. the GKdV equation, and k = n/2 i.e.
the GMKdV equation where n = [1, 2, 3] on the Eq. (6.1).

Taking Fourier transformation on Eq. (6.2), we get

vx = ikF(v); vxxx = −ik3F(v). (6.4)

Taking inverse FFT on Eq. (6.4) and using the RK4 method for the Eq. (6.1)
is given by

un+1 = un +
1
6
(a + 2b + 2c + d),

(6.5)

where a = −dtf(u), b = −dtf(u + 0.5a), c = −dtf(u + 0.5b), d = −dtf(u + c).
In this Sect. 6, with the help of the Pseudo-spectral method, we are comparing

the results between the exact solution, the initial solution, and the computational
solution concerning the time and various included parameters P , Q, and k. For
k = n, and k = n/2, the Eq. (6.1) represents the GKdV and GMKdV equations
respectively. In Fig. 7 for n = [1, 2, 3], P = 0.5, Q = 0.25, c = 0.5, and t = 0.01,
we have seen that solitons of both the equations shows the oscillating behaviour
with respect to the computational scheme and for higher value of n this scheme
will break, Fig. 7 a, b, and c represents for GKdV and d, e, and f represents
for GMKdV equations. The effect of time t and included rest parameters P ,
and Q are also shown in Fig. 8. The soliton will move smoothly with regard to
time up until it reaches t = 0.05, as shown by Fig. 8 a, b, and c. At this time,
oscillations occur in the soliton with respect to the computational scheme and
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a b c

d e f

g h i

Fig. 8. Comparison of the exact solution, the initial solution, and the computational
solution with respect to the time t, and the range of the parameters P and Q of Eq. (6.1)
at fixed time t = 0.01. Parameters values are t = [0.01, 0.05, 0.09], P = [0.1, 0.5, 0.9],
and Q = [0.1, 0.5, 1.5].

breaks down but in case of P , this scheme will move smoothly and the amplitude
of the soliton will decrease while increasing the value of the nonlinear coefficient
P = [0.1, 0.5, 0.9], shown in Fig. 8 d, e, and f . Figure 8 g, h, and i represent the
behaviour of soliton with respect to the dispersion parameter Q and we observed
that for Q = [0.1, 0.5, 1.5], P = 0.5, c = 0.5, n = 1, and t = 0.01, the width of
the soliton will increase, but at Q = 1.5 there exists a small oscillation in the
soliton and for this value this scheme will fail. Hence overall, we have observed
that with respect to time, k, and dispersion parameters this scheme will fail.

Remark 1. We have observed that this pseudo-spectral scheme will fail with
time. To improve the accuracy, we need to move to a better scheme, which may
be the modified exponential time differencing method (mETDRK4). This can
be the further research work with this problem.
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7 Conclusions and Future Work

In this article, to investigate the autonomous GKDV and GMKDV system, the
sine cosine method is employed; further, the analytical solution of the non-
autonomous part of the said system is derived using the direct assumption tech-
nique. Finally, the reliability of the solutions is achieved by numerical investiga-
tion. In this connection, it is important to mention that the analytical techniques
mentioned here, are not able to find more complex solutions such as rouge wave,
breather, etc. Finding such solutions using Hirota’s bi-linear techniques, Dar-
boux transformation remains for a future project. The main outcomes of our
investigation can be stated below:

• We have compared the soliton behaviours of the generalized KDV and gen-
eralized Modified KDV equations.

• In the absence of forcing and damping terms, there is no significant difference
between the behaviours except for the non-linear parameter.

• Visible effects are shown in the behaviour of dynamical systems of GKdV and
GMKdV equations. For k = n, the system will always remain unstable and
move in an unbounded open orbit. Again, for k = n

2 , the system becomes
unstable, but the trajectories do not move into open orbit and exhibit com-
pressive behaviour.

• In the case of GDFKdV and GDFMKdV equations, the Effect of forcing
parameters and damping parameters is shown with the help of surface and
contour plots. The graphs for the damping parameter make it evident that
as the damping coefficient increases, the soliton tends to flatten out from the
back. Similarly for the case of forcing term parameter, the soliton acquires
the curvature.

• A visible effect in the behaviour of generalized solutions of both equations
is shown with the help of two newly introduced parameters, a, and b. This
may represent topological structures such as multiple humps, twisted curved
sheets, and pulses of the Gaussian type.

• With the help of the pseudo-spectral approach, we provide additional support
for all of these findings.

• We have observed that this pseudo-spectral scheme will fail with time and
increasing value of exponent parameter n. To improve the accuracy, we need
to move to a better scheme, which may be the modified exponential time dif-
ferencing method (mETDRK4) [5]. This can be the subject of further research
work on this problem.
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Abstract. In this paper, we investigate the convergence of discontinu-
ous Galerkin finite element method (DGFEM) for singularly perturbed
convection-diffusion problem with discontinuous convection coefficient.
Due to the discontinuity in the convection coefficient, the problem typ-
ically shows a weak interior layer. We develop a kind of DGFEM, the
non-symmetric discontinuous Galerkin finite element method with inte-
rior penalties (NIPG) to handle the layer setbacks. With the use of a
typical Shishkin mesh, the domain is discretized and uniform error esti-
mate is obtained and theoretically we have obtained the convergence
of order O(N−1 ln N). The numerical outcome backs up our theoretical
conclusions.
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1 Introduction

In this article we consider a singularly perturbed convection-diffusion problem
of the type{

Lu(x) := −εu′′ + b(x)u′(x) + c(x)u(x) = f(x), in x ∈ Ω = (0, 1),
u(0) = u(1) = 0,

(1)

where, ε is the perturbation parameter satisfies 0 < ε � 1 and b(x) has jump
discontinuity at x = d ∈ Ω. We define Ω1 = (0, d) and Ω2 = (d, 1) where d is
a point of discontinuity of b(x). Let us assume b, c and f belong to the class
C2(Ω1 ∪ Ω2) and the function satisfy

c(x) − 1
2
b′(x) ≥ γ2 > 0. on Ω1 ∪ Ω2 (2)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 195–208, 2023.
https://doi.org/10.1007/978-3-031-29959-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29959-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-29959-9_12


196 K. R. Ranjan and S. Gowrisankar

Here, γ is some fixed positive constant. Moreover the following conditions hold
good,

β�
1 > b(x) > β1 > 0, x < d, −β�

2 < b(x) < −β2 < 0, x > d, c(x) ≥ 0 x ∈ Ω,

and
|[b](d)| ≤ C, |[c](d)| ≤ C, |[f ](d)| ≤ C, (3)

where, β1, β�
1 , β2 and β�

2 are positive constants. In the close vicinity of x = d in
the solution u(x) of problem (1), exhibits layer of width O(ε ln(1/ε)). We refer
the layer as an interior layer.

There is a large number of papers in the literature dealing with a singular
perturbation problem with continuous coefficients and source terms, see [10,12]
for a survey. Problem of type (1) with discontinuous right hand side are consid-
ered in [1,12], whereas problem with discontinuous coefficient is considered in
[3,20]. In these articles, authors have proved second order and first order conver-
gence, respectively. In [8] authors have proved first order ε-uniform convergence
on Shishkin mesh of finite difference scheme for reaction-diffusion problem with
discontinuous source term.

Except these literature review some of these are [16] in which, Singh et.al.
presented an algorithms for approximate solution of nonlinear Lane-Emden type
equations. Convergence analysis and stability result are also provided. Also Singh
has applied Chebyshev’s spectral collocation method for Bratu’s type, Troesch’s
and nonlocal elliptic boundary value problems in [14]. Moreover, Majid et.al. has
established the convergence result for solution of nonlinear Lane-Emden type
equations. Pandey et. al. has established the convergence of Bratu’s equation by
means of Chebyshev polynomials [15]. Some other equations and physical models
are investigated numerically in [4–6]. In these articles authors established the
existence using Banach fixed point theory and convergence of numerical schemes
are also investigated.

The idea to use non-symmetric Galerkin method with interior penalty
(NIPG) method is not new in the literature. The interest in the non-symmetric
Galerkin method with interior penalty (NIPG) method and singular perturba-
tion problem is beneficial due to the presence of penalty terms which fulfill the
requirement of additional stabilization. The non-symmetric Galerkin method
with interior penalty (NIPG) method has the advantage to be very flexible
in the sense of adaptivity; moreover it can be applied for the case ε = 0 if
the solution is not smooth. In [10,21] authors have proved first order conver-
gence for convection-diffusion problem with turning point and continuous coef-
ficients, respectively. This method is preferred like streamline diffusion finite
element method (SDFEM) [17] over the classical finite element methods because
of their potential in approximating globally rough solutions, their possible defi-
nition (additionally jump and penalization parameter) on unstructured meshes,
their potential for error control and mesh adaptation, etc. There are other vari-
ants of DGFEM like symmetric interior penalty Galerkin (SIPG) method and
incomplete interior penalty Galerkin (IIPG) method in which, we have to choose
penalty parameters so that the method could be stable and convergent, besides



NIPG Method for Problem with Discontinuous Convection Coefficient 197

these properties establishment of coercivity property is not an easy task. In addi-
tion to the aforementioned privilege to non-symmetric interior penalty Galerkin
(NIPG) method. Drawbacks of this method is its much larger number of degree
of freedom as compared to standard Galerkin finite element method. Another
disadvantage of the method is adjoint consistency which is better in SIPG tech-
nique that appears in sketching optimal L2 error or to apply duel weighted
residual (DWR) technique.

In this paper, we adopt to the non-symmetric Galerkin method with inte-
rior penalty (NIPG) method for problem (1). As a result of discontinuity in
convection coefficient, interior layer is present in the solution. Interior layer usu-
ally present due to turning point or discontinuity in the coefficients. In [11],
authors have established the first order convergence up to logarithmic factor for
non-symmetric interior penalty Galerkin (NIPG) method for one dimensional
singular perturbation problem with discontinuous source term. We have shown
the uniform convergence of the method on usual Shishkin mesh. Simplifying our
analysis and using piecewise linear element on Ω, in Theorem 4 we prove that
the finite element method (FEM) leads to the convergence result O(N−1 ln N)
and finally we get the result of same order in Theorem 5.

The article is arranged in the following way: Sect. 2 describes the existence,
stability properties of the solution, opportunistically we have included decompo-
sition of the solution in this section too. In Sect. 3, we have discussed the Shishkin
mesh, the non-symmetric Galerkin method with interior penalty (NIPG) method
and existence of solution. Section 4 dealt with the error analysis on the given
mesh. Uniform convergence of the given FEM is described in Sect. 5 and the
last Sect. 6 provides the numerical result that supports our theoretical findings.
Section 7 is all about the summary of the article and last but not the least the
original contribution in this article is described in Sect. 8.

2 Stability and Solution Decomposition

We propose some necessary notations. For any function v(x), the jump at d
is denoted by [v](d) and defined by [v](d) = v(d+) − v(d−). C is a generic
constant (sometimes subscripted) is free from perturbation parameter ε and
mesh parameter N . An arbitrary subinterval [xj−1, xj ] is represented by Ij with
interval height hj = xj − xj−1.

Now the theorem given below guarantees the existence of solution to the
problem (1).

Theorem 1. Let u(x) is the solution of (1) that belongs to the class of function
C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2).

Proof. The detailed proof can be similar as in [20]. �

Lemma 1. Suppose the problem (1) has a solution u(x) that belongs to the class
of functions C0(Ω) ∩ C1(Ω) ∩ C2(Ω1 ∪ Ω2), which satisfies the bound

‖u(x)‖L∞(Ω) ≤ 1
λ

‖f(x)‖L∞(Ω) ,
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where λ = min{β1/d, β2/(1 − d)}.

Proof. Put ψ(x) = −x‖f(x)‖L∞(Ω)

λd +u(x), x < d and ψ(x) = − (1−x)‖f(x)‖L∞(Ω)

λ(1−d) +
u(x), x > d.
Therefore, we have ψ(x) ∈ C0(Ω) and ψ(0) ≤ 0, ψ(1) ≤ 0.
For each x ∈ Ω1 ∪ Ω2,

Lψ(x) ≥ 0.

Furthermore, since u(x) ∈ C1(Ω)

[ψ](d) = [u](d) = 0 and [ψ′](d) =
‖f‖L∞(Ω)

λd
+

‖f‖L∞(Ω)

λ(1 − d)
≥ 0.

Hence, following comparison principle in Lemma 2 [7] that ψ(x) ≤ 0 for all
x ∈ Ω. Which determines the desired bound for the solution u(x).

Let us consider the decomposition u = v + w into smooth component v and
interior layer component w. We take two discontinuous function v0 and v1 such
that

bv′
0 = f, x ∈ Ω1 ∪ Ω2

vo(0) = u(0), v0(1) = u(1),
bv′

1 = −v′′
0 ,

v1(0) = 0, v1(1) = 0.

Now we define smooth component of the solution v such that

Lv = f, x ∈ Ω1 ∪ Ω2 (4a)

v(0) = u(0), v(d−) = v0(d−) + εv1(d−), (4b)

v(d+) = v0(d+) + εv1(d+), v(1) = u(1). (4c)

Note that it is discontinuous function. Further, we have layer part of the solution
w which is also discontinuous and given by the set of following equation

Lw = 0, x ∈ Ω1 ∪ Ω2 (5a)
w(0) = w(1) = 0, [w](d) = −[v](d), [w′](d) = −[v′](d). (5b)

Hence, we get w(d−) = u(d−)−v(d−) and w(d+) = u(d+)−v(d+). We note that
the solution u = v + w is unique to the problem (1). It is merited consideration
that v and w are discontinuous at x = d, but their sum u is in C1(Ω) by (5b).
It is called stability property for the exact solution of (1). �

It is crucial to deduce the bounds for different components of the solution in
order to obtain the convergence result in the finite element method. The same
is addressed in the below mentioned theorem.
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Theorem 2. Let (3) holds true. Assume that b, c, f ∈ C2(Ω1 ∪ Ω2), we have

‖bm(x)‖L∞(Ω1∪Ω2)
≤ C, ‖cm(x)‖L∞(Ω1∪Ω2)

≤ C, ‖fm(x)‖L∞(Ω1∪Ω2)
≤ C,

m = 0, 1, 2 and we are able to derive the decomposition of solution to the problem
(1) and in this way we find the smooth part S and layer part E satisfy LS = f
and LE = 0, respectively and their bound could be∥∥Si(x)

∥∥
L∞(Ω1∪Ω2)

≤ C, |[S](d)| ≤ C, |[S′](d)| ≤ C.

|Ei(x)| ≤
{

Cε−ie(x−d)β1/ε, x ∈ Ω1,

Cε−ie−(x−d)β2/ε, x ∈ Ω2.
(6)

i = 0, 1, 2.

Proof. The proof is same as it has been done in [20], so we omit the proof here.
�

3 Piecewise Equidistant Mesh and NIPG Method

3.1 Shishkin Mesh

For the domain discretization, a most practicable Shishkin mesh is considered.
Let N ∈ N, where N ≥ 4 and N is a multiple of 4. Layer in the vicinity of d has
been considered and any possibility of layer at the boundary is completely ruled
out. Therefore the mesh can be generated in the following way: Following [19],
we take transition points λ1 = d − ρε

β1
ln N and λ2 = d + ρε

β2
ln N where ρ ≥ 2,

with the help of these two transition points we make the division of Ω into four
subintervals

Ω = [0, λ1] ∪ [λ1, d] ∪ [d, λ2] ∪ [λ2, 1]

such that d − λ1 ≤ d/2 and λ2 − d ≤ (1 − d)/2. Furthermore we assume that
each subintervals are distributed into N/4 intervals, where grid points satisfy
xN/4 = λ1, xN/2 = d and x3N/4 = λ2.

Remark 1. Throughout our analysis we take ε ≤ CN−1, which is reasonable in
practice.

3.2 The NIPG Method: Procedure and Properties

The Shishkin mesh defined in Subsect. 3.1 partitioning the domain Ω into subin-
tervals Ij = [xj−1, xj ], j = 1, 2, ..., N . Denote these collections by TN . We intro-
duce with some essential notations: For every Ij ∈ TN , define broken Sobolev
space of order k

Hk(Ω, TN ) =
{
v ∈ L2(Ω) : v

∣∣
Ij

∈ Hk(Ij), ∀Ij ∈ TN

}



200 K. R. Ranjan and S. Gowrisankar

and corresponding broken Sobolev norm and seminorm defined by

‖v‖s,TN
=

( N∑
j=1

‖v‖2s,Ij

)1/2

, |v|s,TN
=

( N∑
j=1

|v|2s,Ij

)1/2

,

respectively. Define V N as a finite element space related to the collection TN of
Shishkin meshes

V N =
{
v ∈ L2(Ω) : v

∣∣
Ij

∈ P 1(Ij), ∀Ij ∈ TN

}
,

where P 1(Ij) denotes the space of polynomial of degree at most one in each Ij .
Moreover, the functions in V N are completely discontinuous on the boundaries
of the subintervals in TN . That is we are considering the non-confirming finite
element.

The NIPG formulation [10] of (1) reads as: Find uN ∈ V N such that

B(uN , vN ) = L(vN ), for all vN ∈ V N (7)

where

B(u, v) = B1(u, v) + B2(u, v), (8a)

B1(u, v) =
N∑

j=1

∫
Ij

εu′v′dx +
N∑

j=0

ε

(
[u(xj)]{v′(xj)} − [v(xj)]{u′(xj)}

)
(8b)

+
N∑

j=0

σj [u(xj)][v(xj)],

B2(u, v) =
N∑

j=1

∫
Ij

(bu′ + cu)vdx +
N−1∑
j=0

b(xj)[u(xj)]v(x+
j ), (8c)

L(v) =
N∑

j=1

∫
Ij

fvdx. (8d)

Here σj(j = 0, 1, · · · , N) are the discontinuous-penalization parameters that are
closely related to each nodes xj . These are user-defined parameters, in the sequel,
we will provide the exact choice of these parameters. The construction of bilinear
form inspired us to introduce the DG norm as follows: For any v ∈ H2(Ω, TN ),

‖v‖2DG =
N∑

j=1

(
ε ‖v′‖2L2(Ij)

+ ‖γv‖2L2(Ij)

)
+

N∑
j=0

(1
2
b(xj) + σj

)
[v(xj)]2. (9)

Lemma 2. Let u and uN are the exact solution to the problem (1) and dis-
cretized solution to the weak formulation (7), respectively. Then the bilinear form
provided by (7) satisfies,

B(u − uN , vN ) = 0 for all vN ∈ V N , (Galerkin orthogonality) (10a)

B(vN , vN ) = ‖vN‖2DG for all vN ∈ V N , (coercivity) (10b)
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Proof. Both the properties in (10a) and (10b) in the above Lemma 2 can be
followed from [10] in Lemma 3.1 and equation (3.5). �

4 Error Estimations: Sharp Bound on Shishkin Mesh

In this section, we present piecewise linear interpolation uI of the exact solution
u and their properties. There are numerous results on interpolation error in the
literature (see [2]). We introduce an estimation on interpolation error which is
useful in the derivation of error estimation.

Lemma 3. [18]: The special interpolant has the following properties:

|u − uI |m,N ≤ Chj+1−m
N |u|j+1,N , m = 0, 1, · · · , j + 1, ∀ u ∈ Hj+1(N ),

(11a)

‖u‖L∞(N ) ≤ Chj+1
N |u|j+1,∞,N , ∀u ∈ W j+1,∞(N ), (11b)

where N is an element in the partition TN of the domain Ω and hN is the length
of element N .

4.1 Interpolation Error

Lemma 4. On the Shishkin mesh, we have the following properties:∥∥S − SI
∥∥

L2[0,λ1]
+

∥∥u − uI
∥∥

L2[0,λ1]
≤ CN−2, (12a)∥∥E − EI

∥∥
L2[λ1,d]

+
∥∥u − uI

∥∥
L2[λ1,d]

≤ Cε1/2(N−1 ln N)2, (12b)∥∥(E − EI)′∥∥
L2[0,d]

+
∥∥(u − uI)′∥∥

L2[0,d]
≤ Cε−1/2N−1 ln N. (12c)

Proof. To estimate
∥∥S − SI

∥∥
L2[0,λ1]

, we use classical interpolation theory given
by (11a) with m = 0 and j = 1∥∥S − SI

∥∥
L2(Ij)

≤ Ch2
N ‖S′′‖L2(Ij)

≤ CN−2.

Now ∥∥E − EI
∥∥

L2(Ij)
≤ C ‖E‖L2(Ij)

+
∥∥EI

∥∥
L2(Ij)

≤ CN−2.

combining the above two estimates, we get (12a). For (12b), we use the interpo-
lation result from (11a).
Now we will estimate (12c)∥∥(E − EI)′∥∥

L2[0,λ1]
≤ ‖E′‖L2[0,λ1]

+
∥∥(EI)′∥∥

L2[0,λ1]
,

≤ ‖E′‖L2[0,λ1]
+ CN

∥∥(EI)
∥∥

L2[0,λ1]
. (13)

Here we have used inverse inequality and stability property for interpolant (see
Lemma 3.3, [21]).

‖E′‖L2[0,λ1]
≤ Cε−1/2N−2,

∥∥EI
∥∥

L2[0,λ1]
≤ Cε1/2N−2. (14)
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(11a) give us ∥∥(E − EI)′∥∥
L2[λ1,d]

≤ Cε−1/2N−1 ln N (15)

and finally ∥∥(S − SI)′∥∥
L2[0,d]

≤ CεN−1 ln N. (16)

Combining (13)–(16), we get (12c). �

Remark 2. Bound for the estimations in Lemma 4 on the interval [d, 1] can be
achieved easily. Hence, we have∥∥S − SI

∥∥
L2[λ2,1]

+
∥∥u − uI

∥∥
L2[λ2,1]

≤ CN−2,∥∥E − EI
∥∥

L2[d,λ2]
+

∥∥u − uI
∥∥

L2[d,λ2]
≤ Cε1/2(N−1 ln N)2,∥∥(E − EI)′∥∥

L2[d,1]
+

∥∥(u − uI)′∥∥
L2[d,1]

≤ Cε−1/2N−1 ln N.

To cover error analysis we need multiplicative trace inequality which is
referred as

Lemma 5. [9]. For w ∈ H1(Ij)

|w(xs)|2 ≤ 2
(
h−1

j ‖w‖2L2(Ij)
+ ‖w‖L2(Ij)

‖w′‖L2(Ij)

)
, s ∈ {j − 1, j}. (17)

Proof. For any w ∈ H1(0, 1), we set v(t) = w2(t)(t − 1/4). Now we just verify
the inequality in (17) for t = 3/4 and proof at another point will be similar,

v′(t) = w2(t) + 2w(t)w′(t)(t − 1/4).

Using the definition of v(t) we see that v(3/4) =
∫ 3/4

1/4
v′(t)dt.

|v(3/4)| ≤
∫ 3/4

1/4

|v′(t)|dt,

≤
∫ 3/4

1/4

|w2(t)|dt +
∫ 3/4

1/4

|2w(t)w′(t)(t − 1/4)|dt.

Therefore,

|v(3/4)| ≤
∫ 3/4

0

|w2(t)|dt +
∫ 3/4

0

|2w(t)w′(t)(t − 1/4)|dt,

≤ ‖w(t)‖2L2[0,3/4] + 2 max
t∈[0,3/4]

|t − 1/4| ‖w(t)‖L2[0,3/4] ‖w′(t)‖L2[0,3/4] ,

≤ ‖w(t)‖2L2[0,3/4] + ‖w(t)‖L2[0,3/4] ‖w′(t)‖L2[0,3/4] .

Hence for all the points it can be shown similarly by changing in the definition
of v(t). So, scaling argument tells us the consequences leads to the validation of
the result given in the Lemma 5. �
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Lemma 6. On the Shishkin mesh given in Subsect. 3.1, take ρ = 2 and η =
u − uI , we have the following bounds for {η′}

{η
′
(xj)}2 ≤

{
Cε−2(N−1 lnN)2 j = N/4 + 1, · · · , N/2 and j = 3N/4 + 1, · · · , N,

Cε−2N−3 j = 0, · · · , N/4 and j = N/2 + 1, · · · , 3N/4.
(18)

Proof. The proof of this lemma is quite similar as the Lemma 3.6 has been
proved in [21]. So we leave the steps of the proof. �

Theorem 3. Let the assumption in Remark 1 holds, then the following result
on Interpolation error holds true∥∥u − uI

∥∥
DG

≤ CN−1 ln N (19)

Proof. Recall that η is continuous on interelement boundaries we have,
[η(xj)] = 0. Using coercivity property in Lemma 2, we have

‖η‖2DG =
N∑

j=1

(
ε ‖η′‖2L2(Ij)

+ γ2 ‖η‖2L2(Ij)

)

Now bounds can be obtained from the estimations in Lemma 3 and
Remark 2. �

5 Uniform Convergence

In this section, we deduce bound for error u−uN , which will be free from ε. The
obtained bound in this section relies on a priori estimate of the exact solution u
and an special interpolant first introduced in [18].

Theorem 4. We introduce χ = uI − uN . Applying Galerkin orthogonality and
coercivity properties from (10a) and (10b) of Lemma 2, respectively, we have

‖χ‖DG ≤ CN−1 ln N. (20)

Proof. Consider,

‖χ‖2DG = B(χ, χ) = B(η, χ),
= B1(η, χ) + B2(η, χ).

Since η is continuous on Ω which implies that [η]j = 0, for j = 0, 1, · · · , N .
Therefore,

B1(η, χ) =
N∑

j=1

∫
Ij

εη′χ′dx −
N∑

j=0

ε
(
[χ(xj)]{η′(xj)}

)
= I1 + I2,

and

B1(η, χ) =
N∑

j=1

∫
Ij

(bη′ + cη)χdx.
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Making the use of Cauchy-Schwarz inequality, Eq. (12c) and Remark 2, we
obtain,

|I1| ≤
( N∑

j=1

∫
Ij

ε(η′)2dx

)1/2( N∑
j=1

∫
Ij

ε(χ′)2dx

)1/2

≤ CN−1 ln N ‖χ‖DG . (21)

Now we have to make a bound for I2. In this case the path of approach will be
different,

|I2| ≤
( N∑

j=0

ε2

σj
{η′(xj)}2

)1/2( N∑
j=0

σj [χ(xj)]2
)1/2

,

≤
( N/4∑

j=0

ε2

σj
ε−2N−3 +

N/2∑
j=N/4+1

ε2

σj
ε−2N−2 ln2 N

+
3N/4∑

j=N/2+1

ε2

σj
ε−2N−3 +

N∑
j=3N/4+1

ε2

σj
ε−2N−2 ln2 N

)1/2

‖χ‖DG .

In this procedure we take the exact choice of discontinuity-penalization param-
eter,

σj = N for all j = 0, 1, · · · , N

Meanwhile, I2 can be estimated as,

|I2| ≤ CN−1 ln N ‖χ‖DG . (22)

Collecting (21) and (22), we get

B1(η, χ) ≤ CN−1 ln N ‖χ‖DG . (23)

It only remains to bound B2(η, χ) and our purpose will be served. To bound the
estimation one can refer [20] which also gives the bound

|B2(η, χ)| ≤ CN−1 ln N ‖χ‖DG . (24)

Therefore (23) and (24) together gives us (20) in Theorem 4. �

Theorem 5. Let u is the exact solution of (1) and uN is the discretized solution
of the NIPG formulation 7 on the Shishkin mesh introduced in Subsect. 3.1. Then
the discretization error obeys the following bound

‖u − uN‖DG ≤ CN−1 ln N.

Proof. From the estimations obtained in Theorem 3, Theorem 4 followed by
triangular inequality we get the desired result. �
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6 Numerical Result and Implementation

In this section, we present numerical result for a test problem to illustrate the
theoretical results that has been established in Sect. 5.

Example 1.

−εu′′ + b(x)u′(x) + 7u(x) = x,

u(0) = u(1) = 0.

where

b(x) =

{
3x2 + 2 x ≤ d,

0.5x x > d,

and d = 0.7.

The test problem in Example 1 is taken similar to the test problems in Example
7.1 and 7.2 in [11]. Solution of the test problem given in Example 1 exhibits an
interior layer at x = d. The curve of computed solution along with exact solution
is sketched in Fig. 1 with N = 1024 and ε = 10−7 for Example 1. The solution
curve is showing interior layer at x = d where d is a point of discontinuity
of convection coefficient b inside the domain depends on the user choice. The
exact choice of discontinuous-penalization parameters σj ’s has been presented
in Sect. 5.

Error and convergence rate are examined for various value of N and ε with
respect to DG-norm, ‖·‖DG. In the present Example (1) do not have exact
solution, so we apply double mesh principle to find out errors in the numeri-
cal solution and their convergence rates. We determine errors for DG-norm by
‖uN − u2N‖DG. The rate of convergence using double mesh principle can be
calculated by the following expression

RN
ε = log2

( ‖uN − u2N‖DG

‖u2N − u4N‖DG

)

The error and rate of convergence calculated in DG-norm for the above example
are provided by Table 1 and Table 2, respectively. It can be easily seen that the
solution converges with desired order, which is free from perturbation parame-
ter ε. It is presented in Table 2, which reflects the first order convergence in ε
weighted norm introduced by the bilinear form (9) that supports our theoreti-
cal findings. Hence, the numerical solution approximates the exact solution very
well. All the calculations have been performed using FENICS library for finite
element method and CPU run time was approximately two minutes.
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Table 1. ‖uN − u2N‖DG errors for Example 1.

Number of Intervals (N)

ε 32 64 128 256 512 1024

10−1 9.844E-03 3.084E-03 9.963E-04 3.344E-04 1.110E-04 3.995E-05

10−2 4.0731E-02 2.0132E-02 8.873E-03 3.571E-03 1.410E-03 5.314E-04

10−3 4.180E-02 2.044E-02 8.844E-03 3.589E-03 1.384E-03 5.383E-04

10−4 4.184E-02 2.0351E-02 8.834E-03 3.587E-03 1.423E-03 5.262E-04

10−5 4.184E-02 2.0351E-02 8.838E-03 3.587E-03 1.408E-03 5.327E-04

10−6 4.184E-02 2.0351E-02 8.838E-03 3.586E-03 1.411E-03 5.328E-04

10−7 4.184E-02 2.035E-02 8.838E-03 3.586E-03 1.411E-03 5.327E-04

Table 2. Convergence rates RN
ε for Example 1.

Number of Intervals (N)

ε 32 64 128 256 512

10−1 1.6742 1.6303 1.5748 1.5901 1.4751

10−2 1.0166 1.1819 1.3128 1.3401 1.4083

10−3 1.0320 1.2089 1.3009 1.3739 1.3630

10−4 1.0397 1.2039 1.3000 1.3333 1.4359

10−5 1.0399 1.2032 1.3008 1.3486 1.4027

10−6 1.0399 1.2032 1.3010 1.3458 1.4050

10−7 1.0399 1.2031 1.3011 1.3454 1.4057

Fig. 1. Computed and Exact solution for Example 1 for N = 1024 and ε = 10−7.

7 Conclusion

The singularly perturbed convection-diffusion problem with discontinuous coeffi-
cient is investigated in this paper. In order to find the numerical approximation
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when the perturbation parameter ε goes to zero, we apply NIPG method on
piecewise uniform Shishkin mesh and convergence result is established. Numer-
ical results are provided to defend our analytical findings. It is a singular per-
turbation problem with single perturbation parameter with discontinuities. We
can extend this work to two parametric perturbation problem with disconti-
nuities caused layer phenomenon at both boundaries points and some of the
interior points as well. Not only this, but these problems can be extended to its
2 − D limitations, in which we can discuss the uniform convergence of contin-
uous/discontinuous Galerkin methods in ε-weighted norm and usual L2-norm.
So many cases can be there, like discontinuous coefficients, problem with two
perturbation parameters and turning point, etc. In these conditions, solution
may have boundary and interior layers simultaneously. Domain discretization
also matter for these problem, for ex; if one discretize the domain by Bakhvalov
mesh or more than that by exponential mesh gives the sharper convergence than
the mesh discretization by Shishkin mesh.

8 Discussion

The literature contains a large number of studies that discuss the continu-
ous/discontinuous Galerkin technique for singular perturbation problem (SPP).
There are several papers in the literature which discussed the convergence of
NIPG method for instance, one can see ([10,11,13,21]). In first three papers
authors deduced the first order convergence, while the last one reflects super-
convergence of the solution. Except [11] all other deals with the discontinuous
Galerkin method for SPP with continuous coefficients and source term but the
former has convergence result for the problem with discontinuous source term.
Furthermore, so many articles in the literature which we have already discussed
in Sect. 1 that have analysis of SPP with discontinuous coefficient or source term.
But there are not a single paper that analyze NIPG method for SPP with dis-
continuous source term ever before. That’s why this paper is elaboration of first
order convergence up to logarithmic factor of NIPG method on usual Shishkin
mesh where discontinuity of jump type occurs in convection coefficient.
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Abstract. The modulated temperature and triple diffusive convection
play significant contribution in regulating the heat and mass transports
inducing some applications in industry. The weakly non-linear stability
analysis is performed to depict the rate of heat and mass transport due
to the third diffusing component on Rayleigh-Bénard convection. The
Newtonian fluid layer is heated from below and solutes are concentrated
from opposite boundaries, i.e. one of the solute is concentrated from
below and other is concentrated from above. The fluid layer is extended
infinitely in x− direction and between two parallel plates at z = 0 and
z = d for this study. The time dependent temperature consists a constant
basic temperature and a time-dependent sinusoidal part. The Asymptotic
expansion method is applied to determine the solution of system of non-
linear differential equations. The Ginzburg-Landau differential equation
is extracted by applying the Fredholm solvability condition and is solved
numerically by the software MATHEMATICA 12. The impact of various
dimensionless parameters; Prandtl number (Pr), Lewis numbers(LeS1

and LeS2), solute Rayleigh numbers (RaS1 , RaS2), amplitude of modu-
lation (δ) and frequency of modulation (ω) on heat and mass transport
are shown graphically. The parameters δ and ω increase the heat and
mass transport. Also, It is found that heat and mass transports can be
controlled by a suitable choice of range of parameters.

Keywords: Newtonian liquid · Triple diffusive convection ·
Temperature Modulation · Thermal Rayleigh Number · Solute
Rayleigh Number

1 Introduction

The Rayleigh - Bénard convection in Newtonian liquid is very interesting topic
among the researchers due to its significant applications in engineering, science
and technology. Some of them are in food processing, oil recovery techniques, geo-
physics, oceanography, biological system, underground water flow, rain effects,
nuclear reactors and many more. The subsequent developments on the problems
based on Rayleigh - Bénard convection in fluid layers as well as in porous media
are reported by Chandrasekhar [1], Nield and Bejan [2], Drazin and Reid [3].
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The Rayleigh - Bénard convection due to one concentrated species and a tem-
perature gradient is known as double diffusive convective problem. The instabil-
ity problems of double diffusive convection problems attract researcher’s atten-
tion due to their numerous applications in industry, science and technology like
material processing, food processing, oil reservoirs oceanography and nuclear
reactors. The external regulatory forces like concentration modulation, grav-
ity modulation, rotational modulation are the topics of discussion among the
researchers from last two decades. The time-dependent boundaries allow us to
control the convective heat and mass transports. Some of the reports available
on different types of modulations are; Gershuni et al. [4], Davis [5], Mehta [6],
Gupta et al. [7], Gupta [8], Kumar et al. [9,10] and keshri et al. [11]. Gershuni et
al. [4] examined the effect of vertical temperature modulation for free and rigid
surface. The effect of temperature modulation on double diffusive convection is
reported by Mehta [6]. The critical thermal Rayleigh number was obtained with
correction factor associated with modulated boundaries and it was found that
thermal Rayleigh number depends on the amplitude and the phase difference
between them. Gupta et al. [7] analysed the effect of concentration modulation
as well as gravitational modulation in a rotating layer and the report revealed
that the frequency of modulation and Taylor number stabilize the convection
process. Further, Gupta [8] extended the study of Gupta et al. [7] for couple
stress liquid.

Although, double diffusive convection has its own importance due to its large
number of applications in geophysics, oceanography and binary mixture’s solid-
ification but there exist some real life situations in which the convective system
contains more than one solute and so the problem of double diffusion becomes
a limited case. Degens et al. [12] documented a report on multi-diffusive con-
vection. The topological nature of neutral curves in the presence of multicom-
ponent convection in porous media is analysed by Tracey [13]. Further, Rionero
[14] derived a sufficient condition for inhibiting the onset of convection and the
global non-linear stability of the thermal conduction in a porous media due
to triple diffusive convection. Raghunatha et al. [15] scrutinized the impact of
triple diffusive convection in Maxwell fluid saturated porous layer and showed
that the rate of heat and mass transport increases with an increase in relaxation
parameter. Shivkumara et al. [16] established condition for existence of oscilla-
tory convection in terms of diffusivity ratios. Some more available documents
on the onset of convection in Newtonian and non-Newtonian fluids under third
diffusing component are reported by Awasthi et al. [17], Zhao et al. [18], Patil
et al. [19], Khan et al. [20], Pearlstein et al. [21] and Straughan and Walker [22].

In aforesaid literature, the authors have investigated the effect of various
parameters on convective system due to third diffusing component under spatial
coordinates dependent boundary conditions. In real life scenario, there are some
physical situations occur in industry in which boundary conditions are dependent
on spatial coordinates as well as time. So, the study of time-periodic boundary
conditions become important due to its need. Nothing is found for deliberation
on the effect of time-periodic boundary conditions on Rayleigh-Bénard convec-
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tion due to third diffusing component. It has numerous applications in material
science, oceanography, medical sciences, oil reservoirs, Biological systems and
many more. With these motivations, the present study has been carried-out. A
weakly non-linear stability analysis in terms of asymptotic expansion of pertur-
bation parameter is performed to extract the Ginzburg-Landau equation (Lan-
dau [23]). Dubey et al. [24–27], Singh et al. [28] and Singh [29,30] discussed on
the convergence of the methods for solving non-linear equations.

2 Governing Equations

The present study is carried out to examine the efficacy of time dependent ther-
mal boundaries and solute concentrations on heat and mass transports. The
problem is formulated mathematically under the assumptions that the Newto-
nian fluid is incompressible and confined between two parallel plates at z =
0 and z = d, which is extended infinitely in x-direction. The first solute is
concentrated from lower plate while second solute is concentrated from upper
plate. An adverse concentration gradients ΔSi/d are maintained between the
boundaries. The Boussinessq approximation is also incorporated in mathemati-
cal model which assumes that the density varies linearly with temperature and
solute concentrations. A graphical representation of considered problem is shown
by Fig. 1.

In view of above assumptions, a mathematical representation of considered
problem may be written as

Fig. 1. Physical Presentation

ρ0

[∂q

∂t
+ (q.∇)q

]
= −∇p + ρg + μ∇2q, (1)
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∂T

∂t
+ (q.∇)T = k

T
∇2T, (2)

∂S1

∂t
+ (q.∇)S1 = ks1∇2S1, (3)

∂S2

∂t
+ (q.∇)S2 = ks2∇2S2. (4)

The Boussinesq approximation is given as

ρ = ρ0

[
1 − α

T
(T − T0) + βS1

(S1 − S10) + βS2
(S2 − S20)]. (5)

The equation of continuity for incompressible fluid is taken as

∇.q = 0. (6)

The thermal and concentrations boundary conditions are given by

T = T0 +
ΔT

2
[
1 + ε2δ cos(Ωt)

]
at z = 0, (7)

T = T0 − ΔT

2
[
1 − ε2δ cos(Ωt + φ)

]
at z = d, (8)

S1 = S10 + ΔS1 at z = 0 and S1 = S10 z = d, (9)

S2 = S20 atz = 0 and S2 = S20 + ΔS2 z = d, (10)

where q = (u, v, w) is the fluid velocity, p is the pressure, ρ is the fluid density, ρ0
is the reference density, g = (0, 0,−g) is the gravitational acceleration, μ is the
viscosity of the fluid, T, S1, S2 are the temperature, concentration of first solute
and concentration of second solute respectively, and kT , kS1 , kS2 are respective
diffusivity ratios.

3 Basic State

Initially, fluid is assumed to be quiescent so the fluid velocity, pressure, density,
temperature and solute concentrations at basic state are defined as qb = (0, 0, 0),
p = pb(z), ρ = ρb(z), T = Tb(z, t), S1 = S1b(z), S2 = S2b(z). Using these values
in Eqs. (1)–(6), we get

∂Tb(z, t)
∂t

= κ
T

∂2Tb(z, t)
∂z2

, (11)

d2S1b

dz2
= 0, (12)

d2S2b

dz2
= 0. (13)
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The solution of Eqs. (11)–(17) under the thermal and solutes boundary con-
ditions may be obtained as

pb = −ρbg0z, (14)

Tb = −(
ΔT

d
)z + (T0 +

ΔT

2
) + ε2

ΔT

2
f (z , t), (15)

where,

f (z , t) = Re
[
a(λ)e

λz
d + a(−λ)e− λz

d

]
e

−iΩt , (16)

and

a(λ) =
λ

2
e−iφ + e−λ

eλ − e−λ
and λ = ±(1 − i)

√
ωd

2κ
T

, (17)

S1b(z) = S10 − ΔS1

d
z, (18)

S2b(z) = S20 +
ΔS2

d
z. (19)

4 Perturbation

To perform stability analysis, an infinitesimal perturbation in variables are taken
in account. Thus, the variables at perturbed state are defined as:

p = pb+p′, q = qb+q′, ρ = ρb+ρ′, S1 = S1b+S′
1, S2 = S2b+S2, T = Tb+T ′, (20)

where ′ denotes the perturbed state of variables.
In Rayleigh - Bénard convection, convective rolls are parallel to the y - axis so

study restricts us for two dimensional study and the velocity component in x−4
and z− direction are defined in terms of stream function as q′ = (u′, v′, z′) =
(∂ψ

∂z , 0,−∂ψ
∂x ). Further to eliminate the pressure term from Eq. (1), we take its

curl and rewrite the governing equations in terms of stream function as

ρ0

[ ∂

∂t
(∇2ψ) − ∂(ψ,∇2ψ)

∂(x, z)

]
= ρg0[−α

T

∂T ′

∂x
+ βS1

∂S′
1

∂x
+ βS2

∂S′
2

∂x
] + ∇4ψ, (21)

∂T ′

∂t
− ∂(ψ, T ′)

∂(x, z)
− ∂T

b

∂x

∂ψ

∂x
= κ

T
∇2T, (22)

∂S′
1

∂t
−

∂(ψ, S′
1
)

∂(x, z)
− ∂S1b

∂x

∂ψ

∂x
= κ

S1
∇2S′

1, (23)

∂S′
2

∂t
−

∂(ψ, S′
2
)

∂(x, z)
− ∂S2b

∂x

∂ψ

∂x
= κ

S2
∇2S′

2. (24)
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5 Non Dimensionalised Parameter

The following variables are used to obtain the dimensionless form of Eqs. (5)–(27)

(x, y, z) = d(x∗, y∗, z∗), t =
d2(t∗)

κT
, ψ′ = κ

T
(ψ∗), T ′ = (ΔT )T ∗, Tb = (ΔT )T ∗

b ,

(S′
1, S1b) = (Δ1)(S∗

1 , S∗
1b), (S

′
2, S2b) = (ΔT )(S∗

2 , S∗
2b). (25)

By using non dimensional variables in Eq. (5) to (27) and remove the asterisks
for simplicity, we get the following set of equations:

1
Pr

[ ∂

∂t
∇2(ψ) − ∂(ψ,∇2ψ)

∂(x, z)

]
= [−RT0

∂T

∂x
+ RaS1

∂S1

∂x
+ RaS2

∂S2

∂x
] + ∇4ψ, (26)

∂T

∂t
− ∂(ψ, T )

∂(x, z)
− ∂ψ

∂x

∂Tb

∂z
= κT ∇2T, (27)

∂S1

∂t
− ∂(ψ, S1)

∂(x, z)
− ∂ψ

∂x

∂S1b

∂z
= LeS1∇2S1, (28)

∂S2

∂t
− ∂(ψ, S2)

∂(x, z)
− ∂ψ

∂x

∂S2b

∂z
= LeS2∇2S2, (29)

where, Pr = ν
κT

is Prandtl number, ν = μ
ρ0

is the kinematic viscosity,

RT0 = αT gΔTd3

νκT
is the thermal Rayleigh number, RaS1 = βS1gΔS1d3

νκT
and

RaS2 = βS2gΔS2d3

νκT
are solute Rayleigh number for solute one and two respec-

tively, LeS1 = κS1
κT

and LeS2 = κS2
κT

are the Lewis numbers corresponding to two
solutes respectively.

6 Weakly Non-linear Stability Analysis

For temporal time scale, time t is rescaled as τ = ε2t. Therefore, matrix form of
system of Eqs. (26)–(29) is obtained as

⎡
⎢⎢⎢⎣

∇4 −RT 0
∂
∂x RaS1

∂
∂x RaS2

∂
∂x

− ∂
∂x ∇2 0 0

− ∂
∂x 0 1

LeS1
∇2 0

∂
∂x 0 0 1

LeS2
∇2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ψ
T
S1

S2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1
Pr

[ε2 ∂
∂τ ∇2ψ − J(ψ,∇2ψ)]

ε2 ∂T
∂τ − J(ψ, T ) − ε2 δ

2 f
′(z , τ)

ε2 ∂S1
∂τ − J(ψ, S1)

ε2 ∂S2
∂τ − J(ψ, S2)

⎤
⎥⎥⎦ ,

(30)
where, J denotes the Jacobian and f (z , τ) = δ

2 Re
[
a(λ)eλz + a(−λ)e−λz

]
e

−iωτ

.
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6.1 Expansion of Variables

In order to determine the solution of Eq. (30), the asymptotic analysis method is
used. For that, we have introduced a small perturbation parameter ε to expand
the variables ψ, T, RT S1 and S2.

ψ =
∞∑

m=1

εmψm, T =
∞∑

m=1

εmTm, RT =
∞∑

m=1

ε2m−2R2m−2,

S1 =
∞∑

m=1

εmSm, S2 =
∞∑

m=1

εnS2m,

(31)

Using the expression of ψ, T , S1 and S2 defined by Eq. (31) in Eq. (30), the
solution can be determined by equating the coefficient of various order of ε on
both the sides.

6.2 First-Order Solution

To find the solution at first-order of Eq. (30), the coefficients of ε on both sides
are compared which gives the following system of equations.

⎡
⎢⎢⎢⎣

∇4 −R0
∂
∂x RaS1

∂
∂x RaS2

∂
∂x

− ∂
∂x ∇2 0 0

− ∂
∂x 0 1

LeS1
∇2 0

∂
∂x 0 0 1

LeS2
∇2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ψ1

T1

S11

S21

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ . (32)

As the Rayleigh-Bénard convective cells are periodic, therefore we may assume
the periodic solutions which satisfy the boundary conditions given by Eqs. (7)–
(10) as

ψ1 = A(τ) sin(kx) sin(πz), T1 = B(τ) cos(kx) sin(πz),
S11 = D(τ) cos(kx) sin(πz), S21 = E(τ) cos(kx) sin(πz),

(33)

where A(τ), B(τ), D(τ) and T (τ) are undetermined coefficients. Making use of
Eq. (33) in Eq. (32), we get the following expressions:

ψ1 = A(τ)(sin(kx) sin(πz)), (34)

T1 = − k

p2
A(τ) cos(kx) sin(πz), (35)

S11 = − k

p2τ1
A(τ) cos(kx) sin(πz), (36)

S21 =
k

p2τ2
A(τ) cos(kx) sin(πz), (37)

where
p2 = k2 + π2. (38)
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The value of A(τ) will be obtained at the third order stage by using Fredholm-
solvability condition. For the onset of stationary convection, the critical value of
thermal Rayleigh number (R0) and corresponding wave number (kc) are given
by

R0 =
p6

k2
+ RaS1 .LeS1 − RaS2 .LeS2 and kc =

π√
2
, (39)

which coincides with the result obtained by Shivkumara et al. [16] for couple
stress parameter (Λc = 0).

6.3 Second-Order Solution

To find the solution of second-order system, the coefficient of ε2 in Eq. (30) are
compared and the following system of equations are obtained:

⎡
⎢⎢⎢⎣

∇4 −R0
∂
∂x RaS1

∂
∂x RaS2

∂
∂x

− ∂
∂x ∇2 0 0

− ∂
∂x 0 1

LeS1
∇2 0

∂
∂x 0 0 1

LeS2
∇2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ψ2

T2

S12

S22

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R21

R22

R23

R24

⎤
⎥⎥⎦ , (40)

where,

R21 = 0, R22 =
πk2

2p2
A2(τ) sin(2πz), (41)

R23 =
πk2

2τ1p2
A2(τ) sin(2πz), (42)

R24 = − πk2

2τ2p2
A2(τ) sin(2πz). (43)

At second-order solution of Eq. (45) is obtained as

ψ2 = 0, (44)

T2 = − k2

8πp2
A2(τ) sin(2πz), (45)

S12 = − k2

8πτ2
1 p2

A2(τ) sin(2πz), (46)

S22 =
k2

8πτ2
2 p2

A2(τ) sin(2πz). (47)

The horizontally averaged Nusselt number and Sherwood numbers are given by

Nu(τ) =

[
k
2π

∫ 2π
k

0
(1 + T2 − z) dx

]
z=0[

k
2π

∫ 2π
k

0
(1 − z) dx

]
z=0

, (48)



Heat and Mass Transport Due to Third Diffusing Component 217

Sh1(τ) =

[
k
2π

∫ 2π
k

0
(1 + S12 − z) dx

]
z=0[

k
2π

∫ 2π
k

0
(1 − z) dx

]
z=0

, (49)

Sh2(τ) =

[
k
2π

∫ 2π
k

0
(S22 + z) dx

]
z=1[

k
2π

∫ 2π
k

0
z dx

]
z=1

, (50)

using the value of T2, S12 and S22 from the Eqs. (45)–(47) in the Eqs. (48)–(50),
we have the following expressions for Nusselt and Sherwood numbers:

Nu(τ) = 1 +
k2

4p2
A2(τ), (51)

Sh1(τ) = 1 +
k2.Le2S1

4p2
A2(τ), (52)

Sh2(τ) = 1 −
k2.Le2S2

4p2
A2(τ). (53)

6.4 Third-Order Solution

For third-order solution, we compare the coefficient of ε3 in Eq. (30) on both the
sides which gives following systems of equations:

⎡
⎢⎢⎢⎣

∇4 −R0
∂
∂x RaS1

∂
∂x RaS2

∂
∂x

− ∂
∂x ∇2 0 0

− ∂
∂x 0 1

LeS1
∇2 0

∂
∂x 0 0 1

LeS2
∇2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

ψ3

T3

S13

S23

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R31

R32

R33

R34

⎤
⎥⎥⎦ , (54)

where

R31 =
[

− p2

Pr

d

dτ
A(τ) + RaT2

k2

p2

]
sin kx sin(πz), (55)

R32 =
[

− k

p2
d

dτ
A(τ) +

k3A3(τ)
4p2

cos2πz − kδf ′(z , τ)A(τ)
]
cos kx sin(πz ), (56)

R33 =
[

− k.LeS1

p2
d

dτ
A(τ) +

k3.LeS1
2A3(τ)

4p2
cos(2πz)

]
cos kx sin(πz), (57)

R34 =
[k.LeS1

2p2
d

dτ
A(τ) − k3.LeS2

2A3(τ)
4p2

cos(2πz)
]
cos kx sin(πz), (58)

using the value of R31, R32, R33 and R34 and apply the solvability condition for
the existence of third-order solution, we have

∫ z=1

z=0

∫ x= 2π
k

x=0

[ψ̂1R31 + AT̂1R32 + BŜ11R33 + CŜ21R34]dxdz = 0. (59)
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After solving the above equation we get, A = 1, B = R0, C = −RaS1 , D = RaS2 ,
putting these values in Eq. (59), we obtain the Ginzburg-Landau equation as

[ p2

Pr
+

k2R0

p4
−RaS1k2.LeS1

2

p4
+

RaS2k2.LeS2
2

p4

] d

dτ
A(τ) =

k2

p2

[
R2−R0

δk2

p2
F (τ)

]
A(τ)

+
k4

8p4

[
−R0 + RaS1 .LeS1

3 − RaS2 .LeS2
3
]
A3(τ), (60)

where,

F (τ) =
∫ z=1

z=0

f ′(z , τ) sin2 (πz )dz . (61)

The above Ginzburg-Landau differential equation is solved by fourth order
Runge-Kutta method with initial condition a0 = A(0), where a0 is the amplitude
of the convection at initial stage.

7 Results and Discussion

The current study emphasis on the impact of modulated temperature and third
diffusing component on heat and mass transport in Newtonian liquid. The lin-
ear stability analysis is not sufficient to explore the nature of mass and heat
transports therefore, a weakly non-linear analysis has been used in terms of the
method of asymptotic expansion. By this method, Ginzburg-Landau equation
has been extracted to depict the rate of heat ans mass transports. Moreover, to
perform stability analysis, the amplitude of modulation and asymptotic expan-
sion parameter ε are considered to be small. In this section, we analyse the
effect of dimensionless parameters on heat transport (Nu) and mass transports
(Sh1) and (Sh2) graphically under the influence of temperature modulation. In
this investigation, the values of parameters are assumed as follows δ = 0.05,
LeS1 < LeS2 , RaS1 < RaS2 and taking the fixed values as ω = 1, LeS1 = 1.5,
LeS2 = 2.0, RaS1 = 10, RaS2 = 20, Pr = 0.71. Moreover, for the present
problem we consider the three different types of temperature modulation as

1) In Phase modulation(IPM) (φ = 0)
2) Out phase modulation(OPM) (φ = π), and
3) Modulation of only the lower boundary (MOLB) (φ = −i∞)

The effect of parameters in all the above three cases are shown in the Figs. 2, 3,
4, 5, 6, 7, 8, 9 and 10.

In Phase Modulation (IPM)
From Fig. 2(a), it can be easily observed that the rate of heat transport become
constant after a very short time of interval for each value of δ. Thus, the different
amplitudes of modulation do not affect the rate of heat transport. Figures 2(b)–
(c) depict the effect of Lewis numbers LeS1 and LeS2 on heat transport. Form
these figures, it is found that on increase the value of Lewis numbers the rate
of heat transport increases. Further, from the Figs. 2(d)–(e), it is found that
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Fig. 2. IPM: Nu versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 , (d)
RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 3. IPM: Sh1 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 , (d)
RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 4. IPM: Sh2 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 , (d)
RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 5. OPM: Nu versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 6. OPM: Sh1 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 7. OPM: Sh2 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 8. MOLB: Nu versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 9. MOLB: Sh1 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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Fig. 10. MOLB: Sh2 versus slow time for different values of (a) δ, (b) LeS1 , (c) LeS2 ,
(d) RaS1 , (e) RaS2 , (f) Pr, (g) ω
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the value ofNu increases as the value of solute Rayleigh numbers RaS1 and
RaS2 increase. The effect of Prandtl number Pr on Nu is displayed by Fig. 2(f).
This figure shows that the magnitude of heat transport remains same as the
value of Pr increases. Moreover, the heat transport taken place rapidly when we
increase the value of Prandtl number. Figure 2(f) shows the effect of frequency of
modulation on heat transport. Figure 2(f) reveals that frequency of modulation
has negligible effect on Nu. Figure 3(a)–(f) and Figs. 4(a)–(f) are plotted to
examine the behavior of mass transports for in phase modulation. We found a
similar behavior of parameters on rate of mass transports Sh1 and Sh2 as we
found for Nusselt number.

Out Phase Modulation (OPM)
Figure 5 is plotted to see the behavior of dimensionless parameters on rate of
heat transport (Nu) for the case of out phase modulation. Figure 5(a) shows
the effect of amplitude of modulation on Nu. This figure shows that the value
of Nu increases as we increase the value of δ. Thus, the amplitude of modula-
tion increases the heat transport. The effect of Lewis numbers LeS1 and LeS2

are displayed by Figs. 5(b)-(c). It is found that LeS1 increases the rate of heat
transport while an increase in the value of LeS2 decreases the magnitude of Nu.
It may happen because solute one is concentrated from lower boundary while
solute two concentrated from upper boundary. Figures 5(d)–(e) exhibit the effi-
cacy of solute Rayleigh numbers RaS1 and RaS2 on Nu. A similar trend has
been observed as we found for LeS1 and LeS2 respectively. The effect of Pr is
depicted by Fig. 5(f). From the figure, it is found that Pr has negligible effect on
heat transport. In Fig. 5(g), the effect of ω on Nu is displayed. From the figure, it
is found that increasing value of ω shorten the wavelength of oscillation. Figures
6 and 7 are plotted to depict the behavior of parameters on mass transports Sh1

and Sh2 in case of out phase modulation. From the Figs. 6 and 7, we found that
behavior of parameters on rate of mass transports are similar as we found their
effects on rate of heat transport.

Modulation of Lower Boundary(MOLB)
Figures 8, 9 and 10 are plotted to see the nature of parameters on rate of heat
and mass transports when lower boundary in modulated. Figure 8(a) depicts the
behavior of δ on Nu. It shows that an increment in the value of δ increases the
value of Nu. The effect of parameters LeS1 and LeS2 on rate of heat and mass
transports are same as we found for OPM. From the Figs. 8, 9 and 10, we found
that the effect of various parameters on heat and mass transports are similar as
we obtained for OPM.

8 Conclusion

The combined effect of third diffusing component and temperature modulation
on Rayleigh-Bénard convection is presented through this article. A usual Carte-
sian coordinate system extended infinitely in x− direction is chosen for the
study. The fluid layer is heated from below and salted from both the plates
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z = 0 and z = d. The asymptotic expansion method is applied to obtain the
Ginzburg-Landau equation. The triple diffusive convection plays significant role
in material science, food processing, oil reservoirs, biological system and many
others. The following are the finding of this study:

1. The Nusselt Number and Sherwood number are the directly proportional to
the of LeS1 and RaS1 means that LeS1 and RaS1 increase the rate of heat
and mass transports for all three cases.

2. The magnitude of Nusselt Number and Sherwood numbers decrease as the
value of LeS2 and RaS2 increases for all three cases.

3. Pr does not affect the magnitude of Nu, Sh1 and Sh2 but it plays a role
to start the convection. The convection takes place more rapidly when we
increase the value of Pr.

4. Frequency of modulation(ω) and amplitude of modulation (δ) both increase
the rate of heat and mass transports.

For all three cases IPM, OPM and MOLB, we can summarize the above results
as:

• Nu/δ=0.02 < Nu/δ=0.05 < Nu/δ=0.08

• Nu/LeS1=1.5 < Nu/LeS1=2 < Nu/LeS1=2.5

• Nu/LeS2=2 > Nu/LeS2=2.25 > Nu/LeS2=2.5

• Nu/RaS1=10 < Nu/RaS1=20 < Nu/RaS1=30

• Nu/RaS2=20 > Nu/RaS2=30 > Nu/RaS2=40

• Nu/ω=1 < Nu/ω=3 < Nu/ω=5 only for OPM and MOLB.
• NuIPM < NuMOLB < NuOPM except for LeS2 and RaS2

• Sh1/δ=0.02 < Sh1/δ=0.02 < Sh1/δ=0.02

• Sh1/LeS1=1.5 < Sh1/LeS1=2 < Sh1/LeS1=2.5

• Sh1/RaS1=10 > Sh1/RaS1=20 > Sh1/RaS1=30

• Sh1/RaS2=20 < Sh1/RaS2=30 < Sh1/RaS2=40

• Sh1/ω=1 < Sh1/ω=1 < Sh1/ω=1 only for OPM and MOLB.

• Sh1
IPM < Sh1

OPM < Sh1
MOLB

The similar effect are found for Sh2 except for the values of LeS2 .
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Abstract. This work analyze the linear and nonlinear fractional Klein-Gordon
equation using fractional homotopy perturbation transform method (FHPTM) via
Caputo-Fabrizio derivative. The proposed technique is used to solve fractional
model without any restrictive assumptions. The acquired results ratify that the
proposed method is acceptable and credible for approximate analytic treatment of
the extensive types of nonlinear physical processes.
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1 Introduction

Nonlinear fractional differential equation (NFDEs), which is one of the emerging area
that can be classified as an applied model, for example, physics, computational fluid
dynamic, chemical science, natural science, optics, plasma physics etc. The difficulty
to search exact solution for the NFDEs has led researchers to explore the approximate
and numerical methods to find the solution of these systems [1–7]. There are vari-
ous numerical methods like projective Riccati equation method [8], HPTM is used to
solve the NFDEs [9], Collocation method [10], reduced differential transform method
[11], Laplace transformmethod [12], q-homotopy analysis Sumudu transform technique
[13–16], Sine-Gordon expansion method [17, 18], Caputo-Fabrizio fractional derivative
[19, 20, 25], Homotopy perturbation technique [21–23], Atangana-Baleanu fractional
derivative [24], FVIM [26], and many others [27–54].

The aim of this paper is to analyze the nonlinear fractional KGE with CF derivative
by FHPTM. Let us assume the fractional KGE [27, 30] as:

htt(x, t) − hxx(x, t) + ah(x, t) = r(x, t), (1)
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having initial conditions

h(x, 0) = f (x), and ht(x, 0) = g(x). (2)

where a is real constant, h(x, t) is a complex valued function, t is a time variable and x is
a space variable. The fractional KGE appear in physics. The KGE is solved by modified
Adomian decomposition method by Yokchoo et al. (2020) [27] and HATM by Kumar
et al. (2014) [30].

The present manuscript is organized as follows: Some definitions are given in Sect. 2,
in Sect. 3 general description of FHPTM using CF derivative is discussed, in Sect. 4 test
example is presented and in Sect. 5, we conclude our work.

2 Basic Tools

In this section, we present some fundamental notion of fractional calculus and Laplace
transform, which are essential in the present framework.

Definition 2.1. The Caputo fractional derivative of order α ≥ 0 and n ∈ N ∪ {0} is
define as:

0
CFDα

t h(t) = 1

�(n − α)

∫ t

0
(t − ξ)(n−α−1) d

n

dtn
h(ξ)dξ, (3)

where n − 1 ≤ α < n.

Definition 2.2. Leth ∈ K1(a, b), b > a, then theCaputo-Fabrizio fractional differential
operator is defined as:

0
CFDα

t h(t) = M (α)

(1 − α)

∫ t

a
exp

[
−α(1 − ξ)

1 − α

]
h′(ξ)dξ, t ≥ 0, 0 < α < 1, (4)

where M (α) is a normalisation function which satisfies M (0) = M (1) = 1.
0
CFDα

t h(t) = 0, if h is a constant function.

Definition 2.3. The CF integral of order 0 < α < 1 is given by

0
CFIαt h(t) = 2(1 − α)

(2 − α)M (α)
u(t) + 2α

(2 − α)M (α)

∫ t

0
h(ξ)dξ, t ≥ 0, (5)

Definition 2.4. The Laplace transform (LT) for the CF fractional operator of order 0 <

α ≤ 1 for m ∈ N is given as:

L
[
CF
0 D(m+α)

t h(t)
]
(s) = 1

1 − α
L
[
h(m+1)(t)

]
L

[
exp

( −α

(1 − α)
t

)]

= s(m+1)L[h(t)] − smh(0) − s(m−1)h′(0) . . . . . . .. − h(m)(0)

s + α(1 − s)
.

(6)

In particular, we have

L
(
0
CFDα

t h(t)
)
(s) = sL(h(t)) − h(0)

s + α(1 − s)
, m = 0,

L
(
0
CFDα+1

t h(t)
)
(s) = s2h(f (t)) − sh(0) − h′(0)

s + α(1 − s)
, m = 1.
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3 General Description of FHPTM Using CF Operator

We have considered the following nonlinear partial differential equation in the CF sense
as:

0
CFD(m+α)

t h(x, t) + ρh(x, t) + σh(x, t) = k(x, t), n − 1 < α + m ≤ n, (7)

with initial conditions:

∂ jh(x.0)

∂tj
= fj(k), j = 0, 1, 2 . . . . . . ..,m − 1. (8)

Applying the LT on both Eq. (7) and Eq. (8), we get

L[h(x, t)] = η(x, s) −
(
s + α(1 − s)

s(m+1)

)
L[ρh(x, t) + σh(x, t)], (9)

where

η(x, s) = 1

s(m+1)

[
smf0(x) + sm−1f1(x) + . . . · · · + fm(x)

]
+ s + α(1 − s)

s(m+1)
t̃h(x, s).

(10)

Taking the inverse LT the Eq. (9) yields

h(x, t) = η(x, s) − L−1
[(

s + α(1 − s)

s(m+1)

)
L[ρh(x, t) + σh(x, t)]

]
. (11)

where η(x, s) arises from the source term.
Now, we apply the FHPTM to obtain the solution of Eq. (11) starting by the

hypothesis that h(x, t) expressed below is a solution of this equation.

h(x, t) =
∑∞

n=0
zmhm(x, t), (12)

where, hm(x, t) are known functions, the nonlinear term can be decomposed as:

σh(x, t) =
∑∞

n=0
zmHm(x, t). (13)

The polynomials Hm(x, t) [28] are

Hn(h0, h1, h2, . . . . . . , hm) = 1

m!
∂m

∂pm

[
σ
(∑∞

i=0
zihi

)]
z=0

,m = 0, 1, 2, . . . . (14)

Substituting Eq. (12) and Eq. (13) into (11), we get

∑∞
n=0

hm(x, t) = η(x, s) − zL−1
[(

s + α(1 − s)

s(m+1)

)
L
[
ρ

∑∞
m=0

zmhm(x, t), +σ
∑∞

m=0
zmHm

]]
, (15)
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comparing the coefficients of z0, z1, z2, and z3, we get

z0 : h0(x, t) = η(x, s),

z1 : h1(x, t) = −L−1
[(

s + α(1 − s)

s(m+1)

)
L[ρh0(x, t) + H0(u)]

]
,

z2 : h2(x, t) = −L−1
[(

s + α(1 − s)

s(m+1)

)
L[ρh1(x, t) + H1(u)]

]
,

z3 : h3(x, t) = −L−1
[(

s + α(1 − s)

s(m+1)

)
L[ρh2(x, t) + H2(u)]

]
,

zm+1 : hm+1(x, t) = −L−1
[(

s + α(1 − s)

s(m+1)

)
L
[
ρhm+1(x, t) + Hm+1(u)

]]
.

(16)

4 Applications

In this segment, four different examples are solved by FHPTM.

Example 4.1. Let us assume the linear fractional KGE as [27, 30]:

Dα
tth(x, t) − hxx(x, t) + h(x, t) = 0, (17)

having initial conditions

h(x, 0) = f (x), ht(x, 0) = g(x). (18)

Taking the LT on Eq. (17) both sides and from Eq. (18), we get

L[h(x, t)] = 1

s2
x +

(
s + α(1 − s)

s2

)
L[hxx + h]. (19)

Applying the inverse of the LT to Eq. (19), we get

h(x, t) = xt + L−1
[(

s + α(1 − s)

s2

)
L[hxx + h]

]
. (20)
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Now, we apply the HPTM, we have

∑∞
m=0

hn(x, t) = xt + zL−1
[(

s + α(1 − s)

s2

)
L
[∑∞

m=0
zmhm(x, t) −

∑∞
m=0

zmhm(x, t)
]]

, (21)

z0 : h0(x, t) = xt,

z1 : h1(x, t) = xt

[
t(1 − α) + t2 α

2

]
,

z2 : h2(x, t) = xt

[
t2

2

(
1 − 2 α + α2

)
− t3

3

(
−α + α2

)
+ t4 α

24

]
.

(22)

Example 4.2. Let us assume the linear fractional KGE as [27, 30]:

Dα
tth(x, t) − hxx(x, t) + h(x, t) = 2 sin x, (23)

having initial conditions

h(x, 0) = sin x, and ht(x, 0) = 1. (24)

Taking the LT on Eq. (22) both sides and from Eq. (23), we have

L[h(x, t)] = 1

s2
sin x + 1

s2
+ s + α(1 − s)

s2
2 sin x +

(
s + α(1 − s)

s2

)
L[hxx − h]. (25)

Applying inverse LT to Eq. (24), we get

h(x, t) = 2t sin x − 2tα sin x + t2α sin x + t + L−1
[(

s + α(1 − s)

s2

)
L[hxx − h]

]
.

(26)

Now, we apply the HPTM, we have
∑∞

m=0
hm(x, t) = 2t sin x − 2tα sin x + t2α sin x + t

+zL−1
[(

s + α(1 − s)

s2

)
L
[∑∞

n=0
znhm(x, t) −

∑∞
n=0

znhn(x, t)
]]

,
(27)

z0 : h0(x, t) = 2t sin x − 2tα sin x + t2α sin x + t,

z1 : h1(x, t) = t2

2

(
−1 + α − 4 sin x + 8α sin x − 4α2 sin x

)

+ t3

2

(
−α − 8α sin x + 8α2 sin x

)
− t2α2

6
sinx,

z2 : h2(x, t) = t3

6

(
−1 + 2α + α2 + 8 sin x − 24α sin x + 24α2 sin x − 8α3 sin x

)

+ t4

12

(
α − α2 + 12α sin x + 8α2 sin x

)

+ t5

120

(
α2 + 24α2 sin x − 24α3 sin x

)
− t6α3

90
sin x.

(28)
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Example 4.3. Let us assume the linear fractional KGE as [27, 30]:

Dα
tth(x, t) − hxx(x, t) + h2(x, t) = x2t2, (29)

having initial conditions

h(x, 0) = 0, and ht(x, 0) = x. (30)

Taking the LT on Eq. (29) both sides and from Eq. (30), we have

L[h(x, t)] = 1

s2
x + + s + α(1 − s)

s2

(
2x2

s3

)
+

(
s + α(1 − s)

s2

)
L
[
hxx − h2

]
. (31)

Applying the inverse of the LT to Eq. (31), we have

h(x, t) = xt + 2x2
[
1

6
t3(1 − α) + t4α

24

]
+ L−1

[(
s + α(1 − s)

s2

)
L
[
hxx − h2

]]
. (32)

Now, we apply the HPTM, we have

∑∞
m=0

hm(x, t) = xt + 2x2[1
6
t3(1 − α) + t4α

24
]

+zL−1
[(

s + α(1 − s)

s2

)
L
[∑∞

m=0
zmhm(x, t) −

∑∞
m=0

zmHm(x, t)
]]

.

(33)

where Hm(h) is the He’s polynomial used to decomposed the nonlinear term is defined
as:

H0(h) = h20,

H1(h) = ∂

∂z

[
(h0 + zh1)

2
]
z=0

= 2h0h1.
(34)

Comparing the coefficient of z in Eq. (33), we get

z0 : h0(x, t) = xt + x2t2

3
(1 − α) + t4αx2

12
,

z1 : h1(x, t) = t3

3

(
−x2 + x4α

)
− t4

12

(
−2 + 4α2x2 − 2α2

)

− t5

15

(
2x3 − α − 4x3α + α2 + 2x3α2

)
+ t6

180

(
−9x3α + α2 + 9x3α2

)

+ t7

252

(
−4x2 + 12x4α − x3α2 − 12x4α2 + 4x2α3

)

− t8

112

(
x4α − 2x4α2 + x4α3

)
+ t9

648

(
−x4α2 + x4α3

)
− x4α3t10

12960
,

z2 : h2(x, t) = t4

16

(
−1 + 2α + α2

)
+ t5

15

(
2x3 − α − 4x3α + α2 + 2x3α2

)

− t6

180

(
34x − 102xα − 9x3α + α2 + 102xα2 + 9x3α2 − 34xα3

)

− t7

1260

(
−88x4 + 112xα + 264x4α − 224xα2 − 5x3α2 − 264x4α2 + 112xα3 + 88x4α3

)
+ . . . .

(35)
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Example 4.4. Let us assume the linear fractional KGE as [27, 30]:

Dα
tth(x, t) − hxx(x, t) + h2(x, t) = 2x2 − 2t2 + x4t4, (36)

having initial conditions

h(x, 0) = 0, and ht(x, 0) = 0. (37)

Taking the LT on Eq. (36) both sides and from Eq. (37), we have

L[h(x, t)] = s + α(1 − s)

s2

(−4

s3
+ 2x2

s
+ 2x4

s3

)
+

(
s + α(1 − s)

s2

)
L
[
hxx − h2

]
.

(38)

Applying the inverse of the LT to Eq. (38), we have

h(x, t) = t2x2α − 2t
(
−x2 + x2α

)
+ t4

12

(
−2α + x4α

)
− t3

3

(
2 − x4 − 2α + x4α

)

+L−1
[(

s + α(1 − s)

s2

)
L
[
hxx − h2

]]
.

(39)

Now, we apply the HPTM, we have

∑∞
m=0

hm(x, t) = t2x2α − 2t
(
−x2 + x2α

)
+ t4

12

(
−2α + x4α

)
− t3

3

(
2 − x4 − 2α + x4α

)

+zL−1
[(

s + α(1 − s)

s2

)
L
[∑∞

m=0
zmhm(x, t) −

∑∞
m=0

zmHm(x, t)
]]

.

(40)

where Hm(h) is the He’s polynomial used to decomposed the nonlinear term is defined
as:

H0(h) = h20,

H1(h) = ∂

∂z

[
(h0 + zh1)

2
]
z=0

= 2h0h1.
(41)

Comparing the coefficient of z in Eq. (40), we get
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z0 : h0(x, t) = t2x2α − 2t
(
−x2 + x2α

)
+ t4

12

(
−2α + x4α

)

− t3

3

(
2 − x4 − 2α + x4α

)
,

z1 : h1(x, t) = 2t2
(
1 − 2α + α2

)
+ 4t3

3

(
−x4 + α + 3x4α − α2 − 3x4α2 + x4α3

)

− 2t5

15
(4x2 − 2x6 − 9x2α + 6x6α + 9x2α2 − 3x4α2 − 6x6α2 − 4x2α3

+3x4α3 + 2x6α3)

− t6

90

(
−38x2α + 19x6α + 73x2α2 − 38x6α2 + 3x4α3 + 19x6α3

)

+ t7

63

(
−4 + 4x4 − x8 + 12α − 12x4α + 3x8α − 12α2 + 6x2α2 + 12x4α2

−3x6α2 − 3x8α2 + 4α3 − . . .)

− t8

648
(12α − 12x4α + 3x8α − 24α2 + 24x4α2 − 6x8α2 + 12α3 − 2x2α3

−12x4α3 + x6α3 + 3x8α3)

+ t9

648

(
−4α2 + 4x4α2 − x8α2 + 4α3 − 4x4α3 + x8α3

)

− t10

12960

(
4α3 − 4x4α3 + x8α3

)
,

z2 : h2(x, t) = −6t4
(
x4 − 4x2α + 6x2α2 − 4x2α3 + x2α4

)
− 2t5

15
(−3 − 8x6 + 9α

+47x2α + 40x6α − 9α2 − 141x2α2 − 80x6α2 + 3α2 + 141x2α3 + 80x6α3 − . . . .)

+ t6

45

(
28 − 100x4 − 103α + 400x4α + 68x6α + 150α2 − 99x2α2 − 600x4α2 − 272x6α2 − 103α3 + . . .

)

− t7

315
(176x4 − 88x8 − 176α − 2778x4α + 440x8α + 519α2

−46x4α2 − 252x6α2 − 880x8α2 − . . .) + . . . .

(42)
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Fig. 1. FHPTM solution h(x,t) at α = 2 for Ex.4.1.

Fig. 2. FHPTM solution h(x,t) for different values of α = 1.50, 1.75, 2 for Ex.4.1.



Approximate Numerical Solution of the Nonlinear Klein-Gordon Equation 241

Fig. 3. FHPTM solution h(x,t) at α = 2 for Ex.4.2.

Fig. 4. FHPTM solution h(x,t) for distinct values of α = 1.50, 1.75, 2 for Ex.4.2.
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Fig. 5. FHPTM solution h(x,t) at α = 2 for Ex.4.3.

Fig. 6. FHPTM solution h(x,t) for distinct values of α = 1.50, 1.75, 2 for Ex.4.3.
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Fig. 7. FHPTM solution h(x,t) at α = 2 for Ex.4.4.

Fig. 8. FHPTM solution h(x,t) for distinct values of α = 1.50, 1.75, 2 for Ex.4.4.
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5 Conclusion

In this present work, the FHPTM is applied on the fractional linear and nonlinear KGE
via CF derivative (Figs. 1, 2, 3, 4, 5, 6, 7 and 8). We note that the approximate series
solutions acquired for the first three terms is very suitable and converges very strongly
with solutions to real physical problems. The above method is reliable, simple and
dominant in seeking approximate solution to different nonlinearKlein-Gordon fractional
order equation. Finally, we can draw the conclusion that the proposed FHPTM is highly
expressive and can be used to analyze broad class of the fractional order linear and
nonlinear models to perceive the behavior of the phenomena that emerged in linked
sciences and engineering areas.
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Abstract. Recently, Vyas et al. have developed an alternative way of proof for the
Gasper’s discrete analogue of an Erdélyi integral and inspired from this new type
of derivation they resolved the problem of finding the discrete extensions of all
the Erdélyi type integrals in the form of several new hypergeometric expansions
for certain q+1Fq. Motivated from the above-mentioned work, here in this paper,
our objective is to resolve the problem of finding the discrete extensions of the
Erdélyi type q-integrals in the form of several new q-hypergeometric expansions
for certain r+1�r . The motivation behind this work is the fact that the q-series
and basic q-polynomials, specifically the q-gamma and basic q- hypergeometric
functions and basic q-hypergeometric polynomials, are applicable particularly in
several diverse areas of science and engineering, viz. Statistics, number theory,
combinatorial analysis, nonlinear electric circuit theory, combinatorial generating
functions, quantum mechanics, mechanical engineering, lie theory, theory of heat
conduction, particle physics and cosmology.
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1 Introduction

Heine [7, 8] first developed the idea of basic analogue or q–analogue of the Gauss
hypergeometric function 2F1 as an infinite series.

The q–shifted factorials are described in the literature for arbitrary (real or complex)
q, a and |q| < 1 as:

(α; q)n =
{

1, n = 0
(1 − α)(1 − αq)(1 − αq2) . . . (1 − αqn−1), n ∈ N

. (1.1)
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Using this notation, we can write the Heine’s series analogous to the notation for
Gauss’ series as:

2�1(α, β ; γ ; q, z) ≡ 2�1

[
α, β;

γ ; q, z

]
=

∞∑
k=0

(α; q)k(β; q)kzk
(γ ; q)k(q; q)k . (1.2)

A generalized q-hypergeometric series [24, p. 347], see also [2] and [5] with ν

numerator parameters α1, α2, · · · , αv and u denominator parameters β1, β2, · · · , β u is
defined by

v�u(α1, · · · , αv; β1, · · · , βu; q, z) ≡

v�u

[
α1, · · · , αv;
β1, · · · , βu; q, z

]
=

∞∑
k=0

(α1; q)k · · · (αv; q)k zk
(β1; q)k · · · (βu; q)k (q; q)k

⎡
⎢⎢⎣(−1)kq

(
k
2

)⎤
⎥⎥⎦
1+u−v

(1.3)

where

(
k
2

)
= k(k − 1)/2 .

For the convergence conditions of the above hypergeometric series, please see [5].
A complete list of important properties and formulas for q-shifted factorial, to be used
frequently while deriving the q-hypergeometric expansion of Sect. 3, can be found in
[5, Appendix 1, pp. 351–352].

The Euler’s integral representation of Gauss hypergeometric function is given in [19,
p. 47, Theorem 16] and its Thomae’s q-analogue is mentioned in [5].

In 1939, Erdélyi [1] used fractional calculus method to develop three integrals [4,
Eqs. (1.3)–(1.5)], known as “Erdélyi integrals” in the literature, which extend Euler’s
integral for 2F1(z) [19, p. 47, Theorem 16] and Bateman’s integral [4, Eq. (1.2)]. Gasper
[3] derived the discrete extension of one of the Erdélyi integrals [4, Eq. (1.6)] as stated
below [6, Eq. (26)]:

3F2

(
α, β, −n;

γ, δ; 1

)
=

n∑
k=0

(
n
k

)
(μ)k(λ + δ − α − β)k(γ − μ)n−k

(γ )n(δ)k

× 3F2

(
λ − α, λ − β, −k;
μ, λ + δ − α − β; 1

)
3F2

(
α + β − λ, λ − μ, k − n;

γ − μ, δ + k; 1

)
. (1.4)

Gasper [3] proved (1.4) by following the steps analogous to Erdélyi’s fractional
calculus proof of [4, Eq. (1.3)].

Later, Gasper [4] motivated from the proof of the above-mentioned discrete ana-
logue, developed three expansions identities for the terminating balanced 4�3 series and
obtained the q-analogues of Erdélyi’s integrals [4, Eqs. (1.8), (1.9), (1.13) and (1.14)]
and corresponding discrete analogues and discrete q-extensions, see [3, Eqs. (1.6), (1.7),
(2.9), (3.4), (1.11) and (1.12)].
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The discrete extensions of the q-analogue of Erdélyi’s integrals [4, Eq. (1.8)] or
q-analogue of (1.4), developed by [4] is as given below:

3�2

(
α, β, q−n ;

γ, δ ; q, q

)
=

n∑
k=0

(
n
k

)
q

(μ; q)k
(

λδ
αβ

; q
)
k

(
γ
μ
; q

)
n−k

μn
(

αβ
λμ

)k
(γ ; q)n(δ; q)k

× 3�2

(
λ
α
, λ

β
, q−k;

μ, λδ
αβ

; q, q

)
3�2

(
αβ
λ

, λ
μ
, qk−n;

γ
μ
, δqk; q, q

)
. (1.5)

The two expansions [4, Eqs. (2.8) and (2.9)] were further applied to obtain expan-
sion formulas for the orthogonal polynomials like Racah polynomials, Askey-Wilson
polynomials and their q-analogues. The application of q-Erdélyi integral [4, Eq. (1.12)]
in driving the q-analogue of a Kampé de Fériet summation; conjectured by Joris Ven der
Jeugt in his work on the evaluation of the 9 − j recoupling coefficients appearing in the
quantum theory of angular momentum, are also discussed in [4].

The recent research papers [22, 23] and many others, cited therein, are examples
of ongoing trend and interest in the field of q-analysis and q-calculus. Srivastava [22]
presents an excellent set of discussion and comments on the study of post-quantum
or (p, q)-version of the classical q-analysis.. In a review article by Srivastava [23], the
overview and recent developments in the theory of several extensively studied higher
transcendental functions along with their applications in widely investigated areas of
various sciences have been nicely presented. For some recent developments in the field
of special functions, we refer to the following research paper [14, 15, 20, 21, 27] and
[28]. Further, the inspiration to work on q-hypergeometric functions and basic q- hyper-
geometric polynomials, is because of their vast applicability in several diverse areas of
science and engineering (see, for details, [29, p. 235]). The above-mentioned analysis
and observations motivate us to study q-discrete expansions of Erdélyi’s type integrals
investigated by [26].

2 Motivation and Objective

Several researchers, for example, [6, 17, 18, 26] and [30] have studied and investigated the
expansions which involve integrals and represent the hypergeometric functions because
of the several applications of such integrals (see, for example, [4, 5]). In this context,
Joshi and Vyas [9] gave an alternative way to prove Erdélyi’s integrals by utilizing the
classical series rearrangement techniques [19, 25] and some classical hypergeometric
summation theorems. This kind of proof motivated them to establish seven Erdélyi type
integrals including a generalization and unification of Erdélyi integrals [9, Eqs. (3.1) to
(3.7) and Eq. (4.1)] for certain q+1Fq(z). Taking this work forward, Joshi and Vyas [11]
investigated two different classes of the q-integrals in the form of basic q-extensions of
all Erdélyi type integrals due to [9], along with various special cases and applications.
Further, following [4], Joshi and Vyas [12] obtained two q-hypergeometric expansions
for 12�11(q) and r�s(q). As applications, these expansion formulaswere set to give some
10�9(q) expansions applicable to the top class 10�9(q) biorthogonal rational functions
which on specialization lead us to the gasper’s 4�3(q) expansion formulas.
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Recently, Vyas et al. [26] investigated the discrete analogues of the Erdélyi type
integrals due to [9] andLuo andRaina [16], along the lines of a triple seriesmanipulation-
based derivation of the Erdélyi’s integrals due to [9]. A careful investigation of the
papers [10–13, 16] and [26] depicts that classical series rearrangement technique is a
versatile technique which helps in deriving the higher order hypergeometric identities
and q-hypergeometric expansions which are not available in the literature.

Motivated from the above-mentioned work and an analysis of the method of proof
discussed in [26], here, in this research paper we establish new q-hypergeometric expan-
sions as q-discrete analogues of the Erdélyi type integrals. Inline to [11], we obtain two
types of q-analogues of Erdélyi type of integrals. It may be noted from [11] that all Erdé-
lyi type of integrals possesses first type of q-analogues (having t−1 in the numerator),
while some possess the second type of q-analogue (do not have t−1 in the numerator). To
derive these q-expansion formulas, we express the right side of each of the q-expansion
formulas as a triple series and then apply the double series manipulation lemma [21,
p. 57, Lemma 10] or [24, p. 100, Eq. (2)]:

∞∑
n2=0

n2∑
n1=0

	(n1, n2) =
∞∑

n2=0

∞∑
n1=0

	(n1, n2 + n1), (2.1)

and 3�2 transformation formula [5, p. 212, Eq. (III.12)]

3�2

[−n, b, c
d , e

; q, q
]

=
( e
c , q

)
n

(e, q)n
cn3�2

[
q−n, c, d

b
d , c

e q
1−n ; q, qb

e

]
. (2.2)

At the end, the application of triple series manipulation lemma [9, p. 128]:

∞∑
n3=0

∞∑
n2=0

∞∑
n1=0

	(n3, n2, n1) =
∞∑

n3=0

n3∑
n2=0

n3−n2∑
n1=0

	(n3 − n2 − n1, n2, n1), (2.3)

and use of two appropriate q-classical summation theorems to solve the involved inner
series, lead us to the desired discrete q-extensions.

In Sect. 3, we state all of the investigated new q-hypergeometric expansions. All the
q-hypergeometric expansions stated in Sect. 3 include terminating series only, hence the
question of convergence doesn’t arise because terminating series are always convergent.
Further, to convert the results of Sect. 3 into their corresponding Erdélyi type q-integrals,
the procedure mentioned in [26, p. 2 and p. 5 (Remark 2)] can be applied in a straight
forward manner. In Sects. 4 and 5, we give the brief outline of the derivations of the
new q-hypergeometric expansions, to illustrate the difference between the derivations
of the discrete extensions or the new q-hypergeometric expansions corresponding to
the Erdélyi type q-integrals with and without the presence t−1 as one of the numerator
parameters in one of the involved hypergeometric functions.

3 Discrete Extensions of Erdélyi Type q-Integrals or New
q-Hypergeometric Expansions

The results from (3.1) to (3.11) provide thebasic (orq-) expansion formulas or the discrete
analogue of the Erdélyi type q-integrals given [11, Eqs. (1.2) to (1.12)], respectively. The
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usual condition for the convergence of q-hypergeometric series that is the denominator
parameters are non negative integers. This condition is applied to all the following
q-hypergeometric expansions:

4�3

[
−N , v, ξ, λ;

ε, γ, δ; q; q
]
. =

(
qγ−μ; q)N
(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qμ; q)k (qε−v−ξ+δ; q)k
(qε; q)k (q1+μ−γ−N ; q)k (q; q)k

(q1+v+ξ−δ−γ )kqμN

3�2

[
vξ
δ

, λ
μ
, q−N+k ;

γ
μ
, qε+k; q; q

]
4�3

[
δ
ξ
, δ

v , λ, q−k ;
εδ
vξ , μ, δ; q; q

]
(3.1)

4�3

[
−N , v, ξ, λ;

ε, γ, δ; q; qμ

λ

]
=

(
qγ−μ; q)N
(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qμ; q)k (qε−v−ξ+δ; q)kqμN

(qε; q)k (q1+μ−γ−N ; q)k (q; q)k
(q1+v+ξ−δ−γ )k

3�2

[
λ
μ
,
vξ
δ

, q−N+k ;
γ
μ
, qε+k ; q; q

λ

]
4�3

[
δ
ξ
, δ

v , λ, q−k ;
εδ
vξ , μ, δ; q; qμ

λ

]
(3.2)

6�5

[
−N , qα,

√
γ
β

, −
√

γ
β

,
√

qγ
β

, −
√

qγ
β

;
ε,

√
γ − √

γ ,
√
qγ , −√

qγ ;
q,

qβ

α

]
=

(
qα+β ; q

)
N

(qγ ; q)N

∞∑
k=0

(q−N ; q)k (q γ−α−β ; q)k (qε−β ; q)k
(qε; q)k (q1−α−β−N ; q)k (q; q)k

(q 1+β−γ )k3�2

[
α
β

,
γ
β

, q−k ;
γ
αβ

, ε
β

; q,
q

α

]

8�7

[
α,

√
β,−√

β,
√

βq,−√
βq, qβ

εm ,
αq−N+k

β
, q−N+k

√
αβ,−√

αβ,
√

αβq,−√
αβq, qβ

εk , γ qN , qε+k
; q, q

]
(3.3)

4�3

[ −N , α , β,
qγ
λμ ;

ε ,
qγ
λ

,
qγ
μ ; q,

qμ

α

]
= (q 1+γ−β ; q)N

(q 1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (q ε−μ; q)kqβN

(qε; q)k (qβ−γ−N ; q)k (q; q)k
(qμ−γ )k

4�3

⎡
⎣ α

μ , βqk , εqk
μ , q−N+k ;

εqk , ε
μ ,

βq−N+k

γ ;
q,

qμ

αγ

⎤
⎦

8�8

⎡
⎣ γ, q

√
γ ,−q

√
γ , μ, λ, α,

qγ qN

βqk
, q−k ;

√
γ ,−√

γ ,
qγ
β

,
qγ
λ

,
qγ
μ

,
μq1−k

ε
, γ q1−k , 0;

q,
qλ

εαγ

⎤
⎦ (3.4)

4�3

[ −N , α, β,
qγ
λμ ;

ε,
qγ
λ ,

qγ
μ ; q, q

]
= (q1+γ−β ; q)N

(q1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)kqβN

(qε; q)k (qβ−γ−N ; q)k (q; q)k
(qμ−γ )k

4�3

⎡
⎣ α

μ , q−N+k , βqk , εqk
μ ;

ε
μ , qε+k ,

βqk

γ qN
;

q,
q

γ

⎤
⎦

8�8

⎡
⎣ γ, q

√
γ ,−q

√
γ , μ, λ, α,

γ q1−k+N

β
, q−k ;

√
γ ,−√

γ ,
qγ
μ

,
qγ
λ

,
qγ
β

, γ q1−N ,
μq1−k

ε
, 0; q,

qλ

εμ

⎤
⎦ (3.5)
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4�3

[ −N , α, β,
qγ
λμ ;

ε,
qγ
λ ,

qγ
μ ; q, q

]
= (q1+γ−β ; q)N

(q1+γ ; q)N
∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)k
(qε; q)k (qβ−γ−N ; q)k (q; q)k

(qμ−γ )kqβN

3�2

[
α
μ
,

εqk

μ
, q−N+k ;
ε
μ
, εqk ; q, q

]
9�7

[
α,μ, γ, λ, q−k , βqk , q

√
γ ,−q

√
γ , 0;

qγ
μ

,
qγ
λ

,
qγ
β

,
qγ
N , qε+k ,

√
γ ,−√

γ ; q,
q1+Nγ

λμβ

]

(3.6)

7�6

⎡
⎣ −N , α, β,

√
γ
μ ,−

√
γ
μ ,

√
qγ
μ , −

√
qγ
μ ;

ε,
γ
μ ,

√
γ , −√

γ ,
√
qγ , −√

qγ ; q, q

⎤
⎦ = (qγ−β ; q)N

(qγ ; q)N

∞∑
k=0

(q−N ; q)k (qβ ; q)k (qε−μ; q)kqβN

(qε; q)k (q1+β−γ−N ; q)k (q; q)k
(q1+μ−γ )k

4�3

[
α, μ, βqk , q−N+k ;

γ
β
, γN , qε+k ; q,

γ q1+N

αβ

]
2�1

[
α
μ
, q−k ;

ε
μ
; q,

q

α

]
(3.7)

5�4

[ −N , α, β, γ,
αqμ
βγ ;

ε,
αq
β ,

αq
γ ,

βγ
μ ; q,

qλ

α

]
= (q1+α−μ−λ; q)N

(q1+α−μ; q)N
∞∑
k=0

(q−N ; q)k (qλ; q)k (qε−μ; q)k
(qε; q)k (qμ−α+λ−N ; q)k (q; q)k

(q2μ−α)k

4�3

⎡
⎣ μ, α

λ
,

αq1−k+N

μλ
, q−k ;

qα
λμ ,

qμ
ε ,

q1−k

λ

q,
q2−N

αε

⎤
⎦

12�11

⎡
⎣ α

μ
, q

√
α
μ
,−q

√
α
μ
,

β
μ
,

γ
μ
,
qα
βγ

,
√

α,−√
α,√

α
μ
,−

√
α
μ
,
qα
β

,
αβ
γ

,
βγ
μ

,
√

γ ,−√
γ ,

q
√

α,−q
√

α,
εqk

μ
, q−N+k ;

q
√

λ,−q
√

λ,
q1+Nα

μ
, qε+k ; q,

q1+Nγμ

α

] (3.8)

5�4

[ −N , α, β, γ,
αq
βγ ;

ε,
αq
β ,

αq
γ ,

βγ
μ ; q, q

]
= (q1+α−μ−λ; q)N

(q1+α−λ; q)N
∞∑
k=0

(q−N ; q)k (qλ; q)k (qε−μ; q)k
(qε; q)k (qμ−α+λ−N ; q)k (q; q)k

(q2μ−α)k

4�3

⎡
⎣ μ, α

λ
,

αq1−k+N

μλ
, q−k ;

qα
λμ ,

q1−k

λ ,
μq1−k

ε ;
q,

q2−N

ε

⎤
⎦

13�12

⎡
⎣ α

β
, q

√
α
μ
,−q

√
α
μ
,

β
μ
,

γ
μ
,
qα
βγ

,
√

α,−√
α,√

α
μ
,−

√
α
μ
,
qα
β

,
qα
γ

,
βγ
μ

,
√

λ,−√
λ,

q
√

α,−q
√

α,
εqk

μ
, λqk , q−N+k ;
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4 Proof of q-Hypergeometric Expansion (3.1) Corresponding
to Erdélyi Type Integrals with t−1 as One of the Numerator
Parameters

Denoting the right hand side of (3.1) by � and replacing the hypergeometric series by
their series form and then using the double series manipulation (2.1), we get

� =
(

γ
μ
; q

)
N
qμN

(γ ; q)N
∞∑
k=0

∞∑
n=0

k∑
m=0

(
q−N ; q)k+m+n(μ; q)k+m

(
εδ
νξ

; q
)
k+m

(
qνξ
δγ

)k+m

(ε : q)k+m+n

(
μq1−N

γ
; q

)
k+m

(q; q)k

×
(

νξ
δ

; q
)
n

(
λ
μ
; q

)
n

(
δ
ξ
; q

)
m

(
δ
ν
; q)m(λ; q)m(−q)mqnq

⎛
⎝m
2

⎞
⎠−m2−mk

(
γ
μ
; q

)
n

(
εδ
γ ξ

; q
)
m
(μ; q)m(δ; q)m(q; q)m(q; q)n

. (4.1)

Taking inner series in above equation, we obtain the following equation:
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Now, applying the formula (2.2) (reversed) on the 3�2 of above equation, we can
write
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Next, applying the triple series manipulation (2.3) on the above equation and then
taking an inner series in n gives:
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Now, applying Chu-Vandermonde summation theorem [5, p. 354, Eq. (II.6)] and
then taking an inner series in m leads us to the following equation:
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. (4.5)

The application of q-Pfaff-Saalschütz summation theorem [5, p. 355, Eq. (II.12)]
leads to the left side of (3.1).

5 Proof of the New q-hypergeometric Expansion (3.2)
Corresponding to Erdélyi Type Integrals Without t−1 as One
of the Numerator Parameters

Denoting the right hand side of (3.2) by � and replacing the hypergeometric series by
their series form and then using the double series manipulation (2.1), we get
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(
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Taking inner series in above equation, we obtain the following equation:
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Now, applying the formula (2.2) (reversed) on the 3�2 of above equation, we can
obtain
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. (5.3)

Next, applying the triple series manipulation (2.3) on Eq. (5.3) and then taking an
inner series in n gives:
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Now, applying Chu-Vandermonde summation theorem [5, p. 354, Eq. (II.7)] and
then taking an inner series in m, we can write
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k=0

(
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νξ
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; q

]
. (5.5)

The application of q-Pfaff-Saalschütz summation theorem [5, p. 355, Eq. (II.12)]
leads to the left side of (3.1).
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6 Conclusion

In conclusion, this paper shows the superiority of the series manipulation method dis-
cussed by Vyas et al. [26], in deriving the discrete analogues of the Erdélyi type q-
integrals in the form of the new q-hypergeometric expansions. More significantly, the
main results, Eqs. (3.1) to (3.11), provide the generalizations and a set of different q-
analogues (in some cases) and thus lead to many of the ordinary hypergeometric expan-
sions derived in [26], on setting q → 1. The Eqs. (3.1) and (3.2) provide two q-analogues
of the result [26, Theorem2, p.5], theEq. (3.3) is aq-analogue of [26, Theorem5, p. 6], the
Eqs. (3.4) to (3.6) are q-analogues of [26, Theorem 6, p. 6], the Eq. (3.7) is a q-analogue
of [26, Theorem 7, p. 6], the Eqs. (3.8) to (3.9) are q-analogues of [26, Theorem 8, p. 7],
the Eq. (3.10) is a q-analogue of [26, Theorem 9, p. 7] and the Eq. (3.11) is a q-analogue
of [26, Theorem 10, p. 8]. However, the q-analogues of [26, Theorems 1, 3 and 4, p. 5]
can’t be developed until the required q-analogue of the extended Saalschütz theorem
(see [26, Eq. (17), p. 3]) is determined, and hence it remains an open problem. Some
future directions for further research for the q-hypergeometric expansions obtained in
this paper may be to discover the further generalizations of the expansions along the line
of [4, 12] and in addition, these results may also be specialized along the line of [11] to
produce known and new q-hypergeometric transformations, which will form the subject
matter of our subsequent paper in the foreseeable future. Moreover, in [22], the (p; q)-
calculus was exposed to be a rather trivial and inconsequential variation of the classical
q-calculus, the additional parameter p being redundant. This observation by Srivastava
[22] will indeed apply also to any future attempt to produce the rather straightforward
(p; q)-variants of the results of this paper.
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Abstract. This research aims to analyse the complex blood flow pat-
tern in the 2D model of the human carotid artery. The steady blood
flow in a 2D bifurcation model of the human carotid artery is described
through the computer software ANSYS 19.1 and numerically simulated
using the finite volume method on a staggered grid using the control
volume method. This structural model in two dimensions is obtained to
investigate the behaviour of hemodynamic parameters like blood velocity,
considering blood as Newtonian, and incompressible. The incompressible
2D Navier-Stokes equation is used as the governing equation to deter-
mine the blood flow pattern. The blood flow in this model is examined
by separating the flow analysis into two distinct patterns. Because of the
regular design, laminar flow was obtained before the artery bifurcation.
However, turbulent flow or reverse flow was achieved following the artery
bifurcation because an irregular flow pattern is generated by a change in
shape.

Keywords: 2D modeling · ANSYS 19.1 · Finite volume method ·
Navier-Stokes equation

1 Introduction

Cardiovascular diseases are undergoing a rapid increase in the death of humans
all over the world, according to the WHO updated risk chart, an estimated 17.9
million people died from CVDs (due to some risk factors such as diabetes, hyper-
tension, blockage, thinning, and dilations of the blood cells) [1]. According to
hematology, the blood vessels, including arteries, capillaries, and arterioles, exe-
cute some biotic functions such as supplying oxygen, waste products, and some
essential nutrients to all the parts of the body and removing catabolic products
[2–4]. Hence, the research works in the numerical simulation of blood rheology
growing continuously for diagnosis, prevention, and the cure of cardiovascular
diseases with the increase of computational power, for deeper study of the com-
plexity of hemodynamic of blood and geometric parameters effect of CVDs [5–9].
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The motivation behind this is to exert more and more effort in the development
of these physiological methods and blood flow simulations because a compu-
tational tool could enable the development of alternative methods for clinical
doctors to obtain some detection of cardiovascular disease in a non-invasive way.

The function of the carotid artery is to supply blood as well as other nutrients
to the brain, face, and neck of the human body. The carotid arteries are located
on both sides of the neck. Internal carotid artery (ICA) and external carotid
artery (ECA) are the two divisions that may be used to categorize carotid artery
[10–13]. Figure 1 shows that the internal carotid artery is larger in diameter than
the external carotid artery. The internal carotid artery supplies blood to the
brain, whereas the external carotid artery supplies blood to the face and neck.

When predicting the flow pattern within an artery and monitoring the onset
and evolution of plaque on the arterial wall, a computational fluid dynamics
(CFD) model is a useful tool [14–16]. The application of CFD to 2-D artery
geometries with plaque forms offers a priceless simulation of complicated geom-
etry. The results produced by computational approaches are more accurate and
cost-effective, and they are simple to mimic. In this current study, we use the
methods that necessitated the foundations for the development of convoluted
mathematics and physics. Consequently, the cardiovascular system modelling is
limited to the parameters and boundary conditions that are available. So the
computationally finite volume method for this system is prohibitive, and hence
we used the coupled parameters to compromise. Therefore, this research simpli-
fied the area of interest for the 2D cardiovascular system model. Although only
a few researchers have conducted a comprehensive study of hemodynamics on
the 2D cardiovascular system model, [17–19].

In this study, we analyse the velocity of fluid in the constructed carotid artery
by using the Navier-Stokes equation (NSE) as the governing equation of the
motion of the fluid. The Navier-Stokes equation is a sequence of continuity and
momentum equations that describe the flow in the large vascular domain and is
coupled with the structural equation for simulation with the multi-dimensional
structure. The objective of this research is to develop a simple simulation imple-
mentation that realistically describes the hemodynamics 2D constructed geom-
etry of the vascular system using the axisymmetric Navier-Stokes equation.

2 Material and Methods

2.1 Elastic Model

Blood is a suspension of cells-red blood cells, white blood cells, platelets, and
plasma-in a liquid solution, which consists of about 7% of protein and 90% of
water. The elastic properties of the red blood cell membrane are responsible
for the viscoelastic fluid behaviour of blood. The nature of the flow of blood
determines whether the blood is Newtonian or non-Newtonian [20,21]. Usually,
the flow of blood is considered Newtonian in the large blood vessels. In this
study, Blood is considered as the Newtonian fluid with the blood properties
density and dynamic viscosity of 1060 kg/m3 and 0.04 Pa.s respectively. [22].
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This section of the study dealt with the spatial discretization of the Navier-
Stokes equations for incompressible Newtonian fluids as the governing equations.
The two-dimensional Navier-Stokes equations for incompressible Newtonian flu-
ids consist of the momentum equation and the continuity equation with Ω as
the reference domain and the τ as the boundary of the domain. The Cartesian
form of the 2D Navier-stokes equation is given as follows [1,11,22,23];
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And the continuity equation,

∂u(x, t)
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∂y
= 0 (3)

Where ρ is the density of fluid, u and v are velocity components along the
x-axis and y-axis respectively with the pressure p and µ is the dynamic viscosity
[24]. Taking into account the fluid velocity and pressure, Eq. (1) and (2) 2D the
Navier-Stokes equations are discretized with the explicit method, as stated by
the following equation:
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)
(4)
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�y2

)
(5)

2.2 Spatial Discretization

On the staggered grid space, the spatial discretization is performed with the
velocity u on the horizontal cell interfaces, velocity v placed on the vertical cell
interfaces, and the pressure p in the cell midpoint. For the staggered grid taking,

�x = �y = h (6)

and
μ

ρ
= γ, and

p

ρ
= P (7)
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Using the Eq. (6), and (7), discrete form of Navier-stokes Eq. (4), and (5) are
generalized to,

un+1
i,j − un

i,j

�t
= − 1

h
((u2)ni,j − (u2)ni−1,j + (uv)ni,j − (uv)ni,j−1) − 1
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i,j) (8)
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or,
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h
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where,
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In vector notation to the velocity correction equation read as,
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where,
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The spatial discretize form of continuity Eq. (3) as,

un
i,j − un

i−1,j

�x
+
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i,j−1

�y
= 0 (13)

As grid space is, �x = �y = h

un
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i−1,j + vn
i,j − vn

i,j−1 (14)

Write Eq. (14) as one vector equation for constraint on velocity,
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�hu
n+1
i,j = 0 (15)

Split the Eq. (12) with adding the temporary velocity into,

U t
i,j − Un

i,j

�t
= −Gn

i,j + Fn
i,j (16)

U t
i,j = Un

i,j + �t(−Gn
i,j + Fn

i,j) (17)

Evaluating Un+1
i,j from Eq. (17) with the advection and the diffusion terms.

Un+1
i,j − U t

i,j

�t
= − �h Pi,j (18)

On applying the divergence on the both side of Eq. (18),its becomes

�h Un+1
i,j = �hU t

i,j − �t �h . �h Pi,j (19)

From Eq. (15) the right-hand side of (19) become vanish and the pressure
needed to enforce the velocity becomes incompressible. Hence, it is obtained by
solving the linear system.

�2
h Pi,j =

1
�h

�h U t
i,j (20)

Update the velocity field by adding the pressure

Un+1
i,j = U t

i,j − �t �h .Pi,j (21)

2.3 Boundary Conditions for the Tangential Velocity

Wall velocity is,
Uw = 0 (22)

i.e. have no slip condition. Then, interpolate the Uw velocity linearly by adding
the ghost ui,2,

ui,2 + uj,1

2
= Uw (23)

ui,2 = 2Uw − uj,1 (24)

If Uw = 0, then Eq. (24) becomes,

ui,1 = −ui,2 (25)

This represents the reflection technique.
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2.4 Solve for the Pressure

Here, the pressure at the boundary of the domain is obtained through solving the
continuity Eq. (14) and Eq. (21), then using the presented method, rearranging
for pressure, obtain a numerical scheme for boundary condition exactly in the
form presented in [23].

Pi+1,j+Pi−1,j+Pi,j+1+Pi,j−1−4Pi,j =
h

�x
(ut

i+1,j−ut
i−1,j+vt

i,j+1−vt
i,j−1) (26)

For the pressure at the boundary, the velocity vt
i,j−1 become vanish at the

boundary of the domain, therefore Eq. (26)

Pi+1,j + Pi−1,j + Pi,j+1 + Pi,j−1 − 3Pi,j =
h

�x
(ut

i+1,j − ut
i−1,j + vt

i,j+1) (27)

where, for the boundary nodes except corner (Table 1),
i = 2; i = nx; and j = 2; i = ny;

Table 1. Array dimension

Field quantity Interior nodes Boundary nodes

Velocity U (nx− 2) × (ny) (nx) × (ny + 1)

Velocity V (nx) × (ny − 2) (nx + 1) × (ny)

Pressure P (nx− 1) × (ny − 1) (nx + 1) × (ny + 1)

3 Result and Discussions

In this section, we discussed the numerical results of the regular and irregular
flow patterns of fluid in a constructed carotid artery and bifurcation area. Fluid
was incompressible, Newtonian, laminar flow having the blood properties density
and dynamic viscosity 1060 kg/m3 and 0.04 Pa. s respectively. An analysis of
the result, the time impedance was considered t = 0. At the inlet, the initial
time-averaged reference velocity, v0, was assumed to be 0.3m/s. At the carotid
bifurcation area, where there is a narrowing of the artery, the fluid velocities
were found to be relatively high. In the tubular area before the bifurcation, the
flow pattern of blood is regular, while after the bifurcation, with the change in
dimensions near the sinus from dilation, the blood flow pattern is irregular.

The anatomical pathologies of the carotid artery shown in Fig. 1 are highly
receptive due to bifurcation, high turbulence, or reverse flow. Because anatom-
ical pathologies can affect blood flow, they contribute to the development of
atherosclerosis. The spline and center-line geometry descriptions of the standard
carotid artery are shown in Table 2 and is created using the outline listed in the
literature [5,6,24,25].
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The meshing of the carotid artery is shown in Fig. 3 and the number of nodes
and elements is given in Table 2, the size of elements being 0.2m/s (Fig. 2),

Table 2. Meshing details

Number of node 24431

Number of element 23809

Size of element 0.2 m/s

The blood velocity was found to be lower in the enlargement area while
reaching a maximum velocity field of 0.4556m/s in the narrowing area. The flow
pattern of continuity was obtained alternately between the internal and external
carotid artery models. The wall and boundaries where the velocity was found to
be at its maximum indicate the deformation of the wall of the reference geometry
(Figs. 4 and 5).

The flow pattern of the blood is regular in the tubular areas while irregular
in areas with changes in dimensions, as in the sinus, i.e., turbulent flow. More
recirculation of blood flow is found in the sinus area (Table 3).

Fig. 1. Two-dimensional idealized geometric specification of Carotid artery: CAA, ICA
and ECA
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Fig. 2. Two-dimensional idealized geometric specification of Carotid artery: CAA, ICA
and ECA

Fig. 3. Streamline simulated blood velocity field around the bifurcation of carotid
artery at different time steps at t = 0.2 and t = 0.4
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Fig. 4. Contour velocity field around the bifurcation of carotid artery at different time
steps at t = 0.2 and t = 0.4

Arteries with maximum pressures of 20.88 Pa.s are more widely recirculated
in the region. At the dividing wall of an artery, pressure is higher than at the
non-dividing wall, and at the point of bifurcation, pressure is at its maximum,
due to the force exerted by the blood on the artery.
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Fig. 5. Pressure Contour around the bifurcation of carotid artery at different time
steps at t = 0.2 and t = 0.4

Table 3. Geometry specification of vessel diameter and the location

GEOMETRY SPECIFICATION DIMENSION (MM)

Length of the CCA 41

Diameter of CCA 8

Length of ICA 36

Diameter of ICA 5.6

Diameter of ECA 4.6

Length of ECA 30

Diameter of ICB 8.9

Wall thickness 0.2

The regular and irregular blood flow patterns were analysed in the rectangu-
lar tube and in vasodilation, respectively, for incompressible fluid in the subparts
of the carotid artery. This regular and irregular have been done to determine
the behaviour of blood flow patterns in the uniform and dilation areas. The den-
sity and the dynamic viscosity of blood were used as 1060 kg/m3 and 0.04 Pa.s
respectively. The inflow boundary condition was considered as parabolic, and the
outlet boundary condition was set to zero external force. Laminar flow occurs
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Fig. 6. Blood velocity profile with regular and irregular flow pattern (6a) Laminar flow
in Tubular domain, (6b) vasodilation

Fig. 7. Parabolic velocity profile at inlet and out of Tubular domain

where there is a uniform flow, as shown in Fig. 6a. The turbulent flow occurs in
the area where there is an irregular flow due to the blockage and constrictions.
The turbulent flow generally produces a non-parabolic velocity profile because,
in turbulent flow, the stream of fluid mixes both types radially and axially. These
flow models were analysed using the same parameters and presented in Fig. 6
(Fig 7).
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4 Conclusion

The objective of this research is to present a simplified model for the cardiovas-
cular system. The analysis of the blood flow profile in 2D using the Navier-Stokes
equation as the governing equations for the incompressible Newtonian fluid. The
blood flow pattern was computed in the idealised geometry of tubular and dila-
tion, which leads to analysis in the carotid artery’s idealised 2D geometry. The
idealised 2D carotid artery geometry parameters were taken from [11,26]. Based
on the results, we concluded that the numerical study of the generalised Newto-
nian 2D model of blood flow can be solved very well. In this model, the blood flow
is determined by dividing the flow analysis into two different patterns, which are
regular and irregular blood flow patterns analysed in the rectangular tube and
in vasodilation, respectively, and the existence of reverse flow in the area of the
internal carotid artery near the non-dividing wall. In the simulation of flow veloc-
ity in a rectangular tube domain, laminar flow was obtained, with a maximum
velocity field of 9.688× 10−4 m/s. In the simulation of vasodilation, we obtained
the irregular flow pattern, and the maximum velocity was found 1.384m/s for
the vasodilation prototype simulation. The blood flow pattern simulation about
the bifurcation in the carotid artery was done at the inlet by using the same
fluid quantities of blood, parabolic velocity profile, and boundary conditions.
There was no external force considered at the outlet of the both external carotid
artery and the internal carotid artery. The determination of the convergence
of the solution was crucial on account of the boundary value problem and the
complexity of the equation. In general, this paper shows quite good qualitative
agreement with the nonlinearity of the problem and the multi-scale modelling
based on the initial point. The modeling around the bifurcation of the carotid
artery was done using ANSYS 19.1 CAD software and numerically solved to
produce a valid simulation of flow. This research work is only the initial point
for the bigger project with the biological parameters and 3D realistic geometry
reconstructed from the patient-specific medical images. We could also work on
the detection of possible multiplaque formation regions by computing the WSS
and the blood flow behaviour.
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Abstract. Peripheral artery disease is one among the circulatory problems in
the cardiovascular system in which narrowed artery reduces blood to limbs. This
paper focus on the effect of peripheral layer thickness on velocity of blood and
on the hemodynamic parameters such as wall shear stress and oscillatory shear
index in human femoral artery using two-layered model. Owing to the necessity
of clinically reliable estimates for hemodynamic parameters, at the time of prog-
nosis and diagnosis of peripheral diseases, in this investigation the physiological
pressure gradient of human femoral artery was taken from cardiology literature
and is described using McDonalds model. To the best of our knowledge, this is
the first primitive study of this kind. Governing equations are solved analytically.
Velocity, wall shear stress and oscillatory shear index for different peripheral layer
thicknesses are obtained. Dimensional graphs for velocity and wall shear stress
are plotted using MATLAB. Quantitative and qualitative analysis shows that the
velocity aswell as oscillatory shear index in the core region increases as the periph-
eral layer thickness decreases. Results are interpreted medically which helps to
improve the understanding of the state of artery. Comparison of our results with
that of single layer model in the literature indicates that single layer model over-
estimates core region velocity by approximately 65% and underestimates wall
shear stress and oscillatory shear index by 84% and 88% respectively. Primitive
model employed in the current investigation recommends for more number of sub-
ject specific studies before benchmarking the thresholds for the clinically crucial
hemodynamic parameters.

Keywords: Hemodynamic Wall Parameter · Wall Shear Stress · Oscillatory
Shear Index · Femoral Pressure Gradient

1 Introduction

Peripheral Artery Disease (PAD) is a chronic disease of peripheral vasculature [1]. PAD
is the indication of systemic atherosclerosis in which the lumen of the lower extremity
arteries gradually gets occluded resulting in the limb associated complications such as
reduction of blood flow to the limbs [1, 2]. Furthermore, occlusion of arterial lumen in
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one segment should not be understood as a localized or isolated disorder/disease but as a
marker for possibly insidious diseases in other vascular regions [3, 4]. PAD is underdiag-
nosed, undertreated and poorly understood among other cardiovascular diseases [1, 5,
6]. Indeed, subjects with PAD have an increased rate of myocardial infarction, stroke and
cardiovascular death [1, 5, 6]. However, symptoms of PAD may range from intermittent
claudication to ulceration and gangrene [2, 5]. Skau and Jonsson [4] in their epidemi-
ologic studies concluded that nearly 1% to 2% of women and 2% to 3% of men of 60
+ years had mild to moderate symptoms of claudication. Also, it is worth noticing here
that the pathology of PAD is continuously increasing among the younger people due
to population ageing, though it was reasonably infrequent in this cluster [6]. The three
most common lower extremity artery in human beings which are prone to PAD are iliac,
femoral and infrapopliteal artery. This motivated us to investigate the hemodynamics in
the human femoral artery in the present study. One can refer to the critical review on
PAD by Weitz et al. [5] and epidemiological inference on PAD by Shu and Santulli [6]
and Skau and Jonsson [7] to gain knowledge in this aspect in a broader perspective.

Incidentally, in 1989, Texon [8] concluded that the hemodynamic factors were
the main causative factors in localization, inception and progressive development of
atherosclerosis. Numerous hemodynamic near wall parameters have been introduced in
last decades tomeasure the risk of vascular diseases such as atherosclerosis and aneurysm
[9, 10]. Two such medically relevant near wall parameters are Wall Shear Stress (WSS)
and Oscillatory Shear Index (OSI) whose significance are rendered in Sect. 3. The for-
mer helps quantifying the magnitude change in the WSS vector whereas the later, tells
how much WSS vector fluctuates near the arterial wall in a cardiac cycle.

In 2001, Chaturani and Bharathiya [11] modelled blood flow through hemodialysers
as a flow through uniform parallel plate as two-layeredmodel. Further, they had observed
that the flow of suspensions has the tendency to leave a particle free layer near the wall.
In addition, they inferred that their results might help reducing the cell injury and the
dialysis time. In their model, the physiological pressure gradient was taken as constant
[12]. It is worth recalling the fact here that the pressure gradient, the driving force for the
blood, is periodic in nature because of the rhythmic pumping mechanism of the heart in
each cardiac cycle [12]. Although the modeling of pressure gradient waveform was not
suitable, Chaturani and Bharathiya [11] have established the importance of two layered
model approximation in the hemodynamic studies.

Hemodynamics eventually instigates with the heart that supplies blood throughout
the cardiovascular system. Thus, the real challenge in hemodynamic studies depends
on modeling the pressure gradient waveform more appropriately in such a way that it
captures the pulsatality in a less unrealistic manner. It is a real challenge owing to the
fact that the pressure gradient is not only pulsatile in nature but also it varies subject
to subject and furthermore it varies from artery to artery within a subject. On the other
hand, Womersely and McDonald in 1955, categorically established that reproducing the
physiological pressure gradient waveform as a Fourier series with adequate number of
harmonic describes the waveform less unrealistic[13, 14, 18, 19]. FollowingWomersely
andMcDonald [12], Gayathri and Shailendhran 2014, made a comparative study among
the existing models employed in the mathematical literature to describe the pressure
gradient waveform using single layered model and established that McDonalds model
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captures pulsatality in amore appropriate way. In addition, they estimated hemodynamic
wall parameters such as WSS and OSI for the human arteries such as the femoral, the
brachial and the pulmonary artery and rendered inferences, which are clinically valuable
[17].

Thus, in the present study a maiden attempt is made to investigate the effect of
peripheral layer thickness on the velocity of blood in the lumen of the human femoral
artery and on the hemodynamic wall parameters such as WSS and OSI. Blood flow in
the human femoral artery is assumed to be laminar pulsatile flow through a uniform
two layered channel. Further, no-slip condition is employed at the lumen wall interface.
Owing to the necessity of clinically reliable estimates for hemodynamic wall parameters
during the prognosis and diagnosis of peripheral artery diseases, in this investigation the
physiological pressure gradient of the human femoral artery was taken from cardiology
literature and is described using McDonalds model. McDonald’s model captures the
pulsatility in the waveform in a less unrealistic manner. Governing equations are solved
analytically for velocity andWSS. Dimensional graphs are plotted usingMATLAB. The
obtained results are compared with the results reported in the hemodynamic literature
and are interpreted in such a way that it can be useful for clinicians during the assessment
of vascular diseases.

2 Mathematical Formulation and Solution

Consider a laminar pulsatile flow of blood in a two-layered uniform channel of width
2h bounded by the rigid walls at y = ±h with δ as the thickness of the peripheral layer.
Blood flow in the lumen of the artery is approximated as a flow through a two layered
uniform channel. Further, blood is assumed to be Newtonian. Consider the vector form
of continuity and Navier-Stokes equations in the core and peripheral region as

∇.qc = 0; ∇ · qp = 0 (1)

ρ

(
∂qc
∂t

+ (
qc · ∇)

qc

)
= −∇p + μc∇2qc (2)

ρ

(
∂qp
∂t

+ (
qp · ∇)

qp

)
= −∇p + μp∇2qp (3)

where qc and qp denote the velocity of blood in the core and peripheral region
respectively. μc, μp denote the viscosity in the core and peripheral region respectively.

Womersley and McDonald [12] established that the arterial system could be con-
sidered as a linear system and that any harmonic component of pressure wave could be
related to the same harmonic of another pressure or flow wave recorded at the same time
and to no other harmonic. The physiological pressure gradient of the human femoral
artery is approximated by McDonald’s model [12, 15] as

−∂p

∂x
= A0 +

∑m

n=1
(An cos(nωt) + Bn sin(nωt))

= a0 +
∑m

n=1
(an cos(nωt − αn))
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= a0 + Re
(∑m

n=1
ane

i(nωt−αn)
)

(4)

where a0 = A0, an = √
A2
n + B2

n, αn = arc tan Bn
An

and “m” denotes the number of
harmonics.

Accordingly, the velocities and uc(y, t) and up(y, t) in the core and peripheral region
can be modelled respectively as follows:

uc(y, t) = uc(y) + Re
(∑m

n=1
ũcn(y)e

i(nωt−αn)
)

(5)

up(y, t) = up(y) + Re
(∑m

n=1
ũpn(y)e

i(nωt−αn)
)

(6)

where the symbol “ −” denotes the steady part and the symbol “~” denotes the unsteady
part. By plugging in the Eqs. (4)–(6) in the vector form of governing Eqs. (1)–(3) and
expressing in Cartesian coordinates, we get the dimensional form of steady part and the
nth harmonic of the unsteady part of the governing equation of the flow in the core and
the peripheral region as follows

0 = −∂p

∂x
+ μc

∂2uc
∂y2

(7)

0 = −∂p

∂x
+ μp

∂2up
∂y2

(8)

ρ
∂ ũcn
∂t

= −∂ p̃

∂x
+ μc

∂2ũcn
∂y2

(9)

ρ
∂ ũpn
∂t

= −∂ p̃

∂x
+ μp

∂2ũpn
∂y2

(10)

with no-slip boundary [20] conditions

up = 0 when y = h (11)

up = 0 when y = −h (12)

up = uc when y = h − δ (13)

up = uc when y = −(h − δ) (14)

The characteristic length (h), time (1/ω), and velocity (hω) are used for non-
dimensionalization. Accordingly, the Eqs. (7)–(14) takes the non-dimensional form as in
the Eqs. (15)–(26). Further, the steady part of velocity in the peripheral and core region
in the non-dimensional forms are

∂2u∗
p

∂y∗2 = E0 whereE0 = −a0
h

μpω
(15)
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∂2u∗
c

∂y∗2 = F0 whereF0 = −a0
h

μcω
(16)

with the steady part boundary conditions in the non-dimensional form

u∗
p = 0 when y∗ = 1 (17)

u∗
p = 0 when y∗ = −1 (18)

u∗
p = u∗

c when y∗ = 1 − δ

h
(19)

u∗
p = u∗

c when y∗ = −
(
1 − δ

h

)
(20)

Similarly, the nth harmonic of unsteady part of velocity in peripheral and core region
in the non-dimensional forms are

∂2ũ∗
pn

∂y∗2 − G2
nũ

∗
pn = En (21)

∂2ũ∗
cn

∂y∗2 − I2n ũ
∗
cn = Fn (22)

with the nth harmonic of unsteady part boundary conditions in the non-dimensional form

ũ∗
pn = 0 when y∗ = 1 (23)

ũ∗
pn = 0 when y∗ = −1 (24)

ũ∗
pn = ũ∗

cn when y∗ = 1 − δ

h
(25)

ũ∗
pn = ũ∗

cn when y∗ = −
(
1 − δ

h

)
(26)

where En = − anh
μpω

, Fn = − anh
μcω

, Gn =
√
inα2

p , In = √
inα2

c ; αp = h
√

ωρ
μp

, αc = h
√

ωρ
μc

are known as Womersley number.
On solving the above equations analytically, we arrive at the velocity of blood in the

peripheral and core region as

up
(
y∗, t

) =
E0

(
y∗2 − 1

)
2

+ Re
∑m

n=1

[
χ̃pn

(
y∗)ei(nωt−αn)

]
(27)

uc
(
y∗, t

) = 1

2

(
F0y

∗2 − E0 +
(
h − δ

h

)2

(E0 − F0)

)
+ Re

∑m

n=1

[
χ̃cn

(
y∗)ei(nωt−αn)

]

(28)
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where

χ̃pn

(
y∗) = En

G2
n
sech(Gn)cosh

(
Gny

∗) − En

G2
n

χ̃cn
(
y∗

) =
(
Fn

I2n
sech

[
In

(
h − δ

h

)]
− En

G2
n
sech

[
In

(
h − δ

h

)]
+ En

G2
n
sech(Gn)

)
cosh

[
In

(
y∗

)] − Fn

I2n

3 Significance of Hemodynamic Near Wall Parameters

Hemodynamics caused by blood flow generates multiple mechanical forces that directly
act on the endothelial surface of vessel walls [18, 19]. Normal hemodynamic conditions
guide development during embryogenesis and remodelling to optimize the blood flow to
tissues throughout postnatal and adult life. However, disorder in hemodynamics leads to
the exacerbation or acceleration of cardiovascular diseases [1]. It is to be noted that the
vital hemodynamic near wall parameters whose accurate measures are crucial during
the clinical assessment of vascular diseases are wall shear stress and oscillatory shear
index [18, 19]. Elaborate discussion on the significance of these parameters are rendered
in this section.

3.1 Wall Shear Stress

WSS is the frictional force exerted by themoving blood on the arterial wall and is defined
as the viscosity times the shear rate ∂u/∂y near the wall. Quantification of WSS can be
made by computing the time averaged WSS over the cardiac cycle. The segments of
unidirectional to mild fluctuation in the direction ofWSS vector results in elongated and
aligned endothelial cells, which form tight intracellular junctions. Any deviations from
this situation can be risky [18, 19]. The arterial segment for which time averaged WSS
value less than 0.04Pa is atherogenic and is classified as atherosclerotic prone region
whereas in the disease free zone, this value ranges between 1 Pa to 7 Pa [9, 17]. One can
refer to the review articles by Perter F Davis [18] and Ku [19] for more details.

3.2 Oscillatory Shear Index

The dimensionless quantity OSI has been developed to characterize the areas of fluc-
tuating shear direction in a cardiac cycle. The original mathematical definition for OSI
developed by He and Ku in 1986 was modified by He and in 1996 [10]. However, the
widely used alternative definition for OSI is

OSI = 0.5 ×
(
1 −

1
T

∣∣∫T0 τdt
∣∣

1
T ∫T0 |τ |dt

)
(29)

This ratio varies between 0 and 0.5 [10]. The region where the OSI is greater than
0.3 is considered atherogenic and leaky to atherogenic particles. In the low shear region,
high OSI indicates high vulnerability to wall rupture [10]. This metric captures the
directional change in WSS vector in a cardiac cycle. The estimated value of OSI helps
to characterize the regions of varying shear direction which in turn helps to gain better
knowledge on the endothelial wall functionality [10].
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4 Result

The parameter values used during the computation are as follows: density of the
blood ρ = 1050 kgm−3, viscosity of the blood in peripheral and core regions are
0.0012 kgm−1s−1[11] and 0.004 kgm−1s−1 and the heart frequency is 1.2 Hz which
are often used in hemodynamic studies [17]. The geometry of the human femoral artery
is approximated as the flow through two parallel plates and hence the height of the chan-
nel is chosen to be the radius of the femoral artery h = 0.0033m [17]. McDonald model
is used to reproduce the physiological pressure gradient waveform of human femoral
artery which was taken from cardiology literature. The adequate number of harmonics
in Fourier series expansion to reproduce the original waveform is m = 50 [17]. The
thickness of the peripheral layer is denoted by δ and is varied from 10% of height (h)
to 40% of the height (h) throughout the discussion. The estimated center line velocity,
minimum and maximum velocity in core region for various peripheral layer thickness
are tabulated in Table 1.. Further, the mean WSS, minimum and maximum value of
WSS and OSI in core and peripheral region for various peripheral layer thickness are
tabulated in Table 2. and Table 3. respectively. The dimensional graphs for the center
line velocity and WSS of the human femoral artery in core and peripheral region for
various peripheral layer thicknesses are depicted in Fig. 1, Fig. 2 and 3.

Table 1. Mean center line velocity, Minimum and Maximum velocity of human femoral artery
in Core region for various peripheral layer thickness.

Thickness of
Peripheral Layer

Mean Centerline
Velocity (m/s)

Maximum Velocity
(m/s)

Minimum Velocity
(m/s)

40%of h 0.0631 0.8004 (0.00168 sec) −0.5291 (0.4477 sec)

30%of h 0.0632 0.0632 (0.00084 sec) −0.4087 (0.4477 sec)

20%of h 0.0634 0.4782 (0.00168 sec) −0.2696 (0.4486 sec)

10%of h 0.0636 0.0636 (0.00084 sec) −0.1121 (0.4477 sec)

Table 2. MeanWSS,Minimum andMaximumWSS, OSI of human femoral artery in Core region
for various peripheral layer thickness.

Thickness of
Peripheral
Layer

Mean WSS
(Pa)

Maximum WSS (Pa) Minimum WSS (Pa) OSI

40%of h −0.0386 0.2205 (0.6661 sec) −0.2517 (0.07476 sec) 0.3633

30%of h −0.0386 0.2639 (0.6653 sec) −0.2876 (0.07392 sec) 0.3819

20%of h −0.0386 0.3501 (0.6619 sec) −0.3602 (0.06804 sec) 0.3961

10%of h −0.0386 0.3509 (0.6602 sec) −0.3605 (0.07056 sec) 0.4073
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Table 3. Mean WSS, Minimum and MaximumWSS, OSI of human femoral artery in peripheral
region for various peripheral layer thickness.

Thickness of
Peripheral Layer

Mean WSS (Pa) Maximum WSS (Pa) Minimum WSS (Pa) OSI

40%of h −0.0383 0.2372 (0.4267 sec) −0.3367 (0.7972 sec) 0.3168

30%of h −0.0383 0.2841 (0.4242 sec) −0.3884 (0.7988 sec) 0.3422

20%of h −0.0383 0.3315 (0.4225 sec) −0.4392 (0.7988 sec) 0.3617

10%of h −0.0383 0.3793 (0.4192 sec) −0.4882 (0.7997 sec) 0.3772

Fig. 1. Center line velocity of blood in the peripheral and core region of human femoral artery
for various peripheral layer thickness.

5 Discussion

PAD is an atherosclerotic peripheral vascular disease of the lower extremities associated
with high cardiovascular mortality [1–3]. To the best of our knowledge, this is the
first elaborate study investigating the hemodynamics in the human femoral artery by
describing the physiological pressure gradient using McDonald’s model in two layered
blood flow model. All the results obtained in the present investigation reduces to the
results reported by Chaturani and Bhrathiya [11] when the pressure gradient is taken as
constant. At the same time, the single layer approximation of the present study provides
all the results reported by Gayathri and Shaiendhra [17]. This validates our present
model.
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Fig. 2. WSS in core region of human femoral artery for various peripheral layer thickness.

Fig. 3. WSS in peripheral region of human femoral artery for various peripheral layer thickness.

In the peripheral region, the estimated mean center line velocity of the human
femoral artery is 0.0651ms−1 and the maximum and minimum velocities are respec-
tively 0.9907ms−1 at 0.4477 s and −1.082ms−1 at 0.00168 swhatever be the peripheral
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layer thickness (Fig. 1). At the same time, in the core region, as the peripheral layer thick-
ness decreases from 40%of h to 10%of h, the mean center line velocity of the femoral
artery increases from 0.0631ms−1 to 0.0636ms−1 (ref Table 1.). It is approximately
0.79% increase in the velocity.

It is worth recalling here that the mean center line velocity of the human femoral
artery in a single layer model reported in the literature is 0.1050ms−1[17]. Comparing
the results obtained in the two layered model in the present study with that of the single
layer model in [17] shows that the single layer model overestimates the core region
velocity approximately by 65%. The estimated value of the average mass flux in the
single layer model is approximately 0.0038 kgs−2. At the same time, in the two layered
model, the average mass flux is approximately 0.0023 kgs−2. It is inferred from the
obtained results that the presence of peripheral layer decreases the average mass flux by
approximately 39%.

Further, the pulsatile velocity profiles for the two layered flow model depicted in
Fig. 1 are much different from that of the one depicted for single layered flow model
of the human femoral artery investigated by Gayathri and Shailendhra [17]. In addition,
it is inappropriate to compare the velocity profile given in [11] with the present study
due to the fact that the pressure gradient is pulsatile in nature and is not constant as was
chosen in [11]. Once again, the physiological pressure gradient is not only artery specific
but also subject specific [17]. Furthermore, for estimating the near wall parameter, the
WSS, it is necessary to measure the blood flow velocity gradient near the vessel wall
(wall shear rate). As a consequence, a small change in the velocity can significantly
affect the WSS and hence the metric OSI.

The estimated value of meanWSS is−0.0383Pa in the peripheral region whereas it
is −0.0386Pa in the core region of the human femoral artery in the two-layered model.
It is observed that the mean WSS of femoral artery is unchanged as the peripheral
layer thickness decreases from 40%of h to 10%of h both in peripheral and core region.
Unlike the mean WSS, the maximum and minimum values of mean WSS in peripheral
and core region shows decreasing trend as the peripheral layer thickness decreases as is
tabulated in Table 2. and in Table 3. respectively. Further, Fig. 2 and Fig. 3 depicts the
dimensional graphs of WSS in peripheral and core region of human femoral artery for
various peripheral layer thickness respectively.

Indeed, Malek [9] documented that |WSS| < ±0.4Pa is atherosclerotic prone zone.
Moreover, Gayathri and Shailendhra [17] in their hemodynamic study pertaining to
single layered model reported that the mean WSS of the human femoral artery was
−0.2545Pa. This value is approximately 84% of decrease in the mean WSS when
compared to the estimated mean WSS value in the core region of two-layered model.
This justifies the need for two-layered model in the hemodynamic studies. Furthermore,
the obtained value of WSS in the present study indicates that the femoral segment
of the subject with whom the pressure gradient waveform was measured is prone to
atherosclerosis. In order to improve the understanding of severity of the damage caused
to the arterial wall due to the low WSS range, the non-dimensional measure OSI has to
be computed.
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He and Ku [10] developed a metric to capture the directional changes in the WSS
vector in a cardiac cycle termed asOSI.Once again, zeroOSI value indicates the unidirec-
tional alignment ofWSS vector in a cardiac cycle whereas the OSI value of 0.5 indicates
substantially high fluctuation in the direction of WSS vector near the wall in a cardiac
cycle. In the peripheral region, the value of OSI increases from 0.3168(40%of h) to
0.3772(10%of h) as the peripheral layer thickness decreases from 40%of h to 10%of h.
This is approximately 19% of increase in the value of OSI in peripheral region. At
the same time, in the core region of the femoral artery, the value of OSI increases
from 0.3633(40%of h) to 0.4073(10%of h) as the peripheral layer thickness decreases,
which is approximately an increase by 12%. Since |WSS| < ±0.4Pa and OSI > 0.3,
the femoral segment of the subject with whom the pressure gradient waveform was
measured is more atherogenic.

It is also evident from Fig. 2 and Fig. 3 that the graph of WSS is changing the sign
from negative to positive thrice in the peripheral region whereas it is only once in the
core region as the peripheral layer thickness decreases from 40%of h to 10%of h in
a cardiac cycle. It is worth recalling here that increase in the OSI value indicates the
increase in the fluctuation ofWSS vector near the wall in a cardiac cycle. In addition, the
endothelial cell alignment may get modify as theWSS vector changes its direction quite
often and this may widen up the endothelial junction gap. This may increase the chance
for the lingering atherogenic particles near the wall to penetrate and getting deposited
inside the wall resulting in the formation of plaque. However, Gayathri and Shailendhra
[17] in their hemodynamic study using single layered model reported that the value of
OSI in the human femoral artery as 0.0454. OSI value reported by them [17] for single
layer model is 88% lesser than the one obtained in the present analysis. This establishes
the importance of two-layered model in hemodynamic studies.

In summary, all the results obtained in the present investigation reduces to the results
reported by Chaturani and Bhrathiya [11] when the pressure gradient is assumed as con-
stant and reduces to the results reported by Gayathri and Shailendhra [17] when the two-
layeredmodel is approximated to the single layermodel.As the peripheral layer thickness
decreases, the mean center line velocity and OSI shows increasing trend. In addition, the
presence of peripheral layer decreases the average mass flux by approximately 39% in
comparison with the single layer model. Numerically insignificant changes in the esti-
mated values of the near wall parameter as the peripheral layer thickness varies cannot
be overlooked medically. More number of subject specific studies are recommended
before benchmarking the results reported in this primitive study to practice it as clinical
thresholds.

6 Conclusion

The drive for improvising the knowledge both biologically and medically on the hemo-
dynamics in human vascular system is increasing over the years. To the best of our
knowledge, this is the first elaborate study investigating the hemodynamics in the human
femoral artery by describing the physiological pressure gradient using McDonald’s
model in two-layered blood flow model. The following are the main conclusions arrived
in this study:
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• Mean center line velocity in the core region increases by 0.79% as the peripheral layer
thickness decreases from 40%of h to 10%of h. Although, no significant changes are
noticed in the peripheral region.

• Estimated value of the average mass flux in the two layer model is approximately
0.0023 kgs−2. Comparing the average mass flux with that of the single layer model,
it is inferred that the presence of peripheral layer decreases the average mass flux by
approximately 39%.

• Maximum and minimum values of mean WSS in the core and peripheral regions
are not the same as though mean WSS is unaltered as the peripheral layer thickness
decreases from 40%of h to 10%of h.

• OSI increases by 12% in the core region as peripheral layer thickness decreases from
40%of h to 10%of h whereas it increases by 19% in the peripheral region.

• Single layer model overestimates core velocity by 65%, underestimates core WSS
and OSI by 84% and 88% respectively.

Primitivemodel employed in the current investigation recommends for more number
of subject specific studies before benchmarking the thresholds for the clinically crucial
hemodynamic near wall parameters.
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Abstract. In thismanuscript, an approximate analytical solution of theHelmholtz
and coupled Helmholtz equations of fractional order is obtained using local frac-
tional Sumudu decomposition method (LFSDM). The Helmholtz equations play
an important role in the study of various physical problems such as seismol-
ogy, tsunamis, optics, acoustics, medical imaging, electrostatics and quantum
mechanics. To validate the efficiency and reliability of the employed scheme, the
Helmholtz and coupled Helmholtz equations are considered. The results obtained
with this scheme are in a good agreement with previous works. Moreover, the
graphical presentations for obtained solutions are also illustrated for distinct values
of order of a partial derivative.
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1 Introduction

In last decades, fractional calculus has been applied very frequently in the field of applied
sciences and technology. Actually, the area of fractional calculus is concerned with
integral andderivatives of real order and it significantly handles scientific and engineering
problems by formulating them in the form of fractional differential equations such as
the diffusion equations [1], the gas dynamic equation [2], telegraph equation [3], wave
equation [4–7], Fokker-Planck equation [8, 9], Laplace equation [10], Klein-Gordon
equations [11], Helmholtz equation [12], and Burger’s equations [13].
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Various local fractional schemes have been used to solve the local fractional PDEs
(LFPDEs) such as the local fractional decomposition method [13–15], local fractional
variational iteration method [16–22], local fractional differential transform method [23,
24], local fractional series expansion method [25, 26], local fractional Sumudu decom-
position method [27], local fractional reduce differential transform method [28], local
fractional Laplace variational iteration method [29], local fractional Laplace decompo-
sition method [30], and local fractional Laplace homotopy perturbation method [31, 32].
This paper presents the copulation of LFST and LFADM, which is called as LFSDM,
to solve the local fractional Helmholtz and coupled Helmholtz equations.

The paper is arranged in the following way: The basic definitions for calculus and
fractional integration are presented in Sect. 2, the method used are analyzed in Sect. 3,
illustrative examples are given that explain the effectiveness of the method proposed in
Sect. 4, the numerical results and discussion are described in the Sect. 5 and finally, the
conclusion is provided in Sect. 6.

2 Mathematical Fundamentals

Definition 2.1. The LF derivative of ϕ(μ) of order ε at μ0 is [14–16]:

ϕ(ε)(μ0) = lim
μ→μ0

�(1 + ε)[ϕ(μ) − ϕ(μ0)]

(μ − μ0)
ε , 0 < ε ≤ 1 (1)

Definition 2.2. The Mittage-Leffler function is defined by [14]:

Eε

(
με

) =
∞∑

k=0

μkε

�(1 + kε)
, μ ∈ R, 0 < ε ≤ 1 (2)

Definition 2.3. The LFST of ϕ(μ) given by [26]

STε{ϕ(μ)} = 1

�(1 + ε)

∞∫

0

Eε

(−wεμε
)ϕ(μ)

wε
(dμ)ε. (3)

Following (4), its inverse formula is defined by

ST−1
ε (STε{ϕ(μ)}) = ϕ(μ), 0 < ε ≤ 1. (4)

The properties for LFST are:

1. STε

{
με

�(1+ε)

}
= wε.

2. STε

{
∂mεϕ(μ,τ)

∂μmε

}
= 1

wmε

[
STε{ϕ(μ, τ)} − ∑m−1

k=0 wkε ∂kεϕ(0,τ )

∂τ kε

]
.
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3 Analysis of LFSDM

Let us consider the PDE with LFDOs:

Lεϕ(μ, τ ) + Rεϕ(μ, τ ) = g(μ, τ ), 0 < ε ≤ 1 (5)

where Lεϕ(μ, τ ) = ∂mε

∂μmε ϕ(μ, τ ), Rε denotes linear LFDO, and g(μ, τ ) is the non-
differentiable source term.

Applying the LFST on Eq. (5), and using the property of the LFST, we get

STε{ϕ(μ, τ)} =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε
+wmεSTε{g(μ, τ )} − wmεSTε{Rεϕ(μ, τ )}. (6)

Taking the inverse of LFST on Eq. (6), we have

ϕ(μ, τ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

− ST−1
ε

[
wmεSTε{Rεϕ(μ, τ)}]. (7)

Now, procedure of ADM suggests the decomposition of the unknown function
ϕ(μ, τ) as an infinite series in the following way

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ). (8)

By making use of the Eq. (8) in Eq. (7), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

− ST−1
ε

[

wmεSTε

{

Rε

∞∑

n=0

ϕn(μ, τ )

}]

. (9)

Matching both sides of (9) provides

ϕ0(μ, τ ) =
m−1∑

k=0

wkε ∂kεϕ(0, τ )

∂τ kε

μkε

�(1 + kε)
+ ST−1

ε

[
wmεSTε{g(μ, τ )}]

ϕ1(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ0(μ, τ )]}],

ϕ2(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ1(μ, τ )]}],

ϕ3(μ, τ ) = −ST−1
ε

[
wmεSTε{Rε[ϕ2(μ, τ )]}],

... (10)

The general form of above obtained local fractional recursive relations is

ϕ0(μ, τ ) =
m−1∑

k=0
wkε ∂kεϕ(0,τ )

∂τ kε
μkε

�(1+kε) + ST−1
ε

[
wmεSTε{g(μ, τ )}],

ϕn(μ, τ ) = −ST−1
ε

[
wmεSTε

{
Rε

[
ϕn−1(μ, τ )

]}]
, n ≥ 1, 0 < ε ≤ 1

(11)
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4 Application of LFSDM

Example 4.1. Consider the Helmholtz equation with LFDO:

∂2εϕ(μ, τ )

∂μ2ε + ∂2εϕ(μ, τ)

∂τ 2ε
+ ϕ(μ, τ) = με

�(1 + ε)

τ ε

�(1 + ε)
, (12)

with

ϕ(0, τ ) = 0, ϕ(ε)(0, τ ) = τ ε

�(1 + ε)
. (13)

Taking LFST of (12), we get

STε{ϕ(μ, τ)} =
1∑

k=0

wkε ∂kεϕ(0, τ )

∂μkε
+ w2εSTε

{
με

�(1 + ε)

τ ε

�(1 + ε)

}

− w2εSTε

{
∂2εϕ(μ, τ )

∂τ 2ε
+ ϕ(μ, τ)

}

= wε τ ε

�(1 + ε)
+ w3ε τ ε

�(1 + ε)
− w2εSTε

{
∂2εϕ(μ, τ)

∂τ 2ε
+ ϕ(μ, τ)

}
.

The inversion of LFST implies that

ϕ(μ, τ) = με

�(1 + ε)

τ ε

�(1 + ε)
+ μ3ε

�(1 + 3ε)

τ ε

�(1 + ε)

− ST−1
ε

[
w2εSTε

{
∂2εϕ(μ, τ )

∂τ 2ε
+ ϕ(μ, τ)

}]
. (14)

Now, procedure of ADM suggests the decomposition of the unknown function
ϕ(μ, τ) as an infinite series in the following way

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ). (15)

Substituting (15) in (14), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)

τ ε

�(1 + ε)
+ μ3ε

�(1 + 3ε)

τ ε

�(1 + ε)

− ST−1
ε

[

w2εSTε

{
∂2ε

∂τ 2ε

∞∑

n=0

ϕn(μ, τ ) +
∞∑

n=0

ϕn(μ, τ )

}]

. (16)

On comparing both sides of (16), we have:
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Therefore, the approximate solution ϕ(μ, τ) of Eq. (12) is expressed by

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)

τ ε

�(1 + ε)
. (17)

The result is the same as the one which is obtained by the LFLADM [12] and
LFLHPM [31].

Example 4.2. Now we examine the coupled Helmholtz equations with LFDOs:

∂2εϕ(μ, τ )

∂μ2ε + ∂2εψ(μ, τ)

∂τ 2ε
− ϕ(μ, τ) = 0,

∂2δψ(μ, τ)

∂μ2δ + ∂2δϕ(μ, τ )

∂τ 2δ
− ψ(μ, τ) = 0, (18)

with

ϕ(0, τ ) = 0, ϕ(ε)(0, τ ) = Eε

(
τ ε

)
,

ψ(0, τ ) = 0, iψ(ε)(0, τ ) = Eε

(
τ ε

)
. (19)
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Taking LFLT of (18), we obtain

STε{ϕ(μ, τ)} = wεEε

(
τ ε

) + w2εSTε

{
ϕ(μ, τ) − ∂2εψ(μ, τ)

∂τ 2ε

}
,

STε{Ψ (μ, τ)} = −wεEε

(
τ ε

) + w2εSTε

{
ψ(μ, τ) − ∂2εϕ(μ, τ )

∂τ 2ε

}
, (20)

The inversion of LFST implies that

ϕ(μ, τ) = με

�(1 + ε)
Eε

(
τ ε

) + ST−1
ε

[
w2εSTε

{
ϕ(μ, τ) − ∂2εψ(μ, τ)

∂τ 2ε

}]
,

ψ(μ, τ) = − με

�(1 + ε)
Eε

(
τ ε

) + ST−1
ε

[
w2εSTε

{
ψ(μ, τ) − ∂2εϕ(μ, τ )

∂τ 2ε

}]
. (21)

Now, we compose the unknown functions ϕ(μ, τ) andψ(μ, τ) in the form of infinite
series as

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ),

ψ(μ, τ) =
∞∑

n=0

ψn(μ, τ ). (22)

On making use of (22) in (21), it yields the following result:

∞∑

n=0

ϕn(μ, τ ) = με

�(1 + ε)
Eε

(
τ ε

)

+ ST−1
ε

[

w2δSTε

{ ∞∑

n=0

ϕn(μ, τ ) − ∂2ε

∂τ 2ε

( ∞∑

n=0

ψn(μ, τ )

)}]

,

∞∑

n=0

ψn(μ, τ ) = − με

�(1 + ε)
Eε

(
τ ε

)

+ ST−1
ε

[

w2εLTε

{ ∞∑

n=0

ψn(μ, τ ) − ∂2ε

∂τ 2ε

( ∞∑

n=0

ϕn(μ, τ )

)}]

. (23)

Now, comparison of both sides of (23) yields
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Hence, the solutions are expressed as

ϕ(μ, τ) =
∞∑

n=0

ϕn(μ, τ ) = Eε

(
τ ε

) sinhε

(√
2με

)

√
2

.

ψ(μ, τ) =
∞∑

n=0

ψn(μ, τ ) = −Eε

(
τ ε

) sinhε

(√
2με

)

√
2

. (24)

The result (24) is the same as the one which is obtained by the LFADM [12] and
LFHPM [31].

5 Numerical Results and Discussion

In this segment, the numerical simulations for solution of Helmholtz and coupled
Helmholtz equations obtained via LFSDM are presented. The numerical investigation of
Helmholtz and coupled Helmholtz equations considers different values of ε = 1, log 2

log 3 .
Here, the Matlab software is utilized to draw all the 3D plots. Figures 1 & 2 show the
3D surface plot for solution ϕ(μ, τ) for Example 1 for ε = 1.0 and ε = log 2

log 3 , respec-
tively. Figure 2 represents the variation of ϕ(μ, τ) in fractal dimension. Similarly, the
3D surface plots for solution ϕ(μ, τ) for Example 2 are depicted in Figs. 3 and 4 for
ε = 1.0 and ε = log 2

log 3 , respectively. Figures 5 & 6 represent the 3D variation for solution

Fig. 1. 3D behaviour of ϕ(μ, τ) for Example 1 w.r.t. μ and τ for ε = 1.0
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ψ(μ, τ) for Example 2 for ε = 1, log 2
log 3 , respectively. Figure 6 represents the variation

of ϕ(μ, τ) on Cantor set.

Fig. 2. 3D behaviour of ϕ(μ, τ) for Example 1 w.r.t. μ and τ for ε = log 2
log 3

Fig. 3. 3D variation of ϕ(μ, τ) for Example 2 w.r.t. μ and τ for ε = 1.0
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Fig. 4. 3D variation of ϕ(μ, τ) for Example 2 w.r.t. μ and τ for ε = log 2
log 3

Fig. 5. 3D behaviour of ψ(μ, τ) for Example 2 w.r.t. μ and τ for ε = 1.0



296 D. Kumar et al.

Fig. 6. 3D behaviour of ψ(μ, τ) for Example 2 w.r.t. μ and τ for ε = log 2
log 3

6 Conclusions

In this work, the LFSDM is conveniently employed to obtain the approximate solution
of Helmholtz and coupled Helmholtz equations within LFDOs. The proposed algorithm
provides a solution in a series form that converges rapidly to an exact solution if it exists.
From the obtained results, it is clear that the FSDM yields very accurate solutions using
only a few iterates. The method is very powerful and efficient in finding semi-analytical
solutions for wide classes of LFPDEs.
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Abstract. Today’s world is computerized in every field. Reliable soft-
ware is the most important concern for every software developers. Soft-
ware reliability is defined as the probability of a failure-free operation
in a specified environment for a given period of time. To measure the
reliability of software, various models of reliability that are based upon
Exponential Distribution have been proposed. One of the most com-
mon methods to estimate reliability is Maximum Likelihood Estimation
but it is not effective in some of the cases. Two reliability estimation
of Lindley Distribution have been discussed in this paper. One is Max-
imum Likelihood Estimator and other is Uniform Minimum Variance
Unbiased Estimator. Lindley Distribution is also the family of Expo-
nential Distribution. In this paper, we have compared Maximum Likeli-
hood Estimator(MLE) and Uniform Minimum Variance Unbiased Esti-
mator(UMVUE) of reliability estimation of different data sets.

Keywords: Software Reliability Model · Maximum Likelihood
Estimator · Uniform Minimum Variance Unbiased Estimator · Lindley
Distribution

1 Introduction

Every software developer must understand the concept of software reliability.
Various software reliability models based on Exponential, Gamma, Weibull,
Logistic Distributions etc. have been developed. Quality, value and schedule
are the most significant features of software product. For the last two features
Quantitative measurement exists, but quality quantification is more challenging.
It is utmost significant, however, due to the non-explore measure for quality of
software generally means that feature will fail when it resists over concern with
cost and time. Software Reliability is an essential factor for its worth. Software
Reliability is concerned with how properly the software performs in meeting
needs of consumer. Reliability is defined as probability of a failure free operation
in a given environment for a certain time period [1]. The time of failures is unpre-
dictable in nature. If T indicates the time of software failure, then its reliability
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 299–316, 2023.
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is given by R(t) = P(T > t). There are several ways for estimating the soft-
ware reliability, Maximum Likelihood Estimator(MLE) is most commonly used
method [2], but it is not as operational as UMVUE. Nozer D. Singpurwalla, et al.
[3] defined concisely, various models to analysis reliability of software. Harpreet
Kaur, et al. [22] explained the concept of Software Reliability Growth Modeling.
Using the MVUE approach Roopashri and Murulidhar [4] calculated reliability
estimates of Exponential Class Models. Chris Dale [5] describes the current and
possible usages of numerical approach in the evaluation of Software Reliabil-
ity. R.Kumar, et al. [19,20] describes the concept of Least Square Estimation.
Roopashri and Murulidhar [6] used MLE and MVUE approaches to estimate the
reliability of Gamma Class Models. Tapan Nayak [7] provided an outline of sta-
tistical methods and methods for Software Reliability Estimation. M.E. Ghitany
et al. [8] estimated various reliability parameters by using Lindley Distribution.
Priyanka Thakur et al. [23] provided the consistent performance in software
reliability and complexity of software. Roopashri and Murulidhar [9] obtained
reliability estimates of Exponential Class Models based on Littlewood Pareto
Failure Time Model by using MVUE approach. Sudhansu S. Maiti & Indrani
Mukherjee calculated PDF and CDF of Lindley Distribution [10]. D.Laxmi et
al. [21] explained the various concept of Software Reliability.

Various reliability estimators have been developed like MLE, UMVUE and
Least Square Estimation. Estimator is used to calculate the value of unknown
parameters using sample data. A good estimator follows four properties consis-
tency, efficiency, sufficiency, unbiasedness [11].

This paper discusses the reliability estimation of Lindley Distribution. This
model has probability distribution given by

f(x) =
θ2

θ + 1
(1 + x) e−θx; x > 0, θ > 0 with parameter θ

In this paper, we calculated MLE of R(t) and compared it with UMVUE of relia-
bility. We calculated MLE of R(t) by using Invariance Property. Blackwellization
Method is used for calculating UMVUE [2,12]. Failure time data given by MUSA
[13], Lyu [2], J.LIU [14], H.joe and N.Reid [15], J.F. Flawless [16] have been used
to compare Maximum Likelihood Estimator of reliability and Uniform Minimum
Variance Unbiased Estimator of reliability and to decide better estimate amongst
these two estimators.

2 Methods to Estimate Reliability

Various methods to estimate software reliability are available. Few methods to
estimate reliability are: Moments Method, Least Square Method, Mean Square
Error, Maximum Likelihood Estimation Method, Uniform Minimum Variance
Unbiased Estimator etc. All of these estimators must satisfy the above described
features. Best estimator is considered as which satisfies all of above four proper-
ties. From these different estimators, two methods are discussed below namely
the Method of MLE and Method of UMVUE.
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2.1 Maximum Likelihood Estimation Method

Let x1, x2, x3, .............xn be a random sample of size n from the population of
probability function f(x, θ). Then likelihood function is defined as [11]

L =
n∏

i=1

f(xi, θ)

We have to maximize this likelihood function L which will give an estimator
Now ∂L

∂θ = 0 which implies that ∂2L
∂θ2 < 0

As we know that L>0, the above equation can be written as

1
L

∂L

∂θ
= 0 i.e.

∂(lnL)
∂θ

= 0

We will get the solution of θ by solving ∂(lnL)
∂θ = 0.

2.2 Uniform Minimum Variance Unbiased Estimator Method
(UMVUE)

If a statistic T which is created on sample size n such that T is unbiased Estima-
tor of θ that has lowest variance between all unbiased estimators of θ then T is
known as UMVUE of θ and T is always unique. With the help of Blackwelliza-
tion, UMVUE can be obtained and that method is explained below: First find
unbiased estimator U then find complete sufficient estimator S [8].
UMVUE is then obtained as E (U/S). UMVUE gives more efficiency than any
other estimators.

3 Reliability Estimations of Lindley Distribution Model

Commonly used method for reliability is MLE which is always reliable and suffi-
cient but it is not balanced and efficient. UMVUE is always unbiased and efficient
which is known as best class for all estimators [17].

We will find Maximum Likelihood Estimator and Uniform Minimum Variance
Unbiased Estimator of R(t) and both of the estimators will compare.

3.1 MLE of R(t)

Using 2.1, We obtain

θ̂ =
−(t−1) ±

√
(t − 1)2 + 8t

2t
(1)

where
t =

x1 + x2 + x3 + ............. + xn

n
.
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By using MLE property of Invariance [18], we find MLE of R(t) as below:

R̂ (t) =

[
−(t−1)±

√
(t−1)

2
+8t

]

2t
(t + 1) + 1

[
−(t−1)±

√
(t−1)

2
+8t

]

2t
+ 1

e

[
[−(t−1)±

√
(t−1)2+8t]

2t

]
t

(2)

3.2 UMVUE of R(t)

UMVUE of R(t) =P(T≥ t)
First state a function U (t1, t2, t3 . . . . . . .., tn) such that U(t1) = {1 if t1 ≥ t and
0 otherwise }
Then

E [U(t1)] = 1. P (T1 ≥ t) + 0 . P (T1 ≤ t)

= P (T1 ≥ t) = R(t)

Which proves U(t1) is an unbiased estimator for R(t)

L =
∏n

i=1 f(ti)
= θ2n

(θ+1)n
∏n

i=1 [1 + ti]e−θ(t1+t2+.......tn)

By Theorem of Factorization,

S =
n∑

i=1

ti is complete sufficient estimator for θ

UMVUE of R(t) is obtained as

R̃ (t) = E(U(t1/S)) =
∫ ∞

t

f(t1/S )dt1 (3)

Conditional Probability Function is

f(t1/S ) =
nθ

θ + 1
(1 + t1)(

∑n
i=1 ti − t1)

n−2

(
∑n

i=1 ti)
n−1 (4)

UMVUE of reliability is

R̃ (t) =
∫ ∞

t

f(t1/S )dt1

=
nθ

(θ + 1)(2 − n)

[{
(1 + t)

(
1 +

t

z

)2−n

− 1

}
+

z

3 − n

{
1 −

(
1 +

t

z

)3−n
}]

where z =

n∑
i=2

ti (5)
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4 Datasets

Various data sets of failure times of different failures obtained by Lyu [2], MUSA
[13], and J.LIU [11], H. Joe and N. Reid [15], J.F. Flawless [16] have been
considered below. Comparison of two reliability estimates and their analysis has
been carried out for these datasets.

4.1 Data Set I

Failure data for 15 samples given by Musa [13] is calculated below. For this

data, we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
= 0.0161 obtained using Eq. (1).

Table 1 gives reliability estimates R̂ (t)and R̃ (t) for different values of failure
time t, obtained using Eqs. (2) and (5) respectively. In these figures, we have
taken failure time on x-axis and reliability is taken on y-axis.

Table 1. MLE and UMVUE of R(t)

Failure No Time(t) R(t)-MLE R(t)-UMVUE

1 10 0.9862 0.9926

2 19 0.9582 0.9765

3 32 0.9003 0.9399

4 43 0.8414 0.8987

5 58 0.7544 0.8305

6 70 0.6835 0.7681

7 88 0.5807 0.6650

8 103 0.5014 0.5730

9 125 0.3985 0.4323

10 150 0.3019 0.2695

11 169 0.2422 0.1465

12 199 0.1687 -0.0420

13 231 0.1131 -0.2318

14 256 0.0821 -0.3704

15 296 0.0485 -0.5725
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Fig. 1. Reliability curves of MLE and UMVUE of R(t)
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From the above Fig. 1, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE decreases rapidly as compare to MLE
with increasing failure time.

4.2 Data Set II

Failure data for 10 samples given by Lyu [2] is calculated below. For this data,

we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
= 0.0263 obtained using Eq. (1). Table 2

gives reliability estimates R̂ (t)and R̃ (t) for different values of failure time t,
obtained using Eq. (2) and (5) respectively. In these figures, we have taken
failure time on x-axis and reliability is taken on y-axis.

Table 2. MLE and UMVUE of R(t)

Failure No. Time(t) R(t)-MLE R(t)-UMVUE

1 7 0.9809 0.9896

2 18 0.9098 0.9459

3 26 0.8404 0.8972

4 36 0.7450 0.8210

5 51 0.6021 0.6836

6 73 0.4196 0.4524

7 93 0.2919 0.2296

8 118 0.1796 -0.0474

9 146 0.1012 -0.3414

10 181 0.0478 -0.6721
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Fig. 2. Reliability curves of MLE and UMVUE of R(t)
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From the above Fig. 2, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE decreases rapidly as compare to MLE
with increasing failure time.

4.3 Data Set III

Failure data for 21 samples given by H. Joe and N. Reid [15] is calculated below.

For this data, we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
= 0.0172 obtained using

Eq. (1). Table 3 gives reliability estimates R̂ (t)and R̃ (t) for different values of
failure time t, obtained using Eqs. (2) and (5) respectively. In these figures, we
have taken failure time on x-axis and reliability is taken on y-axis.

Table 3. MLE and UMVUE of R(t)

Failure No Time(t) R(t)-MLE R(t)-UMVUE

1 15.7 0.9659 0.9818

2 29.39 0.9027 0.9439

3 41.14 0.8353 0.8986

4 56.47 0.7396 0.8261

5 75.61 0.6200 0.7202

6 98.83 0.4872 0.5776

7 112.42 0.4187 0.4904

8 125.61 0.3593 0.4048

9 129.39 0.3435 0.3802

10 133.45 0.3272 0.3538

11 138.94 0.3062 0.3183

12 141.41 0.2971 0.3023

13 143.67 0.2890 0.2877

14 144.63 0.2856 0.2815

15 144.95 0.2845 0.2795

16 145.16 0.2837 0.2781

17 146.25 0.2799 0.2711

18 146.7 0.2784 0.2682

19 147.26 0.2764 0.2646

20 148.15 0.2734 0.2589

21 152.4 0.2593 0.2317
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Fig. 3. Reliability curves of MLE and UMVUE of R(t)
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From the above Fig. 3, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE also decreases with increasing failure
time.

4.4 Data Set IV

Failure data for 15 samples given by MUSA [14] is calculated below. For this

data, we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
=0.034 obtained using Eq. (1).

Table 4 gives reliability estimates R̂ (t)and R̃ (t) for different values of failure
time t, obtained using Eqs. (2) and (5) respectively. In these figures, we have
taken failure time on x-axis and reliability is taken on y-axis.

Table 4. MLE and UMVUE of R(t)

Failure No. Time(t) R(t)-MLE R(t)-UMVUE

1 0.21 0.9578 0.9975

2 0.44 0.9087 0.9971

3 0.71 0.8488 0.9905

4 1.02 0.7794 0.9857

5 1.39 0.6980 0.9795

6 1.83 0.6062 0.9718

7 2.41 0.4966 0.9614

8 3.22 0.3685 0.9469

9 4.61 0.2121 0.9237

10 4.69 0.2053 0.9224

11 4.78 0.1978 0.9211

12 4.86 0.1913 0.9198

13 4.94 0.1850 0.9186

14 5.03 0.1782 0.9173

15 5.11 0.1723 0.9161
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Fig. 4. Reliability curves of MLE and UMVUE of R(t)
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From the above Fig. 4, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE decreases very slowly as compare to
MLE with increasing failure time. We have seen that due to less variation in
failure time in the above data UMVUE has greater value as compare to MLE.

4.5 Data Set V

Failure data for 22 samples given by J.F. Flawless [16] is calculated below. For

this data, we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
= 0.0272 obtained using Eq.

(1). Table 5 gives reliability estimates R̂ (t)and R̃ (t) for different values of failure
time t, obtained using Eqs. (2) and (5) respectively. In these figures, we have
taken failure time on x-axis and reliability is taken on y-axis.

Table 5. MLE and UMVUE of R(t)

Failure No. Time(t) R(t)-MLE R(t)-UMVUE

1 17.88 0.9056 1.0011

2 28.92 0.8034 0.9543

3 33.0 0.7629 0.9338

4 41.52 0.6776 0.8864

5 42.12 0.6717 0.8829

6 45.60 0.6375 0.8620

7 48.40 0.6105 0.8448

8 51.84 0.5781 0.8232

9 51.96 0.5770 0.8224

10 54.12 0.5571 0.8086

11 55.56 0.5441 0.7992

12 67.80 0.4408 0.7180

13 68.64 0.4343 0.7123

14 68.88 0.4324 0.7107

15 84.12 0.3262 0.6071

16 93.12 0.2741 0.5464

17 98.64 0.2458 0.5097

18 105.12 0.2157 0.4672

19 105.84 0.2126 0.4625

20 127.92 0.1344 0.3251

21 128.04 0.1340 0.3244

22 173.4 0.0496 0.0845
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Fig. 5. Reliability curves of MLE and UMVUE of R(t)

From the above Fig. 5, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE decreases very slowly as compare to
MLE with increasing failure time. We have seen that due to less variation in
failure time in the above data UMVUE has greater value as compare to MLE.
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4.6 Data Set VI

Failure data for 31 samples given by J.F. Flawless [16] is calculated below. For

this data, we will consider θ̂ =
−(t−1)+

√
(t−1)

2
+8t

2t
= 0.0629 obtained using Eq.

(1). Table 6 gives reliability estimates R̂ (t) and R̃ (t) for different values of failure
time t, obtained using Eqs. (2) and (5) respectively. In these figures, we have
taken failure time on x-axis and reliability is taken on y-axis.

Table 6. MLE and UMVUE of R(t)

Failure No Time(t) R(t)-MLE R(t)-UMVUE

1 18.83 0.6461 0.9051

2 20.8 0.6021 0.8897

3 21.657 0.5835 0.8828

4 23.03 0.5542 0.8717

5 23.23 0.5500 0.8700

6 24.05 0.5330 0.8633

7 24.321 0.5274 0.8611

8 25.5 0.5097 0.8512

9 25.52 0.5033 0.8511

10 25.8 0.4977 0.8487

11 26.69 0.4804 0.8413

12 26.77 0.4789 0.8406

13 26.78 0.4787 0.8405

14 27.05 0.4735 0.8382

15 27.67 0.4618 0.8330

16 29.9 0.4214 0.8141

17 31.11 0.4005 0.8038

18 33.2 0.3664 0.7861

19 33.73 0.3581 0.7816

20 33.76 0.3577 0.7813

21 33.89 0.3557 0.7802

22 34.76 0.3425 0.7728

23 35.75 0.3279 0.7645

24 35.91 0.3256 0.7631

25 36.98 0.3106 0.7541

26 37.08 0.3092 0.7533

27 37.09 0.3090 0.7532

28 39.58 0.2764 0.7325

29 44.045 0.2251 0.6961

30 45.29 0.2124 0.6862

31 45.381 0.2115 0.6855
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Fig. 6. Reliability curves of MLE and UMVUE of R(t)
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From the above Fig. 6, we observed that as failure time increases reliability of
MLE decreases but reliability of UMVUE decreases very slowly as compare to
MLE with increasing failure time. We have seen that due to less variation in
failure time in the above data UMVUE has greater value as compare to MLE.

5 Conclusion

Quality of software is the best measures for reliability. Reliability helps customers
to have an idea about stability of the software in the long run and to adopt
whether or not to take this software. The data which is obtained during testing
of software can be used to estimate the reliabilty. Statistical estimataion of reli-
ability is considered in this paper. Two reliability estimation have been derived
for Lindley Distibution which is MLE and UMVUE. Six different datasets have
been taken to compare these reliability estimates. It is observed from first three
datasets that Reliability of MLE decreases as failure time increases but Reliabil-
ity of UMVUE decreases fastly as compare to MLE with increasing failure time
so we can conclude that reliability of UMVUE is more efficient as compare to
Reliability of MLE. In dataset fourth, fifth and sixth we observed that as there
is less difference in failure time then reliability of MLE decreases with time
but reliability of UMVUE decreases very slowly due to less difference in failure
time and UMVUE has higher values than MLE. If we constrain to select only
unbiased class of estimators for reliability, Uniform Minimum Variance Unbiased
Estimator is the best in case of smallest variance.
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Abstract. Foaming arises in many processes of absorption and distil-
lation. The drainage of liquid foams involves the interplay of gravity,
surface tension and viscous forces. For the foam density the drainage of
liquid can be represented as a nonlinear partial differential equation as
a function of time and vertical position. In this paper, Combined Shehu
Accelerated Adomian Decomposition method is applied to solve frac-
tional order foam drainage equation. The powerful Shehu Transform(ST)
combined with Accelerated Adomian decomposition method (AADM)
evaluates the approximate solution in the form of infinite series which
converges very rapidly.

Keywords: Foam drainage equation · Shehu transform · Accelerated
Adomian decomposition method · Fractional derivatives

1 Introduction

The concept of Fractional calculus(FC) has been generalized by the theory of
classical calculus perturbed with the operations of differentiation and integration
of arbitrary order. Podlubny [14], Kilbas et al. [9], Miller and Ross [11], Oldham
and Spanier [12], Samko et al. [16] and others are the trailblazer in this field;
from their work it is easy to understand about the theory of fractional calcu-
lus, also the uniqueness and existence to the solution of fractional differential
equations. The application of FC has been manifolded in widespread fields of
engineering and science such as biological population models, signal processing,
viscoelasticity, electromagnetics, optics, electrochemistry, fluid mechanics etc. By
using FC it becomes very easy to describe the physical and mathematical mod-
els. Various numerical and analytical techniques has been proposed in recent
years to solve the partial differential equations(PDEs) in these fields such as
Sumudu Homotopy perturbation transform method [1,2], Homotopy Perturba-
tion method [5,6,18], Natural transform decomposition method [15], fractional
complex transform method [17], Adomian decomposition method [24,25] etc.
Therefore it enhance with all established and newly developed techniques for
solving arbitrary order PDEs.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 317–331, 2023.
https://doi.org/10.1007/978-3-031-29959-9_20
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The system of Foam drainage(FD) is a natural process, is described in [8,10].
Many industrial and technological approach has been formed for foams because
of its significance in real life which includes purification of water, mineral extrac-
tion and cleansing as shown in [8,10]. More than ten years ago, the main features
of both forced drainage, and free drainage were described by Verbist and Weaire.
Due to gravity liquid drains out in free drainage and liquid is introduced in forced
drainage [7,19–23]. Then at a constant rate when some liquid is added a soli-
tary wave of constant velocity is generated. So particularly for the solitary wave,
the best example for certain general circumstances might be the forced foam
drainage described by nonlinear PDEs.

2 The Model

The model is constructed on account of nearly dry foam and thus consider best
in this limit. The size of the bubble and sample are in such a manner that the
equilibrium foam is very dry in many practical cases. Some chief assumptions
are made; such as in the film allowance of liquid flow is neglected completely.
Further we take all the flow at the boundaries with zero velocity. We studied the
flow only along the plateau borders which forms a web of passage gathering in
bipyramidal confluence as a set of N identical pipes of cross section B, which is
a function of position and time and below

∂B(φ, t)
∂t

+
∂

∂φ

(
B(φ, t)2 −

√
B(φ, t)

2
∂B(φ, t)

∂φ

)
= 0 (2.1)

and the exact solution of (2.1) is

B(φ, t) =

{
c tanh(

√
c(φ − ct))2, φ ≤ ct,

0, φ ≥ ct,
(2.2)

where φ, t and c denotes location, time and velocity of the wave front respec-
tively.

If we take B(φ, t) = V(φ, t)2 and rearranging Eq. (2.1) it can be defined as
below

Vt(φ, t) + 2V2(φ, t)Vφ(φ, t) − V2
φ(φ, t) − 1

2
V(φ, t)Vφφ(φ, t) = 0 (2.3)

with initial condition V(φ, 0) = g(φ)
Here, we consider the nonlinear FD equation to solve by using ST and AADM

which is more reliable to get an analytical approximation with rapid convergence
with the exact solution.
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3 Preliminaries

3.1 Some Important Definitions of Fractional Order Derivative

Let τ ∈ R+ such that n = [τ ] + 1 and ψ ∈ AC [τ ]([m, b]) (the space of functions
which have continuous derivatives up to order τ). Then some familiar definitions
of arbitrary order derivatives of order τ can be described as below ([13–16]):

(i) Riemann-Liouville derivative:

RLDτ
mψ(t) =

dn

dtn

∫ t

m

(t − φ)n−τ−1

Γ(n − τ)
ψ(φ)dφ, (t > m), (3.1)

(ii) Caputo derivative:

CDτ
mψ(t) =

∫ t

m

(t − φ)n−τ−1

Γ(n − τ)
ψ(n)(φ)dφ, (t > m). (3.2)

(iii) Grunwald-Letnikov derivative:

Dτψ(t) = lim
h→0

1
hτ

[ t−τ
h ]∑

j=0

(−1)j

(
τ

j

)
ψ(t − jh). (3.3)

where Γ(.) is the Euler gamma function, ψ(n)(x) = dn

dφn ψ(φ), [τ ] is the integral
part of τ . Then the correlation between arbitrary order derivatives in view of
Riemann-Liouville and Caputo can be described as below:

Remark 3.1. If n = [τ ] + 1 and ψ ∈ AC [τ ]([m, b]), then

RLDτ
mψ(t) =C Dτ

mψ(t) +
n−1∑
k=0

(t − m)k−τ

Γ(k − τ + 1)
ψ(k)(m),

and in specific if ψ(t) = (t − m)δ, and δ /∈ Z
−, then

RLDτ
mψ(t) =C Dτ

mψ(t) = Dτ
mψ(t) =

Γ(δ + 1)
Γ(δ + 1 − τ)

(t − m)δ−τ .

Remark 3.2. If τ > 0, and ψ(t) = (t − m)δ with τ − δ − 1 ∈ N0 (the set of all
nonnegative integers), then

RLDτ
mψ(t) =C Dτ

mψ(t) = Dτψ(t) = 0.
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3.2 Shehu Transform

The ST of the function f(t) of exponential order can be described over the set
of the functions:

G =
{

f(t) : ∃ M, μ1, μ2 > 0, |f(t)|< M e

( |t|
μj

)
, if t ∈ (−1)j × [0,∞)

}
,

(3.4)
by the following integral

S{f(t)} = [H(s, u)] =
∫ ∞

0

f(t)e− st
u dt = lim

δ→∞

∫ δ

0

f(t)e− st
u dt, s > 0, u > 0

(3.5)
where operator S is called the Shehu transform operator.
The inverse ST of H(s, u) is given as

S
−1{H(s, u)} = f(t), for t ≥ 0. (3.6)

Equivalently

f(t) = S
−1{H(s, u)} =

1
2πi

∫ δ+i∞

δ−i∞

1
u

e
st
u H(s, u)ds (3.7)

where the operator S−1 is called the inverse Shehu transform operator, s and
u are the variables of Shehu transform, the integral in Eq. (3.7) is taken along
s = δ in the complex plane s = x + iy and δ ∈ R.

Theorem 3.8. The sufficient conditions for the existence of ST:
If the function f(t) is piecewise continuous in every finite interval 0 ≤ t ≤ α
and of exponential order δ for t > α, then it’s ST H(s, u) exists.

Theorem 3.9. ST of the derivatives of the function f(t):
If the function f(t) ∈ G and f (n)(t) is the nth order derivative of f(t) with
respect to t then its ST is defined as:

S

[
f (n)(t)

]
=

sn

un
H(s, u) −

n−1∑
k=0

(
s

u
)n−(k+1)fk(0) (3.10)

Taking n = 1, 2 and 3 in Eq. (3.10), we get

S{f ′(t)} = s
uH(s, u) − f(0)

S{f ′′(t)} = s2

u2 H(s, u) − s
uf(0) − f ′(0)

S{f ′′′(t)} = s3

u3 H(s, u) − s2

u2 f(0) − s
uf ′(0) − f ′′(0)

(3.11)
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Shehu Transform of Some Fundamental Functions

S N f(t) S{f(t)} = H(s, u)

1 1 u
s

2 t (u
s
)2

3 t2 2! (u
s
)3

4 tn, n ∈ N n! (u
s
)(n+1)

5 tn > −1 Γ(n + 1)(u
s
)(n+1)

6 eat u
s−au

7 sinat au2

s2+a2u2

8 cosat us
s2+a2u2

9 sinhat au2

s2−a2u2

10 coshat us
s2−a2u2

3.3 The Combined Shehu Accelerated Adomian Decomposition
Method

To exemplify the elementary idea of ST combined with AADM [24] , we consider
a general nonlinear nonhomogeneous PDE

∂αV(φ, t)
∂tα

+ R[V(φ, t)] + N [V(φ, t)] = g(φ, t) (3.12)

where ∂αV(φ,t)
∂tα is the partial derivative of the function V(φ, t) of order α, R

and N are the general linear and nonlinear differential operators and g(φ, t) is
the source term.

Applying the ST on both sides of Eq. (3.12), we obtain

S

[
∂αV(φ, t)

∂tα

]
+ S[RV(φ, t) + NV(φ, t)] = S[g(φ, t)] (3.13)

Using properties of ST, we obtain

sα

uα
S[V(φ, t)] =

α−1∑
k=0

( s

u

)α−(k+1) ∂kV(φ, 0)
∂tk

+ S[g(φ, t)] − S[RV(φ, t) + NV(φ, t)]

(3.14)
Thus we have

S[V(φ, t)] =
α−1∑
k=0

(u

s

)k+1 ∂kV(φ, 0)
∂tk

+
uα

sα
S[g(φ, t)] − uα

sα
S[RV(φ, t) + NV(φ, t)]

(3.15)
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taking inverse ST on both sides of Eq. (3.15), we obtain

V(φ, t) = G(φ, t) − S
−1

(
uα

sα
S[RV(φ, t) + NV(φ, t)]

)
(3.16)

where G(φ, t) arises from the stipulated initial conditions and the source
term.

Then the solution can be represented as an infinite series as follows

V(φ, t) =
∞∑

n=0

Vn(φ, t). (3.17)

and the nonlinear term can be decomposed as:

NV(φ, t) =
∞∑

n=0

An(V0, V1, ...Vn), (3.18)

here

An = f(Sn) −
n−1∑
i=0

Ai (3.19)

and

An =
1
n!

dn

dλn

[
N

( ∞∑
k=0

λkVk

)]
λ=0

, n = 0, 1, 2, . . . (3.20)

where An are Adomian polynomials of V0, V1, ...Vn [25] An are El-kalla poly-
nomials A0, A1, A2 . . . and f(Sn) represents the substitution of the summation
of dependent variable in the nonlinear term.

puttig Eq. (3.17) and (3.18) in Eq. ( 3.16), we obtain

∞∑
n=0

Vn(φ, t) = G(φ, t) − S
−1

[
uα

sα
S

[
R

∞∑
n=0

Vn(φ, t) +
∞∑

n=0

An(V0, V1, ...Vn)

]]

(3.21)
on comparing both sides of the Eq. (3.21), we obtain

V0(φ, t) = G(φ, t) (3.22)

V1(φ, t) = −S
−1

[
uα

sα
S[RV0(φ, t) + A0V

]
(3.23)

V2(φ, t) = −S
−1

[
uα

sα
S[RV1(φ, t) + A1V

]
(3.24)

V3(φ, t) = −S
−1

[
uα

sα
S[RV2(φ, t) + A2V

]
(3.25)

.

.

.
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In general, the recursive relation can be written as

Vn+1(φ, t) = −S
−1

[
uα

sα
S[RVn(φ, t) + AnV

]
, n ≥ 0 (3.26)

Then, the analytical solution V(φ, t) can be approximated as below

V(φ, t) = lim
N→∞

N∑
n=0

Vn(φ, t), (3.27)

4 Results and Discussion

In this section, we discuss three exemplars to explore the proficiency and appli-
cability of the proposed method. We have implemented Shehu Transform on
fractional order foam drainage equation.

Exemplar 1 :

Let us consider the one-dimensional time dependent FD equation of arbitrary
order α as follows

Dα
t V(φ, t) =

1
2
V(φ, t)Vφφ(φ, t) + V2

φ(φ, t) − 2V2(φ, t)Vφ(φ, t), 0 < α ≤ 1 (4.1)

with initial source
V(φ, 0) =

√
ctanh(

√
cφ) (4.2)

Applying ST and then inverse ST to both sides of Eq. (4.1) we get

V(φ, t) = V(φ, 0)−S
−1

(
uα

sα
S

[
1
2
V(φ, t)Vφφ(φ, t) + V2

φ(φ, t) − 2V2(φ, t)Vφ(φ, t)
])

(4.3)
to decompose the nonlinear term, we apply Accelerated Adomian polynomial

to Eq. (4.7) we get,

∞∑
n=0

Vn(φ, t) = V(φ, 0) − S
−1

[
uα

sα
S

[
1
2

∞∑
n=0

An +
∞∑

n=0

Bn − 2
∞∑

n=0

Cn

]]
(4.4)

where

A0 = V0φφV0

A1 = V0φφV1 + V0V1φφ + V1V1φφ

A2 = V1V2φφ + V0φφV2 + V0V2φφ + V2V1φφ + V2V2φφ

...
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B0 = V0φ
2

B1 = V1φ
2 + 2V0φV1φ

B2 = V2φ
2 + 2V1φV2φ + V2φV0φ

...

C0 = V0
2V0φ

C1 = V1
2V0φ + 2V0V1V0φ + V0

2V1φ + V1
2V1φ + 2V0V1V1φ

C2 = V2
2V0φ + 2V1V2V0φ + 2V0V2V0φ + V2

2V1φ + 2V1V2V1φ + 2V0V2V1φ + V0
2V2φ + V1

2V2φ

+ V2
2V2φ + 2V0V1V2φ + 2V1V2V2φ + 2V0V2V2φ

from Eq. (4.8) we get,
for n = 0,

V0(φ, t) = V(φ, 0) =
√

ctanh(
√

cφ)

for n = 1,

V1(φ, t) = −S
−1

[
uα

sα
S

[
1
2

∞∑
n=0

A0 +
∞∑

n=0

B0 − 2
∞∑

n=0

C0

]]

=
tα

Γ(1 + α)
[
c2(sech

√
cφ)4 − 3c2(sech

√
cφ)2(tanh

√
cφ)2

]
for n = 2,

V2(φ, t) = −S
−1

[
uα

sα
S

[
1

2

∞∑
n=0

A1 +

∞∑
n=0

B1 − 2

∞∑
n=0

C1

]]

=
t2α

Γ(1 + 2α)

(
4c

3
2

tα

Γ(1 + α)
(sech

√
cφ)

2
(tanh

√
cφ)

(
c
2
(sech

√
cφ)

4 − 3c
2
(sech

√
cφ)

2
(tanh

√
cφ)

2

+
2ctα

Γ(1 + α)
(sech

√
cφ)

2
(−10c

5
2 (sech

√
cφ)

4
(tanh

√
cφ) + 6c

5
2 (sech

√
cφ)

2
(tanh

√
cφ)

3
) + . . .

Exemplar 2 :

To check the accuracy, efficiency and reliability of SDM we have considered the
fractional order FD Eq. (2.3) with a different initial condition as follows

Dα
t V(φ, t) =

1
2
V(φ, t)Vφφ(φ, t) + V2

φ(φ, t) − 2V2(φ, t)Vφ(φ, t), 0 < α ≤ 1 (4.5)

with initial source
V(φ, 0) = −1

2
+

1
1 + eφ

(4.6)

Applying ST and then inverse ST to both sides of Eq. (4.1) we get

V(φ, t) = V(φ, 0)−S
−1

(
uα

sα
S

[
1
2
V(φ, t)Vφφ(φ, t) + V2

φ(φ, t) − 2V2(φ, t)Vφ(φ, t)
])

(4.7)
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to decompose the nonlinear term, we apply Accelerated Adomian polynomial
to Eq. (4.7) we get,

∞∑
n=0

Vn(φ, t) = V(φ, 0) − S
−1

[
uα

sα
S

[
1
2

∞∑
n=0

An +
∞∑

n=0

Bn − 2
∞∑

n=0

Cn

]]
(4.8)

where

A0 = V0φφV0

A1 = V0φφV1 + V0V1φφ + V1V1φφ

A2 = V1V2φφ + V0φφV2 + V0V2φφ + V2V1φφ + V2V2φφ

...
B0 = V0φ

2

B1 = V1φ
2 + 2V0φV1φ

B2 = V2φ
2 + 2V1φV2φ + V2φV0φ

...
C0 = V0

2V0φ

C1 = V1
2V0φ + 2V0V1V0φ + V0

2V1φ + V1
2V1φ + 2V0V1V1φ

C2 = V2
2V0φ + 2V1V2V0φ + 2V0V2V0φ + V2

2V1φ + 2V1V2V1φ + 2V0V2V1φ + V0
2V2φ + V1

2V2φ + V2
2V2φ

+ 2V0V1V2φ + 2V1V2V2φ + 2V0V2V2φ

.

.

.

from Eq. (4.8) we get,
for n = 0,

V0(φ, t) = V(φ, 0) = −1
2

+
1

1 + eφ

for n = 1,

V1(φ, t) = −S
−1

[
uα

sα
S

[
1

2

∞∑
n=0

A0 +
∞∑

n=0
B0 − 2

∞∑
n=0

C0

]]

=
tα

Γ(1 + α)

⎡
⎢⎢⎢⎣

e2φ

(1 + eφ)4
+

1

2

(
2e2φ

(1 + eφ)3
− eφ

(1 + eφ)2

) ( −1

2
+

1

1 + eφ

)
+

2eφ
(

−1
2 + 1

1+eφ

)2

(1 + eφ)2

⎤
⎥⎥⎥⎦

for n = 2,

V2(φ, t) = −S
−1

[
uα

sα
S

[
1

2

∞∑
n=0

A1 +
∞∑

n=0
B1 − 2

∞∑
n=0

C1

]]

=
t2α

Γ(1 + 2α)

[
1

2

tα

Γ(1 + α)

(
2e2φ

(1 + eφ)3
− eφ

(1 + eφ)2

) (
e2φ

(1 + eφ)4
+

1

2

(
2e2φ

(1 + eφ)3
− eφ

(1 + eφ)2

)

( −1

2
+

1

1 + eφ

)
+

2eφ
(

−1
2 + 1

1+eφ

)2

(1 + eφ)2
+

(
− 1

2
+

1

1 + eφ

) (
− 16e3φ

(1 + eφ)5
+

4e2φ

(1 + eφ)4

+ e
2φ

(
20e2φ

(1 + eφ)6
− 4eφ

(1 + eφ)5

)
+ . . .
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Exemplar 3 :

Here we have consider another problem of fractional order foam drainage equa-
tion as follows

Dα
t V(φ, t) =

1
4
√V(φ, t)

(Vφ(φ, t))2
√V(φ, t)

2
Vφφ(φ, t)−2V(φ, t)Vφ(φ, t), 0 < α ≤ 1

(4.9)
with initial condition

V(φ, 0) = 3tanh2(
√

3φ) (4.10)

Applying ST and then inverse ST to both sides of Eq. (4.9) we get

V(φ, t) = V(φ, 0) − S
−1

(
uα

sα
S

[
1

4
√V(φ, t)

(Vφ(φ, t))
2

+

√V(φ, t)

2
Vφφ(φ, t) − 2V(φ, t)Vφ(φ, t)

])
(4.11)

to decompose the nonlinear term, we apply Accelerated Adomian polynomial
to Eq. (4.11) we get,

∞∑
n=0

Vn(φ, t) = V(φ, 0)−S
−1

[
uα

sα
S

[
1
4

∞∑
n=0

An +
1
2

∞∑
n=0

Bn − 2
∞∑

n=0

Cn

]]
(4.12)

where

A0 =
1√V0

V2
0φ

A1 =
(V)20φ + (V)21φ + 2V0φV1φ√V0 + V1

− 1√V0

(V)20φ

...

B0 =
√

V0V0φφ

B1 =
√

V0 + V1(V0φφ + V1φφ) −
√

V0V0φφ

...

C0 = V0V0φ

C1 = V0V1φ + V1V0φ + V1V1φ

...

from Eq. (4.12) we get,
for n = 0,

V0(φ, t) = V(φ, 0) = 3tanh2(
√

3φ)
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for n = 1,

V1(φ, t) = −S
−1

[
uα

sα
S

[
1

4

∞∑
n=0

A0 +
1

2

∞∑
n=0

B0 − 2
∞∑

n=0
C0

]]

=
tα

Γ(1 + α)

(
−18

√
3sech[

√
3φ]

2
(

2tanh[
√

3φ]
3

+

√
tanh[

√
3φ]2

(
−sech[

√
3φ]

2
+ tanh[

√
3φ]

2
)))

Table 1. The comparative study of absolute errors for Exemplar-1 at t = 0.2, α = 1
and c=1

φ VExact VSDM |VExact − VSDM |
0 0.197375 0.2 0.0026468

1 0.664037 0.654206 0.00983052

2 0.946806 0.922295 0.0245109

3 0.992632 0.98854 0.00409162

4 0.999 0.99843 0.000569282

5 0.999865 0.999787 0.0000773322

6 0.999982 0.999971 0.0000104711

7 0.999998 0.999996 1.4172 × 10−6

8 1 0.999999 1.91799 × 10−7

9 1 1 2.59572 × 10−8

10 1 1 3.51293 × 10−9

Table 2. The absolute errors between Exact and SDM solution for different value of c
at t = 0.5 and α = 1 for Exemplar-1

φ |VExact − VSDM | at c = 1 |VExact − VSDM | at c = 2

0 0.0378828 0.743633

1 0.0768653 0.121464

2 0.0892258 0.0973875

3 0.0166811 0.00614685

4 0.00235412 0.000364663

5 0.000320397 0.0000215584

6 0.0000433941 1.27424 × 10−6

7 5.87336 × 10−6 7.53151 × 10−8

8 7.94883 × 10−7 4.45156 × 10−9

9 1.07576 × 10−7 2.63113 × 10−10

10 1.45588 × 10−8 1.55513 × 10−11

We have presented the graphs and tables for arbitrary order foam drainage
equation for distinct values of α, φ and t. In Fig. 1 2D plot for exact and analytical
solution are represented which reveals that the value of V increases with the value
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Fig. 1. 2D plot for Exact and SDM solution at c = 1 of Exemplar-1

(a) SDM with α = 1 (b) SDM with α = 0.65

(c) SDM with α = 0.35 (d) SDM with α = 0.15

Fig. 2. 3D plots for arbitrary α with c=1 of exemplar-1

Fig. 3. comparative 2D plot of RDTM and SDM for arbitrary α of exemplar 2
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(a) graph of exact solution (b) SDM with α = 1

(c) SDM with α = 0.35 (d) SDM with α = 0.75

Fig. 4. 3D plots of Exemplar-3 for arbitrary α

of φ upto certain limit then it stabilizes, in Fig. 2 the behaviour of the analytical
solution with distinct α are presented for exemplar-1 where it can be seen that
as the value of α decreases the nature of solitary waves becomes folded. In Fig. 3
a comparative 2D plot is presented between RDTM [7] and SDM with different
values of α for exemplar-2. Here it is shown that the result acquired by the
proposed method is getting nearer to the solution obtained by RDTM as the
value of α decreases. In Fig. 4 the behaviour of the exact and analytical solution
for distinct α are presented for exemplar-3 which reveals that the gap between
the solitary waves increases as the value of α decreases. To show the algorithm is
systematic and accurate we have presented two tables for exemplar-1. In Table-1
a comparative study between exact and analytical solution has been shown and
absolute error has been calculated. In Table-2 by taking different values of c
the absolute errors has been calculated between exact solution and the proposed
method (SDM).

5 Conclusion

We have applied the analytical technique SDM to find approximate solution for
fractional order Foam Drainage equation. The proposed method is perceived to
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be more genuine in comparison with the other techniques. Also the methodol-
ogy is easy to understand to the readers as Shehu Transform is directly imple-
mented to the given equation and to decompose the nonlinear terms we have used
Accelerated Adomian polynomials. Then inverse Shehu Transform is applied to
acquire the analytical solution. To exemplify the methodology illustrative exem-
plars also taken. We have presented two tables which shows the study of absolute
errors between the exact and analytical solutions and the comparative study
between the two analytical techniques i.e. SDM and RDTM [7] using different
α. The solitary wave solutions represents the distinct nonlinear waves which
have the astounding characteristic that retain its specification upon interrelate
with other. Some comparative study is done for showing the analytical results
which are analogous with the exact solutions of the nonlinear problems. It pro-
vides enough accuracy to obtain the approximate solution. Thus to solve the
fractional order as well as classical order nonlinear PDEs we can consider the
proposed method is more suitable and reliable technique.

Acknowledgement. This research work was financially supported by Minor Research
Project under OHEPEE (World Bank), Govt. of Odisha with grant no.- 753/GMU,
Sambalpur.
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7. Gubes, M., Keskin, Y., Oturanç, G.: Numerical solution of time-dependent foam
drainage equation (FDE). Comput. Methods Differ. Equ. 3, 111–122 (2015)

8. Hilgenfeldt, S., Koehler, S.A., Stone, H.A.: Dynamics of coarsening foams: accel-
erated and self-limiting drainage. Phys. Rev. Lett. 20, 4704–4707 (2001)

9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional
Differential Equations. Elsevier, Amstrdam (2006)

10. Koehler, S.A., Stone, H.A., Brenner, M.P., Eggers, J.: Dynamics of foam drainage.
Phys. Rev. E 58, 2097–2106 (1998)

11. Miller, K., Ross, B.: An Introduction to the Fractional Calculus and Fractional
Differential Equations. Wiley, New York (1993)



Solution of Fractional Order Foam Drainage Equation 331

12. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory and Application of Dif-
ferentiation and Integration to Arbitrary order. Academic Press, California (1974)

13. Patra, A., Baliarsingh, P., Dutta, H.: Solution to fractional evolution equation
using Mohand transform. Math. Comput. Simul. 200, 557–570 (2022)

14. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
15. Sahoo, M., Patra, A.: Modified decomposition method based on natural transform

for solving nonlinear differential equations using Newton-Raphson scheme. Int. J.
Appl. Comput. Math 7, 91 (2021)

16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and Derivatives
Theory and Applications, vol. 1993. Gordon and Breach, Yverdon (1993)

17. Shone, T.T., Patra, A.: Solution for non-linear fractional partial differential equa-
tions using fractional complex transform. Int. J. Appl. Comput. Math. 5(3), 1–8
(2019). https://doi.org/10.1007/s40819-019-0673-4

18. Shone, T.T., Patra, A., Mishra, B.B.: Solution of nonlinear fractional quadratic
Riccati differential equations using perturbation method. Int. J. Appl. Comput.
Math. 6(3), 1–11 (2020). https://doi.org/10.1007/s40819-020-00837-y

19. Verbist, G., Weaire, D., Kraynik, A.M.: The foam drainage equation. J. Phys.
Condens. Matter 83, 715–731 (1996)

20. Verbist, G., Weaire, D.: Soluble model for foam drainage. Europhys. Lett. 26,
631–641 (1994)

21. Weaire, D., Hutzler, S., Cox, S., Alonso, M.D., Drenckhan, D.: The fluid dynamics
of foams. J. Phys. Condens. Matter 15, 65–72 (2003)

22. Weaire, D., Hutzler, S.: The Physic of Foams, Oxford University Press, Oxford
(2000)

23. Weaire, D., Hutzler, S., Verbist, G., Peters, E.A.J.: A review of foam drainage.
Adv. Chem. Phys. 102, 315–374 (1997)

24. Ziane, D., Belgacem, R., Bokhari, A.: A new modified Adomian decomposition
method for nonlinear partial differential equations. Open J. Math. Anal. 3, 81–90
(2019)

25. Zhu, Y., Chang, Q., Wu, S.: A new algorithm for calculating Adomian polynomials.
Appl. Math. Comput. 169, 402–416 (2005)

https://doi.org/10.1007/s40819-019-0673-4
https://doi.org/10.1007/s40819-020-00837-y


On a Class of Macrobert’s Type Finite
Integrals Involving Generalized

Hypergeometric Functions

Vidha Kulkarni1(B), Yashoverdhan Vyas1, and Arjun K. Rathie2

1 Department of Mathematics, School of Engineering, Sir Padampat Singhania
University, Bhatewar, Udaipur 313601, Rajasthan, India
kvidha@gmail.com, yashoverdhan.vyas@spsu.ac.in

2 Department of Mathematics, Vedant College of Engineering and Technology
(Rajasthan Technical University), Bundi 323021, Rajasthan, India

Abstract. The classical hypergeometric summation theorems have a
significant role in the theory of generalized hypergeometric functions.
Over the years generalization and extension of classical summation the-
orems for the series q+1Fq, and their applications have been the pre-
dominant area of research. Notably, Masjed-Jamei and Koepf (2018)
extended these classical summation theorems for the series q+1Fq for
q = 1, 2, 3, 4, 5, and explored a variety of provocative instances of their
key discoveries. These findings were recently applied by Jun et al. (2019)
in the evaluation of single integrals, double integrals, and Laplace-type
integrals. The main aim of this paper is to elucidate eleven Eulerian’s
integrals of MacRobert’s type involving generalized hypergeometric func-
tions. This is accomplished by combining an intriguing integral given by
MacRobert with the extended summation theorems due to Masjed-Jamei
and Koepf (2018). Additionally, there are a few interesting specific illus-
trations of our main findings which are based on prior findings derived
by Jun et al. (2019). The results are clear, appealing, and logical along
with the potential for further applications.

Keywords: Generalized hypergeometric function · Classical
summation theorems generalization · Eulerian’s-type integral ·
MacRobert’s integral

Classification:Primary 33C05, 33C20 · Secondary 33C99, 65B10

1 Overview

The well-known generalized hypergeometric function with r numerator and s
denominator parameters is defined [2,20,24] by:

rFs

[
u1, u2, ..., ur

v1, v2, ..., vs
;w

]
= 1 +

∞∑
n=1

∏r
i=1(ui)n∏s
i=1(vi)n

wn

n!
. (1)
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Also, no denominator parameter vi is supposed to be zero or a negative integer.
If any parameter ui is zero or a negative integer, the series terminates. The power
series (1) could be examined using the elementary ratio test, which confirms that
[12]:

(i) If r ≤ s, the series is convergent for all finite w.
(ii) If r = s + 1, the series is convergent, for |w| < 1 and diverges for |w| > 1.
(iii) If r ≥ s + 1, the series diverges for w �= 0.
(iv) If r = s + 1, the series is absolutely convergent on the circle |w| = 1 if

Re

( s∑
i=1

vi −
r∑

i=1

ui

)
> 0

Moreover (u)n in series (1) is widely known as the shifted factorial for any
complex number and is defined by [20, p. 22]:

(u)n =
Γ (u + n)

Γ (u)
=

{
1 (n = 0, u ε C \{0})

u(u + 1)...(u + n − 1) (n ε N, u ε C) (2)

Also, when a generalized hypergeometric function q+1Fq is transformed into a
gamma function, the results are highly relevant and beneficial from applications
perspective. We will discuss the following classical summation theorems, so the
work should stand on its own [1,2,20,24]:

• Gauss’s summation theorem [13, p. 108]:

2F1

[
a, b

c
; 1

]
=

Γ (c − a − b)Γ (c)
Γ (c − a)Γ (c − b)

. (3)

provided Re(c − a − b) > 0.
• Kummer’s summation theorem [13, p. 108]:

2F1

[
a, b

1 + a − b
;−1

]
=

Γ (1 + a − b)Γ (1 + a
2 )

Γ (1 − b + a
2 )Γ (1 + a)

. (4)

• Gauss’s second summation theorem [13, p. 108]:

2F1

[
a, b

1
2 (a + b + 1)

;
1
2

]
=

√
π Γ ( 12 (a + b + 1))

Γ ( 12 (a + 1))Γ ( 12 (b + 1))
. (5)

• Bailey’s summation theorem [13, p. 108]:

2F1

[
a, 1 − a

b
;
1
2

]
=

Γ ( 12b)Γ ( 12 (b + 1))
Γ ( 12 (a + b))Γ ( 12 (b − a + 1)

. (6)

• Dixon’s summation theorem [13, p. 108]:

3F2

[
a, b, c

1 + a − b, 1 + a − c
; 1

]

=
Γ (1 + 1

2a)Γ (1 + a − b)Γ (1 + a − c)Γ (1 − b − c + 1
2a)

Γ (1 + a)Γ (1 − b + 1
2a)Γ (1 − c + 1

2a)Γ (1 + a − b − c)
.

(7)

provided Re(a − 2b − 2c) > −2.
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• Watson’s summation theorem [13, p. 108]:

3F2

[
a, b, c

1
2 (a + b + 1), 2c

; 1
]

=
√

π Γ (c + 1
2 )Γ ( 12 (a + b + 1))Γ (c − 1

2 (a + b − 1))
Γ ( 12 (a + 1))Γ ( 12 (b + 1))Γ (c − 1

2 (a − 1))Γ (c − 1
2 (b − 1))

.

(8)

provided Re(2c − a − b) > −1.

• Whipple’s summation theorem [13, p. 108]:

3F2

[
a, 1 − a, b

c, 2b − c + 1
; 1

]

=
π21−2b Γ (c)Γ (2b − c + 1)

Γ (a
2 + c

2 )Γ (b + a
2 − c

2 + 1
2 )Γ ( 12 − a

2 + c
2 )Γ (b + 1 − 1

2 (a + c))
.

(9)

• Pfaff-Saalschütz’s summation theorem [13, p. 108]:

3F2

[
a, b, − n

c, 1 + a + b − c − n
; 1

]
=

(c − a)n (c − b)n

(c)n (c − a − b)n
. (10)

• Second Whipple’s summation theorem [13, p. 108]:

4F3

[
a, 1 + 1

2a, b, c
1
2a, a − b + 1, a − c + 1

;−1

]
=

Γ (a − b + 1)Γ (a − c + 1)
Γ (a + 1)Γ (a − b − c + 1)

. (11)

• Dougall’s summation theorem [13, p. 108]:

5F4

[
a, 1 + 1

2a, c, d, e
1
2a, a − c + 1, a − d + 1, a − e + 1

; 1

]

=
Γ (a − c + 1)Γ (a − d + 1)Γ (a − e + 1)Γ (a − c − d − e + 1)
Γ (a + 1)Γ (a − d − e + 1)Γ (a − c − e + 1)Γ (a − c − d + 1)

.

(12)

• Second Dougall’s summation theorem [13, p. 108]:

7F6

[
a, 1 + 1

2a, b, c, d, 1 + 2a − b − c − d + n, − n
1
2a, a − b + 1, a − c + 1, a − d + 1, b + c + d − a − n, a + 1 + n

; 1

]

=
(a + 1)n (a − b − c + 1)n (a − b − d + 1)n (a − c − d + 1)n

(a + 1 − b)n (a + 1 − c)n (a + 1 − d)n (a + 1 − b − c − d)n
.

(13)
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Masjed-Jamei and Koepf [11, p. 5] created a detailed relationship lately in
order to expand classical summation theorems:

pFq

[
a1, ..., ap−1, 1
b1, ..., bq−1, m

; z
]

=
Γ (b1)...Γ (bq−1)
Γ (a1)...Γ (ap−1)

Γ (a1 − m + 1)...Γ (ap−1 − m + 1)
Γ (b1 − m + 1)...Γ (bq−1 − m + 1)

(m − 1)!
zm−1

×
{

p−1Fq−1

[
a1 − m + 1, ..., ap−1 − m + 1
b1 − m + 1, ..., bq−1 − m + 1

; z
]

−
(m−2)

p−1Fq−1

[
a1 − m + 1, ..., ap−1 − m + 1
b1 − m + 1, ..., bq−1 − m + 1; z

] }
.

(14)

Using above Eq. (14) classical summation theorems (3) to (13) are generalized
as follows:
(a) Generalization of Gauss’s summation theorem (3) [11, p. 5]:

3F2

[
a, b, 1

c, m
; 1

]

=
Γ (m) Γ (c) Γ (a − m + 1) Γ (b − m + 1)

Γ (a) Γ (b) Γ (c − m + 1)

×
{

Γ (c − m + 1) Γ (c − a − b + m − 1)

Γ (c − a) Γ (c − b)
−

(m−2)

2F1

[
a − m + 1, b − m + 1

c − m + 1
; 1

] }

= γ1.

(15)
(b) Generalization of Kummer’s summation theorem (4) [11, p. 5]:

3F2

[
a, b, 1

m + a − b, m
;−1

]

= (−1)m−1 Γ (m)Γ (a − b + m)Γ (a − m + 1)Γ (b − m + 1)

Γ (a)Γ (b)Γ (a − b + 1)

×
{

Γ (a − b + 1)Γ (1 + 1
2
(a − m + 1))

Γ (2 + a − m))Γ (m − b + 1
2
(a − m + 1)

−
(m−2)

2F1

[
a − m + 1, b − m + 1

1 + a − b
;−1

] }

= γ2.

(16)
(c) Generalization of Gauss’s second summation theorem (5) [11, p. 6]:

3F2

[
a, b, 1

1
2
(1 + a + b), m

;
1

2

]

= 2m−1 Γ (m) Γ ( 1
2
(a + b + 1)) Γ (a − m + 1) Γ (b − m + 1)

Γ (a) Γ (b) Γ (−m + 1 + 1
2
(a + b + 1))

×
{ √

π Γ (−m + 1 + 1
2
(a + b + 1))

Γ (1 + 1
2
(a − m)) Γ (1 + 1

2
(b − m))

−
(m−2)

2F1

[
a − m + 1, b − m + 1

−m + 1 + 1
2
(a + b + 1)

;
1

2

] }

= γ3.

(17)
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(d) Generalization of Bailey’s summation theorem (6) [11, p. 6]:

3F2

[
a, 2m − a − 1, 1

b, m
;
1

2

]

= 2m−1 Γ (m) Γ (b) Γ (a − m + 1) Γ (m − a)

Γ (a) Γ (2m − a − 1) Γ (b − m + 1)

×
{

Γ ( 1
2
(b − m + 1)) Γ ( 1

2
(b − m + 2))

Γ (−m + 1 + 1
2
(a + b)) Γ ( 1

2
(b − a + 1))

−
(m−2)

2F1

[
a − m + 1, m − a

b − m + 1
;
1

2

] }

= γ4.

(18)
(e) Generalization of Dixon’s summation theorem (7) [11, p. 7]:

4F3

[
a, b, c, 1

a − b + m, a − c + m, m
; 1

]

=
Γ (m)Γ (a − b + m)Γ (a − c + m)Γ (a + 1 − m)Γ (b + 1 − m)Γ (c + 1 − m)

Γ (a)Γ (b)Γ (c)Γ (a − b + 1)Γ (a − c + 1)

×
{

Γ ( 1
2
(a + 3 − m))Γ (a − b + 1)Γ (a − c + 1)Γ (−b − c + 1

2
(a + 3m − 1))

Γ (a + 2 − m)Γ (−b + 1
2
(a + m + 1))Γ (−c + 1

2
(a + m + 1))Γ (a − b − c + m)

−
(m−2)

3F2

[
a − m + 1, b − m + 1, c − m + 1

a − b + 1, a − c + 1
; 1

] }

= γ5.

(19)
(f) Generalization of Watson’s summation theorem (8) [11, p. 7]:

4F3

[
a, b, c, 1

1
2 (a + b + 1), 2c + 1 − m, m

; 1

]

=
Γ (m)Γ ( 1

2 (a + b + 1))Γ (2c + 1 − m)Γ (a + 1 − m)Γ (b + 1 − m)Γ (c + 1 − m)

Γ (a)Γ (b)Γ (c)Γ (−m + 1
2 (a + b + 3))Γ (2c − 2m + 2)

×
{ √

π Γ (c − m + 3
2 )Γ (−m + 1

2 (a + b + 3))Γ (c − 1
2 (a + b − 1))

Γ (1 + 1
2 (a − m))Γ (1 + 1

2 (b − m))Γ (c + 1 − 1
2 (a + m))Γ (c + 1 − 1

2 (b + m))

−
(m−2)

3F2

[
a − m + 1, b − m + 1, c − m + 1

−m + 1 + 1
2 (a + b + 1), 2c − 2m + 2

; 1

] }

= γ6.

(20)

(g) Generalization of Whipple’s summation theorem (9) [11, p. 8]:

4F3

[
a, 2m − 1 − a, b, 1

c, 2b − c + 1, m
; 1

]

=
Γ (m)Γ (c)Γ (2b − c + 1)Γ (m − a)Γ (a + 1 − m)Γ (b + 1 − m)

Γ (a)Γ (b)Γ (2m − 1 − a)Γ (c + 1 − m))Γ (2b − c − m + 2)

×
{

π22m−2b−1Γ (c − m + 1)

Γ (−m + 1 + 1
2
(a + c))Γ (−m + 1 + b + 1

2
(a − c + 1))Γ ( 1

2
(1 − a + c))

× Γ (2b − c − m + 2)

Γ (b + 1 − 1
2
(a + c))

−
(m−2)

3F2

[
a − m + 1, b − m + 1, m − a
c − m + 1, 2b − c − m + 2

; 1

] }

= γ7.

(21)
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(h) Generalization of Pfaff-Saalschütz’s summation theorem (10) [11, p. 9]:

4F3

[
a, b, − n + m − 1, 1

c, 1 + a + b − c − n, m
; 1

]

=
(m − 1)! (1 − c)m−1

(1 − a)m−1 (1 − b)m−1

(c − a − b + n)m−1

(n + 2 − m)m−1

×
{

(c − a)n (c − b)n

(c + 1 − m)n (c − a − b + m − 1)n
−

(m−2)

3F2

[
a − m + 1, b − m + 1, −n

c − m + 1, 2 + a + b − c − m − n
; 1

] }

= γ8.

(22)
(i) Generalization of Second Whipple’s summation theorem (11) [11, p. 10]:

5F4

[
a, 1

2
(a + m + 1), b, c, 1

1
2
(a + m − 1), a − b + m, a − c + m, m

;−1

]
= (−1)m−1Γ (m)

× Γ ( 1
2
(a + m − 1))Γ (a − b + m)Γ (a − c + m)Γ ( 1

2
(a − m + 3))Γ (a − m + 1)

Γ (a)Γ (b)Γ (c)Γ ( 1
2
(a + m + 1))Γ ( 1

2
(a − m + 1)))

× Γ (b − m + 1)Γ (c − m + 1)

Γ (a − b + 1)Γ (a − c + 1)
×

{
Γ (1 + a − b)Γ (1 + a − c)

Γ (2 − m + a)Γ (m + a − b − c)

−
(m−2)

4F3

[
a − m + 1, b − m + 1, 1

2
(a − m + 3), c − m + 1

1
2
(a − m + 1), a − b + 1, a − c + 1

;−1

] }

= γ9.

(23)
(j) Generalization of Dougall’s summation theorem (12) [11, p. 10]:

6F5

[
a, 1

2
(a + m + 1), c, d, e, 1

1
2
(a + m − 1), a − c + m, a − d + m, a − e + m, m

; 1

]

=
Γ (m)Γ ( 1

2
(a + m − 1))Γ (a − c + m)Γ (a − d + m)Γ (a − e + m)

Γ (a − c + 1)Γ (a − d + 1)Γ (a − e + 1)

× Γ (a − m + 1)Γ ( 1
2
(a − m + 3))Γ (c + 1 − m)Γ (d + 1 − m)Γ (e + 1 − m)

Γ (a)Γ (c)Γ (d)Γ (e)Γ ( 1
2
(a + m + 1))Γ ( 1

2
(a − m + 1))

×
{

Γ (a − c + 1)Γ (a − d + 1)Γ (a − e + 1)Γ (a − c − d − e + 2m − 1)

Γ (2 − m + a)Γ (a − c − e + m)Γ (a − d − e + m)Γ (a − c − d + m)

−
(m−2)

5F4

[
a − m + 1, c − m + 1, 1

2
(a − m + 3), d − m + 1, e − m + 1

1
2
(a − m + 1), a − c + 1, a − d + 1, a − e + 1

; 1

] }

= γ10.

(24)
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(k) Generalization of Second Dougall’s summation theorem (13) [11, p. 11]:

8F7

[
a, 1

2 (a + m + 1), b, c, d, 2a − b − c − d + 2m − 1 + n, m − n − 1, 1

1
2 (a + m − 1), a − b + m, a − c + m, a − d + m, b + c + d − a + 1 − m − n, a + n + 1, m

; 1

]

= (−1)
m−1

(m − 1)! × ( 1
2 (3 − a − m))m−1(1 − a + b − m)m−1

( 1
2 (1 − a − m))m−1(1 − a)m−1

× (1 − a + c − m)m−1 (1 − a + d − m)m−1 (m + n + a − b − c − d)m−1 (−a − n)m−1

(1 − b)m−1 (1 − c)m−1 (1 − d)m−1 (b + c + d − 2a + 2 − 2m − n)m−1 (n + 2 − m)m−1

×
{

(a − m + 2)n (a − b − c + m)n (a − b − d + m)n (a − c − d + m)n

(a − b + 1)n (a − c + 1)n (a − d + 1)n (a − b − c − d + 2m − 1)n

−
(m−2)
7F6

⎡
⎢⎢⎢⎣

a − m + 1, 1
2 (a − m + 3), b − m + 1, c − m + 1, d − m + 1,

2a − b − c − d + m + n, −n
1
2 (a − m + 1), a − b + 1, a − c + 1, a − d + 1,

b + c + d − a + 2 − 2m − n, a − m + n + 2

; 1

⎤
⎥⎥⎥⎦

}

= γ11.

(25)

It is important to note that for m = 1, the results (15) to (25) reduce to the
results (3) to (13) respectively. We refer to [14–17,21] for various generalizations
and extensions of the results (3) to (13).

Many researchers have examined integral representations of hypergeometric
functions in various forms [10,19] in the last several years. The current work
is primarily driven by the fact that integral representations of hypergeometric
functions are crucial because they can be utilized to derive various relations
between hypergeometric functions as well as to investigate their applications
[8]. The goal of this work is to develop eleven Eulerian’s type integrals involving
generalized hypergeometric functions using the summation theorems (15) to (25),
as well as an intriguing integral due to MacRobert [18]:

∫ 1

0

xα−1(1 − x)β−1[1 + px + q(1 − x)]−α−β dx =
1

(1 + p)α(1 + q)β

Γ (α)Γ (β)
Γ (α + β)

.

(26)
where Re(α) > 0, Re(β) > 0 and the constants p, q are such that no one of the
expressions 1 + p, 1 + q, 1 + px + q(1 − x), where 0 ≤ x ≤ 1, are zero.

There are several prominent specific instances of our key findings. Jun’s
results [12] are specific examples of our main findings. The discoveries of the
paper are uncomplicated, timely, transparent and they have the capability to be
significant.

2 Eulerian’s Type Integrals

The eleven different categories of Eulerian’s type integrals incorporating general-
ized hypergeometric functions that will be developed in the paper are established
by the underlying theorems:

Theorem 1. For m ∈ N, Re(b) > 0, Re(c−b) > 0, Re(c−a−b+m) > 1 and the
constants p, q are such that no one of the expressions 1+p, 1+q, 1+px+q(1−x),
where 0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:
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∫ 1

0

xb−1(1 − x)c−b−1[1 + px + q(1 − x)]−c
2F1

[
a, 1
m

;
(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)c−b

Γ (b)Γ (c − b)
Γ (c)

γ1.

(27)
where γ1 is the same as given in (15).

Proof. In order to establish Theorem 1, we indicated the left-hand side of (27)
by I, presented 2F1 as a series, reversed the order of integration and summation
as a series, and determined the beta integral employing (26). The outcomes were
as follows:

I =
∞∑

n=0

(a)n(1)n

(m)nn!
Γ (b + n)Γ (c − b)

Γ (c + n)
1

(1 + p)b(1 + q)c−b

After further modification and utilizing (2), we obtained:

I =
Γ (b)Γ (c − b)

Γ (c)
1

(1 + p)c(1 + q)c−b

∞∑
n=0

(a)n(b)n(1)n

(c)n(m)nn!

By concluding the series,the result obtained by us is as follows:

I =
1

(1 + p)c(1 + q)c−b

Γ (b)Γ (c − b)
Γ (c) 3F2

[
a, b, 1
c, m

; 1
]

Now, we observe that the result (15) can be employed to assess 3F2, and we
can simply reach the correct side of (27). This complete explanation of the
Theorem 1.

Corollary 1. In theorem (27), if we take m = 2, 3 (excluding the trivial case of
m = 1). We subsequently get following result:

∫ 1

0
xb−1(1 − x)c−b−1[1 + px + q(1 − x)]−c

2F1

[
a, 1

2
;

(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)c−b

Γ (b − 1)

(a − 1)Γ (c − 1)

{
Γ (c − 1)Γ (c − a − b + 1) − Γ (c − a)Γ (c − b)

Γ (c − a)

}
,

and
∫ 1

0

xb−1(1 − x)c−b−1[1 + px + q(1 − x)]−c
2F1

[
a, 1
3

;
(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)c−b

2Γ (b − 2)Γ (c − b)
Γ (c − 2)(a − 2)2

×
{

Γ (c − 2)Γ (c − a − b + 2)
Γ (c − a)Γ (c − b)

− ab + c − 2a − 2b + 2
c − 2

}
.
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Further, if we put p = q in theorem (27), it gives result obtained earlier by Jun
et al. [12].

∫ 1

0

xb−1(1 − x)c−b−1
2F1

[
a, 1
m

;x
]
dx =

Γ (b)Γ (c − b)
Γ (c)

γ1.

where γ1 is the same as given in (15).

The following theorems and the corresponding corollaries can be obtained by
employing the results (16) to (25). Hence they are given here without proof.

Theorem 2. For m ∈ N, Re(b) > 0, Re(a−2b+m) > 0 and the constants p, q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:

∫ 1

0
xb−1(1 − x)a−2b+m−1[1 + px + q(1 − x)]b−a−m

2F1

[
a, 1

m
;

−(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)a−2b+m

Γ (b)Γ (a − 2b + m)

Γ (a − b + m)
γ2.

(28)

where γ2 is the same as given in (16).

Corollary 2. In Theorem 2, if we take m = 2, 3 (excluding the trivial case of
m = 1). We subsequently gain following conclusion:

∫ 1

0

xb−1(1 − x)a−2b+1[1 + px + q(1 − x)]b−a−2
2F1

[
a, 1

2
;

−(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)a−2b+2

Γ (b − 1)Γ (a − 2b + 2)

(a − 1)Γ (a − b + 1)

{
1 − Γ (1 + a − b)Γ ( 1

2
(a + 1))

Γ (a)Γ ( 1
2
(a + 3) − b)

}
,

and
∫ 1

0

xb−1(1 − x)a−2b+2[1 + px + q(1 − x)]b−a−3
2F1

[
a, 1
3

;
−(1 + p)x

1 + px + q(1 − x)

]
dx

=
1

(1 + p)b(1 + q)a−2b+3

2Γ (b − 2)Γ (a − 2b + 3)
Γ (a − b + 1)(a − 2)2

×
{

Γ (a − b + 1)Γ (a
2 )

Γ (a − 1)Γ (−b + 2 + a
2 )

− 3a + b − ab − 3
a − b + 1

}
.

Further, if we put p = q in Theorem 2, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xb−1(1 − x)a−2b+m−1
2F1

[
a, 1
m

;−x

]
dx =

Γ (b)Γ (a − 2b + m)
Γ (a − b + m)

γ2.

where γ2 is the same as given in (16).
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Theorem 3. For m ∈ N, Re(b) > 0, Re(a − b + 1) > 0 and the constants p, q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:

∫ 1

0
xb−1(1 − x)

1
2 (a−b−1)[1 + px + q(1 − x)]−

1
2 (a+b+1)

2F1

[
a, 1

m
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)
1
2 (a−b+1)

Γ (b)Γ ( 1
2
(a − b + 1)

Γ ( 1
2
(a + b + 1)

γ3.

(29)
where γ3 is the same as given in (17).

Corollary 3. In Theorem 3, if we take m = 2, 3 (excluding the trivial case of
m = 1). We subsequently gain following conclusion:

∫ 1

0
xb−1(1 − x)

1
2 (a−b−1)[1 + px + q(1 − x)]−

1
2 (a+b+1)

2F1

[
a, 1

2
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)
1
2 (a−b+1)

Γ (b)Γ ( 1
2
(a − b + 1))

Γ ( 1
2
(a + b + 1))

a + b − 1

(a − 1)(b − 1)

×
{√

π Γ ( 1
2
(a + b − 1))

Γ (a
2
)Γ ( b

2
)

− 1

}
,

and
∫ 1

0
xb−1(1 − x)

1
2 (a−b−1)[1 + px + q(1 − x)]−

1
2 (a+b+1)

2F1

[
a, 1

3
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)
1
2 (a−b+1)

Γ (b)Γ ( 1
2
(a − b + 1))

Γ ( 1
2
(a + b + 1))

2(a + b − 1)(a + b − 3)

(a − 2)2(b − 2)2

×
{√

πΓ ( 1
2
(a + b − 3))

Γ (a−1
2

)Γ ( b−1
2

)
− ab − a − b + 1

a + b − 3

}
.

Further, if we put p = q in Theorem 3, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xb−1(1 − x)
1
2 (a−b−1)

2F1

[
a, 1
m

;
1
2
x

]
dx =

Γ (b)Γ ( 12 (a − b + 1))
Γ ( 12 (a + b + 1))

γ3.

where γ3 is the same as given in (17).

Theorem 4. For m ∈ N, Re(b) > 0, Re(b − a) > 0 and the constants p , q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:

∫ 1

0
xa−1(1 − x)b−a−1[1 + px + q(1 − x)]−b

2F1

[
2m − a − 1, 1

m
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)b−a

Γ (a)Γ (b − a)

Γ (b)
γ4.

(30)
where γ4 is the same as given in (18).



342 V. Kulkarni et al.

Corollary 4. In Theorem 4, if we take m = 2, 3 (excluding the trivial case of
m = 1). We subsequently gain following conclusion:

∫ 1

0

xa−1(1 − x)b−a−1[1 + px + q(1 − x)]−b
2F1

[
3 − a, 1

2
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)b−a

Γ (a) Γ (b − a)

Γ (b)

2(1 − b)

(1 − a)2

×
{

Γ ( b−1
2

) Γ ( b
2
)

Γ ( 1
2
(a + b) − 1) Γ ( 1

2
(b − a + 1))

− 1

}
,

and∫ 1

0

xa−1(1 − x)b−a−1[1 + px + q(1 − x)]−b
2F1

[
5 − a, 1

3
;
1

2

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)b−a

Γ (a) Γ (b − a)

Γ (b)

8(b − 2)2
(a − 4)4

×
{

Γ ( 1
2
(b − 1)) Γ ( 1

2
(b − 2))

Γ ( 1
2
(a + b) − 2) Γ ( 1

2
(b − a + 1))

− 5a − a2 + 2b − 10

2(b − 2)

}
.

Further, if we put p = q in Theorem 4, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xa−1(1 − x)b−a−1
2F1

[
2m − a − 1, 1

m
;
1
2
x

]
dx =

Γ (a)Γ (b − a)
Γ (b)

γ4.

where γ4 is the same as given in (18).

Theorem 5. For m ∈ N, Re(c) > 0, Re(a−2c+m) > 0 and the constants p, q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:
∫ 1

0
x
c−1

(1 − x)
a−2c+m−1

[1 + px + q(1 − x)]
c−a−m

3F2

[
a, b, 1

a − b + m, m
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+m

Γ (c)Γ (a − 2c + m)

Γ (a − c + m)
γ5.

(31)
where γ5 is the same as given in (19).

Corollary 5. In Theorem 5, if we take m = 1, 2, 3, we subsequently gain fol-
lowing conclusion:

∫ 1

0

xc−1(1 − x)a−2c[1 + px + q(1 − x)]c−a−1
2F1

[
a, b

a − b + 1
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+1

× Γ (c) Γ (1 + a − 2c) Γ (1 + a
2
) Γ (1 + a − b) Γ (1 + a

2
− b − c)

Γ (1 + a) Γ (1 + a
2

− b) Γ (1 + a
2

− c) Γ (1 + a − b − c)
,
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∫ 1

0
x
c−1

(1 − x)
a−2c+1

[1 + px + q(1 − x)]
c−a−2

3F2

[
a, b, 1

a − b + 2, 2
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+2

Γ (c − 1)Γ (a − 2c + 2)(a − b + 1)

Γ (a − c + 1) (a − 1) (b − 1)

×
{

Γ ( 1
2 (a + 1))Γ (1 + a − b)Γ (1 + a − c)Γ ( a

2 − b − c + 5
2 )

Γ (a)Γ ( a
2 − b + 3

2 )Γ ( a
2 − c + 3

2 )Γ (2 + a − b − c)
− 1

}
,

and∫ 1

0
x
c−1

(1 − x)
a−2c+2

[1 + px + q(1 − x)]
c−a−3

3F2

[
a, b, 1

a − b + 3, 3
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+3

Γ (c)Γ (a − 2c + 3)

Γ (a − c + 3)

2(a − b + 1)2 (a − c + 1)2

(a − 2)2 (b − 2)2 (c − 2)2

×
{

Γ ( a
2 )Γ (1 + a − b)Γ (1 + a − c)Γ ( a

2 − b − c + 4)

Γ (a − 1)Γ ( a
2 − b + 2)Γ ( a

2 − c + 2)Γ (3 + a − b − c)
− (a − 2) (b − 2) (c − 2)

(a − b + 1) (a − c + 1)
− 1

}
.

Further, if we put p = q in Theorem 5, it gives result obtained earlier by Jun et
al. [12].∫ 1

0

xc−1(1 − x)a−2c+m−1
3F2

[
a, b, 1

a − b + m, m
;x

]
dx =

Γ (c)Γ (a − 2c + m)
Γ (a − c + m)

γ5.

where γ5 is the same as given in (19).

Theorem 6. For m ∈ N, Re(c) > 0 and the constants p, q are such that no
one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where 0 ≤ x ≤ 1, are
zero. As a result, the following conclusion is correct:

∫ 1

0
x
c−1

(1 − x)
c−m

[1 + px + q(1 − x)]
m−2c−1

3F2

[
a, b, 1

1
2 (a + b + 1), m

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)c−m+1

Γ (c)Γ (c − m + 1)

Γ (2c − m + 1)
γ6.

(32)
where γ6 is the same as given in (20).

Corollary 6. In Theorem 6, if we take m = 1, 2, 3, we subsequently gain fol-
lowing conclusion:∫ 1

0

xc−1(1 − x)c−1[1 + px + q(1 − x)]−2c
2F1

[
a, b

1
2
(a + b + 1)

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)c

Γ (c)Γ (c)

Γ (2c)

×
√

π Γ (c + 1
2
) Γ ( 1

2
(a + b + 1)) Γ (c − 1

2
(a + b − 1))

Γ ( 1
2
(a + 1)) Γ ( 1

2
(b + 1)) Γ (c − 1

2
(a − 1)) Γ (c − 1

2
(b − 1))

,

∫ 1

0
xc−1(1 − x)c−2[1 + px + q(1 − x)]1−2c

3F2

[
a, b, 1

1
2
(a + b + 1), 2

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)c−1

Γ (c)Γ (c − 1)

Γ (2c − 1)

a + b − 1

(a − 1) (b − 1)

×
{√

π Γ (c − 1
2
)Γ ( 1

2
(a + b − 1))Γ (c − 1

2
(a + b − 1))

Γ (a
2
)Γ ( b

2
)Γ (c − a

2
)Γ (c − b

2
)

− 1

}
,
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and∫ 1

0
x
c−1

(1 − x)
c−3

[1 + px + q(1 − x)]
2−2c

3F2

[
a, b, 1

1
2 (a + b + 1), 3

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)c−2

Γ (c)Γ (c − 2)

Γ (2c − 2)

(2c − 3)(a + b − 1)(a + b − 3)

(a − 2)2(b − 2)2(c − 1)

×
{ √

πΓ (c − 3
2 )Γ ( 1

2 (a + b − 3))Γ (c − 1
2 (a + b − 1))

Γ ( a−1
2 )Γ ( b−1

2 )Γ (c − a+1
2 )Γ (c − b+1

2 )
− (a − 2)(b − 2)

a + b − 3
− 1

}
.

Further, if we put p = q in Theorem 6, it gives result obtained earlier by Jun et
al. [12].∫ 1

0

xc−1(1 − x)c−m
3F2

[
a, b, 1

1
2 (a + b + 1), m

;x
]
dx =

Γ (c)Γ (c − m + 1)
Γ (2c − m + 1)

γ6.

where γ6 is the same as given in (20).

Theorem 7. For m ∈ N, Re(a) > 0, Re(c − a) > 0 and the constants p, q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

3F2

[
2m − 1 − a, b, 1

2b − c + 1, m
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)
γ7.

(33)
where γ7 is the same as given in (21).

Corollary 7. In Theorem 7, if we take m = 1, 2, 3, we subsequently gain fol-
lowing conclusion:∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

2F1

[
1 − a, b

2b − c + 1
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

π21−2bΓ (a)Γ (c − a)Γ2b − c + 1

Γ ( 1
2 (a + c))Γ (b + 1

2 (a − c + 1))Γ ( 1
2 (1 − a + c))Γ (b + 1 − 1

2 (a + c))
,

∫ 1

0
xa−1(1 − x)c−a−1[1 + px + q(1 − x)]−c

3F2

[
3 − a, b, 1

2b − c + 1, 2
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)

(c − 1)(c − 2b)

(a − 2)2(b − 1)

×
{

π23−2bΓ (c − 1)Γ (2b − c)

Γ ( 1
2
(a + c) − 1)Γ (b + 1

2
(a − c + 1))Γ ( 1

2
(1 + a − c))Γ (b + 1 − 1

2
(a + c))

− 1

}
,

and∫ 1

0
xa−1(1 − x)c−a−1[1 + px + q(1 − x)]−c

3F2

[
5 − a, b, 1

2b − c + 1, 3
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)

2(c − 2)2 2b − c + 12

(a − 4)2(b − 2)2

×
{

π25−2bΓ (c − 2)Γ (2b − c − 1)

Γ ( 1
2
(a + c) − 2)Γ (b + 1

2
(a − c − 3))Γ ( 1

2
(1 − a + c))Γ (b + 1 − 1

2
(a + c))

− (a − 2)(3 − a)(b − 2)

(c − 2)(2b − c − 1)
− 1

}
.
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Further, if we put p = q in Theorem 7, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xa−1(1 − x)c−a−1
3F2

[
2m − 1 − a, b, 1

2b − c + 1, m
;x

]
dx =

Γ (a)Γ (c − a)
Γ (c)

γ7.

where γ7 is the same as given in (21).

Theorem 8. For m ∈ N, Re(a) > 0, Re(c − a) > 0 and the constants p, q
are such that no one of the expressions 1 + p, 1 + q, 1 + px + q(1 − x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:

∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

3F2

[
−n + m − 1, b, 1

1 + a + b − c − n, m
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)
γ8.

(34)

where γ8 is the same as given in (22).

Corollary 8. In Theorem 8, if we take m = 1, 2, 3, we subsequently gain fol-
lowing conclusion:

∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

2F1

[ −n, b

1 + a + b − c − n
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)

(c − a)n(c − b)n

(c)n(c − a − b)n
,

∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

3F2

[ −n + 1, b, 1

1 + a + b − c − n, 2
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)

(1 − c)(c − a − b + n)

n(1 − a)(1 − b)

×
{

(c − a)n(c − b)n

(c − 1)n(c − a − b + 1)n
− 1

}
,

and
∫ 1

0
x
a−1

(1 − x)
c−a−1

[1 + px + q(1 − x)]
−c

3F2

[ −n + 2, b, 1

1 + a + b − c − n, 3
;

(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)a(1 + q)c−a

Γ (a)Γ (c − a)

Γ (c)

2(1 − c)2(c − a − b + n)2

n(1 − a)2(1 − b)2

×
{

(c − a)n(c − b)n

(c − 2)n(c − a − b + 2)n
+

n(a − 2)(b − 2)

(c − 2)(a + b − c − n − 1)
− 1

}
.

Further, if we put p = q in Theorem 8, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xa−1(1 − x)c−a−1
3F2

[ −n + m − 1, b, 1
1 + a + b − c − n, m

;x
]
dx =

Γ (a)Γ (c − a)
Γ (c)

γ8.

where γ8 is the same as given in (22).
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Theorem 9. For m ∈ N, Re(a) > 0, Re(a − 2b + m) > 0 and the constants
p, q are such that no one of the expressions 1+p, 1+q, 1+px+q(1−x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:

∫ 1

0

xb−1(1 − x)a−2b+m−1[1 + px + q(1 − x)]b−a−m

× 4F3

[
a, 1

2 (a + m + 1), c, 1
1
2 (a + m − 1), a − c + m, m

;
−(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+m

Γ (b)Γ (a − 2b + m)
Γ (a − b + m)

γ9.

(35)

where γ9 is the same as given in (23).

Corollary 9. In Theorem 9, if we take m = 1, 2, 3, we subsequently gain fol-
lowing conclusion:

∫ 1

0
x
b−1

(1 − x)
a−2b

[1 + px + q(1 − x)]
b−a−1

3F2

[
a, 1

2 (a + 2), c
a
2 , a − c + 1

;
−(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+1

Γ (b)Γ (a − 2b + 1)Γ (1 + a − c)

Γ (1 + a)Γ (1 + a − b − c)
,

∫ 1

0

xb−1(1 − x)a−2b+1[1 + px + q(1 − x)]b−a−2

× 4F3

[
a, 1

2 (a + 3), c, 1
a+1
2 , a − c + 2, 2

;
−(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+2

Γ (b)Γ (a − 2b + 2)
Γ (a − b + 2)

(1 + a − b)(1 + a − c)
(a + 1)(b − 1)(c − 1)

×
{

1 − Γ (1 + a − b)Γ (1 + a − c)
Γ (a)Γ (2 + a − b − c)

}
,

and
∫ 1

0

xb−1(1 − x)a−2b+2[1 + px + q(1 − x)]b−a−3

× 4F3

[
a, 1

2 (a + 4), c, 1
a+2
2 , a − c + 3, 3

;
−(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+3

Γ (b)Γ (a − 2b + 3)
Γ (a − b + 3)

2(1 + a − b)2(1 + a − c)2
(a + 2)(a − 1)(b − 2)2(c − 2)2

×
{

Γ (1 + a − b)Γ (1 + a − c)
Γ (a − 1)Γ (3 + a − b − c)

+
a(b − 2)(c − 2)

(1 + a − b)(1 + a − c)
− 1

}
.
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Further, if we put p = q in Theorem 9, it gives result obtained earlier by Jun et
al. [12].

∫ 1

0

xb−1(1 − x)a−2b+m−1
4F3

[
a, 1

2 (a + m + 1), c, 1
1
2 (a + m − 1), a − c + m, m

;−x

]
dx

=
Γ (a)Γ (a − 2b + m)

Γ (a − b + m)
γ9.

where γ9 is the same as given in (23).

Theorem 10. For m ∈ N, Re(b) > 0, Re(a − 2c + m) > 0 and the constants
p, q are such that no one of the expressions 1+p, 1+q, 1+px+q(1−x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:
∫ 1

0

xc−1(1 − x)a−2c+m−1[1 + px + q(1 − x)]c−a−m

× 5F4

[
a, 1

2 (a + m + 1), d, e, 1
1
2 (a + m − 1), a − d + m, a − e + m, m

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+m

Γ (c)Γ (a − 2c + m)
Γ (a − c + m)

γ10.

(36)
where γ10 is the same as given in (24).

Corollary 10. In Theorem 10, if we take m = 1, 2, 3, we subsequently gain
following conclusion:

∫ 1

0

xc−1(1 − x)a−2c[1 + px + q(1 − x)]c−a−1

× 4F3

[
a, 1

2 (a + 2), d, e
a
2 , a − d + 1, a − e + 1

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c

× Γ (c)Γ (a − 2c)Γ (a − 2c + 1)Γ (1 + a − d)Γ (1 + a − e)Γ (1 + a − c − d − e)
Γ (1 + a)Γ (1 + a − d − e)Γ (1 + a − c − e)Γ (1 + a − c − d)

,

∫ 1

0

xc−1(1 − x)a−2c+1[1 + px + q(1 − x)]c−a−2

× 5F4

[
a, 1

2 (a + 3), d, e, 1
1
2 (a + 1), a − d + 2, a − e + 2, 2

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+2
× Γ (c)Γ (a − 2c + 2)

Γ (a − c + 2)
(1 + a − c)(1 + a − d)(1 + a − e)

(1 + a)(c − 1)(d − 1)(e − 1)

×
{

Γ (1 + a − c)Γ (1 + a − d)Γ (1 + a − e)Γ (3 + a − c − d − e)
Γ (a)Γ (2 + a − d − e)Γ (2 + a − c − e)Γ (2 + a − c − d)

− 1

}
,
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and ∫ 1

0
xc−1(1 − x)a−2c+2[1 + px + q(1 − x)]c−a−3

× 5F4

[
a, 1

2
(a + 4), d, e, 1

1
2
(a + 2), a − d + 3, a − e + 3, 3

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)c(1 + q)a−2c+3
× Γ (c)Γ (a − 2c + 3)

Γ (a − c + 3)

2(1 + a − c)2(1 + a − d)2(1 + a − e)2

(a − 1)(a + 2)(c − 2)2(d − 2)2(e − 2)2

×
{

Γ (1 + a − c)Γ (1 + a − d)Γ (1 + a − e)Γ (5 + a − c − d − e)

Γ (a − 1)Γ (3 + a − d − e)Γ (3 + a − c − e)Γ (3 + a − c − d)

− a(c − 2)(d − 2)(e − 2)

(1 + a − c)(1 + a − d)(1 + a − e)
− 1

}
.

Further, if we put p = q in Theorem 10, it gives result obtained earlier by Jun
et al. [12].

∫ 1

0
xc−1(1 − x)a−2c+m−1

5F4

[
a, 1

2
(a + m + 1), d, e, 1

1
2
(a + m − 1), a − d + m, a − e + m, m

;x

]
dx

=
Γ (c)Γ (a − 2c + m)

Γ (a − c + m)
γ10.

where γ10 is the same as given in (24).

Theorem 11. For m ∈ N, Re(b) > 0, Re(a − 2b + m) > 0 and the constants
p, q are such that no one of the expressions 1+p, 1+ q, 1+px+ q(1−x), where
0 ≤ x ≤ 1, are zero. As a result, the following conclusion is correct:∫ 1

0

xb−1(1 − x)a−2b+m−1[1 + px + q(1 − x)]b−a−m

× 7F6

[
A, B, C, D, E, F , 1

G, H, I, J, K, m
;

(1 + p)x
[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+m

Γ (b)Γ (a − 2b + m)
Γ (a − b + m)

γ11.

(37)

where A = a, B = 1
2 (a + m + 1), C = c, D = d, E = 2a − b − c − d + 2m + n −

1, F = m − n − 1, G = 1
2 (a + m − 1), H = a − c + m, I = a − d + m, J =

b + c + d − a − m − n + 1, K = a + n + 1 and γ11 is the same as given in (25).

Corollary 11. In Theorem 11, if we take m = 1, 2, 3, we subsequently gain
following conclusion:

∫ 1

0
xb−1(1 − x)a−2b[1 + px + q(1 − x)]b−a−1

× 6F5

[
a, 1

2
(a + 2), c, d, 2a − b − c − d + n + 1, − n

a
2
, a − c + 1, a − d + 1, b + c + d − a − n, a + n + 1

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+1
× Γ (b)Γ (a − 2b + 1)

Γ (a − b + 1)

× (1 − a)n(a − b − c + 1)n(a − b − d + 1)n(a − c − d + 1)n

(1 + a − b)n(1 + a − c)n(1 + a − d)n(1 + a − b − c − d)n
,
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∫ 1

0
x
b−1

(1 − x)
a−2b+1

[1 + px + q(1 − x)]
b−a−2

× 7F6

[
a, 1

2 (a + 3), c, d, 2a − b − c − d + n + 3, 1 − n, 1

1
2 (a + 1), a − c + 2, a − d + 2, b + c + d − a − n − 1, a + n + 1, 2

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+2

Γ (b)Γ (a − 2b + 2)

Γ (a − b + 2)

× (b − a − 1)(c − a − 1)(d − a − 1)(n + 2 + a − b − c − d)(a + n)

n(1 + a)(1 − b)(1 − c)(1 − d)(b + c + d − 2a − 2 − n)

×
{
1 − (a)n(a − b − c + 2)n(a − b − d + 2)n(a − c − d + 2)n

(1 + a − b)n(1 + a − c)n(1 + a − d)n(3 + a − b − c − d)n

}
,

and
∫ 1

0
x
b−1

(1 − x)
a−2b+2

[1 + px + q(1 − x)]
b−a−3

× 7F6

[
a, 1

2 (a + 4), c, d, 2a − b − c − d + n + 5, 2 − n, 1

1
2 (a + 2), a − c + 3, a − d + 3, b + c + d − a − n − 2, a + n + 1, 3

;
(1 + p)x

[1 + px + q(1 − x)]

]
dx

=
1

(1 + p)b(1 + q)a−2b+3

Γ (b)Γ (a − 2b + 3)

Γ (a − b + 3)

× (a − 2)(b − a − 2)2(c − a − 2)2(d − a − 2)2(−a − n)2(3 + n + a − b − c − d)2

(a + 2)(1 − a)2(1 − b)2(1 − c)2(1 − d)2(n − 1)2(b + c + d − 2a − 4 − n)2

×
{

(a − 1)n(a − b − c + 3)n(a − b − d + 3)n(a − c − d + 3)n

(a − b + 1)n(a − c + 1)n(a − d + 1)n(a − b − c − d + 5)n

+
na(b − 2)(c − 2)(d − 2)(2a − b − c + n − 3)

(a − b + 1)(a − c + 1)(a − d + 1)(b + c + d − a − n − 4)(n + a − 1)
− 1

}
.

Further, if we put p = q in Theorem 11, it gives result obtained earlier by Jun
et al. [12].

∫ 1

0
x
b−1

(1 − x)
a−2b+m−1

× 7F6

[
a, 1

2 (a + m + 1), c, d, 2a − b − c − d + 2m + n − 1, m − n − 1, 1
1
2 (a + m − 1), a − c + m, a − d + m, b + c + d − a − m − n + 1, a + n + 1, m

; x

]
dx

=
Γ (b)Γ (a − 2b + m)

Γ (a − b + m)
γ11.

where γ11 is the same as given in (25).

Remark: For other recent interesting papers, we refer to [3–7,9,22,23].

Conclusion

We have evaluated eleven Eulerian’s type integrals involving generalized hyperge-
ometric functions in terms of gamma function by implementing recently obtained
summation theorems by Masjed-Jamei and Koepf. The specific instance of our
primary results is the conclusion that Jun et al. [12] previously achieved. The
results are straightforward, intriguing, and simple to prove. They might be help-
ful in the fields of mathematical physics and classical analysis for modelling and
computation.
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Possible Applications and Future work

It has already been pointed that in the year 2018, Jamei and Koepf have gener-
alized several classical summation theorem for the series 2F1, 3F2, 4F3, 5F4 and
6F5. Therefore, in near future, by employing the above mentioned general sum-
mation theorems, we are planning to establish interesting results related to Dou-
ble integrals, Laplace-type integrals and Convolution-type of integrals involving
generalized hypergeometric functions in the form of a series of research papers
in this direction.

Acknowledgements. The authors are highly thankful to learned reviewers for pro-
viding the references [3–7,9,22,23].
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Thermofluidics Involving Deforming Sheet
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Abstract. This communication presents themicropolar thermo-fluidics and asso-
ciated irreversibility confronted in a setup involving a sheet shrinking in an expo-
nential fashion. The sheet placed at the bottom of fluid saturated porous medium
bears non uniform prescribed temperature. A suction is applied transverse to the
flowdirection for containing the vorticity to facilitate laminarmotion.The tthermo-
fluidics involved is governed by the PDE boundary value problem. To change the
governing PDEs into ODEs, a similarity transformation is invoked. The result-
ing BVP is solved numerically by shooting technique. The strategy yields a dual
solution system for the momentum, micropolar, and energy equations. The quan-
tities thus obtained are prerequisite to compute entropy. The effects of embed-
ded parameters on quantities of interest are depicted in tabular form/graphs and
discussed.

Keywords: Micropolar Fluid · Heat Transfer · Entropy · Dual Solution ·
Deforming Sheet · Porous Medium

1 Introduction

Thermo-fluidics due to stretching or shrinking surfaces is significant in technological
applications [1–3]. Recent research conducted by Liao [4, 5] investigated a variety of
potential solutions for the flow in presence of both permeable and impermeable stretched
surfaces. The flow configurations involving exponentially stretching surfaces have been
treated analytically and numerically [6–9]. Fang [10] described flow across a constantly
shrinking sheet with mass transfer and a low-power surface. Chauhan and Agarwal
[11] investigated MHD flow and heat transfer in a channel bounded by a contracting
sheet and a porous plate. Liu et al. [12] investigated the flow and heat transmission of
a viscous fluid across an exponentially stretched sheet in 3-D flow. Bhattacharya [13]
investigated the steady boundary layer flow and reactive mass transfer in the presence
of an exponentially advancing free stream. Shah et al. [14] explored dual solution of
MHD mixed convection flow and heat transfer across a shrinking sheet susceptible to
thermal radiation. Hamid et al. [15] examined dual solutions and stability analysis of
Casson fluid flowand heat transmission across a stretched sheet. Suction/injection effects
and dufour number, together with chemical reaction impacts of mhd casson nanofluid
in convectively heated non-linear extending surface were explored by Gangid et al.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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[16]. Analytical investigation for MHD flow of Williamson nanofluid including impacts
of changing thickness, nonlinear thermal radiation, and enhanced Fourier’s and Fick’s
Laws was described by Gupta et al. [17]. Tassaddiq et al. [18] examined MHD flow of
a generalized Casson fluid with Newtonian heating by employing fractional model with
Mittag–Leffler memory. Many scholars recently reported important studies spanning a
wide range of topics [19–25].

Micropolar fluid theory [26] treats microfluidics with an elegant mathematical basis
to account for local effects arising from the microstructure. The concept of micropolar
fluid and its extension to thermal micropolar fluids has the potential to build acceptable
non-Newtonian fluid models, which may be used to examine the behavior of shear flow,
exotic lubricants, and liquid crystals [27–34]. Aurangzaib et al. [35] investigated the flow
and heat transmission in the boundary layer of a micropolar fluid over a sheet that was
rapidly shrinking. Bhattacharyya et al. [36] investigated how thermal radiation affected
the flow of micropolar fluid and the transport of heat over a shrinking sheet placed in
a porous medium.. El-dawy and Gorla [37] studied micropolar nanofluid flow over a
stretched and shrinking wedge surface with absorption. The present paper attempts to
peep into inherent thermodynamic irreversibility in a boundary-layer micropolar flow
system that involves a shrinking sheet and porous medium.

The motivation behind the study comes straight from its technological applications
wherein quantification of entropy is perquisite for devising optimal thermo-fluidic sys-
tem. Quantifying entropy in fluidics is possible for devising an entropy minimization
strategy as pioneered by Bejan [38]. Makinde [39] looked into the effects of varying
viscosity and the entropy generation number on the flow of the hydromagnetic boundary
layer when thermal radiation was present. In the presence of nonlinear thermal radia-
tion, Bhatti and Rashidi [40] numerically investigated the entropy generation in MHD
boundary layer flow over a permeable shrinking/stretching sheet. Ibáez et al. [41] con-
ducted research on the entropy production and heat transfer of a nanofluid flow via an
MHD porous microchannel while accounting for hydrodynamic slip and thermal radi-
ation. Studying the entropy production of micropolar fluid flow through a concentric
cylinder annulus with slip and convective boundary conditions was the focus of Srini-
vasacharya and Hima Bindu’s [42]. Asha and Deepa [43] reported entropy distribution
for peristaltic blood flow of magneto-micropolar fluid with thermal radiation using an
asymmetric channel with tapering. Chauhan and Rastogi [44] investigated the entropy
production and heat transfer in a MHD boundary layer over a stretched sheet. Yusuf
et al. [45] analyzed irreversibility of a Cu-TiO2-H2O hybrid nanofluid impinging on
a three-dimensional stretched sheet in a porous media with nonlinear radiation using
the Darcy-Forchhiemer model. Yusuf et al. [37] studied entropy formation in MHD
Williamson nanofluid over a convectively heated stretched plate with chemical reaction.
Vyas and his co-authors conducted irreversibility analysis for a variety of thermo fluidic
topologies [46–54]. Many others have also focused on the issue [55–58].

The present work is expected to be a basis for future explorations.

2 Mathematical Formulation of the Problem

Let us consider a steady 2-D radiativemicropolar fluid flowover an exponentially perme-
able sheet placed in a fluid saturated porous material. The sheet shrinks with a velocity
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Ũw(X ) = ceX /2L (c > 0 is a shrinking constant). To keep the vorticity in check for
ensuring laminar flow, a normal suction is applied. The fluid’s thermal conductivity has
dependence on temperature. Rosseland approximation is involved to account for radia-
tive transfer. The model is applicable to fluids that do not undergo a phase transition,
have optical density, and absorb/emit light, and are non scattering media. To model the
problem mathematically a Cartesian coordinate system is called for where the X̃ -axis is
along the sheet, and the Ỹ -axis is normal to the sheet (Fig. 1).

Fig. 1. Physical sketch and Coordinate space

The equations that govern the boundary layer flow are as follows:

∂ p̃

∂X̃
+ ∂ q̃

∂Ỹ
= 0 (1)

p̃

(
∂ p̃

∂X̃

)
+ q̃

(
∂ q̃

∂Ỹ

)
=

(
ϑ + κ

ρ

)(
∂2p̃

∂Ỹ 2

)
+

(
κ

ρ

)(
∂M̃

∂Ỹ

)
−

(
ϑ

k

)
p̃ (2)

p̃

(
∂M̃

∂X̃

)
+ q̃

(
∂M̃

∂Ỹ

)
=

(
γ

ρj∗

)(
∂2M̃

∂Ỹ 2

)
−

(
κ

ρj∗

)(
2M̃ + ∂M̃

∂Ỹ

)
(3)

p̃

(
∂T̃

∂X̃

)
+ q̃

(
∂T̃

∂Ỹ

)
=

(
κ∗

cp ρ

)(
∂2T̃

∂Ỹ 2

)
−

(
1

cp ρ

)(
∂ q̃r

∂Ỹ

)
(4)
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Subject to the following conditions:

Ỹ = 0: P̃w(X̃ ) = p̃ = −ceX̃ /L, Q̃w(X̃ ) = q̃ = q0eX̃ /2L,

M̃ = −m
(

∂ p̃
∂Ỹ

)
, T̃w

(
X̃

)
= T̃ = T̃∞ + T̃0eX̃ /2L

Ỹ → ∞: p̃ → 0, M̃ → 0, T̃ → T̃∞

⎫⎪⎬
⎪⎭ (5)

where p̃ and q̃ are the X̃ - and Ỹ -directional velocity components, respectively. k, cp,ϑ , ρ,
M̃ , j∗, γ , κ are permeability, specific heat at constant pressure, kinematic viscosity, den-
sity, microrotation, microinertia per unit mass, spin gradient viscosity, vortex viscosity,
respectively. And also, T̃ , κ∗, L, T̃w, T̃0, T̃∞ are temperature, thermal conductivity of the
fluid, reference length, variable wall temperature and temperature uniformity in the free
stream, respectively. P̃w(X̃ ) = −CeX̃ /L and Q̃w(X̃ ) = q0eX̃ /2L are the sheet’s shrinking
velocity and suction velocity, respectively, where C > 0 is the shrinking constant and q0
is a constant (where q0 < 0 corresponds to mass suction). The parameter ‘m’ is micro
gyration associated with shear stress that takes values between 0 and 1 i.e. 0 ≤ m ≥ 1.
We recall that in the case m = 0, the angular or microrotation velocity will be zero at
the surfacei.e.inability of microelements to rotate. Additionally, m = 0.5 refers to the
scenario in which the anti-symmetric portion of the stress tensor disappears and weak
concentrations are indicated. However, for turbulent boundary layer flows, m = 1 is
true. The spin gradient viscosity γ is taken as

γ =
(
μ + κ

2

)
j∗ = μ

(
1 + β

2

)
(6)

where β
(
= κ

μ

)
is thematerial parameter. In addition, we take λ

(
= jc

Lϑ
eX /L

)
as themicro

inertia parameter

3 The Transformation

Here, we consider the stream function ω̃
(
X̃ , Ỹ

)
as

p̃ = ∂ω̃

∂Ỹ
, q̃ = − ∂ω̃

∂X̃
(7)

We note that the equation of continuity (1) is identically satisfied. Now we take the
following similarity transformation

ω̃ = √
2CLϑ f (η)eX̃ /2L, M̃ = C

√
C

2Lϑ
h(η)e3X̃ /2L, θ = T̃ − T̃∞

T̃w − T̃∞
, η = Ỹ

√
C

2Lϑ
eX̃ /2L

(8)

On using Eqs. (7) and (8) we obtain the velocity expression in non-dimensional form
as

p̃ = Cf ′(η)eX̃ /L, q̃ = −
√
Cϑ

2L

{
ηf ′(η) + f (η)

}
eX̃ /L (9)
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In order to obtain the similar solution, the permeability κ of the porous medium is
taken of the form

κ
(
X̃

)
= 2k0e

−X̃ /L (10)

where, k0 being reference permeability.
The radiative heat flux q̃r is defined following Rosseland approximation as follows:

q̃r = −
(
4σ1
3k1

)(
∂T̃ 4

∂Ỹ

)
(11)

where the Stephan–Boltzman constant is σ1, and the mean absorption constant is k1,
respectively.

Noting that there is only a little fluctuation in temperature throughout thefluid system,
one may represent T̃ 4 as a linear function of temperature ‘T̃ ’ by the use of a Taylor series
expansion of T̃ 4 around T̃∞, which gives one the result:

Making a remark that small temperature variation in the fluid system allows T̃ 4 tobe
expressed as a linear function of temperature ‘T̃ ’ by a Taylor series expansion of T̃ 4

about T̃∞ to yield

T̃ 4 = −
(
3T̃ 4∞ − 4T̃ 3∞T̃

)
(12)

In light of the Eqs. (11) and (12), we have

q̃r = −16σ1T̃ 3∞
3κ1

(
∂T̃

∂Y

)
(13)

Further, the governing system of equations reduce to:

K
{
(1 + β)f ′′′ − 2f ′2 + ff ′′ + βh′} − f ′ = 0 (14)

(
1 + β

2

)
h′′ + fh′ − 3hf ′ − 2β

λ

(
f ′′ + 2h

) = 0 (15)

(
1 + 4R

3

)
θ ′′ − Pr

(
f ′θ − f θ ′) = 0 (16)

With the boundary conditions:

η = 0: f ′ = −1, f = −q0
√

2L
Cϑ

= −S, h = −mf ′′(0), θ = 1

η → ∞: f ′ → 0, h → 0, θ → 0

}
(17)

where, Pr
(= μcp

k∗
)
; β

(
= k

μ

)
; S

(
= q0

√
2L
Cϑ

)
; K

(
= Ck0

ϑL

)
; and R

(
= 4σ1T 3∞

k∗k1

)
denote the

Prandtl number, thematerial parameter, thewallmass suction/injection parameter (S < 0
for mass injection parameter and S > 0 for mass suction parameter),the permeability
parameter, and radiation parameter, respectively. The prime (′) denotes differentiation
with respect to η.
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4 Quantities of Interest

Besides the velocity and temperature distributions, the physical quantities of interest are
the local skin friction coefficient Cf , the dimensionless wall couple stress Mx and the
local Nusslet number Nux which are defined as follows

Cf = τw
1
2ρU

2
w

,Mx = mw

ρU 2
wH

, and Nux = xqw
qH

where wall Shear Stress τw wall couple stress mw and heat transfer at lower plate qx are
defined by

τw =
[(

ϑ + κ

ρ

)
∂ p̃

∂Ỹ
+ κ

ρ
M̃

]
Ỹ=0

,mw =
[
γ

∂M̃

∂Ỹ

]
Ỹ=0

, and qw = −κ∗
[

∂T̃

∂Y

]
Ỹ=0
(18)

Which yield,

1

2
ReCf = (1 + β)f ′′(0) + βh(0), ReMx = 1

λ

(
1 + β

2

)
h′(0), and Nux = −θ ′(0)

(19)

where Re = ŨwH
ϑ

Reynold number.

5 Numerical Solution Methodology

The governing BVP being nonlinear does not admit analytical solution hence require
numerical treatment. We invoked the shooting method equipped with 4th order RK
scheme. In order to apply the shooting method, the BVP is converted into a system of
initial value problems. in the present case by making some transformations, we set the
following system of initial value problems as

f ′ = ũ, f ′′ = ũ′ = ṽ, f ′′′ = ṽ′ = 1

(1 + β)

(
−ṽf + 2ũ2 − βh′ − ũ

K

)
(20)

h′ = g̃, h′′ = g̃′ = 2

(2 + β)

{
−g̃f + 3hũ + β

λ
(2h + ṽ)

}
(21)

θ ′ = z̃, θ ′′ = z̃′ =
(

3 Pr

3 + 4R

)
(ũθ − z̃f ) (22)

The associated initial conditions are

f (0) = S, ũ(0) = −1, h(0) = −mr1, g̃(0) = r2, θ(0) = 1, z̃(0) = r3 (23)

Here r1 = f ′′(0) = q̃(0), r2 = h′(0) and r3 = θ ′(0) are unknowns.
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For the solution of the IVP (20)–(22) with (23), the values for r1, r2 and r3 are
needed but not readily available. We start with some initial guess values of r1, r2 and
r3, and find the solution by fourth-order Runge-Kutta method. We experienced two
difficulties throughout the calculating process. The first was figuring out the maximum
value of η i.e.η∞ for which f ′ → 0, h → 0 and θ → 0 at η → ∞ and secondly, accurate
predictions for the unknownquantities r1, r2 and r3. Thefirst predictionswere determined
using a hit-and-trial method, and from there, refining was accomplished using iterative
interpolation while maintaining the specified error tolerance. For these guesses, we
compared the calculated f ′(η), h(η) and θ(η) at η∞ with the given boundary conditions
f ′(η∞) → 0, h(η∞) → 0 and θ(η∞) → 0. We then used the “secant approach” to
alter the values of f ′′(0), h′(0), and θ ′(0) to offer a better approximations. The step size
η = 0.01 was found to be sufficient to ensure error tolerance of magnitude 10−7.

6 Entropy Generation Analysis

Following, Bejan [37] the entropy production per unit volume ‘SG’ for incompressible
micropolar fluid flow can be expressed as

SG = k

T̃ 2∞

(
∂T̃

∂Ỹ

)2

+
(

μ + μr

T∞

)(
∂ p̃

∂Ỹ

)2

+
(
2μr

T∞

)(
M̃ 2 + M̃

∂M̃

∂Ỹ

)

+ γ

T∞

(
∂M̃

∂Ỹ

)2

+
(

μ

T∞k0

)
p̃2 − 1

T 2∞

(
∂T̃

∂Ỹ

)
q̃r

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(24)

On prescribing the following characteristic quantities SG0 = c k(Tw−T∞)2e−x/L

2 T2∞ϑL
and

� = T∞
Tw−T∞ .

The entropy generation number NS is given by

NS = SG
SG0

=
(
1 + 4R

3

)
θ ′2 + Br �

(
f ′′2(1 + β) + 2βh2 + 2βhf ′′ + λ

2
(1 + β)h′2 + f ′2

K

)

= H1 + H2 = HTI + FFI

⎫⎪⎪⎬
⎪⎪⎭

(25)

where, the first and the second terms stand for heat transfer (with radiative) irreversibil-
ity and the fluid friction irreversibility respectively. In addition, we determine the irre-
versibility distribution parameter known as Be (the Bejan number), which is the ratio of
the entropy generation caused by heat transfer to the total entropy production. This ratio
is defined as follows:

Be = H1

NS
= HTI

HTI + FFI
(26)
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Table 1. The 1
2ReCf (Local Skin Friction), Re Mx (dimensionless wall couple stress) and Nux

(Local Nusselt Number) at η = 0.

S K m R Pr
1 Re
2 fC xRe M xNu

1st nSol 2nd nSol 1st nSol 2nd nSol 1st nSol 2nd nSol

0.1

2.3

10 0.5 1.0 0.7 0.5

-1.15881 -1.12349 0.64890 -1.20081 0.35521 0.16022

2.5 -1.17972 -1.09871 1.95578 -3.78123 0.48591 0.06763

2.7 -1.19495 -1.08223 3.10627 -0.34457 0.58269 0.05225

0.1 2.4 10

0.0

1.0 0.7 0.5

-1.10000 -1.10000 -0.29883 -1.21362 0.40482 0.13210

0.5 -1.17062 -1.11117 1.35114 -2.08295 0.42857 0.10993

1.0 -1.25637 -1.11640 3.63261 -2.93309 0.45053 0.09395

0.1 2.4 10 0.5

1.0

0.7 0.5 -1.17062 -1.11117 1.35114 -2.08295

0.42857 0.10993

2.0 0.26740 0.07048

3.0 0.20513 0.06808

0.1 2.4 10 0.5 1.0
0.7

0.5 -1.17062 -1.11117 1.35114 -2.08295
0.42857 0.10993

1.0 0.64799 0.22038
1.5 1.05361 0.53688

0.1 2.4 10 0.5 1.0 0.7
0.5 -1.17062 -1.11117 1.35114 -2.08295 0.42857 0.10993
0.8 -1.17061 -1.11205 0.84864 -1.11175 0.42851 0.11369
1.2 -1.17061 -1.11253 0.56892 -0.67270 0.42846 0.11574

S K m R Pr
1 Re
2 fC xRe M xNu

1st nSol 2nd nSol 1st nSol 2nd nSol 1st nSol 2nd nSol
0.0

2.4 10 0.5 1.0 0.7 0.5

-1.00000 -1.00000 1.69731 4.12103 0.44920 0.09270
0.1 -1.17062 -1.11117 1.35114 -2.08295 0.42857 0.10993

0.2 -1.32621 -1.23394 0.99773 -1.38751 0.40342 0.14222

0.1 2.4

10

0.5 1.0 0.7 0.5

-1.17062 -1.11117 1.35114 -2.08295 0.42857 0.10993

20 -1.16722 -1.11734 1.20543 -1.35055 0.41835 0.15846

1000 -1.16317 -1.12337 1.03214 -0.88017 0.40534 0.20388

7 Results and Discussion

Table 1 displays the results of our investigation into the fluctuations in the local skin
friction, the dimensionlesswall couple stress, and the localNusselt number as a parameter
of the various aspects.
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We can observe that the skin friction values drop from −1.00000 to −1.32621 and
−1.00000 to −1.23394 for the first and second solutions, respectively. When all the
numbers stay the same as S = 2.4,K = 10,m = 0.5,R = 1.0,Pr = 0.7, λ = 0.5 and
material parameter β are increased from 0.0 to 0.2. For the same variety of units, the
dimensionless wall couple stress changes from 1.69731 to 0.99773 and from 4.12103
to −1.38751 for both solutions. For the same alteration, the Nusselt number for both
solutions ranges from 0.44920 to 0.40342 for one solution and from 0.09270 to 0.14222
for the other.

When the values are considered to be, β = 0.1, S = 2.4,m = 0.5,R = 1.0,Pr =
0.7, λ = 0.5 and permeability parameter K goes from 10 to 1000, For both solutions,
the skin friction changes from−1.17062 to−1.16317 and from−1.11117 to−1.12337,
while the wall couple stress changes from −2.08295 to −0.88017 and from 1.35114
to 1.03214. In response to the same alteration, the Nusselt number for both solutions
changes from 0.42857 to 0.40534 and from 0.10993 to 0.20388, respectively.

When the amounts are taken as β = 0.1,K = 10,m = 0.5,R = 1.0,Pr = 0.7, λ =
0.5 and When the value of the wall mass suction/injection parameter S is raised from
2.3 to 2.7, the value of the skin friction for the first solution shifts from −1.15881 to
−1.19495, while the value of the skin friction for the second solution shifts from −
1.12349 to −1.08223.

In the first solution, the wall pair stress shifts from 0.64890 to 3.10627, whereas
in the second solution, it shifts from −1.20081 to −0.34457. The value of the Nusselt
number for the first solution shifts from 0.35521 to 0.58269 whereas the value of the
Nusselt number for the second solution shifts from 0.16022 to 0.05225 when subjected
to the same variation.

For the predetermined values β = 0.1, S = 2.4,K = 10,R = 1.0,Pr = 0.7, λ =
0.5, if the micro gyration vector m is raised from 0.0 to 1.0. Then, it is seen that the skin
friction of the first solution drops from −1.10000 to −1.25637, but the skin friction of
the second solution of it records a change from−1.10000 to−1.11640. The wall couple
stress for both solutions shifts from its previous value of −0.29883 to 3.63261 and from
its previous value of −1.21362 to −2.93309 when subjected to the same variation. In
addition, the values of the Nusselt number for both solutions move from 0.40482 to
0.45053 and from 0.13210 to 0.09395, respectively, during the course of the study.

When the quantities are fixed as β = 0.1, S = 2.4,K = 10,m = 0.5,Pr = 0.7, λ =
0.5 and the value of the radiation parameter R goes from 1.0 to 3.0, the skin friction and
wall couple stress of the first and second solutions are always −1.17062, −1.11117 and
1.35114, −2.08295, respectively. For the same change, the Nusselt number for the first
solution goes from 0.42857 to 0.20513 and the Nusselt number for the second solution
goes from 0.10993 to 0.06808.

When the Prandtl number Pr is increased from 0.7 to 1.5, but the other parameters
are maintained constant as β = 0.1, S = 2.4,K = 10,m = 0.5,R = 1.0, λ = 0.5, the
skin friction and local wall couple stress for first solutions are observed to have constant
values of −1.17062 and 1.35114, respectively. At the same time, the skin friction and
wall couple stress of the second solution both have a value that is constant, and that value
is −1.11117 and −2.08295 respectively. For the same variation, the Nusselt number of



Irreversibility Analysis in Micropolar Thermofluidics 361

the 1st solution changes from 0.42857 to 1.05361 while the Nusselt number of the 2nd

solution changes from 0.10993 to 0.53688.
When the micro inertia number λ is increased from 0.5 to 1.2 while the other quanti-

ties remain unchanged as β = 0.1, S = 2.4,K = 10,m = 0.5,R = 1.0,Pr = 0.7, it is
observed that the skin friction of the 1st solution is increases from a value of −1.17062
to −1.17061, whereas the skin friction of the 2nd solution registers a change from −
1.11117 to −1.11253. For the same variation, the wall couple stress for the first solution
goes from 1.35114 to 0.56892, and for the second solution, it goes from −2.0829 to −
0.67270. In addition, the value of the Nusselt number for the first solution shifts from
0.42857 to 0.42846, whereas the Nusselt number for the second solution shifts from
0.10993 to 0.11574 (Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15).

Fig. 2. Influence of β on Ns when K = 10,
Pr = 0.7, R = 1 S = 2.4, m = 0.5, λ = 0.5, �
= 0.5, Ec = 10.5

Fig. 3. Influence of β on Be when K = 10, Pr
= 0.7, R = 1, S = 2.4, m = 0.5, λ = 0.5, � =
0.5, Ec = 10.5

Fig. 4. Influence of S on Ns when β = 0.1,
K = 10, Pr = 0.7, R = 1, m = 0.5, λ = 0.5,
� = 0.5, Ec = 10.5

Fig. 5. Influence of S on Be when β = 0.1, K
= 10, Pr = 0.7, R = 1, m = 0.5, λ = 0.5, � =
0.5, Ec = 10.5
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Fig. 6. Influence of K on Ns when
β = 0.1,Pr = 0.7, R = 1 S = 2.4, m = 0.5,
λ = 0.5, � = 0.5, Ec = 10.5

Fig. 7. Influence of K on Be when β = 0.1,
Pr = 0.7, R = 1, S = 2.4, m 0.5, λ = 0.5, � =
0.5, Ec = 10.5

Fig. 8. Influence of Br on Ns when β = 0.1,
K = 10, R = 1, S = 2.4, m = 0.5, λ = 0.5, �
= 0.5, Pr = 0.7

Fig. 9. Influence of Br on Be when β = 0.1,
K = 10, R = 1, S = 2.4, m = 0.5, λ = 0.5, �
= 0.5, Pr = 0.7

Fig. 10. Influence of R on Ns when β = 0.1,
K = 10, R = 1, S = 2.4, m = 0.5, λ = 0.5, �
= 0.5, Ec = 10.5, Pr = 0.7

Fig. 11. Influence of R on Be when β = 0.1,
K = 10, S = 2.4, m = 0.5, λ = 0.5, � = 0.5,
Pr = 0.7, Ec = 10.5



Irreversibility Analysis in Micropolar Thermofluidics 363

Fig. 12. Influence of λ on Ns when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, m = 0.5, �
= 0.5, Ec = 10.5

Fig. 13. Influence of λ on Be when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, m = 0.5, �
= 0.5, Ec = 10.5

Fig. 14. Influence of m on Ns when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, λ = 0.5, �
= 0.5, Ec = 10.5

Fig. 15. Influence of m on Be when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, λ = 0.5, �

= 0.5, Ec = 10.5

The thermos-fluidic system admits dual solutions for momentum, microrotation and
energy regime. This ultimately leads to a dual system of entropy also. The findings have
been portrayed graphically. We restrict our analysis to entropy only. However, velocity,
microrotation, and temperature profiles have been appended for ready reference.

The figures reveal striking features that for a dual regime of entropy generation, the
impact of parameters on the two branches of solution bear the same/distinct trends.

These unique patterns can also be seen in the Bejan number profiles, where we can
see that, in contrast to the second solution, the first solution’s Bejan number ‘Be’ achieves
unity at a location that is substantially closer to the surface. This indicates that in the
case of the first solution, the contribution of dissipative losses to entropy weakens “far
sooner spatially.”

The figures show that contrary to the case of the second solution, entropy production
for first solution increaseswith an increase in S, and it increaseswith a decaying values of
β and K. However, we observe that entropy for both solutions exhibits a uniform trend in
asmuchas that it increaseswith risingmicrorotationparameterm,microinertia parameter
λ, Brinkman number Br and radiation parameter R. The trends reported above persist
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in a region adjacent to the shrinking sheet i.e. for a finite value of ï in respective cases,
beyond which first and second solutions may switch to the opposite trends. Physically
it happens as we approach towards the edge of the boundary layers (momentum and
thermal).

8 Conclusion

The skin friction coefficient, wall stress and Nusselt number for both solutions exhibit
qualitative and quantitative response to variations in embedded parameters. The pre-
sented dataset should be of pertinent value for future studies. The setup explored a
dual regime for entropy generation that is found responsive, both qualitatively and
qualitatively, to the embedded parameters.

Appendix

(See Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32).

Fig. 16. Influence of β on f ′(η) when K =
10, Pr = 0.7, R = 1, S = 2.5, m = 0.5, λ = 0.5

Fig. 17. Influence of β on h(η) when K = 10,
Pr = 0.7, R = 1, S = 2.5, m = 0.5, λ = 0.5

Fig. 18. Influence of β on θ(η) when K = 10,
Pr = 0.7, R = 1, S = 2.5, m = 0.5, λ = 0.5

Fig. 19. Influence of S on f′(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, m = 0.5, λ = 0.5
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Fig. 20. Influence of S on h(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, m = 0.5, λ = 0.5

Fig. 21. Influence of S on θ(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, m = 0.5, λ = 0.5

Fig. 22. Influence of K on f ′(η) when
β = 0.1, Pr = 0.7, R = 1, S = 2.4, m = 0.5,
λ = 0.5

Fig. 23. Influence of K on h(η) when β = 0.1,
Pr = 0.7, R = 1, S = 2.4, m = 0.5, λ = 0.5

Fig. 24. Influence of K on θ(η) when
β = 0.1, Pr = 0.7, R = 1, S = 2.4, m = 0.5,
λ = 0.5

Fig. 25. Influence of Pr on θ(η) when
β = 0.1, K = 10, R = 1, S = 2.4, m = 0.5,
λ = 0.5
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Fig. 26. Influence of λ on f ′(η) when
β = 0.1, K = 10, Pr = 0.7, R = 1, S = 2.4,
m = 0.5

Fig. 27. Influence of λ on h(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, m = 0.5

Fig. 28. Influence of λ on θ(η) when
β = 0.1, K = 10, Pr = 0.7, R = 1, S = 2.4,
m = 0.5

Fig. 29. Influence of m on f ′(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, λ = 0.5

Fig. 30. Influence of m on h(η) when β = 0.1,
K = 10, Pr = 0.7, R = 1, S = 2.4, λ = 0.5

Fig. 31. Influence of m on θ(η) when
β = 0.1, K = 10, Pr = 0.7, R = 1, S = 2.4,
λ = 0.5
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Fig. 32. Influence of R on θ(η) when β = 0.1, K = 10, Pr = 0.7, S = 2.4, m = 0.5, λ = 0.5
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Abstract. In this article, the variational method (time dependent) is carried out
for the parameterization of the evolved modulation instability (MI) in the coupled
nonlinear Schrödinger equation (CNLS). The classical modulation instability cri-
terion is obtained due to the pervasive dispersion relation. Will also investigate
the case where the limits of the solution depend on time. Graphical sketch is also
represented of the obtained solution.
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1 Introduction

Nonlinearity is a mesmerizing component of nature, with nonlinear wave phenomena
appearing in one way or another in nearly all scientific and engineering fields. This
phenomenon can be well explained by the Non-Linear Evolution Equations (NLEEs).
Many physical phenomena can be explained by the interlinking of physical and bio-
logical systems on the basis of modulational instability (MI). MI obtainable, due to the
establish relation between the nonlinearity and diffraction/dispersion special effects. It
has been applied to produce train Soliton-like pulses, which is a predecessor to Soliton’s
configuration [1–7, 18]. A paradigm of wave-wave interaction as.

iEt + Exx + α

2

[
|η|2 + |E|2

]
E = 0

iηt + ηxx + α

2

[
|η|2 + |E|2

]
η = 0

(1)

called coupled 1D nonlinear Schrödinger (CNLS) system. E(x, t) and η(x, t) are
complex-valued scaler field with space x and time t coordinate. Its application can be
found in many areas of mathematics and physics, including nonlinear optics and plasma
physics [9–14, 17]. The nonlinear Schrödinger (NLS) equation arises naturally as an
envelope equation in physical wave systems where the propagation is governed by an
asymptotic balance between the effects of dispersion and nonlinearity [19]
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2 Criterion of Modulational Instability (MI)

Weconsider the exact solution of equation Eq. (1) in the planewave - constant amplitude,
exponential wave train.

E(x, t) = E0e
i(kx−ωt), η(x, t) = η0e

i(−kx−ωt)

where wave number k and frequency ω, then

ω = k2 − α

2

[
|η0|2 + |E0|2

]
(2)

for MI examination Let

E(x, t) = E0(1 + A(x, t))ei(kx−ωt)

η(x, t) = η0(1 + B(x, t))ei(−kx−ωt)
(3)

put in Eq. (1), we get

i(At + 2kAx) + Axx + α

2
|E0|2

[
A + A∗] + α

2
|η0|2

[
B + B∗] = 0

i(Bt + 2kBx) + Bxx + α

2
|E0|2

[
A + A∗] + α

2
|η0|2

[
B + B∗] = 0

(4)

Let A (x, t) and B (x, t) be two functions as

A(x, t) = f+ei(qx−�t) + f ∗−ei(qx−�∗t)

B(x, t) = g+ei(qx−�t) + g∗−ei(qx−�∗t)
(5)

Where f± and g± Fourier amplitude,E0, η0 parameters, superscript * denotes complex
conjugation. Put these values in Eq. (4), we have the dispersion relation connecting the
wave number q and frequency � of the perturbation,

[
(� − 2k)2 + (α|E0|2 − q2

)[
(� + 2k)2 +

(
α|η0|2 − q2

)]
− |η0|2|E0|2 = 0 (6)

Its quadratic polynomial and has complex frequency �(q) in term of disturbance
wave number q > 0 and amplitudes. The polynomial has real coefficient for real value
of q, therefore �(q) has complex roots. Both (conjugate pair) imaginary part is nonzero
corresponds to linearly unstable modes, with growth rate |Im(�(q)|. The coupled system
will be shown to possess an additional instability that occurs even with the defocusing
nonlinearity, i.e., an instability due to the nonlinear coupling.

We now endeavor to classify the interval of unstable wave numbers by means of the
variational method (time dependent) [8, 11, 16 and 20].
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3 Implement of Method for Solving the Model Equation

In special, the Lagrangian of the Eq. (1) is

L =
∞∫

−∞

⎧⎪⎨
⎪⎩

i

2

[
EE∗

t − E∗Et
] + |Ex|2 − α

4
|E|4 + i

2

[
ηη∗

t − η∗ηt
]

+|ηx|2 − α

4
|η|4 − α

2
|E|2|η|2

⎫⎪⎬
⎪⎭
dx (7)

and consider a modulation of the plane wave form, where A (x, t) and B (x, t) are a
generalized function of a(t), b(t), c(t) and d(t);

E =
[
E0 + a(t)ei(�a(t)+qx) + b(t)ei(�b(t)−qx)

]
ei(kx−ωt)

η =
[
η0 + c(t)ei(�c(t)+qx) + d(t)ei(�d (t)−qx)

]
ei(−kx−ωt)

(8)

Here we think about the integration limit 0 ≤ x ≤ 2π in Eq. and wave number k, q =
±1,±2,±3, ..... Put the equation Eq. (8) into Eq. (7), using Dispersion relation (2),we
get

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
(
a2�

′
a(t) + b2�

′
b(t) + c2�

′
c(t) + d2�

′
d (t)

)

−α
(
E2
0

(
a2 + b2

)
+ η20

(
c2 + d2

))
+ α

2

(
E4
0 + η40 + 2E2

0η
2
0

)

+ 2q2
(
a2 + b2 + c2 + d2

)
+ 2kq

(
a2 − b2 − c2 + d2

)

+ α

2

(
a4 + b4 + 4a2b2 + 4E2

0ab cos(φa(t) + φb(t))
)

− α

2

(
c4 + d4 + 4c2d2 + 4η20cd cos(�c(t) + �d (t))

)

−α
{(

a2 + b2
)(

c2 + d2
)

+ 2abcd cos(φa(t) − φb(t) − φc(t) + φd (t))
}

+ 2E0η0ac cos(�a(t) − �c(t)) + 2E0η0ad cos(�a(t) + �d (t))

+ 2E0η0bc cos(�b(t) + �c(t)) + 2E0η0bd cos(�b(t) − �d (t))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

π

(9)

The equation of motion by Lagrangian equations:

d

dt

{
∂L

∂�
′
a

}
= ∂L

∂�a

⇒ a′(t) = 1

2

⎡
⎢⎣

E2
0αb sin(�a(t) + �b(t))

+αacd sin(φa(t) − φb(t) − φc(t) + φd (t))

+E0η0{c sin(φa(t) − φc(t)) + d sin(φa(t) + φd (t))}

⎤
⎥⎦

(10)
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d

dt

{
∂L

∂�
′
b

}
= ∂L

∂�b

⇒ b′(t) = 1

2

⎡
⎢⎣

E2
0αa sin(�a(t) + �b(t))

+αbcd sin(φa(t) − φb(t) − φc(t) + φd (t))

+E0η0{{c sin(φb(t) + φc(t)) + d sin(φb(t) − φd (t))}

⎤
⎥⎦

(11)

d

dt

{
∂L

∂�
′
c

}
= ∂L

∂�c

⇒ c′(t) = 1

2

⎡
⎢⎣

E2
0αd sin(�c(t) + �d (t))

+αabc sin(φa(t) − φb(t) − φc(t) + φd (t))

+E0η0{−a sin(φa(t) − φc(t)) + b sin(φb(t) + φc(t))}

⎤
⎥⎦

(12)

d

dt

{
∂L

∂�
′
d

}
= ∂L

∂�d

⇒ d ′(t) = 1

2

⎡
⎢⎣

E2
0αc sin(�c(t) + �d (t))

+αabd sin(φa(t) − φb(t) − φc(t) + φd (t))

+E0η0{a sin(φa(t) + φd (t)) − b sin(φb(t) − φd (t))}

⎤
⎥⎦

(13)

d

dt

{
∂L

∂a′
}

= ∂L

∂a

⇒ a(t)�
′
a(t) = 1

2

⎡
⎢⎢⎢⎣

E2
0αa − 2aq2 − 4akq + α

{
a3 + 2ab2 + E2

0a cos(�a(t) + �b(t))
}

+α
{
a
(
c2 + d2

)
+ bcd cos(�a(t) − �b (t) − �c(t) + �d (t))

}

+ αE0η0{c cos(�a(t) − φc (t)) + d cos(�a(t) + �d (t))}

⎤
⎥⎥⎥⎦

(14)

d

dt

{
∂L

∂b′

}
= ∂L

∂b

⇒ b(t)�
′
b(t) = 1

2

⎡
⎢⎢⎣

E2
0αb − 2bq2 + 4bkq + α{b3 + 2a2b + E2

0a cos(�a(t) + �b(t))

+α
{
b
(
c2 + d2

)
+ acd cos(�a(t) − �b (t) − �c(t) + �d (t))

}

+αE0η0{c cos(�b(t) + φc (t)) + d cos(�b(t) − �d (t))}

⎤
⎥⎥⎦

(15)

d

dt

{
∂L

∂c′

}
= ∂L

∂c

⇒ c(t)�
′
c(t) = 1

2

⎡
⎢⎢⎣

η20αc − 2cq2 + 4ckq + α{c3 + 2cd2 + η20d cos(�c(t) + �d (t))

+α{c
(
a2 + b2

)
+ abd cos(�a(t) − �b (t) − �c(t) + �d (t))

+αE0η0{a cos(�a(t) − φc (t)) + b cos(�b(t) + �c(t))}

⎤
⎥⎥⎦

(16)
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d

dt

{
∂L

∂d ′
}

= ∂L

∂d

⇒ d(t)�
′
d (t) = 1

2

⎡
⎢⎢⎢⎣

η20αd − 2dq2 − 4dkq + α{d3 + 2c2d + η20c cos(�c(t) + �d (t))

+α
{
d
(
a2 + b2

)
+ abc cos(�a(t) − �b (t) − �c(t) + �d (t))

}

+αE0η0{a cos(�a(t) + φd (t)) + b cos(�b(t) − �d (t))}

⎤
⎥⎥⎥⎦

(17)

Now, Let

a(t) = −b(t) = −c(t) = d(t),

�a(t) = −�b(t) = −�c(t) = �d (t) and |E0|2 = |η0|2
〉

(18)

Now by putting the values from Eq. (18) into Eq. (14), we have

a(t)�
′
a(t) = 1

2

⎡
⎢⎢⎢⎣

E2
0αa − 2q2a − 4kqa + α

{
a3 + 2a3 − E2

0a cos(0)
}

+α
{
2a3 + a3 cos(4φa(t))

}

−E2
0{−a cos(2�a(t)) + a cos(2�a(t))}

⎤
⎥⎥⎥⎦

⇒ a(t)�
′
a(t) = 1

2

⎡
⎣ E2

0αa − 2q2a − 4kqa

+α
{
5a3 − E2

0a + a3 cos(4�a(t))
}
⎤
⎦ (19)

Similarly, by putting the values from Eq. (18) into Eq. (15), Eq. (16) and Eq. (17)
respectively, we have

⇒ b(t)�
′
b(t) = 1

2

[
−E2

0αa + 2q2a − 4kqa + α
{
−5a3 + E2

0a − a3 cos(4�a(t))
}]

(20)

⇒ c(t)�
′
c(t) = 1

2

[
−E2

0αa + 2q2a − 4kqa + α
{
−5a3 + E2

0a + a3 cos(4�a(t))
}]

(21)

⇒ d(t)�
′
d (t) = 1

2

⎡
⎣ −E2

0αa(t) + 2q2a(t) − 4kqa(t)

+α
{
−5a3(t) + E2

0a(t) − a3(t) cos(4�a(t))
}
⎤
⎦ (22)

After adding Eq. (19) and Eq. (20), we have,

a(t)
[
�

′
a(t) − �

′
b(t)

]
= −4kqa(t)

⇒ ∫ d�a(t) − ∫ d�b(t) = −4kq ∫ dt

⇒ �a(t) = −2kqt (23)
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Now by Eq. (18) and Eq. (10), We get

a′(t) = 1

2

[ −αE2
0a(t) sin(0) + αa3(t) sin(4�a(t))

−E2
0{−a(t) sin(2�a(t) + a(t) sin(2�a(t))}

]

⇒ a′(t) = 1

2
αa3(t) sin(4�a(t)) ⇒

∫
da

a3(t)
= 1

2
α

∫
sin(−8kqt)dt

⇒ a2(t) = −8kq

α
sec(4�a(t)) (24)

if k > 0, q < 0; or k < 0, q > 0 then by Eq. (18),

⇒ a(t) = −b(t) = −c(t) = d(t) =
√
8kq

α
sec(8kqt)

⇒ �a(t) = −�b(t) = −�c(t) = �d (t) = −2kqt

Now put these values in Eq. (8), We get

E = E0 +
√
8kq

α
sec(8kqt)

{
ei(−2kqt+qx) − ei(2kqt−qx)

}
ei(kx−ωt)

⇒ E =
{
E0 +

√
8kq

α
sec(8kqt)2i sin(−2kqt + qx)

}
ei(kx−ωt) (25)

and

η = E0 +
√
8kq

α
sec(8kqt)

{
ei(−2kqt−qx) − e−i(−2kqt−qx)

}
ei(−kx−ωt)

⇒ η =
{
E0 +

√
8kq

α
sec(8kqt)2i sin(−2kqt − qx)

}
ei(kx−ωt) (26)
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4 Graphical Sketch

Numerical presentation for the solution of systems with −k
|E0| = q

|η0| = 0.4,α = −1, 0 ≤
x ≤ 6 and 0 ≤ t ≤ 70. (Fig. 3)

Fig. 1. The modulational instability of |E|

5 Result and Discussion

This scheme has been effectively executed to achieve new comprehensive region for the
modulational stable/unstable wave numbers in the system of equation, also obtain Euler-
Lagrange equation of motion and nonlinear dispersion relation (NDR). We analyze their
strength for different amplitude (wave number and frequency) of perturbation of the
wave solution. It is implied that some circumstances lead to a new ordinary differential
equation, whose optimal condition is intimate to the instability/stability criterion, which
is obtained.

Furthermore, the polynomial Eq. (6) only contains q2, which reflects the conjugate
symmetry of the eigenmodes, so it is sufficient to consider only q ≥ 0. Since the poly-
nomial Eq. (6) neglects direct multiplication, this linear dispersion relation is analyzed
in various asymptotic limits and the results are assembled to form a complete stability
picture for the plane wave.
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Fig. 2. The modulational instability of |η|

Fig. 3. Interaction of the two waves |E|2 + |η|2 with α = 2, q = k, E0 = 2.5

Figures: - 1 Modulational instabilities show in numerically. Figure-3 Interaction of
the two waves same as [15].
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Abstract. This work is motivated essentially by the fact that the applications
of basic (or q-) hypergeometric functions are frequently needed in the form of
summations, transformations, expansions, reductions, and integral formulas. The
objective of this research paper is to study the applications of the general summa-
tion formulas contiguous to q-Kummer theorems in deriving several presumably
new q-integral evaluations involving the basic (or q-) hypergeometric functions of
type 3�3 and 3�2. The results are further particularized to give specific integral
evaluations in the form of summations to show the importance and utilizations of
our main findings.We also derive the summation theorems for certain basic (or q-)
Appell double hypergeometric functions, basic (or q-) Lauricella multiple hyper-
geometric functions, and certain basic (or q-) Laplace transforms by applying
general summation formulas contiguous to q-Kummer theorems.

Keywords: Basic (or q-) hypergeometric functions · q-beta function · q-gamma
function · q-Kummer summation theorems · General contiguous summation
theorems · q-Appell functions · q-Lauricella functions · q-Laplace transforms ·
q-integrals
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1 Introduction and Motivation

A natural generalization of Gauss’s functions having arbitrary number of numerator (ap)
and denominator (bq) parameters can be found in [28, p. 19, Eq. (23)].

The generalized basic (or q–) hypergeometric series [10, p. 4], see also [3, 9], with
r numerator parameters a1, . . . , ar and s denominator parameters b1, . . . , bs (∀s, bs is
neither 0 nor a negative integer) is defined by

r�s(a1, . . . , ar; b1, . . . , bs; q, z) ≡ r�s

[
a1, . . . , ar ;
b1, . . . , bs ; q, z

]
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=
∞∑
k=0

(a1, . . . , ar; q)kzk
(q, b1, . . . , bs; q)k

⎛
⎜⎜⎝(−1)kq

⎛
⎝ k
2

⎞
⎠
⎞
⎟⎟⎠

1+s−r

, (1.1)

The series in Eq. (1.1) converges absolutely for

⎛
⎝ ∀ z if 0 ≤ |q| ≤ 1, r ≤ s

|z| < 1 if 0 ≤ |q| ≤ 1, r = s + 1
|z| < |b1 . . . bs|

/ |a1 . . . ar| if |q| > 1
(1.2)

These convergence conditionswith suitablemodifications are applicable to the results
derived in Sects. 2 and 3.

For 0 < q < 1, the q–gamma function [10] is defined as:

�q(x) = (q; q)∞
(qx; q)∞

(1 − q)1−x,�(x) > 0 (1.3)

which was first introduced by Thomae and later by Jackson.
A key property of the beta function is close relationship to the gamma function: one

has that

Bq(x, y) = �q(x)�q(y)

�q(x + y)
, 0 < q < 1,�(x) > 0,�(y) > 0· (1.4)

For further such relations, we refer to [27, pp. 239–240, Appendix I].
Lavoie et al. [21–23] have obtained generalization of classical summation theorems

for series 2F1 and obtained a large number of contiguous results. Choi et al. [6] obtained
general summation formulas contiguous to the Kummer’s theorem by applying Euler’s
integral representation formula for 2F1. Recently, several new results involving product
of generalized special functions are investigated by [5, 19, 29].

The three q-Kummer contiguous summation theorems were given by Kummer in
1836, and we refer to these three theorems as Kummer’s first summation theorem, Kum-
mer’s second summation theorem and Kummer’s third summation theorem. Andrews
[2] was the first to give the q–analogue of Kummer’s second summation theorem and q-
analogue of Kummer’s third summation theorem. In the context of the three q-Kummer’s
theorems, Kim et al. [16], Harsh et al. [12, 13] derived some particular contiguous exten-
sions. Recently, Vyas et al. [31] derived remarkably worthwhile, general summation the-
orem contiguous to the three q-Kummer summation theorems by using three different
techniques. The present paper provides a set of applications of the results due to Vyas
et al. [31].

Although, the integrals involving and representing hypergeometric functions have
several applications in pure and applied mathematics, not all such integrals have been
collected in tables or are readily available in the mathematical literature. The integral
formulas for various special functions and polynomials can be found in [4] and references
therein. The use of various summation formulas in deriving the integral formulas can be
found in [4, 20, 25, 34] and references therein. Specifically, Joshi and Vyas [14] derived
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extensions of certain classical integrals of Erdélyi for Gauss hypergeometric functions
by applying well-known summation formulas. Recently, Vyas et al. [32] derived the
discrete extensions of the Erdélyi-type integrals in the form of new hypergeometric
expansions with the help of classical summation formulas and an extended Saalschütz
summation theorem [18].

This research paper aims to utilize the general summation theorems contiguous to the
q-Kummer summation theorems investigated by Vyas et al. [31] in deriving the integral
formulas involving the q-hypergeometric functions of type 3�3 and 3�2, see Sect. 2.
In Sect. 3, we obtain some specific integral formulas by specializing the main results
obtained in Sect. 2. In Sect. 4, we provide presumably new summations for q-Lauricella
functions with the help of general summation theorem contiguous to the q-Kummer
summation theorems.

It is well-known that the Laplace transform has wide applications in the fields of
science and engineering. Specifically, Laplace transform is applied to analyze the electric
circuit. Laplace transform of various hypergeometric functions as well as q-polynomials
can be found in [1, 10, 17, 24, 30, 33].

Hahn [11] (see also [1]) derived the q-analogue of well-known classical Laplace
transform with the help of q-integral equations [25, p. 1, Eq. (2) and (3)]. Yadav and
Purohit [25] derived a general q-Laplace transform and used it to identify several well-
known q-polynomials. Kim et al. [17] derived a general Laplace transform of 1F1 into
2F1; where 1F1 is Kummer’s confluent hypergeometric function and 2F1 is the Gauss
hypergeometric function and then applying generalized Kummer’s summation, Gauss’s
second and Bailey summation (see [21–23]) three new Laplace transforms for general
1F1 Kummer confluent hypergeometric functions was investigated. Motivating from the
work done by the Yadav and Purohit [25, p. 238, Eq. (31)] work, in Sect. 5, we establish
the q-Laplace transforms involving q-hypergeometric functions, by applying the results
due to Vyas et al. [31].

It is worthwhile to mention here that the kind of q-integral formulas investigated
here, in this paper, involving q-hypergeometric series are comparatively very less in the
literature than the integrals involving ordinary hypergeometric series.

2 Main Results

Here we present several integral formulas involving a generalized basic (or q-) hyper-
geometric functions 3�3 and 3�2 which are asserted in Theorems 2.1 to 2.6. The
convergence conditions can easily be derived using Eq. (1.2).
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Theorem 2.1. For k ∈ N0, the following assertion holds true:

1∫
0

td−1 (tq; q)∞(
tqc−d ; q)∞ 3�2

[
a, b, c; q,− qt

b

d ,
aq1+k

b ;

]
dqt

= �q(d)�q(c − d)

�q(c)

(
a, q1+k

b ,−q; q
)

∞(
q2

b2
; q

)
∞

(
aq1+k

b ; q2
)

∞

·
k∑

j=0

(
q−k ;q)j
(q;q)j

(
q1+k

b

)j
(

aqj+2

b2
;q2

)
∞

(aqj;q2)∞
,

(1.5)

provided
∣∣ q
b

∣∣ < 1, 0 < q < 1,�(d) > 0,�(c − d) > 0.

Proof: In order to establish the integral (1.5), we proceed as follows:
Let us denote the left-hand side of Theorem 2.1 by I1.

I1 =
1∫

0

td−1 (tq; q)∞(
tqc−d ; q)∞ 3�2

[
a, b, c; q,− qt

b

d ,
aq1+k

b ;

]
dqt. (1.6)

In the above Eq. (1.6), replacing the generalized q-hypergeometric function 3�2 by
its series form, we get

I1 =
∑
r≥0

1∫
0

td+r−1 (tq; q)∞(
tqc−d ; q)∞

(a, b, c; q)r
(− q

b

)r
(
d ,

aq1+k

b , q; q
)
r
r!
dqt. (1.7)

On evaluating the involved q-beta integral from [10, p. 19, Eq. (1.11.7)] and applying
the key property of the q-beta function [8, p.18, Eq. (1.10.13)], the Eq. (1.7) becomes:

I1 =
∑
r≥0

�q(d + r)�q(c − d)

�q(c + r)

(a, b, c; q)r
(− q

b

)r
(
d ,

aq1+k

b , q; q
)
r
r!

(1.8)

After applying the definition of q-gamma function [10, p. 20, Eq. (1.10.1)] in
Eq. (1.8), we can write,

I1 =
∑
r≥0

�q(d)�q(c − d)

�q(c)

(a, b, c, d; q)r
(− q

b

)r
(
c, d ,

aq1+k

b , q; q
)
r
r!

(1.9)

Now, on simplifying Eq. (1.9), we obtain

I1 = �q(d)�q(c − d)

�q(c)
2�2

[
a, b; q,− q

b
aq1+k

b ;

]
. (1.10)

Finally, on evaluating 2�1 series by the general contiguous q-Kummer first summa-
tion theorem [31, p. 6, Eq. (16)], followed by some simplifications, would lead to the
right hand side of Theorem 2.1. This completes the proof of Theorem 2.1.
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Theorem 2.2. For k ∈ N0, the following assertion holds true:

1∫
0

td−1 (tq; q)∞(
tqc−d ; q)∞ 3�2

⎡
⎢⎢⎢⎣

a, b, c;

d ,
aq1−k

b
;

q,−qt

b

⎤
⎥⎥⎥⎥⎥⎦
dqt = �q(d)�q(c − d)

�q(c)

· (a,−q; q)∞(
aq1−k

b ,− q1−k

b ; q
)

∞

k∑
j=0

(
q−k; q)j
(q; q)j

(
−q

b

)j
(
aqj+2(1−k)

b2
; q2

)
∞(

aqj; q2)∞ , (1.11)

provided that
∣∣ q
b

∣∣ < 1, 0 < q < 1,�(d) > 0,�(c − d) > 0.

Theorem 2.3. For k ∈ N0, the following assertion holds true:

1∫
0

td−1 (tq; q)∞(
tqc−d ; q)∞ 3�2

⎡
⎣ a, bq−k , c;

d ,
aq

b
; q,−qt

b

⎤
⎦dqt = �q(d)�q(c − d)

�q(c)

· (a,−q; q)∞( aq
b ,− q

b ; q
)
∞

k∑
j=0

(
q−k; q)j
(q; q)j (−q)j

(
aqj+2

b2
; q2

)
∞(

aqj; q2)∞ , (1.12)

provided that
∣∣ q
b

∣∣ < 1, 0 < q < 1,�(d) > 0,�(c − d) > 0.

Proofs of Theorem 2.2 and 2.3: The proofs of the above two integrals Theorem 2.2
and Theorem 2.3 follow the similar steps as we discussed in the proof of Theorem 2.1,
by utilizing general contiguous q-Kummer first summation theorem [31, p. 6, Eq. (16)].

Theorem 2.4. For k ∈ N0, the following assertion holds true:

1∫
0

td−1 (tq; q)∞(
tqc−d ; q)∞ 3�3

⎡
⎢⎢⎣
a, b, c;

d ,

√
abq1−k ,−

√
abq1−k ;

q,−qt

k

⎤
⎥⎥⎦dqt

= �q(d)�q(c − d)

�q(c)

(a,−q; q)∞(
abq1−k ; q2)∞

k∑
j=0

(
q−k; q)j(−q)j

(q; q)j

(
bq1+j−k ; q2)∞(
aqj; q2)∞ . (1.13)

provided that �(d) > 0,�(c − d) > 0.

Theorem 2.5. For k ∈ N0, the following assertion holds true:

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�3

[
a, q1+k

a , c;
b,−q, d; q,−tbq−k

]
dqt = �q(d)�q(c−d)

�q(c)

·
(

q1+k

a ;q
)

∞

(
ab

q1+k ;q
)

∞
( q
a ;q)∞

k∑
j=0

(
q−k ;q)j

(
q1+k

a

)j(
bq1−k+j

a ;q2
)

∞
(q;q)j(abqj−k−1;q2)∞

.

(1.14)

provided that �(d) > 0,�(c − d) > 0.
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Theorem 2.6. For k ∈ N0, the following assertion holds true:

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�3

[
a, q1−k

a , c; q,−tbqk

b,−q, d;

]
dqt = �q(d)�q(c−d)

�q(c)

(− q
a ;q)∞

(
ab

q1−k ;q
)

∞(
− q1−k

a ;q
)

∞
(b;q)∞

k∑
j=0

(
q−k ;q)j(− q

a )
j
(

bq1−k+j

a ;q2
)

∞
(q;q)j(abqj+k−1;q2)∞

.

(1.15)

provided that �(d) > 0,�(c − d) > 0.

Proofs of Theorem 2.4, Theorem 2.5 and Theorem 2.6: Following the method
explained in proof of Theorem 2.1 and utilizing the general contiguous q-Kummer sec-
ond summation theorem [31, p. 10, Eq. (30)] and q-Kummer third summation theorem
[31, pp. 10–11, Eq. (32) and (34)] respectively, we get the desired integrals (1.13), (1.14)
and (1.15).

3 Applications

Several additional q-integrals as applications of main results (Theorems 2.1 to 2.6) are
presented in this Section.

3.1. In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.1 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.1, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�2

[
a, b, c;
d ,

aq2

b ; q,− qt
b

]
dqt = �q(d)�q(c−d)

�q(c)

.

(
a,−q, q

2

b ;q
)

∞(
aq2
b ;q

)
∞
(
q2

b2
;q2

)
∞

1∑
j=0

(
q−1;q)j
(q;q)j

(
q2

b

)j
(

aq2+j

b2
;q2

)
∞

(aqj;q2)∞

(1.16)

On applying the identity (1.3), followed by further simplification, leads to the
following presumably new result:

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�2

[
a, b, c;
d ,

aq2

b ; q,− qt
b

]
dqt

= �q(d)�q(c−d)

�q(c)
(−q;q)∞

(1− q
b )

(
aq2
b ;q

)
(− q

b ;q)∞[(
aq; q2)∞

(
aq2

b2
; q2

)
∞ − ( q

b

)(
a; q2)∞

(
aq3

b2
; q2

)
∞

]
.

(1.17)

3.2. In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.2 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.2, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�2

[
a, b, c;
d , a

b ;
q,− tq

b

]
dqt = �q(d)�q(c−d)

�q(c)
(−q;q)∞(
a
b ,− 1

b ;q
)

∞
·
[(
aq; q2)∞

(
a
b2

; q2
)

∞ + 1
b

(
a; q2)∞

(
aq
b2

; q2
)

∞

]
.

(1.18)
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3.3. In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.3 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.3, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�2

[
a, b, c;
d ,

aq
b ; q,−

tq
b

]
dqt = �q(d)�q(c−d)

�q(c)

(−q;q)∞
( aq

b ,− q
b ;q)∞

[(
aq; q2)∞

(
aq2

b2
; q2

)
∞ + (

a; q2)∞
(
aq3

b2
; q2

)
∞

]
.

(1.19)

3.4. In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.4 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.4, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�3

[
a, b, c;
d ,

√
ab,−√

ab;q,−t

]
dqt = �q(d)�q(c−d)

�q(c)

· (−q;q)∞
(ab;q2)∞

[(
aq; q2)∞(

b; q2)∞ + (
a; q2)∞(

bq; q2)∞]
.

(1.20)

3.5. In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.5 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.5, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�3

[
a, q2

a , c
b, d ,−q

;−tbq−1

]
dqt = �q(d)�q(c−d)

�q(c)

· 1
(1− q

a )(b;q)∞
[(

ab
q ; q2

)
∞

(
b
a ; q2

)
∞ − q

a

(
bq
a ; q2

)
∞

(
ab
q2

; q2
)

∞

]
.

(1.21)

3.6 In addition, for k = 1 , 2 , 3 , 4 · · · , Theorem 2.6 gives a number of additional
q-integrals. For instance, taking k = 1 in Theorem 2.6, yields

1∫
0
td−1 (tq;q)∞

(tqc−d ;q)∞
3�3

[
a, 1

a , c;
b, d ,−q;q,−tbq

]
dqt = �q(d)�q(c−d)

�q(c)

· a
(1+a)(b;q)∞

[(
abq; q2)∞

(
b
a ; q2

)
∞ + 1

a

(
ab; q2)∞

(
bq
a ; q2

)
∞

]
.

(1.22)

4 Summations of q-Lauricella Functions

Several summation formulas for q-Lauricella functions are presented here by using
q-Kummer contiguous summation theorems investigated by Vyas et al. [31].

Theorem 4.1. For k ∈ N0, the following assertion holds true:

�
1:1;....;1
1:0;.....;0

[
a : v1; v2; · · · ; vn
aq1+k

b : −; · · · ; − ; q, − q

v1
, − q

v1v2
, · · · ,− q

v1vn

]

=
(a; q)∞

(
−q, q1+k

v1v2···vn ; q
)

∞(
aq1+k

v1v2···vn ; q
)

∞

(
q2

v21v
2
2 ···v2n

; q2
)

∞

·
k∑

j=0

(
q−k; q)j
(q; q)j

(
q1+k

v1v2 · · · vn

)j

(
aq2+j

v21v
2
2 ···v2n

; q2
)

∞(
aqj; q2)∞ .

(1.23)
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Proof: The q-analogue of a generalized q-Kampé de Fériet reduction formula [28, p. 39,
Eq. (32)] is given by:

�
p:1;....;1
q:0;.....;0

[(
ap
) : v1; v2; · · · ; vn(
bq
) : − ; · · · ; − ; q, x, x

v2
, · · · ,

x

vn

]

= p+1�q

[(
ap
)
, v1v2 · · · vn(
bq
) ; q, x

v2v3 · · · vn
]
·

(1.24)

Taking x = − q
v1
, p = 1 , q = 1, a1 = a, b1 = aq1+k

b and v1v2 · · · vn = b in Eq. (1.24),
and then by applying q-Kummer first summation theorem [31, p. 6, Eq. (16)], we get
required result for Theorem 4.1.

Further, for n = 2, the Eq. (1.23) yields the following summation for q-Appell
hypergeometric function �(1):

�(1)

[
a : v1, v2; aq

1+k

b
;− q

v1
, − q

v1v2

]

=
(a; q)∞

(
−q, q1+k

v1v2
; q

)
∞(

aq1+k

v1v2
; q

)
∞

(
q2

v21v
2
2
; q2

)
∞

·
k∑

j=0

(
q−k ; q)j
(q; q)j

(
q1+k

v1v2

)j

(
aq2+j

v21v
2
2
; q2

)
∞(

aqj; q2)∞ .

(1.25)

In the similar manner, we can compute more summation theorems for q-Lauricella
multiple hypergeometric functions by utilizing the general contiguous q-Kummer first
summation theorem [31, p. 9, Eq. (28) and Eq. (29)], q-Kummer second summation
theorem [31, p. 9, Eq. (30)] and q-Kummer third summation theorem [31, pp. 10–
11, Eq. (32) and (34)] and corresponding summations for q-Appell hypergeometric
functions.

5 q-Laplace Transform

In this Section, we shall show that how, a general q-Laplace transform of basic (or
q-) generalized hypergeometric function given by Yadav and Purohit, see [25, p. 238,
Eq. (31)] and the results due toVyas et al. [31], can be utilized to derivemany presumably
new q-Laplace transforms evaluations.

This general q-Laplace transform in Gasper’s notation can be written as follows:

qLs

{
tb−1
r �s

[
a1, ...ar;
b1, ...bs;.q;wt

]}
= (q; q)∞

sb(b; q)∞ r�s

[
a1, ...ar, b;
b1, ...bs; q; w

s

]
· (1.26)

Taking r = 2 and s = 1 in the above Eq. (1.25) we obtain the following results:

qLs

{
tb−1
2 �1

[
a, 0;
c; q;wt

]}
= (q; q)∞

sb(b; q)∞ 2�1

[
a, b;
c; q; w

s

]
· (1.27)
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Taking r = 2 and s = 2 in the above Eq. (1.25) we obtain the following results:

qLs

{
tb−1
2 �2

[
a, 0;
c, d;q;wt

]}
= (q; q)∞

sb(b; q)∞ 2�2

[
a, b;
c, d;q;

w

s

]
· (1.28)

Theorem 5.1. For k ∈ N0, the following assertion holds true:

qLs
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aq1+k

b
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b

⎤
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)

∞
sb(b; q)∞

(
aq1+k

b ; q
)

∞

(
q2
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; q2

)
∞

·
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(
q−k; q)j
(q; q)j

(
q1+k

b

)j
(
aqj+2

b2
; q2

)
∞(

aqj; q2)∞ ·

(1.29)

Proof: By taking c = aq1+k

b and w
s = − q

b in Eq. (1.27) and applying general q-Kummer
first summation theorem [31, p. 6, Eq. (16)], we get Theorem 5.1.

Furthermore, we can derive two more series of contiguous q-Laplace transforms by
using Eq. (1.27) and by applying general contiguous q-Kummer first summation theorem
[31, p. 9, Eq. (28) and Eq. (29)].

Theorem 5.2. For k ∈ N0, the following assertion holds true:

qLs

{
tb−1
2 �2

[
a, 0;√

abq1−k , −√
abq1−k ;q; −q1−ks

]}

= (a,−q; q)∞(q; q)∞
sb(b; q)∞

(
abq1−k ; q2)∞

k∑
j=0

(
q−k; q)j
(q; q)j

(−q)j
(
bq1+j−k ; q2)∞(
aqj; q2)∞ (1.30)

Proof: By taking c =
√(

abq1−k
)
, d = −

√(
abq1−k

)
and w

s = −q1−k in Eq. (1.28)
and applying general q-Kummer second summation theorem [31, p. 9, Eq. (30)], we get
Theorem 5.2.

Theorem 5.3. For k ∈ N0, the following assertion holds true:

qLs
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tb−1
2 �2

[
a, 0;
b,−q;q, −qb−ks

]}

=
(q; q)∞

(
ab
q1+k ,
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a ; q
)

∞
sb(b; q)∞

( q
a ; q)∞

k∑
j=0

(
q−k ; q)j
(q; q)j

(
q1+k

a

)j
(
bq1+j−k

a ; q2
)

∞(
abqj−1−k ; q2)∞

(1.31)

Proof: By taking c = b, d = −q and w
s = −qb−k in Eq. (1.28) and applying general

q-Kummer third summation theorem [31, p. 10, Eq. (32)], we get Theorem 5.3.



Applications of General Summation Formulas Contiguous 389

Similarly, we can derive one more q-Laplace transform by using the Eq. (1.28) and
applying the general contiguous q-Kummer third summation theorem [31, pp. 10–11,
Eq. (34)].

It may be noted that, the kind of general q-Laplace transforms given in Eq. (1.29),
Eq. (1.30), Eq. (1.31) and other pointed out similar results, provide the corresponding
series of contiguous q-Laplace transform evaluations for k = 0 , 1, 2, · · · .

6 Conclusion

The literature has a prodigious large number of integral formulae involving a range of
special functions. Many researchers have used different summation formulas to derive
various integral formulas, for example [15]. In conclusion, this research paper illustrates
the application part of the newly investigated general summation formula contiguous
to q-Kummer theorems in deriving presumably new integral formulas (Theorems 2.1 to
2.6). We also deduce summation formulas for generalized q-Lauricella functions and
q-Laplace transforms. We remark in passing that the results obtained in this paper are
useful in the study of various special functions.
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Abstract. This research uses MHD Casson fluid flow with radiation, buoyancy,
and joule heating impression over a non-linear extending surface. It also included
the impressions of thermal diffusion—the Casson fluid’s flow characteristics in
a transverse magnetic field. Partial differential equations change into an ordinary
differential coupled system through appropriate similaritymodification. Diagrams
and tables are used to analyze the impacts of numerous non-dimensional param-
eters on velocity, temperature, and concentration with the help of the BVP4C
technique and MATLAB software. The temperature and concentration profiles
decline with increasing Dufour and Soret impressions, respectively. Velocity pro-
file increases with increasing local thermal Grashof number while the reverse
impression shows growing local concentration Grashof number. The skin friction
rises with the local thermal Grashof parameter but falloff with the local concentra-
tion Grashof number. The Nusselt number increases with the Soret, Dufour, and
radiation impacts. The skin friction coefficient, Nusselt number, and Sherwood
number are also shown in the table with validation.

Keywords: Casson fluid · Porous Medium · Radiation · Double diffusion ·
Buoyancy · Brownian motion

List of Symbols

B0 Magnetic induction
Sr Soret number
Sc Schmidt parameter
C Concentration
C∞ Ambient concentration as y tends to infinity
Cfx Skin-friction coefficient
Cp Specific heat capacity
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
Dm Mass diffusivity
F Dimensionless stream function
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K parameter of the Porous media
k Permeability of the porous medium
M Magnetic field parameter
n viscosity factor (Constant)
Pr Prandtl number
Q0 The dimensional heat Source/sink coefficient
q Radiative heat flux
Nr Radiation parameter
Nb Brownian motion parameter
NT Thermophoresis parameter
Nux Local Nusselt number
Ec Eckert number
GT Grashof number for local temperature
GC Grashof number for local concentration
Du Dufour number
R Chemical reaction parameter
R0 Chemical reaction coefficient
Re Local Reynolds number
Shx Local Sherwood number
T Temperature of the nanofluid within the boundary layer
Tw Reference temperature
T∞ Temperature of the ambient fluid
u; v Velocity components along x- and y-directions, respectively
uw Reference velocity
x; y Cartesian coordinates along the plate and normal to it, respectively

Greek Symbols

θ Dimensionless temperature
φ Dimensionless concentration
ν Kinematic coefficient of viscosity
α Thermal Diffusivity
β Casson Fluid parameter
σ The electrical conductivity
λ The heat source or sink parameter
η variable of Similarity
τ Heat capacity ratio
μB Non-Newtonian plastic dynamic viscosity
τw wall shear stress of the fluid
π deformation rate Multiple factors
πc Critical value of π founded on non-Newtonian model
eij (i, j)th deformation rate factor

Subscripts

w Surface conditions
∞ Conditions far away from the surfaces
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Superscripts

’ Differentiation with respect to η

1 Introduction

Non-Newtonian materials have drawn the attention of researchers over the past century
due to their transdisciplinary character and intriguing rheology. A wide range of sec-
tors, including processing, metals, chemical engineering, plastics, and food, can benefit
from non-Newtonian fluids. Applications for non-Newtonian liquids include glassmak-
ing, biological fluids, cosmetics, artificial fiber, pharmaceuticals, meals, metal spinning,
shampoos, and many more. Non-Newtonian fluids can be classified as shear-thickening,
dilatant, shear-thinning, and thixotropic. They all have different characteristics. Numer-
ous fluidmodels, includingMaxwell, Casson,Williamson, Burgers, Oldroyd-B, microp-
olar, Jeffrey, SutterbyCross, andSisko, amongothers, have been observed by rheologists.
However, there are specific circumstances in which second-grade liquid, which exhibits
shear thickening, shear thinning, and Newtonian flow properties, behaves. Due to its
dynamic properties, second-grade fluid is renowned and deserving among researchers.

The study of electrically conducting flow in a magnetic field is known as MHD. The
design of nuclear reactors,MHDgenerators, flowmeters, and other industrial and techni-
cal applications depends onMHDfluxes. Liquidswith exceptional thermal properties are
required as commercial and industrial processes expand. As the thermal conductivity of
liquids is used to quantify their heat transfer properties, empirical estimates indicate that
the thermal conductance of common fluids is intrinsically low and should be enhanced
via any technique. Researchers considered methods for increasing the thermal conduc-
tance of common liquids and discovered that adding particles with high conductivity
magnitudes can do this. In this regard, it is found that nano-sized particles are ideal
for achieving the desired result. Bachok et al. [5] examined the uniform free stream, a
time-independent boundary-layer flow of a nano-fluid departed a dynamic semi-infinite
flat sheet over a moving plate. Shehzad et al. [21] studied the mass transfer effect in the
MHD Casson fluid flow across a porous stretched sheet in the presence of the suction
parameter and chemical reaction. Haritha and Sarojamma [8] investigated the mass and
heat transfer in the MHD radiative Casson fluid flow over a porous stretched sheet.

The effect of the buoyant force brought on by the stretching sheets could not be
disregarded, aside from the flow created by an unstable or steady extending/shrinking
sheet. The subject of thermal radiation with mixed convective boundary layer (BL) flow
has become more popular due to its crucial applications in geothermal engineering,
space technology, and cooling nuclear reactors. Mabood et al. [12] studied the effects
of thermal radiation and chemical reaction of MHD Casson in a porous media. Reddy
et al. [17] found the impacts of Joule heating, viscous dissipation, and Soret in a vertical
channel of free convection electrically conducting Casson fluid. Singh et al. [24] pre-
sented an efficient hybrid computational technique, i.e., homotopy analysis transform
method (HATM), to inspect Jeffery–Hamel flow. Sumalatha and Bandari [25] focused
on radiative Casson fluid flow over a nonlinearly extending sheet with heat source/sink
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effects into account. Kataria and Patel [10] examined the impact of heat generation and
thermal diffusion on the MHD Chemical reactive Casson fluid flow past an oscillating
erect plate inserted through a porous mode.

The phenomenon of energy or heat transmitted by electromagneticwaves is known as
thermal radiation.When there is a considerable temperature variance between the bound-
ary surface and the ambient fluid, thermal radiation plays a significant role. Radiative
influences are crucial in physics and engineering. In operations involving high temper-
atures and space technology, the effects of radiation heat transfer on diverse flows are
crucial. For example, in the polymer industries, where heat regulating factors somewhat
impact the final product quality, the impacts of radiation are crucial for monitoring heat
transfer. The effects of radiation on missiles, airplanes, gas turbines, solar radiation,
spacecraft, liquid metal fluids, MHD accelerators, and nuclear power plants are also rel-
evant. Waqas et al. [30] presented mixed convective MHD micropolar fluid flow toward
a nonlinear stretched surface with various effects of viscous dissipation, Joule heat-
ing, and convective boundary conditions. Reddy [18] investigated a Casson fluid flow
in a two-dimensional MHD convective boundary layer over an exponentially inclined
stretched surface with a chemical reaction. Reddy and Janardhan [19] studied the Cas-
son MHD fluid flow across a vertical plate with a heat source/sink, chemical reaction,
radiation, Dufour, and Soret effects. Muthtamilselvan [14] examined the heat radiation
and buoyant effects of a grimy Casson fluid flowing across a stretchy sheet at its stag-
nation point. Singh et al. [23] investigated thin film flow of a third-grade fluid down
an inclined plane derived by using an effective well organized computational scheme
namely homotopy perturbation Elzaki transformmethod. Ramudu et al. [28] investigated
the suction/bowing properties ofMHDCasson fluid flowover an erect straightened sheet.
Vijaya et al. [29] studied the Soret impact on steady 2D free convective MHD Casson
fluid flow departed an erect moving plate when thermal radiation and chemical reactions
are present.

The Dufour effect is connected to the energy flux produced by the solute difference,
whereas the Soret effect is linked to mass flux phenomena brought on by heat diffu-
sion. To deal with gas concentrations with lighter and medium molecular masses, the
Soret impact is applied. Numerous industrial and engineering applications, including
multicomponent melts in geosciences, groundwater pollutant migration, solidification
of binary alloys, chemical reactors, space cooling, isotope separation, oil reservoirs,
and mixtures of gases, benefit from heat and mass transfer via the Soret and Dufour
phenomena. Ahmed and Arafa [2] analyzed the fractional derivatives methodologies
to mathematically formulate and numerically simulate steady MHD non-Newtonian
nanofluid flow with entropy creation over an erect plate with Caputo term. Khan et al.
[11] examined a mixed convective Casson fluid flow along a stretching and contracting
sheet in an unstable radiative two-dimensional stagnation point flow with Joule heating
and heat source impact. Abo-Dahab et al. [1] experimented on MHD Casson nanofluid
flow over nonlinearly porous extending surfaces with suction/injection.

Boundary slip fluid can clean mechanical heart valves and interior chambers, among
other things. El-Shorbagy et al. [6] explored how porous media affects mixed convection
of nano-fluid flow in a trapezoidal channel with two distinct aspect ratios. Additionally, a
filled channel with porous media produces favorable outcomes for the upper wall. Awais
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M et al. [4] explained the heat andmass transfer assets on theMHDCasson fluid flow via
porous material under the influence of heat generation effects and absorption. Mondal
et al. [13] addressed the convective heat transfer characteristics in a two-sided partly
driven cavity (PDC) under the umbrella of foundations of flow physics and examined
the effects of the pertinent parameters on fluid flow and heat transmission. Rao et al. [15]
investigated the thermal radiative MHD free convection Casson fluid flow via a rapidly
infinite erect plate through porous media. Reddy et al. [20] discussed MHD Casson
fluid flow, the radiation impact across a rapidly stretched sheet set in the presence of
a heat source/sink, and viscous dissipation. Finally, Akinshilo et al. [3] Considered the
Casson nano-fluid flow departs a fine porous needle with the effects of nonlinear thermal
radiation.

Gupta et al. [7] analyzed the MHD 2D Williamson nanofluid flow in the manifes-
tation of nonlinear thermal radiation, Cattaneo–Christov heat and mass flux models,
and varying thicker surfaces. Tassaddiq et al. [26] studied the generalized Casson fluid
flow involving the Mittag–Leffler function in the presence of Newtonian heating effects.
Sheikh et al. [22] studied the MHD Casson fluid flow with the generalized Fick’s and
Fourier’s laws in a channel by analyzing the Caputo fractional model. Samrat et al.
[27] considered the effects of the Brownian motion and thermophoresis in the MHD-
free convection flow of the revolution paraboloid. Rasheed et al. [16] researched the
effects of heat transfer with MHD Casson flow from a permeable straightened surface
by considering the heat source, chemical reaction, and viscosity dissipation effects.

However, a thorough examination of the previously mentioned literature reveals sev-
eral gaps. The authors have taken every precaution to ensure the accuracy of the infor-
mation in this document, and no prior studies have examined the steady MHD radiative
Casson fluid flow caused by a convectively heated nonlinear extending surface with dou-
ble diffusion impact, Joule heating and buoyancy impact with suction/blowing impacts
in their study outline. Additionally, the effects of viscous dissipation, heat source/sink,
Brownian motion, and thermophoresis with zero mass flow are studied. By using a cor-
respondence transformation, the boundary layer’s controlling PDEs are changed into
ODEs. The BVP4C solver calculates the serious solutions of the velocity, heat, and con-
centration fields. The graphs and table provide detailed illustrations and descriptions of
the many embedded flow parameters affecting skin friction and heat transfer rates.

2 Problem Structure

MHD Casson nanofluid flow in a 2D time-independent flow in the area (y > 0) with
power-law along nonlinearly high extended sheet with velocity distribution uw(x) = axn

and wall temperature Tw(x) = T∞ + Axn is taken, here A > 0 is constant, the pervasive
fluid temperature is T∞ and the pervasive nanoparticle concentration isC∞. In the trans-
verse flow direction variable magnetic field with strength B(x) = B0x(n−1)/2 is applied.
The electric field is missing, whereas by imaging a small magnetic Reynolds number,
the induced magnetic field is ignored. The flow model is the same as the coordinate
system in Fig. 1.
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Fig. 1. Physical Diagram

For a Casson fluid isotropic flow, the rheological state equation is used Ref. [1, 3, 4,
9]:

τij =
⎧
⎨

⎩

2
(
μB + τy

/√
2π

)
eij, π > πc

2
(
μB + τy

/√
(2πc)

)
eij, π < πc

(1)

where,π = eijeij and eij denotes the (i, j)th factor, andπ is the compound of the elements
of the deformation rate, the critical rate of several built using a non-Newtonian model
represented by πc, the plastic dynamic viscidness represented by μB, τij is known as
share stress and the non-Newtonian fluid yield stress represent by τy.

The current flow, mass, and heat transfer governing equations are stated by Ref. [1,
4, 9]

∂u

∂x
+ ∂v

∂y
= 0, (2)

u
∂u

∂x
+ v

∂u

∂y
= ν

(

1 + 1

β

)(
∂2u

∂y2

)

− ν

κ

(

1 + 1

β

)

u − σB2(x)

ρf
u + g0βT (T − T∞) + g0βc(C − C∞),

(3)

u
∂T

∂x
+ v

∂T

∂y
=∝

(
∂2T

∂y2

)

+ Q0

ρCp
(T − T∞) − 1

ρcp

∂qr
∂y

+ DmKT

CsCp

∂2c

∂y2
+σB2(x)u2

ρCp

+ τ

[

DB

(
∂T

∂y

∂C

∂y

)

+ DT

T∞

(
∂T

∂y

)2
]

+ ν

Cp

(

1 + 1

β

)(
∂u

∂y

)2

, (4)

u
∂C

∂x
+ v

∂C

∂y
= DB

(
∂2C

∂y2

)

+ DT

T∞

(
∂2T

∂y2

)

− R0(C − C∞) + DmKT

T∞

(
∂2T

∂y2

)

, (5)

where, the velocities are u and v in the directions x and y, the boundary condition for
the problem is Ref. [1]:
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{
u = uw(x) = axn, v = vw,T = Tw(x) = T∞ + Axn,DB

(
∂c
∂y

)
+ DT

T∞
∂T
∂y ; at y = 0

u → 0,T → T∞,C → C∞; at y → ∞
(6)

Through Rosseland approximation, using the radiative heat flux phrase Ref. [3, 7],
we have

qr = 4σ ∗

3k∗
∂T 4

∂y
, (7)

TheStefan–Boltzmann constant isσ ∗, and theRosselandmean absorption coefficient
is k∗. To get higher terms by using the Taylor series expansion and ignoring higher terms.
We get

T 4 ≈ 4T 3∞T − 3T 4∞, (8)

Equation (1) and significant equations are collected with References [1, 2, 18, 21].
Convert the leading PDEs into ODEs introduces the non-dimensional parameters

Ref. [1]
⎧
⎨

⎩

u = axnf ′(η), v = −ax
n−1
2

√
ν
a

( n+1
2 f (η) + n−1

2 ηf ′(η)
)

η =
√

a
ν
x
n−1
2 y, θ(η) = T−T∞

Tw−T∞ , φ(η) = C−C∞
Cw−C∞ .

(9)

Using the above non-dimensional parameters, the equations came out in the
nondimensional form, which is:

(

1 + 1

β

)

f′′′ − nf′2 + n + 1

2
ff′′ − M

(

1 + 1

β

)

f′ − K

(

1 + 1

β

)

f′ + GTθ + Gcφ = 0

(10)
(

1

Pr
+ Nr

Pr

)

θ′′ − nf′θ +
(
n + 1

2

)

fθ′ + Nbθ′φ′ + Ntθ′2 +
(

1 + 1

β

)

Ecf
′′2 + λθ + MEcf

′2 + Duφ′′ = 0

(11)

φ′′ +
(
n + 1

2

)

fφ′Sc + Nb

Nt
θ′′ − RScφ + SrScθ′′ = 0 (12)
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The boundary conditions are:

{
f (0) = fw, f ′(0) = 1,Nbφ′(0) + Ntθ ′(0) = 0; at η = 0
f ′(∞) → 0, θ(∞) → 0, φ(∞) → 0; at η → ∞ (13)

where,

The coefficient of skin friction (Cfx), localNusselt number (Nux), and local Sherwood
number (Shx) are the quantities of beneficial interest. They are as follows Ref. [1, 4]:

Cfx = τw

ρu2w
, Nux = xqw

αf (Tw − T∞)
, Shx = xqw

DB(Cw − C∞)
, (14)

where, qw, qm are the wall heat and mass flux, τw is the shear stress of the wall, and αf
is the nano-fluid conductivity.

qw = −αf (1 + Nr)

(
∂T

∂y

)

y=0
, qm = −DB

(
∂C

∂y

)

y=0
, τw = μB

(

1 + 1

β

)(
∂u

∂y

)

y=0

(15)

Using Eq. (9) in Eq. (14), we get

Re1/ 2x Cfx =
(

1 + 1

β

)

f ′′(0), Re−1/ 2
x Nux = − θ ′(0), Re−1/ 2

x Shx = − φ′(0), (16)

where, Rex = uwx
ν

is known as the local Reynolds number.

3 Results and Discussion

The effects of the porousmedium’s physical constant on temperature θ(η), concentration
φ(η), and velocity f ′(η) during a Casson nanofluid flow over a convectively heated
nonlinear via a porousmediumwith injection/suction due to an extended surface. Table 1
calculated the value of velocity, temperature, and concentration with various parameters
and try to find the Casson fluid flow behavior as per the submitted values of different
parameters. Additionally, for comparison, it was made between the outcomes of earlier
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Table 1. The rate of skin friction coefficient,mass transfer coefficient, and heat transfer coefficient
for various dimension-less parameters

N K R β M λ Ec fw Sr Sc Du Nr Nb Nt GT GC Pr f
′
(0) −θ

′
(0) −φ

′
(0)

0.5 -0.63980 0.602351 -0.60235

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.75147 0.856046 -0.85604

1.5 -0.84655 1.05839 -1.05839

-0.5 -0.60331 0.910742 - 0.91074

1 0.5 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.83636 0.823285 - 0.82328

1 -0.93163 0.785749 - 0.78574

2 -1.09726 0.71956 -0.71956

0.2 -0.74880 0.856844 -
0.856844

1 0.1 1.2 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 - 0.73780 0.860293 -0.86029

2.2 -0.73438 0.861402 -
0.861402

1 -0.92432 0.818015 -
0.818015

1 0.1 0.1 1.5 0.5 0 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -1.01487 0.797052 - 0.79705

2 -1.07123 0.783844 -0.783844

1 -0.855621 0.7978 -0.7978

1 0.1 0.1 0.5 1.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 - 0.94834 0.745555 -0.745555

2 -1.03263 0.697952 -0.697952

-0.1 -0.755612 0.9569 -0.9569

1 0.1 0.1 0.5 0.5 0 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.753654 0.908476 -0.908476

0.1 -10.751475 0.856046 -0.85604

-0.1 -0.755612 0.9569 -0.9569

1 0.1 0.1 0.5 0.5 0.1 0 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.754714 0.94073 -0.94073

0.1 -0.75147 0.856046 -0.856046

-0.2 -0.72462 0.724625 -0.72462

1 0.1 0.1 0.5 0.5 0.1 0.1 -0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.72077 0.766871 -0.766871

0.1 -0.75147 0.856046 -0.85604

0.2 -0.76772 0.902918 -0.90291

-0.1 -0.74574 0.825242 -0.82524

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0 2 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.74854 0.840271 -0.84027

0.1 -0.75147 0.856046 -0.85604

1 -0.773347 0.837973 -0.837973

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 1.5 0.1 0.1 0.1 0.1 0.1 0.1 0.7 -0.758714 0.848893 -0.848893

7 -0.736726 0.907046 -0.907046

-0.5 -0.741751 0.654331 -0.654331

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0 0.1 0.1 0.1 0.1 0.1 0.7 -0.73939 0.739396 -0.73939

0.1 -0.75147 0.856046 -0.85604

-0.1 -0.757853 1.00358 -1.00358

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0 0.1 0.1 0.1 0.1 0.7 -0.75440 0.922509 -0.922509

0.1 -0.751475 0.856046 -0.856046

0.1 -0.75147 0.856046 -0.856046

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.2 0.1 0.1 0.1 0.7 -762231 0.942119 -0.942119

(continued)
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Table 1. (continued)

N K R β M λ Ec fw Sr Sc Du Nr Nb Nt GT GC Pr f
′
(0) −θ

′
(0) −φ

′
(0)

0.3 -0.783734 1.11557 -1.11557

0.1 -0.751475 0.856046 -0.856046

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.5 0.1 0.1 0.7 -0.79266 0.969144 -0.969144

1 -0.912053 1.37446 -1.37446

-0.5 -0.876199 0.808341 -0.808

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0 0.1 0.7 -0.77138 0.849181 -0.849181

0.5 -0.674349 0.880643 -0.880643

-0.5 -0.61306 0.895894 -0.895894

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0 0.7 -0.728335 0.863243 -0.863243

0.5 -0.824617 0.824617 -0.824617

1 -0.763428 1.141 -1.141

1 0.1 0.1 0.5 0.5 0.1 0.1 0.1 0.1 2 0.1 0.1 0.1 0.1 0.1 0.1 1.5 0.782083 1.64413 -1.64413

2 -0.802715 2.24733 -2.24733

Table 2. Comparative study of Heat Transfer rate at the sheet for frequent values of
n,Nt,Nb,Pr, Sc, β and M , When fw = Ec = λ = 0 = K = R between Abo-Dahab et al.
[1] and the present work.

studies, as indicated in Table 2 which displays the thermal characteristics of a Casson
nano-fluid. The nano-fluid flows direction is shown in Fig. 1. Figures show the effects of
all outer parameters, including the viscosity factor n, the suction/blowing factor fw for
suction (fw > 0) and for blowing (fw < 0), the magnetic field M, the chemical reaction
parameter R, Porousmedia parameter K and the heat source λ, (λ > 0) or sink parameter
(λ < 0), Radiation Parameter Nr, Brownian Motion Parameter Nb, Dufour number Du,
Thermophoresis Diffusion Nt, Soret number Sr, Schmidt number Sc, Eckert number Ec,
Local temperature Grashof numberGT , Local concentration Grashof number GC, about
η are displayed in the Figs. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
44, 45, 46.
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Fig. 2. Change in f′(η) with various values of
n (viscosity factor)

Fig. 3. Change in θ(η) with various values of
n (viscosity factor)

Fig. 4. Change in φ(η) with various values
of n (viscosity factor)

Fig. 5. Change in f′(η) with various values of K
(Porous Media parameter).

Fig. 6. Change in θ(η) with various values of
K (Porous Media parameter).

Fig. 7. Change in φ(η) with various values of
K (Porous Media parameter).

Figure 2 shows the velocity f ′ variation aboutηwith different values of n, as increased
the value of viscosity factor n and the value of η the velocity decreased. Figure 3 shows
the variation of temperature θ about η with different value of n, the temperature starts
from unity at η = 0 the wall and eventually reaches zero as η → 0 (the fluid flows
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Fig. 8. Change in θ(η) with various values
of R (Chemical Reaction Parameter)

Fig. 9. Change in φ(η) with various values of
R (Chemical Reaction Parameter)

Fig. 10. Change in f′(η) with various values
of β (Casson fluid parameter)

Fig. 11. Change in θ(η) with various values of
β (Casson fluid parameter)

Fig. 12. Change in φ(η) with various values
of β (Casson fluid parameter)

Fig. 13. Change in f′(η) with various values of
M (Magnetic Field)

away from the wall) as increased the values of n and the value of η then the temperature
decreased. Figure 4 displays the concentration φ about η with different value of n, in
the graph if η increased then φ increased as its max. Value imminent to zero η → ∞
but decreased if η has great values. Figure 5 holds the graph mid between velocity f ′
and η with different values of porous media parameter K, arising the value of K then
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Fig. 14. Change in θ(η) with various values
of M (Magnetic Field)

Fig. 15. Change in φ(η) with various values
of M (Magnetic Field).

Fig. 16. Change in θ(η) with various values
of λ (Heat Source/sink Parameter)

Fig. 17. Change in φ(η) with various values
of λ (Heat Source/sink Parameter)

Fig. 18. Change in θ(η) with various values
of Ec (Eckert number)

Fig. 19. Change in φ(η) with various values of
Ec (Eckert number)

velocity profile decreased. Figure 6 indicates the graph of temperature and ηwith various
values of K and notice that as per increasing K values the temperature increased as well.
Figure 7 shows the concentration profile with respect to η with a distinct value of K,
initially if increased the value of K then φ increased but after a point (η = 1) the behavior
of the graph is changed and the concentration graph decreased. Figure 8 and Fig. 9 are
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Fig. 20. Change in f′(η) with various values
of fw (Injection/Suction Parameter)

Fig. 21. Change in θ(η) with various values of
fw (Injection/Suction Parameter)

Fig. 22. Change in φ(η) with various values
of fw (Injection/Suction Parameter)

Fig. 23. Change in θ(η) with various values of
Sr (Soret number)

Fig. 24. Change in φ(η) with various values
of Sr (Soret number)

Fig. 25. Change in f′(η) with various values of
Sc (Schmidt number)

the graphs of temperature and concentration with a distinct value of chemical reaction
parameter R about η, in this section concludes that increase the R then the temperature
θ increased as well but the concentration φ decreased.

Figure 10, 11, and 12 are the graph of the velocity f ′, temperature θ, and concentration
φ with respect to η with different values of the Casson fluid parameter β, as increased
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Fig. 26. Change in θ(η) with various values
of Sc (Schmidt number)

Fig. 27. Change in φ (η) with various values
of Sc (Schmidt number)

Fig. 28. Change in θ(η) with various values
of Du (Dufour number)

Fig. 29. Change in φ(η) with various values
of Du (Dufour number)

Fig. 30. Change in θ(η) with various values
of Nr (Radiation Parameter)

Fig. 31. Change in φ(η) with various values of
Nr (Radiation Parameter)

the β, velocity is decreased, but temperature increased, and in the favor of concentration
profile, it decreased as β increased. Since when the β growths, then the plastic dynamic
viscosity is also increasing that produces the resistance in the fluid flow. That’s why
velocity declines with growing Casson fluid parameter. Figure 13, 14, and 15 are the
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Fig. 32. Change in f′(η) with various values
of Nb (Brownian Motion Parameter)

Fig. 33. Change in θ(η) with various values of
Nb (Brownian Motion Parameter)

Fig. 34. Change in φ(η) with various values
of Nb (Brownian Motion Parameter)

Fig. 35. Change in f′(η) with various values of
Nt (Thermophoresis Diffusion)

Fig. 36. Change in θ(η) with unlike values of
Nt (Thermophoresis Diffusion)

Fig. 37. Change in φ(η) with unlike values of
Nt (Thermophoresis Diffusion)

graph for numerous values ofM, for velocity f ′, temperature θ, and concentration profile
φ about η, if M increased then velocity is decreased, temperature θ increased, and
concentrationφ increases but for a short path ofη, after (η < 1) the graphof concentration
decreased as per M increased. In Fig. 13, we detected that the velocity declines when
the Magnetic parameter Mn increases in the presence of powerful Lorentz forces in the
fluid flow field because Lorentz force creates more resistance in the flow. In Fig. 14, the
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Fig. 38. Change in f′(η) with various values
of Gt (Local temperature Grashof number)

Fig. 39. Change in θ(η) with various values of
Gt (Local temperature Grashof number)

Fig. 40. Change in φ(η) with various values
of Gt (Local temperature Grashof number)

Fig. 41. Change in f′(η) with various values of
Gc (Local concentration Grashof number)

Fig. 42. Change in θ(η) with various values
of Gc (Local concentration Grashof number)

Fig. 43. Change in φ(η) with various values
of Gc(Local concentration Grashof number)

temperature enhances with growingmagnetic parameterMn in the company of Joule and
viscous dissipative impacts in the thermal equation. Figure 16 and 17 are the graph for
various values of λ graphs credited in temperature θ and concentration φ profiles about
η, and the disclaimer of the graph increased the value of λ then the temperature and the
concentration profileφ increased. As seen in Fig. 16, temperature riseswith growing heat
source/sink parameter because heat source/sink produces heat in fluid flow. Figure 18
and 19 show the effect of the temperature and concentration profile with different values
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Fig. 44. Change in f′(η) with various values
of Pr(Prandtl number)

Fig. 45. Change in θ(η) with various values of
Pr(Prandtl number)

Fig. 46. Change in φ(η) with various values of Pr (Prandtl number)

of Eckert number Ec with concerning η, the temperature and the concentration profiles
both are increased as increased the value of Ec. The temperature trends are illustrated in
Fig. 18 as the Eckert number Ec grows. It has been discovered that as the Eckert number
climbs, so does the temperature profile. The Eckert number represents the relationship
between kinetic energy and enthalpy in a flow. It depicts the labour required to convert
kinetic energy into internal energy in the face of viscous fluid forces. The greater the
Eckert number, the higher the fluid’s kinetic energy, resulting in more fluid vibration
and more fluid-molecule collisions. Heat dissipation in the boundary layer region is
aided by enhanced molecular collisions, increasing temperature profile. Figure 20, 21
and 22 display the variation of velocity f ′, temperature θ and concentration profile φ

with concerning η with numerous values of fw. It appears that from injection to suction
with an arising fw, the velocity f ′ decreased but with a rising of fw, the temperature
decreased, here concentration φ and temperature θ profile behave opposite to each other
so the graph of concentration φ increases as fw increasing. Figure 23 and 24 state the
graph for numerous values of Soret number Sr, graphs plots for temperature θ about
η and concentration φ about η, which clarify that in the account of Soret number, the
temperature and the concentration profile both behaved in the same manner when we
consider Sr is increased then θ and φ both are increased. Figure 25 is the graph of the
velocity profile f ′ concerningηwith different values of Schmidt number Sc, this inducted
that enlarges the Sc then the velocity profile f ′ increases. Figure 26 and 27 are made for
temperature θ and concentration φ profile about η for multiple values of Sc, explained
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that when Sc is involved the temperature θ and the concentration φ behavior are opposite
to each other. If Sc increased, then the graph of θ is decreased slightly but the graph
of φ grows rapidly. Figure 28 and 29 plotted for the temperature and the concentration
profile concerning η with the distinct value of Dufour number Du, if increased the Du
then both profiles are decreased, which means both profiles behave in the same manner.
Figure 30 and 31 are manufactured for various values of the Radiation parameter Nr
for temperature θ and concentration φ about η, it describes that both temperature and
concentration are increased with a rising value of Nr. Because the thermal boundary
layer grows with Nr, the temperature also rises.

Figure 32, 33, and 34 include the profiles of velocity, temperature, and concentration
with η for various values of Brownian motion parameter Nb. It states that the behaviors
of all profiles in these graphs are the same i.e., if increased the Nb then all profiles are
decreased aswell. Figure 35, 36, and37are plotted for different values ofThermophoresis
diffusion Nt, these are for velocity, temperature, and concentration profiles with respect
to η. These show that if Nb increased then all of the profiles decreased. Behavior of the
graphs with Thermophoresis diffusion Nt and with the parameter of Brownian motion
Nb is the same. Figure 38 is for velocity profile for η with numerous values of local
temperature Grashof number GT, as per increased GT the velocity also increased. Since
the Grashof number is the ratio amid the buoyancy force to the restraining force. Here
buoyancy force is because of spatial disparity in density of fluid (producedby temperature
differences) and the restraining force due to the viscosity of the fluid. Figure 39 is for
temperature profile with η for various values of GT. Here increased the GT then the
temperature decreased. Figure 40 have the concentration profile with η for numerous
values of GT, when GT increased then concentration decreased (for η < 1), and the
concentration increased (for η > 1) slightly. Figure 41 displayed the velocity profile
for η with distinguishing values of Concentration Grashof number GC, it shows that
the velocity decreases if the value of GC arises. The velocity declines with the local
concentration Grashof number due to falling momentum boundary layer. Figure 42 is
made for a temperature about η with the distinct value of GC, the temperature increased
if GC is raised. Figure 43 holds the concentration profile concerning η with different
values of GC, If GC increased then the concentration profile arises slightly (for η < 1),
and (η > 1) concentration φ decreased slightly. To compare the graphs (all the profiles)
of both of the parameter’s GT and GC behave opposite to each other.

Figure 44, 45, and 46 state the graphs of velocity f ′, temperature θ, and concentration
φ profiles about ηwith various values of Prandtl number Pr. The value of Prandtl number
Pr is increased then graphs of velocity f ′, temperature θ, and concentration φ, all of the
streams are decreased. Figure 45 describes the outcome of Prandtl on the temperature
field for various Prandtl values. By reason of a high Pr-value, very viscid fluid with
limited thermal conductivity is present as Pr values grow and diminish the temperature
distribution. In terms of physics, the Prandtl number is the relationship between velocity
and thermal diffusivities; greater Pr values have lesser conduction, whereas lower Pr
amounts have higher thermal conductivity. The temperature declines due to This is
evident that the different parameters have an impact on the MHD Casson nano-fluid
flow above a non-linearly heated porous medium when an extended surface is present.
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4 Conclusion

The current study provides that a Casson fluid flow with MHD and presence of suc-
tion/injection with radiation, porous medium, Grashof parameter for temperature and
concentration, thermophoresis diffusion and Dufour number included then results get
analytically and numerically, and we can deduce the following conclusions. This prob-
lem can be solved for future purpose if sheet is inclined at some angle. The boundary
conditions and fluids can also be changed.

• The Radiation parameter Nr and the Magnetic parameter M affect the temperature
and concentration profiles, both of the profiles increases if Nr and M increased.

• The behavior of the temperatureGrashof numberGT has a vice versa behaviorwith the
Concentration Grashof number GC, which is applicable for all velocity, temperature,
and concentration profiles.

• The heat transfer coefficient increases with the double diffusion thermo impression.
• Thermophoresis diffusion Nt and Brownian motion Nb both behave the same for the
velocity, temperature, and concentration profiles.

• The skin friction increases with local thermal Grashof number while declines with
local concentration Grashof number.

• Analyzing that theDufour numberDu effects same onConcentration and Temperature
profile, if Du increased then they both profiles decreased.

• An increasing impact of growing radiation parameter is showing for the Nusselt
number.

• When Prandtl number Pr added then Velocity, Concentration and Temperature profile
affected, if Pr increased then all profiles decreased.
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Abstract. In this paper, comparison among four distinct basis functions
is conducted to generate trigonometric Bézier curves. The procedure calls
for the use of the programming tool MATLAB to plot curves. Cubic
trigonometric (T-Bézier) Bézier curves are compared to cubic Bézier
curves at first. Same techniques are applied to generalized trigonometric
(GT) Bézier curves and generalized blended trigonometric (GBT) Bézier
curves to draw the conclusion. The features acquired by Bézier curves
are investigated while curves are produced for various intervals. T-Bézier
curves were found to be the closest to control polygon. These curves have
been employed in a variety of applications, each of which required the
use of a separate suitable basis functions. . . .

Keywords: Parametric curves · Bézier curves · Trigonometric Bézier
curves · Curve modelling

1 Introduction

When it comes to dealing with the computational elements of geometric objects,
the theory of Bézier curves has proven to be a significant turning point in Com-
puter Aided Geometric Design (CAGD). CAGD encourages the use of simple
designs, stark colour schemes, and an emphasis on visual functionality in any-
thing from cereal boxes to gallery settings, for which Bézier curves prove to be
of great help. Farin [2] gives an introduction to the Bernstein-Bézier methods
and delivers topics in an approachable tone. Bézier curves have a wide range of
uses in science, engineering, and technology due to their computational simplic-
ity and stability, including networks, animation, computer-aided design systems,
robotics, environment design, communications, and many other domains. The
curves you’ve been tracing are Bézier curves if you’ve ever used vector graphics
software like Flash or Inkscape or created Photoshop “paths”.

Despite being the most often used option for curve tracing, classic Bézier
curves lacked flexibility. It is necessary to adjust control points in order to change
the curve’s shape, which is a laborious operation when working with complex
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curves that have numerous control points. Hence the shape parameters were
added to the traditional Bézier curves as a fix for this issue. In [10], Wen-Tao
et al. introduced a shape parameter λ (λ ∈(−∞, −2) ∪ ∈ (−2,1]) by an inte-
gral approach and researchers started working upon Bézier curves with shape
parameters. Without a doubt, the shape parameters made it possible to change
the curve’s shape without changing the control points. However, even with these
specifications, several of the shapes could not be drawn using Bézier curves. In
order to support the curve tracing of shapes like helix, cycloid, ellipses, and
other circular arcs, a switch to trigonometric Bézier curves with shape param-
eters occurred. To study the importance of these trigonometric Bézier curves,
one can refer to [3]. Bézier-variant of Durrmeyer modification of the Bernstein
operators has been studied by Tuncar et al. in [1]. The authors used usual mod-
ulus of continuity to examine the rate of approximation. Kajla et al. presented
the Bézier variant of Srivastava-Gupta operators in [6] and Bézier variant of
Bernstein-Durrmeyer type operators in [7] and studied direct approximation
theorem corresponding to Ditzian-Totik modulus of smoothness.

In 2009, Han et al. [4] introduced cubic trigonometric Bézier curves with two
shape parameters parallel to classical cubic Bézier curves. The authors concluded
that it better approximated the shapes as compared to cubic Bézier curves and
successfully represented ellipse. In [5], the shape analysis of the basis functions
proposed in [4] has been illustrated by substituting μ = λ. As the study of
these curves gained pace, numerous researchers stepped up to introduce different
trigonometric Bernstein like basis functions with shape parameters varying over
different intervals. Maqsood et al. in [8,9] generalized the trigonometric Bézier
curves using recursive technique and introduced two shape parameters. In this
paper, we have compared the cubic Bézier curves with the Bézier curves formed
corresponding to the basis functions suggested in [4,8,9].

The need to assess the accuracy, computational complexity and ability to
better approximate the curves leads to the necessity for a direct comparison
of cubic Bézier curves and trigonometric Bézier curves corresponding to varied
basis functions. Each basis function is compared in both a simple and a complex
figure construction to ascertain its benefits and drawbacks. To the writers’ knowl-
edge, this kind of comparison has never been made, hence it can be regarded as
novel. The paper is organized in a manner that Sect. 2 gives a summary of the
basis functions that are being thought about. Section 3 covers the mechanics of
how these curves are applied. The final section compares distinct bases with an
emphasis on the variations between these methods.

2 Theoretical Foundation

The fundamentals of these definitions are well-known, however to make this
article self-sufficient, a number of recalls have been added.

2.1 Bézier Curves

[2] A Bézier curve is defined as a parametric curve which forms the basis of the
Bernstein polynomials. Bézier curve of degree n, on an interval [0,1] is defined by:
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s(t) =
n∑

i=0

Bi,n(t)Pi, t ∈ [0, 1]. (2.1)

Coefficients Pi represent the control points and Bi,n(t) are the Bernstein basis
polynomials given by:

Bi,n(t) =
(

n

i

)
ti(1 − t)n−i, (2.2)

where
(
n
i

)
=

n!
i!(n − i)!

and i = 0, 1, ..., n. The polynomials Bi,n(t) ∈
Pn, i = 0, 1, ..., n, where Pn denotes the space of all polynomials of degree at
most n and Bi,n(x) = 0 if i < 0 or i > n. The cubic Bézier curve is
obtained for n = 3 in Eq. (2.1). The polygon formed by connecting the sequence
of control points is known as control polygon.

2.2 Cubic Trigonometric Bézier Curves

Han et al. [4] in 2009, developed a basis for cubic trigonometric Bézier curves,
parallel to cubic Bézier curves.

Definition 1. [4] For two arbitrarily selected real values of λ and μ, where λ, μ
∈ [−2,1]; the following four functions of t ∈[0,1]; are defined as cubic trigono-
metric Bézier (i.e. T-Bézier) basis functions with two shape parameters λ and
μ:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b0(t) =
(
1 − sin π

2 t
)2 (

1 − λ sin π
2 t

)
,

b1(t) = sin π
2 t

(
1 − sin π

2 t
) (

2 + λ − λ sin π
2 t

)
,

b2(t) = cos π
2 t

(
1 − cos π

2 t
) (

2 + μ − μ cos π
2 t

)
,

b3(t) =
(
1 − cos π

2 t
)2 (

1 − μ cos π
2 t

)
.

(2.3)

For λ = μ = 0, the basis functions are quadratic trigonometric polynomials. For
λ, μ �= 0, the basis functions are cubic trigonometric polynomials. Corresponding
to the above mentioned basis functions, cubic trigonometric Bézier curves are
defined as:

r(t) =
n∑

i=0

bi(t)Pi, t ∈ [0, 1], λ, μ ∈ [−2, 1]. (2.4)

Coefficients Pi represent the control points and bi(t) are the basis polynomials
as defined in Eq. (2.3).
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2.3 Properties of T-Bézier Curves

The T-Bézier curves satisfy the following properties which have been listed by
Han et al. [4].

1. End point interpolation: The T-Bézier curve passes through the initial
and final control points i.e.

r(0) = P0

r(1) = P3

Here P0 & P3 are initial and final points respectively.

2. Convex hull property: The curve formed with the help of control points
assigned, will always lie within the convex hull of the control polygon.

3. Geometric in-variance: The shape of the T-Bézier curve doesn’t depend
upon the coordinates chosen, i.e. the following equations are satisfied:

r(t;P0 + v, P1 + v, P2 + v, P3 + v) = r(t;P0, P1, P2, P3) + v.

4. Symmetry: bi(t;λ, μ) = b3−i(1 − t;λ, μ) for i = 0, 1, 2, 3.
5. Derivative at the end points: T-Bézier curves at end points are given

by: {
r′(0) = π

2 (λ + 2)(P1 − P0),
r′(1) = π

2 (μ + 2)(P3 − P2),
(2.5)

{
r′′(0) = π2

2 (2λ + 1)(P1 − P0) + (P2 − P1),
r′′(1) = π2

2 (2μ + 1)(P3 − P2) + (P2 − P1),
(2.6)

{
r′′′(0) = π3

8 (5λ − 2)(P1 − P0),
r′′′(1) = π3

8 (5μ − 2)(P3 − P2),
(2.7)

3 Composition of T-Bézier Curves

In order to compose two T-Bézier curves, following conditions of continuity need
to be followed. Let

r(t) =
3∑

i=0

bi(t) ∗ Pi, t ∈ [0, 1], λ, μ ∈ [−2, 1]

and

s(t) =
3∑

i=0

bi(t) ∗ Qi, t ∈ [0, 1], λ, μ ∈ [−2, 1], (3.1)

where Pi and Qi are control points for the T-Bézier curves r(t) & s(t) respectively
and bi(t) represent the basis functions.
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Also, we have
r(0) = P0, r(1) = P3

and
s(0) = Q0, s(1) = Q3

where p0 & q0 are initial control points of the first curve r(t) and second
curve s(t) respectively and P3 & Q3 are final control points of the first curve
r(t) and second curve s(t) respectively.

3.1 Parametric Continuity Constraints of T-Bézier Curves

In this section, we have worked upon the required parametric continuity con-
straints.

Theorem 3.1: The necessary and adequate constraints for parametric continu-
ity between two T-Bézier curves as defined in Eq. (3.1) are given by:

1. Conditions for C0 continuity: The value of first curve at “t = 1”
must be equal to the value of second curve at “t = 0” i.e. r(1) = s(0). Which
means that beginning of the second curve marks the ending of the first curve.
Since r(1) = P3 and s(0) = Q0 due to the end point interpolation property of
T-Bézier curves, this leads to the constraint for C0 continuity as:

Q0 = P3 (3.2)

2. Conditions for C1 continuity: Along with the constraints of C0 continuity,
the curve has to follow additional condition that the 1st derivative of first curve
at “t = 1” must be equal to the 1st derivative of the second curve at “t = 0” i.e.
r(1) = s(0) and r′(1) = s′(0). Thus, we get the conditions for C1 continuity as:

{
Q0 = P3

Q1 = P3 + μ+2
λ+2 (P3 − P2)

(3.3)

3. Conditions for C2 continuity: C2 continuity provides a smooth transi-
tion between the curves by flattening them at the point of confluence. These
constraints are obtained by using r(1) = s(0), r′(1) = s′(0) and r′′(1) = s′′(0)
leading to the following conditions:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Q0 = P3

Q1 = P3 + μ+2
λ+2 (P3 − P2)

Q2 = P3 + (P2 − P1) + 4μ−3λ+2
λ+2 (P3 − P2)

(3.4)
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3.2 GT-Bézier Curves

Maqsood et al. in 2020, introduced new basis functions for trigonometric Bézier
curves as defined below.
Definition 2. [8] For α, β ∈ [−1, 1] and z ∈ [0, 1], the functions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w0,2(z) =
(
1 − sin(π

2 z)
) (

1 − α sin(π
2 z)

)
,

w1,2(z) = (1 − w0,2(z) − w2,2(z)) ,

w2,2(z) =
(
1 − cos(π

2 z)
) (

1 − β cos(π
2 z)

)
,

(3.5)

are called the second order GT-basis functions. In order to define basis function
wi,m (z) (i = 0, 1, ...,m) for degree m ≥ 3, recursive technique has been used as
below:

wi,m(z) = (1 − sin(
π

2
z))wi,m−1(z) + sin(

π

2
z)wi−1,m−1(z), (3.6)

where wi,m(z) = 0 when i = −1 or i > m. For given control points Pi, the
curves

S(z) =
n∑

i=0

wi,m(z)Pi, z ∈ [0, 1], α, β ∈ [−1, 1], (3.7)

are termed as the GT-Bézier curves of order m.

3.3 GBT-Bézier Curves

The basis functions formulated in [8] were further improved by blending the
trigonometric and polynomial functions.
Definition 3. [9] For μ, ν ∈ [−1, 1] and z ∈ [0, 1], the functions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f0,2(z) =
(
1 − sin(π

2 z)
) (

1 − μ sin(π
2 z)

)
,

f1,2(z) = (1 − f0,2(z) − f2,2(z)) ,

f2,2(z) =
(
1 − cos(π

2 z)
) (

1 − ν cos(π
2 z)

)
,

(3.8)

are called the second order GBT-basis functions. Basis function fi,m (z) (i =
0, 1, ...,m) for degree m ≥ 3 is defined by using recursive technique as below:

fi,m(z) = (1 − z)fi,m−1(z) + zfi−1,m−1(z), (3.9)

where fi,m(z) = 0 when i = −1 or i > m. Corresponding to these basis functions
for the control points Qi, GBT-Bézier curves of degree m are defined as follows:

F (z) =
n∑

i=0

fi,m(z)Qi, z ∈ [0, 1], α, β ∈ [−1, 1]. (3.10)
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3.4 Properties

The classical, cubic trigonometric, generalized trigonometric and generalized
blended trigonometric Bézier curves, these all satisfy the following properties:

1. Geometric in-variance
2. Convex hull property
3. Symmetry
4. End point interpolation

To study these properties and continuity conditions in detail, readers can refer
to [4,8,9].

4 Comparative Analysis

This section deals with the formations of shapes by comparing the curves gener-
ated by using different bases. In figure [1 - 5], T-Bézier (λ = μ = 1), GT-Bézier
(α = β = 1), GBT-Bézier (μ = ν = 1) and cubic Bézier curves are represented
by the colour red, black, blue and green respectively.

Fig. 1. Comparison between cubic Bézier curves and T-Bézier curves

4.1 Cubic Bézier Curves vs Cubic Trigonometric Bézier Curves

Figure 1 is generated by joining set of four arcs to get the final result. Red
colour indicates the T-Bézier curves, which are closer to the control polygon as
compared to the cubic Bézier curves in green colour. It is to be observed that
T-Bézier curves can show variation in the shape just by altering the values of the
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parameter. Magenta colour is used to trace the curves for λ = μ = −2 and hence
tracing generating the curves for the extreme values of λ, μ ∈[−2,1]. The curves
thus formed, interpolate at the end points and verify the convex hull property
graphically.

4.2 Cubic Bézier Curves vs Other Basis Functions

We can observe a particular behaviour of the curves through Fig. 2. Four differ-
ent sets of curves are composed together, corresponding to four bases functions.
Here the colour red, black, blue and green indicate T, GT, GBT and cubic Bézier
curves respectively. In Fig. 2(a) the control polygons ABCD, DEFG, GHID,
DJKA form the corresponding set of four curves in the order mentioned. It is
to be noted that as we move from initial point “A” to second control point “B”
of control polygon ABCD, maximum pull is demonstrated by T-Bézier curves.
Contrary to this, GT-Bézier curves are pulled towards the third control point
“C”, exceeding T-Bézier curves as we approach the last control point “D’. Similar
conduct is shown by the curves for control polygons DEFG, GHID and DJKA.
Figure 2(b) shows how the spiral pattern formation looks once the control poly-
gons are removed.

Fig. 2. Spiral patterns

Figure 3(a)-(d) represent the formation of a fish, using basis functions taken
under account. It is interestingly observed that T-Bézier curves (in red colour)
are closest to the control polygon ABCD only till the mid of the segment BC.
As we approach towards the third control point, which in this case is “C”,
GT-Bézier curves move closer to the control polygon once we cross the mid
of segment BC as compared to the remaining curves. Similarly, for the control
polygon EFGH the curves traced corresponding to it in Fig. 3(a) are closest to
the control polygon for T-Bézier until the curve approaches the third point “G”
and GT-Bézier curves are closer to the segment of the control polygon EFGH
that approximates tail of the fish.
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Fig. 3. Formation of a fish

Fig. 4. Variation of parameters

Where as in Fig. 3(d), the orientation of the curve is reversed (left to right)
and hence the tail is better approximated by the T-Bézier curves. GT-Bézier
curves are closer to the control polygon as compared to the rest, for the segment
beyond the mid of control polygon EFGH in Fig. 3(d). Therefore, we conclude
that the cubic GT-B’ezier curves are the most suitable when the shape to be
modeled, requires higher pull towards the second last point of the control poly-
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gon. On the other hand, T-Bézier curves supersede the cubic Bézier curves if α
= 0 and β ∈[−1,1]. Figure 4(a) can be referred for the same.

Figure 4 demonstrates the impact of changing parameters. We extract from
Fig. 4(b) that the shapes concerning flattened curves at the conjunctures can be
traced by using GBT-Bézier curves for lower values of shape parameters. As we
set β = −1 and α ∈[−1,1], it can be seen that the most flattened arc is provided
by GBT-Bézier curve and hence making it more suitable for circular shapes.

5 Conclusion

It is evident from Fig. 5 that basis functions suggested by Han et al. in [4]
approximate the curves better as compared to the remaining bases.

Fig. 5. Comparison between cubic Bézier curves formed by using different basis func-
tions

Different basis functions have been used to compare the floral formation of
cubic Bézier curves. To indicate cubic Bézier curves, green colour is used. Black
and blue colours represent the basis functions formulated in [8,9] respectively.
To trace the curves formed by using the basis functions suggested in [4], red
colour has been used. It can be seen that the curves are closest to the control
polygon for the basis formulated in [4]. Although GT-Bernstein basis [8] exceeds
T-Bézier curves after a certain stage for α > 0, but the long-range impact of [4]
depicts the curves more effectively. Hence a recursive technique thus formulated
to generate trigonometric curves of higher order will give better approximated
curves, improve the computational time and reduce the cost of algorithms.

On the top of that, T-Bézier curves have identical structural formation with
classical cubic Bézier curves. Therefore, adapting T-Bézier curve to a CAD/CAM
system that already uses the cubic Bézier curves becomes an easy task. The
parametric and geometric continuity conditions can be developed accordingly,
to combine multiple curves of higher orders for constructing complex structures.
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The only drawback, identified till now to this technique would be its inability
to form curves of degree two. Whereas this was not the case with other bases
under consideration since the recursive formula depends up on the basis functions
of degree two.
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Abstract. Subscription of copper–water nanofluid flow over an isothermal mov-
ing sheet has been inspected. Standard models of spherical, cubic, tetrahedron,
cylindrical and lamina shapes of nanoparticle have been taken into considera-
tion. Utilizing similarity transformation, boundary layer equations of the prob-
lem reduce to a set of nonlinear equations. Numerical solutions are achieved
by implementing the MATLAB’s boundary layer problem solver (bvp4c). Conse-
quences of relevant specifications onvelocity and temperature have been compared
graphically, while the influence on heat flux and shear stress has been collated in
tables. Remarkable managing parameters of the problem are moving parameters,
sphericity and shape of copper nanoparticles. It is noticeably detected that velocity
improves with accrue in λ and reduces with φ. Temperature increases with fall
off λ and rises with φ. The temperature continuously increases with nanoparticle
shape changes from sphere to regular hexahedron to the tetrahedron, then further
from tetrahedron to cylinder, and finally to lamina.

Keywords: Copper–water · Nanofluid · Isothermal · Moving Sheet

1 Introduction

Nanofluid is a scientific term of fluids containing ultrafine nanoparticles in a base fluid.
The nanoparticle is usually distinguished as a particle with a diameter smaller than
100 nm. Nanofluid is encouraging in various applications, and the production depends
on the dispersion and stability of nanoparticles. Nanoparticles are predominantly carbon
nanotubes, metal oxides, and metal carbides made of metals. Ethylene glycol, oils, and
water are popular base fluids. Nanofluid flow problems enhance an exciting theme to its
many applications in the field of industrial and biomedical; the development of energy-
efficient, lower thermal conductivity is the primary process of controlling heat transfer
fluids. Choi [1] estimated the potential benefits of nanofluids and presented the thermal
conductivity of nanofluids with nanoparticles. Its wide-ranging application in industrial
and engineering was the attention of many scientific communities. Xuan and Li [2]
introduced the thermal conductivity of nanofluids with heat transfer and used a hot-wire
instrument to calculate nanofluids’ thermal conductivity with attached copper nanophase
powders. Chein and Chuang [3] studied microchannel heat sink (MCHS) presentation
by applying nanofluids experimentally. For low flow rate variations, in accord with the
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theoretical forecast, on other hand, wall temperature is only partially admitted for high
flow rate. Due to enormous applications such as heat exchanger technology, industrial
cooling, computer technology, geothermal energy storage, and next-generation solar film
collectors, nanofluids attracted the attention of researchers. Part of popular explorations
regarding nanofluids is done by various researchers such as Rana and Bhargava [4], Pal
and Mandal [5], Vanaki and Mohammed [6], Reddy and Chamkha [7], Gupta et al. [8],
and Chaudhary and Kanika [9]. Nanofluid flow has become a hot issue for researchers
due to its numerous applications in the pharmaceutical task, food processing, hybrid-
powered engines, biological materials, nuclear reactor coolant, and space technology.
Medical technologies acting as cancer therapy and safer surgery by cooling are useful
applications of nanofluids. Recently, Mishra et al. [10] worked on the explorations with
temperature-dependent heat source related to MHD nanofluid flow, and Chetteti and
Srivastav [11] determined nanofluid flow over the vertical frustum of a cone.

Sakiadis [12] was the first to examine boundary layer flow behavior on moving
solid surface. Further, Mahmoud and Mahmoud [13] extended the work and obtained
a numerical solution of MHD boundary layer flow and compared analytical solutions
with numerical solutions. Chaudhary and Kumar [14] considered MHD boundary layer
flow over a continuously moving flat plate. In the polymer industry, the extrusion of
plastic sheets, lamination and melt spinning processes, and spinning of fibers are some
critical applications of this concept. Chaudhary and Choudhary [15] gave an interesting
analysis of MHD boundary layer flow over a flat surface. Due to notable applications
in a different area, a fractional model of Casson fluid with heat and mass transfer was
developed by Tassaddiq et al. [16] and Sheikh et al. [17]. The problems of nanofluid
flow with stretchable plates have consideration by several researchers; one of them is
Chaudhary and Kanika [18]. Yousef et al. [19] recently studied nanofluid flow in porous
medium. Malvandiet al [20] observed thermodynamic fluid flow over a moving plate.

The novelty of present survey is to draw out the above research work by applying
nanofluids and examining different shapes of nanoparticles in fluid nature. The cur-
rent research work gives out original studies not published out to the best of author’s
knowledge.

2 Mathematical Analysis

Consider a two-dimensional boundary layer viscous incompressible copper-water
nanofluid flow with numerous nanoparticle shapes over a moving sheet. The physi-
cal model is displayed in Fig. 1. Assume x− axis is onwards moving sheet, y− axis is at
right angles to it and restricted flow area is y > 0. The moving sheet has velocityUw and
the free stream velocityU∞ is taken as positive constant (U∞ > 0). Along withUw > 0
or Uw < 0 implies the sheet is moving in the positive x− direction or in the negative x−
direction, respectively. Suppose, wall temperature Tw is constant and temperature of the
nanofluid far away from the sheet is T∞ such that Tw > T∞. The governing equations
under these assumptions are exhibit as

∂u

∂x
+ ∂v

∂y
= 0 (1)
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(
1

υnf

)(
u
∂u

∂x
+ v

∂v

∂y

)
= ∂2u

∂y2
(2)

(
1

αnf

)(
u
∂T

∂x
+ v

∂T

∂y

)
= ∂2T

∂y2
(3)

with boundary conditions

y = 0 : u = Uw, v = 0, T = Tw
y → ∞ : u → U∞, T → T∞ (4)

The subscript nf mean features of nanofluid, u and v are flow components of velocity
in x− axes direction and y− axes direction, respectively, υ

(= μρ−1
)
is the kinematic

viscosity, α
{
= κ

(
ρCp

)−1
}
is the thermal diffusivity, μ is the coefficient of viscosity,

ρ is the density, κ is the thermal conductivity and Cp is the specific heat at constant
pressure, T is the nanofluid temperature.

Fig. 1. Flow geometry.

Table 1 shows thermophysical properties of base fluidwater and copper nanoparticles
(Oztop and Abu-Nada [21]). Table 2 presented the thermophysical models for density,
viscosity, heat capacity

(
ρCp

)
and thermal conductivity of nanofluid (Mohammad and

Kandasamy [22]). In this table the subscripts f and s are used for base fluid water
and solid nanoparticles, respectively, φ is the solid volume fraction, m

(= 3ζ−1
)
is

the experimental shape factor and ζ is the sphericity of the particles. In the present
investigation considered 5 different copper nanoparticles shapes. The values of sphericity
of copper nanoparticles along with corresponding shapes (Lin et al. [23]) are illustrated
in Table 3. The value of sphericity of the particle is one for sphere and less than one for
non-uniform shapes.
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Table 1. Thermophysical properties.

Themophysical
properties

Base fluid
Water

Copper
Nanoparticles

κ(W/mK) 0.613 400

ρ(Kg/m3) 997.1 8933

Cp (J/Kg K) 4179 385

Table 2. Thermophysical models.

Physical Quantities Nanofluid

ρ ρnf = (1 − φ)
[
ρf +

{
φ

(1−φ)

}
ρs

]

μ μnf = μf (1 − φ)−5/ 2

ρCp
(
ρCp

)
nf = (

ρCp
)
f − φ

[(
ρCp

)
f − (

ρCp
)
s

]

κ κnf =
[

(m−1)
{
κf −φ

(
κf −κs

)}+κs

(m−1)κf +φ
(
κf −κs

)+κs

]
κf

3 Comparability Variables

Introducing dimensionless stream function (ψ), similarity variable (η) and temperature
(T ) of nanofluid (Malvandi et al. [20]) given by

ψ =
√(

2υf U∞x
)
F(η)

η =
√(

U∞
2υf x

)
y

T = (Tw − T∞)θ(η) + T∞

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5)

In Eq. (5), dimensionless quantities F and θ are stream function, and temperature,
respectively. Obviously u = ∂ψ

∂y and v = − ∂ψ
∂x satisfies Eq. (1).The following nonlinear

equations are obtained by using Eq. (5) and the formulation given in Table 2, in Eqs. (2)
to (4), we have

F ′′′ + (1 − φ)7/ 2
[
1 +

(
φ

1 − φ

)(
ρs

ρf

)]
FF ′′ = 0 (6)

(
κnf

κf

)
θ ′′ + Pr(1 − φ)

[
1 +

(
φ

1 − φ

)(
ρCp

)
s(

ρCp
)
f

]
Fθ ′ = 0 (7)

boundary conditions

η = 0 : F = 0, F ′ = λ = Uw

U∞
, θ = 1
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Table 3. Nanoparticle shapes and their sphericity.

η → ∞ : F ′ → 1, θ → 0 (8)

Here, primes
(′) stand for derivativewith respect toη, Pr

(= υα−1
)
is the Prandtl number

and λ is the moving parameter (velocity ratio parameter).

4 Manifesto of Investigation

Experimental interested quantities are skin friction coefficient
(
Cf

)
and Nusselt

number (Nux) with surface shear stress τw

{
= μnf

(
∂u
∂y

)
y=0

}
and surface heat flux
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qw

[
= −

{
κnf

(
∂T
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)
y=0

}]
are expressed as

Cf = 2τw
ρf U 2∞

=
(

2μnf

ρf U 2∞

)(
∂u
∂y

)
y=0

Nux = xqw
κf (Tw−T∞)

= −
{

xκnf
κf (Tw−T∞)

}(
∂T
∂y

)
y=0

⎫⎪⎬
⎪⎭ (9)

Using Eq. (5) in Eq. (9), obtained the following

Cf =
(

1
(1−φ)5/ 2

)√(
2

Rex

)
F ′′(0),

Nux = −
√(

Rex
2

) (
κnf
κf

)
θ ′(0)

⎫⎪⎪⎬
⎪⎪⎭

(10)

In Eq. (10), Rex
[
=

{
U∞

(
υf

)−1
}
x
]
is the local Reynolds number, F ′′(0) is surface

share stress and θ ′(0) is surface heat flux.

5 Validation of Solution Methodology

For based fluid water, keeping the fixed Prandtl number (Pr = 5.2), selected values
of the velocity ratio parameter, nanoparticle volume fraction, and different shapes of
the copper nanoparticles implementing the MATLAB’s boundary layer problem solver
(bvp4c), achieve the solution of Eqs. (6) and (7) with boundary conditions (8). The
finite value of boundary conditions as η → ∞ = 5 and η → ∞ = 6 occupied
for computational with step size �η(= 0.001) to carry out a convergence test of 10−6

asymptotically. Table 4 presented surface shear stress at λ = 0 and φ = 0 and compared
numerical results with published literature by Yacob et al. [24]. Obtained results and
solution methodology used for the present obstacle are accurate.

Table 4. Outcome of F ′′(0) at λ = 0 and φ = 0

F ′′(0) Present studies Yacob et al. [24]

η → ∞ = 5 0.46968 0.46960

η → ∞ = 6 0.46960

6 Results Analysis

Results for particular values of physical quantities of shear stress and heat flux with
Pr = 5.2 are cataloged in Table 5. It observed that F ′′(0) reduces for more significant
nanoparticle volume fraction and positive velocity ratio parameter. After that, for neg-
ative velocity ratio parameter, both λ and F ′′(0) rise correspondingly. The drag force
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utilized by nanofluid on a moving sheet implies a positive sign F ′′(0), whereas a nega-
tive sign indicates the opposite. Also, the Nusselt number dwindles with improvement of
volume fraction. In comparison, heat transfer rate is noticed to smaller with increasing
moving parameters and sphericity of various shapes of nanoparticles utilized. For each
parameter inspected value, the heat flux values are negative.

Table 5. Outcome of F ′′(0) and θ ′(0) with Pr = 5.2 for particular values of physical quantities

Solids shape of nanoparticles λ φ −F ′′(0) −θ ′(0)
Sphere -0.3 0.04 −0.42870 0.33256

-0.1 −0.54200 0.71417

0.1 −0.54329 0.98004

0.5 −0.38900 1.38141

1.5 0.53764 2.08705

2.3 1.62270 2.51731

1.5 0.02 0.48054 2.28881

0.06 0.49943 2.21465

0.08 0.52500 2.14817

0.10 0.53773 2.01217

Regular Hexahedron 0.04 0.53764 2.02614

Tetrahedron 2.00421

Cylinder 1.87647

Lamina 1.49681

Figures 2, 3, 4, 5 and 6 convey the effect of dominating specification on fluid velocity
and temperature. The supervising parameters considered in the problem are the veloc-
ity ratio parameter, nanoparticle volume fraction, and numerous shapes of the copper
nanoparticles.
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Figures 2 and 3 elaborated the effect of λ on F ′(η) and θ(η), respectively. It is
eminent that velocity distribution grow with rising values of λ, while the reverse result
is notice on thermal boundary layer. The nanofluid flow is analyzed for different values
of velocity ratio parameter such as λ < 0, 0 < λ < 1 and λ > 1 as draw in Fig. 1. It
is also noteworthy that Fig. 2 has inadequate concurrence with the symbolic boundary
layers exhibited in Fig. 1.

Figures 4 and 5 have shown the effects of spherical nanoparticles on velocity and tem-
perature, respectively. Improving solid volume fraction leads to decreasing momentum
boundary layer as an outcome of inconvenience in defying nanofluid flow. Nanoparticles
push the thermal boundary layer and occur in the gain of the temperature with increased
nanoparticle volume fraction. The temperature difference is presented in Fig. 6, deter-
minable by the distinct nanoparticle shapes with the same base fluid. It is distinguished
from the graph that the temperature increases with the value of sphericity dwindling or
observational shape factor increases.

Fig. 2. Influence of λ on velocity F ′(η) with m = 3 and φ = 0.04.
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Fig. 3. Influence of λ on temperature θ(η) with m = 3, φ = 0.04 and Pr = 5.2.

Fig. 4. Influence of φ on velocity profiles F ′(η) with m = 3 and λ = 1.5.
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Fig. 5. Influence of φ on temperature θ(η) with m = 3, λ = 1.5 and Pr = 5.2.

Fig. 6. Influence of nanoparticle shapes on temperature θ(η) with λ = 1.5, φ = 0.04 and Pr =
5.2.

7 Conclusions

The consideration of the flow effects of copper-water nanofluid over an isothermal mov-
ing sheet is specified in the module. Utilizing similarity transformation, the governing
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equations reduce to a set of ordinary equations. Solving ordinary equations byMATLAB
and summarized the numerical results as follows.

• Velocity boundary layer thickness was raised, and thermal boundary layer thickness
decreased with increasing moving parameters.

• Step down of the velocity and rise of the temperature with the rising value of solid
volume fraction.

• Superior effect found on upgrade nanofluid temperature of nanoparticle-shaped
Lamina compared to the rest of nanoparticle shape.

• In the case of λ < 0, shear stress is raised, while in the case of λ > 0, shear stress and
heat flux rate fell with growing moving parameters.

• Reduce skin friction coefficient and rise of the Nusselt number with increasing value
of solid volume fraction.
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Abstract. The current article examines the thermal instability of a
rotating porous layer saturated by a Rivlin-Ericksen elastico-viscous
nanofluid using both nonlinear and linear ways. Nonlinear stability anal-
ysis is carried out using the truncated Fourier series method while nor-
mal mode methodology is utilized to perform to evaluation of linear
stability analytically. The outcomes are all displayed graphically. The
findings show that the concentration Rayleigh number, Lewis number,
and modified diffusivity ratio promote the commencement of convective
motion within the system. On the other hand, porosity, Darcy num-
ber, and rotation stabilize the system. The variation of the kinematic
viscoelasticity parameter is found to have a substantial effect on the
heat/mass transfer when Nusselt numbers are evaluated as a function of
time. It has been determined that for stationary convection, the Rivlin-
Ericksen elastico-viscous nanofluid fluid conducts just like a typical New-
tonian nanofluid. The Taylor number affects the behaviour of heat/mass
transfer, as increase the value of Taylor number mass and heat transfer
decrease in the system, and found that Rivlin-Ericksen elastico-viscous
nanofluid delays the commencement of convection.

Keywords: Porous medium · Rivlin-Ericksen nanofluid · rotation ·
linear and non-linear analysis

Nomenclature

Latin symbols

(x, y, z) cartesian or eucledian coordinates.
Da the Brinkman-Darcy number.
Rn Concentration Rayleigh Number.

h horizontal layer thickness.
V a Vadasz Number.
Le Lewis Number.
Ra Thermal Rayleigh-Darcy number.
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km effective thermal conductivity.
p pressure. (kgm−1s−2)

Nb Modified Particle-Density Increment.
Na modified diffusivity ratio.

g Gravitational acceleration. (ms−2)
Ta Taylor’s number.

Rm Density Rayleigh Number.
t Time.

Nu Nusselt Number.
T Temperature.
q Nanofluid velocity.
s Growth rate of Disturbance.
a wave number (m−1).
F Kinematic Viscoelasticity Parameter.
σ Thermal Capacity Ratio.
κ Thermal Diffusivity.

k1 permeability.
TL temperature at the lower wall.

DB Brownian diffusion coefficient.
TU temperature at the upper wall.
DT thermophoretic diffusion coefficient.

(u, v, w) Velocity Components.

Greek symbols

ε Porosity. (0 < ε < 1).
μ viscosity.

ρf Density of Fluid (kgm−3).
(ρc)p heat capacity in nanoparticles.

α thermal expansion coefficient.
φ nanoparticle-volume fraction.
μ′ Kinematic Viscoelasticity.
ρp Density of Nanoparticles (kgm−3).

(ρc)m heat capacity in porous medium.

Subscripts and superscripts

′ Non-dimensional Variables.
˜ Perturbed Quantity.

Operators

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
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1 Introduction

We have observed a significant class of fluid called as non-Newtonian fluids
in mechanical areas, which is widely employed due to its practical use. Non-
Newtonian fluids, such as pulps, emulsions, aqueous solutions of polyisobutylene
and polyacrylamide, etc., are useful as chemical products and raw materials in
a variety of industrial processes, which has inspired researchers to investigates
at non-Newtonian fluids and the transport mechanisms that move them. Many
researcher has worked on ordinary nanofluid to check the behaviour of heat and
mass transfer. However, in this manuscript, we wish to find the effect of Rivlin-
Ericksen elastico-viscous nanofluid on heat and mass transfer. One of these fluids
is Rivlin-Ericksen. Rivlin-Ericksen [1] is a type of elastico-viscous fluid that was
the first study to offer a theoretical and rheological model for elastico-viscous
fluids. The erratic flow of Rivlin-Ericksen fluid with different cross sections was
observed by Srivastva [2] when the pressure gradient is time-dependent and the
dust particle dispersion between the channels is uniform. Kumar and Sharma
[3] investigate at the Rivlin-Ericksen fluid’s thermal instability when both mag-
netic field and rotation are present. The fluid layer is stabilised by kinematic
viscoelasticity, according to Chand and Parkash [5] investigation of the effect
of Rivlin-Ericksen fluid’s instability due to kinematic viscoelasticity in porous
media. Sharma et al. [6] observed the Rivlin-Ericksen fluid’s Rayleigh-Taylor
instability through a porous medium. Pardeep et al. [7] investigate how a mag-
netic field affects a rotating Rivlin-Ericksen fluid’s thermal instability. Thermal
instability was investigated in Sheu [8] by a viscoelastic nanofluid-saturated layer
of porous material. Sharma and Rana [9] and Rana and Thakur [10] observed
the convection initiation in a Rivlin-Ericksen fluid filling a Brinkman porous
medium and heated from below. According to Rana and Chand [11] The thermal
instability of Rivlin-Ericksen was investigated. By porous medium nanofluid is
saturated, with nanoparticle flow on the borders controlled similarly to temper-
ature. Although Nield and Kuznetsov [12] construct that managing the volume
percentage of nanoparticles at the borders could be challenging. As a result, they
expand a more practical boundary condition by assuming that the nanoparti-
cle flux value is suitably accommodated and that there is no flux at the plate.
The improved model of thermal instability in a porous media was developed by
Chand et al. [13] of Rivlin-Ericksen Nanofluid. The thermal instabilities satu-
rated in dracy-Brinkman porous media are observed by Rana et al. [14] of Rivlin-
Ericksen nanofluid. Saini and Sharma [15] investigated in a porous medium was
vertical throughflow’s impact on Rivlin-Ericksen nanofluid. Malleswari [16] when
the double diffusion effect and a transverse magnetic field were both present,
a vertical plate brimming with porous media was used to test free convective
flow. Salawu et al. [17] looked at the Trasient Rivlin-Ericksen fluid recently.
Before reaching a steady condition, they noticed a small rise in both heat and
momentum.

Choi introduced the concept of nanofluid and developed a nanofluid with
excellent thermal conductivity [18]. Nanofluid research has gotten a lot of inter-
est in recent years. They have evolved into modern materials utilised in thermal
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engineering, energy conservation, the automotive industry, nuclear reactors, and
other fields. Furthermore, nanoparticle suspensions are being used in medicinal
applications such as cancer treatment. Choi et al. [19] observed that a modest
quantity of (<1% volume fraction) copper (Cu) nanoparticles or carbon nan-
otubes suspended in ethylene glycol or oil increased the liquid’s intrinsically low
thermal conductivity by 40% and 150%, respectively. Das et al. [20] revealed a
5%–21% rise in water with nanoparticle diameter (10–20) mn for gold nanoparti-
cles, as well as a 7%–14% increase in effective thermal conductivity. Buongiorno
[21] proposed the formulation of convective transport equations in nanofluids.
Tzou [22] and Kuznetsov and Nield [23] analysed when a nanofluid layer started
convecting. The thermal instability of nanofluids has been investigated by numer-
ous authors, including Agarwal and Bhadauria [26], Bhadaurial et al. [27]. Nield
and Kuznetsov [28] The Darcy model was utilized to examine natural convection
for flow through a porous media containing a nanofluid. Agarwal and Bhadauria
[29] for the Brinkman and Darcy models respectively. The same issue of ther-
mal instability for bottom-heavy and top-heavy suspensions in a rotating porous
layer saturated by a nanofluid was investigated. When nanofluid is employed,
Rashidi et al. [30] research the heat transfer increasing and increases higher heat
flux densities. Rawat et al. [31] evaluated the effects of suction and thermal radi-
ation into the flow of silver and copper water nanofluids over a vertical Riga and
plate. Garia et al. [32] to compare hybrid nanofluid flow through a wedge and a
cone, it was done using the Cattaneo-Christov heat flux model. They observed
that heat transfer rises as the thermal time lag increases. Gumber et al. [33]
looked into the micropolar nature of hybrid nanofluid flow across a vertically
positioned plate in the presence of heat radiation.

A rotating system’s fluid flow occurs naturally. In reality, when fluid starts
moving, this rotation becomes more pronounced among the fluid particles inter-
nally. Rotation therefore exists in fluid flow as a natural phenomenon to some
extent. Taylor and Geoffrey [35] presented the experimental notion of the viscous
fluid motion in a rotating apparatus. Greespan [36] has conducted a thorough
investigation on the fluid movement in rotating systems. Many researcher such
as Pardeep et al. [37], Sunil et al. [38], Kirillov et al. [39] are work with magnetic
and rotation. Yadav et al. [40] investigated the magneto-convection in a rotating
layer of nanofuid. It is observed by Ramesh et al. [41] the thermal instability in
a rotating porous layer of nanofuid contained in a Hele-Shaw cell. Manjula et al.
[42] studied the complex ginzburg landau model for an oscillatory convection in
a rotating fluid layer, and currently Manjula et al. [43] examined the influence
of rotation speed modulation on weak nonlinear Rayleigh-Benard convection.

In this paper, we focus on combine effect of rotation, porous medium on
Rivlin-Ericksen elastico-viscous nanofluid. Also, study the linear as well as non-
linear (or mass/heat transfer) in the system. Due to the significance of the mag-
netic field, porous medium, and Non-Newtonian fluid in contemporary society
for technical purposes, many works using porous medium, magnetic field, and
rotation on Rivlin-Ericksen elastico-viscous nanofluid individually have been pre-
sented in the literature. This kind of research is essential if we want to understand
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the behaviour of magnetic fields, porous medium and the rotation influence on
Rivlin-Ericksen elastico-viscous nanofluid. According to our knowledge, no study
that addresses these significant factors concurrently has been conducted in lit-
erature.

2 Governing Equations

An elastico-viscous Rivlin-Ericksen nanofluid saturated in a porous layer, the
idea of being heated from below and restricted between two horizontal barriers at
z = h and z = 0 is considered (see Fig. 1). The porous layer rotates with a uniform
rotational velocity Ω around the z-axis. It is assumed that the boundary wall
is impermeable and perfectly thermally conductive. Force of gravity g(0, 0,−g)
acts on the fluid layer. Temperatures TU at z = h and TL at z = 0 were used to
represent the upper and lower walls, respectively, with (TL > TU ). The dimen-
sional governing equations in view of the above assumptions are (Chand and
Rana [11] and Bhadauria and Agarwal [29]):

Fig. 1. Schematic diagram

∇ · q = 0 (1)

ρf

ε

dq

dt
= −∇p + μ∇2

q − 1

k1
(μ + μ

′ ∂

∂t
)q +

2ρ0

ε
q × Ω + [φρp + (1 − φ)ρf (1 − α(T − TU ))]g (2)

(ρc)m
∂T

∂t
+ (ρc)fq · ∇T = km∇2T +

DT

TU
∇T · ∇T ] + ε(ρc)p[DB∇φ · ∇T (3)

∂φ

∂t
+

1
ε
(q · ∇)φ =

DT

TU
∇2 T + DB∇2φ (4)
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where d
dt ≡ ∂

∂t + 1
ε (q · ∇)

where, q represent the velocity, g is gravity, μ denotes the viscosity, The volu-
metric fraction of the nanoparticles is represented by φ, ρp denotes the density of
nanoparticles, ρf denotes the fluid density, μ′ represent the kinematic viscoelas-
ticity, ε is porosity, (ρc)m is the heat capacity of porous medium, α denotes
the thermal expansion, (ρc)p is the volumetric heat capacity of nanoparticles,
k1 is medium of permeability and km is the thermal conductivity of the porous
medium.

The above governing Eqs. (1)–(4) are governed by the following boundary
criteria (Chand et al. [34]):

w = 0, T = TL, DB
∂φ

∂z
+

DT

TU

∂T

∂z
= 0, at z = 0

w = 0, T = TU , DB
∂φ

∂z
+

DT

TU

∂T

∂z
= 0, at z = 1

⎫
⎪⎪⎬

⎪⎪⎭

(5)

The following Non-dimensionalizing parameters have been used:

(x′, y′, z′) =
(x, y, z)

h
, q′ =

qh

κ
, t′ =

κt

σh2
, p′ =

pk1
μκ

,

φ′ =
φ − φ0

φ1 − φ0
, T ′ =

T − TU

TL − TU
, κ =

km

(ρc)f
, σ =

(ρc)m

(ρc)f

After the non-dimensionalization process is completed and the dashes (′) are
removed, Eqs. (1)–(4) become:

∇ · q = 0 (6)
1

V a

dq

dt
= −∇p + Da∇2

q − (1 + F
∂

∂t
)q +

√
(Ta)(vex − uey) + RaTez − Rmez − Rnφez (7)

∂T

∂t
+ q · ∇T = ∇2

T + ε
Nb

Le
∇φ · ∇T + ε

NaNb

Le
∇T · ∇T (8)

1

σ

∂φ

∂t
+

1

ε
q · ∇φ =

1

Le
∇2

φ +
Na

Le
∇2

T (9)

Non-dimensional boundary situations

w = 0, T = 1,
∂φ

∂z
+ Na

∂T

∂z
= 0, at z = 0

w = 0, T = 0,
∂φ

∂z
+ Na

∂T

∂z
= 0, at z = 1

⎫
⎪⎬

⎪⎭
(10)



442 Ismail and B. S. Bhadauria

where,

V a =
εμσh2

ρfκ
, is the Vadasz number.

Rm =
(ρpφ0 + ρf (1 − φ0))gk1h

μκ
, is the Rayleigh density number.

Ra =
(ρfα(TL − TU )ghk1

μκ
, known as Rayleigh number.

Na =
DT (TL − TU )

DBTU (φ1 − φ0)
, known as modified diffusivity ratio.

Le =
κ

DB
, known as Lewis number

Rn =
(ρp − ρf )(1 − φ0)ghk1

μκ
, known as concentration Rayleigh number.

Nb =
ε((ρc)P )(φ1 − φ0)

(ρc)f
, known as modified thermal density increment.

√
(Ta) = (

2ρ0h
2Ωk1

εμ
)2, known as Taylor number,

Da =
k1
h2

, known as Darcy number,

2.1 Basic Solution

The temperature of the fluid, the nanoparticle and volume fraction are all func-
tions of z :

φ = φb(z), p = pb(z), T = Tb(z),q = 0 (11)

With the use of Eq. (11) into Eqs. (8) and (9) we get:

d2Tb

dz2
+ ε

Nb

Le

dTb

dz
(
dφb

dz
+ Na

dTb

dz
) = 0 (12)

d2φb

d(z2)
+ Na

d2Tb

d(z2)
= 0 (13)

Solve Eq. (12) and Eq. (13) with boundary condition we get.

Tb = 1 − z (14)

Solve Eq. (13) and using Eq. (14) with boundary condition we get.

φb = Na(z) + φ1 (15)
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Perturbation Solution. Small perturbations are imposed to the conduction
state:

p = pb + p̃, φ = φb + φ̃,q = 0 + q̃, T = Tb + T̃ . (16)

We use the above expressions (16) in the Eqs. (6)–(9), we have:

∇ · q̃ = 0 (17)
1

V a

dq̃

dt
= −∇P̃ + Da∇2q̃ − (1 + F

∂

∂t
)q̃+

√
(Ta)(vex − uey) + RaT̃ez − Rnφ̃ez (18)

∂T̃

∂t
− w̃ = ∇2T̃ + ε

Nb

Le
(
Na∂T̃

∂z
− ∂φ̃

∂z
) − 2εNaNb

Le

∂T̃

∂z
(19)

1

σ

∂φ̃

∂t
+

1

ε
Naw̃ =

1

Le
∇2φ̃ +

Na

Le
∇2T̃ (20)

Taking curl operators on Eq. (18) we obtain.

(Da∇2− 1

V a

∂

∂t
− (1 + F

∂

∂t
)∇ × q̃ +

√
(Ta)∇ × (vex − uey)+Ra∇ × T̃ ez −Rn∇ × φ̃ez = 0

(21)
Again taking curl operators on Eq. (21) and taking z-component.

(Da∇2 − 1
V a

∂

∂t
− (1 + F

∂

∂t
)∇2w̃ −

√
(Ta)

∂ζ

∂z
+ Ra∇2

H T̃ − Rn∇2
H φ̃ = 0 (22)

Taking z-component of Eq. (21)we get.

(Da∇2 − 1
V a

∂

∂t
− (1 + F

∂

∂t
)ζ +

√
(Ta)

∂w

∂z
= 0 (23)

Eliminating ζ from Eq. (22) and (23) we obtain.

(Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
))2∇2w̃ + (Ta)

∂2w̃

∂z2
+ Ra∇2

H T̃ (Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
))

−Rn∇2
H φ̃(Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
)) = 0

(24)
where ∇2

H = ∂2

∂x2 + ∂2

∂y2 , and ∇ × q̃ = ζ.

2.2 Linear Analysis

3 Normal Mode Method

w̃ = exp[i(lx + my) + st]W (z)

T̃ = exp[i(lx + my) + st]θ(z)

φ̃ = exp[i(lx + my) + st]φ(z)

⎫
⎪⎬

⎪⎭
(25)

where s is taken to be the growth rate of disturbances, lx and my are defined as
the x and y-directional wave numbers, respectively.
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Using Eq. (25) the Eqs. (24), (20) and (19) reduce in the differential equations
obtain as (Chand and Rana [11]):

((D
2 − a

2
)[Da(D

2 − a
2
) − s

V a
− (1 + sF )]

2
+ TaD

2
)W − Raa

2
(Da(D

2 − a
2
) − s

V a
− (1 + Fs))θ

+Rna
2
(Da(D

2 − a
2
) − s

V a
− (1 + Fs))φ = 0

(26)

(s − (D2 − a2) +
εNaNb

Le
D)θ − W +

εNb

Le
Dφ = 0 (27)

(
s

σ
− 1

Le
(D2 − a2))φ +

1
ε
NaW − Na

Le
(D2 − a2)θ = 0 (28)

where, ∂
∂z ≡ D and k2

x + k2
y = a2

The boundary situation for normal mode investigation are

W = 0, θ = 0,Dφ + NaDθ = 0 at z = 0, z = 1 (29)

For the equations θ, φ and, W we suppose that the solution has the following
format:

W = A1sinπz, θ = B1sinπz, φ = C1(−Na)sinπz (30)

Using Eq. (30), into the linear form of Eqs. (26)–(28) By utilising the orthog-
onality property, the resulting homogeneous system of equations is what we have:

⎛

⎜
⎝

F11
a2Ra(s+V a+DaδV a+FsV a)

2V a
a2NaRn(s+V a+DaδV a+FsV a)

2V a

− 1
2

δ+s
2 0

Na
2ε

Naδ
2Le −Na(Les+δσ)

2Leσ

⎞

⎟
⎠

⎛

⎝
A1

B1

C1

⎞

⎠ =

⎛

⎝
0
0
0

⎞

⎠

(31)
where δ = (π2 + a2) and
F11 = −δs2+2s(1−Daδ2+Fs)V a−(δ(Da2δ2−2Da(1+Fs)+(1+Fs))+π2Ta)V a2

2V a2

The above homogeneous system’s requirement for the non-zero solution yields
the expression for Rayleigh number:

Ra =
−NaRn(Le(s + δ) + δε)σ

ε(Les + δσ)
− 2V a(s + δ)F11

a2(s + V a + FsV a + DaV aδ)
(32)

3.1 Stationary Mode of Convection

s = 0 refers to stationary type of convection; then Eq. (32) reduces to

Ra =
−NaRn(Le + ε)

ε
− 2δF11

a2(1 + Daδ)
(33)
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3.2 Non-linear

We use a stream function ψ̃ to ensure that ũ = ∂ψ̃
∂z and w̃ = −∂ψ̃

∂x put in Eq.
(24), (8) and (9) we get:

(Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
))

2∇2
(− ∂ψ̃

∂x
) + (Ta)

∂2

∂z2
(− ∂ψ̃

∂x
) + Ra∇2

H T̃ (Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
))

−Rn∇2
H φ̃(Da∇2 − 1

V a

∂

∂t
− (1 + F

∂

∂t
)) = 0

(34)
1
σ

∂φ̃

∂t
− 1

ε

∂ψ̃

∂x

∂φb

∂z
=

1
Le

∇2φ̃ +
Na

Le
∇2θ̃ +

1
ε

∂(ψ̃, φ̃)
∂(x, z)

(35)

∂θ̃

∂t
− ∂ψ̃

∂x

∂Tb

∂z
= ∇2θ̃ +

Nbε

Le
(
∂φb

∂z

∂θ̃

∂z
) +

2εNbNa

Le
(
∂θ̃

∂z

∂Tb

∂z
) +

∂(ψ̃, θ̃)
∂(x, z)

(36)

where, ∇2 = ∂2

∂x2 + ∂2

∂z2 . Because all physical quantities are unaffected by y-
direction, In Fourier series expansions, we use the following modes for non-linear
stability analysis:

ψ̃ = sin(ax)sin(πz)A11(t) (37)

θ̃ = B02(t)sin(2πz) + B11(t)cos(ax)sin(πz) (38)

φ̃ = C02(t)sin(2πz)(−NA) + C11(t)cos(ax)sin(πz) (39)

Where C02(t), B11(t), C11(t), B02(t) and A11(t) are time-dependent functions.
Puting the value of (37)–(39) in Eqs. (34)–(36) and taking the orthogonality
condition, we have

A11′(t) = E11[t] (40)

B11′(t) =
1

[3Le(a2π + sin[a2π])]

[
(−A11[t](a + aπB02[t]) − δB11[t])(3Le(a2π + sin[a2π]))

+ 32NaNbε(B02[t] − C02[t])sin[
a2π

2
]

]

(41)

B02′(t) =
1

[3a2Leπ]

[

(3a2Leπ)(−4π2B02[t] +
1
2
aπA11[t]B11[t])

+ 16NaNbε(−B11[t] + C11[t])sin[
a2π

2
]
] (42)

C11′(t) =
aσLeA11[t](1 + πC02[t]) + ε(δσ(B11[t] − C11[t]))

Leε
(43)

C02′(t) =
πσ(8πε(B02[t] − 8πC02[t]) + aLeA11[t]C11[t])

2Leε
(44)

E11
′
(t) = − 1

[δ(1 + Fva)]

[
V a((δ(1 + Daδ)

2
+ π

2
Ta)V aA11[t] + a(1 + Daδ)RavaB11[t] + aNaRnvaC11[t]

+ a
3
DaNaRnvaC11[t] + aDaNaπ

2
RnvaC11[t] + 2a

2
A11

′
[t] + 2a

4
DaA11

′
[t] + 2π

2
A11

′
[t]

+ 4a
2
Daπ

2
A11

′
[t] + 2Daπ

4
A11

′
[t] + 2a

2
FvaA11

′
[t] + 2a

4
DaFvaA11

′
[t] + 2Fπ

2
vaA11

′
[t]

+ 4a
2
DaFπ

2
vaA11

′
[t] + 2DaFπ

4
vaA11

′
[t] + aRaB11

′
[t] + FaRavaB11

′
[t] + aNaRn(1 + Fva)C11

′
[t])

]

(45)
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4 Heat/Nanoparticle Concentration Transport

The heat transport that is represented by Nusselt number, NuT (t) is described
as:

NuT (t) =
Heat transport by (conduction+convection)

Heat transport by conduction

NuT (t) = 1 +

⎡

⎢
⎢
⎢
⎣

2π/a∫

0

(
∂θ̃
∂z

)
dx

2π/a∫

0

(
∂Tb

∂z

)
dx

⎤

⎥
⎥
⎥
⎦

z=0

(46)

By using the values of θ̃ and Tb(z) from Eq. (38) and Eq. (14) into the Eq.
(46) we obtain:

NuT (t) = 1 − 2πB02[t] (47)

The concentration nanoparticle Nusselt number for the first type of nanopar-
ticles, Nuφ(t), can be described as:

Nuφ(t) =
Mass transport by (diffusion+Advection)

mass transport by diffusion

Nuφ(t) = 1 +

⎡

⎢
⎢
⎢
⎣

2π/a∫

0

(
∂φ̃
∂z + NA

∂θ̃
∂z

)
dx

2π/a∫

0

(
∂φb

∂z

)
dx

⎤

⎥
⎥
⎥
⎦

z=0

(48)

By using Eqs. (15), (38) and (39) into the Eq. (48) we obtain:

Nuφ(t) = 1 + 2π(B02[t] − C02[t]) (49)

5 Results/Discussion

5.1 Linear Stability Analysis

The rotating porous medium layer is examined in this article together with
the effects of thermal convection and a heated bottom-up Rivlin-Ericksen
elastico-viscous nanofluid, with a finite horizontal layer. The stationary ther-
mal Rayleigh’s number value is enumerated using the Galerkin technique. The
following are the parameter values: (V a = 10, Le = 50, Na = 3, Rn = 5,
Ta = 100, Da = 10, and ε = 0.3 are taken from (Chand and Rana [11]).

For various porosity values of a Rivlin-Ericksen elastico-viscous nanofluid,
Fig. 2a displays the difference between the (Ra) with wave number a. The sta-
tionary Rayleigh’s number (Ra) increase as a porous medium’s porosity rises,
demonstrating the porosity has stabilising effect on the system.

The impact of Darcy number (Da) on the natural curve is displayed in Fig.
2b. As the Darcy number (Da) rises, the stationary Rayleigh’s number (Ra) rises
as well, showing that the Darcy number (Da) stabilises the system.
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The impact of the Lewis number (Le) on the stability of the system is depicted
in Fig. 2c. Based on these figures, we observed that the Lewis number (Le)
accelerates the beginning of convection. This may have occurred because ther-
mophoresis with a higher thermophoretic diffusivity is more tolerant of disrup-
tion in nanofluids and because Brownian motion/thermophoresis both act as
propellants for the motion of nanoparticles.

Figure 2d shows how the modified diffusivity ratio (Na) affects the stability
of the system. In these figures, we noticed that the adjusted modified diffusivity
ratio (Na) speeds up the commencement of convection. This may have occurred
because Brownian motion/thermophoresis, both of which are forces that encour-
age nanoparticle movement, are more supportive of disturbance in nanofluids at
higher thermophoretic diffusivity levels.

Figure 2e Illustrates how the concentration Rayleigh number (Rn) affects
the stability of the system. The stationary Rayleigh’s number (Ra) reduce as
the concentration Rayleigh number (Rn) rises, indicating a quicker initiation of
convection. This can be discuss an increment in volumetric fraction, which, by
increasing the Brownian motion of the nanoparticles, causes the destabilising
impact of concentration Rayleigh number (Rn).

In Fig. 2f we observed the influence of Vadas number (Va) on the system’s
stability. As increases the value of Vadas number (Va), It has no impact on the
system’s commencement of convection. Because Vadas number (Va) is vanishes
with the growth rate parameter s in the stationary Rayleigh’s number (Ra).

The impact of rotation (Ta) Fig. 2g shows Rotation reduces convection
because of the existence of centrifugal force acting in the opposite direction
of the fluid’s movement. The value of stationary Rayleigh’s number (Ra) rises
as the value rotation terms are increased. Rotation has a stabilising impact on
the arrangement.

5.2 Non-linear Stability Analysis

We must look at nonlinear analysis, which involves time-dependent outcomes,
to investigate the influence of heat/mass transfer in thermal convection in a
porous medium layer that rotates saturated by a Rivlin-Ericksen elastico-viscous
nanofluid. To find the numerical values of Nusselt numbers as a function of time
t, we applied Mathematica NDSolve to solve Eq. (40)–(45) in Mathematica.
Almost all mass/heat transfer outcomes beginning with conduction, however,
as t increase, the Nusselt number rises for values of t, indicating convection,
then falls and oscillates over time, eventually approaching steady state. Several
parameters are used (Ta = 200, Le = 50, Rn = 5, Na = 2, F = 0.3, σ = 10,
V a = 10, ε = 0.04, Nb = 0.01, and Da = 1).

The impact of rotation (Ta) is shown in Fig. 3a and Fig. 4c. Rotation (Ta)
decreases mass/heat transfer in the medium due to the existence of centrifu-
gal force operating in the opposite direction of the fluid’s velocity. As a result,
rotation (Ta) has a system-stabilizing effect.
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Fig. 2. Marginal stability curves
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Fig. 3. Graph of thermal Nusselt number with Variation in different parameter
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Fig. 4. Graph of thermal Nusselt number with Variation in different parameter
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Fig. 5. Graph of Concentration Nusselt number with Variation in different parameter

Figure 3h and Fig. 4h indicate that as the value of the variable (ε) rises, the
mass transfer as well as heat transfer decreases, indicating that the parameter
(ε) has a system-destabilizing effect in the system.

Although the value of parameter (Rn) grows in Fig. 3c and Fig. 5c there is
no influence on mass/heat transmission in the system.

As the value of parameter (Na) grows, the mass/heat transmission in the
system increases, as seen in Fig. 3d and Fig. 4d. This might be the case because
Brownian motion/thermophoresis are both forces that propel the motion of
nanoparticles, and thermophoresis at higher thermophoretic diffusivity values
is more tolerant of disruption in nanofluids. As a result, the (Na) causes the
system to become unstable.

As the value of parameter (σ) grows, the mass transfer in the system
increases, as shown in Fig. 4f and demonstrating that the parameter (σ) has
a system-destabilizing effect, but that heat transport in the system has no effect
as shown in Fig. 3f.

Figure 3e and Fig. 4e show the effect of the (F). As a result, Kinametic
viscoelasticity parameter (F) reduces mass and heat transport in the medium,
and so has a system-stabilizing effect.
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Figure 3g and Fig. 4g show the effect of (Va). It is noticed that Vadas num-
ber (Va) rises heat/mass transfer in the medium, therefore it destabilising the
system.

There is no effect on mass/heat transfer in the system as the value of param-
eter Nb and (Le) increases in Fig. 4a, Fig. 3b and Fig. 5b, Fig. 5d.

The effect of (Da) is depicted in Fig. 4b and Fig. 5a. As a result, (Da)
decreases heat/mass transmission in the medium, thus it stabilising the system.

6 Conclusions

A porous media saturated with Rivlin-Ericksen elastico-viscous nanofluid with
rotation is subject to thermal instability, which we study using linear and non-
linear analysis. A graphic explanation of the results has been provided. We get
at the major findings listed below:

1. As we increases porosity, it is noticed that the system’s convection is delayed
as a result of it. This demonstrates that the system is stabilised by the
porosity.

2. An improvement in concentration Rayleigh’s number (Rn) resulting in a
reduction in the stationary Rayleigh number (Ra), demonstrating that Rn
has a system-destabilizing effect.

3. On increasing the value of rotation the value of (Ra) rises. This implies that
rotation has a stabilising impact on the arrangement.

4. As we increases the value of Brinkman-Darcy number, it is noticed that it
delays the initiation of convection of the system. This demonstrates that
the Brinkman-Darcy number stabilises the system.

5. On increasing the value of modified diffusivity ratio, it is observed that
decreasing stationary Rayleigh number, this indicating that modified diffu-
sivity ratio has a system-destabilizing effect.

6. Heat/mass transport in the system are both decreased by an increase in
rotation.

7. On increasing the porosity, it is noticed that the heat/mass transfer
decreases in the system.

8. As the value of Kinematic viscoelasticity increases, it can be noticed that
heat/mass transfer of the system decreases.

9. As we increases the value of Vadasz number, It is observed that the system’s
heat/mass transport have increased.

10. The current problem is studied in infinitely extended horizontal plates, and
it can be further extended in various configurations such as cylindrical, Hele-
Shaw cell, and spherical. Moreover, the same problem can be investigated
with different types of nanofluids in future.
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Abstract. In this article, the temperature in a rectangular moving
porous fin with a longitudinal profile has been studied, which involves
internal heat generation, variable thermal conductivity, and heat transfer
coefficient. In real life, we know that these parameters change with tem-
perature, so in this study, we considered these parameters as temperature
function. Darcy’s model has been used to form the equation. The heat
transfer coefficient is taken as power-law form. A new contribution to
this study is adding a porous medium to fin and taking thermal conduc-
tivity into four different cases: a constant, a linear, a quadratic, and an
exponential form of temperature. The solution to the problem has been
carried out by three methods, namely LWCM, LSM, and MM. A com-
parison of the results obtained by the above-mentioned methods and the
exact results has been presented to demonstrate the novelty of the cur-
rent study. The entire article has been carried out in a non-dimensional
form.

Keywords: Darcy model · heat transfer · moving fin · porous
medium · numerical methods · temperature · thermal conductivity

Nomenclature

T : temperature distribution (K)
Ta : ambient temperature (K)
Tb : temperature at fin base (K)

h(T ) : heat transfer coefficient (Wm−2K−1)
K(T ) : thermal conductivity (Wm−1K−1)

L : fin length (m)
P : fin periphery (m)
ṁ : mass flow rate of fluid (kgs−1)
ka : thermal conductivity at ambient temperature (Wm−1K−1)
hb : heat transfer coefficient at the fin base (Wm−2K−1)
g : gravitational acceleration (ms−2)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 456–474, 2023.
https://doi.org/10.1007/978-3-031-29959-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29959-9_29&domain=pdf
https://doi.org/10.1007/978-3-031-29959-9_29


Study of the Convective-Radiative Moving Porous Fin 457

R : permeability (m2)
Y : thermal expansion coefficient (K−1)

Ac : cross-section area (m2)
U : speed of moving fin (ms−1)
q∗ : heat generation (Wm−3)
W : fin width (m)
x : spatial variable
n : constant

Greek symbols

β : thermal conductivity gradient (Wm−1K−1)
σ : Stefan-Boltzmann constant (Wm−2K−4)
v : kinematic viscosity (m2s−1)
ρ : density of material (kgm−3)

νw : velocity of fluid (ms−1)
c : specific heat (JK−1kg−1)

Dimensionless parameters

θ : temperature
θa : ambient temperature
X : spatial variable
k : thermal conductivity

M : thermo-geometric
Nr : radiation-conduction
Np : porosity parameter
εG : heat generation gradient

ε : emissivity
Pe : Peclet number

Abbreviation

ADM : Adomian decomposition method
DTM : Differential transformation method
FDM : Finite difference method
HAM : Homotopy analysis method
LSM : Least square method

LSSCM : Least square spectral collocation method
LWCM : Legendre wavelet collocation method

LVI : Laplace-variational iterative
MM : Moment method
R-K : Runge-Kutta

WCM : Wavelet collocation method
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1 Introduction

Many engineering devices or machines generate heat during their processes,
which results in heat being released into the environment. If this generated heat is
not released quickly to its surrounding environment, it may cause a temperature
rise in system devices, leading to their failure. To prevent this, fins or extended
heat surfaces are used. Dongonchi and Ganji [1] evaluated heat transmission in
a rectangular moving fin with a heat transfer coefficient, heat generation and
thermal conductivity which depends on temperature using DTM. Kraus [2] pro-
vided a detailed review of extended surfaces or fins in his book. Gorla and Bakier
[3]investigated the influence of convection and radiation in a rectangular porous
fin. The performance is investigated in various fins, including the long fin with
an insulated tip and the finite-length fin with an exposed tip. Kiwan et al. [4]
investigated heat transfer in porous moving fins. A thermal performance study
compares porous and solid fins. The effects of parameters and different profiles
were studied in detail. Ndlovu and Moitsheki [5] performed the thermal anal-
ysis of rectangular and hyperbolic moving fins. DTM was applied to find the
solution to the heat transmission equation. Khalaf et al. [6] gave a review on
how fins, porous medium and nanofluid materials improve heat transmission in
devices. They explained how the world has developed an interest in modern
electronics and their applications in science and engineering, which also have a
great impact on aspects of life such as optical devices, refrigeration devices, X-
rays, etc. Gupta et al. [7] investigated the Cu and Al2O3 water-based nanofluid
three-dimensional magnetohydrodynamic flow. In the presence of thermal radi-
ation and convective mass and heat transmission boundary conditions, effects of
nanoparticles as well as mass and heat transmission were carried out. Ndlovu et
al. [8] found the fin efficiency and temperature in a rectangular moving fin with
a porous medium using VIM. Unal et al. [9] investigated the temperature distri-
bution in straight and rectangular fins in one dimension. Shateri and Salashour
[10] found the heat performance and distribution of temperature in longitudinal
fin with porous media using LSM. Fin efficiency and heat flux were also com-
puted for the comparison of fins. Hatami et al. [11] used LSM, CM, and DTM
to analyze the energy transfer and distribution of temperature in porous fin.
Razzaghi and Yousefi [12] provided a Legendre wavelet-based operational inte-
gration P matrix. Singh et al. [13] studied heat transmission in moving fin with
heat transfer coefficient, surface emissivity, and thermal conductivity, which is
quadratic and linear function of temperature. Sobamowo et al. [14] discussed
the performance of convective moving porous fin with different properties of the
material and used the LVI method to find an analytical solution. Sobamowo [15]
studied a porous moving fin with internal energy generation and thermal conduc-
tivity which are temperature function using the finite element method. Singh et
al. [16] considered temperature variant parameters and several cases of thermal
conductivity to solve heat problem. Fin efficiency was also calculated for the fin.
Bhanja et al. [17] used ADM to find fin efficiency and temperature distribution
in radiation-convection porous moving fins. LSSCM was used by Chen et al. [18]
to predict efficiency and temperature in radiation-convection moving porous fins
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under combined convective-radiative and constant temperature boundary con-
ditions. Singh et al. [19] solved a non-linear fin problem whose thermal conduc-
tivity is a variable function of temperature by using WCM. Moradi et al. [20]
used HAM to find heat transmission in moving porous fin with two boundary
conditions. Heat transfer and the impact of parameters on temperature are also
discussed. Singh et al. [21] discussed non-Fourier and Fourier energy conduction
applying boundary conditions which are periodic in nature. An analytical solu-
tion was found using the Laplace transform and its inversion. Wang et al. [22]
tested DTM with the Pade approximant as one of the analytical approaches to
resolve the ordinary system of heat transport, which is non-linear. For the radi-
ation heat exchange, the Rosseland approximation was taken into consideration.
Singh et al. [23] introduced the homotopy analysis transform method, a power-
ful hybrid computational methodology for analysing Jeffery-Hamel flow. Singh
et al. [24] used a method called the homotopy perturbation Elzakie transform to
find a solution to the boundary value problem of the non-linear type. With the
help of Chebyshev polynomials, Singh et al. [25] solved the fractional version of
Bratu’s equation, which plays a major role in the vibration-electrospinning and
electrospinning processes.

In this present study, the impact of various parameters on temperature of
fin is discussed. To find the better method for the study, a percentage error
has been computed and a method with the minimum error has been applied for
further computation. The formulation of the model is described in Sect. 2. The
methodology of the applied methods is provided in Sect. 3. The exact solution
is presented in Sect. 4. Section 5 contains a discussion of the findings. Lastly, the
conclusion is provided in Sect. 6.

2 Problem Description

We consider a porous moving fin of longitudinal profile in one dimension along
with its cross-section area Ac, length L and periphery P which horizontally
moves with velocity U which is constant, presented in Fig. 1. The surface of
the fin is exposed to a Ta and Tb radiative and convective environment. The
radiation role can be more reasonable if the convection force is absent, occurs
naturally, or is weak.

For any material, thermal conductivity changes linearly with temperature.
Some assumptions have been made about the problem, which are discussed as
follows: Darcy’s model is used for the interplay in the fluid and porous medium;
the porous part is considered to be homogeneous, saturated, and isotropic with
single-phase liquids, and the physical properties of the fluid and solid walls
depend on temperature. From these assumptions, the equation for moving fin in
a porous medium is expressed as:

d

dx

(
K(T )

dT

dx

)
− P

Ac
h(T )(T − Ta) − ṁc

Acdx
(T − Ta) − εσP

Ac
(T 4 − T 4

a ) − ρcU
dT

dx
+ q∗ = 0

(1)
0 ≤ x ≤ L
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Fig. 1. Schematic diagram of a moving porous fin.

where K(T ) is the equivalent thermal conductivity of porous fin, which includes
thermal conductivity of the solid part as well as the gas part present in the
porous, h(T ) is heat transfer coefficient, (ṁ) is mass flow of fluid and q∗ is energy
generation which depends on temperature x is space variable, T is temperature
distribution, σ is Boltzmann constant, ε is emissivity, c is specific heat and ρ
is density of material. In addition to conduction, convection, and radiative heat
flux, Eq. 1 includes terms for internal heat generation and advection. One end
of the fin is insulated with a base temperature, while the boundary conditions
are specified by [2].

T (L) = Tb,
dT

dx

∣
∣
∣
x=0

= 0. (2)

If heat generation change with temperature [1], then we get

q∗ = q∗
a(1 + εg(T − Ta)) (3)

where q∗
a is internal heat generation at ambient temperature.

Mass flow rate of fluid which passes through porous media is [3]

ṁ = ρνwWΔX

Darcy’s model gave the fluid velocity which passes through porous media [4],

νw =
gRY

v
(T − Ta)

Heat transfer coefficient is power law form of the temperature given by [5],

h(T ) = hb

(
T − Ta

Tb − Ta

)n

To simplify these equations, introduce non-dimensional parameters as follows
[1,8]:

X =
x

L
, θ =

T

Tb
, θa =

Ta

Tb
, k =

K

ka
, h =

h(T )
hb

, Nr =
εσPL2T 3

b

Acka
, M2 =

PhbL
2

Acka
,

Np =
ρcgRY WL2Tb

vkaAc
, G =

q∗
aAc

hbPTb
, P e =

ULρc

ka
, εG = εgTb (4)
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On applying these parameters, Eq. (1) becomes

d
dX

(

k(θ) dθ
dX

)

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ4 − θ4a) − Np(θ − θa)2 − Pe dθ

dX

+M2G(1 + εG(θ − θa)) = 0,
0 ≤ X ≤ 1.

(5)

and the boundary conditions becomes

θ(1) = 1,
dθ

dX

∣
∣
∣
X=0

= 0 (6)

where X is dimensionless space variable, θ is dimensionless temperature, M is
thermo-geometric, Nr is radiation-conduction, and Pe is Peclet number (speed
of fin), when Pe = 0 means fin is stationary. In non-dimensional form, heat
transfer coefficient is

h(T ) = hb

(
θ − θa

1 − θa

)n

The constant n can range between –6.6 and 5. However, in various practical
cases, it lies in –3 and 3 [9]. The exponent n describes laminar film boiling at
n = 1

4 , laminar natural convection at n = 3, and radiation at n = 3 [9].

2.1 Particular Cases

The following cases arise when dimensionless thermal conductivity is taken as a
different function of temperature as shown below:

Case I
If linear thermal conductivity, k(θ) = 1 + βθ

(1 + βθ) d2θ
dX2 + β

(
dθ
dX

)2

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ

4 − θ4
a) − Np(θ − θa)2 − Pe dθ

dX

+ M2G(1 + εG(θ − θa)) = 0,
(7)

Case II
If constant thermal conductivity, k(θ) = 1

d2θ

dX2
−M2 (θ − θa)n+1

(1 − θa)n
−Nr(θ

4−θ4
a)−Np(θ−θa)2−Pe

dθ

dX
+M2G(1+εG(θ−θa)) = 0,

(8)

Case III
If thermal conductivity is an exponential function of temperature, k(θ) = eβθ

eβθ d2θ
dX2 + βeβθ

(
dθ
dX

)2

− M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ

4 − θ4
a) − Np(θ − θa)2 − Pe dθ

dX

+ M2G(1 + εG(θ − θa)) = 0,
(9)
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Case IV
If thermal conductivity is quadratic function of temperature, k(θ) = 1 + βθ2

(1 + βθ2) d2θ
dX2 + 2βθ

(
dθ
dX

)2 − M2 (θ−θa)
n+1

(1−θa)n
− Nr(θ4 − θ4a) − Np(θ − θa)2 − Pe dθ

dX

+M2G(1 + εG(θ − θa)) = 0,
(10)

3 Computational Methods

3.1 Legendre Wavelet Collocation Method

Let
θ′′(X) = cT ψ(X) (11)

here

cT ψ(X) =
2s−1
∑

m=1

n−1∑

n=0

cm,nψm,n(X)

and

cm,n =
∫ 1

0

f(X)ψm,n(X)

The matrices c and ψ(X) are M × 1, expressed as

c =
[
c1,0, c1,1, ..., c1,M−1, c2,0, c2,1, ..., c2,M−1,

c2s−1,0, c2s−1,1, ..., c2s−1,M−1

]T

and

ψ(X) =

⎡

⎣

ψ1,0(X), ψ1,1(X), ..., ψ1,M−1(X), ψ2,0(X),
ψ2,1(X), ..., ψ2,M−1(X), ψ2s−1,0(X),

ψ2s−1,1(X), ..., ψ2s−1,M−1(X)

⎤

⎦

T

The Legendre wavelet is defined as ψm,n(X) = ψ(s, m̂, n,X), where s is a
positive integer, m = 1, 2, ..., 2s−1, m̂ = 2m − 1, the order of the Legendre poly-
nomial is n, and in the interval [0, 1], X is defined as:

ψm,n(X) =

{√

(n + 1/2)2s/2Pn(2sX − n̂), m̂−1
2s ≤ X ≤ m̂+1

2s

0, otherwise
(12)

where m = 1, 2, ..., 2s−1 and n = 0, 1, ...,M − 1. Pn(X) is Legendre polynomial
of n order as given by [13].

P0(X) = 1, P1(X) = X,Pn+1(X) =
2n + 1
n + 1

(X)Pn(X)

− n

n + 1
(X)Pn−1(X), n = 1, 2, 3, ...,M − 1 (13)

Now, integrating with respect to X from 0 to X of Eq. (11), we get

θ′(X) = θ′(0) + cT Pψ(X), (14)
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where P is the integration operational matrix, which is 2s−1M × 2s−1M, s = 1,
given by [12].
Substitute X = 1 in Eq. (14), we get

θ′(0) = θ′(1) − cT Pψ(1)

⇒ θ′(0) = −cT Pψ(1)

From the Eq. (14), we have

θ′(X) = −cT Pψ(1) + cT Pψ(X), (15)

Again, integrating with respect to X from 0 to X of the Eq. (15), we obtain

θ(X) = 1 − cT Pψ(1)d′Pψ(X) + cT P 2ψ(X), (16)

Substituting the values of θ(X), θ′(X) and θ′′(X) in Eq. 7 to 10. θ(X)
is the approximate solution to these equations. Finding the residual
R(X, c1, c2, c3, ..., cn) for n collocation points Xr, r = 1, 2, 3, ..., n. There must be
equality between the coefficients and collocation points. As a result, the residuals
will be obtained.

3.2 Least Square Method

This method is based on residual weighting and minimises the residual of the
test function, which is used to solve a non linear differential equation given by
[10]. The meaning of this method is to get the minimum continuous summation
of squared residuals [11].

S =
∫

x

R(x)R(x)dx =
∫

x

R2(x)dx (17)

The derivative of the above function with respect to all unfamiliar constants has
to be zero in order to obtain the minimum scalar function [11], i.e.

δS

δci
= 2

∫

x

R(x)
δR

δci
dx = 0 (18)

here weight function is

Wi = 2
δR

δci
(19)

the coefficient ‘2’ from this equation can be expelled. Then the weight function
of this method will be just derivative of residual with respect to unfamiliar
constants i.e.

Wi =
δR

δci
(20)
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3.3 Moment Method

For this method, the weight function is selected from family of polynomials,
expressed as

Wi(x) = xi, i = 0, 1, 2, ..., n (21)

With the residual it is expressed as
∫

x

Wi(x)R(x)dx = 0, i = 0, 1, 2, ..., n (22)

Using (21), Eq. (22) becomes
∫

x

xiR(x)dx = 0, i = 0, 1, 2, ..., n (23)

Now by using this, residual will be obtained.

4 Exact Solution

To calculate exact solution, we consider β = 0, n = 0, Nr = 0 and porosity
parameter Np = 0 in Eq. (4), then equation reduced in following form i.e.

d2θ

dx2
− M2(θ − θa) − Pe

dθ

dx
+ M2G(1 + εG(θ − θa)) = 0 (24)

The boundary conditions are

θ(1) = 1,
dθ

dx

∣
∣
∣
x=0

= 0

After applying boundary conditions to Eq. (24), we get

θ = c1e
m1x + c2e

m2x +
M2G

Q
(25)

where c1 = − m2(1−M2G
Q )

m1em2−m2em1 , c2 =
m1(1−M2G

Q )

m1em2−m2em1 and Q = M2 − M2GεG.

5 Results and Discussion

We investigate heat transfer in a porous moving fin. Impact of different
parameters namely thermal conductivity (β), thermo-geometric (M), radiation-
conduction (Nr), Peclet number (Pe), parameter G, heat generation (εG),
dimensionless ambient temperature (θa), porosity parameter (Np) on temper-
ature distribution is investigated. Thermal conductivity is taken as a variable
functions of temperature to study the distribution of temperature in fin. The four
different cases for thermal conductivity are (i) linear function of temperature, (ii)
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Table 1. Comparison between Exact result, LWCM, LSM and MM

X Exact result LWCM LSM MM

0.0 0.60736577 0.60736561 0.60736577 0.60736577

0.1 0.60996007 0.60995991 0.60996050 0.60996053

0.2 0.61813073 0.61813058 0.61813085 0.61813089

0.3 0.63254936 0.63254923 0.63254871 0.63254872

0.4 0.65402333 0.65402322 0.65402256 0.65402252

0.5 0.68351841 0.68351832 0.68351836 0.68351831

0.6 0.72218556 0.72218548 0.72218629 0.72218626

0.7 0.77139233 0.77139227 0.77139303 0.77139305

0.8 0.83275995 0.83275990 0.83275985 0.83275991

0.9 0.90820686 0.90820684 0.90820638 0.90820642

1.0 1.000000000 1.0000000 1.00000000 1.00000000

constant, (iii) exponential function of temperature, and (iv) quadratic form of
temperature, and heat transfer coefficient is taken as a power-law type. We find
the analytic solution to the problem using LWCM, LSM, and MM. A comparison
of the exact, LWCM, LSM, and MM is shown in Table 1 to validate the results
obtained by these methods when compared to exact results. We can see from the
table that the results of these methods are very close to the exact results, which
shows the novelty of present work. To determine which method has the highest
accuracy, we compute error analysis, as shown in Fig. 2. It has been observed
that the error in LWCM is the lowest as compared to LSM and MM. So for fur-
ther computation, we used LWCM. Reference values for parameters are taken
as β = 1,M = 1, P e = 1, G = 0.1, εG = 0.1, Nr = 1, n = 1, θa = 0.1, Np = 0.1.

Figure 3 depicts the impact of thermal conductivity in four cases on temper-
ature. In case III, where thermal conductivity is an exponential form of temper-
ature, a maximum temperature has been observed, whereas in case II, a lower
temperature has been observed. As a result, in cases of constant thermal con-
ductivity, cooling is more effective.

Figure 4 describes the impact of thermal conductivity on temperature for
cases I, III, and IV, while in case II, thermal conductivity is constant. From the
figure, we have noted that by rising the thermal conductivity, fin temperature
also rises. Case III has the maximum temperature distribution as compared to
the other cases. So when fin has a lower thermal conductivity, cooling becomes
more effective in the fin.

Figure 5 depicts the effect of thermo-geometric parameter. It has been noted
that as M increases, the temperature in the fin decreases, implying that the
enhancement of heat in the environment increases. At a constant value of the
heat transfer coefficient, by increasing the fin length, the amount of heat moving
through the fin also increases, resulting in a decrease in temperature. Among
the cases, in case II temperature is minimum.
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Fig. 2. Error analysis of LWCM, LSM and Moment method

Fig. 3. Temperature distribution in fin for thermal conductivity in cases I, II, III and
IV

Figure 6 shows the impact of radiation-conduction. The radiative cooling
happens to be more influential if radiative transport is stronger, resulting in
lesser the fin temperature. This temperature drop causes the system to cool. We
observed that by rising Nr temperature in the fin drops. So case II has a lower
temperature compared to other cases.

Figure 7 shows the impact of the Peclet number. We see that by increasing
the parameter Pe, fin temperature drops. If Pe increases, then the fin will move
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Fig. 4. Effect of β on temperature distribution

Fig. 5. Effect of M on temperature distribution

faster, and consequently, the temperature in the fin will decrease rapidly because
of the increased impact of the adjective on the fin surface. At Pe = 0, the fin
describes a stationary fin, the fin takes longer to cool down which has been
represented by the maximum temperature than a moving fin. The temperature
distribution in fin of Case II is lower means cooling process is more effective in
this case. The impact of the G parameter is depicted in Fig. 8. It has been seen
that by rising the value of G temperature also increases. So case III has a high
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Fig. 6. Effect of Nr on temperature distribution

Fig. 7. Effect of Pe on temperature distribution

temperature, whereas case II has a lower temperature. Heat transfer increases
when a fin has constant thermal conductivity.

The impact of heat generation is shown in Fig. 9. It demonstrated that
increasing the value of the εG parameter raises the fin temperature. Among
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Fig. 8. Effect of G on temperature distribution

Fig. 9. Effect of εG on temperature distribution

the cases, case III has a high temperature, and case II has a lower temperature.
The physical implementation is that as the heat generation parameter increases,
so does the heat transfer in fins.
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Fig. 10. Effect of θa on temperature distribution

Fig. 11. Effect of Np on temperature distribution

Figure 10 depicts the impact of ambient temperature. It has been noted that
by rising the value of θa temperature also rises in the fin. Heat transfer is reduced
as the ambient temperature rises. Case III has a high temperature, but Case II
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Fig. 12. Temperature distribution in porous and non-porous fin

Table 2. Effect of n on temperature distribution for case I and case II

X Case I Case II

n = −1/4 n = 1/4 n = 3 n = −1/4 n = 1/4 n = 3

0.0 0.69323516 0.71470983 0.77346094 0.54537012 0.59130005 0.69172816

0.1 0.69570138 0.71694526 0.77512536 0.54813997 0.59370248 0.69341971

0.2 0.70331016 0.72384736 0.78027217 0.5568822 0.60129448 0.6987752

0.3 0.71640567 0.73574874 0.78918116 0.57237481 0.61478202 0.70832539

0.4 0.73537067 0.75303577 0.8022051 0.5956056 0.63508233 0.72278761

0.5 0.76062799 0.77615241 0.81978112 0.627819 0.66337503 0.74311413

0.6 0.79264528 0.80560682 0.84244756 0.67059916 0.70119042 0.77058766

0.7 0.83194463 0.84198195 0.87086785 0.7259869 0.75053383 0.80695858

0.8 0.87911928 0.88595224 0.90586468 0.79666439 0.81407852 0.85466678

0.9 0.93486072 0.9383092 0.94847023 0.88627726 0.89549279 0.91723885

1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

has a lower temperature. So in this case, cooling will be effective when fin has
constant thermal conductivity and a lower ambient temperature.

Figure 11 shows the effect of the porosity parameter. From the figure, it
has been seen that as we increased the porosity parameter, the fin temperature
decreases. For porosity, Case III has the maximum temperature distribution as
compared to other cases. Therefore, in Case II, the heat transfer rate increases,
which causes a drop in the fin temperature. Temperature distribution in the
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Table 3. Effect of n on temperature distribution for case III and case IV

X Case III Case IV

n = −1/4 n = 1/4 n = 3 n = −1/4 n = 1/4 n = 3

0 0.74403087 0.75931011 0.80483742 0.67397956 0.69937334 0.76522521

0.1 0.74630373 0.76140001 0.80642881 0.67670894 0.70181414 0.76699524

0.2 0.75326493 0.76780529 0.81131375 0.68515133 0.7093689 0.77247932

0.3 0.76512589 0.7787374 0.81968459 0.69969572 0.72240984 0.78198184

0.4 0.78208927 0.7944145 0.8317691 0.72072724 0.74133192 0.79586672

0.5 0.80434257 0.81505629 0.8478317 0.74860895 0.76653999 0.81455987

0.6 0.83205302 0.84087907 0.8681755 0.78366283 0.79843398 0.83855269

0.7 0.8653644 0.8720917 0.89314549 0.82615455 0.83739441 0.86840696

0.8 0.9043965 0.90889278 0.92313314 0.87628613 0.88377108 0.9047623

0.9 0.94924758 0.95146973 0.95858275 0.9342003 0.93787821 0.9483478

1.0 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000 1.00000000

porous and non-porous fin is shown in Fig. 12. The figure explains that if there
is no porous medium, i.e. Np = 0 then the temperature in fin is at its maximum,
but if we add a porous medium to the fin, then temperature decreases. We
observed that fin temperature is higher in non-porous compared to porous fin.
So for higher porosity, heat transfer in the fin also increases, and cooling process
in the fin becomes more effective.

Table 2 represents the impact of n on temperature in cases I and II, respec-
tively, and for cases III and IV, it is represented in Table 3. According to the
tables, as the value of n rises, so does the fin temperature. So when n = −1/4
= 1/4 (i.e., condensation or laminar film boiling), cooling is effective. Case III
has a higher temperature as compared to other cases.

6 Conclusion

We have studied a porous moving fin in one-dimension with heat generation,
temperature-dependent variable thermal conductivity, and a power-law heat
transfer coefficient in this paper. The effect of parameters has been shown using
LWCM because it achieves the minimum error among other applied methods. It
has been determined that increasing thermal conductivity, heat generation, the
parameter G, exponent n, and the ambient temperature raises the temperature in
fins. On the other hand, as the temperature in fin decreases, the enhancement of
heat increases by increasing the thermo-geometric, radiation-conduction, Peclet
number, and porosity parameters. In case III, the fin temperature is high, while
in case II, the fin temperature is low. A comparison of porous and non-porous
fins revealed that the non-porous fin has a high temperature, whereas adding a
porous medium to the fin results in a lower temperature. Because of the porous
medium in the fin, heat transmission increases, making cooling more effective.
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Future studies may focus on the importance of enhancing heat transmission due
to its usefulness in many applications directly affecting human life.
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Abstract. This paper proposes a multi-objective linear fractional transportation
problem (MOLFTP) with uncertain programming. The fractional transportation
problem considers situations where decision-makers are interested in maximizing
or minimizing the ratio of certain functions rather than simple functions. All the
parameters involved in the problem raised i.e. it is assumed that the availability and
demand of the objective function coefficients are uncertain. In addition, an equiv-
alent certainty problem is also raised. Three different methods are the weighted
sum method, fuzzy programming, and global criterion method, which are used to
obtain the best compromise for the proposed model. A numerical example is also
given to support the theory.

Keywords: Multi-objective linear fractional transportation problem · Uncertain
programming · Weighted-sum method · Global criterion method

1 Introduction

In recent years, with the globalization of the economy, the issue of freight transportation
has received more and more attention from more and more companies and enterprises,
especially many multinational corporations. A TP is an optimization problem that seeks
to optimize the distribution of quantities from multiple sources to multiple destinations
to minimize total cost. Traditional traffic models generally consist of an objective func-
tion and two types of constraints: source and destination constraints. It was started by
Hitchcock [1] and later it was developed by Coopmans [2].

Some years later, Dantzig [15] proposed the simplex method and applied it to the
solution of transportmodels. Since then,many researchers have started to study the traffic
problem. Srinivasan and Thompson [16] proposed an operator theory for the parametric
programming of transport problems. In 1991, Vignaux and Michalewicz [17] published
a genetic algorithm for linear transport problems. In these classic models, unit prices for
transportation, supply, and demand are assumed to be crisp numbers.

Uddin et al. [3] proposed the use of a fuzzymembership function tactic based on goal
programming to obtain a desirable compromise for the multi-objective transport prob-
lem in uncertain environments where the DM can choose confidence levels for various
parameters. Sheng and Yao [4] have shown fixed charge transportation problems based
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on uncertainty theory. Javaid et al. [5] presented a model for transportation problems
involving uncertain parameters with multiple fractional objectives.

Roy et al. [8] investigate a multi-objective multi-item fixed-charge solid transporta-
tion problem (MOMIFCSTP) uses objective functions and constraint coefficients with
fuzzy-rough variables. Traffic systems are analyzed in a fuzzy and rough environ-
ment. Roy and Midya [9] proposed a multi-objective fixed charge transport problem
(MOFCTP). In this problem, the objective function parameters are random rough vari-
ables, and the supply and demand parameters are coarse variables. To deal with uncertain
(rough and randomrough) parameters, the proposedmodel employs the expectationoper-
ator. Midya, S. and Roy, S.K. [10] analyze the MOFCTP using rough programming. To
obtain Pareto optimal solutions from deterministic MOFCTP uses Fuzzy programming
and linear weighted summethods. Upmanyu and Saxena [11] discussed fixed-cost prob-
lems as a special type of nonlinear programming problem that underlies many industry
problems related to cost-related execution activities. It describes a solution algorithm for
solving fixed charge problems using multiple fractional objective functions that are all
fuzzy. Meity et al. [14] MOTP addresses uncertainty in real-life decision-making prob-
lems and incorporates the concept of reliability into transportation cost and effective-
ness. The Fuzzy Multiple-Choice Objective and Fuzzy Multiple Choice Goal Planning
(FMCGP) of the MOTP objective function are used to select the proper objective for the
proposed MOTP. They get compromises and modify the proper objective of the MOTP
objective function.

A new approach for solving MOLFTP using uncertain programming is in this paper.
This is prepared as follows: Mathematical model in Sect. 2, the definition in Sect. 3,
solution methodology in Sect. 4, numerical example in Sect. 5, results in Sect. 6, and
conclusion in the last section.

2 Mathematical Model

As a practical result, the transportation problem (TP) habitually understands multiple
conflicting objectives related to transportation frommultiple origins to different destina-
tions. TP form sources (origins) and n destinations (demands), the source is a factory or
production facility, warehouse, etc., commonly used symbols a1, a2, . . . , am, the desti-
nation is warehouse, outlet, etc., commonly used symbols b1, b2, . . . , bn. If Cij and Dij

are the transporting unit cost and unit profit for transporting goods from the ith origin to
the jth destination, xij is the unknown quantity transferred from the ith origin to the jth

destination, then the fractional transportation model is following.
(p1)

Min Z =
(

�m
i=1�

n
j=1Cijxij

�m
i=1�

n
j=1Dijxij

)
,

Sub to

∑n

j=1
xij ≤ ai, i = 1, 2, . . . ,m,
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∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j, (1)

The feasibility condition of model (P1) is

�m
i=1ai ≥ �n

j=1bj (2)

In today’s highly competitive world, transportation problems have multiple objec-
tives that make it very difficult for decision-makers (DM) to succeed their desired aspi-
rations. In this situation, MOLFTP is a very inspiring working tool for DM, as shown
below.

(p2)

Min Zk =
(

�m
i=1�

n
j=1C

k
ijxij

�m
i=1�

n
j=1D

k
ijxij

)
,

Sub to

�n
j=1xij ≤ ai, i = 1, 2, . . . ,m,

∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j, (3)

where If Ck
ij and Dk

ij are the transporting unit cost and unit profit for transporting goods

from the ith origin to the jth destination for k objectives, ai(i = 1, 2, . . . ,m) are the
supply and bj(j = 1, 2, . . . , n) are the demand parameter for the kth(k = 1, 2, . . . ,K)

the objective function of the MOLFTP. In general, the quantity Ck
ij , D

k
ij, ai and bj are

considered as crisp numbers.
Information about transportation parameters may not be complete, which creates

payoff uncertainty. DM can handle converting this situation’s uncertain parameters into
crisp numbers. In this paper, we developed an algorithm considering the uncertainty
of parameters and incorporated the uncertainty scale derived by Liu [6] and [7]. To
produce apply an uncertain normal distribution of the corresponding crisp values for the
parameters.

3 Definitions

Definition 3.1: Let h be an uncertain variable. Then � the uncertainty distribution is
expressed as � of h is defined by �(x) = �

(
h ≤ x

)
for any real variable x, � is the

uncertainty measure function [6, 7].
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Definition 3.2: The uncertainty parameter ϕ is a normal uncertainty distribution ϕ(x) =[
1 + exp

(
π(e−x)√

3σ

)]−1
for any real number x. It’s called regular depends on N (e, σ ).

Where e and σ are real numbers and σ > 0 [6, 7].

Definition 3.3: Let h be an uncertain variable with a generally uncertain distribution
�(x). Second, the inverse function �−1(x) is called the inverse uncertainty distribution
of h for any real number x [6, 7].

Current research considers transportation parameters such as TP cost, supply, and
demand to be uncertain variables, so the model (P2) uses uncertain measurements.

Theorem 3.1: If h is an uncertain variable concerning an uncertain distribution �, then

for any real number x, �(x) = �
(
h ≤ x

)
then �

(
h ≥ x

)
= 1− �(x) (Inverse measure

theorem [6, 7]).

Model (P2) can be written to introduce the inverse measure theorem as follows:
(p3)

Min Zk(x) =
∑m

i=1

∑n

j=1

[
�

(
Ck
ij

Dk
ij

)
≥ αij

]
xij,

Sub to

�

⎛
⎝ n∑

j=1

xij ≤ ai

⎞
⎠ ≥ γi, i = 1, 2, . . . , m,

�

(
m∑
i=1

xij ≥ bj

)
≥ δj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j. (4)

The Normal uncertain variable N (e, σ ) is defined as �−1(x) = e +
√
3σ
π

ln
(

u
1−u

)
where ‘ln’ denotes natural logarithm and x is the level of confidence of the DM is called
the inverse normal uncertainty distribution.

Due to the presence of uncertain variables the model (P3) is not a deterministic form.
The uncertainty distributions βij, θi and ψj of cost Ck

ij and profit Dk
ij

(i = 1, 2, . . . ,m; j = 1, 2, . . . , n; k = 1, 2, . . . ,K), demand ai(i = 1, 2, . . . ,m) and
supply parameters bj(j = 1, 2, . . . , n) respectively, the inverse measure shows the
following results:

�

(
Ck
ij

Dk
ij

)
≥ αij ≈ Ck

ij

Dk
ij

≥ β−1
ij

(
1 − αij

)
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�

(∑n

j=1
xij ≤ ai

)
≥ γi ⇒

∑n

j=1
xij ≤ �−1

i (1 − γi)

and

�
(∑m

i=1
xij ≥ bj

)
≥ δj is reduced to

∑n

j=1
xij ≤ ψ−1

j δj

The model (P3) is decrease as follows:
(p4)

Min Zk(x) =
∑m

i=1

∑n

j=1

[
β−1
ij

(
1 − αij

)]
xij,

Sub to

∑n

j=1
xij ≤ θ−1

i (1 − γi), i = 1, 2, . . . ,m,

∑n

j=1
xij ≤ ψ−1

j δj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j. (5)

Now fuzzy linear membership functionμk
(
Zk(x)

)
forMOFTPwhere Lk is the lower

bound and Uk is the upper bound of each Zk(x), as follows:

μk

(
Zk(x)

)
=

⎧⎪⎨
⎪⎩

1,

1 − Zk−Lk

Uk−Lk
,

0,

ifZk ≤ Lk

ifLk < Zk < Uk

ifZk ≥ Uk
(6)

where Lk 	= Uk , k = 1, 2, . . . ,K . If Lk = Uk , then μk
(
Zk(x)

) = 1 for any value of k.
Then model (P4) can be inscribed as

(p5)

Min μk

(
Zk(x)

)
.

Sub to

∑n

j=1
xij ≤ θ−1

i (1 − γi), i = 1, 2, . . . ,m,

∑n

j=1
xij ≤ ψ−1

j δj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j. (7)
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Model (P5) is converted into introducing an auxiliary variable η, the following
traditional LPP:

(p6)

Max η

Sub to

η ≤ μk

(
Zk(x)

)
∑n

j=1
xij ≤ θ−1

i (1 − γi), i = 1, 2, . . . ,m,

∑n

j=1
xij ≤ ψ−1

j δj, j = 1, 2, . . . , n,

0 ≤ η ≤ 1, xij ≥ 0,∀i, j. (8)

4 Solution Methodology

If the information is imperfect, the DM cannot predict the desired optimal target, but
it does so by transforming the uncertain parameters into deterministic numbers using
the normal distribution N (e, σ ). You can choose a confidence level υ, where e is the
expected value of the uncertainty parameter and σ is the deviation. To achieve the desired
goal, the DM considers the following events.

1) Use the inverse uncertainty normal distribution �−1(x) = e +
√
3σ
π

ln
(

υ
1−υ

)
to

calculate the uncertain unit cost and unit profit (Ck
ij and Dk

ij) for transporting goods

from the ith origins to jth destinations selected confidence level υ for DM selection.

2) The inverse uncertain normal distribution �−1(x) = e+
√
3σ
π

ln
( 1−υ

υ

)
, calculate the

uncertain demand table using the demand for each event choosing the confidence
level υ from DM.

3) The inverse uncertainty normal distribution �−1(x) = e +
√
3σ
π

ln
(

υ
1−υ

)
, compute

the supplies listed from the uncertain supply table. A given confidence level υ comes
from DM.

4.1 Stepwise Algorithm for Fuzzy Programming Problem

Step 1: The usual uncertain distribution N (ei, σi) is used to determine fixed values
for uncertain parameters. Where the parameter e represents the expected value and σ

represents the standard deviation to which the confidence level υ selected by DM is
applied.
Step 2: Formulated a MOFTP using the full value obtained in step 1.
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Step 3: If the MOFTP is solved as a single objective TP, all other objectives are ignored.
Continue this process for the K objectives k times.
Step 4: Describe the linear membership function μk

(
Zk

)
for the Kth objective function.

Step 5: In step 4 obtained by transforming the fuzzy model, into a crisp model follows
as:

Max η.

Sub to

η ≤ μk

(
Zk

)
∑n

j=1
xij ≤ ai, i = 1, 2, . . . ,m,

∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

η ≥ 0, xij ≥ 0, ∀i, j. (9)

Step 6: Solve the revised LPP which we get in step 5.
Step 7: The DM presents the feasible solution. If DM is satisfied, then go to step 8. But
DM is not satisfied with the repeat process of step 1 to step 6.
Step 8: Stop.

To better understand the calculation algorithm, the flowchart is shownbelow inFig. 1:

4.2 Weighted Sum Method (WSM) and Stepwise Solution

Bymultiplying each objective function by theweight assigned to it and combiningmulti-
ple objective functions, WSM transforms multi-objective optimization into an objective
optimization problem. Here, the weightωk(k = 1, 2, . . . ,K) corresponds to each objec-
tive function Zk(k = 1, 2, . . . ,K). Here, ωk can be estimated as the relative importance
or value of the objective function evaluated with other objective functions. In other
words, the weight can be interpreted as indicating the priority relative to the objective
function. The higher the weightωk , the more significant the objective function Zk is. The
minor the weight ωk is, the smaller the importance of the objective function Zk is. Then
combine them into an objective function

∑K
k=1 ωkZk and

∑K
k=1 ωk = 1. Because of its

characteristics, this method is calledWSM. The process of theWSM [13] is summarized
as follows:

Step 1: First, according to the importance of the objective function in the model
(P2), select the weighting coefficients ω1, ω2 . . . ωK to the objective functions
(Zk , k = 1, 2, . . . ,K) corresponding to the objective function. Must be ωk > 0, k =
1, 2, . . . ,K and

∑K
k=1 ωk = 1.
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Step 2:A single objective problem is solved when the objective function is the weighted
sum of all objective functions. A single-objective problem can be expressed as:

Start

The uncertainty normal distribution of the confidence level selected by DM is 

used to determine the crisp values of the uncertainty parameter

Develop MOLFTP using the perfect values obtained in step 1.

Solve the 

Is there a desirable 

solution

Define linear membership function 

for the objective function

Construct a fuzzy model with the 

membership function for the objective 

Provide the feasible solution to the DM

Is DM Satisfied?

Stop

Yes

No

Yes

No

Fig. 1. Flowchart for algorithm
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Min
∑K

k=1
ωk

[
Zk(xij)],

Sub to

∑n

j=1
xij ≤ ai, i = 1, 2, . . . ,m,

∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j (10)

4.3 Global Criterion Method (GSM) and Stepwise Solution

GCM is used to solve MO optimization problems and provide a compromise solution
for multi-objective optimization. GCM [12] minimizes the distance between a specific
reference point and the feasible objective region. The problems with MOFTP are the
following:

Min
[
Z1(x),Z2(x), . . . ,ZK (x)

]
,

Sub to

∑n

j=1
xij ≤ ai, i = 1, 2, . . . ,m,

∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j. (11)

We can get the solution to the MOFTP problem by following these steps:

Step 1: MOFTP solves the problem of transportation for a single objective. The only
single objective function is used at a time, and other objective functions are ignored.
Step 2: Determine the ideal objective point according to the result of step 1, such as(
Z1
min,Z

2
min, . . . ,Z

k
min

)
and the corresponding value

(
Z1
max,Z

2
max, . . . ,Z

k
max

)
.

Step 3: Formulate the following problem as follows:

Min F(x) =
⎡
⎣∑K

k=1

(
Zk(x) − Zk

min

Zk
max − Zk

min

)2
⎤
⎦

1
2

,
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Sub to

∑n

j=1
xij ≤ ai, i = 1, 2, . . . ,m,

∑m

i=1
xij ≥ bj, j = 1, 2, . . . , n,

xij ≥ 0,∀i, j. (12)

5 Numerical Illustration

To prove the feasibility of the proposed model, MOFTP considers uncertainties in trans-
portation (Ck

ij andD
k
ij are the transporting unit cost and unit profit for transporting goods

from ith origin to the jth destination for k objectives) due to late or early delivery. Market
supply and demand are also considered uncertain. DM wants to deliver goods from four
origins O1, O2, O3, and O4 to five destinations D1, D2, D3, D4, and D5, and optimizes
that objective.

In every case, the inverse uncertainty distributions of the used confidence level υ

= 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 are divided into Tables 1–2 and simplified to
Table 3–4.

Table 1. Data for expected value (e) for Ck
ij and Dk

ij

D1 D2 D3 D4 D5 ai

O1 15,21,18
18,19,38

16,25,19
16,20,29

19,27,16
13,23,15

20,28,18
14,26,26

18,22,20
15,27,18

25

O2 13,23,25
19,28,16

12,27,25
12,27,25

13,28,26
13,22,31

14,22,30
18,25,18

16,21,32
14,29,26

28

O3 18,20,38
11,26,23

19,27,27
15,28,39

17,29,21
18,27,38

15,25,21
13,26,21

17,24,33
14,25,27

32

O4 19,29,35
15,25,19

15,23,26
16,22,35

16,24,21
13,23,26

18,26,23
15,27,22

17,28,26
13,29,29

35

bj 20 25 15 22 18

Using confidence levels 0.1 to 0.9 get the crisp value represented as in Tables 3 and
4 for the confidence levels 0.1, and 0.2.
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Table 2. Data for deviation (σ ) Ck
ij and D

k
ij

D1 D2 D3 D4 D5 ai

O1 1,1,1
1,1,2

2,2,2
1,2,1

1,1,1
1.5,1,1

1.5,1,1.5
1,1,1.5

1,1.5,1
2,1.5,1

2

O2 1,1,2
1,1,1

2,1,1
1.5,1,1.5

1.5,2,1
1,2,1

1,1.5,1
2,1.5,1

1,1,1.5
1,1,2

2

O3 2,1.5,1
1,1,1

1,2,1.5
2,1.5,1

1,1,2
1,1,2

1.5,1,2
1.5,2,1

1,1,1
1,1,1.5

1

O4 1.5,1,1
1,2,1.5

2,1.5,2
1,1,2

1,1,1
2,1.5,1

1,1,1.5
1.5,1,1

1,1,2
1,1,1

1

bj 1.5 1 1 1 1

Table 3. Using confidence level 0.1, crisp value for uncertain Ck
ij and D

k
ij

D1 D2 D3 D4 D5 ai

O1 13.79,19.79,16.79
16.79,17.79,35.58

13.58,22.58,16.58
14.79,17.58,27.79

17.79,25.79,14.79
11.18,21.79,13.79

18.18,26.79,16.18
12.79,24.79,24.18

15.58,20.18,18.79
12.58,25.18,16.79

27.42

O2 11.79,21.79,22.58
17.79,26.79,14.79

9.58,25.79,23.79
10.18,25.79,23.18

11.18,25.58,24.79
11.79,19.58,29.79

12.79,20.18,28.79
15.58,23.18,16.79

14.79,19.79,30.18
12.79,27.79,23.58

30.42

O3 15.58,18.18,36.79
9.79,24.79,21.79

17.79,24.58,25.18
12.58,26.18,37.79

15.79,27.79,18.58
16.79,25.79,35.58

13.18,23.79,18.58
11.18,23.58,19.79

15.79,22.79,31.79
12.79,23.79,25.18

33.21

O4 17.18,27.79,33.79
13.79,22.58,17.18

12.58,21.18,23.58
14.79,20.79,32.58

14.79,22.79,19.79
10.58,21.18,24.79

16.79,24.79,21.18
13.18,25.79,20.79

15.79,26.79,23.58
11.79,27.79,27.79

36.21

bj 18.18 23.79 13.79 20.79 16.79

Table 4. Using confidence level 0.2, crisp value for uncertain Ck
ij and D

k
ij

D1 D2 D3 D4 D5 ai

O1 14.24,20.24,17.24
17.24,18.24,36.47

14.47,23.47,17.47
15.24,18.47,28.24

18.24,26.24,15.24
11.85,22.24,14.24

18.85,27.24,16.85
13.24,25.24,24.85

16.47,20.85,19.24
13.47,25.85,17.24

26.53

O2 12.24,22.24,23.47
18.24,27.24,15.24

10.47,26.24,24.24
10.85,26.24,23.85

11.85,26.47,25.24
12.24,20.47,30.24

13.24,20.85,29.24
16.47,23.85,17.24

15.24,20.24,30.85
13.24,28.24,24.47

29.53

O3 16.47,18.85,37.24
10.24,25.24,22.24

18.24,25.47,25.85
13.47,26.85,38.24

16.24,28.24,19.47
17.24,26.24,36.47

13.85,24.24,19.47
11.85,24.47,20.24

16.24,23.24,32.24
13.24,24.24,25.85

32.76

O4 17.85,28.24,34.24
14.24,23.47,17.85

13.47,21.85,24.47
15.24,21.24,33.47

15.24,23.24,20.24
11.47,21.85,25.24

17.24,25.24,21.85
13.85,26.24,21.24

16.24,27.24,24.47
12.24,28.24,28.24

35.76

bj 18.85 24.24 14.24 21.24 17.24



486 R. Saini et al.

6 Results

This section describes the best results for model P2 using crisp data extracted from the
fuzzy programming method, weighted sum method, and global criterion method using
Lingo 17.0 software on a core i3 processor PC.

The value of the fractional objectives as given in the table increases with the increase
in the values of the confidence level from (0.1 to 0.9). DMs can define confidence levels
based on the relevant organizational context. The DM uses the weight same as 0.3, 0.4,
and 0.3 because of different confidence levels in the Weighted sum method (Table 5).

Table 5. Different confidence level values of objectives Z1, Z2, Z3

S.No Con. Level υ Z1 Z2 Z3

W.S Fuzzy G.C.M W.S Fuzzy G.C.M W.S Fuzzy G.C.M

1 0.1 0.90463 0.91064 0.89495 0.96566 0.95607 0.97281 0.75864 0.77408 0.76767

2 0.2 0.92423 0.91334 0.91216 0.96403 0.96548 0.96754 0.76586 0.78525 0.79065

3 0.3 0.93212 0.92107 0.91016 0.9755 0.95778 0.97974 0.75067 0.80795 0.78816

4 0.4 0.93844 0.92577 0.9145 0.97435 0.95897 0.98275 0.75543 0.81583 0.79749

5 0.5 0.94438 0.92993 0.91801 0.9732 0.96022 0.98498 0.75983 0.82263 0.79558

6 0.6 0.93585 0.92643 0.91783 0.99815 0.99054 1.00277 0.76838 0.79755 0.78682

7 0.7 0.9582 0.93858 0.92652 0.97329 0.96325 0.98792 0.76457 0.83389 0.802

8 0.8 0.93899 0.94162 0.92926 1.00037 0.97229 0.99318 0.7714 0.83306 0.80627

9 0.9 0.97893 0.95098 0.94005 0.97568 0.96845 0.98944 0.76995 0.85042 0.82209

7 Conclusion

This paper mainly exploits uncertainty theory to develop a MOLFTP. Given the param-
eter ambiguity that predominates in the real world, we assume that all parameters are
independent and uncertain variables. Uncertain variable problems are often complex
to deal with, so apply the expected constraint programming concepts to develop the
problem. To solve the resulting MOLFTP, we will explain the weighted sum method,
the fuzzy programming method (max-min), and the global criterion method. Finally,
numerical examples are also provided to illustrate the applicability of the proposed
problem. The results describe the confidence level. Fractional programming has a large
scope in modeling various real-world situations, such as information theory problems,
inventory management problems, investment allocation problems, segmentation prob-
lems, etc. The multi-objective problem can be extended to solve the above practical
problems.
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Abstract. Partial differential equation (PDE) models are the starting
point for developing modeling in various fields, such as mathematics,
physics, and engineering. We have developed a mathematical PDE model
including the incomplete ℵ-function in this paper. The aim of this paper,
study the impact of pollutants on population survival and growth. The
results established in this study are general and show different exciting
cases in the relevant terms of the parameters involved.
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Differential Equation

1 Introduction and Preliminaries

One of the most significant issues the world is currently experiencing is envi-
ronmental pollution. Due to rapid industrialization and increasing population
on a global scale, natural resources and climate are severely damaged. Rapid
population growth brings forth the need for spreading human activities, beau-
tification of cities, the downfall of forests, creation of new industries, etc., ulti-
mately leading to cities’ escalation [29]. Urbanization brings many challenges,
such as the urban settlement of a growing population, high population den-
sity, high-rise buildings, increasing industrialization, and increased traffic [16].
Unchecked urbanization can have a number of negative repercussions, including
environmental degradation. Due to unrestricted urbanization, the degradation
of the environment is happening very fast, and the pollution problem in cities is
getting more serious.

Industrial emissions enter the surrounding environment and affect the local
ecosystem [8]. Various sorts of solid waste processing (such as E-waste, debris,
plastic, etc.), air pollution, polluted water, industrial discharges, and other fac-
tors are contaminating our environment, causing harm to our ecosystem. Envi-
ronmental pollution is the contamination of normal ecological processes to the
point where biological and physical elements of the earth and atmosphere are
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 488–496, 2023.
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contaminated. Aquatic pollution and Industrial emissions have more effect on
ecosystems and can abridge the carrying aptitude of fauna and flora. This
could result in fatal toxicity, eradication of particular species or communities, or
severe pathological abnormalities. Organisms, populations, and sometimes whole
ecosystems can change an environment’s anticipating capacity (see [2,12,13]) .

Researchers in the 1990s s s developed non-linear mathematical models to
study the detrimental impact of environmental contamination on biological pop-
ulations (see [11,15,23]). It has, however, continued to be studied in numerous
other modeling studies over the years (see [1,9,22,28]). Different mathematical
and experimental studies have been conducted with this approach. To mini-
mize the possible loss of biodiversity, an accurate simulation of the pollution-
population system is essential. According to statistics, between 2005 and 2010,
more than 3.5 million people per year perished from outdoor air pollution, bring-
ing the global death rate to 4% and to 11% in India [10]. These reports thus
imply that to protect the environment and maintain the ecosystem, population
growth and environmental pollution issues must be accosted.

Consequently, we propose a non-linear mathematical model to examine how
pollutants influence people. Pollution directly affects a species’ rate of devel-
opment and the ecosystem’s carrying capacity, and both of these characteris-
tics decrease as the concentration of the pollutant grows. It is shown in the
mathematical model that we created in this paper by utilizing the incomplete
ℵ-function [5].

That is why we choose the incomplete ℵ-function, which consists of the ℵ-
function [14], which are extensions and generalizations of higher transcenden-
tal functions (see [6,20]). The most commonly used functions in mathematics,
physics, engineering, and mathematical biology are special cases of the incom-
plete ℵ-function.

The standard definition of the Incomplete ℵ-functions γℵu,v
rl, sl, fl; k

(V ) and
Γ ℵu,v

rl, sl, fl; k
(V ) follows as define [5]:

γℵu,v
rl, sl, fl; k (V ) = γℵu,v

rl, sl, fl; k

[
V

∣∣∣∣∣ (A1, A1 : Y ), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= 1
2πι

∫
$

Φ(w, Y ) V −w dw, (1)

where

Φ(w, Y ) =
γ(1 − A1 − A1w;Y )

u∏

m=1
Γ (Bm + Bmw)

v∏

m=2
Γ (1 − Am − Amw)

k∑

l=1

fl

[ sl∏

m=u+1
Γ (1 − Bml − Bmlw)

rl∏

m=v+1
Γ (Aml + Aml)

] ,

and

Γ ℵu,v
rl, sl, fl; k (V ) = Γ ℵu,v

rl, sl, fl; k

[
V

∣∣∣∣∣ (A1, A1 : Y ), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= 1
2πι

∫
$

Ψ(w, Y ) V −w dw, (2)
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where

Ψ(w, Y ) =
Γ (1 − A1 − A1w;Y )

u∏

m=1
Γ (Bm + Bmw)

v∏

m=2
Γ (1 − Am − Amw)

k∑

l=1

fl

[ sl∏

m=u+1
Γ (1 − Bml − Bmlw)

rl∏

m=v+1
Γ (Aml + Aml)

] ,

for V �= 0, Y ≥ 0, the incomplete ℵ-functions γℵu,v
rl, sl, fl; k

(V ) and
Γ ℵu,v

rl, sl, fl; k
(V ) in (2) and (2) exist under conditions [5]. The following special

observations on incomplete ℵ-functions are provided.

Remark 1. On setting Y = 0, then Eq. (2) reduces to the ℵ-Function proposed
by Sudland at el. [27]:

Γ ℵu,v
rl, sl, fl; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : 0), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= ℵu,v
rl, sl, fl; k

[

V

∣
∣
∣
∣
∣

(Am, Am)1,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

. (3)

Remark 2. Again, setting fl = 1 in (1) and (2), then it becomes to the Incom-
plete I-Function suggested by Bansal and Kumar (see [3,4]):

γℵu,v
rl, sl, 1; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [1(Bml, Bml)]u+1,sl

]

= γIu,v
rl, sl; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, (Aml, Aml)v+1,rl

(Bm, Bm)1,u, (Bml, Bml)u+1,sl

]

, (4)

and

Γ ℵu,v
rl, sl, 1; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= Γ Iu,v
rl, sl; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, (Aml, Aml)v+1,rl

(Bm, Bm)1,u, (Bml, Bml)u+1,sl

]

. (5)

Remark 3. Next, setting Y = 0 and fl = 1 in (1) and (2), then it becomes to
the I-Function suggested by Saxena [19] :

Γ ℵu,v
rl, sl, 1; k

[

V

∣
∣
∣
∣
∣

(A1, A1 : 0), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= Iu,v
rl, sl; k

[

V

∣
∣
∣
∣
∣

(Am, Am)1,v, (Aml, Aml)v+1,rl

(Bm, Bm)1,u, (Bml, Bml)u+1,sl

]

. (6)
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Remark 4. Further setting fl = 1 and k = 1 in (1) and (2), then it becomes to
the Incomplete H-Function suggested by Srivastava [26]:

γℵu,v
rl, sl, 1; 1

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= γu,v
r, s

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v

(Bm, Bm)1,u

]

, (7)

and

Γ ℵu,v
rl, sl, 1; 1

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= Γu,v
r, s

[

V

∣
∣
∣
∣
∣

(A1, A1 : Y ), (Am, Am)2,v

(Bm, Bm)1,u

]

. (8)

Remark 5. Next, we taking Y = 0, fl = 1, and k = 1 in (2), then it becomes to
the H-Function suggested by Srivastava (see, [25], pp. 10):

Γ ℵu,v
rl, sl, 1; 1

[

V

∣
∣
∣
∣
∣

(A1, A1 : 0), (Am, Am)2,v, [1(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= Hu,v
r, s

[

V

∣
∣
∣
∣
∣

(Am, Am)1,v

(Bm, Bm)1,u

]

. (9)

2 Mathematical Model

In this paper, we use one-dimensional species 0.5z ≤ L to study the increase in
the spread of population density ζp(z, t), (p = 1, 2) and their interactions. Due to
natural pollution, the growth rate and the environment’s carrying capacity have
been decreasing. Environmental pollution those who follow the power behavior
law are present in the habitat. The following dynamical equations are among
the nonlinear partial differential equations that most accurately describe species
evolution:

∂ζp

∂t
= ζp θp

(
ζ1, ζ2, hp(H(z, t)), gp(H(z, t))

)
+ Dp

∂2ζp

∂z2
, p = 1, 2. (10)

Here
θp:- denotes the interaction function of the species,
hp:- is the internal growth rate,
gp:- denotes the environmental carrying capacity,
H:- denotes the concentration of the pollutant,
Dp:- is a positive constant that describes the dispersal of species.
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The following equation represents the mobility of the concentration H of the
pollutant:

∂H
∂t

= C − αH + Dc
∂2H
∂z2

. (11)

Here
C > 0:- is the exogenous rate constant of the pollutant’s entry into the

habitat,
α > 0:- is a first order constant that indicates decay as an effect of environ-

mental pollution,
Dc > 0:- is the pollutant’s diffusion coefficient.
In developing this model, we have presupposed that an organism’s uptake of

a pollutant is proportional to the concentration of the pollutant present in the
environment of the population.

It is worth mentioning here that utilizing the Adomians decomposition tech-
nique, exact solutions to equation (11) that often appear in mathematical biol-
ogy may be obtained in both the z and t directions (see for more details, [17]).
This technique is well recognized for avoiding linearization and physically inap-
propriate assumptions while offering an efficient numerical solution with high
precision. However, based on the premise of the mathematical demonstration
(11), the solution to this mathematical equation will be obtained in the next
part of this segment using the incomplete ℵ-function of one variable.

3 Result in Terms of Incomplete ℵ-Functions

We choose the concentration H(z, t) with reference to the incomplete ℵ-function
as follows:

H(z, t) = Γ ℵu,v
rl, sl, fl; k

[

V zν (t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

= 1
2πι

∫
$
Ψ(w, z)V −w z−wν (t� − ϑ)−w� dw. (12)

Now, partially differentiating (12) with respect to t and z, we obtain

∂H
∂t = � t�−1

(t�−ϑ)
Γ ℵu,v+1

rl+1, sl+1, fl; k

[

V zν(t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (0, �), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, (1, �), [fm(Bml, Bml)]u+1,sl

]

, (13)



Mathematical Model 493

and

∂2H
∂z2 = 1

z2
Γ ℵu,v+1

rl+1, sl+1, fl; k

[

V zν (t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (0, ν), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, (2, ν), [fm(Bml, Bml)]u+1,sl

]

, (14)

Using (12), (13), and (14) in (11) we obtain following result

� t�−1

(t�−ϑ)
Γ ℵu,v+1

rl+1, sl+1, fl; k

[

V zν (t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (0, �), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, (1, �), [fm(Bml, Bml)]u+1,sl

]

= C − α × Γ ℵu,v
rl, sl, fl; k

[

V zν (t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, [fm(Bml, Bml)]u+1,sl

]

+ Dc

× 1
z2

Γ ℵu,v+1
rl+1, sl+1, fl; k

[

V zν (t� − ϑ)�

∣
∣
∣
∣
∣

(A1, A1 : z), (0, ν), (Am, Am)2,v, [fm(Aml, Aml)]v+1,rl

(Bm, Bm)1,u, (2, ν), [fm(Bml, Bml)]u+1,sl

]

. (15)

Similarly, we can solve H(z, t) as a term of the incomplete ℵ-function γℵu,v
rl, sl, fl; k

.

4 Special Cases

By correctly describing the parameters involved in the findings obtained, we can
easily acquire many more known and unknown (new) results, including many
additional highly transcendental functions of interest.
(i) On taking z = 0, � = 1, and ϑ = 0 in equation (15), we readily get the result in

terms of ℵ-Function due to Sharma and Bhargava [21].
(ii) If setting z = 0, fl = 1, � = 1, and ϑ = 0 in equations (15), then the outcome is

as noted by Bhargava et al. [7].
(iii) If we set fl = 1, k = 1, � = 1, and ϑ = 0 in equation (15) then the outcome is as

noted by Purohit et al. [18].
(iv) If we set z = 0, fl = 1, k = 1, � = 1, and ϑ = 0 in equation (15) then the

outcome is as noted by Singh and Mehta [24].
(v) If we substitute u = 1, v = r, s = s + 1, V zν (t� − ϑ)� = −V zν (t� − ϑ)�, B1 =

1, B1 = 0, Am = 1 − Am, Bm = 1 − Bm in equation (15), then we obtain the
solution that uses the incomplete Fox-Wright function rΨ

Γ
s .

(vi) If we substitute u = 1, v = r, s = s + 1, V zν (t� − ϑ)� = −V zν (t� − ϑ)�, B1 =
1, B1 = 0, Am = 1 − Am, Bm = 1 − Bm, Am = 1, Bm = 1 in equation (15),
then we obtain the solution that uses the incomplete generalized hypergeometric
function rΓs.
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5 Conclusion

To study the impact of pollutants on the human population, a non-linear math-
ematical model has been created. Population growth or population pressure is
also accountable for increasing pollution. Still, due to a high increase in pol-
lution concentration, the population will also not be able to survive for long.
The atmosphere remains asymptomatically stable but at extremely low levels,
suggesting that it would not take long for human populations, fauna, and flora
to become extinct if concentrations of the pollutant continued to accumulate
in the atmosphere. Therefore, controlling pollution is essential for maintaining
the human population and ecological balance. Considering the generality of the
incomplete ℵ-function, by taking appropriate values of the parameters involved,
several exciting results can be derived from the result (15). Thus the results
obtained here are general and can be very useful in applied mathematics, envi-
ronmental science, biochemistry, and other branches.
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14. Kumar, D., Ayant, F.Y., Uçar, F.: Integral involving aleph-function and the gen-
eralized incomplete hypergeometric function. TWMS J. App. Eng. Math. 10(3),
650–656 (2020)

15. Misra, O.P., Saxena, V.P.: Effects of environmental pollution on the growth and
existence of biological populations: modelling and stability analysis. Indian J. Pure
Appl. Math. 22(10), 805–817 (1991)

16. Munn, R.E., Fedorov, V.: An assessment of environmental impacts of industrial
development. With Special Reference to the Doon Valley, India, IIASA, Laxenburg,
Austria (1986)

17. Pamuk, S.: An application for linear and nonlinear heat equations by Adomian’s
decomposition method. Appl. Math. Comput. 163(1), 89–96 (2005)

18. Purohit, S.D., Khan, A.M., Suthar, D.L., Dave, S.: The impact on raise of environ-
mental pollution and occurrence in biological populations pertaining to incomplete
H-function. Natl. Acad. Sci. Lett. 44(3), 263–266 (2021). https://doi.org/10.1007/
s40009-020-00996-y

19. Saxena, V.P.: Formal solution of certain new pair of dual integral equations involv-
ing H-functions. Proc. Nat. Acad. Sci. India Sect. A 52, 366–375 (1982)

20. Sharma, R., Singh, J., Kumar, D., Singh, Y.: Certain unified integrals associated
with product of the general class of polynomials and incomplete I-functions. Int.
J. Appl. Comput. Math. 8(1), 1–11 (2022). https://doi.org/10.1007/s40819-021-
01181-5

21. Sharma, S.S., Bhargava, A.: On a mathematical model involving aleph-function to
study the effects of environmental pollution on biological population. Int. J. Stat.
Appl. Math. 3(2), 255–259 (2018)

22. Shukla, J.B., Agrawal, A.K., Dubey, B., Sinha, P.: Existence and survival of two
competing species in a polluted environment: a mathematical model. J. Biol. Syst.
9(2), 89–103 (2001)

23. Shukla, J.B., Dubey, B.: Simultaneous effect of two toxicants on biological species:
a mathematical model. J. Biol. Syst. 4(1), 109–130 (1996)

24. Singh, S.N., Mehta, R.: Effect of environmental pollution on the growth and exis-
tence of biological populations involving H-function. IOSR J. Math. 1(3), 1–2
(2012)

25. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two
Variables, with Applications. South Asian Publishers, New Delhi-Madras, India
(1982)

26. Srivastava, H.M., Saxena, R.K., Parmar, R.K.: Some families of the incomplete
h-functions and the incomplete H̄-functions and associated integral transforms
and operators of fractional calculus with applications. Russ. J. Math. Phys. 25(1),
116–138 (2018). https://doi.org/10.1134/S1061920818010119
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Abstract. Last few years, mobile communications have been undergoing a dras-
tic evaluation/change for every ten years or so. The technique difference between
the communication processes named as “G’s”. As a result, a simulation was con-
ducted after the gain was determined using several mathematical formulae. The
sixth generations (6G) of wireless systems, which are systems beyond the fifth
generation (5G), are generating a lot of interest as they become commercially
available. With the use of formula design and by using determined quantities, this
work offers the first mathematical computation for gain. We design/ developed a
novel tooth-shaped patch antenna for communication in radar system with better
performance. The antenna designed in Tera Hz at 300 GHz frequency. To achieve
higher gain, the designed patch antenna exhibits lower mutual coupling effect.
Current distribution & gain of designed novel tooth shaped patch antenna having
1.32*102 A/m& 9.45 db. The proposed antenna simulated to test the power trans-
ferred at the antenna port from the transmission line means impedance bandwidth
(S11< −10 dB) at frequencies of 326.67 GHz that is, −50.524 dB, allocated to
the 6G applications by the Federal Communications Commission. By simulation
of proposed patch antenna, visualize the intended output or result, the design of
antennas is crucial to achieving the required results for future work. The simu-
lation provides us effects to evaluate various parameters, like as bandwidth, and
antenna isolation, for the manufactured device’s superior performance standards.
RT/ Duroid 5880 is a low-loss/cost substrate and we used in designs. For 6G fre-
quencies, the required band-width should bemore than 20GHz, which is desirable
for future reference/work.

Keywords: Wireless communication · Antenna Gain · 6G · radiation pattern ·
Bandwidth · impedance matching · mutual coupling effect

1 Introduction

The promise of 5G mobile and wireless technologies to support large data rates and
achieve minimal latency is creating issues for the already crowded microwave frequency
band. These systems are separated into two categories: Frequency Range 1 (FR1), which
includes all frequency bands below 6 GHz, and Frequency Range 2 (FR2), which covers

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 497–507, 2023.
https://doi.org/10.1007/978-3-031-29959-9_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29959-9_32&domain=pdf
https://doi.org/10.1007/978-3-031-29959-9_32


498 N. K. Vyas and M. Salim

the so-called 5G millimeter wave (mm-Wave) bands currently being trailed around the
world to address these challenges. It is expected that various parts of the lowermm-Wave
spectrum, <50 GHz, will be gradually subjugated by 5G systems in the coming decade.
However, the data rates are expected to bemuch higher, on the order of terabits per second
(Tbps), aswireless technologies evolve into sixth-generation (6G) systems [1]. The sixth-
generation (6G)mobile network is expected to realize and expand the 6G communication
system in 2030. The world is currently considering the use of terahertz (THz) frequency
bands above 100 GHz because a wider frequency band can be used compared to 5G.
At WRC2019, the 275–450 GHz frequency band will be considered for land mobile
and fixed services, but the specific specifications are not yet precise because there are
many uncertain factors in wireless communication. The U.S. Federal Communications
Commission (FCC) decided to open up the electromagnetic wave frequency range from
95 GHz to 3 THz as a test spectrum, and also because 95 GHz to 3 THz covers the
terahertz frequency band [2]. This advance will pose evenmore challenges to the already
scarce radio spectrum. In order to meet the increasing demands for data rate in wireless
communications, mobile communication systems are evolving toward utilizing higher
frequencies such as millimeter wave (mm-Wave) and terahertz (THz) bands. Both mm-
Wave and THz communication systems can utilize extremely large bandwidth and can
therefore boost peak data rates in 6G.

The 6G applications will need access to an order-of-magnitude more spectrum, uti-
lization of frequencies between 100 GHz and 1 THz becomes of paramount importance.
As such, the 6G ecosystemwill feature a diverse range of frequency bands, ranging from
below 6 GHz up to 1 THz. Some of the characteristics parameters of Microstrip patches
are radiation pattern, gain, return loss (RL) bandwidth, efficiency and polarization diver-
sities. Design complexities of a patch antenna increases with the miniaturization of the
patch. Patch antennas suffer from different limitations such as impedance mismatch,
low gain, and poor return loss performance [3]. Enabled by enhanced mobile broad-
band (eMBB), new applications in massive machine-type communications (mMTCs)
and ultra reliable low-latency communications (uRLLCs) have driven the development
toward International Mobile Telecommunications 2020 (IMT-2020) often colloquially
called the fifth-generation (5G) of wireless systems [4]. To support such applications,
even larger system bandwidths than those seen in 5G are required along with new phys-
ical layer (PHY) techniques, as well as higher layer capabilities that are not present
today. Significant efforts are underway to characterize and understand wireless systems
beyond 5G, which we refer to as the sixth generation (6G) of systems [5]. According to
the ITU-T in the three most important driving characteristics linked to the next decade
of lifestyle and societal changes, impacting the design and outlook of 6G networks, are:

i. High-Fidelity Holographic Society
ii. Connectivity for All Things
iii. Time Sensitive/Time Engineered Applications [6].

The sub-Terahertz (THz) frequency band (0.1–1 THz) offers a spectrum with a high
data rate, wide bandwidth, and lower atmospheric attenuation due to rain and fog. This
frequency band is intended to serve terabits per second (Tbps) wireless communication
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for the sixth generation (6G) mobile network [7]. The antenna is an indispensable com-
ponent of any THz wireless communication systems along with active components and
associate technologies, the performance of the antennas is directly affected by the com-
munication quality of the entire system. One of THz band frequencies main challenges
is a very high path loss, resulting in a major constraint on communication distances. At
THz frequencies, the need for high-gain antennas is very important to overcome high
atmospheric absorption and high path loss at these frequencies, which will affect the
budget of the wireless link. Horn antennas and reflector-based antennas have been pro-
posed at THz frequencies because of their good radiation performance; however, they
are bulky in size and have a complex structure, especially with other active compact
components in integrating with the circuits [8, 9]. A number of studies focusing on more
specific technologies have also been published. For instance, the study in [10] proposes
to explore new waveforms for 90–200-GHz frequency bands that offer optimal perfor-
mance under PHY layer impairments. Haselmayr [11] present a vision of providing
an Internet of Bio-nano things using molecular communication. The study in gives an
overview of architectures, challenges, and techniques for efficient wireless powering of
Internet-of-Things (IoT) networks in 6G [12].Moreover, Piran and Suh [13] consider the
requirements, use cases, and challenges to realize 6G systems with a particular emphasis
on artificial intelligence (AI)-based techniques for network management. Sub-Terahertz
(Sub-THz) frequencies will be used in the six generation (6G) of mobile communica-
tions for high data rate. Its short wavelengths and dielectric lossmake antenna in package
(AiP) technologies desired for antenna arrays with high radiation gains, where the fre-
quencies are roughly 0.1–0.3 THz [14] to make the wavelength smaller than 1 mm. Such
AiP may minimize the physical sizes and lossy transmission lines to integrate the RF
devices.

2 Antenna Geometry and Design

Different published papers claim that to achieve good results, a goodmatching condition
of patch can be obtained by cuts in patchwith inset feed of patch [15]. By properly control
inset position &width, good matching may be achieved. In a spherical shape, an antenna
occupyingmore space in volumewill have awider bandwidth [16]. By increase the height
(h) of the substrate it may increase the bandwidth. However by using higher value of
substrate height (h) may result in surface waves that travel within the substrate which
give results in undesired radiations and issues. For my paper we will explain/described a
novel patch antenna design method with inset fed after considering Rogers RO/Duroid
5880 as substrate because it have good relative permittivity of 2.2. The high melting
point at 2600 °C of Rogers RO/Duroid 5880 is main advantage. It absorbs moisture
very low and has very low loss tangent approx. 0.0009. Along with these properties,
Duroid 5880 is easily available and very cheap. For design, we chosen micro strip feed
mechanism for better results in performance. As we chosen substrate, now we have to
calculate the parameters.

For Patch Length & width,

W = c

2f
0
√

(∈r+1)
2

(1)
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L = C

2f0
√∈eff

− 2�L (2)

∈r is the relative Permittivity of the dielectric substrate.
f0 is the Resonance Frequency.
C is the Speed of light: 3×108.
By using Eq. 1 & 2, we calculated the value of patch length & width using substrate

permittivity for simulation.
Calculation for the Effective Dielectric Constant which is based on the height,

dielectric constant of the dielectric and the calculated width of the patch antenna.

∈eff = ∈r +1

2
+ ∈r −1

2
[1 + 12

h

W
]−1/2 (3)

h is the thickness of substrate.

Leff = c

2f0
√∈eff

(4)

�L = 0.412h

(∈eff + 0.3
)
(Wh + 0.264)(∈eff − 0.258
)
(Wh + 0.8)

(5)

Equation 5 gives the calculation of the length extension �L & using this we can
calculate the actual length of patch, by using Eq. 6,

L = Leff − 2�L (6)

In CST simulations, we considered many height values of the substrate. At 330 GHz,
the substrate height should be less than 0.05 and for design we used height equivalent to
0.194 mm. As we increase the thickness of substrate provides more bandwidth in results
but same time it causes the shifting of resonant frequency to lower side [17]. After patch
simulation we tried to improve the performance of the patch antenna by insertion of cuts
slots with the value of 0.142 mm each and optimizing the patch parameters of the patch
antenna, are listed in Table 1. Using Equation from 1 to 6 we simulated novel patch
antenna with single antenna is shown in Fig. 1 (Figs. 6 and 8).

Table 1. .

Antenna parameters Value

Patch Length (L) 2.4 mm

Patch Width (W) 2.90 mm

Substrate Dimensions L = 4 mm W = 2.90 mm

Ground L = 4 mm W = 2.90 mm
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Fig. 1. Conventional Patch antenna with dimensions (a) front view (b) back view

Fig. 2. S-parameter of single antenna

Fig. 3. Top view of E-field (b) Top view of H-field
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Fig. 4. Surface Current of single antenna

Fig. 5. Power flow

Fig. 6. Far-field of single antenna

The single antenna design is shown in Fig. 1. Simulation done using the CST studio,
after simulation Fig. 2 shows the S11 parameter of antenna, Fig. 3(a) & (b) shows E-
field & H-Field respectively, Fig. 4 & Fig. 5 shows surface current and power flow. A
microstrip patch antenna which will be simulating has width W and length L as 4mm
and 2.93 mm, respectively. The patch width, Wp is 1.20 mm, and patch length, Lp
of 2.43 mm. The patch antenna is made by pure copper, with the resistivity of 1.68
�́m & conductivity of 5.95/�́cm, and 0.034 mm thick. The substrate used in antenna is
a Rogers RO/Duroid 5880. A fully ground planes at the next layer of substrate uses the
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Fig. 7. 3D Far-field (b) 2D far-field with gain

same material as radiating patch. The antenna is fed by 50�́ feed line that has width,
Wf of 0.45 mm. At the second stage to get better results, we have tried to improve the
performance by changing the parameters of the patch antenna through insertion of cuts
slots of equal width & length at top and same time cut slots at patch sides also [18]. To
optimizing the result, some parameters used for the patch are summarized as shown in
Fig. 7 with inset fed. The designed novel patch antenna along with conventional inset
fed patch is shown below,

Fig. 8. Shows patch antenna with inset cut slots.

After simulation of inset fed antenna, we received different result parameters which
are shown in above figures. Figure 9 shows measurement of power reflected back at
the antenna port due to mismatch from the transmission line, having S11parameter as
−52.653 dB. Figure 10(a) & 11 shows flows from the positive charge to the negative
charge placed on the elements by voltage applied to the antenna & is a vector quantity
(has a magnitude and direction) and is measured in Amps/Meter [A/m] respectively.
Figure 11 shows surface current & power flow in antenna. Figure 12 & 13 are graphical
representation of far-field in 3D & 2D. Similarly Fig. 14 shows the electric field density.
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Fig. 9. S-parameter of cut slot patch antenna

Fig. 10. (a) E-field (b) H-field

Fig. 11. (a) Surface current (b) Power flow
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Fig. 12. 3D Far-field with gain

Fig. 13. 2D far-field with gain

Fig. 14. Electric field Density

3 Conclusion

In the conclusion, the researchers done work previously, for 6G antenna has been
reviewed and represented completely. Each researcher work has different objective &
results, so by this each used different parameters of heightwith frequency selection, patch
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antenna types, substrate material, fabrication and improvement technique. I designed a
novel microstrip patch antenna for 6G application and successfully designed by simula-
tion. The simulated result of inset fed patch has achieved as the operating frequency of
329.9 GHz, and wide bandwidth of 84.12 GHz. Same time, the gain received is 9.58 dB.
Te gain & the bandwidth can be improved with sme more modification in design to get
better results.
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Abstract. In this study, we investigated the effects of an imposed uniform trans-
verse magnetic field on the steady 2D viscous flow of an electrically conducting
fluid. The governing non-linear PDEs are converted into ODEs using appropriate
non-similarity and similarity variables and are then numerically resolved using
accepted well-known methods. On the other hand, the values of many parameters
regulating the entire flow system, the numerical values of the emerging dimension-
less quantities like localNusselt number and skin-friction coefficient are calculated
and presented in tabular form. Computations are performed for velocity and tem-
perature fields for different parameters. The effects of the numerous additional
parameters considered in this article on the distribution of temperature (energy)
and velocity (momentum) are represented visually by line graphs and described
in detail. These characteristics have a considerable impact on the recommended
MHD flow.

Keywords: Boundary layer · MHD · Non-similarity · Falkner-Skan equation ·
viscous dissipation · Görtler Transformation

Nomenclature

x, y Cartesian co-ordinates
u, v Velocity components
U0 Uniform velocity
U∞ Free flow velocity
T Fluid temperature
Tw Temperature at the plate surface
T∞ Ambient temperature as y tends to infinity
f ′ Dimensionless velocity
B0 Magnetic component
cp Specific heat at constant pressure
Cf Skin friction coefficient
Nu Local Nusselt number
M Magnetic parameter
Pr Prandtl number
Ec Eckert number
Rex Local Reynolds number
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Greek Symbols

ρ Density of the fluid
μ Dynamic viscosity
ν Kinematic viscosity
κ Thermal conductivity
σe Electrical conductivity
η Dimensionless similarity variable
ψ Stream function
β Principal function
θ Dimensionless temperature

1 Introduction

The most prominent subspecialties in fluid dynamics are boundary layer flows. Many
of these applications in the recent past have been restricted to only one-word similarity
estimates. However, the object of this effort was to approximate nonsimilar solutions
of MHD boundary layer flow numerically. Problems involving nonsimilar solutions
of boundary layer flows are more frequently encountered in industry and have wider
applicability. Because the class of “similar” solutions is fairly small, it is necessary to
explore the “nonsimilar” solutions, where the momentum of the external flow velocity is
regarded as a polynomial and the distance is calculated from the commencement of the
boundary layer. Also, the analytical and numerical solutions of “nonsimilar” boundary
layer flow problems have never been easy and simple. It’s conceivable that Howarth [1]
gave the first appropriate answer for a nonsimilar flow. Tani [2] had significant work on
the results of boundary layer flowwith nonsimilar solutions (NSS). Later on, Falkner [3],
Görtler [4–6], Meksyn [7], and manymore researchers made substantial contributions to
“nonsimilar” solutions. Some fundamental traits of thermal boundary layer issues were
noted by Sparrow et al. [8]. Later, Sparrow and Yu [9] identified the solutions for local
non-similarity flow.

There exist many nonsimilar issues with boundary layer flow of surface mass and
heat transfer. A variety of factors, including variations in wall heat, free flow velocity,
surface mass transfer, the buoyancy force effect, the effect of suction/injection of fluid at
the surface, inclination angle effects, etc., can lead to the non-similarity of the boundary
layer. The nonsimilarity method was first developed by Sparrow et al. [10], and is the
most well-known method of numerical approaches that have been suggested to address
these nonsimilar boundary layer problems. Since then, it has been used by numerous
researchers to address numerous distinct boundary layer issues. Rogers [11] revealed
some significant findings from a comparison of the nonsimilar and the finite difference
approach. Gorla and Kumari [12] examined nonsimilar non-Newtonian fluid solutions in
permeable material on a vertical plane surface. Duck et al. [13] investigated nonsimilar
solutions to the corner boundary layer. Non-similarity solutions for convection boundary
layers were studied by Yian and Amin [14]. Cheng and Lin [15] found non-similarity
solutions of heat transfer over a wedge. Liao [16] used a highly effective technique called
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the homotopy analysis approach to produce analytical results for a non-similarity flow
on a flat surface. Fang and Zhong [17] looked at non-identical solutions involving bound-
ary layer flow over a contracting wall. Mureithi and Mason [18] investigated the local
nonsimilar solution of viscous dissipation for a forced-free boundary layer flow. Kousar
and Liao [19, 20] obtained a series solution over a porous wedge and by an impulsively
expanding plane surface by using non-similarity solutions. Elhoucine et al. [21] looked
into nonsimilar boundary layer solutions with slip boundary and isothermal wall con-
ditions with positive and negative pressure gradients. Amoo OM et al. [22] focused on
a very effective method, named as finite element method (FEM) to solve infinite series
equations obtained from the nonsimilar boundary layers. Amoo OM et al. [23] used a
comparative examination of numerical techniques to solve the infinite series equation
resulting from a nonsimilar boundary layer. MHD flow of Williamson nanofluid having
the impacts of variable thickness, thermal radiation and improved Fourier’s and Fick’s
Laws were examined by Gupta et al. [24]. Effects of radiative MHD hybrid-nanofluids
flow across a porous extended surface were investigated by Agrawal et al. [25]. In this
paper, they formulated heat and mass flux upon Cattaneo-Christov theory. A thin film
flow problem having applications in non-Newtonian fluidmechanics was investigated by
Sushila et al. [26]. They used optimal homotopy analysis method (OHAM) to find non-
dimensional forms of equations. With melting heat transfer, radiation and slip effects on
MHD flow of nanofluid along an expanding sheet is explored by Kumar et al. [27].

Because we are conscious of the significance of MHD flow, in the current work, we
have developed nonsimilar solutions for a 2D steady boundary layer viscous flow of an
electrically conductingfluidwith a homogeneousmagneticfield.To account formagnetic
field effects, the emerging boundary layer equations are converted to the Görtler plane
from the physical plane using some standard assumptions and techniques. This process
is referred to as the quasi-similarity transformation. For a set of nonsimilar boundary
layer flows, a finite difference (central and backward difference) technique has been
anticipated to explain the equations on the plane of quasi-similarity. With the aid of a
fast computer, the equation’s numerical solutions are achieved.

2 Governing Equations

Imagine a semi-infinite 2D plane surface with a continuous flow of viscous incompress-
ible, electrically conducting fluid flowing over it while a uniform transverse magnetic
field is applied, as shown in Fig. 1. It is supposed that the magnetic Reynolds number is
low enough to allow for the ignoring the induced magnetic field. Also, it is assumed that
the fluid’s characteristics are both constant and isotropic. As a result, using the standard
boundary layer approximations and taking κinto account viscosity and Joule heating
factors, the equations governing the motion are (in the physical plane):

∂u

∂x
+ ∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞
dx

+ v
∂2u

∂y2
− σeB2

0u

ρ
(2)
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u
∂T

∂x
+ v

∂T

∂y
= κ

ρcp

∂2T

∂y2
+ μ

ρcp

(
∂u

∂y

)2

+ σeB2
0u

2

ρcp
(3)

Here velocity components in X and Y directions are given by u and v respectively,
ν = μ

/
ρ is called kinematic viscosity; here μ is viscosity coefficient and ρ is taken

as fluid density, specific heat at constant pressure is denoted by cp. σe, T and κ are the
electrical conductivity, temperature, and thermal conductivity of fluid respectively.

The boundary conditions at the wall and far in the fluid can be expressed
mathematically as follows:

u = 0, v = 0, T = Tw(x) at y = 0

u → U∞(x), T → T∞ as y → ∞ (4)

where wall temperature is denoted by Tw, free flow velocity and temperature are denoted
by U∞ and T∞ respectively.

Fig. 1. Schematic flow diagram

3 Görtler Transformation

Görtler [6] changed the dependent and independent variables in ordinary fluid dynamics
as follows:

ξ = 1

v

x∫
0

U∞(x)dx (5)

η = U∞(x)

v
√
2ξ

y (6)
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Here stream function ψ and temperature T are defined as follows:

ψ = √
2ξνf (ξ, η) (7)

T = T∞ + (Tw − T∞)θ(ξ, η) (8)

then, u and v satisfy the equation of continuity and become as

u = U∞fη (9)

and

v = − U∞√
2ξ

[f + 2ξ fξ + ηfn{β(ξ) − 1}] (10)

Equation (1) is known as the continuity equation and it is satisfied identically by

the Cauchy-Riemann (C-R) equations
(
u = ∂ψ

∂y = ψy, v = − ∂ψ
∂x = −ψx

)
. After certain

simplifications, the momentum (velocity) and energy (temperature) equations provided
by (2) and (3) simplify to

fηηη + ffηη − 2ξ fηfξη + 2ξ fξ fηη − Mfη + β(ξ)
[
1 − f 2η

]
= 0 (11)

θηη + Pr
[
f θη + Ecf 2ηη + MEcf 2η − 2ξ fηθξ + fξ θη

]
= 0 (12)

The adequate boundary conditions are:

f (ξ) = 0, fη(ξ) = 0, θ(ξ) = 1 at η = 0

fη(ξ) → 1, θ(ξ) → 0 as η → ∞ (13)

In the above expression, dimensionless parameters are as follows:

M = 2μξαeB2
0

ρ2U 2∞
Magnetic Parameter, β(ξ) =

2U ′∞(x)
x∫
0
U∞(x)dx

[U∞(x)]2
= 2ξ(x)ξ ′′(x)

ξ ′2(x) Principal

Function, Pr = μcp
κ

Prandtl Number, and Ec = U 2∞
cp(Tw−T∞)

Eckert Number.
It should be noticed that Eqs. (11) and (12) are dependent on ξ and η. Furthermore,

because both equations are non-similar and dimensional, they can be applied to any
boundary layer problem.

If ξ is considered as a constant, all derivatives w.r.t. ξ will be zero therefore the
Eqs. (11) and (12) become as under:

f ′′′ + ff ′′ + β
[
1 − f ′2] − Mf ′ = 0 (14)

θ ′′ + Pr
(
f θ ′ + Ecf ′′2 + MEcf ′2) = 0 (15)

The appropriate boundary conditions are:

f = f ′ = 0, θ = 1 at η = 0

f ′ → 1, θ → 0 as η → ∞ (16)
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Here prime
(′) denotes the derivative w.r.t. η.

These equations are now self-similar since they solely depend on the dimensionless
variable η. ForM = 0, the Eq. (14) is known as well known Falkner-Skan equation [28].

The physical quantities of engineering interest are skin-friction coefficient Cf and
local Nusselt number Nu. Therefore, our task is to investigate how these quantities
vary with the other governing parameters. These two quantities are the most important
physical parameters in this issue, and these are found proportional to f ′′(0) and −θ ′(0)
respectively, which can be expressed mathematically as follows:

Cf =
μ

(
uy

)
y=0

ρU 2∞
2

= 2
1/2Re

−1/2f ′′(0) (17)

Nu = −
x
(
Ty

)
y=0

Tw − T∞
= −2−1/2Re

1/2θ ′(0) (18)

where Rex = xU∞
ν

is identified as the local Reynolds number.
The impact of the emerging dimensionless parameters such as skin friction coeffi-

cient Cf and local Nusselt number Nu on flow properties is thoroughly examined. The
variations of f ′′(0)withM and β are presented in Table 1while−θ ′(0) for several values
of Pr, M , Ec and β are presented in Table 2.

4 Numerical Solution

An iterative technique is adopted for nonsimilar equations given by (11) and (12) with
boundary condition (13) and self-similar equations given by (14) and (15) with boundary
condition (16). The R-K 4th order strategy is used to numerically solve these equations
on a high-speed computer while employing orderly assumptions for f ′′(0) and θ ′(0)
by using shooting procedure till boundary conditions of similar solutions at infinity are
satisfied. While getting numerical solution, the step length of η = 0.001 is employed,
and the precision is up to the 7th digit of decimal place, i.e. 10−7, that is more than
enough for required rate of convergence.

To beginwith, a new transformation given by fη = P and θη = Q is taken into account
and introduced for nonsimilar Eqs. (11) and (12), which transforms these equations to
first order in Q and second order in P as

Pηη + Pη

η∫
0

Pdη + β(ξ)
[
1 − P2

]
− MP = 2ξ

⎡
⎣PPξ − Pη

∂

∂ξ

⎛
⎝

η∫
0

Pdη

⎞
⎠

⎤
⎦ (19)

Qη + Pr

⎛
⎝

η∫
0

Pdη

⎞
⎠Q + Pr EcP2η + M Pr EcP2 = 2 Pr

⎡
⎣ξP

⎧⎨
⎩

∂

∂ξ

⎛
⎝

η∫
0

Qdη

⎞
⎠

⎫⎬
⎭ −

⎛
⎝ ∂

∂ξ

η∫
0

Pdη

⎞
⎠Q

⎤
⎦ (20)

Now, backward differences substitute partial derivatives ∂
∂ξ
, and central differences

replace partial derivatives ∂
∂η
. A non-uniform grid is utilised for the derivatives w.r.t.

η to allow for a better and adequate mesh size close the surface. Non-linear terms
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are replaced by reusing terms from earlier calculations. Equations (11) and (12) are
translated as follows, with i and j serving as suffixes for the variables ξ and η directions
respectively.

2

ηj+1 − ηj−1

[
Pi,j+1 − Pi,j

ηj+1 − ηj
− Pi,j − Pi,j−1

ηj − ηj−1

]
+ fi,j

Pi,j+1 − Pi,j−1

ηj+1 − ηj−1

+β(ξi)
[
1 − 2Pi,jPi,jOLD + P2

i,jOLD

]
− MPi,jOLD =

2ξi

[
Pi,jOLD

Pi,j − Pi−1,j

ξi − ξi−1
− fi,j − fi−1,j

ξi − ξi−1

Pi,j+1 − Pi,j−1

ηj+1 − ηj−1

] (21)

Qi,j+1 − Qi,j−1

ηj+1 − ηj−1
+ Pr fi,jQi,jOLD + Pr Ec

(
Pi,j+1 − Pi,j−1

ηj+1 − ηj−1

)2

+M Pr EcPi,jOLD = 2 Pr

[
ξiPi,jOLD

{
θi,j − θi−1,j

ξi − ξi−1

}
−

{
fi,j − fi−1,j

ξi − ξi−1

}
Qi,j

] (22)

The set of Eqs. (21) and (22) that must be solved simultaneously for every value
of ξ , i.e. for each i. This method must be repeated a sufficient number of times in the
stream-wise direction at a certain grid point ξ . The same method is repeated for next
mesh point i.e., ξ = ξi+1, if solution converges.

5 Results and Discussions

Matlab is a programming language that is used to create numerical solvers for both self-
similar and nonsimilar situations. Initially, a programme called self-similar was created.
It can efficiently resolve Eq. (14) for some fixed values of β and M = 0. In next stage,
as an addition to the self-similar solution, the Matlab solver for nonsimilar Eqs. (11) and
(12) was created. Using the table fromWhite [29], the Matlab coding is verified against
Falkner-Skan values. It is feasible to acquire findings precise to at least the 5th figure by
taking a step length of similarity variableη = 10−3 and a magnification feature for the
step length of 1.0001. Tables 1 and 2, respectively, calculate the numerical values for the
local Nusselt number and skin friction, and the effects of momentum and temperature
field are visually illustrated in Figs. 2, 3, 4, 5, 6, 7 and 8 for distinct values of the
non-dimensional parameters taken in the present paper.

According to Table 1, Cf reduces with rising M for some values of β, whereas
it grows with growing values of β for some values of M . We also studied effect of
various parameters on Nusselt number. Table 2 demonstrates that Nu decreases as M
and Ec increases. Principal function β enhances heat transmission at lower Ec but shows
opposite phenomenon at larger Ec. At lesser values of Ec, Pr enhances rate of heat
transfer i.e. −θ ′(0).
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Figures 2, 3 and 4 demonstrate momentum effects plotted for distinct values of
parameters such as M and β. Figures 2 and 3 illustrate that velocity increases as β

increases in the absence and presence ofM . Figure 4 shows that asM reduces, velocity
increases. Figures 5, 6, 7 and 8 depict temperature distributions versus similarity vari-
able η for various parameters involved in the present study such as Pr, Ec, M and β.
Temperature enhances with increasingM and Ec and increases with reducing values of
β and Pr, as shown in these figures.

Table 1. Comparison of f ′′(0) for several M and β

M β = 0.0 β = 0.25 β = 0.50 β = 0.75 β = 1.0

0.0 0.4693377 0.7319550 0.9276899 1.0905212 1.2325986

0.25 0.2008871 0.5370470 0.7713175 0.9583337 1.1171727

0.5 0.0801791 0.4070924 0.6522242 0.8504977 1.0188785

0.75 0.0369494 0.3244742 0.5632786 0.7633165 0.9355872

1.0 0.0194799 0.2719342 0.4970228 0.6929921 0.8650840

Table 2. Comparison of −θ ′(0) for several Pr, β, Ec and M

β M Pr = 0.023 Pr = 0.72 Pr = 1.0

Ec = 0.1 Ec = 0.5 Ec = 0.1 Ec = 0.5 Ec = 0.1 Ec = 0.5

0.0 0.0 0.2087364 0.2060060 0.4004292 0.3295523 0.4458530 0.3519092

0.25 0.2046089 0.2023813 0.3181379 0.2609611 0.3503278 0.2766550

0.5 0.2022591 0.2006315 0.2621577 0.2170820 0.2815852 0.2223041

0.75 0.2012265 0.1998842 0.2348586 0.1960952 0.2464834 0.1945894

1.0 0.2007327 0.1995240 0.2211670 0.1855800 0.2284519 0.1803566

0.25 0.0 0.2101618 0.2063869 0.4292937 0.3275993 0.4794476 0.3432293

0.25 0.2073652 0.2031986 0.3790027 0.2723981 0.4226134 0.284193

0.5 0.2053652 0.2015092 0.3386350 0.2367646 0.3759812 0.2439595

0.75 0.2040134 0.2006438 0.3084840 0.2150850 0.3402677 0.2178736

1.0 0.2031146 0.2001818 0.2868477 0.2020539 0.3138949 0.2012458

0.5 0.0 0.2109008 0.2062783 0.4439516 0.3169897 0.4962239 0.3253103

0.25 0.2086183 0.2029447 0.4043143 0.2582247 0.4515910 0.2607218

0.5 0.2068826 0.2010006 0.3715859 0.2190518 0.4143892 0.2167385

0.75 0.2055860 0.1999290 0.3451436 0.1941449 0.3838945 0.1878186

(continued)
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Table 2. (continued)

β M Pr = 0.023 Pr = 0.72 Pr = 1.0

Ec = 0.1 Ec = 0.5 Ec = 0.1 Ec = 0.5 Ec = 0.1 Ec = 0.5

1.0 0.2046224 0.1993622 0.3240899 0.178887 0.3592119 0.1693040

0.75 0.0 0.2113729 0.2060189 0.4531162 0.3042152 0.5064779 0.3054050

0.25 0.2093580 0.2024546 0.4184627 0.2394709 0.4673890 0.2326230

0.5 0.2077821 0.2001935 0.3895984 0.1941687 0.4346012 0.1808874

0.75 0.2065479 0.1988199 0.3655526 0.1633673 0.4071161 0.1451386

1.0 0.2055851 0.1980320 0.3456591 0.1433200 0.3841351 0.1212439

1.0 0.0 0.2116948 0.2056850 0.4593490 0.2907247 0.5134128 0.2852266

0.25 0.2098543 0.2019103 0.4275976 0.2203555 0.4773476 0.2045246

0.5 0.2083724 0.1993363 0.4007010 0.1684300 0.4467020 0.1444928

0.75 0.2071832 0.1976459 0.3779909 0.1312217 0.4206813 0.1009613

1.0 0.2062266 0.1965804 0.3588506 0.1052452 0.3986739 0.0700468

Fig. 2. The axial velocity as a function of η for diverse values of β
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Fig. 3. The axial velocity as a function of η for diverse values of β

Fig. 4. The axial velocity as a function of η for diverse values of M
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Fig. 5. The temperature distribution θ(η) for diverse values of M

Fig. 6. The temperature distribution θ(η) for diverse values of β
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Fig. 7. The temperature distribution θ(η) for diverse values of Pr

Fig. 8. The temperature distribution θ(η) for diverse values of Ec
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6 Conclusions

Present study numerically investigates how an enforced uniform transverse magnetic
field affected a fluid that conducts electrically while flowing steadily in two dimensions.
Using the proper non-similarity and similarity variables, the governing non-linear PDEs
are transformed intoODEs, and they are then numerically resolved using approved, well-
established techniques. In the current investigation, the following observations have been
made:

• When the magnetic parameter is increased, a resistive force known as the Lorentz
force is produced in the flow, which results in a drop in velocity field plots.

• The temperature distribution has been seen to rise when the magnetic field parameter
increases. The flow generates some extra heat as a result of the Lorentz force.

• The thermal layer thickness grows when the magnetic field parameter is raised, but
the momentum layer thickness decreases.
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Abstract. In this paper, we introduced the space DSα(Δm
v , f, X) of

all deferred (Δm
v , f)-statistically convergent sequences of order α in the

normed space (X, q) with the help of generalized difference operator
Δm

v , unbounded modulus function f , α ∈ (0, 1] and deferred sequences
(pn), (qn) of non-negative integers with pn < qn for any n ∈ N,
lim

n→∞
(qn − pn) = ∞. We also introduced the space Dωα(Δm

v , f, X) of

all strongly deferred (Δm
v , f)-summable sequences of order α in the

normed space (X, q). Inclusion relations between spaces DSα(Δm
v , f, X)

and Dωα(Δm
v , f, X) are established under certain conditions.

Keywords: Statistical convergence · Modulus function · Difference
sequence space · Deferred sequences

1 Introduction

In 1951, Steinhaus [22] and Fast [8] introduced the idea of statistical convergence.
Later on, Schoenberg [19] reintroduced this concept independently in 1959. After
the work of Fridy [10], statistical convergence has been extensively discussed by
many researchers in summability theory till now. Statistical convergence depends
upon the natural density of subsets of N. Niven and Zuckerman [17] defined
natural density of a subset K of N, which is given by

δ(K) = lim
n→∞

1
n

|K(n)|, provided limit exists,

where K(n) = {k ∈ K : k � n} and |K(n)| denotes the cardinality of set K(n).
A sequence x = (xk) is said to be statistically convergent to l if for each

ε > 0,

δ({k ∈ N : |xk − l| � ε}) = 0, i.e., lim
n→∞

1
n

|{k � n : |xk − l| � ε}| = 0.

Çolak [4] introduced the concept of statistical convergence of order α as follows:
A sequence x = (xk) is said to be statistically convergent of order α to l if

for every ε > 0,

lim
n→∞

1
nα

|{k � n : |xk − l| � ε}| = 0.
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Kizmaz [12] introduced difference operator Δ for sequence spaces l∞, c and c0.
Et and Çolak [5] generalized difference operator Δ by introducing mth-order
difference operator Δm for l∞, c, c0. Further, Et and Esi [6] generalized space
X(Δm) by taking sequence v = (vk) of non-zero complex numbers. They defined
sequence space X(Δm

v ) by

X(Δm
v ) = {x = (xk) ∈ w : Δm

v x ∈ X} for X = l∞, c and c0,

where Δ0
vxk = (vkxk) and Δm

v xk =
m∑

i=0

(−1)i

(
m

i

)
vk+ixk+i, for m � 1.

Nakano [16] was introduced the idea of modulus function in 1953. Ruckle [18]
defined a modulus function f is a function from [0,∞) to [0,∞) such that
(i) f(x) = 0 if and only if x = 0,
(ii) f(x + y) � f(x) + f(y),
(iii) f is increasing and
(iv) f is continuous from the right at 0.

In 2014, Aizpuru et al. [2] introduced f -statistical convergence in the normed
space by introducing f -density of a subset K of N with the help of unbounded
modulus function f , which is defined as

δf (K) = lim
n→∞

f(|K(n)|)
f(n)

, provided limit exists.

Obviously, f -density for every finite set is zero.
Let (xk) be a sequence in the normed space (X, q). Then the sequence (xk)

is said to be f -statistically convergent to l in X if for each ε > 0,

δf ({k ∈ N : q(xk − l) � ε}) = 0.

In 1932, Agnew [1] introduced the concept of deferred Cesáro mean of real
numbers as follows:

(Dp,qx)n =
1

(qn − pn)

qn∑

pn+1

xk,

where (pn) and (qn) are sequences of non-negative integers with pn < qn, for any
n ∈ N and lim

n→∞ qn = ∞.

In 2016, Küçükaslan and Yilmaztürk [13] used deferred sequences to define
deferred statistical convergence as follows:

A sequence x = (xk) is said to be deferred statistically convergent to l if for
every ε > 0,

lim
n→∞

1
(qn − pn)

|{pn < k � qn : |xk − l| � ε}| = 0.

Later on statistical convergence studied in ([3,7,9–11,21,23]) by using modulus
function, difference operator and deferred sequences.

This paper introduced the concept of deferred (Δm
v , f)-statistical convergence

and strongly deferred (Δm
v , f)-summable sequences of order α in the normed

space. The study of these concepts unifies most of the earlier work related to
f -statistical convergence and deferred statistical convergence.
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1.1 Introduced Definitions

We assume that f is an unbounded modulus function, (X, q) is a normed space,
m is a non-negative integer, v = (vk) is a fixed sequence of non-zero complex
numbers and (pn), (qn) are sequences of non-negative integers with pn < qn for
any n ∈ N and lim

n→∞(qn − pn) = ∞, and α, β ∈ (0, 1], where α � β. We define

W (X) = {x = (xk) : xk ∈ X for each k ∈ N}.

The f -deferred density of order α for a subset K of N is defined by

δf,α
p,q (K) = lim

n→∞
1

f((qn − pn)α)
f(|{k ∈ K : pn < k � qn}|), provided limit exists.

Obviously, f -deferred density of order α is zero for every finite set.
If we take f(x) = x, α = 1, pn = 0 for all n and qn = n, then f -deferred

density of order α reduced to natural density. Again, if α = 1, pn = 0 for all n
and qn = n, then we get f -density given by Aizpuru et al. [2].

Definition 11. A sequence x = (xk) in W (X) is called deferred (Δm
v , f)-

statistically convergent of order α to l in X if for every ε > 0,

lim
n→∞

1
f((qn − pn)α)

f(|{pn < k � qn : q(Δm
v xk − l) � ε}|) = 0.

In this case, we write DSα(Δm
v , f)-lim xk = l. The set of all deferred (Δm, f)-

statistically convergent sequences of order α is denoted by DSα(Δm
v , f,X). For

pn = 0 and qn = n, we denotes Sα(Δm
v , f,X) for set DSα(Δm

v , f,X). Also,
we write DSα(Δm

v ,X) and DS(Δm
v , f,X) in place of set DSα(Δm

v , f,X) for
f(x) = x and α = 1, respectively.

Definition 12. A sequence x = (xk) in W (X) is called deferred (Δm
v , f)-

summable of order α to l in X if

lim
n→∞

1
f((qn − pn)α)

qn∑

pn+1

f (q(Δm
v xk − l)) = 0.

In this case, we write Dωα(Δm
v , f)-lim xk = l. The set of all deferred (Δm

v , f)-
summable sequences of order α is denoted by Dωα(Δm

v , f,X). For pn = 0
and qn = n, we denotes ωα(Δm

v , f,X) for set Dωα(Δm
v , f,X). Also, we write

Dωα(Δm
v ,X) and Dω(Δm

v , f,X) in place of set Dωα(Δm
v , f,X) for f(x) = x

and α = 1, respectively.

1.2 Particular Cases

By taking particular values of X, pn, qn, f , (vk), m and α, we can obtain some
well known previous results in this area. Some of them are as follows:
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(i) If X = R, f(x) = x, m = 0, α = 1, vk = 1 for all k, qn = n and pn = 0 for
all n, then we obtained results given by Fridy [10].

(ii) If X = R, f(x) = x, m = 0, α = 1, vk = 1 for all k, qn = n and
pn = n − λn, where (λn) is a non-decreasing sequence of positive integers
tending to infinity with λ0 = 1 and λn+1 � λn + 1, then we get results
discussed by Mursaleen [15].

(iii) For X = R, f(x) = x, m = 0, vk = 1 for all k, qn = kn, pn = kn−1, where
(kn) is lacunary sequence of non-negative integers, we obtained results given
by Şengül and Et [20].

(iv) For X = R, m = 0, vk = 1 for all k, qn = n and pn = 0 for all n, results in
this paper coincide with results given by Bhardwaj and Dhawan [3].

(v) If X = R, f(x) = x, α = 1, m = 0, vk = 1 for all k, then we get results
given by Küçükaslan and Yilmaztürk [13].

(vi) For X = R, qn = n and pn = 0 for all n, results in this paper coincide with
results given by Et and Gidemen [7].

2 Main Results

Theorem 21. Let x = (xk) and y = (yk) be any two sequences in W (X).

(i) If DSα(Δm
v , f)-lim xk = x0 and c ∈ C, then DSα(Δm

v , f)-lim cxk = cx0.
(ii) If DSα(Δm

v , f)-lim xk = x0 and DSα(Δm
v , f)-lim yk = y0, then

DSα(Δm
v , f)-lim(xk + yk) = x0 + y0.

Proof. The proof of this theorem is simple. So, we can omit it.

2.1 Inclusion Relations on DSα(Δm
v , f, X) and Dωα(Δm

v , f, X)

Theorem 22. The following inclusion relations hold:

(i) DSα(Δm
v , f,X) ⊆ DSβ(Δm

v , f,X),
(ii) Dωα(Δm

v , f,X) ⊆ Dωβ(Δm
v , f,X).

Proof. (i) By increasing property of modulus function, we have

f((qn − pn)α) � f((qn − pn)β), for any n ∈ N.

Now, for any n ∈ N

1

f((qn − pn)β)
f(|{pn < k � qn : q(Δ

m
v xk − l) � ε}|)

� 1

f((qn − pn)α)
f(|{pn < k � qn : q(Δ

m
v xk − l) � ε}|).

Taking limit n → ∞ on both sides, we get the required inclusion.
(ii) Inclusion follows by inequality

1
f((qn − pn)β)

qn∑

pn+1

f (q(Δm
v xk − l)) � 1

f((qn − pn)α)

qn∑

pn+1

f (q(Δm
v xk − l)) .
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Corollary 21. (i) DSα(Δm
v , f,X) ⊆ DS(Δm

v , f,X),
(ii) Dωα(Δm

v , f,X) ⊆ Dω(Δm
v , f,X).

Theorem 23. Let
(

f(qα
n)

f((qn − pn)α)

)
be a bounded sequence. Then

(i) Sα(Δm
v , f,X) ⊆ DSβ(Δm

v , f,X),
(ii) ωα(Δm

v , f,X) ⊆ Dωβ(Δm
v , f,X).

Proof. (i) Let x ∈ Sα(Δm
v , f,X). Then

lim
n→∞

1

f(nα)
f(|{k � n : q(Δ

m
v xk − l) � ε}|) = 0 ⇒ lim

n→∞
1

f(qα
n )

f(|{k � qn : q(Δ
m
v xk − l) � ε}|) = 0.

Now, for any ε > 0, we have

|{pn < k � qn : q(Δm
v xk − l) � ε}| � |{k � qn : q(Δm

v xk − l) � ε}| .
As modulus function f is increasing, so

f
(∣
∣{pn < k � qn : q(Δ

m
v xk − l) � ε

}∣
∣) � f

(∣
∣{k � qn : q(Δ

m
v xk − l) � ε

}∣
∣)

⇒ 1

f((qn − pn)β)
f

(∣
∣{pn < k � qn : q(Δ

m
v xk − l) � ε

}∣
∣)

� f(qα
n)

f((qn − pn)α)

1

f(qα
n)

f
(∣
∣{k � qn : q(Δ

m
v xk − l) � ε

}∣
∣) .

By taking limit n → ∞ and using given assumption, inclusion follows.
(ii) Let x ∈ ωα(Δm

v , f,X). Then

lim
n→∞

1
f(nα)

n∑

k=1

f (q(Δm
v xk − l)) = 0 ⇒ lim

n→∞
1

f(qα
n)

qn∑

k=1

f (q(Δm
v xk − l)) = 0.

Now, for any n in N, we can write

1

f((qn − pn)β)

qn∑

pn+1

f (q(Δm
v xk − l)) � 1

f((qn − pn)β)

qn∑

k=1

f (q(Δm
v xk − l))

� f(qα
n)

f((qn − pn)α)

1

f(qα
n)

qn∑

k=1

f (q(Δm
v xk − l)) .

Taking limit n → ∞ and using given assumption, we get the required
inclusion.

Corollary 22. Let
(

f(qα
n)

f((qn − pn)α)

)
be a bounded sequence. Then

(i) Sα(Δm
v , f,X) ⊆ DSα(Δm

v , f,X),
(ii) ωα(Δm

v , f,X) ⊆ Dωα(Δm
v , f,X).

Theorem 24. For any unbounded modulus function f , DSα(Δm
v , f,X) ⊆

DSβ(Δm
v ,X).
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Proof. Let x ∈ DSα(Δm
v , f,X). Then by definition of limit, for every p ∈ N,

there exists positive integer n0 such that whenever n � n0, we have

f(|{pn < k � qn : q(Δm
v xk − l) � ε}|) � 1

p
f((qn − pn)α) =

1
p
f

(
p(qn − pn)α

p

)
.

By using sub-additive property of modulus function f , we get

f(|{pn < k � qn : q(Δm
v xk − l) � ε}|) � 1

p
pf

(
(qn − pn)α

p

)

⇒ |{pn < k � qn : q(Δm
v xk − l) � ε}| � (qn − pn)α

p
, as f is increasing

⇒ 1

(qn − pn)β
|{pn < k � qn : q(Δm

v xk − l) � ε}| � 1

p
.

Taking limit n → ∞ on both sides, we get the required inclusion.

Corollary 23. DSα(Δm
v , f,X) ⊆ DSα(Δm

v ,X).

Result 21. [14] For any modulus function f , lim
t→∞

f(t)
t

= inf
{

f(t)
t

: t > 0
}

.

Theorem 25. Let modulus function f be such that lim
n→∞

f(t)
t

> 0. Then

Dωα(Δm
v , f,X) ⊆ Dωβ(Δm

v ,X).

Proof. Let lim
t→∞

[
f(t)

t

]
= γ. Then γ = inf

{
f(t)

t : t > 0
}

. This means that t �

γ−1f(t) for all t � 0. Let x ∈ Dωα(Δm
v , f,X). Now, for any n in N, we can write

1
f((qn − pn)β)

qn∑

pn+1

q(Δm
v xk − l) � γ−1

f((qn − pn)α)

qn∑

pn+1

f(q(Δm
v xk − l)).

Taking limit n → ∞ on both sides, we get the required inclusion.

Corollary 24. Under the assumption of Theorem 25,

Dωα(Δm
v , f,X) ⊆ Dωα(Δm

v ,X).

2.2 Relationship Between DSα(Δm
v , f, X) and Dωα(Δm

v , f, X)

Theorem 26. Let f be an unbounded modulus function satisfying f(xy) �
cf(x)f(y) for some positive constant c. Then Dωα(Δm

v , f,X) ⊆ DSβ(Δm
v , f,X).
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Proof. Let x ∈ Dωα(Δm
v , f,X) and ε > 0. By using sub-additive and increasing

property of modulus function f , we can write

1

f((qn − pn)α)

qn∑

pn+1

f
(
q(Δ

m
v xk − l)

) � 1

f((qn − pn)α)
f

⎛

⎝
qn∑

pn+1

q(Δ
m
v xk − l)

⎞

⎠

� 1

f((qn − pn)β)
f

⎛

⎜
⎜
⎜
⎝

qn∑

pn+1
q(Δm

v xk−l)�ε

q(Δ
m
v xk − l)

⎞

⎟
⎟
⎟
⎠

� 1

f((qn − pn)β)
f

(∣
∣{pn < k � qn : q(Δ

m
v xk − l) � ε

}∣
∣ ε

)

� c

f((qn − pn)β)
f

(∣∣{pn < k � qn : q(Δ
m
v xk − l) � ε

}∣∣) f(ε)

Taking limit n → ∞ on both sides, we have x ∈ DSβ(Δm
v , f,X) and hence

inclusion follows.

Corollary 25. Under the assumption of Theorem 26,

Dωα(Δm
v , f,X) ⊆ DSα(Δm

v , f,X).

Theorem 27. Let
(

(qn − pn)
f((qn − pn)α)

)
be a bounded sequence and lim

t→∞
f(t)

t
> 0.

Then

DSα(Δm
v , f,X) ∩ l∞(Δm

v ,X) ⊆ Dωβ(Δm
v , f,X) ∩ l∞(Δm

v ,X),

where l∞(Δm
v ,X) = {x = (xk) ∈ W (X) : sup

k
q(Δm

v xk) < ∞}.

Proof. Let lim
t→∞

f(t)
t

= γ. Then γ = inf
{

f(t)
t : t > 0

}
by Result 21. This means

that t � γ−1f(t) for all t � 0. Let x ∈ DSα(Δm
v , f,X) ∩ l∞(Δm

v ,X). Then
there exists M > 0 such that q(Δm

v xk − l) � M for all k ∈ N. For each ε > 0,
suppose Σ1 and Σ2 denote the sums over pn < k � qn, q(Δm

v xk − l) � ε and
pn < k � qn, q(Δm

v xk − l) < ε, respectively. Now,
1

f((qn − pn)β)

qn∑

pn+1

f
(
q(Δ

m
v xk − l)

) � 1

f((qn − pn)α)

(
Σ1f

(
q(Δ

m
v xk − l)

)
+ Σ2f

(
q(Δ

m
v xk − l)

))

� 1

f((qn − pn)α)
Σ1f(M) +

1

f((qn − pn)α)
Σ2f(ε)

� 1

f((qn − pn)α)

∣
∣{pn < k � qn : q(Δ

m
v xk − l) � ε

}∣
∣ f(M)

+
(qn − pn)

f((qn − pn)α)
f(ε)

� γ−1

f((qn − pn)α)
f

(∣∣{pn < k � qn : q(Δ
m
v xk − l) � ε

}∣∣) f(M)

+
(qn − pn)

f((qn − pn)α)
f(ε).

Taking limit n → ∞ and using sequence
(

(qn−pn)
f((qn−pn)α)

)
is bounded, inclusion

follows.

Corollary 26. Under assumptions of Theorem 27,

DSα(Δm
v , f,X) ∩ l∞(Δm

v ,X) ⊆ Dωα(Δm
v , f,X) ∩ l∞(Δm

v ,X).
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3 Comparison of Inclusion Relations Between Two
Deferred Sequences

In this section, we assume (p′
n) and (q′

n) are sequences of non-negative integers
such that pn � p′

n < q′
n � qn and lim

n→∞(q′
n − p′

n) = ∞ in addition to previous
assumptions.

Theorem 31. Let {k : pn < k � p′
n} and {k : q′

n < k � qn} be finite sets for
any n ∈ N. Then

D′Sα(Δm
v , f,X) ⊆ DSβ(Δm

v , f,X).

Proof. Let x ∈ D′Sα(Δm
v , f,X). For every ε > 0 and any n ∈ N, we have

{pn < k � qn : q(Δm
v xk − l) � ε} = {pn < k � p′

n : q(Δm
v xk − l) � ε}

∪ {p′
n < k � q′

n : q(Δm
v xk − l) � ε}

∪ {q′
n < k � qn : q(Δm

v xk − l) � ε} .

By using sub-additive property of modulus function f , we have

f (|{pn < k � qn : q(Δm
v xk − l) � ε}|) � f (|{pn < k � p′

n : q(Δm
v xk − l) � ε}|)

+f (|{p′
n < k � q′

n : q(Δm
v xk − l) � ε}|)

+f (|{q′
n < k � qn : q(Δm

v xk − l) � ε}|) .

By given condition on (p′
n) and (q′

n), we have (qn − pn) � (q′
n − p′

n), which
implies (qn −pn)β � (q′

n −p′
n)α, and by increasing property of f , f((qn −pn)β) �

f((q′
n − p′

n)α) for any n ∈ N. Now,

1

f((qn − pn)β)
f

(∣
∣{pn < k � qn : q(Δ

m
v xk − l) � ε

}∣
∣)

� 1

f((q′
n − p′

n)α)
f

(∣
∣∣
{

pn < k � p
′
n : q(Δ

m
v xk − l) � ε

}∣
∣∣
)

+
1

f((q′
n − p′

n)α)
f

(∣∣
∣
{

p
′
n < k � q

′
n : q(Δ

m
v xk − l) � ε

}∣∣
∣
)

+
1

f((q′
n − p′

n)α)
f

(∣∣
∣
{

q
′
n < k � qn : q(Δ

m
v xk − l) � ε

}∣∣
∣
)

.

Taking limit n → ∞ on both sides and using finiteness of sets {k : pn < k � p′
n}

and {k : q′
n < k � qn}, inclusion follows.

Corollary 31. Under the assumption of Theorem 31,

D′Sα(Δm
v , f,X) ⊆ DSα(Δm

v , f,X).

Theorem 32. Let {k : pn < k � p′
n} and {k : q′

n < k � qn} be finite sets for
any n ∈ N. Then

D′ωα(Δm
v , f,X) ∩ l∞(Δm

v ,X) ⊆ Dωβ(Δm
v , f,X) ∩ l∞(Δm

v ,X).
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Proof. For any x ∈ D′ωα(Δm
v , f,X)∩ l∞(Δm

v ,X), there exists some M > 0 such
that q(Δm

v xk − l) � M for all k ∈ N. This implies f (q(Δm
v xk − l)) � f(M) for

all k ∈ N.
By using inequality f((qn − pn)β) � f((q′

n − p′
n)α), we can write

1

f((qn − pn)β)

qn∑

pn+1
f

(
q(Δ

m
v xk − l)

)
�

1

f((q′
n − p′

n)α)

qn∑

pn+1
f

(
q(Δ

m
v xk − l)

)

�
1

f((q′
n − p′

n)α)

⎡

⎢
⎢
⎣

p′
n∑

pn+1
f(M) +

q′
n∑

p′
n+1

f
(

q(Δ
m
v xk − l)

)
+

qn∑

q′
n+1

f(M)

⎤

⎥
⎥
⎦

=
1

f((q′
n − p′

n)α)

q′
n∑

p′
n+1

f
(

q(Δ
m
v xk − l)

)

+
1

f((q′
n − p′

n)α)

p′
n∑

pn+1
f(M) +

1

f((q′
n − p′

n)α)

qn∑

q′
n+1

f(M).

Taking limit n → ∞ on both sides and using finiteness of sets {k : pn < k � p′
n}

and {k : q′
n < k � qn}, we get the required inclusion.

Corollary 32. Under the assumption of Theorem 32,

D′ωα(Δm
v , f,X) ∩ l∞(Δm

v ,X) ⊆ Dωα(Δm
v , f,X) ∩ l∞(Δm

v ,X).

Theorem 33. Suppose (p′
n) and (q′

n) are sequences of non-negative integers

such that sequence
(

f((qn − pn)α)
f((q′

n − p′
n)α)

)
is bounded. Then DSα(Δm

v , f,X) ⊆
D′Sβ(Δm

v , f,X).

Proof. Let x ∈ DSα(Δm
v , f,X). For every ε > 0, it is clear that

{p′
n < k � q′

n : q(Δm
v xk − l) � ε} ⊆ {pn < k � qn : q(Δm

v xk − l) � ε} .

By using increasing property of modulus function f , we have

f (|{p′
n < k � q′

n : q(Δm
v xk − l) � ε}|) � f (|{pn < k � qn : q(Δm

v xk − l) � ε}|) .

Thus, for every ε > 0 and for any n in N

1

f((q′
n − p′

n)β)
f

(∣∣{p′
n < k � q′

n : q(Δm
v xk − l) � ε

}∣∣)

� f((qn − pn)α)

f((q′
n − p′

n)α)

1

f((qn − pn)α)
f (|{pn < k � qn : q(Δm

v xk − l) � ε}|) .

Taking limit n → ∞ on both sides and using boundedness of sequence(
f((qn − pn)α)
f((q′

n − p′
n)α)

)
, we get the required inclusion.

Corollary 33. Under the assumption of Theorem 33,

DSα(Δm
v , f,X) ⊆ D′Sα(Δm

v , f,X).
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Theorem 34. Suppose (p′
n) and (q′

n) are sequences of non-negative integers

such that sequence
(

f((qn − pn)α)
f((q′

n − p′
n)α)

)
is bounded. Then Dωα(Δm

v , f,X) ⊆
D′ωβ(Δm

v , f,X).

Proof. Let x ∈ Dωα(Δm
v , f,X). For any n ∈ N, we can write

q′
n∑

p′
n+1

f (q(Δm
v xk − l)) �

qn∑

pn+1

f (q(Δm
v xk − l))

⇒ 1

f((q′
n − p′

n)
β)

q′
n∑

p′
n+1

f (q(Δm
v xk − l)) � f((qn − pn)α)

f((q′
n − p′

n)
α)

1

f((qn − pn)α)

qn∑

pn+1

f (q(Δm
v xk − l)) .

Taking limit n → ∞ on both sides and using given assumption, inclusion follows.

Corollary 34. Under the assumption of Theorem 34,

Dωα(Δm
v , f,X) ⊆ D′ωα(Δm

v , f,X).
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Function
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Abstract. The goal of this paper is to investigate some novel and feasible frac-
tional integrals based on the two operators introduced by Marichev-Saigo in
1974, including the product of S function, H-function and Aleph function with
mμ(mυ + hυ) as general argument. The fractional integrals established here
have very common characteristics. Specializing the parameters of the H-function,
Aleph and S functions can produce various attractive results. Our findings thus
offer remarkable extensions and unifications of a variety of previously known and
brand-new findings. Few instances have also been registered.

Keywords: S-Function · Fractional Calculus · Aleph Function · H-function ·
H-Function

1 Introduction

Saxena and Daiya [23] introduced the S-function and investigated its basic aspects
and characteristics. According to Prabhakar [17], the S-function is an extension of the
Generalized Mittag-Leffler function, which was developed by Srivastava and Tomovski
[30].

The definition of S function is as follows:

(1)

here and u <

v + 1.
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Inayat–Hussain introduced the H-function which is a generalization of H-function
[12, 13]. The H-function is represented in following way:

(2)

(3)

More details of the H-function and its convergence conditions can be studied in the
papers [5, 12, 13].

The series representation of H[z] function [12, p. 271, Eq. (6)] is as follows:

(4)

(5)

and

(6)

The new generalization of the I-function [19, 30] and the H-function [4, 10, 31] is the
very well known Aleph-function. In Mellin –Barnes type integral, the Aleph-function is
defined in the following terms [7, 14, 32]:

ℵ[z] = ℵM,N
Pi,Qi,τi;r[z] = ℵM,N

Pi,Qi,τi;r
[
z

∣∣∣(aj,Aj)1,N,..., [τi(aj,Aj)]N+1,Pi
(bj,Bj)1,M ,..., [τi(bj,Bj)]M+1,Qi

]

= 1

2πω

∫

L

�(ξ) z−ξ dξ (7)

for all z �= 0, where ω = √−1 and

�(ξ)

M
�
j=1

�(bj + Bjξ)
N
�
j=1

�(1 − aj − Aj ξ)

r∑
i=1

τi
Pi
�

j=N+1
�(aji + Ajiξ)

Qi
�

j=M+1
�(1 − bji − Bji ξ)

(8)
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The path of integration L = Liϒ∞, ϒ ∈ R extends from ϒ − i∞ to ϒ + i∞. The
poles of�(bj+Bjξ), j = 1,M.Whichdonot coincide to the poles of�(1−aj−Ajξ), j =
1,N are taken as simple poles. The parameters pi, qi are non-negative integers 0≤N≤ Pi,
1 ≤ M ≤ Qi, τi > 0 for i = 1,r. The parameters Aj,Bj,Aji,Bji > 0 and aj, bj, aji, bji ∈
C. The product in (8) is interpreted as unity. The existence conditions for the integral (7)
are given as:

θ	 > 0, | arg(z) | <
π

2
θ	 , 	 = 1,r; (9)

θ	 > 0, |arg (z)| <
π

2
θ	 and Re{ζ	} + 1 < 0, (10)

where

θ	 =
N∑
j=1

Aj +
M∑
j=1

Bj − τ	

⎛
⎝

P	∑
j=N+1

Aj	 +
Q	∑

j=M+1

Bj	

⎞
⎠ (11)

ζ	 =
M∑
j=1

bj −
N∑
j=1

aj + τ	

⎛
⎝

Q	∑
j=M+1

bj	 −
P	∑

j=N+1

aj	

⎞
⎠ + 1

2
(P	 − Q	), 	 = 1, r, (12)

Remark I: Taking τi = 1, i = 1,…, r, in (2), the I− function is obtained which was
defined by Saxena [27] in the following manner:

I[Y] = Im,n
pi,qi;r[Y] = Im,n

pi,qi;r
[
Y

∣∣∣∣
[(ajαj)1,n], [(ajiαji)1+n,pi]
[(bjβj)1,m], [(bjiβji)1+m,qi]

]

= 1

2πi

∫

L
θ(t)ytdt, (13)

For the integral (13), the valid conditions are given as in (9)–(12) and the kernel θm,n
pi,qi;r(t)

is defined in (8)

Remark II: Putting r = 1 and τ1 = τ2 = ... = τ3 = 1, then ℵ-function reduces to the
known H-function [9, 11, 31] given by C. Fox.

HM,N
P,Q [Z] = HM,N

P,Q

[
Z

∣∣∣∣
(aj, αj)1,P
(bj, β j)1,Q

]
= 1

2π i

∫

L

(s)Zsds (14)

where i = √−1, Z �= 0 and

(s) =
M
�
j=1

�(bj − βj s)
N
�
j=1

�(1 − aj +αj s)

P
�

j=N+1
�(aj − αj s)

Q
�

j=M+1
�(1 − bj + βj s)
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Remark III: The fractional integration of Aleph function is given by Saxena and
Pogány [24]. The papers of Saxena and Pogány [24, 25], Jain [3, 15] have full explanation
of Aleph function.

The Aleph function series representation is given in following manner:

(15)


(
ηh,k

) =
∏M

j=1 �
(
bj + Bjηh,k

)∏N
j=1 �

(
1 − aj − Ajηh,k

)
∑r

i=1 i

[∏qi
j=M+1 �

(
1 − bji − Bjiηh,k

) ∏
�i
j=N+1 �

(
aji + Ajiηh,k

)] (16)

and

ηh,k = bh + k

Bh
, pi < qi, |z| < 1

2 Fractional Integrals

The Marichev-Saigo-Maeda fractional integral operators defined by Marichev [1, 16]
for α, α′, β, β′,η ∈ C and y > 0,Re(η) > 0 are defined as follows:

Iα,α′,β,β′,η
0+

[
f(y)

] = y−α

�(η)

y∫

0

(y − t)η−1t−α′F3

(
α, α′, β, β′η; 1 − t

y
; 1 − y

t

)
f(t)dt

(17)

and

Iα,α′,β,β′,η
0−

[
f(y)

] = y−α′

�(η)

y∫

0

(t − y)η−1t−αF3

(
α, α′, β, β′η; 1 − y

t
; 1 − t

y

)
f(t)dt.

(18)

where F3 is Appell function.
The generalized Marichev-Saigo-Maeda fractional integral operator and fractional

derivative operator reduce to the Saigo fractional integral and derivative operators involv-
ing the hypergeometric function 2F1 in their kernel, which was defined by Saigo [21]
by replacing the parameter by α by α + β, and setting α′ = β′ = 0, β = −η and η = α

in Eq. (17) and (18).
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Takeα, β andη and let x ∈ R+ (0, ∞) the fractional integral (Re(α) > 0) and deriva-
tive (Re(α) > 0) of the first kind of a function f(y) on R+ are defined correspondingly
[6, 20, 21] in the following manner

(19)

The second kind of fractional integral (Re(α)) > 0 and derivatives (Re(α) < 0) are
given

(20)

The use of the next two theorems is demonstrated in the continuation.

Theorem 1: If Re(c) > 0, μεa,a′,b,b′ and h is a positive number and υ = 1, 2, 3, . . .
and σ,λ1,λ2,φ1,φ2 are complex numbers, then

(21)
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Proof: First, we compute the fractional integral operator by (17) to obtain Theorem 1
for

(22)

Expressing S function by (1) and defining the common arguments (mυ + hυ)−σ

argument in series form by the formula

(
mυ + hυ

)−σ = h−συ
∑∞

δ=0

(σ)δ

δ!
(−mυ

hυ

)δ

(23)

when arranging the order of sum and integral, it is allowed because the process
involves absolute convergence, and the integral is calculated using the following result

y∫

0

(y − x)C−1xρ−1
2F1

[
A,B,C;

(
1 − x

y

)]
dx = xρ+C−1�(C)�(ρ)�(ρ + C − A − B)

�(ρ + C − A�(ρ + C − B

(24)

Then, with some simplification and using the Gauss theorem and the multiplication
formula from (Rainville[18], Theo.18), we arrive at the desired consequence stated in
(21).

Remark: 1 Replacing a by a + b, then setting a′ = b′ = 0, β = −c and c = a, we get
(21) in the following manner

(25)
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Proof: For result (25), we apply the method used in (21).

Theorem 2. If Re(c) > 0, μεa,a′,b,b′ and h is a positive number and υ = 1, 2, 3, . . .
and σ,λ1,λ2,φ1,φ2 are complex number, then

(26)

Proof: To establish Theorem 2, first we compute the fractional integral operator by (18)
for

(27)
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Now expand the S-function and explain (mυ + hυ)−σ as a general argument in series
form by utilize this method

(
mυ + hυ

)−σ = h−συ
∑∞

δ=0

(σ)δ

δ!
(−mυ

hυ

)δ

Then interchanging the order of summation and integrations allowed by absolute
convergence, the integral is evaluated using the below formula:

∞∫

y

(t − y)C−1tρ−1
2F1

[
A,B,C;

(
1 − y

t

)]
dt = yρ+C−1 �(C)�(1 − ρ − C)�(1 − ρ − A − B)

�(1 − ρ − A�(1 − ρ − B)
(28)

Applying the relation

(a)−n = (−1)n

(1 − a)n
(29)

We achieve the desired outcomes by applying the Gauss theorem and the multipli-
cation formula [8, 18], along with some simplification.

Remark 2: Replace a by a + b, then setting a′ = b′ = 0, β = −c and c = a then we
get (26) in this manner.

(30)

Proof: The same procedure (26) is used to get the outcome (30).
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3 The Fractional Integral Formulae

Taking

(31)

Then we get

(32)

where

(33)

The conditions for (32) and (33) are given below:
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is a positive
number and σ,λ1,λ2,φ1,φ2, ρ are complex numbers, υ = 1, 2, 3, . . . n are arbitrary
positive integers.

Proof: The calculation used in Theorem 1 and Theorem 2 is applied to get the desired
results (32) and (33).

Remark: 1 Replace a by a + b and setting a′ = b′ = 0, β = −c and c = a, the
Marichev-Saigo-Maeda fractional integral operator reduces to Saigo integral operator

(34)

where

and

(35)
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The conditions for the (34) and (35) are given below:
is a positive num-

ber and σ,λ1,λ2,φ1,φ2, ρ are complex numbers,υ = 1, 2, 3, . . . n are arbitrary positive
integers.

Proof: For results (34) and (35), we apply the method used in (32) and (33).

4 Special Cases of Theorem 1

1(A)
When u = v = 0 the S function reduces to k-Mittag Leffler function defined by Saxena
[26], Theorem 1 and 2 reduces in this manner

(36)

(37)
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1(B)
If τ = K = 1, then the S–function reduces to K–function. The K-function is defined by
Sharma [25], we obtain.

(38)
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1(C)
When τ = γ = K = 1, the S–function reduce to generalized M–series given by Sharma
and Jain [2, 29]

(39)
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5 Special Cases of Theorem 2

When u = v = 0 the S function reduces to k-Mittag Leffler function defined by Saxena
[26], Theorem 1 and 2 reduces in this manner.

2(A)

(40)
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2(B)
If τ = K = 1, then the S–function reduces to K–function. The K-function is defined by
Sharma [28], we obtain

(41)
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2(C)
When τ = γ = K = 1, the S–function reduce to generalized M–series given by Sharma
and Jain [2, 29]

(42)

6 Special Cases of the Fractional Integral Formulae

A.1
When τ = γ = K = 1, the S–function reduce to generalized M–series given by Sharma
and Jain [2, 29] and the Aleph function reduces in H–function then

(43)
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Then the result obtained is

(44)

A.2
When τ = γ = K = 1, the S –function reduce to generalizedM –series given by Sharma
and Jain [2, 29] and the Aleph function reduces in H–function then

(45)

where

and .

7 Conclusions

The product of the S-function, H–function, and Aleph function with a general argument
is just one of the innovative and practical fractional integrals that have been obtained
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based on the two operators described by Marichev-Saigo fractional integral in 1974.
The fractional integrals presented here are extremely broad in nature, and and on spe-
cializing the parameter of S- function, H-function (or product of several such functions)
several results can be obtained from them. As a result, our findings offer fascinating
extensions and unifications of a variety of previously reported findings. Additionally,
some unique examples have been observed. Also Theorem 1 and 2 gives the unified
integral representation of H-function and S-function.
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Abstract. Excellent air quality is crucial for human health, safety, security, and
the environment. Air quality deteriorates as cities and businesses grow, affecting
the existence of numerous species as well as the service life and aesthetic appeal
of materials. Measuring and evaluating surrounding air quality is the first and
most significant step in minimising air toxicity. A large number of water quality
surveillance does not always inform the scientific community about the state of
the air quality, policymakers, regulating bodies, and, most crucially, the general
population. Environmental authorities utilize air quality indexes (AQI) to commu-
nicate and interpret information widely due to the health dangers connected with
poor air quality. An air quality index is a unique number that represents the air’s
quality in terms of its impact on human health. In its most sophisticated version,
it combines multiple contaminant amounts in some mathematical equations to
obtain at a single figure for air quality.

The current study examines into how theCOVID-19 pandemic spread affected
the quality of the surrounding air during the lockdown and recovery phases.
Changes in the air quality index were detected both during phases of the win-
ter period, which lasted from October to January, using data from Adarsh Nagar-
Central Pollution Control Board (CPCB) station. The findings found that the city’s
quality of air had drastically worsened following the lockdown. When compared
to the previous years’ data during the same era, before to the COVID-19 epidemic,
the quantity of particulate and gaseous pollution increased dramatically following
the lockdown period. It was noted that, in addition to PM 10, that was the primary
pollutants in the air quality index previous to the epidemic, PM 2.5, and PM 10
were all present.This study presents a quick summary of the relatively significant
areas that need more focus from lawmakers in order to launch policies targeted at
creating adequate air pollution reduction measures.

Keywords: Air Quality index (AQI) · CPCB · COVID-19 Lockdown · Change
of air quality · Jaipur city

1 Introduction

Metropolitan areas in developing countries are currently facing significant health con-
cerns as a result of increasing globalisation and urbanisation. Urban clean air is one of
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the biggest issues, which is being addressed by both emerging and developed countries.
According to research, poor air quality prevails not just in Asia’s metropolises, but also
smaller cities with a population ranging between 150,000 to 2 million [1]. Numerous
epidemiological studies conducted over the last Vicennial have established air pollution
outside as a cause of several respiratory ailments such as asthma, early death, and cardio-
vascular problems [2]. According to the World Health Organization, inhaling dirty air
claims the lives of seven million people (UN Environment Programme 2018).This has
been named the biggest cause of death in underdeveloped countries. In such instances,
the populace residing near major highways in megacity suffers the most. 80% of people
in cities live in concentrations that are above the World Health Organization’s limits.
Due to manufacturing and consumption activities, ozone (O3), nitrogen oxides (NOx),
carbon monoxide (CO), coarse (PM10), fine (PM2.5), and ultrafine (PM0.1) particle
mass, black carbon, benzene and polycyclic aromatic hydrocarbons are all present in
huge quantities in urban areas [3]. High levels of air pollution have affected human qual-
ity of life and health.Furthermore, studies show that particulate matter and NO2 levels
are greater in cities with increased traffic activity and urban settings [4]. The composi-
tion of particulate matter in the environment is a complicated mix of various chemicals
species and sources. Particulate matter is emitted directly into the atmosphere by both
anthropogenic and natural processes. PM10 and PM2.5 are the two major particulate
pollutants detected worldwide. Because of its greater retention duration and capacity to
enter deep into the lungs and into the circulation, PM2.5 poses a larger health hazard
than PM10 [5].

At the millennium’s turn, developing nations such as India are quickly rapidly devel-
oping andmodernising, resulting in dangerous levels of air pollution akin to theEuropean
Industrial Revolution. Car emissions, industrial pollution, coal burning, forest fires, road
dust, and trash burning have been recognized as the key contributors of air pollution in
the country [6]. As a result, India is presently the world’s sixth most polluted coun-
try. Air pollution from transportation and industry is a severe environmental concern in
urban areas, with traffic outflow accounting for 50% of PM in the urban air. Elevated
concentrations of atmospheric PM2.5 and NO2 have been linked to an increased risk
of heart disease and lung cancer among humans [7].According to the Swiss business
IQAir’s World Air Quality Report, India’s air pollution will worsen in 2021. In 2021,
the Rajasthan district of Bhiwadi was named the world’s most polluted city. Jaipur,
Rajasthan’s capital city, is undergoing commercialization, as are a number of India’s
fastest developing towns, including traffic jams, poor road conditions, inadequate regu-
lation of industrial emissions, population increase, and a reduction in air quality. As a
result, local authorities, decision-makers, and stakeholders face increased scrutiny. This
has emphasized the significance of geographical and temporal assessment of gaseous
and particle pollutants for management and policy action to lower Jaipur’s air pollution
levels.

SARS-CoV-2, a new corona virus, triggered a highly infectious illness epidemic
in December 2019. In reaction to the COVID-19 epidemic, countries all around the
have taken extraordinary steps. In India, the Janta Curfew was introduced on March 22,
2020, accompanied by a lockdown, leading in a notable improvement in the nation’s air
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quality, as evidenced by meteorological department figures and data. One of the mitiga-
tion strategies to prevent the disease’s spread in the population has surfaced: lockdown
enforcement. People were unable to leave their houses due to the lockdown. Trans-
portation systems, comprising road, air, and rail, as well as institutions and industrial
sites, were halted, the exception of critical products and services, and were prolonged
until May 3, 2020.The air quality of urban centers has improved noticeably as significant
anthropogenic activities have been reduced [3]. However, once the limits were eased and
business continued as usual, the previously improved air quality began to degrade more
rapidly. This research looks at the air quality in Jaipur both before and after the shut-
down. Themajor purpose of this studywas to determine how air pollutant concentrations
varied during both stages.

2 Research Methodology

2.1 Study Area

Jaipur district is located in the east-central region of Rajasthan, India, and has an area
of 11,061.44 Km2. It extends within northern latitudes 26° 28′ and 27° 51′ and eastern
longitudes 74° 55′ and 76°15′. It is located on the foothills of the Aravali range, flanked
on three sides by hillocks and a broad stretch of plains. The density of population in Jaipur
district is 470 persons per square kilometre, with a decennial rate of growth of 26.98%,
according to the 2011 census (period 2001–2011). Jaipur, popularly known also as Pink
City, is the biggest city in Rajasthan and is situated in the state’s centre. It is home to
interesting forts and exquisite palaces. The Jaipur district has a semi-arid climate.Winter
ismoderate and enjoyable,withmean temperature ranging from10 to 20 °C and humidity
levels varying from 30 to 65%. The coolest months are December and January, while
temperature vary from 7 to 15 °C [9]. March is a nice month for transitioning from
summer to winter.The Jaipur transportation system is mostly dependent on the road. The
overall traffic in proportion to the traffic limit means that these routes have a significant
volume of traffic during peak hours. Transportation complexity, lane shortage discipline,
limited public transit, as well as an exponential increase in personal forms of mobility.
Two-wheelers represent themost frequentmethod of transportation in Jaipur, accounting
for 70percentage points of all registered vehicles, with four-wheelers placing second at
13%, and buses accounting for only 1% of all registered vehicles [10]. The current study
investigates the influence of the COVID-19 pandemic outbreak on Jaipur’s ambient
air quality during the city’s pre and post lockdown periods.Data was collected at the
Adarsh Nagar-Central Pollution Control Board (CPCB) station http://www.cpcb.nic.in/,
and changes in the air quality index were noted during both periods of the winter season,
which lasted from October to January.

2.2 Air Quality Index

The air quality index (AQI) seems to be a metric that compares pollutant concentrations
to ambient air quality in different regions. It condenses complex data regarding air quality
produced by several contaminants together into decimal statistic (index value), name,

http://www.cpcb.nic.in/
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and colour. The greater theAQI number, theworse the air quality and themore significant
the health risk. The AQI is classified into six levels (Table 1). So each category denotes
a different gravity of the public health issue. Each group has a unique colour as well.
Individuals can immediately tell from the hue whether the air quality in their area has
deteriorated to a harmful degree.

Table 1. Various Category of NAQI (National air quality index, CPCB, October 2020)

Category Range

Excellent 0–50

Tolerable 51–100

Reasonably contaminated 101–200

Dreadful 201–300

Alarming 301–400

Serious 401–500

One of the most important methods for consistently analysing and displaying the
status of the air quality is the AQI. In the form of a sub-index, the aggregate impact of
individual pollutant concentrations in ambient air is typically reported as a single value.
[12]. The AQI index or the sub-index value of the individual pollutant is calculated using
the following equation [13]:

Ii = [{(IGC − ISC)/(BGC − BSC)} ∗ (Cpc − BSC)] + ISC;
where, BGC = Breakpoint concentration greater or equal to given concentration;

BSC = Breakpoint concentration smaller or equal to given concentration; IGC =
AQI value corresponding to BGC; ISC = AQI value corresponding to BSC; Cpc =
Concentration of Pollutant (Table 2).

For e.g., Let the Concentration of PM10 pollutant be 85 µg/m3.
So, value of sub-index Ii = {[100–50]/[100–50]*[85–50]} + 50 = 50.
And finally;
AQI = Max (Ii; (where i = 1, 2, 3,….., n; denotes n pollutants).

3 Result and Discussion

3.1 Particulates, Fine (PM2.5)

PM2.5 particles are able to enter the lungs after passing via the respiratory system.
Exposure to small particles can cause eye, nose, throat, and respiratory issues as well as
coughing, sneezing, nasal congestion, and shortness of breath in the short term. Exposure
to fine particles can also compromise lung function and aggravatemedical disorders such
as asthmatic and cardiovascular disease [22]. As a result, it is deemed critical to explore
this clean air parameter, and the findings of both the pre and post closure phases during
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Table 2. Break Point concentration of various pollutants (Units: µg/m3)

AQI Category Array PM10
24- hr

PM2.5
24- hr

Excellent (0–50) 00–50 0–30

Tolerable(51–100) 51–100 31–60

Reasonably polluted (101–200) 101–250 61–90

Dreadful (201–300) 251–350 91–120

Alarming (301–400) 351–430 121–250

Serious (401–500) >430 >250

the cold weather are shown in Fig. 1. The AQI index in Jaipur city has clearly increased
significantly following the lockdown period as shown in the figure. The maximum value
observed in the pre lockdown phase for the months of October, November, December,
and January was 201,144,113,88, while the maximum value in the post lockdown phase
was 289,356,244,226 observed.
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Fig. 1. AQI index Variations of PM2.5 in pre and post lockdown phases
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Table 3. Shows the average PM2.5 concentration for themonths mentioned, both before and after
the lockdown phases.

Year October November December January

2018 83.32 99.53 76.80 97.06

2019 64.30 78.30 76.41 59.35

2020 103.54 169.33 120.16 130.83

2021 89.74 224.93 173.32 131.96

3.2 Coarse Particulate Matter (PM10)

Coarse particulates, which are typically created by processes such as physical grinding,
road dust, and agricultural practices, deposit preferentially in the upper and bigger air-
ways. These particles can easily pass thru and settle in the airways of the thoracic region.
When these particles are inhaled, they induce lung problems and respiratory difficulties
[23]. Figure 2 depicts the air quality index for PM10 throughout the winter season, both
before and after lockdown. Again for months of October, November, December, and
January, the largest value observed in the pre lockdown period was 233,170,159,127,
whereas the maximum value seen in the post lockdown phase was 182,247,220,142.
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Fig. 2. AQI index Variations of PM10 in pre and post lockdown phases
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Table 4. Shows the average PM10 concentration for the months mentioned, both before and after
the lockdown phases.

Year October November December January

2018 137.38 140.60 128.00 116.25

2019 100.12 111.86 107.64 86.00

2020 119.00 123.16 117.06 104.09

2021 89.87 146.96 116.83 101.03

3.3 Major Pollutant

Because themajor pollutant determines theAQI, it is critical to understand themajor pol-
lutant before and after the pandemic. as illustrated in Fig. 3. Prior to the pandemic, PM10
was the major pollutant, while PM2.5 was the minor pollutant; however, this situation
changed dramatically after the pandemic, resulting in an increase in the concentration
of PM2.5 pollutant.

PM2.5

PM10

Before COVID-19 

PM2.5

PM10

A�er COVID-19 

Fig. 3. Major pollutant during both the phases

4 How to Control Air Pollution?

Air pollution can only be controlled if the general public and the government work
together as a team to improve air quality. We attempted to illustrate the problem in
simple terms so that both parties understand the gravity of the situation and can work
together to improve air quality. During the lockdown period, the environment had time
to heal itself; now, as we return to our normal routine, we should keep the environment in
ourminds as well. It is our responsibility to ensure that the air quality does not deteriorate
further over time.

4.1 Control Measures to be Taken by the Government

• The government organization should develop strong policies and ensure their
implementation.
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• Organizations can use this paper to identify the most affected areas and plan
accordingly.

• Vehicle emissions are themostmajor cause of air pollution.Administrators should plan
to reduce them by promoting public transportation, carpooling, and other alternatives.

• Cleaner and alternate fuels should be introduced like CNG, LPG, etc.
• In the industrial sector, strict rules and regulations should be put on practice.

4.2 Control Measures to be Taken by the General Public

• RRR- Reduce, reuse and recycle, one of the most important rules that everyone must
follow.

• Avoid the burning of garbage, leaves and other items.
• Start using public transport and carpooling
• Avoid the burning of fireworks and spread awareness about their negative conse-
quences

• Practice energy conservation; For ex: Switch off lights when they are not in use

5 Conclusions

Jaipur, Rajasthan’s state city, faced significant air pollution following the COVID epi-
demic. As a result, this study focuses on the airborne pollutants PM10 and PM2.5.
According to the findings, the city’s quality of air has considerably deteriorated follow-
ing the lockdown. The particulate matter concentration increased dramatically following
the lockdown period when compared with previous years’ statistics during the same
timeframe prior towards the COVID-19 epidemic. In contrast to PM 10, that was the
dominant pollutant in the index of air quality previous to the pandemic, it was revealed
that PM 2.5, which is more destructive than PM 10, emerged as a serious worry after
the epidemic.According to the data, the greatest concentration of PM10 was 387 g/m3,
whereas the maximum concentration of PM2.5 was 306 g/m3. Tables 3 and 4 revealed
that, independent of the COVID 19 lockout, the average content of both PM2.5 and
PM10 was greatest in November every year.

Before going into the information and data, it is necessary to understand the pri-
mary cause of pollution. The use of fossil fuels in automobiles, emissions from different
businesses, local dirt, and natural events are the primary sources of increased particulate
matter (PM) concentrations. Furthermore, inversion events restrict the distribution of
particulates and pollution in major cities with just a growing population and more enter-
prises. As a result, the city’s PM concentration increases. We picked the winter months
for our investigation since this phenomena is more widespread during that season. The
worldwide shutdown gave us a once-in-a-lifetime chance to identify the reference levels
of pollution in numerous big centres throughout the world. COVID- Because to the 19
lockdowns, there was reduced energy consumption and decreased oil demand, which
had a substantial impact on industrial and transportation activity. The study’s conclusion
will assist governmental authorities and decision makers in calibrating an acceptable
response plan to reduce Jaipur’s ever-increasing pollution levels. This study will also
aid administrators in allocating funding and deciding priorities.
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Abstract. SARS-COV2 being causative agent owing to the potentially fatal mal-
ady is identified as Coronavirus Disease (COVID-19) which is a paramount issue
for worldwide hygienics. It is hypothesised that this is most likely COVID-19
zoonotic origin due to high aggregate of affected individuals displayed in Wuhan
City’s wt animal (traditional) market in China. Patients who contracted the
COVID-19 infection from another human had to be isolated additionally receiv-
ing a range of therapies. The SEIR model, which has four compartments, and the
E class-a group of exposed and asymptotic individuals—have both been covered
in this article. Here, a disease-free and endemic equilibrium point is formed, and
its local and global stability. Having taken the SEIR epidemic model into consid-
eration we have primarily classified the model into four segments and have started
our investigation by determining the existence of equilibrium points, studying
their local and global stability . Here we have established, stability owing to dis-
ease equilibrium point being R0 < 1 and stability owing to endemic equilib-
rium being R0 > 1. Next validity of model taken into account is investigated
using the real observations (data) within Italy alongwith estimating merit
pertaining to parameters are estimated using the method of least squares so
as to observe the dynamics pertaining to the escalation of the virus among
the population within Italy. The diagrams have been plotted with the data
available and thorough extensive discussions have been carried out thereby
emphasizing on the probable date for infection controlling.

Keywords: Basic reproduction number · COVID-19 · SEIR Model · Global
Stability · Compounded Matrix

Classification: 37N25 · 34C23 · 49J15 · 92D30

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Singh et al. (Eds.): ICMMAAC 2022, LNNS 666, pp. 562–578, 2023.
https://doi.org/10.1007/978-3-031-29959-9_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29959-9_37&domain=pdf
https://doi.org/10.1007/978-3-031-29959-9_37


Mathematical Study on Corona-Virus (COVID-19) 563

1 Introduction

World Health Organization (WHO) was illuminated on 31st December, 2019 that coro-
navirus (SARS-CoV-2)-infected pneumonia (COVID-19) had been found in China’s
city of Wuhan. This pneumonia has since caused major sickness and death in China
[1] as well as elsewhere in the world. As of April 22, 2020 (8:00 PM, GMT+8), there
have been 4632 confirmed COVID-19 contaminations and loss of lives in mainland
China [2]. Coronaviruses are a wide household of viruses which when viewed under
an electron microscope, appear to resemble monarchical crowns and infect both mam-
mals and birds. People who have contracted Corona can exhibit diseases ranging from
the upper respiratory infection to considerably increased serious conditions including
SARS, Middle East respiratory syndrome, alongwith COVID-19 [3]. Novel coronavirus
infection, which started in Wuhan, China, has been reported to have spread to 210 dif-
ferent nations. According to reports dated March 22, 2020, the lethal virus was con-
firmed to be present in 250,000 instances worldwide, and there were 15,000 fatalities
[20]. There were 2,604,718 confirmed cases worldwide as of April 22, 2020, and there
were 181,433 fatalities [5]. The entire world had been severely impacted by COVID-
19, particularly Italy, the USA, Spain, the UK, and many other nations. To control the
COVID-19 outbreak, all the nations have taken exceptional steps, including isolating the
infected individuals, preserving social distance, and ultimately implementing a global
lockdown policy. The COVID-19 constitutes a menace to the entire civilization because
it can cause organ failures, mortality, fever, coughing, shortness of breath, and other
breathing issues. On January 30, 2020, WHO designated the coronavirus infestation a
global well-being crucial state of affairs [4] due to its rapid global expansion. Despite
being a zoonotic illness, it eventually transmits from person to person [12]. Since the
coronavirus was first discovered and identified in 1965, three significant outbreaks have
been linked to newly circulating, highly pathogenic coronaviruses: the SARS upsurge in
mainland China in 2003 [9,11], theMiddle East Respiratory Syndrome (MERS)upsurge
in Saudi Arabia in 2012 [7,8], and the MERS upsurge in South Korea in the year 2015
[6]. In excess of 8000 and 2200 SARS and MERS cases, sequentially, have been con-
firmed as a result of these epidemics [10]. Also during 1976, Ebola virus malady was
foremost located adjacent to Ebola river in Africa which affected human beings
and creatures like monkeys, gorillas, and chimpanzees [18]. Another challeng-
ing problem that the world had faced was HIV infection. In the AIDS examina-
tion, HIV septicity is a burdensome affair.As a result of this infection CD4+ T-
cells are perpetually mutilated within human beings [19]. Just like Corona virus,
a major threat to mankind is smoking which affects different organs of human
body thus developing complications owing to cardiac arrest in addition to lung
carcinoma.For assuring life of human beings several scientists, mathematicians
additionally doctors are making efforts to sway smoking [21].

In present manuscript, a SEIR model has been formulated in order to analyze vari-
ability of COVID-19 considering E− class as the exposed and the asymptotic persons.
We have established system’s positivity and boundedness, local and global stability
owing to disease free equilibrium point. Finally our mathematical model is validated
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considering the infected cases of Italy from Feb 15 to April 04, 2020 and some impor-
tant model parameters are estimated. We gave some predictions using the estimated
parameters about the controlling of malady.

The manuscript has been structured as follows: Within Sect. 2, proposed model is
formulated, model analysis is carried out in Sect. 3 and the validation of model with real
data is established within Sect. 4 and ultimately some interpretations are summarized in
Sect. 5.

2 Model Formulation

Since COVID-19 spreads throughout the world shortly, it is spreading from human to
human when they come closer to one another. The most dangerous characteristic of
COVID-19 is that large number of people in this disease are infected but they are on
a large scale asymptotic. Another important side is the incubation period: the infected
persons are becoming infectious on an average 2–14 days. It is of utmost importance
to dispense additional research based information pertaining to superior apprehension
of the novel coronavirus and to a great extent containment owing to the upsurge. For
transmission of COVID-19 in company of human race and its stability we have put for-
ward SEIR epidemic model. It incorporates various fundamental and enhanced models,
namely SIR, SIS, SEIR, along with others, among which SEIR is a representative exam-
ple of taking evolution period in record. In this model the used four states namely Sus-
ceptible (G), Exposed and asymptotic (H), infectious (Q), and recovered (U). Total
host population is classified into susceptible, exposed and asymptotic, infectious, and
recovered, with the densities, sequentially, denoted by G(t), H(t), Q(t) and U(t). At
time t, M(t) denotes size pertaining to total population where M = G + H + Q + U .
As asymptotic class spreads, we consider that the G class is becoming infectious when
they interact with the H and Q class both. Required mathematical model is professed
as follows:

dG

dt
= B − λ10GH − λ20GQ − μ0G

dH

dt
= λ10GH + λ20GQ − γ0H − μ0H (1)

dQ

dt
= γ0H − k0Q − β0Q − μ0Q

dU

dt
= k0Q − μ0U.

where positive parameter μ0 is natural death rate. β0 is non-negative constant, addi-
tionally represent rate pertaining to malady resulted demise. Variable γ0 denotes rate
of transfer between uncovered and contagious. Recovery rate pertaining to contanta-
gious individuals is preferably represented by k0. λ10, λ20 are the efficient contact
rate in latent, infected and recovered periods. B is constant recruitment of susceptibles.
Henceforth 1

γ0
is mean latent period in addition to 1

k0
being mean infectious period.



Mathematical Study on Corona-Virus (COVID-19) 565

In order to lessen number of parameters we use the transformation

τ = μ0t, λ1 =
λ10

μ0
, λ2 =

λ20

μ0
, k =

k0
μ0

, c =
B

μ0
, β =

β0

μ0

and system (1) reduces to the following form:

dG

dτ
= c − λ1GH − λ2GQ − G

dH

dτ
= λ1GH + λ2GQ − γH − H (2)

dQ

dτ
= γH − kQ − βQ − Q

dU

dτ
= kQ − U.

3 Model Analysis

3.1 Equilibrium Points: Existence and Stability

Size pertaining to total population M(t) can be determined by M(t) = G(t) + H(t) +
Q(t) + U(t), using this in addition to relations in Eq. (2) we have obtained

dM

dτ
= c − M − βQ

It is appropriate in employing H , Q, U and M as variables and swap G by M(t) =
G(t)+H(t)+Q(t)+U(t). Henceforth, we arrive at the following mathematical model

dH

dτ
= c + (λ1H + λ2Q + U)(M − H − Q − U) − δe

dQ

dτ
= γH − ωQ (3)

dU

dτ
= kQ − U

dM

dτ
= c − M − βQ.

where σ = γ + 1, ω = k + 1 + β.
System (3) in addition to system (2) are equivalent thereby permitting to attack (2)

having analyzed system (3). We studied system (3) within closed set from biological
considerations
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T =
{

(H,Q,U,M) ∈ R4
+ : 0 ≤ H + Q + L ≤ M ≤ c =

B

μ0

}

Positive invariance of T can be examined with reference to system (3).
When λ1 = λ2 = 0, it implies exposed & asymptotic and the infected class are

absent then we attain non-homogeneous linear system

dH

dτ
= c − δH

dQ

dτ
= γH − ωQ (4)

dU

dτ
= kQ − U

dM

dτ
= c − M − βQ.

Each solution converges to L0 = (H0, Q0 U0 M0) where

H0 =
c

δ
= H, Q0 =

γc

δω
= Q, U0 =

γkc

δω
= U, M0 =

c(δω − βγ)
δω

= M

An equilibrium with λ1, λ2 > 0 would be expected satisfying E ≥ E0, Q ≥ Q0, U ≥
U0, M ≤ M0. Henceforth we assume right hand side of each of the four differential
equations equal to zero in system (3), thereby achieving the following

c + (λ1H + λ2Q + L)(M − H − Q − U) − δH = 0
γH − ωQ = 0 (5)

kQ − U = 0
c − M − βQ = 0.

In search of equilibria for λ1, λ2 > 0, M = c − βQ is substituted in

c + (λ1H + λ2Q + U)(M − H − Q − U) − δH = 0

hence obtaining the polynomial of degree two

F (Q) = (λ1ω + λ2γ + kγ)δωQ2 + γ[δω − c(λ1ω + λ2γ + kγ)]Q − γ2c = 0

If c = 0 , i = 0 is one root, in addition, second root is given by

Q∗ =
γ[c(λ1ω + λ2γ + kγ) − δω]

(λ1ω + λ2γ + kγ)δω

which is positive if and only if σ = c(λ1ω + λ2γ + kγ) − δω > 0.
Owing to c > 0, the degree two polynomial F (Q) = 0 provides with a positive

alongwith a negative root [13]. Positive root is

Q∗ =
γσ + γ

√
σ2 + 4cδω(λ1ω + λ2γ + kγ)

2δω(λ1ω + λ2γ + kγ)
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with

lim
c→0

Q∗ =
γ(σ+ | σ |)

2δω(λ1ω + λ2γ + kγ)

= 0 if σ < 0

=
γ[c(λ1ω + λ2γ + kγ) − δω]

(λ1ω + λ2γ + kγ)δω
if σ > 0. (6)

Henceforth, threshold estimate is σ = 0. Moreover, basic reproduction number is

R0 =
c(λ1ω + λ2γ + kγ)

δω
.

In epidemiology, the estimated number of cases that are straightforwardly gen-
erated by one case in a community where everyone is vulnerable to infection is
symbolised by the letter R0. A pathogen’s R0 is not a biological constant because
it is influenced by a variety of other variables, including the environment and the
behaviour of the infected population. Epidemiological basic reproduction number
and ecological basic reproduction number are the two threshold quantities that
make up basic reproduction number.

The Jacobian matrix J of the system (3) at any arbitrary point (G, Q, U, M) is
given by

⎡
⎢⎢⎣

j11 j12 j13 j14
j21 j22 j23 j24
j31 j32 j33 j34
j41 j42 j43 j44

⎤
⎥⎥⎦ . (7)

j11 = λ1(M − H − Q − U) − (λ1H + λ2Q + U) − δ, j12 = λ2(M − H − Q −
U) − (λ1H + λ2Q + U), j13 = (M − H − Q − U) − (λ1H + λ2Q + U), j14 = λ1;
j21 = γ, j22 = −ω, j23 = 0, j24 = 0; j31 = 0, j32 = k, j33 = −1, j34 = 0;
j41 = 0, j42 = −β, j43 = 0, j44 = −1.

The system (3) has two equilibrium points L0 = (c, 0, 0, 0) and L∗ =
(H∗, Q∗, U∗, M∗), where

H∗ =
ωQ∗

γ
, U∗ = kQ∗, M∗ = c + βQ∗

and

Q∗ =
γσ + γ

√
σ2 + 4cδω(λ1ω + λ2γ + kγ)

2δω(λ1ω + λ2γ + kγ)

The disease free equilibrium point L0 and endemic equilibrium point L∗ exists for all
parameter values.

Theorem 1. The disease free equilibrium point L0 is locally as well as globally stable
if R0 < 1 and the endemic equilibrium point L∗ is locally stable if R0 > 1.
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Proof. At disease free equilibrium point L0 , Jacobian matrix is given by

J(L0) =

⎡
⎢⎢⎣

λ1c − δ λ2c c λ1

γ −ω 0 0
0 k −1 0
0 −β 0 −1

⎤
⎥⎥⎦

From this Jacobian Matrix it can be easily shown that the disease free equilibrium point
is locally as well as globally stable if

R0 =
c(λ1ω + λ2γ + kγ)

δω
< 1

At the equilibrium point L∗, Jacobian matrix corresponding to system (3) is given by

J(L∗) =

⎡
⎢⎢⎣

(m − c
n )λ1 − n0 − δ (m − c

n0
)λ2 − n0 (m − c

n0
) − n0 n0

γ −ω 0 0
0 k −1 0
0 −β 0 −1

⎤
⎥⎥⎦

with m = δω
λ1ω+λ2γ+kγ , n0 = λ1e

∗ + λ2e
∗ + r∗.

Corresponding to the Jacobian matrix J(L∗), characteristic equation is

(ρ + 1)(ρ3 + a1ρ
2 + a2ρ + a3) = 0 (8)

where

a1 = 1 + ω + n0 + δ +
cλ1

n0
− mλ1

= 1 + ω + n0 +
cλ1

n0
+

δ(γλ2 + kγ)
λ1ω + λ2γ + kγ

a2 = ω + (n0 + δ +
cλ1

n0
)(1 + ω) + γ(n0 +

cλ2

n0
) − mλ1(1 + ω) − γmλ2

= ω + n0(1 + ω) +
cλ1

n0
(1 + ω) +

γcλ2

n0
+

δγ[λ2 + k(1 + ω))
λ1ω + λ2γ + kγ

> 0

a3 = (1 + n0)δω +
kγc

n
+

ωcλ1

n0
+

γcλ2

n0
− m(λ1ω + λ2γ + kγ)

= n0δω +
kγc

n0
+

ωcλ1

n0
+

γcλ2

n0
> 0

It can easily be shown that a1a2 − a3 > 0 for λ1 > 0.
Applying Hurwitz criterion, the endemic equilibrium L∗ becomes locally asymp-

totically stable.
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Global stability pertaining to L∗ can be established by letting β = 0 in system (2)
and we define new parameters

X =
μ0

B
G, Y =

μ0

B
H, Z =

μ0

B
Q, U1 =

μ0

B
U.

Employing change of variables, system (2) takes the form

dX
dτ

= 1 − cλ1XY − cλ2XZ − c U1X − X

dY
dτ

= cλ1XY + cλ2XZ + c U1X − Y (9)

dZ
dτ

= γY − Z − kZ

dU1

dτ
= kZ − U1

where M1(t) = X(t) + Y(t) + Z(t) + U1(t).
Corresponding to total population M1 we have

dM1

dτ
= 1 − M1.

As τ → ∞, M1 → 1 putting X = 1 − Z − Y − U1 in (9) we can achieve limit system

dY
dτ

= c(λ1Y + λ2Z + R1)(1 − Z − Y − U1) − γY − Y

dZ
dτ

= γY − kZ − Z (10)

dU1

dτ
= kZ − U1.

We enable change of variables x = 1 − Z − Y − U1, y = Y, z = Z, then system (11) is
equivalent to the system (10)

dx
dτ

= 1 − x − c[(λ1y − λ2z − (1 − x − y − z)]x

dy
dτ

= c[(λ1y + λ2z + (1 − x − y − z)]x − γy − y (11)

dz
dτ

= γy − z − kz

with
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dM2

dτ
= 1 − M2 − kz.

Obviously, feasible region is

Γ =
{
(x, y, z) ∈ R3

+ : x, y, z ≥ 0, x + y + z = M2 ≤ 1
}

.

Consider L∗ = (x∗, y∗, z∗) be the unique positive equilibrium corresponding to the
system (11). Jacobian matrix J(L∗ = (x∗, y∗, z∗)) is

J(L∗ = (x∗, y∗ z∗)) =

⎡
⎣a11 −cλ1x −cλ2x

a21 cλ1x − γ − 1 cλ2x
0 γ −1 − k

⎤
⎦

where
a11 = −1 + cx + c[(λ1y − λ2z − (1 − y − x − z)]

a21 = cx + c[(λ1y − λ2z − (1 − y − x − z)]

In the following, employing geometrical approach of Li and Muldowney in [14], we
can obtain simple sufficient conditions that disease steady state L∗ is globally asymp-
totically stable. Primarily, a short sketch of this geometrical approach is provided. Let
x → f(x) ∈ Rn be a C1 function for x in an open set D ⊂ Rn. The differential
equation considered is

dx
dt

= f(x). (12)

Denoting by x(t, x0) the solution to (12) such that x(0, x0) = x0. Wemake the following
two assumptions: (A1) There exists a compact absorbing set K ⊂ D. (A2) Eq. (3.5)
has a unique equilibrium x̄ in D.

The equilibrium x̄ is said to be globally stable in D if it is locally stable and all
trajectories in D converge to x̄. For n ≥ 2, by Bendixson criterion, we mean a condi-
tion satisfied by f which precludes the existence of non-constant periodic solutions of
(9). The classical Bendixson’s condition divf(x) < 0 for n = 2 is robust under C1

local perturbations of f . With reference to higher dimensional systems, the C1 robust
properties are discussed in [7–9]. A point x0 ∈ D is wandering for (12) if there exists
a neighborhood N(x0) of x0 and T > 0 such that N(x0)

⋂
x(t, U) is empty for all

t > T. Thus, for example, all equilibria and limit points are non-wandering. In any
finite dimension, for autonomous systems, the following global-stability principle is
established in Li and Muldowney [14].

Theorem 2. Suppose that assumptions (A1) and (A2) hold. Assume that (12) satis-
fies a Bendixson criterion that is robust under C1 local perturbations of f at all non-
equilibrium non-wandering points for (12). Then x̄ is globally stable in D provided it
is stable.
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The following Bendixson criterion is given in [14] and shown to have the robustness
required by Theorem 3. Let x → P (x) be an (n

2 ) × (n
2 ) matrix-valued function that is

C1 for x ∈ D. Let us consider P−1(x) exists and is continuous for x ∈ K, the compact
absorbing set. A quantity q̄2 is defined as

q̄2 = limt→∞ sup sup
x0∈K

1
t

∫ t

0

μ0(B0(x(s, x0)))ds, (13)

where

B0 = PfP−1 + P
∂f [2]

∂x
P−1. (14)

the matrix Pf is attained having swaped every entry p of P by its derivative in the
direction of f , pijf , and μ0(B0) is the Lozinskii measure of B with reference to a
vector norm | . | in RN , N = (n

2 ) × (n
2 ) , defined by [15]

μ0(B0) = lim
h→0+

| i + hB0 | −1
h

.

It is shown in [14] that, if D is simply connected, the condition q̄2 < 0 eradicates pres-
ence of any orbit that gives rise to a simple closed rectifiable curve which is invariant
for (12) such as periodic orbits, homoclinic orbits, and heteroclinic cycles. Further-
more, it is robust under C1 local perturbations of f near any non-equilibrium point that
is non-wandering. In particular, the following global-stability result is proved in Li and
Muldowney [14].

Theorem 3. Considering simple connectedness of D and that the assumptions (A1) and
(A2) hold, the unique equilibrium x̄ of (12) is globally stable in D if q̄2 < 0.

Now, we study the global stability of the disease steady state L∗, and obtain

Theorem 4. If R0 > 1, λ1 > λ2 and γ+cλ1(1−) < 1, c(1−) < 1+, then the endemic
equilibrium L∗ of the system (12) is globally asymptotically stable.

Proof: The Jacobian matrix J associated with a general solution to (12) is given by

J(L∗ = (x∗, y∗, z∗)) =

⎡
⎣a11 −cλ1x −cλ2x

a21 cλ1x − γ − 1 cλ2x
0 γ −1 − k

⎤
⎦

where
a11 = −1 + cx + c[(λ1y − λ2z − (1 − y − x − z)]

a21 = cx + c[(λ1y − λ2z − (1 − y − x − z)]

and its second additive compound matrix J [2] is
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J [2] =

⎡
⎣ b11 c(λ1)x c(λ2)x

γ cb22 −c(λ1)x
0 b32 b33

⎤
⎦

where
b11 = −2 − γ + cλ1x − c(λ1y + λ2z) − c(1 − y − x − z)

b22 = −2 − k + cx − c(λ1y + z) − c(1 − y − x − z)

b32 = −cx + c(λ1y + z) + c(1 − y − x − z)

b11 = −2 − γ − k + cλ1x.

A comprehensive survey on compound matrix and their relations to differential equa-
tions is given by [16]. Set the function

P (x, y, z) =

⎡
⎣ z x 0

0 y 0
0 y y

⎤
⎦ .

Then PfP−1 = diag{ z′
z , y′

y , y′

y } and the matrix

B0 = PfP−1 + P
∂f [2]

∂x
P−1

in (14) can be written as block matrix

B0 =
[

B11 B12

B21 B22

]
.

where B11 = z′
z − 2 − γ + cλ1x− c(λ1y+ λ2z) − c(1 − y− x− z), B12 = [0, c(λ2)xz

y ]

B21 =
[ γy

z
γy
z

]

B22 =

[
y′

y − 2 − k + cλ1x − c[λ1y + λ2z + (1 − y − x − z)] −c(λ1)x
γ y′

y − 2 − k − γ

]
.

Let (u, v, w) denote the vectors in R3 ∼= R(n2 ). Then we select a norm in R3 as
| (u, v, w) |= max | u |, | v | + | w | and let μ0 denote the Lozinskii measure with
reference to this norm. Following the method in [17], we have the estimate μ0(B0) =
sup g1, g2, where g1 = μ1(B11)+ | B12 |; g2 =| B21 | +μ1(B22).

| B12 |, | B21 | are matrix norms with respect to the l1 vector norm, and μ1

denotes the Lozinskii measure with respect to the l1 norm, see [15]. More specifically,
μ1(B11) = z′

z − 2 − γ + cλ1x − c(λ1y + λ2z) − c(1 − y − x − z), | B12 |= c(λ2−)xz
y ,

| B21 |= γy
z .
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To calculate μ1(B22), add the absolute value of the off-diagonal elements to the
diagonal one in each column of B22, and then take the maximum of two sums, see [15].
As λ1 > λ2, we get

μ1(B22) = max{y
′

y
− 2 − k + γ + cλ1x − c[λ1y + λ2z + (1 − y − x − z)],

y′

y
− 2 − k − γ + c(λ1)x}

≤ y′

y
− 2 − k + γ + cλ1x.

From system (12), we get
x < 1−,

y′

y
=

y′

y
+ cλ1x − cx +

c(λ2−)xz
y

+
c(1 − x)x

y
− 1 − γ,

z′

z
=

γy
z

− k − 1.

g1 =
y′

y
+

z′

z
− 1 − y′

y
+ cx − c(λ1y + λ2z) − c(1 − y − x − z) − c(1 − x)x

y

≤ y′

y
+

z′

z
− 1 + c

g2 =
y′

y
+

z′

z
− 1 + γ + cλ1x

≤ y′

y
+

z′

z
− 1 + γ + cλ1.

We can choose t1 large enough such that

g1 ≤ y′

y
+

z′

z
− 1 + c

g2 ≤ y′

y
+

z′

z
− 1 + γ + cλ1

for t ≥ t1, where δ can be chosen arbitrarily small.
Therefore,

μ0(B0) ≤ y′

y
+

z′

z
− b̄
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for t ≥ t1 where

b̄ = min{1 + c, 1 − γ − cλ1}
= 1 − γ − cλ1 > 0

is a constant.
Along each solution (x(t), y(t), z(t)) of (12) with (x(0), y(0), z(0)) ∈ Γ, where Γ

is the compact absorbing set, we have

1
t

∫ t

0

μ0(B0)ds =
1
t

∫ t1

0

μ0(B0)ds +
1
t

∫ t

t1

μ0(B0)ds

≤ 1
t

∫ t1

0

μ0(B0)ds +
1
t

log
y(t)
y(t1)

+
1
t

log
z(t)
z(t1)

− b̄,

which implies that q̄2 ≤ − b̄
2 < 0 from (13).

.

4 Model Validation and Parameter Estimation

In this segment, we have estimated parameter values corresponding to the model from
real data of COVID-19 disease occurred in Italy. In order to validate model and estimate
important model parameters we have fitted the model with real COVID-19 cases of Italy
from 15th Feb to 4th April using the non-linear least square principle and software pack-
age fmincon. The statistical method used to estimate parameter is known as “least
square method”. By reducing the sum of the residuals of the points from the plot-
ted curve, the least squares method is a statistical technique for determining the
best fit for a group of data points. This technique explains the general justification
for where to locate the line of greatest fit among the data points being examined.
The correlation between a known independent variable and an unknowable depen-
dent variable is represented by each data point. The least square principle is given
below:

Let {Ci} be the cumulative number of infected population in real cases and {Ci
p}

be the cumulative number of model predicted infected population on ith day then our
target is to minimize the following

F (Θ) = Σn
i=1 (Ci − Ci

p)2

for all parameters θ ∈ Θ. Using this principle we have estimated four important param-
eters and other parameters are collected from the source (Table 1).

From this estimated parameter values we have observed the dynamics of the spread
of infection among the population and compared this observations with data. Figure 1
shows the infected population level in 50 days from model simulation and it also indi-
cates the infection level in 50 days from real data, Fig. 1 (a) presents the spread of
infection among population increases exponentially from both model results and data
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Table 1. Values of the model parameters and their sensitivity indices for outbreak in Italy

Parameters Values Source

β1 3.640080297324544e-09 Estimated

β2 3.185862091629136e-08 Estimated

A 1.21 Estimated

γ1 1/14 [5]

δ 0.37 [5]

μ 0.00001 Estimated

σ1 0.2 Estimated

Fig. 1. (a) Fitting model to cumulative cases in Italy, (b) Residuals of the fit, (c) BAR diagram for
50 days.
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Fig. 2. (a) Cumulative cases prediction in Italy for 140 days, (b) BAR diagram .....for 140 days.

results. Figure 1 (b) represents the residuals abundances of the fitted result. From this
figure it is observed that in the first 25 days residuals are in positive zone and from
25 days to 45 days some residuals are in negative zone. In last 5 days it is found that
residuals are in positive zone that is the residuals are randomly distributed that is the
model data fitting is acceptable. However to clear observation we have drawn bar dia-
gram from model simulated data as well as real data of COVID-19 disease occured in
Italy (Fig. 1 (c)).

To predict COVID-19 disease spreading in Italy about the number of per day new
infection we have simulated the result for 140 days on basis of data for 50 days.
Figure 2(a) shows the cumulative cases prediction in Italy for 140 days. This figure
indicates that the prediction of spread of COVID-19 among the populations increases
upto 60 days and after 60 days infection will be saturated and stable and the graph of
infected population will be Plato. This indicates that the spread of infection becomes
saturated and new infection is not be recruited among the community. We have also
draw a bar diagram for 140 days prediction results (Fig. 2b). From Fig. 2b it is noticed
that in first 60 days height of bar graphs has been increases and after first 60 days the
height of bar graph decreases. So from this Figure it is observed that after 130 days i.e.
in middle of June 2020 the infection level will be controlled.

5 Conclusion

One of the main infections that primarily affects the human respiratory system is the
coronavirus. Both the Middle East respiratory syndrome (MERS)-CoV and the severe
acute respiratory syndrome (SARS)-CoV have previously been identified as coron-
aviruses (CoVs) that pose a serious threat to the public’s health. Fever, coughing, and
exhaustion are the most typical initial signs of COVID-19 disease. Other symptoms
include sputum production, headache, haemoptysis, diarrhoea, dyspnoea, and lym-
phopenia. In this study, we take into account a four-dimensional epidemic model to
analyse the dynamics of COVID-19 and forecast the corona scenario in Italy. We have
first established the existence of the equilibrium points. Under particular threshold con-
ditions, we have also calculated the local and global stability of various equilibrium
points. We focused on the fundamental reproduction rate since it is a crucial instru-
ment for halting the spread of disease. We have calculated the fundamental reproduction
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number using our suggested model, and we have observed the stability of endemic and
disease-free equilibrium both locally and globally. We used the data set for the nation
of Italy to validate our suggested model, and we approximated the parameter values and
observed illness trends using model outputs and data findings. First, based on data and
model simulation findings, we looked at the 50-day results for Italy and discovered that
the infection rate in the population had exponentially grown. Both residual fit and bar
diagram plots have supported it. The projected outcome for 18 spreading the disease
around the community is 140 days. The findings of the model simulations show that the
infection will increase for up to 110 days, after which the spread of the disease in the
population would decline and become stable after 120 days. However, the outcomes of
our model’s prediction will be useful to management strategists and policy makers. In
a nutshell, the main goal of this manuscript is to observe the dynamics of Covid-19
virus on the SEIR epidemic model for better understanding of the novel Corona
virus and its aftermath in Italy. Our investigation in this manuscript would help
to understand to what extent can the spread of the disease be prevented in Italy
in due course of time. In future, our model can be modified in different epidemi-
ological point of view for better results. One can extend our model by symptotic
and asymptotic compartmental part. Our mathematical part can be extended by
incorporating delay, stochastic, spatio-temporal effect to get better and realistic
results.
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