Skip to main content

Undrained Bearing Capacity of Circular Footing Above Spherical Cavity

  • Conference paper
  • First Online:
Computational Intelligence Methods for Green Technology and Sustainable Development (GTSD 2022)

Abstract

The bearing capacity solutions for determining the stability of a circular footing placed above a spherical cavity in clay are presented in this study. The circular footing is modeled by rigid plate elements and placed on clay, where the spherical cavity is located beneath the footing. The considered dimensionless parameters are the ratio between the diameter of the footing and cavity, as well as the ratio between the cover-depth of the cavity and the diameter of the footing. By using the lower and upper bound finite element limit analysis, the undrained bearing capacity of this problem can be obtained. The collapse mechanisms of circular footings placed above spherical cavities in clays are also examined and discussed in the paper. The results of the paper provide a guidance theory and an effective tool for practical engineering in determining the bearing capacity of circular footings placed above spherical cavities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Augarde, C.E., Lyamin, A.V., Sloan, S.W.: Prediction of undrained sinkhole collapse. J. Geotech. Geoenviron. Eng. 129, 197–205 (2003)

    Google Scholar 

  2. Craig, W.H.: Collapse of cohesive overburden following removal of support. Can. Geotech. J. 27, 355–364 (1990)

    Google Scholar 

  3. Keawsawasvong, S., Ukritchon, B.: Undrained stability of a spherical cavity in cohesive soils using finite element limit analysis. J. Rock Mech. Geotech. Eng. 11(6), 1274–1285 (2019)

    Google Scholar 

  4. Ukritchon, B., Yoang, S., Keawsawasvong, S.: Three-dimensional stability analysis of the collapse pressure on flexible pavements over rectangular trapdoors. Transp. Geotech. 21, 100277 (2019)

    Google Scholar 

  5. Keawsawasvong, S., Ukritchon, B.: Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses. Bull. Eng. Geol. Env. 79(8), 4167–4190 (2020). https://doi.org/10.1007/s10064-020-01798-8

    Article  Google Scholar 

  6. Keawsawasvong, S., Ukritchon, B.: Undrained stability of plane strain active trapdoors in anisotropic and non-homogeneous clays. Tunn. Undergr. Space Technol. 107, 103628 (2021)

    Google Scholar 

  7. Keawsawasvong, S.: Limit analysis solutions for spherical cavities in sandy soils under overloading. Innov. Infrastruct. Solut. 6(1), 1–8 (2020). https://doi.org/10.1007/s41062-020-00398-5

    Article  Google Scholar 

  8. Shiau, J., Chudal, B., Mahalingasivam, K., Keawsawasvong, S.: Pipeline burst-related ground stability in blowout condition. Transp. Geotech. 29, 100587 (2021)

    Google Scholar 

  9. Keawsawasvong, S., Likitlersuang, S.: Undrained stability of active trapdoors in two-layered clays. Undergr. Space 6(4), 446–454 (2021)

    Google Scholar 

  10. Shiau, J., Keawsawasvong, S., Chudal, B., Mahalingasivam, K., Seehavong, S.: Sinkhole stability in elliptical cavity under collapse and blowout conditions. Geosciences 11(10), 421 (2021)

    Google Scholar 

  11. Keawsawasvong, S., Shiau, J.: Stability of active trapdoors in axisymmetry. Undergr. Space 7(1), 50–57 (2022)

    Google Scholar 

  12. Keawsawasvong, S., Ukritchon, B.: Design equation for stability of a circular tunnel in an anisotropic and heterogeneous clay. Undergr. Space 7(1), 76–93 (2022)

    Google Scholar 

  13. Shiau, J., Keawsawasvong, S., Lee, J.S.: Three-dimensional stability investigation of trapdoors in collapse and blowout conditions. Int. J. Geomech. ASCE 22(4), 04022007 (2022)

    Google Scholar 

  14. Shiau, J., Chudal, B., Keawsawasvong, S.: Three-dimensional sinkhole stability of spherical cavity. Acta Geotechnica (2022)

    Google Scholar 

  15. Lai, V.Q., Banyong, R., Keawsawasvong, S.: Undrained sinkhole collapse in anisotropic clays. Arab. J. Geosci. 15(8), 1–13 (2022). https://doi.org/10.1007/s12517-022-10061-1

    Article  Google Scholar 

  16. Shiau, J., Chudal, B., Mahalingasivam, K., Keawsawasvong, S.: Pipeline burst-related soil stability in collapse condition. J. Pipeline Syst. Eng. Pract., ASCE (2022)

    Google Scholar 

  17. Ukritchon, B., Yoang, S., Keawsawasvong, S.: Bearing capacity of shallow foundations in clay with linear increase in strength and adhesion factor. Mar. Georesour. Geotechnol. 36(4), 438–451 (2018)

    Google Scholar 

  18. Ukritchon, B., Keawsawasvong, S.: Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous and anisotropic clays. Int. J. Numer. Anal. Meth. Geomech. 44(5), 596–632 (2020)

    Google Scholar 

  19. Keawsawasvong, S., Thongchom, C., Likitlersuang, S.: Bearing capacity of strip footing on Hoek-Brown rock mass subjected to eccentric and inclined loading. Transp. Infrastruct. Geotechnol. 8, 189–200 (2021)

    Google Scholar 

  20. Keawsawasvong, S., Lai, V.Q.: End bearing capacity factor for annular foundations embedded in clay considering the effect of the adhesion factor. Int. J. Geosynth. Ground Eng. 7, 15 (2021)

    Google Scholar 

  21. Yodsomjai, W., Keawsawasvong, S., Lai, V.Q.: Limit analysis solutions for bearing capacity of ring foundations on rocks using Hoek-Brown failure criterion. Int. J. Geosynth. Ground Eng. 7, 29 (2021)

    Google Scholar 

  22. Keawsawasvong, S.: Bearing capacity of conical footings on Hoek-Brown rock masses using finite element limit analysis. Int. J. Comput. Mater. Sci. Eng. 10(3), 2150015 (2021)

    Google Scholar 

  23. Keawsawasvong, S.: Bearing capacity of conical footings on clays considering combined effects of anisotropy and non-homogeneity. Ships Offshore Struct. (2021)

    Google Scholar 

  24. Ukritchon, B., Wongtoythong, P., Keawsawasvong, S.: New design equation for undrained pullout capacity of suction caissons considering combined effects of caisson aspect ratio, adhesion factor at interface, and linearly increasing strength. Appl. Ocean Res. 75, 1–14 (2018)

    Google Scholar 

  25. Keawsawasvong, S., Shiau, J., Limpanawannakul, K., Panomchaivath, S.: Stability charts for closely spaced strip footings on Hoek-Brown rock mass. Geotech. Geol. Eng. (2022)

    Google Scholar 

  26. Keawsawasvong, S., Yoonirundorn, K., Senjuntichai, T.: Pullout capacity factor for cylindrical suction caissons in anisotropic clays based on Anisotropic Undrained Shear failure criterion. Transp. Infrastruct. Geotechnol. 8(4), 629–644 (2021)

    Google Scholar 

  27. Ukritchon, B., Keawsawasvong, S.: Three-dimensional lower bound finite element limit analysis of Hoek-Brown material using semidefinite programming. Comput. Geotech. 104, 248–270 (2018)

    Google Scholar 

  28. Ukritchon, B., Keawsawasvong, S.: Three-dimensional lower bound finite element limit analysis of an anisotropic undrained strength criterion using second-order cone programming. Comput. Geotech. 106, 327–344 (2019)

    Google Scholar 

  29. Keawsawasvong, S., Shiau, J., Ngamkhanong, C., Lai, V.Q., Thongchom, C.: Undrained stability of ring foundations: axisymmetry, anisotropy, and nonhomogeneity. Int. J. Geomech. 22(1), 04021253 (2022)

    Google Scholar 

  30. Al-Tabbaa, A., Russell, L., O’Reilly, M.: Model tests of footings above shallow cavities. Ground. Eng. 22, 39–42 (1989)

    Google Scholar 

  31. Badie, A., Wang, M.C.: Stability of spread footing above void in clay. J Geotech Eng 110, 1591–1605 (1984)

    Google Scholar 

  32. Wang, M.C., Badie, A.: Effect of underground void on foundation stability. J. Geotech. Eng. 111, 1008–1119 (1985)

    Google Scholar 

  33. Azam, G., Jao, M., Wang, M.C.: Cavern effect on stability of strip footing in two-layer soils. J. Geotech. Geoneviron. Eng. 28, 151–164 (1997)

    Google Scholar 

  34. Kiyosumi, M., Kusakabe, O., Ohuchi, M., Peng, F.L.: Yielding pressure of spread footing above multiple voids. J. Geotech. Geoneviron. Eng. 133, 1522–1531 (2007)

    Google Scholar 

  35. Lee, J.K., Jeong, S., Ko, J.: Undrained stability of surface strip footings above voids. Compos. Geotech. 62, 128–135 (2014)

    Google Scholar 

  36. Wang, M.C., Hsieh, C.W.: Collapse load of strip footing above circular void. J. Geotech. Eng. 113, 511–555 (1987)

    Google Scholar 

  37. Kiyosumi, M., Kusakabe, O., Ohuchi, M.: Model tests and analyses of bearing capacity of strip footing on stiff ground with voids. J. Geotech. Geoneviron. Eng. 137, 363–375 (2011)

    Google Scholar 

  38. Lee, J.K., Jeong, S., Ko, J.: Effect of load inclination on the undrained bearing capacity of surface spread footings above voids. Comput. Geotech. 66, 245–252 (2015)

    Google Scholar 

  39. Baus, R.L., Wang, M.C.: Bearing capacity of strip footings above void. J Geotech Eng 109, 1–14 (1983)

    Google Scholar 

  40. Drucker, D.C., Prager, W., Greenberg, H.J.: Extended limit design theorems for continuous media. Q Appl Math 9, 381–389 (1952)

    MathSciNet  MATH  Google Scholar 

  41. Chen, W.F., Liu, X.L.: Limit Analysis in Soil Mechanics. Elsevier, Amsterdam (1990)

    Google Scholar 

  42. Sloan, S.W.: Geotechnical stability analysis. Géotechnique 63(7), 531–72 (2013)

    Google Scholar 

  43. Tang, C., Toh, K., Phoon, K.: Axisymmetric lower-bound limit analysis using finite elements and second-order cone programming. J. Eng. Mech. 140, 268–278 (2014)

    Google Scholar 

  44. Keawsawasvong, S., Ukritchon, B.: Undrained basal stability of braced circular excavations in non-homogeneous clays with linear increase of strength with depth. Comput. Geotech. 115, 103180 (2019)

    Google Scholar 

  45. Ukritchon, B., Keawsawasvong, S.: Stability of retained soils behind underground walls with an opening using lower bound limit analysis and second-order cone programming. Geotech. Geol. Eng. 37(3), 1609–1625 (2019)

    Google Scholar 

  46. Ukritchon, B., Keawsawasvong, S.: Undrained lateral capacity of rectangular piles under a general loading direction and full flow mechanism. KSCE J. Civ. Eng. 22(7), 2256–2265 (2018)

    Google Scholar 

  47. Ukritchon, B., Keawsawasvong, S.: A new design equation for drained stability of conical slopes in cohesive-frictional soils. J. Rock Mech. Geotech. Eng. 10(2), 358–366 (2018)

    Google Scholar 

  48. Ukritchon, B., Keawsawasvong, S.: Error in Ito and Matsui’s limit equilibrium solution of lateral force on a row of stabilizing piles. J. Geotech. Geoenvironmental Eng., ASCE 143(9), 02817004 (2017)

    Google Scholar 

  49. Ukritchon, B., Keawsawasvong, S.: Unsafe error in conventional shape factor for shallow circular foundations in normally consolidated clays. J. Geotech. Geoenvironmental Eng. ASCE 143(6), 02817001 (2017)

    Google Scholar 

  50. Ukritchon, B., Keawsawasvong, S., Yingchaloenkitkhajorn, K.: Undrained face stability of tunnels in Bangkok Subsoils. Int. J. Geotech. Eng. 11(3), 262–277 (2017)

    Google Scholar 

  51. Ukritchon, B., Yoang, S., Keawsawasvong, S.: Undrained stability of unsupported rectangular excavations in non-homogeneous clays. Comput. Geotech. 117, 103281 (2020)

    Google Scholar 

  52. Ukritchon, B., Keawsawasvong, S.: Undrained stability of unlined square tunnels in clays with linearly increasing anisotropic shear strength. Geotech. Geol. Eng. 38(1), 897–915 (2020)

    Google Scholar 

  53. Yodsomjai, W., Keawsawasvong, S., Thongchom, C., Lawongkerd, J.: Undrained stability of unsupported conical slopes in two-layered clays. Innov. Infrastruct. Solut. 6(1), 1–17 (2020). https://doi.org/10.1007/s41062-020-00384-x

    Article  Google Scholar 

  54. Yodsomjai, W., Keawsawasvong, S., Likitlersuang, S.: Stability of unsupported conical slopes in Hoek-Brown rock masses. Transp. Infrastruct. Geotechnol. 8, 278–295 (2021)

    Google Scholar 

  55. Yodsomjai, W., Keawsawasvong, S., Senjuntichai, T.: Undrained stability of unsupported conical slopes in anisotropic clays based on Anisotropic Undrained Shear failure criterion. Transp. Infrastruct. Geotechnol. 8(4), 557–568 (2021)

    Google Scholar 

  56. Nguyen, D.K., Nguyen, T.P., Keawsawasvong, S., Lai, V.Q.: Vertical uplift capacity of circular anchors in clay by considering anisotropy and non-homogeneity. Transp. Infrastruct. Geotechnol. (2021)

    Google Scholar 

  57. Lai, V.Q., Banyong, B., Keawsawasvong, S.: Stability of limiting pressure behind soil gaps in contiguous pile walls in anisotropic clays. Eng. Fail. Anal. 134, 106049 (2022)

    Google Scholar 

  58. Keawsawasvong, S., Seehavong, S., Ngamkhanong, C.: Application of artificial neural networks for predicting the stability of rectangular tunnel in Hoek-Brown rock masses. Frontiers Built. Environ. 8, 837745 (2022)

    Google Scholar 

  59. Sirimontree, S., Jearsiripongkul, T., Lai, V.Q., Eskandarinejad, A., Lawongkerd, J., et al.: Prediction of penetration resistance of a spherical penetrometer in clay using multivariate adaptive regression splines model. Sustainability 14(6), 3222 (2022)

    Google Scholar 

  60. Butterfield, R.: Dimensional analysis for geotechnical engineering. Géotechnique 49(2), 357–366 (1999)

    Google Scholar 

  61. Krabbenhoft, K., Lyamin, A., Krabbenhoft, J.: Optum Computational Engineering (OptumG2) [cited 2021 Jul 1]. Available from: www.optumce.com (2020)

  62. Ciria, H., Peraire, J., Bonet, J.: Mesh adaptive computation of upper and lower bounds in limit analysis. Int. J. Numer. Meth. Eng. 75, 899–944 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

We would like to thank Ho Chi Minh City University of Technology (HCMUT), VNU-HCM for the support of time and facilities for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Qui Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keawsawasvong, S., Lai, V.Q., Thongchom, C., Van, C.N. (2023). Undrained Bearing Capacity of Circular Footing Above Spherical Cavity. In: Huang, YP., Wang, WJ., Quoc, H.A., Le, HG., Quach, HN. (eds) Computational Intelligence Methods for Green Technology and Sustainable Development. GTSD 2022. Lecture Notes in Networks and Systems, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-031-19694-2_17

Download citation

Publish with us

Policies and ethics