Keywords

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of \(\mathbb {R}^N\). We begin with an elementary computation.

Lemma 6.1.1

Let 1 ≤|α|≤ m and let \(f \in \mathcal {C}^m (\varOmega )\) . Then for every \(u\in \mathcal {C}^m(\varOmega ) \cap \mathcal {K}(\varOmega )\),

$$\displaystyle \begin{aligned} \int_{\varOmega} f~D^{\alpha}u~dx=(-1)^{|\alpha|} \int_{\varOmega} (D^{\alpha}f) u ~dx. \end{aligned}$$

Proof

We assume that α = (0, …, 0, 1). Let \(u\in \mathcal {C}^1(\varOmega )\cap \mathcal {K}(\varOmega )\), and define

$$\displaystyle \begin{aligned} \begin{array}{lll} g(x)&=f(x)u(x),&x\in\varOmega,\\ &=0,&x\in\mathbb{R}^N\setminus\varOmega. \end{array} \end{aligned}$$

The fundamental theorem of calculus implies that for every \(x'\in \mathbb {R}^{N-1}\),

Fubini’s theorem ensures that

When |α| = 1, the proof is similar. It is easy to conclude the proof by induction. □

Weak derivatives were defined by S.L. Sobolev in 1938.

Definition 6.1.2

Let \(\alpha \in \mathbb {N}^N\) and \(f\in L^1_{\mathrm {loc}} (\varOmega )\). By definition, the weak derivative of order α of f exists if there is \(g\in L^1_{\mathrm {loc}} (\varOmega )\) such that for every \(u\in \mathcal {D} (\varOmega )\),

$$\displaystyle \begin{aligned} \int_{\varOmega} f~D^{\alpha}u~dx=(-1)^{|\alpha|}\int_{\varOmega} gu~dx. \end{aligned}$$

The function g, if it exists, will be denoted by α f.

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3

Assume that ∂ α f exists. On

$$\displaystyle \begin{aligned} \varOmega_n=\{x\in\varOmega :d(x,\partial\varOmega)>1/n\}, \end{aligned}$$

we have that

$$\displaystyle \begin{aligned} D^{\alpha}(\rho_n\ast f)=\rho_n\ast \partial^{\alpha} f. \end{aligned}$$

Proof

We deduce from Proposition 4.3.6 and from the preceding definition that for every x ∈ Ω n,

$$\displaystyle \begin{aligned} D^{\alpha}(\rho_n\ast f)(x)&=\displaystyle{\int_{\varOmega} D^{\alpha}_x\rho_n(x-y)f(y)dy}\\ &= (-1)^{|\alpha|}\displaystyle{\int_{\varOmega} D^{\alpha}_y\rho_n(x-y)f(y)dy}\\ &= (-1)^{2|\alpha|}\displaystyle{\int_{\varOmega}\rho_n(x-y)\partial^{\alpha} f(y)dy}\\ &=\rho_n\ast \partial^{\alpha} f(x).& \end{aligned} $$

Theorem 6.1.4 (du Bois–Reymond Lemma)

Let |α| = 1 and let \(f\in \mathcal {C}(\varOmega )\) be such that \(\partial ^{\alpha }f \in \mathcal {C}(\varOmega )\) . Then D α f exists and D α f = ∂ α f.

Proof

By the preceding proposition, we have

$$\displaystyle \begin{aligned} D^{\alpha}(\rho_n\ast f)=\rho_n\ast \partial^{\alpha} f. \end{aligned}$$

The fundamental theorem of calculus implies then that

$$\displaystyle \begin{aligned} \rho_n\ast f(x+\varepsilon\alpha)=\rho_n\ast f(x)+\int_0^{\varepsilon}\rho_n\ast \partial^{\alpha} f(x+t\alpha)dt. \end{aligned}$$

By the regularization theorem,

$$\displaystyle \begin{aligned} \rho_n\ast f\rightarrow f,\quad \rho_n\ast \partial^{\alpha} f \rightarrow \partial^{\alpha} f \end{aligned}$$

uniformly on every compact subset of Ω. Hence we obtain

$$\displaystyle \begin{aligned} f(x+\varepsilon\alpha)=f(x)+\int_0^{\varepsilon}\partial^{\alpha} f(x+t\alpha)dt, \end{aligned}$$

so that α f = D α f by the fundamental theorem of calculus. □

Notation

From now on, the derivatives of a continuously differentiable function will also be denoted by α.

Let us prove the closing lemma. The graph of the weak derivative is closed in \(L^1_{\mathrm {loc}}\times L^1_{\mathrm {loc}}\).

Lemma 6.1.5

Let \((f_n)\subset L^1_{\mathrm {loc}}(\varOmega )\) and let \(\alpha \in \mathbb {N}^N\) be such that in \(L^1_{\mathrm {loc}}(\varOmega )\),

$$\displaystyle \begin{aligned} f_n\rightarrow f,\quad \partial^{\alpha}f_n\rightarrow g. \end{aligned}$$

Then g =  α f.

Proof

For every \(u\in \mathcal {D}(\varOmega )\), we have by definition that

$$\displaystyle \begin{aligned} \int_{\varOmega} f_n\partial^{\alpha}u~dx=(-1)^{|\alpha|}\int_{\varOmega} (\partial^{\alpha}f_n)u~dx. \end{aligned}$$

Since by assumption,

$$\displaystyle \begin{aligned} \left|\int_{\varOmega}(f_n-f)\partial^{\alpha}u~dx\right|\leq\vert\vert \partial^{\alpha}u\vert\vert_{\infty}\int_{\mathrm{spt}~u}|f_n-f|dx\rightarrow 0 \end{aligned}$$

and

$$\displaystyle \begin{aligned} \left|\int_{\varOmega}(\partial^{\alpha}f_n-g)u~dx\right|\leq\vert\vert u\vert\vert_{\infty}\int_{\mathrm{spt}~u}|\partial^{\alpha}f_n-g|dx\rightarrow 0, \end{aligned}$$

we obtain

$$\displaystyle \begin{aligned} \int_{\varOmega} f\partial^{\alpha}u~dx=(-1)^{|\alpha|}\int_{\varOmega} gu~dx. \end{aligned}$$

Example (Weak Derivative)

If − N < λ ≤ 1, the function f(x) = |x|λ is locally integrable on \(\mathbb {R}^N\). We approximate f by

$$\displaystyle \begin{aligned} f_{\varepsilon}(x)=\Big(|x|{}^2+\varepsilon\Big)^{\lambda/2},\quad \varepsilon >0. \end{aligned}$$

Then \(f_{\varepsilon }\in \mathcal {C}^{\infty }(\mathbb {R}^N)\) and

$$\displaystyle \begin{aligned} \begin{array}{rcl} \partial_k f_{\varepsilon} (x)& =&\displaystyle \lambda~x_k \Big(|x|{}^2+\varepsilon\Big)^{\frac{\lambda-2}{2}},\\ \big|\partial_k f_{\varepsilon}(x)\big|& \leq&\displaystyle \lambda |x|{}^{\lambda-1}. \end{array} \end{aligned} $$

If λ > 1 − N, we obtain in \(L^1_{\mathrm {loc}}(\mathbb {R}^N)\) that

$$\displaystyle \begin{aligned} \begin{array}{rcl} f_{\varepsilon}(x)& \rightarrow&\displaystyle f(x)=|x|{}^{\lambda},\\ \partial_k f_{\varepsilon}(x)& \rightarrow&\displaystyle g(x)=\lambda~x_k|x|{}^{\lambda-2}. \end{array} \end{aligned} $$

Hence k f(x) = λ |x|λ−2 x k.

Definition 6.1.6

The gradient of the (weakly) differentiable function u is defined by

The divergence of the (weakly) differentiable vector field is defined by

Let 1 ≤ p <  and \(u\in L^1_{\mathrm {loc}} (\varOmega )\) be such that j u ∈ L p(Ω), j = 1, …, N. We define

$$\displaystyle \begin{aligned} \vert\vert\nabla u\vert\vert_{L^p(\varOmega)}=\left(\int_{\varOmega}\vert \nabla u\vert^pdx\right)^{1/p}=\left(\int_{\varOmega} \left\vert \sum^N_{j=1}(\partial_ju)^2\right\vert^{p/2}dx\right)^{1/p}. \end{aligned}$$

Theorem 6.1.7

Let 1 < p < ∞ and let \((u_n)\subset L^1_{\mathrm {loc}}(\varOmega )\) be such that

  1. (a)

    u n → u in \(L^1_{\mathrm {loc}}(\varOmega )\);

  2. (b)

    for every n, \(\nabla u_n\in L^p(\varOmega ;\mathbb {R}^N)\);

  3. (c)

    c = supn||∇u n||p < ∞.

Then \(\nabla u\in L^p(\varOmega ;\mathbb {R}^N)\) and

$$\displaystyle \begin{aligned} \vert\vert\nabla u\vert\vert_p\leq \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1} \vert\vert\nabla u_n\vert\vert_p. \end{aligned}$$

Proof

We define f on \(\mathcal {D}(\varOmega ;\mathbb {R}^N)\) by

$$\displaystyle \begin{aligned} \langle f,v\rangle =\int_{\varOmega} u~\mathrm{div}~v~dx. \end{aligned}$$

We have that

$$\displaystyle \begin{aligned} \begin{array}{rcl} |\langle f,v\rangle| & =&\displaystyle \displaystyle{\renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \lim\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}|\int_{\varOmega} }u_n~\mathrm{div}~v~dx|\\ & =&\displaystyle \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \lim\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}|\int_{\varOmega} \nabla u_n\cdot v~dx|\\ & \leq&\displaystyle \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}\vert\vert\nabla u_n\vert\vert_p\left(\int_{\varOmega}\vert v\vert^{p'}dx\right)^{1/p'}. \end{array} \end{aligned} $$

Since \(\mathcal {D}(\varOmega )\) is dense in \(L^{p'}(\varOmega )\), Proposition 3.2.3 implies the existence of a continuous extension of f to \(L^{p'}(\varOmega ;\mathbb {R}^N)\). By Riesz’s representation theorem, there exists \(g\in L^p(\varOmega ;\mathbb {R}^N)\) such that for every \(v\in \mathcal {D}(\varOmega ;\mathbb {R}^N)\),

$$\displaystyle \begin{aligned} \int_{\varOmega} g\cdot v~dx=\langle f,v\rangle =\int_{\varOmega} u~\mathrm{div}~v~dx. \end{aligned}$$

Hence \(\nabla u=-g\in L^p(\varOmega ;\mathbb {R}^N)\). Choosing v = |∇u|p−2u, we find that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \int_{\varOmega} |\nabla u|{}^pdx=\int_{\varOmega}\nabla u\cdot v~dx& \leq&\displaystyle \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}\vert\vert\nabla u_n\vert\vert_p\left(\int_{\varOmega} |v|{}^{p'}dx\right)^{1/p'}\\ & =&\displaystyle \renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1} \vert\vert\nabla u_n\vert\vert_p\left(\int_{\varOmega} |\nabla u|{}^{p}dx\right)^{1-1/p}. \end{array} \end{aligned} $$

Sobolev spaces are spaces of differentiable functions with integral norms. In order to define complete spaces, we use weak derivatives.

Definition 6.1.8

Let k ≥ 1 and 1 ≤ p < . On the Sobolev space

$$\displaystyle \begin{aligned} W^{k,p}(\varOmega)=\{u\in L^p(\varOmega):\mbox{ for every } |\alpha|\leq k, \partial^{\alpha}u\in L^p(\varOmega)\}, \end{aligned}$$

we define the norm

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{W^{k,p}(\varOmega)}=\vert\vert u\vert\vert_{k,p}=\left(\sum_{|\alpha|\leq k}\int_{\varOmega}\vert\partial^{\alpha}u\vert ^p dx\right)^{1/p}. \end{aligned}$$

On the space H k(Ω) = W k, 2(Ω), we define the scalar product

$$\displaystyle \begin{aligned} (u\mid v)_{H^k(\varOmega)}=\sum_{|\alpha|\leq k}(\partial^{\alpha}u\mid\partial^{\alpha}v)_{L^2(\varOmega)}. \end{aligned}$$

The Sobolev space \(W^{k,p}_{\mathrm {loc}}(\varOmega )\) is defined by

$$\displaystyle \begin{aligned} W^{k,p}_{\mathrm{loc}}(\varOmega)=\{u\in L^p_{\mathrm{loc}}(\varOmega):\mbox{ for all }\omega\subset \subset\varOmega,u\Big|{}_{\omega}\in W^{k,p}(\omega)\}. \end{aligned}$$

A sequence (u n) converges to u in \(W_{\mathrm {loc}}^{k,p}(\varOmega )\) if for every ω ⊂⊂ Ω,

$$\displaystyle \begin{aligned} \vert\vert u_n-u\vert\vert_{W^{k,p}(\omega)}\rightarrow 0,\quad n\rightarrow\infty. \end{aligned}$$

The space \(W_0^{k,p}(\varOmega )\) is the closure of \(\mathcal {D}(\varOmega )\) in W k, p(Ω). We denote by \(H_0^k(\varOmega )\) the space \(W_0^{k,2}(\varOmega )\).

Theorem 6.1.9

Let k ≥ 1 and 1 ≤ p < ∞. Then the spaces W k, p(Ω) and \(W_0^{k,p}(\varOmega )\) are complete and separable.

Proof

Let M = ∑ |α|≤k1. The space \(L^p(\varOmega ;\mathbb {R}^M)\) with the norm

$$\displaystyle \begin{aligned} \vert\vert (v_{\alpha})\vert\vert_p =\left( \sum_{|\alpha |\leq k} \int_{\varOmega} |v_{\alpha}|{}^pdx\right)^{1/p} \end{aligned}$$

is complete and separable. The map

$$\displaystyle \begin{aligned} \varPhi :W^{k,p}(\varOmega)\rightarrow L^p(\varOmega;\mathbb{R}^M):u\mapsto (\partial^{\alpha}u)_{|\alpha |\leq k} \end{aligned}$$

is a linear isometry: ||Φ(u)||p = ||u||k,p. By the closing lemma, Φ(W k, p(Ω)) is a closed subspace of \(L^p(\varOmega ;\mathbb {R}^M)\). It follows that W k, p(Ω) is complete and separable. Since \(W_0^{k,p}(\varOmega )\) is a closed subspace of W k, p(Ω), it is also complete and separable. □

Theorem 6.1.10

Let 1 ≤ p < ∞. Then \(W_0^{1,p}(\mathbb {R}^N)=W^{1,p}(\mathbb {R}^N)\).

Proof

It suffices to prove that \(\mathcal {D}(\mathbb {R}^N)\) is dense in \(W^{1,p}(\mathbb {R}^N)\). We use regularization and truncation.

Regularization Let \(u\in W^{1,p}(\mathbb {R}^N)\) and define u n = ρ n ∗ u. By Proposition 4.3.6, \(u_n\in \mathcal {C}^{\infty }(\mathbb {R}^N)\). Proposition 4.3.14 implies that in \(L^p(\mathbb {R}^N)\),

$$\displaystyle \begin{aligned} u_n\rightarrow u,\partial_ku_n=\rho_n\ast\partial_ku\rightarrow\partial_ku. \end{aligned}$$

We conclude that \(W^{1,p}(\mathbb {R}^N)\cap \mathcal {C}^{\infty }(\mathbb {R}^N)\) is dense in \(W^{1,p}(\mathbb {R}^N)\).

Truncation Let \(\theta \in \mathcal {C}^{\infty }(\mathbb {R})\) be such that 0 ≤ θ ≤ 1 and

$$\displaystyle \begin{aligned} \begin{array}{lll} \theta(t)&=1,&\quad t\leq 1,\\ &=0,&\quad t\geq 2. \end{array} \end{aligned}$$

We define the sequence

$$\displaystyle \begin{aligned} \theta_n(x)=\theta(\vert x\vert /n). \end{aligned}$$

Let \(u\in W^{1,p}(\mathbb {R}^N)\cap \mathcal {C}^{\infty }(\mathbb {R}^N)\). It is clear that \(u_n=\theta _n u\in \mathcal {D}(\mathbb {R}^N)\). It follows easily from Lebesgue’s dominated convergence theorem that u n → u in \(W^{1,p}(\mathbb {R}^N)\). □

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Variables)

Let Ω and ω be open subsets of \(\mathbb {R}^N\) , G : ω  Ω a diffeomorphism, and \(u\in W^{1,1}_{\mathrm {loc}}(\varOmega )\) . Then \(u\circ G\in W_{\mathrm {loc}}^{1,1}(\omega )\) and

$$\displaystyle \begin{aligned} \frac{\partial}{\partial y_k}(u\circ G)=\sum_j\frac{\partial u}{\partial x_j}\circ G~\,\, \frac{\partial G_j}{\partial y_k}. \end{aligned}$$

Proof

Let \(v\in \mathcal {D}(\omega )\) and u n = ρ n ∗ u. By Lemma 6.1.1, for n large enough, we have

$$\displaystyle \begin{aligned} \int_{\omega}u_n\circ G(y)~\,\,\frac{\partial v}{\partial y_k}(y)dy=- \int_{\omega}\sum_j\frac{\partial u_n}{\partial x_j}\circ G(y)~\,\,\frac{\partial G_j}{\partial y_k}(y)~\,\,v(y)dy. \end{aligned}$$
(∗)

It follows from Theorem 2.4.5 with H = G −1 that

$$\displaystyle \begin{aligned} &\int_{\varOmega} u_n(x)\frac{\partial v}{\partial y_k} \circ H(x)|\det H'(x)|dx\\ {} &\quad = -\int_{\varOmega}\sum_j\frac{\partial u_n}{\partial x_j}(x)\frac{\partial G_j}{\partial y_k} \circ H(x) v \circ H(x) |\det H'(x)| dx. \end{aligned} $$
(∗∗)

The regularization theorem implies that in \(L^1_{\mathrm {loc}}(\varOmega )\),

$$\displaystyle \begin{aligned} u_n\rightarrow u,\quad \frac{\partial u_n}{\partial x_j}\rightarrow\frac{\partial u}{\partial x_j}. \end{aligned}$$

Taking the limit, it is permitted to replace u n by u in (∗∗). But then it is also permitted to replace u n by u in (∗), and the proof is complete. □

Proposition 6.1.12 (Derivative of a Product)

Let \(u\in W_{\mathrm {loc}}^{1,1}(\varOmega )\) and \(f\in \mathcal {C}^{1}(\varOmega )\) . Then \(fu\in W^{1,1}_{\mathrm {loc}}(\varOmega )\) and

$$\displaystyle \begin{aligned} \partial_k(fu)=f\partial_k u + (\partial_k f)u. \end{aligned}$$

Proof

Let u n = ρ n ∗ u, so that by the classical rule of derivative of a product,

$$\displaystyle \begin{aligned} \partial_k(fu_n)= (\partial_k f) u_n+f \partial_ku_{n}. \end{aligned}$$

It follows from the regularization theorem that

$$\displaystyle \begin{aligned} fu_n\rightarrow fu,\partial_k(fu_n)\rightarrow (\partial_kf)u+f\partial_ku \end{aligned}$$

in \(L_{\mathrm {loc}}^1(\varOmega )\). We conclude by invoking the closing lemma. □

Proposition 6.1.13 (Derivative of the Composition of Functions)

Let \(u\in W^{1,1}_{\mathrm {loc}}(\varOmega )\) , and let \(f\in \mathcal {C}^1(\mathbb {R})\) be such that \(c=\displaystyle {\sup _{\mathbb {R}}}\vert f'\vert <\infty \) . Then \(f\circ u\in W^{1,1}_{\mathrm {loc}}(\varOmega )\) and

$$\displaystyle \begin{aligned} \partial_k(f\circ u)=f'\circ u ~ \partial_ku. \end{aligned}$$

Proof

We define u n = ρ n ∗ u, so that by the classical rule,

$$\displaystyle \begin{aligned} \partial_k(f\circ u_n)=f'\circ u_n ~\partial_ku_n. \end{aligned}$$

We choose ω ⊂⊂ Ω. By the regularization theorem, we have in L 1(ω),

$$\displaystyle \begin{aligned} u_n\rightarrow u,\quad \partial_ku_{n}\rightarrow\partial_ku. \end{aligned}$$

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that u n → u almost everywhere on ω. We obtain

$$\displaystyle \begin{aligned} \int_{\omega}\vert f\circ u_n-f\circ u\vert dx\leq c\int_{\omega}\vert u_n-u\vert dx\rightarrow 0, \end{aligned}$$
$$\displaystyle \begin{aligned} \int_{\omega}\vert f'\circ u_n~ \partial_k u_n -f'\circ u~ \partial_k u \vert dx\leq c \int_{\omega}\vert \partial_k u_n -\partial_k u \vert dx+ \int_{\omega}\vert f'\circ u_n-f'\circ u\vert~\vert \partial_k u \vert dx\rightarrow 0. \end{aligned}$$

Hence in L 1(ω),

$$\displaystyle \begin{aligned} f\circ u_n\rightarrow f\circ u,\quad f'\circ u_n~ \partial_k u_n \rightarrow f'\circ u~ \partial_k u . \end{aligned}$$

Since ω ⊂⊂ Ω is arbitrary, we conclude the proof by invoking the closing lemma. □

On \(\mathbb {R}\), we define

$$\displaystyle \begin{aligned} \begin{array}{lll} \mbox{sgn}(t)&=t/|t|,&\quad t\neq 0\\ &=0,&\quad t=0. \end{array} \end{aligned}$$

Corollary 6.1.14

Let \(g : \mathbb {R} \to \mathbb {R}\) be such that \(c=\sup _{\mathbb {R}} |g| < \infty \) and, for some sequence \((g_n) \subset \mathcal {C}(\mathbb {R})\) , g(t) =limn g n(t) everywhere on \(\mathbb {R}\) . Define

$$\displaystyle \begin{aligned} f(t) = \int^t_0 g(s)ds. \end{aligned}$$

Then, for every \(u\in W^{1,1}_{\mathit {loc}} (\varOmega ), f \circ u \in W^{1,1}_{\mathit {loc}} (\varOmega )\) and

$$\displaystyle \begin{aligned} \nabla (f\circ u) = (g\circ u) \nabla u. \end{aligned}$$

In particular \(u^+,u^-,|u|\in W^{1,1}_{\mathit {loc}} (\varOmega )\) and

Proof

We can assume that \(\displaystyle \sup _n \sup _{\mathbb {R}} |g_n| \leq c\). We define \(f_n(t) = \displaystyle \int ^t_0 g_n (s) ds\). The preceding proposition implies that

$$\displaystyle \begin{aligned} \nabla (f_n \circ u) = (g_n \circ u) \nabla u. \end{aligned}$$

Since, in \(L^1_{\mathrm {loc}}(\varOmega )\), by Lebesgue’s dominated convergence theorem,

$$\displaystyle \begin{aligned} f_n \circ u \to f \circ u, (g_n \circ u) \nabla u \to (g \circ u) \nabla u, \end{aligned}$$

the closing lemma implies that

$$\displaystyle \begin{aligned} \nabla (f\circ u) = (g\circ u) \nabla u. \end{aligned}$$

Corollary 6.1.15

Let 1 ≤ p < ∞ and let \(u\in W^{1,p}(\varOmega )\cap \mathcal {C}(\overline {\varOmega })\) be such that u = 0 on ∂Ω. Then \(u\in W_0^{1,p}(\varOmega )\).

Proof

It is easy to prove by regularization that \(W^{1,p}(\varOmega )\cap \mathcal {K}(\varOmega )\subset W_0^{1,p}(\varOmega )\).

Assume that spt u is bounded. Let \(f\in \mathcal {C}^1(\mathbb {R})\) be such that |f(t)|≤|t| on \(\mathbb {R}\),

$$\displaystyle \begin{aligned} \begin{array}{lll} f(t)&=0,&\quad |t|\leq 1,\\ &=t,&\quad |t|\geq 2. \end{array} \end{aligned}$$

Define u n = f(n u)∕n. Then \(u_n\in \mathcal {K}(\varOmega )\), and by the preceding proposition, u n ∈ W 1, p(Ω). By Lebesgue’s dominated convergence theorem, u n → u in W 1, p(Ω), so that \(u\in W_0^{1,p}(\varOmega )\).

If spt u is unbounded, we define u n = θ n u where (θ n) is defined in the proof of Theorem 6.1.10. Then spt u n is bounded. By Lebesgue’s dominated convergence theorem, u n → u in W 1, p(Ω), so that \(u\in W^{1,p}_0(\varOmega )\). □

Proposition 6.1.16

Let Ω be an open subset of \(\mathbb {R}^N\) . Then there exist a sequence (U n) of open subsets of Ω and a sequence of functions \(\psi _n\in \mathcal {D}(U_n)\) such that

  1. (a)

    for every n, U n ⊂⊂ Ω and ψ n ≥ 0;

  2. (b)

    \(\displaystyle {\sum ^{\infty }_{n=1}}\psi _n=1\) on Ω;

  3. (c)

    for every ω ⊂⊂ Ω there exists m ω such that for n > m ω we have U n ∩ ω = ϕ.

Proof

Let us define ω −1 = ω 0 = ϕ, and for n ≥ 1,

$$\displaystyle \begin{aligned} \begin{array}{ll} \omega_n&=\{x\in\varOmega:d(x,\partial\varOmega)> 1/n\mbox{ and }|x|<n\},\\ K_n&=\overline{\omega_n}\setminus\omega_{n-1},\\ U_n&=\omega_{n+1}\setminus\overline{\omega_{n-2}}. \end{array} \end{aligned}$$

The theorem of partitions of unity implies the existence of \(\varphi _n\in \mathcal {D}(U_n)\) such that 0 ≤ φ n ≤ 1 and φ n = 1 on K n. It suffices then to define

$$\displaystyle \begin{aligned} \psi_n=\varphi_n/\sum^{\infty}_{j=1}\varphi_j. \end{aligned}$$

Theorem 6.1.17 (Hajłasz)

Let \(1\!\leq \!p\!<\!\infty \), \(u\in W^{1,p}_{\mathrm {loc}}(\varOmega )\) , and ε > 0. Then there exists \(v\in \mathcal {C}^{\infty }(\varOmega )\) such that

  1. (a)

    \(v-u\in W_0^{1,p}(\varOmega )\);

  2. (b)

    \(\vert \vert v-u\vert \vert _{W^{1,p}(\varOmega )}<\varepsilon \).

Proof

Let (U n) and (ψ n) be given by the preceding proposition. For every n ≥ 1, there exists k n such that

$$\displaystyle \begin{aligned} v_n=\rho_{k_n}\ast (\psi_nu)\in\mathcal{D}(U_n) \end{aligned}$$

and

$$\displaystyle \begin{aligned} \vert\vert v_n-\psi_nu\vert\vert_{1,p}<\varepsilon /2^n. \end{aligned}$$

By Proposition 3.1.6, \(\displaystyle {\sum ^{\infty }_{n=1}}(v_n-\psi _nu)\) converges to w in \(W_0^{1,p}(\varOmega )\). On the other hand, we have on ω ⊂⊂ Ω that

$$\displaystyle \begin{aligned} \sum^{\infty}_{n=1}v_n=\sum^{m_{\omega}}_{n=1}v_n\in\mathcal{C}^{\infty}(\omega),\quad \sum^{\infty}_{n=1}\psi_nu=u. \end{aligned}$$

Setting \(v=\displaystyle {\sum ^{\infty }_{n=1}}v_n\), we conclude that

$$\displaystyle \begin{aligned} \vert\vert v-u\vert\vert_{1,p}=\vert\vert w\vert\vert_{1,p}\leq\sum^{\infty}_{n=1}\vert\vert v_n-\psi_nu\vert\vert_{1,p}<\varepsilon. \end{aligned}$$

Corollary 6.1.18 (Deny–Lions)

Let 1 ≤ p < ∞. Then \(\mathcal {C}^{\infty }(\varOmega )\cap W^{1,p}(\varOmega )\) is dense in W 1, p(Ω).

6.2 Cylindrical Domains

Let U be an open subset of \(\mathbb {R}^{N-1}\) and 0 < r ≤. Define

$$\displaystyle \begin{aligned} \varOmega =U\times \,\,]\!-r,r[,\quad \varOmega_+=U\times \,\,]0,r[. \end{aligned}$$

The extension by reflection of a function in W 1, p(Ω +) is a function in W 1, p(Ω).

For every \(u:\varOmega _+\rightarrow \mathbb {R}\), we define on Ω:

Lemma 6.2.1 (Extension by Reflection)

Let 1 ≤ p < ∞ and u  W 1, p(Ω +). Then ρu  W 1, p(Ω), ∂ k(ρu) = ρ( k u), 1 ≤ k  N − 1, and , so that

$$\displaystyle \begin{aligned} \vert\vert\rho u\vert\vert_{L^p(\varOmega)}=2^{1/p}\vert\vert u\vert\vert_{L^p(\varOmega_+)},\quad \vert\vert\rho u\vert\vert_{W^{1,p}(\varOmega)}=2^{1/p}\vert\vert u\vert\vert_{W^{1,p}(\varOmega_+)}. \end{aligned}$$

Proof

Let \(v\in \mathcal {D}(\varOmega )\). Then by a change of variables,

(∗)

where

A truncation argument will be used. Let \(\eta \in \mathcal {C}^{\infty }(\mathbb {R})\) be such that

$$\displaystyle \begin{aligned} \begin{array}{lll} \eta(t)&=0,&\quad t<1/2,\\ &=1,&\quad t>1, \end{array} \end{aligned}$$

and define η n on Ω + by

The definition of weak derivative ensures that

(∗∗)

where

Since w(x′, 0) = 0, , where

Lebesgue’s dominated convergence theorem implies that

Taking the limit in (∗∗), we obtain

It follows from (∗) that

Since \(v\in \mathcal {D}(\varOmega )\) is arbitrary, . By a similar but simpler argument, k(ρu) = ρ( k u), 1 ≤ k ≤ N − 1. □

It makes no sense to define an L p function on a set of measure zero. We will define the trace of a W 1, p function on the boundary of a smooth domain. We first consider the case of \(\mathbb {R}^N_+\).

Notation

We define

$$\displaystyle \begin{aligned} \mathcal{D}(\overline{\varOmega})=\{u\vert_{\varOmega}:u\in\mathcal{D}(\mathbb{R}^N)\}, \end{aligned}$$

Lemma 6.2.2 (Trace Inequality)

Let 1 ≤ p < ∞. Then for every \(u\in \mathcal {D}(\overline {\mathbb {R}^N_+})\),

Proof

The fundamental theorem of calculus implies that for all \(x'\in \mathbb {R}^{N-1}\),

When 1 < p < , using Fubini’s theorem and Hölder’s inequality, we obtain

The case p = 1 is similar. □

Proposition 6.2.3

Let 1 ≤ p < ∞. Then there exists one and only one continuous linear mapping \(\gamma _0:W^{1,p}(\mathbb {R}^N_+)\rightarrow L^p(\mathbb {R}^{N-1})\) such that for every \(u\in \mathcal {D}(\mathbb {R}_+^N)\) , γ 0 u = u(., 0).

Proof

Let \(u\in \mathcal {D}(\overline {\mathbb {R}^N_+})\) and define γ 0 u = u(., 0). The preceding lemma implies that

$$\displaystyle \begin{aligned} \vert\vert\gamma_0u\vert\vert_{L^p(\mathbb{R}^{N-1})}\leq p^{1/p}\vert\vert u\vert\vert_{W^{1,p}(\mathbb{R}_+^N)}. \end{aligned}$$

The space \(\mathcal {D}(\overline {\mathbb {R}^N_+})\) is dense in \(W^{1,p}(\mathbb {R}_+^N)\) by Theorem 6.1.10 and Lemma 6.2.1. By Proposition 3.2.3, γ 0 has a unique continuous linear extension to \(W^{1,p}(\mathbb {R}^N_{+})\). □

Proposition 6.2.4 (Integration by Parts)

Let 1 ≤ p < ∞, \(u\in W^{1,p}(\mathbb {R}_+^N)\) , and \(v\in \mathcal {D}(\overline {\mathbb {R}^N_+})\) . Then

and

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^N_+}v \partial _k u~dx=-\int_{\mathbb{R}^N_+} (\partial_k v)u~dx, \quad 1\leq k\leq N-1. \end{aligned}$$

Proof

Assume, moreover, that \(u\in \mathcal {D}(\overline {\mathbb {R}_+^N})\). Integrating by parts, we obtain for all \(x'\in \mathbb {R}^{N-1}\),

Fubini’s theorem implies that

Let \(u\in W^{1,p}(\mathbb {R}^N_+)\). Since \(\mathcal {D}(\overline {\mathbb {R}_+^N})\) is dense in \(W^{1,p}(\mathbb {R}^N_+)\), there exists a sequence \((u_n)\subset \mathcal {D}(\overline {\mathbb {R}_+^N})\) such that u n → u in \(W^{1,p}(\mathbb {R}_+^N)\). By the preceding lemma, γ 0 u n → γ 0 u in \(L^p(\mathbb {R}^{N-1})\). It is easy to finish the proof.

The proof of the last formulas is similar. □

Notation

For every \(u:\mathbb {R}^N_+\rightarrow \mathbb {R}\), we define \(\overline {u}\) on \(\mathbb {R}^N\) by

Proposition 6.2.5

Let 1 ≤ p < ∞ and \(u\in W^{1,p}(\mathbb {R}_+^N)\) . The following properties are equivalent:

  1. (a)

    \(u\in W_0^{1,p}(\mathbb {R}_+^N)\);

  2. (b)

    γ 0 u = 0;

  3. (c)

    \(\overline {u}\in W^{1,p}(\mathbb {R}^N)\) and \( \partial _k\overline {u} = \overline {\partial _k u}\), 1 ≤ k  N.

Proof

If \(u\in W^{1,p}_0(\mathbb {R}_+^N)\), there exists \((u_n)\subset \mathcal {D}(\mathbb {R}_+^N)\) such that u n → u in \(W^{1,p}(\mathbb {R}_+^N)\). Hence γ 0 u n = 0 and γ 0 u n → γ 0 u in \(L^p(\mathbb {R}^{N-1})\), so that γ 0 u = 0.

If γ 0 u = 0, it follows from the preceding proposition that for every \(v\in \mathcal {D}(\mathbb {R}^N)\),

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^N}v ~\overline{\partial_k u}~ dx= -\int_{\mathbb{R}^N} \partial _k v~\overline{u}~dx,\quad 1\leq k\leq N. \end{aligned}$$

We conclude that (c) is satisfied.

Assume that (c) is satisfied. We define \(u_n=\theta _n\overline {u}\), where (θ n) is defined in the proof of Theorem 6.1.10. It is clear that \(u_n\rightarrow \overline {u}\) in \(W^{1,p}(\mathbb {R}^N)\) and spt \(u_n\subset B[0,2n]\cap \overline {\mathbb {R}_+^N}\).

We can assume that spt u n is a compact subset of \(\overline {\mathbb {R}_+^N}\). We define y n = (0, …, 0, 1∕n) and \(v_n=\tau _{y_n}\overline {u}\). Since \(\partial _kv_n =\tau _{y_n} \partial _k\overline {u}\), the lemma of continuity of translations implies that u n → u in \(W^{1,p}(\mathbb {R}^N_+)\).

We can assume that spt u is a compact subset of \(\mathbb {R}^N_+\). For n large enough, \(\rho _n\ast u\in \mathcal {D}(\mathbb {R}_+^N)\). Since ρ n ∗ u → u is in \(W^{1,p}(\mathbb {R}^N)\), we conclude that \(u\in W_0^{1,p}(\mathbb {R}^N)\). □

6.3 Smooth Domains

In this section we consider an open subset Ω = {φ < 0} of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary Γ. We use the notations of Definition 9.4.1.

Let γ ∈ Γ. Since ∇φ(γ) ≠ 0, we can assume that, after a permutation of variables, N φ(γ) ≠ 0. By Theorem 9.1.1 there exist r > 0, R > 0, and

$$\displaystyle \begin{aligned} \beta \in \mathcal{C}^1 \big(B(\gamma',R) \times ]-r,r[\,\big) \end{aligned}$$

such that, for |x′− γ′| < R and |t| < r, we have

$$\displaystyle \begin{aligned} \varphi (x',x_N) = t \quad \Leftrightarrow \quad x_N = \beta(x',t) \end{aligned}$$

and the set

$$\displaystyle \begin{aligned} U_\gamma = \Big\{\big(x',\beta (x',t)\big)\colon |x'-\gamma'| < R, |t| < r\Big\} \end{aligned}$$

is an open neighborhood of γ. Moreover

$$\displaystyle \begin{aligned} \varOmega \cap U_\gamma = \Big\{\big(x',\beta (x',t)\big)\colon |x'-\gamma'| < R, -r < t < 0\Big\} \end{aligned}$$

and

$$\displaystyle \begin{aligned} \varGamma \cap U_\gamma = \Big\{\big(x',\beta (x',0)\big)\colon |x'-\gamma'| < R\Big\}. \end{aligned}$$

The Borel–Lebesgue theorem implies the existence of a finite covering U 1, …, U k of Γ by open subsets satisfying the above properties. There exists a partition of unity ψ 1, …, ψ k subordinate to this covering.

Theorem 6.3.1 (Extension Theorem)

Let 1 ≤ p < ∞ and let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary or the product of N open intervals. Then there exists a continuous linear mapping

$$\displaystyle \begin{aligned} P:W^{1,p}(\varOmega)\rightarrow W^{1,p}(\mathbb{R}^N) \end{aligned}$$

such that Pu| Ω = u.

Proof

Let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary, and let u ∈ W 1, p(Ω). Proposition 6.1.11 and Lemma 6.2.1 imply that

Moreover,

$$\displaystyle \begin{aligned} \vert\vert P_Uu\vert\vert_{W^{1,p}(U)}\leq a_U\vert\vert u\vert\vert_{W^{1,p}(\varOmega)}. \end{aligned}$$
(∗)

We define \(\displaystyle {\psi _0=1-\sum ^k_{j=1}\psi _j}\),

$$\displaystyle \begin{aligned} \begin{array}{lll} u_0&=\psi_0u,&\quad x\in\varOmega,\\ &=0,&\quad x\in\mathbb{R}^N\setminus\varOmega, \end{array} \end{aligned}$$

and for 1 ≤ j ≤ k,

$$\displaystyle \begin{aligned} \begin{array}{lll} u_j&=P_{U_j}(\psi_ju),&\quad x\in U_j,\\ &=0,&\quad x\in \mathbb{R}^N\setminus U_j. \end{array} \end{aligned}$$

Formula (∗) and Proposition 6.1.12 ensure that for 0 ≤ j ≤ k,

$$\displaystyle \begin{aligned} \vert\vert u_j\vert\vert_{W^{1,p}(\mathbb{R}^N)}\leq b_j\vert\vert u\vert\vert_{W^{1,p}(\varOmega)}. \end{aligned}$$

(The support of ∇ψ 0 is compact!) Hence

$$\displaystyle \begin{aligned} Pu=\sum^k_{j=0}u_j\in W^{1,p}(\mathbb{R}^N), \quad \vert\vert Pu\vert\vert_{W^{1,p}(\mathbb{R}^N)}\leq c\vert\vert u\vert\vert_{W^{1,p}(\varOmega)}, \end{aligned}$$

and for all x ∈ Ω,

$$\displaystyle \begin{aligned} Pu(x)=\sum^k_{j=0}\psi_j(x)u(x)=u(x). \end{aligned}$$

If Ω is the product of N open intervals, it suffices to use a finite number of extensions by reflections and a truncation. □

Theorem 6.3.2 (Density Theorem in Sobolev Spaces)

Let 1 ≤ p < ∞ and let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary or the product of N open intervals. Then the space \(\mathcal {D}(\overline {\varOmega })\) is dense in W 1, p(Ω).

Proof

Let u ∈ W 1, p(Ω). Theorem 6.1.10 implies the existence of a sequence \((v_n)\subset \mathcal {D}(\mathbb {R}^N)\) converging to Pu in \(W^{1,p}(\mathbb {R}^N)\). Hence u n = v n|Ω converges to u in W 1, p(Ω). □

Theorem 6.3.3 (Trace Inequality)

Let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary Γ. Then there exist a > 0 and b > 0 such that, for 1 ≤ p < ∞ and for every \(u\in \mathcal {D} (\bar \varOmega )\),

$$\displaystyle \begin{aligned} \int_\varGamma |u|{}^p d\gamma \leq a \|u\|{}^p_{L^p(\varOmega)} + bp \|u\|{}^{p-1}_{L^p(\varOmega)} \|\nabla u\|{}_{L^p(\varOmega)}. \end{aligned}$$

Proof

Let 1 < p < , \(u\in \mathcal {D} (\bar \varOmega )\), and \(\nu \in \mathcal {C}^\infty (\mathbb {R}^N;\mathbb {R}^N)\).

Since

$$\displaystyle \begin{aligned} \mbox{div} |u|{}^p \nu = |u|{}^p \ \mbox{div} \nu + pu |u|{}^{p-2} \nabla u \cdot \nu, \end{aligned}$$

the divergence theorem implies that

$$\displaystyle \begin{aligned} \int_\varGamma |u|{}^p \nu \cdot n d\gamma = \int_{\varOmega} \left[|u|{}^p \ \mbox{div} \nu + pu|u|{}^{p-2} \nabla u \cdot \nu \right] dx. \end{aligned}$$

Assume that 1 ≤ ν ⋅ n on Γ. Using Hölder’s inequality, we obtain that, for 1 < p < ,

$$\displaystyle \begin{aligned} \int_\varGamma |u|{}^p d\gamma \leq \int_\varGamma |u|{}^p \nu \cdot n d \gamma &\leq a \int_{\varOmega} |u|{}^p dx +bp \int_{\varOmega} |u|{}^{p-1} |\nabla u| dx \\ &\leq a \int_{\varOmega} |u|{}^p dx +bp \left( \int_{\varOmega} |u|{}^{(p- 1)p'} dx\right)^{1/p'} \left(\int_{\varOmega} |\nabla u|{}^p dx\right)^{1/p} \\ &= a \int_{\varOmega} |u|{}^p dx +bp \left( \int_{\varOmega} |u|{}^p dx\right)^{1-1/p} \left(\int_{\varOmega} |\nabla u|{}^p dx\right)^{1/p}, \end{aligned}$$

where a = ∥divν and b = ∥ν.

When p 1, it follows from Lebesgue’s dominated convergence theorem that

$$\displaystyle \begin{aligned} \int_\varGamma |u| d\gamma \leq a \int_{\varOmega} |u| dx + b \int_{\varOmega} |\nabla u|dx. \end{aligned}$$

Let us construct an admissible vector field ν. Let \(U=\{x \in \mathbb {R}^N : \nabla \varphi (x) \neq 0\}\). The theorem of partition of unity implies the existence of \(\psi \in \mathcal {D}(U)\) such that ψ = 1 on Γ. We define the vector field w by

$$\displaystyle \begin{aligned} w(x) &= \psi(x) {\nabla \varphi (x) \over |\nabla\varphi(x)|} , & x \in U \qquad \\ &=0, &x \in \mathbb{R}^N \backslash U. \end{aligned}$$

For n large enough, the \(\mathcal {C}^\infty \) vector field ν = 2ρ n ∗ w is such that 1 ≤ ν ⋅ n on Γ. □

Theorem 6.3.4

Under the assumptions of Theorem 6.3.3 , there exists one and only one continuous linear mapping

$$\displaystyle \begin{aligned} \gamma : W^{1,p} (\varOmega) \to L^p(\varGamma) \end{aligned}$$

such that for all \(u\in \mathcal {D} (\bar \varOmega )\) , γ 0 u = u| Γ.

Proof

It suffices to use the trace inequality, Proposition 3.2.3, and the density theorem in Sobolev spaces. □

Theorem 6.3.5 (Divergence Theorem)

Let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary Γ and \(\nu \in W^{1,1} (\varOmega ; \mathbb {R}^N)\) . Then

$$\displaystyle \begin{aligned} \int_{\varOmega} \ \mbox{div} \ \nu dx = \int_\varGamma \gamma_0 \nu\cdot n d\gamma. \end{aligned}$$

Proof

When \(\nu \in \mathcal {D} (\bar \varOmega ; \mathbb {R}^N)\), the proof is given in Section 9.4. In the general case, it suffices to use the density theorem in Sobolev spaces and the trace theorem. □

6.4 Embeddings

Let 1 ≤ p, q < . If there exists c > 0 such that for every \(u\in \mathcal {D}(\mathbb {R}^N)\),

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{L^q(\mathbb{R}^N)}\leq c\vert\vert \nabla u\vert\vert_{L^p(\mathbb{R}^N)}, \end{aligned}$$

then necessarily

$$\displaystyle \begin{aligned} q=p^*=Np/(N-p). \end{aligned}$$

Indeed, replacing u(x) by u λ(x) = u(λx), λ > 0, we find that

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{L^q(\mathbb{R}^N)}\leq c\lambda^{\left(1+\frac{N}{q}-\frac{N}{p}\right)}\vert\vert\nabla u\vert\vert_{L^p(\mathbb{R}^N)}, \end{aligned}$$

so that q = p .

We define for 1 ≤ j ≤ N and \(x\in \mathbb {R}^N\),

Lemma 6.4.1 (Gagliardo’s Inequality)

Let N ≥ 2 and . Then \(f(x)=\displaystyle {\prod ^N_{j=1}}f_j(\widehat {x_j})\in L^1(\mathbb {R}^N)\) and

$$\displaystyle \begin{aligned} \vert\vert f\vert\vert_{L^1(\mathbb{R}^N)}\leq\prod^N_{j=1}\vert\vert f_j\vert\vert_{L^{N-1}(\mathbb{R}^{N-1})}. \end{aligned}$$

Proof

We use induction. When N = 2, the inequality is clear. Assume that the inequality holds for N ≥ 2. Let \(f_1,\ldots ,f_{N+1}\in L^N(\mathbb {R}^N)\) and

$$\displaystyle \begin{aligned} f(x,x_{N+1})=\prod^N_{j=1}f_j(\widehat{x_j},x_{N+1})f_{N+1}(x). \end{aligned}$$

It follows from Hölder’s inequality that for almost every \(x_{N+1}\in \mathbb {R}\),

$$\displaystyle \begin{aligned} \begin{array}{rcl} \int_{\mathbb{R}^N} \big | f(x,x_{N+1}) \big| dx& \leq&\displaystyle \left[\int_{\mathbb{R}^N}\prod^N_{j=1} \ \big| f_j(\widehat{x_j},x_{N+1})\big|{}^{N'}dx\right]^{1/N'}\vert\vert f_{N+1}\vert\vert_{L^N(\mathbb{R}^N)}\\ & \leq&\displaystyle \prod^N_{j=1}\left[\int_{\mathbb{R}^{N-1}} \ \big| f_j(\widehat{x_j},x_{N+1})\big |{}^{N}d\widehat{x_j}\right]^{1/N}\vert\vert f_{N+1}\vert\vert_{L^N(\mathbb{R}^N)}. \end{array} \end{aligned} $$

The generalized Hölder inequality implies that

$$\displaystyle \begin{aligned} \vert\vert f\vert\vert_{L^1(\mathbb{R}^{N+1})}&\leq\prod^N_{j=1}\left[\int_{\mathbb{R}^N} \big|f_j(\widehat{x_j},x_{N+1})\big|{}^{N}d\widehat{x_j}dx_{N+1}\right]^{1/N}\vert\vert f_{N+1}\vert\vert_{L^N(\mathbb{R}^N)}\\ &=\prod^{N+1}_{j=1}\vert\vert f_j\vert\vert_{L^N(\mathbb{R}^N)} .& \end{aligned} $$

Lemma 6.4.2 (Sobolev’s Inequalities)

Let 1 ≤ p < N. Then there exists a constant c = c(p, N) such that for every \(u\in \mathcal {D}(\mathbb {R}^N)\),

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{L^{p^*}(\mathbb{R}^N)}\leq c\vert\vert \nabla u\vert\vert_{L^{p}(\mathbb{R}^N)}. \end{aligned}$$

Proof

Let \(u\in \mathcal {C}^1(\mathbb {R}^N)\) be such that spt u is compact. It follows from the fundamental theorem of calculus that for 1 ≤ j ≤ N and \(x\in \mathbb {R}^N\),

$$\displaystyle \begin{aligned} \big| u(x)\big| \leq\frac{1}{2}\int_{\mathbb{R}}\big|\partial_ju(x)\big| dx_j. \end{aligned}$$

By the preceding lemma,

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^N} \big|u(x)\big|{}^{N/(N-1)}dx\leq\prod^N_{j=1}\left[\frac{1}{2}\int_{\mathbb{R}^N}\big|\partial_ju(x)\big| dx\right]^{1/(N-1)}. \end{aligned}$$

Hence we obtain

For p > 1, we define q = (N − 1)p N > 1. Let \(u\in \mathcal {D}(\mathbb {R}^N)\). The preceding inequality applied to |u|q and Hölder’s inequality imply that

It is easy to conclude the proof. □

Lemma 6.4.3 (Morrey’s Inequalities)

Let N < p < ∞ and λ = 1 − Np. Then there exists a constant c = c(p, N) such that for every \(u\in \mathcal {D}(\mathbb {R}^N)\) and every \(x,y\in \mathbb {R}^N\),

$$\displaystyle \begin{aligned} & \big|u(x)-u(y)\big| \leq c|x -y|{}^\lambda \|\nabla u\|{}_{L^p(\mathbb{R}^N)}, \\ & \|u\|{}_\infty \leq c\|u\|{}_{W^{1,p} (\mathbb{R}^N)}. \end{aligned}$$

Proof

Let \(u\in \mathcal {D}(\mathbb {R}^N)\), and let us define \(B=B(a,r), a\in \mathbb {R}^N,r>0\), and

We assume that \(0\in \bar B\). It follows from the fundamental theorem of calculus and Fubini’s theorem that

Hölder’s inequality implies that

After a translation, we obtain that, for every x ∈ B[a, r],

Let \(x\in \mathbb {R}^N\). Choosing a = x and r = 1, we find

Let \(x,y \in \mathbb {R}^N\). Choosing a = (x + y)∕2 and r = |x − y|∕2, we obtain

$$\displaystyle \begin{aligned} |u(x)-u(y)| \leq 2^{1-\lambda} c_\lambda |x-y|{}^\lambda \|\nabla u\|{}_{L^p(B)}. \end{aligned}$$

Notation

We define

$$\displaystyle \begin{aligned} \mathcal{C}_0(\overline{\varOmega})=\{u\big|{}_{\varOmega}:u\in\mathcal{C}_0(\mathbb{R}^N)\}. \end{aligned}$$

Theorem 6.4.4 (Sobolev’s Embedding Theorem, 1936–1938)

Let Ω be an open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) with a bounded boundary or the product of N open intervals.

  1. (a)

    If 1 ≤ p < N and if p  q  p , then W 1, p(Ω) ⊂ L q(Ω), and the canonical injection is continuous.

  2. (b)

    If N < p < ∞ and λ = 1 − Np, then \(W^{1,p}(\varOmega )\subset \mathcal {C}_0(\overline {\varOmega })\) , the canonical injection is continuous, and there exists c = c(p, Ω) such that for every u  W 1, p(Ω) and all x, y  Ω,

    $$\displaystyle \begin{aligned} \big|u(x)-u(y)\big|\leq c\vert\vert u\vert\vert_{W^{1,p}(\varOmega)}|x-y|{}^{\lambda}. \end{aligned}$$

Proof

Let 1 ≤ p < N and \(u\in W^{1,p}(\mathbb {R}^N)\). By Theorem 6.1.10, there exists a sequence \((u_n)\subset \mathcal {D}(\mathbb {R}^N)\) such that u n → u in \(W^{1,p}(\mathbb {R}^N)\).

We can assume that u n → u almost everywhere on \(\mathbb {R}^N\). It follows from Fatou’s lemma and Sobolev’s inequality that

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{L^{p^*}(\mathbb{R}^N)}\leq\renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}\vert\vert u_n\vert\vert_{L^{p^*}(\mathbb{R}^N)}\leq c\lim_{n\rightarrow\infty}\vert\vert\nabla u_n \vert\vert_{L^p(\mathbb{R}^N)}=c\vert\vert\nabla u\vert\vert_{L^p(\mathbb{R}^N)}. \end{aligned}$$

Let P be the extension operator corresponding to Ω and v ∈ W 1, p(Ω). We have

$$\displaystyle \begin{aligned} \vert\vert v\vert\vert_{L^{p^*}(\varOmega)}\leq \vert\vert Pv\vert\vert_{L^{p^*}(\mathbb{R}^N)}\leq c\vert\vert \nabla Pv\vert\vert_{L^{p}(\mathbb{R}^N)}\leq c_1\vert\vert v\vert\vert_{W^{1,p}(\varOmega)}. \end{aligned}$$

If p ≤ q ≤ p , we define 0 ≤ λ ≤ 1 by

$$\displaystyle \begin{aligned} \frac{1}{q}=\frac{1-\lambda}{p}+\frac{\lambda}{p^*}, \end{aligned}$$

and we infer from the interpolation inequality that

$$\displaystyle \begin{aligned} \vert\vert v\vert\vert_{L^q(\varOmega)}\leq \vert\vert v\vert\vert^{1-\lambda}_{L^p(\varOmega)}\vert\vert v\vert\vert^{\lambda}_{L^{p^*}(\varOmega)}\leq c_1^{\lambda} \vert\vert v\vert\vert_{W^{1,p}(\varOmega)}. \end{aligned}$$

The case p > N follows from Morrey’s inequalities. □

Lemma 6.4.5

Let Ω be an open subset of \(\mathbb {R}^N\) such that m(Ω) < +∞, and let 1 ≤ p  r < +∞. Assume that X is a closed subspace of W 1, p(Ω) such that X  L r(Ω). Then, for every 1 ≤ q < r, X  L q(Ω) and the canonical injection is compact.

Proof

The closed graph theorem implies the existence of c > 0 such that, for every u ∈ X,

$$\displaystyle \begin{aligned} {\|u\|}_{L^r (\varOmega)} \leq \ {c\|u\|}_{W^{1,p} (\varOmega)}. \end{aligned}$$

Our goal is to prove that

$$\displaystyle \begin{aligned} S = \{u\in X\colon \|u\|{}_{W^{1,p} (\varOmega)} \leq 1\} \end{aligned}$$

is precompact in L q(Ω) for 1 ≤ q < r. Let 1∕q = 1 − λ + λr. By the interpolation inequality, for every u ∈ S,

$$\displaystyle \begin{aligned} {\|u\|}_{L^q (\varOmega)} \leq {\|u\|{}^\lambda}_{L^r (\varOmega)} \|u\|{}^{1-\lambda}_{L^1 (\varOmega)} \leq c^\lambda \|u\|{}^{1-\lambda}_{L^1 (\varOmega)}. \end{aligned}$$

Hence it suffices to prove that S is precompact in L 1(Ω).

Let us verify that S satisfies the assumptions of M. Riesz’s theorem in L 1(Ω):

  1. (a)

    It follows from Hölder’s inequality that, for every u ∈ S,

    $$\displaystyle \begin{aligned} \|u\|{}_{L^1 (\varOmega)} \leq {\|u\|}_{L^r (\varOmega)} m(\varOmega)^{1-1/r} \leq cm (\varOmega)^{1-1/r}. \end{aligned}$$
  2. (b)

    Similarly, we have that, for every u ∈ S,

    $$\displaystyle \begin{aligned} \int_{\varOmega\backslash \omega_k} |u| dx \leq \|u\|{}_{L^r (\varOmega)} m (\varOmega\backslash \omega_k)^{1-1/r} \leq cm (\varOmega\backslash \omega_k)^{1-1/r} \end{aligned}$$

    where

    $$\displaystyle \begin{aligned} \omega_k = \{x\in \varOmega\colon d (x, \partial\varOmega) > 1/k\}. \end{aligned}$$

    Lebesgue’s dominated convergence theorem implies that

    $$\displaystyle \begin{aligned} \lim_{k\to \infty} m(\varOmega\backslash \omega_k) = 0. \end{aligned}$$
  3. (c)

    Let ω ⊂⊂ Ω. Assume that |y| < d(ω, ∂Ω) and \(u \in \mathcal {C}^\infty (\varOmega ) \cap W^{1,p}(\varOmega )\).

Since, by the fundamental theorem of calculus,

$$\displaystyle \begin{aligned} \Big|\tau_y u(x) - u(x)\Big| = \left| \int^1_0 y \cdot \nabla u(x-ty)dt \right| \leq |y| \int^1_0 \Big|\nabla u(x-ty)\Big|dt, \end{aligned}$$

we obtain

$$\displaystyle \begin{aligned} \|\tau_y u-u\|{}_{L^1(\omega)} &\leq |y| \int_\omega dx \int^1_0 \Big|\nabla u (x-ty)\Big|dt \\ &= |y| \int_0^1 dt \int_\omega \Big|\nabla u (x-ty)\Big|dx\\ &= |y| \int_0^1 dt \int_{\omega-ty} \Big|\nabla u (z)\Big|dz \leq |y| \ \|\nabla u\|{}_{L^1(\varOmega)}. \end{aligned}$$

Using Corollary 6.1.18, we conclude by density that, for every u ∈ S,

$$\displaystyle \begin{aligned} \|\tau_y u-u\|{}_{L^1(\omega)} \leq \|\nabla u\|{}_{L^1(\varOmega)} |y| \leq \|\nabla u\|{}_{L^p(\varOmega)} m(\varOmega)^{1-1/p}|y| \leq c_1 |y|. \end{aligned}$$

Theorem 6.4.6 (Rellich–Kondrachov Embedding Theorem)

Let Ω be a bounded open subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\) or the product of N bounded open intervals:

  1. (a)

    If 1 ≤ p < N and 1 ≤ q < p , then W 1, p(Ω) ⊂ L q(Ω), and the canonical injection is compact.

  2. (b)

    If N < p < ∞, then \(W^{1,p} \subset \mathcal {C}_0 (\bar \varOmega )\) , and the canonical injection is compact.

Proof

Let 1 ≤ p < N, 1 ≤ q < p . It suffices to use Sobolev’s embedding theorem and the preceding lemma.

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding theorem. □

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s Inequality in \(W^{1,p}_{0}\))

Let 1 ≤ p < ∞, and let Ω be an open subset of \(\mathbb {R}^N\) such that \(\varOmega \subset \mathbb {R}^{N-1}\times ]0,a[\) . Then for every \(u\in W_0^{1,p}(\varOmega )\),

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{L^p(\varOmega)}\leq\frac{a}{2}\vert\vert\nabla u\vert\vert_{L^p(\varOmega)}. \end{aligned}$$

Proof

Let \(1\!<\!p\!<\!\infty \) and \(v\in \mathcal {D}(]0,a[)\). The fundamental theorem of calculus and Hölder’s inequality imply that for 0 < x <  a,

$$\displaystyle \begin{aligned} \big|v(x)\big|\leq\frac{1}{2}\int^a_0 \big|v'(t)\big| dt\leq\frac{a^{1/p'}}{2}\Big| \int_0^a \big|v'(t)\big|{}^p dt\Big|{}^{1/p}. \end{aligned}$$

Hence we obtain

$$\displaystyle \begin{aligned} \int_0^a \big|v(x)\big|{}^pdx \leq \frac{a^{p/p'}}{2^p}a\int_0^a \big|v'(x)\big|{}^pdx= \frac{a^p}{2^p}\int^a_0 \big|v'(x)\big|{}^pdx. \end{aligned}$$

If \(u\in \mathcal {D}(\varOmega )\), we infer from the preceding inequality and from Fubini’s theorem that

It is easy to conclude by density. The case p = 1 is similar. □

Definition 6.4.8

A metric space is connected if the only open and closed subsets of X are ϕ and X.

Theorem 6.4.9 (Poincaré’s Inequality in W 1, p)

Let 1 ≤ p < ∞, and let Ω be a bounded open connected subset of \(\mathbb {R}^N\) . Assume that Ω is of class \(\mathcal {C}^1\) . Then there exists c = c(p, Ω), such that, for every u  W 1, p(Ω),

where

Assume that Ω is convex. Then, for every u  W 1, p(Ω),

where d =supx,yΩ|x  y|.

Proof

Assume that Ω is of class \(\mathcal {C}^1\). It suffices to prove that

Let (u n) ⊂ W 1, p(Ω) be a minimizing sequence :

By the Rellich–Kondrachov theorem, we can assume that u n → u in L p(Ω). Hence ∥up = 1 and . If λ = 0, then, by the closing lemma, ∇u = 0. Since Ω is connected, . This is a contradiction.

Assume now that Ω is convex and that \(u\in \mathcal {C}^\infty (\varOmega ) \bigcap W^{1,p} (\varOmega )\). Hölder’s inequality implies that

It follows from the fundamental theorem of calculus and Hölder’s inequality that

$$\displaystyle \begin{aligned} \int_{\varOmega} dy \int_{\varOmega} \Big|u(x)-u(y)\Big|{}^p dx &\leq d^p \int_{\varOmega} dy \int_{\varOmega} dx \left[ \int^1_0 \Big|\nabla u ((1-t)x+ ty)\Big| dt \right]^p \\ {} &\leq d^p \int_{\varOmega} dy \int_{\varOmega} dx \int^1_0 \Big|\nabla u ((1-t)x+ ty)\Big|{}^p dt \\ &= 2 d^p \int_{\varOmega} dy \int_{\varOmega} dx \int^{1/2}_0 \Big|\nabla u ((1-t)x+ ty) \Big|{}^p dt \\ &= 2d^p \int_{\varOmega} dy \int_0^{1/2} dt \int_{\varOmega} \Big|\nabla u ((1-t)x+ ty)\Big|{}^p dx \\ &\leq 2^N d^p \int_{\varOmega} dy \int_{\varOmega} \Big|\nabla u (z)\Big|{}^p dz. \end{aligned}$$

We obtain that

We conclude by density, using Corollary 6.1.18. □

Theorem 6.4.10 (Hardy’s Inequality)

Let 1 < p < N. Then for every \(u\in W^{1,p}(\mathbb {R}^N)\), \(u/|x|\in L^p(\mathbb {R}^N)\) and

$$\displaystyle \begin{aligned} \vert\vert u/|x| \vert\vert_{L^p(\mathbb{R}^N)}\leq\frac{p}{N-p}\vert\vert\nabla u\vert\vert_{L^p(\mathbb{R}^N)}. \end{aligned}$$

Proof

Let \(u\in \mathcal {D}(\mathbb {R}^N)\) and \(v\in \mathcal {D}(\mathbb {R}^N;\mathbb {R}^N)\). We infer from Lemma 6.1.1 that

$$\displaystyle \begin{aligned} \int_{\mathbb{R}^N} |u|{}^p\mathrm{div}~v~dx=-p\int_{\mathbb{R}^N} |u|{}^{p-2}u\nabla u\cdot v~dx. \end{aligned}$$

Approximating v(x) = x∕|x|p by v ε(x) = x∕(|x|2 + ε)p∕2, we obtain

$$\displaystyle \begin{aligned} (N-p)\int_{\mathbb{R}^N}|u|{}^p/|x|{}^pdx=-p\int_{\mathbb{R}^N} |u|{}^{p-2}u\nabla u\cdot x/|x|{}^pdx. \end{aligned}$$

Hölder’s inequality implies that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \int_{\mathbb{R}^N} |u|{}^p/|x|{}^pdx & \leq&\displaystyle \frac{p}{N-p}\left(\int_{\mathbb{R}^N} |u|{}^{(p-1)p'}/|x|{}^pdx\right)^{1/p'} \left(\int_{\mathbb{R}^N} |\nabla u|{}^p dx\right)^{1/p}\\ & =&\displaystyle \frac{p}{N-p}\left(\int_{\mathbb{R}^N} |u|{}^p/|x|{}^pdx\right)^{1-1/p} \left(\int_{\mathbb{R}^N} |\nabla u|{}^p dx\right)^{1/p}. \end{array} \end{aligned} $$

We have thus proved Hardy’s inequality in \(\mathcal {D}(\mathbb {R}^N)\). Let \(u\in W^{1,p}(\mathbb {R}^N)\). Theorem 6.1.10 ensures the existence of a sequence \((u_n)\subset \mathcal {D}(\mathbb {R}^N)\) such that u n → u in \(W^{1,p}(\mathbb {R}^N)\). We can assume that u n → u almost everywhere on \(\mathbb {R}^N\). We conclude using Fatou’s lemma that

$$\displaystyle \begin{aligned} \vert\vert u/|x|\vert\vert_p\leq\renewcommand{\arraystretch}{0.5} \begin{array}[t]{c} \underline{\lim}\\ {\scriptstyle n\rightarrow\infty} \end{array} \renewcommand{\arraystretch}{1}\vert\vert u_n/|x|\vert\vert_p\leq\frac{p}{N-p}\lim_{n\rightarrow\infty} \vert\vert \nabla u_n \vert\vert_p=\frac{p}{N-p} \vert\vert \nabla u \vert\vert_p. \end{aligned}$$

Fractional Sobolev spaces are interpolation spaces between L p(Ω) and W 1, p(Ω).

Definition 6.4.11

Let 1 ≤ p < , 0 < s < 1, and u ∈ L p(Ω). We define

$$\displaystyle \begin{aligned} |u|{}_{W^{s,p}(\varOmega)}=|u|{}_{s,p}=\left(\int_{\varOmega}\int_{\varOmega}\frac{|u(x)-u(y)|{}^p}{ |x-y|{}^{N+sp}}dxdy\right)^{1/p}\leq +\infty. \end{aligned}$$

On the fractional Sobolev space

$$\displaystyle \begin{aligned} W^{s,p}(\varOmega)=\{u\in L^p(\varOmega):\vert u\vert_{W^{s,p}(\varOmega)}< +\infty\}, \end{aligned}$$

we define the norm

$$\displaystyle \begin{aligned} \vert\vert u\vert\vert_{W^{s,p}(\varOmega)}=\vert\vert u\vert\vert_{s,p}=\vert\vert u\vert\vert_{L^p(\varOmega)}+|u|{}_{W^{s,p}(\varOmega)}. \end{aligned}$$

We give, without proof, the characterization of traces due to Gagliardo [26].

Theorem 6.4.12

Let 1 < p < ∞.

  1. (a)

    For every \(u\in W^{1,p}(\mathbb {R}^N)\), \(\gamma _0u\in W^{1-1/p,p}(\mathbb {R}^{N-1})\).

  2. (b)

    The mapping \(\gamma _0:W^{1,p}(\mathbb {R}^N)\rightarrow W^{1-1/p,p}(\mathbb {R}^{N-1})\) is continuous and surjective.

  3. (c)

    The mapping \(\gamma _0:W^{1,1}(\mathbb {R}^N)\rightarrow L^1(\mathbb {R}^{N-1})\) is continuous and surjective.

6.5 Comments

The main references on Sobolev spaces are the books:

  • R. Adams and J. Fournier, Sobolev spaces [1]

  • H. Brezis, Analyse fonctionnelle, théorie et applications [8]

  • V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations [51]

Our proof of the trace inequality follows closely:

  • A.C. Ponce, Elliptic PDEs, measures, and capacities, European Mathematical Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces. We recommend [9] on the history of partial differential equations and [55] on the prehistory of Sobolev spaces.

Because of Poincaré’s inequalities, for every smooth, bounded open connected set Ω, we have that

$$\displaystyle \begin{aligned} \begin{array}{rcl} \lambda_1(\varOmega)& =&\displaystyle \inf \left\{\int_{\varOmega} |\nabla u|{}^2 dx : u \in H^1_0 (\varOmega), \int_{\varOmega} u^2dx=1\right\} > 0,\\ \mu_2 (\varOmega) & =&\displaystyle \inf \left\{\int_{\varOmega} |\nabla u|{}^2 dx : u \in H^1 (\varOmega), \int_{\varOmega} u^2dx=1, \int_{\varOmega} udx = 0 \right\} > 0. \end{array} \end{aligned} $$

Hence the first eigenvalue λ 1(Ω) of Dirichlet’s problem

$$\displaystyle \begin{aligned} \left\{\begin{array}{rl} -\varDelta u &= \lambda u \quad \mathrm{in} \ \varOmega, \\ u&=0 \quad \ \ \mathrm{on} \ \partial \varOmega, \end{array}\right. \end{aligned}$$

and the second eigenvalue μ 2(Ω) of the Neumann problem

$$\displaystyle \begin{aligned} \left\{\begin{array}{rl} -\varDelta u &= \lambda u \quad \mathrm{in} \ \varOmega, \\ n \cdot \nabla u &= 0 \quad \ \ \mathrm{on} \ \partial \varOmega, \end{array}\right. \end{aligned}$$

are strictly positive. Let us denote by B an open ball such that m(B) = m(Ω). Then

$$\displaystyle \begin{aligned} \begin{array}{ll} \lambda_1 (B) \leq \lambda_1 (\varOmega) &\quad (\mbox{Faber--Krahn inequality}), \\ \mu_2 (\varOmega) \leq \mu_2 (B) &\quad (\mbox{Weinberger, 1956}). \end{array} \end{aligned}$$

Moreover, if Ω is convex with diameter d, then

$$\displaystyle \begin{aligned} \pi^2/d^2 \leq \mu_2 (\varOmega) \quad (\mbox{Payne--Weinberger}, 1960). \end{aligned}$$

We prove in Theorem 6.4.9 the weaker estimate

$$\displaystyle \begin{aligned} 1/(2^{N}d^2) \leq \mu_2 (\varOmega). \end{aligned}$$

There exists a bounded, connected open set \(\varOmega \subset \mathbb {R}^2\) such that μ 2(Ω) = 0. Consider on two sides of a square Q, two infinite sequences of small squares connected to Q by very thin pipes.

6.6 Exercises for Chap. 6

  1. 1.

    Let \(\varOmega =B(0,1)\subset \mathbb {R}^N\). Then for λ ≠ 0,

    $$\displaystyle \begin{aligned} \begin{array}{rl} (\lambda -1)p+N>0&\Longleftrightarrow\vert x\vert^{\lambda}\in W^{1,p}(\varOmega),\\ \\ \lambda p+N<0&\Longleftrightarrow\vert x\vert^{\lambda}\in W^{1,p}(\mathbb{R}^N\setminus\overline{\varOmega}),\\ \\ p<N&\Longleftrightarrow\displaystyle{\frac{x}{\vert x\vert}}\in W^{1,p}(\varOmega;\mathbb{R}^N). \end{array} \end{aligned}$$
  2. 2.

    Let 1 < p <  and u ∈ L p(Ω). The following properties are equivalent:

    1. (a)

      u ∈ W 1, p(Ω);

    2. (b)

      \(\sup \displaystyle {\left \{\int _{\varOmega } u~\mathrm {div}~v~dx:v\in \mathcal {D}(\varOmega ,\mathbb {R}^N),\vert \vert v\vert \vert _{L^{p'}(\varOmega )} =1\right \}}<\infty \);

    3. (c)

      there exists c > 0 such that for every ω ⊂⊂ Ω and for every \(y\in \mathbb {R}^N\) such that |y| < d(ω, ∂Ω),

      $$\displaystyle \begin{aligned} \vert\vert\tau_y u-u\vert\vert_{L^p(\omega)}\leq c\vert y\vert . \end{aligned}$$
  3. 3.

    Let 1 ≤ p < N and let Ω be an open subset of \(\mathbb {R}^N\). Define

    Then \(S(\varOmega )=S(\mathbb {R}^N)\).

  4. 4.

    Let 1 ≤ p < N. Then

    $$\displaystyle \begin{aligned} \frac{1}{2^N}S(\mathbb{R}^N)=\inf\left\{ \vert\vert \nabla u\vert\vert_{L^p(\mathbb{R}^N_+)}/\vert\vert u\vert\vert_{L^{p^*}(\mathbb{R}^N_+)}:u\in H^1(\mathbb{R}^N_+)\setminus\{0\}\right\}. \end{aligned}$$
  5. 5.

    Poincaré–Sobolev inequality.

    1. (a)

      Let 1 < p < N, and let Ω be an open bounded connected subset of \(\mathbb {R}^N\) of class \(\mathcal {C}^1\). Then there exists c > 0 such that for every u ∈ W 1, p(Ω),

      where . Hint: Apply Theorem 6.4.4 to .

    2. (b)

      Let A = {u = 0} and assume that m(A) > 0. Then

      $$\displaystyle \begin{aligned} \|u\|{}_{L^{p^*}(\varOmega)} \leq c \left(1+\Big[\frac{m(\varOmega)}{m(A)}\Big]^{1/p^*}\right) \|\nabla u\|{}_{L^p(\varOmega)}. \end{aligned}$$

      Hint:

  6. 6.

    Nash’s inequality. Let N ≥ 3. Then for every \(u\in \mathcal {D}(\mathbb {R}^N)\),

    $$\displaystyle \begin{aligned} \vert\vert u\vert\vert_2^{2+4/N}\leq c\vert\vert u\vert\vert_1^{4/N}\vert\vert\nabla u\vert\vert_2^2. \end{aligned}$$

    Hint: Use the interpolation inequality.

  7. 7.

    Let 1 ≤ p < N and q = p(N − 1)∕(N − p). Then for every \(u\in \mathcal {D}(\overline {\mathbb {R}^N_+})\),

  8. 8.

    Verify that Hardy’s inequality is optimal using the family

    $$\displaystyle \begin{aligned} \begin{array}{llll} u_{\varepsilon}(x)&=1,& &|x|\leq 1,\\ &=|x|{}^{\frac{p-N}{p}-\varepsilon},& &|x|>1. \end{array} \end{aligned}$$
  9. 9.

    Let 1 ≤ p < N. Then \(\mathcal {D}(\mathbb {R}^N\setminus \{0\})\) is dense in \(W^{ 1,p}(\mathbb {R}^N)\).

  10. 10.

    Let 2 ≤ N < p < . Then for every \(u\in W^{1,p}_{0}(\mathbb {R}^N\setminus \{0\})\), \(u/|x|\in L^p(\mathbb {R}^N)\) and

    $$\displaystyle \begin{aligned} \vert\vert u/|x|\vert\vert_{L^p(\mathbb{R}^N)}\leq\frac{p}{p-N}\vert\vert\nabla u\vert\vert_{L^p(\mathbb{R}^N)}. \end{aligned}$$
  11. 11.

    Let 1 ≤ p < . Verify that the embedding \(W^{1,p}(\mathbb {R}^N) \subset L^p(\mathbb {R}^N)\) is not compact. Let 1 ≤ p < N. Verify that the embedding \(W^{1,p}_0(B(0,1))\!\subset \!L^{p^*}(B(0,1))\) is not compact.

  12. 12.

    Let us denote by \(\mathcal {D}_r(\mathbb {R}^N)\) the space of radial functions in \(\mathcal {D}(\mathbb {R}^N)\). Let N ≥ 2 and 1 ≤ p < . Then there exists c(N, p) > 0 such that for every \(u\in \mathcal {D}_r(\mathbb {R}^N)\),

    $$\displaystyle \begin{aligned} \big|u(x)\big|\leq c(N,p)\vert\vert u\vert\vert_p^{1/p'}\vert\vert\nabla u\vert\vert_p^{1/p}|x|{}^{(1-N)/p}. \end{aligned}$$

    Let 1 ≤ p < N. Then there exists d(N, p) > 0 such that for every \(u\in \mathcal {D}_r(\mathbb {R}^N)\),

    $$\displaystyle \begin{aligned} \big|u(x)\big|\leq d(N,p)\vert\vert\nabla u\vert\vert_p|x|{}^{(p-N)/p}. \end{aligned}$$

    Hint: Let us write u(x) = u(r), r = |x|, so that

    $$\displaystyle \begin{aligned} \begin{array}{rl} r^{N-1}\big|u(r)\big|{}^p&\leq p\displaystyle{\int^{\infty}_r \big|u(s)\big|{}^{p-1}\big|\frac{du}{dr}(s)\big|s^{N-1}}ds,\\ \\ \big|u(r)\big|&\leq \displaystyle{\int^{\infty}_r\Big|\frac{du}{dr}(s)\Big| }ds. \end{array} \end{aligned}$$
  13. 13.

    Let us denote by \(W^{1,p}_r(\mathbb {R}^N)\) the space of radial functions in \(W^{1,p}(\mathbb {R}^N)\). Verify that the space \(\mathcal {D}_r(\mathbb {R}^N)\) is dense in \(W_r^{1,p}(\mathbb {R}^N)\).

  14. 14.

    Let 1 ≤ p < N and p < q < p . Verify that the embedding \(W_r^{1,p}(\mathbb {R}^N)\subset L^q(\mathbb {R}^N)\) is compact. Verify also that the embedding \(W^{1,p}_r(\mathbb {R}^N)\subset L^p(\mathbb {R}^N)\) is not compact.

  15. 15.

    Let 1 ≤ p <  and let Ω be an open subset of \(\mathbb {R}^N\). Prove that the map

    $$\displaystyle \begin{aligned} W^{1,p}(\varOmega)\rightarrow W^{1,p}(\varOmega):u\mapsto u^+ \end{aligned}$$

    is continuous. Hint: ∇u + = H(u)∇u, where

    $$\displaystyle \begin{aligned} \begin{array}{lll} H(t)&=1,&\quad t>0,\\ &=0,&\quad t\leq 0. \end{array} \end{aligned}$$
  16. 16.

    Sobolev implies Poincaré. Let Ω be an open subset of \(\mathbb {R}^N\) (N ≥ 2) such that m(Ω) < +, and let 1 ≤ p < +. Then there exists c = c(p, N) such that, for every \(u\in W^{1,p}_0 (\varOmega )\),

    $$\displaystyle \begin{aligned} \|u\|{}_p \leq c \ m (\varOmega)^{1/N} \|\nabla u\|{}_p. \end{aligned}$$

    Hint. (a) If 1 ≤ p < N, then

    $$\displaystyle \begin{aligned} \|u\|{}_p \leq m (\varOmega)^{1/N} \| u\|{}_{p^\ast} \leq c \ m(\varOmega)^{1/N} \|\nabla u\|{}_p. \end{aligned}$$

    (b) If p ≥ N, then

    $$\displaystyle \begin{aligned} \| u\|{}_{p} = \| u\|{}_{q^\ast} \leq c \| \nabla u \|{}_{q} \leq c\ m(\varOmega)^{1/N} \| \nabla u \|{}_{p}. \end{aligned}$$
  17. 17.

    Let Ω be an open bounded convex subset of \(\mathbb {R}^N, N\geq 2\), and \(u\in \mathcal {C}^1 (\varOmega ) \bigcap W^{1,1} (\varOmega )\). Then, for every x ∈ Ω,

    where and d =supx,yΩ |y − x|.

    Hint. Define

    $$\displaystyle \begin{aligned} v(y) &= |\nabla u (y)|&, y \in \varOmega, \qquad \\ &=0 & ,y\in \mathbb{R}^N\backslash \varOmega. \end{aligned}$$
    1. (a)

      \(u(x)-u(y) = \displaystyle \int _0^{|y-x|} \nabla u (x+r\sigma ) \cdot \sigma dr, \ \sigma = {y-x \over |y-x|}\).

    2. (b)
  18. 18.

    Let us define, for every bounded connected open subset Ω of \(\mathbb {R}^N\), and for 1 ≤ p < ,

    For every 1 ≤ p < , there exists a bounded connected open subset Ω of \(\mathbb {R}^2\) such that λ(p, Ω) = 0.

    Hint. Consider on two sides of a square Q two infinite sequences of small squares connected to Q by very thin pipes.

  19. 19.

    Prove that, for every 1 ≤ p < ,

    $$\displaystyle \begin{aligned} \inf \Big\{\lambda (p,\varOmega)\colon \varOmega \ \ \mbox{is a smooth bounded connected open subset of} \ \ \mathbb{R}^2, m(\varOmega)=1\Big \}=0.\end{aligned} $$

    Hint. Consider a sequence of pairs of disks smoothly connected by very thin pipes.

  20. 20.

    Generalized Poincaré’s inequality. Let 1 ≤ p < , let Ω be a smooth bounded connected open subset of \(\mathbb {R}^N\), and let f ∈ [W 1, p(Ω)] be such that

    $$\displaystyle \begin{aligned} <f,1>=1.\end{aligned} $$

    Then there exists c > 0 such that, for every u ∈ W 1, p(Ω),

    $$\displaystyle \begin{aligned} \|u-<f,u>\|{}_p \leq c \|\nabla u\|{}_p. \end{aligned}$$