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Preface to the Second Edition

In this second edition, some improvements have been carried out and supplementary
material has been inserted.

In particular, the section on distribution theory and the chapter on “Topics in
Calculus” have been completely rewritten and extended. New proofs of the density
theorem in the space of functions of bounded variations and of the coarea formula
are given.

In this book, the abstract integration theory depends only on Daniell’s axioms
and, when it is necessary, on Stone axiom, without any other assumption. In this
general framework, we have added in Chap. 3 a proof of Vitali’s characterization
of convergence in L1(�,μ) in terms of equi-integrability and convergence in
measure. In the same chapter, we have added Zabreiko’s theorem on the continuity
of seminorms and its applications to the closed graph theorem and to the open
mapping theorem.

I want to thank my colleagues Jacques Boël, Augusto Ponce, and Jean Van
Schaftingen for their suggestions, and I am particularly obliged to Cathy Brichard
for her help in the realization of this second edition.

Louvain-la-Neuve, Belgium Michel Willem
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Preface to the First Edition

L’induction peut être utilement employêe en Analyse comme un
moyen de dêcouvertes. Mais les formules gênêrales ainsi
obtenues doivent tre ensuite vêrifiêes à l’aide de dêmonstrations
rigoureuses et propres à faire connaître les conditions sous
lesquelles subsistent ces mêmes formules.

Augustin Louis Cauchy

Mathematical analysis leads to exact results by approximate computations. It is
based on the notions of approximation and limit process. For instance, the derivative
is the limit of differential quotients, and the integral is the limit of Riemann sums.

How to compute double limits? In some cases,

∫
�

lim
n→∞un dx = lim

n→∞

∫
�

un dx,

∂

∂xk
lim

n→∞un = lim
n→∞

∂

∂xk
un.

In the preceding formulas, three functional limits and one numerical limit appear.
The first equality leads to the Lebesgue integral (1901), and the second to the
distribution theory of Sobolev (1935) and Schwartz (1945).

In 1906, Fréchet invented an abstract framework for the limiting process: metric
spaces. A metric space is a set X with a distance

d : X × X → R : (u, v) �→ d(u, v)

satisfying some axioms. If the real vector space X is provided with a norm

X → R : u �→ ||u||,

then the formula

d(u, v) = ||u − v||

ix
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defines a distance on X. Finally, if the real vector space X is provided with a scalar
product

X × X → R : (u, v) �→ (u|v),

then the formula

||u|| = √(u|u)

defines a norm on X.
In 1915, Fréchet defined additive functions of sets, or measures. He extended the

Lebesgue integral to abstract sets. In 1918, Daniell proposed a functional definition
of the abstract integral. The elementary integral

L → R : u �→
∫
�

u dμ,

defined on a vector space L of elementary functions on � satisfies certain axioms.
When u is a nonnegative μ-integrable function, its integral is given by the

Cavalieri principle:

∫
�

u dμ =
∫ ∞

0
μ({x ∈ � : u(x) > t})dt.

To measure a set is to integrate its characteristic function:

μ(A) =
∫
�

χA dμ.

In particular, the volume of a Lebesgue-measurable subset A of RN is defined by

m(A) =
∫
RN

χA dx.

A function space is a space whose points are functions. Let 1 ≤ p < ∞. The
real Lebesgue space Lp(�,μ) with the norm

||u||p =
(∫

�

|u|pdμ
)1/p

is a complete normed space, or Banach space. The space L2(�,μ), with the scalar
product

(u|v) =
∫
�

uv dμ,
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is a complete pre-Hilbert space, or Hilbert space.
Duality plays a basic role in functional analysis. The dual of a normed space is

the set of continuous linear functionals on this space. Let 1 < p < ∞ and define p′,
the conjugate exponent of p, by 1/p+1/p′ = 1. The dual of Lp(�,μ) is identified
with Lp′

(�,μ).
Weak derivatives are also defined by duality. Let f be a continuously differen-

tiable function on an open subset � of RN . Multiplying ∂f
∂xk

= g by the test function
u ∈ D(�) and integrating by parts, we obtain

∫
�

f
∂u

∂xk
dx = −

∫
�

g u dx.

The preceding relation retains its meaning if f and g are locally integrable functions
on �. If this relation is valid for every test function u ∈ D(�), then by definition,
g is the weak derivative of f with respect to xk . Like the Lebesgue integral, the
weak derivatives satisfy some simple double-limit rules and are used to define some
complete normed spaces, the Sobolev spaces Wk,p(�).

A distribution is a continuous linear functional on the space of test functions
D(�). Every locally integrable function f on � is characterized by the distribution

D(�) → R : u �→
∫
�

f u dx.

The derivatives of the distribution f are defined by

〈 ∂f

∂xk
, u〉 = −〈f, ∂u

∂xk
〉.

Whereas weak derivatives may not exist, distributional derivatives always exist! In
this framework, Poisson’s theorem in electrostatics becomes

−�

(
1

|x|
)

= 4πδ,

where δ is the Dirac measure on R
3.

The perimeter of a Lebesgue-measurable subset A of RN , defined by duality, is
the variation of its characteristic function:

p(A) = sup

{∫
A

div vdx : v ∈ D(RN ;RN), ‖v‖∞ ≤ 1

}
.

The space of functions of bounded variation BV (RN) contains the Sobolev space
W 1,1(RN).
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Chapter 8 contains many applications to elliptic problems and to analytic or
geometric inequalities. In particular, the isoperimetric inequality and the Faber–
Krahn inequality are proved by purely functional-analytic methods.

The isoperimetric inequality in R
N asserts that the ball has the largest volume

among all domains with fixed perimeter. In R
2, the isoperimetric inequality is

equivalent to

4π m(A) ≤ p(A)2.

The Faber–Krahn inequality asserts that among all domains with fixed volume,
the ball has the lowest fundamental eigenvalue for the Dirichlet problem. This
fundamental eigenvalue is defined by

−�e = λ1e in �,

e > 0 in �,

e = 0 on ∂�.

Our approach is elementary and constructive. Integration theory is based on
only one property: monotone convergence. It appears successively as an axiom,
a definition, and a theorem. The inequalities of Hölder, Minkowski, and Hanner
follow from the same elementary inequality, the convexity inequality. Weak conver-
gence, convergence of test functions, and convergence of distributions are defined
sequentially. The Hahn–Banach theorem is proved constructively in separable
normed spaces and in uniformly convex smooth Banach spaces.

For the convenience of the reader, we recall the Appendix some topics in
calculus. The Epilogue contains historical remarks on the close relations between
functional analysis and the integral and differential calculus.

The readers must have a good knowledge of linear algebra, classical differential
calculus, and the Riemann integral.
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Chapter 1
Distance

1.1 Real Numbers

Analysis is based on the real numbers.

Definition 1.1.1 Let S be a nonempty subset of R. A real number x is an upper
bound of S if for all s ∈ S, s ≤ x. A real number x is the supremum of S if x is an
upper bound of S, and for every upper bound y of S, x ≤ y. A real number x is the
maximum of S if x is the supremum of S and x ∈ S. The definitions of lower bound,
infimum, and minimum are similar. We shall write sup S,max S, inf S, and min S.

Let us recall the fundamental property of R.

Axiom 1.1.2 Every nonempty subset of R that has an upper bound has a supremum.

In the extended real number system, every subset of R has a supremum and an
infimum.

Definition 1.1.3 The extended real number system R = R ∪ {−∞,+∞} has the
following properties:

(a) if x ∈ R, then −∞ < x < +∞ and x+(+∞) = +∞+x = +∞, x+(−∞) =
−∞ + x = −∞;

(b) if x > 0, then x · (+∞) = (+∞) · x = +∞, x · (−∞) = (−∞) · x = −∞;
(c) if x < 0, then x · (+∞) = (+∞) · x = −∞, x · (−∞) = (−∞) · x = +∞.

If S ⊂ R has no upper bound, then sup S = +∞. If S has no lower bound, then
inf S = −∞. Finally, supφ = −∞ and infφ = +∞.

Definition 1.1.4 Let X be a set and F : X → R. We define

sup
X

F = sup
x∈X

F(x) = sup{F(x) : x ∈ X}, inf
X

F = inf
x∈X F(x) = inf{F(x) : x ∈ X}.

© Springer Nature Switzerland AG 2022
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2 1 Distance

Proposition 1.1.5 Let X and Y be sets and f : X × Y → R. Then

sup
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

sup
x∈X

f (x, y), sup
x∈X

inf
y∈Y f (x, y) ≤ inf

y∈Y sup
x∈X

f (x, y).

Definition 1.1.6 A sequence (xn) ⊂ R is increasing if for every n, xn ≤ xn+1.
The sequence (xn) is decreasing if for every n, xn+1 ≤ xn. The sequence (xn) is
monotonic if it is increasing or decreasing.

Definition 1.1.7 The lower limit of (xn) ⊂ R is defined by lim
n→∞xn = sup

k

inf
n≥k

xn.

The upper limit of (xn) is defined by lim
n→∞xn = inf

k
sup
n≥k

xn.

Remarks

(a) The sequence ak = inf
n≥k

xn is increasing, and the sequence bk = sup
n≥k

xn is

decreasing.
(b) The lower limit and the upper limit always exist, and

lim
n→∞xn ≤ lim

n→∞xn.

Proposition 1.1.8 Let (xn), (yn) ⊂ ]−∞,+∞] be such that −∞ < lim
n→∞xn and

−∞ < lim
n→∞yn. Then

lim
n→∞xn + lim

n→∞yn ≤ lim
n→∞ (xn + yn).

Let (xn), (yn) ⊂ [−∞,+∞[ be such that lim
n→∞xn < +∞ and lim

n→∞yn < +∞.

Then

lim
n→∞ (xn + yn) ≤ lim

n→∞xn + lim
n→∞yn.

Definition 1.1.9 A sequence (xn) ⊂ R converges to x ∈ R if for every ε > 0, there
exists m ∈ N such that for every n ≥ m, |xn − x| ≤ ε. We then write lim

n→∞xn = x.

The sequence (xn) is a Cauchy sequence if for every ε > 0, there exists m ∈ N

such that for every j, k ≥ m, |xj − xk| ≤ ε.

Theorem 1.1.10 The following properties are equivalent:

(a) (xn) converges;
(b) (xn) is a Cauchy sequence;
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(c) −∞ < lim
n→∞xn ≤ lim

n→∞xn < +∞.

If any and hence all of these properties hold, then lim
n→∞ xn= lim

n→∞xn= lim
n→∞xn.

Let us give a sufficient condition for convergence.

Theorem 1.1.11 Every increasing and majorized, or decreasing and minorized,
sequence of real numbers converges.

Remark Every increasing sequence of real numbers that is not majorized converges
in R to +∞. Every decreasing sequence of real numbers that is not minorized
converges in R to −∞. Hence, if (xn) is increasing, then

lim
n→∞ xn = sup

n
xn,

and if (xn) is decreasing, then

lim
n→∞ xn = inf

n
xn.

In particular, for every sequence (xn) ⊂ R,

lim
n→∞xn = lim

k→∞ inf
n≥k

xn

and

lim
n→∞xn = lim

k→∞ sup
n≥k

xn.

Definition 1.1.12 The series
∞∑
n=0

xn converges, and its sum is x ∈ R if the sequence

k∑
n=0

xn converges to x. We then write
∞∑
n=0

xn = x.

Theorem 1.1.13 The following statements are equivalent:

(a)
∞∑
n=0

xn converges;

(b) lim
j→∞
j<k

k∑
n=j+1

xn = 0.
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Theorem 1.1.14 Let (xn) be such that
∞∑
n=0

|xn| converges. Then
∞∑
n=0

xn converges

and
∣∣∣∣∣

∞∑
n=0

xn

∣∣∣∣∣ ≤
∞∑
n=0

|xn|.

1.2 Metric Spaces

Metric spaces were created by Maurice Fréchet in 1906.

Definition 1.2.1 A distance on a set X is a function

X × X → R : (u, v) → d(u, v)

such that

(D1) for every u, v ∈ X, d(u, v) = 0 ⇐⇒ u = v;
(D2) for every u, v ∈ X, d(u, v) = d(v, u);
(D3) (triangle inequality) for every u, v,w ∈ X, d(u,w) ≤ d(u, v) + d(v,w).

A metric space is a set together with a distance on that set.

Examples

1. Let (X, d) be a metric space and let S ⊂ X. The set S together with d (restricted
to S × S) is a metric space.

2. Let (X1, d1) and (X2, d2) be metric spaces. The set X1 × X2 together with

d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}

is a metric space.
3. We define the distance on the space R

N to be

d(x, y) = max{|x1 − y1|, . . . , |xn − yn|}.

4. We define the distance on the space C([0, 1]) = {u : [0, 1] → R : u is
continuous} to be

d(u, v) = max
x∈[0,1] |u(x) − v(x)|.
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Definition 1.2.2 Let X be a metric space. A sequence (un) ⊂ X converges to u ∈
X if

lim
n→∞ d(un, u) = 0.

We then write lim
n→∞un = u or un → u, n → ∞. The sequence (un) is a Cauchy

sequence if

lim
j,k→∞ d(uj , uk) = 0.

The sequence (un) is bounded if

sup
n

d(u0, un) < ∞.

Proposition 1.2.3 Every convergent sequence is a Cauchy sequence. Every Cauchy
sequence is a bounded sequence.

Proof If (un) converges to u, then by the triangle inequality, it follows that

0 ≤ d(uj , uk) ≤ d(uj , u) + d(u, uk)

and lim
j,k→∞d(uj , uk) = 0.

If (un) is a Cauchy sequence, then there exists m such that for j, k ≥ m,
d(uj , uk) ≤ 1. We obtain for every n that

d(u0, un) ≤ max{d(u0, u1), . . . , d(u0, um−1), d(u0, um) + 1}. ��

Definition 1.2.4 A sequence (unj
) is a subsequence of a sequence (un) if for every

j , nj < nj+1.

Definition 1.2.5 Let X be a metric space. The space X is complete if every Cauchy
sequence in X converges. The space X is precompact if every sequence in X

contains a Cauchy subsequence. The space X is compact if every sequence in X

contains a convergent subsequence.

Remark

(a) Completeness allows us to prove the convergence of a sequence without using
the limit.

(b) Compactness will be used to prove existence theorems and to find hidden
uniformities.

The proofs of the next propositions are left to the reader.
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Proposition 1.2.6 Every Cauchy sequence containing a convergent subsequence
converges. Every subsequence of a convergent, Cauchy, or bounded sequence
satisfies the same property.

Proposition 1.2.7 A metric space is compact if and only if it is precompact and
complete.

Theorem 1.2.8 The real line R, with the usual distance, is complete.

Example (A Noncomplete Metric Space) We define the distance on X = C([0, 1])
to be

d(u, v) =
∫ 1

0
|u(x) − v(x)| dx.

Every sequence (un) ⊂ X such that

(a) for every x and for every n, un(x) ≤ un+1(x);

(b) sup
n

∫ 1

0
un(x)dx = lim

n→∞

∫ 1

0
un(x)dx < +∞;

is a Cauchy sequence. Indeed, we have that

lim
j,k→∞

∫ 1

0
|uj (x) − uk(x)|dx = lim

j,k→∞ |
∫ 1

0
(uj (x) − uk(x))dx| = 0.

But X with d is not complete, since the sequence defined by

un(x) = min{n, 1/
√
x}

satisfies (a) and (b) but is not convergent. Indeed, assuming that (un) converges to u

in X, we obtain, for 0 < ε < 1, that

∫ 1

ε
|u(x) − 1/

√
x|dx = lim

n→∞

∫ 1

ε
|u(x) − un(x)|dx ≤ lim

n→∞

∫ 1

0
|u(x) − un(x)|dx = 0.

But this is impossible, since u(x) = 1/
√
x has no continuous extension at 0.

Definition 1.2.9 Let X be a metric space, u ∈ X, and r > 0. The open and closed
balls of center u and radius r are defined by

B(u, r) = {v ∈ X : d(v, u) < r}, B[u, r] = {v ∈ X : d(v, u) ≤ r}.

The subset S of X is open if for all u ∈ S, there exists r > 0 such that B(u, r) ⊂ S.
The subset S of X is closed if X \ S is open.
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Example Open balls are open; closed balls are closed.

Proposition 1.2.10 The union of every family of open sets is open. The intersection
of a finite number of open sets is open. The intersection of every family of closed
sets is closed. The union of a finite number of closed sets is closed.

Proof The properties of open sets follow from the definition. The properties of
closed sets follow by considering complements. ��

Definition 1.2.11 Let S be a subset of a metric space X. The interior of S, denoted

by S
◦
, is the largest open set of X contained in S. The closure of S, denoted by S, is the

smallest closed set of X containing S. The boundary of S is defined by ∂S = S \ S
◦
.

The set S is dense if S = X.

Proposition 1.2.12 Let X be a metric space, S ⊂ X, and u ∈ X. Then the following
properties are equivalent:

(a) u ∈ S;
(b) for all r > 0, B(u, r) ∩ S �= φ;
(c) there exists (un) ⊂ S such that un → u.

Proof It is clear that (b) ⇔ (c). Assume that u �∈ S. Then there exists a closed
subset F of X such that u �∈ F and S ⊂ F . By definition, then exists r > 0
such that B(u, r) ∩ S = φ. Hence (b) implies (a). If there exists r > 0 such that
B(u, r)∩S = φ, then F = X \B(u, r) is a closed subset containing S. We conclude
that u �∈ S. Hence (a) implies (b). ��

Theorem 1.2.13 (Baire’s Theorem) In a complete metric space, every intersection
of a sequence of open dense subsets is dense.

Proof Let (Un) be a sequence of dense open subsets of a complete metric space X.
We must prove that for every open ball B of X, B ∩ (∩∞

n=0Un

) �= φ. Since B ∩ U0
is open (Proposition 1.2.10) and nonempty (density of U0), there is a closed ball
B[u0, r0] ⊂ B ∩ U0. By induction, for every n, there is a closed ball

B[un, rn] ⊂ B(un−1, rn−1) ∩ Un

such that rn ≤ 1/n. Then (un) is a Cauchy sequence. Indeed, for j, k ≥ n,
d(uj , uk) ≤ 2/n. Since X is complete, (un) converges to u ∈ X. For j ≥ n,
uj ∈ B[un, rn], so that for every n, u ∈ B[un, rn]. It follows that u ∈ B∩(∩∞

n=0Un

)
.

��

Example Let us prove that R is uncountable. Assume that (rn) is an enumeration of
R. Then for every n, the set Un = R \ {rn} is open and dense. But then

⋂∞
n=1 Un is

dense and empty. This is a contradiction.
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Definition 1.2.14 Let X be a metric space with distance d and let S ⊂ X. The
subset S is complete, precompact, or compact if S with distance d is complete,
precompact, or compact. A covering of S is a family F of subsets of X such that the
union of F contains S.

Proposition 1.2.15 Let X be a complete metric space and let S ⊂ X. Then S is
closed if and only if S is complete.

Proof It suffices to use Proposition 1.2.12 and the preceding definition. ��

Theorem 1.2.16 (Fréchet’s Criterion, 1910) Let X be a metric space and let S ⊂
X. The following properties are equivalent:

(a) S is precompact;
(b) for every ε > 0, there is a finite covering of S by balls of radius ε.

Proof Assume that S satisfies (b). We must prove that every sequence (un) ⊂ S

contains a Cauchy subsequence. Cantor’s diagonal argument will be used. There
is a ball B1 of radius 1 containing a subsequence (u1,n) from (un). By induction,
for every k, there is a ball Bk of radius 1/k containing a subsequence (uk,n) from
(uk−1,n). The sequence vn = un,n is a Cauchy sequence. Indeed, for m, n ≥ k,
vm, vn ∈ Bk and d(vm, vn) ≤ 2/k.

Assume that (b) is not satisfied. There then exists ε > 0 such that S has no finite
covering by balls of radius ε. Let u0 ∈ S. There is u1 ∈ S \ B[u0, ε]. By induction,
for every k, there is

uk ∈ S \
k−1⋃
j=0

B[uj , ε].

Hence for j < k, d(uj , uk) ≥ ε, and the sequence (un) contains no Cauchy
subsequence. ��

Every precompact space is separable.

Definition 1.2.17 A metric space is separable if it contains a countable dense
subset.

Proposition 1.2.18 Let X and Y be separable metric spaces, and let S be a
subset of X.

(a) The space X × Y is separable.
(b) The space S is separable.

Proof Let (en) and (fn) be sequences dense in X and Y . The family {(en, fk) :
(n, k) ∈ N

2} is countable and dense in X × Y . Let

F = {(n, k) ∈ N
2 : k ≥ 1, B(en, 1/k) ∩ S �= φ}.
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For every (n, k) ∈ F, we choose fn,k ∈ B(en, 1/k) ∩ S. The family {fn,k : (n, k) ∈
F} is countable and dense in S. ��

1.3 Continuity

Let us define continuity using distances.

Definition 1.3.1 Let X and Y be metric spaces. A mapping u : X → Y is
continuous at y ∈ X if for every ε > 0, there exists δ > 0 such that

sup{dY (u(x), u(y)) : x ∈ X, dX(x, y) ≤ δ} ≤ ε. (∗)

The mapping u is continuous if it is continuous at every point of X. The mapping u

is uniformly continuous if for every ε > 0, there exists δ > 0 such that

ωu(δ) = sup{dY (u(x), u(y)) : x, y ∈ X, dX(x, y) ≤ δ} ≤ ε.

The function ωu is the modulus of continuity of u.

Remark It is clear that uniform continuity implies continuity. In general, the
converse is false. We shall prove the converse when the domain of the mapping
is a compact space.

Example The distance d : X × X → R is uniformly continuous, since

|d(x1, x2) − d(y1, y2)| ≤ 2 max{d(x1, y1), d(x2, y2)}.

Lemma 1.3.2 Let X and Y be metric spaces, u : X → Y , and y ∈ X. The following
properties are equivalent:

(a) u is continuous at y;
(b) if (yn) converges to y in X, then (u(yn)) converges to u(y) in Y .

Proof Assume that u is not continuous at y. Then there is ε > 0 such that for every
n, there exists yn ∈ X such that

dX(yn, y) ≤ 1/n and dY (u(yn), u(y)) > ε.

But then (yn) converges to y in X and (u(yn)) is not convergent to u(y).
Let u be continuous at y and (yn) converging to y. Let ε > 0. There exists

δ > 0 such that (∗) is satisfied, and there exists m such that for every n ≥ m,
dX(yn, y) ≤ δ. Hence for n ≥ m, dY (u(yn), u(y)) ≤ ε. Since ε > 0 is arbitrary,
(u(yn)) converges to u(y). ��
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Proposition 1.3.3 Let X and Y be metric spaces, K a compact subset of X, and u :
X → Y a continuous mapping, constant on X \K . Then u is uniformly continuous.

Proof Assume that u is not uniformly continuous. Then there is ε > 0 such that for
every n, there exist xn ∈ X and yn ∈ K such that

dX(xn, yn) ≤ 1/n and dY (u(xn), u(yn)) > ε.

By compactness, there is a subsequence (ynk
) converging to y. Hence (xnk

)

converges also to y. It follows from the continuity of u at y and from the preceding
lemma that

ε ≤ lim
k→∞dY (u(xnk

), u(ynk
))

≤ lim
k→∞dY (u(xnk

), u(y)) + lim
k→∞dY (u(y), u(ynk

)) = 0.

This is a contradiction. ��

Lemma 1.3.4 Let X be a set and F : X → ]−∞,+∞] a function. Then there
exists a sequence (yn) ⊂ X such that lim

n→∞F(yn) = inf
X

F . The sequence (yn) is

called a minimizing sequence.

Proof If c = inf
X

F ∈ R, then for every n ≥ 1, there exists yn ∈ X such that

c ≤ F(yn) ≤ c + 1/n.

If c = −∞, then for every n ≥ 1, there exists yn ∈ X such that

F(yn) ≤ −n.

In both cases, the sequence (yn) is a minimizing sequence. If c = +∞, the result is
obvious. ��

Proposition 1.3.5 Let X be a compact metric space, and let F : X → R be a
continuous function. Then F is bounded, and there exists y, z ∈ X such that

F(y) = min
X

F, F (z) = max
X

F.

Proof Let (yn) ⊂ X be a minimizing sequence: lim
n→∞F(yn) = inf

X
F . There is a

subsequence (ynk
) converging to y. We obtain

F(y) = lim
k→∞F(ynk

) = inf
X

F.

Hence y minimizes F on X. To prove the existence of z, consider −F . ��
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The preceding proof suggests a generalization of continuity.

Definition 1.3.6 Let X be a metric space. A function F : X → ]−∞,+∞] is
lower semicontinuous (l.s.c.) at y ∈ X if for every sequence (yn) converging to y in
X,

F(y) ≤ lim
n→∞F(yn).

The function F is lower semicontinuous if it is lower semicontinuous at every point
of X. A function F : X → [−∞,+∞[ is upper semicontinuous (u.s.c.) at y ∈ X if
for every sequence (yn) converging to y in X,

lim
n→∞F(yn) ≤ F(y).

The function F is upper semicontinuous if it is upper semicontinuous at every point
of X.

Remark A function F : X → R is continuous at y ∈ X if and only if F is both
l.s.c. and u.s.c. at y.

Let us generalize the preceding proposition.

Proposition 1.3.7 Let X be a compact metric space and let F : X →]−∞,∞] be
an l.s.c. function. Then F is bounded from below, and there exists y ∈ X such that

F(y) = min
X

F.

Proof Let (yn) ⊂ X be a minimizing sequence. There is a subsequence (ynk
)

converging to y. We obtain

F(y) ≤ lim
k→∞

F(ynk
) = inf

X
F.

Hence y minimizes F on X. ��
When X is not compact, the situation is more delicate.

Theorem 1.3.8 (Ekeland’s Variational Principle) Let X be a complete metric
space, and let F : X → ]−∞,+∞] be an l.s.c. function such that c = infX F ∈ R.
Assume that ε > 0 and z ∈ X are such that

F(z) ≤ inf
X

F + ε.

Then there exists y ∈ X such that

(a) F(y) ≤ F(z);
(b) d(y, z) ≤ 1;
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(c) for every x ∈ X \ {y}, F (y) − ε d(x, y) < F(x).

Proof Let us define inductively a sequence (yn). We choose y0 = z and

yn+1 ∈ Sn = {x ∈ X : F(x) ≤ F(yn) − ε d(yn, x)}

such that

F(yn+1) − inf
Sn

F ≤ 1

2

[
F(yn) − inf

Sn
F

]
. (∗)

Since for every n,

ε d(yn, yn+1) ≤ F(yn) − F(yn+1),

we obtain

c ≤ F(yn+1) ≤ F(yn) ≤ F(y0) = F(z),

and for every k ≥ n,

ε d(yn, yk) ≤ F(yn) − F(yk). (∗∗)

Hence

lim
n→∞
k≥n

d(yn, yk) = 0.

Since X is complete, the sequence (yn) converges to y ∈ X. Since F is l.s.c., we
have

F(y) ≤ lim
n→∞F(yn) ≤ F(z).

It follows from (∗∗) that for every n,

ε d(yn, y) ≤ F(yn) − F(y).

In particular, for every n, y ∈ Sn, and for n = 0,

ε d(z, y) ≤ F(z) − F(y) ≤ c + ε − c = ε.

Finally, assume that

F(x) ≤ F(y) − ε d(x, y).
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The fact that y ∈ Sn implies that x ∈ Sn. By (∗), we have

2F(yn+1) − F(yn) ≤ inf
Sn

F ≤ F(x),

so that

F(y) ≤ lim
n→∞F(yn) ≤ F(x).

We conclude that x = y, because

ε d(x, y) ≤ F(y) − F(x) ≤ 0. ��

Definition 1.3.9 Let X be a set. The upper envelope of a family of functions Fj :
X → ]−∞,∞], j ∈ J , is defined by

(
sup
j∈J

Fj

)
(x) = sup

j∈J
Fj (x).

Proposition 1.3.10 The upper envelope of a family of l.s.c. functions at a point of
a metric space is l.s.c. at that point.

Proof Let Fj : X → ] − ∞,+∞] be a family of l.s.c. functions at y. By
Proposition 1.1.5, we have, for every sequence (yn) converging to y,

sup
j

Fj (y) ≤ sup
j

lim
n→∞Fj (yn) = sup

j

sup
k

inf
m

Fj (ym+k)

≤ sup
k

inf
m

sup
j

Fj (ym+k) = lim
n→∞ sup

j

Fj (yn).

Hence sup
j

Fj is l.s.c. at y. ��

Proposition 1.3.11 The sum of two l.s.c. functions at a point of a metric space is
l.s.c. at this point.

Proof Let F,G : X → ]−∞,∞] be l.s.c. at y. By Proposition 1.1.8, we have for
every sequence (yn) converging to y that

F(y) + G(y) ≤ lim
n→∞F(yn) + lim

n→∞G(yn) ≤ lim
n→∞ (F (yn) + G(yn)).

Hence F + G is l.s.c. at y. ��
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Proposition 1.3.12 Let F : X → ] − ∞,∞]. The following properties are
equivalent:

(a) F is l.s.c;
(b) for every t ∈ R, {F > t} = {x ∈ X : F(x) > t} is open.

Proof Assume that F is not l.s.c. Then there exists a sequence (xn) converging to x

in X, and there exists t ∈ R such that

lim
n→∞F(xn) < t < F(x).

Hence for every r > 0, B(x, r) �⊂ {F > t}, and {F > t} is not open.
Assume that {F > t} is not open. Then there exists a sequence (xn) converging

to x in X such that for every n,

F(xn) ≤ t < F(x).

Hence lim
n→∞F(xn) < F(x) and F is not l.s.c. at x. ��

Theorem 1.3.13 Let X be a complete metric space, and let (Fj : X → R)j∈J be a
family of l.s.c. functions such that for every x ∈ X,

sup
j∈J

Fj (x) < +∞. (∗)

Then there exists a nonempty open subset V of X such that

sup
j∈J

sup
x∈V

Fj (x) < +∞.

Proof By Proposition 1.3.10, the function F = sup
j∈J

Fj is l.s.c. The preceding

proposition implies that for every n, Un = {F > n} is open. By (∗),
∞⋂
n=1

Un = φ.

Baire’s theorem implies the existence of n such that Un is not dense. But then
{F ≤ n} contains a nonempty open subset V . ��

Definition 1.3.14 The characteristic function of A ⊂ X is defined by

χA(x) = 1, x ∈ A,

= 0, x ∈ X \ A.

Proposition 1.3.15 Let X be a metric space and A ⊂ X. Then

A is open ⇐⇒ χA is l.s.c.; A is closed ⇐⇒ χA is u.s.c.
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Definition 1.3.16 Let S be a nonempty subset of a metric space X. The distance of
x to S is defined on X by d(x, S) = inf

s∈S d(x, s).

Proposition 1.3.17 The function “distance to S” is uniformly continuous on X.

Proof Let x, y ∈ X and s ∈ S. Since d(x, s) ≤ d(x, y) + d(y, s), we obtain

d(x, S) ≤ inf
s∈S (d(x, y) + d(y, s)) = d(x, y) + d(y, S).

We conclude by symmetry that |d(x, S) − d(y, S)| ≤ d(x, y). ��

Definition 1.3.18 Let Y and Z be subsets of a metric space. The distance from Y

to Z is defined by d(Y,Z) = inf{d(y, z) : y ∈ Y, z ∈ Z}.

Proposition 1.3.19 Let Y be a compact subset, and let Z be a closed subset of a
metric space X such that Y ∩ Z = φ. Then d(Y,Z) > 0.

Proof Assume that d(Y,Z) = 0. Then there exist sequences (yn) ⊂ Y and (zn) ⊂
Z such that d(yn, zn) → 0. By passing, if necessary, to a subsequence, we can
assume that yn → y. But then d(y, zn) → 0 and y ∈ Y ∩ Z. ��

1.4 Convergence

Definition 1.4.1 Let X be a set and let Y be a metric space. A sequence of mappings
un : X → Y converges simply to u : X → Y if for every x ∈ X,

lim
n→∞ d(un(x), u(x)) = 0.

The sequence (un) converges uniformly to u if

lim
n→∞ sup

x∈X
d(un(x), u(x)) = 0.

Remarks

(a) Clearly, uniform convergence implies simple convergence.
(b) The converse is false in general. Let X = ]0, 1[, Y = R, and un(x) = xn. The

sequence (un) converges simply but not uniformly to 0.
(c) We shall prove a partial converse due to Dini.

Notation Let un : X → R be a sequence of functions. We write un ↑ u when for
every x and for every n, un(x) ≤ un+1(x) and
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u(x) = sup
n

un(x) = lim
n→∞ un(x).

We write un ↓ u when for every x and every n, un+1(x) ≤ un(x) and

u(x) = inf
n

un(x) = lim
n→∞ un(x).

Theorem 1.4.2 (Dini) Let X be a compact metric space, and let un : X → R be a
sequence of continuous functions such that

(a) un ↑ u or un ↓ u;
(b) u : X → R is continuous.

Then (un) converges uniformly to u.

Proof Assume that

0 < lim
n→∞ sup

x∈X
|un(x) − u(x)| = inf

n≥0
sup
x∈X

|un(x) − u(x)|.

There exist ε > 0 and a sequence (xn) ⊂ X such that for every n,

ε ≤ |un(xn) − u(xn)|.

By monotonicity, we have for 0 ≤ m ≤ n that

ε ≤ |um(xn) − u(xn)|.

By compactness, there exists a sequence (xnk
) converging to x. By continuity, we

obtain for every m ≥ 0,

ε ≤ |um(x) − u(x)|.

But then (un) is not simply convergent to u. ��

Example (Dirichlet Function) Let us show by an example that two simple limits
suffice to destroy every point of continuity. Dirichlet’s function

u(x) = lim
m→∞ lim

n→∞(cosπm!x)2n

is equal to 1 when x is rational and to 0 when x is irrational. This function
is everywhere discontinuous. Let us prove that uniform convergence preserves
continuity.

Proposition 1.4.3 Let X and Y be metric spaces, y ∈ X, and un : X → Y a
sequence such that
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(a) (un) converges uniformly to u on X;
(b) for every n, un is continuous at y.

Then u is continuous at y.

Proof Let ε > 0. By assumption, there exist n and δ > 0 such that

sup
x∈X

d(un(x), u(x)) ≤ ε and sup
x∈B[y,δ]

d(un(x), un(y)) ≤ ε.

Hence for every x ∈ B[y, δ],

d(u(x), u(y)) ≤ d(u(x), un(x)) + d(un(x), un(y)) + d(un(y), u(y)) ≤ 3ε.

Since ε > 0 is arbitrary, u is continuous at y. ��

Definition 1.4.4 Let X be a set and let Y be a metric space. On the space of bounded
mappings from X to Y ,

B(X, Y ) = {u : X → Y : sup
x,y∈X

d(u(x), u(y)) < ∞},

we define the distance of uniform convergence

d(u, v) = sup
x∈X

d(u(x), v(x)).

Proposition 1.4.5 Let X be a set and let Y be a complete metric space. Then the
space B(X, Y ) is complete.

Proof Assume that (un) is such that

lim
j,k→∞ sup

x∈X
d(uj (x), uk(x)) = 0.

Then for every x ∈ X,

lim
j,k→∞ d(uj (x), uk(x)) = 0,

and the sequence (un(x)) converges to a limit u(x). Let ε > 0. There exists m such
that for j, k ≥ m and x ∈ X,

d(uj (x), uk(x)) ≤ ε.

By continuity of the distance, we obtain, for k ≥ m and x ∈ X,

d(u(x), uk(x)) ≤ ε.
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Hence for k ≥ m,

sup
x∈X

d(u(x), uk(x)) ≤ ε.

Since ε > 0 is arbitrary, (un) converges uniformly to u. It is clear that u is bounded.
��

Corollary 1.4.6 (Weierstrass Test) Let X be a set, and let un : X → R be a
sequence of functions such that

c =
∞∑
n=1

sup
x∈X

|un(x)| < +∞.

Then the series
∞∑
n=1

un converges absolutely and uniformly on X.

Proof It is clear that for every x ∈ X,
∞∑
n=1

|un(x)| ≤ c < ∞. Let us write vj =
j∑

n=1

un. By assumption, we have for j < k that

sup
x∈X

|vj (x) − vk(x)| = sup
x∈X

|
k∑

n=j+1

un(x)| ≤
k∑

n=j+1

sup
x∈X

|un(x)| → 0, j → ∞.

Hence lim
j,k→∞d(vj , vk) = 0, and (vj ) converges uniformly on X. ��

Example (Lebesgue Function) Let us show by an example that a uniform limit
suffices to destroy every point of differentiability. Let us define

f (x) =
∞∑
n=1

1

2n
sin 2n2

x =
∞∑
n=1

un(x).

Since for every n, sup
x∈R

|un(x)| = 2−n, the convergence is uniform, and the function

f is continuous on R. Let x ∈ R and h± = ±π/2m2+1. A simple computation
shows that for n ≥ m + 1, un(x + h±) − un(x) = 0 and

um(x + h±) − um(x)

h±
= 2m2−m+1

π
[cos 2m2

x ∓ sin 2m2
x].
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Let us choose h = h+ or h = h− such that the absolute value of the expression in
brackets is greater than or equal to 1. By the mean value theorem,

∣∣∣∣∣
m−1∑
n=1

un(x + h) − un(x)

h

∣∣∣∣∣ ≤
m−1∑
n=1

2n2−n < 2(m−1)2−(m−1)+1 = 2m2−3m+3.

Hence

2m2−m+1

π
− 2m2−3m+3 ≤

∣∣∣∣∣
m∑

n=1

un(x + h) − un(x)

h

∣∣∣∣∣ =
∣∣∣∣f (x + h) − f (x)

h

∣∣∣∣ ,

and for every ε > 0,

sup
0<|h|<ε

∣∣∣∣f (x + h) − f (x)

h

∣∣∣∣ = +∞.

The Lebesgue function is everywhere continuous and nowhere differentiable.
Uniform convergence of the derivatives preserves differentiability.

1.5 Comments

Our main references on functional analysis are the three classical works

– S. Banach, Théorie des opérations linéaires [6],
– F. Riesz and B.S. Nagy, Leç ons d’analyse fonctionnelle [62],
– H. Brezis, Analyse fonctionnelle, théorie et applications [8].

The proof of Ekeland’s variational principle [20] in Sect. 1.3 is due to Crandall [21].
The proof of Baire’s theorem, Theorem 1.2.13, depends implicitly on the axiom

of choice. We need only the following weak form.

Axiom of Dependent Choices Let S be a nonempty set, and let R ⊂ S×S be such
that for each a ∈ S, there exists b ∈ S satisfying (a, b) ∈ S. Then there is a sequence
(an) ⊂ S such that (an−1, an) ∈ R, n = 1, 2, . . . .

We use the notation of Theorem 1.2.13. On

S = {(m, u, r) : m ∈ N, u ∈ X, r > 0, B(u, r) ⊂ B
}
,

we define the relation R by

(
(m, u, r) , (n, v, s)

) ∈ R
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if and only if n = m + 1, s ≤ 1/n, and

B[v, s] ⊂ B(u, r) ∩ (

n⋂
j=1

Uj ).

Baire’s theorem follows then directly from the axiom of dependent choices.
In 1977, C.E. Blair proved that Baire’s theorem implies the axiom of dependent

choices, Bull. Acad. Polon. Sci. Série Sc. Math. Astr. Phys. 25 (1977) 933–934.
The reader will verify that the axiom of dependent choices is the only principle

of choice that we use in this book.

1.6 Exercises for Chap. 1

La mathématique est une science de problèmes.

Georges Bouligand

1. Every sequence of real numbers contains a monotonic subsequence. Hint: Let

E = {n ∈ N : for every k ≥ n, xk ≤ xn}.

If E is infinite, (xn) contains a decreasing subsequence. If E is finite, (xn)

contains an increasing subsequence.
2. Every bounded sequence of real numbers contains a convergent subsequence.
3. Let (Kn) be a decreasing sequence of compact sets and U an open set in a

metric space such that
∞⋂
n=1

Kn ⊂ U . Then there exists n such that Kn ⊂ U .

4. Let (Un) be an increasing sequence of open sets and K a compact set in a metric

space such that K ⊂
∞⋃
n=1

Un. Then there exists n such that K ⊂ Un.

5. Define a sequence (Sn) of dense subsets of R such that
∞⋂
n=1

Sn = φ. Define a

family (Uj )j∈J of open dense subsets of R such that
⋂
j∈J

Uj = φ.

6. In a complete metric space, every countable union of closed sets with empty
interior has an empty interior. Hint: Use Baire’s theorem.

7. Dirichlet’s function is l.s.c. on R \ Q and u.s.c. on Q.
8. Let (un) be a sequence of functions defined on [a, b] and such that for every n,

a ≤ x ≤ y ≤ b ⇒ un(x) ≤ un(y).
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Assume that (un) converges simply to u ∈ C([a, b]). Then (un) converges
uniformly to u.

9. (Banach fixed-point theorem) Let X be a complete metric space, and let f :
X → X be such that

Lip(f ) = sup{d(f (x), f (y))/d(x, y) : x, y ∈ X, x �= y} < 1.

Then there exists one and only one x ∈ X such that f (x) = x. Hint: Consider
a sequence defined by x0 ∈ X, xn+1 = f (xn).

10. (McShane’s extension theorem) Let Y be a subset of a metric space X, and let
f : Y → R be such that

λ = Lip(f ) = sup{|f (x) − f (y)|/d(x, y) : x, y ∈ Y, x �= y} < +∞.

Define on X

g(x) = sup{f (y) − λd(x, y) : y ∈ Y }.

Then g
∣∣
y

= f and

Lip(g) = sup{|g(x) − g(y)/d(x, y) : x, y ∈ X, x �= y} = Lip(f ).

11. (Fréchet’s extension theorem) Let Y be a dense subset of a metric space X, and
let f : Y → [0,+∞] be an l.s.c. function. Define on X

g(x) = inf

{
lim

n→∞f (xn) : (xn) ⊂ Y and xn → x

}
.

Then g is l.s.c., g
∣∣
Y

= f , and for every l.s.c. function h : X → [0,+∞] such
that h

∣∣
Y

= f , h ≤ g.
12. Let X be a metric space and u : X → [0,+∞] an l.s.c. function such that

u �≡ +∞. Define

un(x) = inf{u(y) + n d(x, y) : y ∈ X}.

Then un ↑ u, and for every x, y ∈ X, |un(x) − un(y)| ≤ n d(x, y).
13. Let X be a metric space and v : X → ]−∞,∞]. Then v is l.s.c. if and only

if there exists a sequence (vn) ⊂ C(X) such that vn ↑ v. Hint: Consider the
function u = π

2 + tan−1v.
14. (Sierpiński, 1921.) Let X be a metric space and u : X → R. The following

properties are equivalent:
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(a) There exists (un) ⊂ C(X) such that for every x ∈ X,
∞∑
n=1

|un(x)| < ∞ and

u(x) =
∞∑
n=1

un(x).

(b) There exists f, g : X → [0,+∞[ l.s.c. such that for every x ∈ X, u(x) =
f (x) − g(x).

15. We define

X = {u :]0, 1[→ R : u is bounded and continuous}.

We define the distance on X to be

d(u, v) = sup
x∈]0,1[

|u(x) − v(x)|.

What are the interior and the closure of

Y = {u ∈ X : u is uniformly continuous}?



Chapter 2
The Integral

Le vrai est simple et clair ; et quand notre manière d’y arriver
est embarrassée et obscure, on peut dire qu’elle mène au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1 Let Ω be an open subset of RN . We define

C(Ω) = {u : Ω → R : u is continuous},

K(Ω) = {u ∈ C(RN) : spt u is a compact subset of Ω}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from 0.

Let u ∈ K(RN). By definition, there is R > 1 such that

spt u ⊂ {x ∈ R
N : |x|∞ ≤ R − 1}.

Let us define the Riemann sums of u:

Sj = 2−jN
∑
k∈ZN

u(k/2j ).
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The factor 2−jN is the volume of the cube with side 2−j in R
N . Let C = [0, 1]N

and let us define the Darboux sums of u:

Aj = 2−jN
∑
k∈ZN

min{u(x) : 2j x−k ∈ C}, Bj = 2−jN
∑
k∈ZN

max{u(x) : 2j x−k ∈ C}.

Let ε > 0. By uniform continuity, there is j such that ωu(1/2j ) ≤ ε. Observe that

Bj − Aj ≤ (2R)Nε,Aj−1 ≤ Aj ≤ Sj ≤ Bj ≤ Bj−1.

The Cauchy integral of u is defined by

∫
RN

u(x)dx = lim
j→∞ Sj = lim

j→∞Aj = lim
j→∞Bj .

Theorem 2.1.2 The space K(RN) and the Cauchy integral

ΛN : K(RN) → R : u �→
∫
RN

u dx

are such that

(a) for every u ∈ K(RN), |u| ∈ K(RN);
(b) for every u, v ∈ K(RN) and, every α, β ∈ R,

∫
RN

αu + βv dx = α

∫
RN

u dx + β

∫
RN

v dx;

(c) for every u ∈ K(RN) such that u ≥ 0,
∫
RN

u dx ≥ 0;

(d) for every sequence (un) ⊂ K(RN) such that un ↓ 0, lim
n→∞

∫
RN

un dx = 0.

Proof Properties (a)–(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

spt u0 ⊂ K = {x ∈ R
N : |x|∞ ≤ R − 1}.

By Dini’s theorem, (un) converges uniformly to 0 on K . Hence

0 ≤
∫
RN

undx ≤ (2R)N max
x∈K un(x) → 0, n → ∞. ��

It is not always permitted to permute limit and integral.

Example Let us define (un) ⊂ K(R) by
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un(x) = 2nx(1 − x2)n−1, 0 < x < 1

= 0, x ≤ 0 or x ≥ 1,

where n ≥ 2. Then

(a) for every x ∈ R, lim
n→∞ un(x) = 0;

(b) for every n ≥ 2,
∫
R

un(x)dx = 1;

(c) for every n ≥ 2, spt un = [0, 1].
It is easy to verify (a), since, for every 0 < x < 1,

lim
n→∞

un+1(x)

un(x)
= 1 − x2 < 1,

The fundamental theorem of calculus (Theorem 2.2.38) implies (b).
The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral

satisfying the property of monotone convergence

(a) if (un) is a sequence of integrable functions such that un ↑ u and

sup
n

∫
RN

un dΛN < +∞,

then u(x) = lim un(x) is integrable and

∫
RN

u dΛN = lim
n→∞

∫
RN

un dΛN,

and the property of linearity,
(b) if u and v are integrable functions and if α and β are real numbers, then αu +

βv is integrable and

∫
RN

αu + βv dΛN = α

∫
RN

u dΛN + β

∫
RN

v dΛN.

By definition, a function u : RN →] − ∞,+∞] belongs to L+(RN,ΛN)

if there exists a sequence (un) of functions of K(RN) such that un ↑ u and
supn

∫
RN undx < +∞. The integral of u, defined by the formula

∫
RN

u dΛN = lim
n→∞

∫
RN

un dx,

depends only on u and satisfies property (a). It is clear thatK(RN) ⊂ L+(RN,ΛN).
Moreover, for every u ∈ K(RN),
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∫
RN

u dΛN =
∫
RN

u dx.

Let f, g ∈ L+(RN,ΛN). The difference f (x) − g(x) is well defined except
if f (x) = g(x) = +∞. A subset S of R

N is negligible if there exists h ∈
L+(RN,ΛN) such that, for every x ∈ S, h(x) = +∞.

By definition, a function u : RN → [−∞,+∞] belongs to L1(RN,ΛN) if there
exists f, g ∈ L+(RN,ΛN) such that u = f − g except on a negligible subset of
R

N . The integral of u, defined by the formula

∫
RN

u dΛN =
∫
RN

f dΛN −
∫
RN

g dΛN

depends only on u and satisfies properties (a) and (b).
After a descriptive definition of the (concrete) Lebesgue integral, it was necessary

to give a constructive definition in order to prove its existence.
The Lebesgue integral will be constructed in an abstract framework, the elemen-

tary integral, generalizing the Cauchy integral.

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1 An elementary integral on the set Ω is defined by a vector space
L = L(Ω,μ) of functions from Ω to R and by a functional

μ : L→ R : u �→
∫
Ω

u dμ

such that

(J1) for every u ∈ L, |u| ∈ L;
(J2) for every u, v ∈ L and, every α, β ∈ R,

∫
Ω

αu + βv dμ = α

∫
Ω

u dμ + β

∫
Ω

v dμ;

(J3) for every u ∈ L such that u ≥ 0,
∫
Ω

u dμ ≥ 0.
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(J4) for every sequence (un) ⊂ L such that un ↓ 0, lim
n→∞

∫
Ω

un dμ = 0.

Proposition 2.2.2 Let u, v ∈ L. Then u+, u−,max(u, v), min(u, v) ∈ L.

Proof Let us recall that u+ = max(u, 0), u− = max(−u, 0),

max(u, v) = 1

2
(u + v) + 1

2
|u − v|, min(u, v) = 1

2
(u + v) − 1

2
|u − v|. ��

Proposition 2.2.3 Let u, v ∈ L be such that u ≤ v. Then
∫
Ω

u dμ ≤
∫
Ω

v dμ.

Proof We deduce from (J2) and (J3) that

0 ≤
∫
Ω

v − u dμ =
∫
Ω

v dμ −
∫
Ω

u dμ. ��

Definition 2.2.4 A fundamental sequence is an increasing sequence (un) ⊂ L such
that

lim
n→∞

∫
Ω

undμ = sup
n

∫
Ω

undμ < ∞.

Definition 2.2.5 A subset S of Ω is negligible (with respect to μ) if there is a
fundamental sequence (un) such that for every x ∈ S, lim

n→∞un(x) = +∞. A

property is true almost everywhere if the set of points of Ω where it is false is
negligible.

Let us justify the definition of a negligible set.

Proposition 2.2.6 Let (un) be a decreasing sequence of functions of L such
that everywhere un ≥ 0 and almost everywhere, lim

n→∞un(x) = 0. Then

lim
n→∞

∫
Ω

undμ= 0.

Proof Let ε > 0. By assumption, there is a fundamental sequence (vn) such that if
lim

n→∞un(x) > 0, then lim
n→∞vn(x) = +∞. We replace vn by v+

n , and we multiply by

a strictly positive constant such that

vn ≥ 0,
∫
Ω

vndμ ≤ ε.

We define wn = (un − vn)
+. Then wn ↓ 0, and we deduce from axiom (J4) that
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0 ≤ lim
∫
Ω

undμ ≤ lim
∫
Ω

wn + vndμ = lim
∫
Ω

wndμ + lim
∫
Ω

vndμ

= lim
∫
Ω

vndμ ≤ ε.

Since ε > 0 is arbitrary, the proof is complete. ��

Proposition 2.2.7 Let (un) and (vn) be fundamental sequences such that almost
everywhere,

u(x) = lim
n→∞ un(x) ≤ lim

n→∞ vn(x) = v(x).

Then

lim
n→∞

∫
Ω

undμ ≤ lim
n→∞

∫
Ω

vndμ.

Proof We choose k and we define wn = (uk−vn)
+. Then (wn) ⊂ L is a decreasing

sequence of positive functions such that almost everywhere,

limwn(x) = (uk(x) − v(x))+ ≤ (u(x) − v(x))+ = 0.

We deduce from the preceding proposition that

∫
Ω

ukdμ ≤ lim
∫
Ω

wn + vn dμ = lim
∫
Ω

wndμ + lim
∫
Ω

vndμ = lim
∫
Ω

vndμ.

Since k is arbitrary, the proof is complete. ��

Definition 2.2.8 A function u : Ω → ]−∞,+∞] belongs to L+ = L+(Ω,μ)

if there exists a fundamental sequence (un) such that un ↑ u. The integral (with
respect to μ) of u is defined by

∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ.

By the preceding proposition, the integral of u is well defined.

Proposition 2.2.9 Let u, v ∈ L+ and α, β ≥ 0. Then

(a) max(u, v),min(u, v), u+ ∈ L+;

(b) αu + βv ∈ L+ and
∫
Ω

αu + βv dμ = α

∫
Ω

u dμ + β

∫
Ω

v dμ;

(c) if u ≤ v almost everywhere, then
∫
Ω

u dμ ≤
∫
Ω

v dμ.

Proof Proposition 2.2.7 is equivalent to (c). ��
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Lemma 2.2.10 (Monotone Convergence in L+) Let (un) ⊂ L+ be everywhere
(or almost everywhere) increasing and such that

c = sup
n

∫
Ω

undμ < ∞.

Then (un) converges everywhere (or almost everywhere) to u ∈ L+ and

∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ.

Proof We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (uk,n) such that uk,n ↑ uk .

The sequence vn = max(u1,n, . . . , un,n) is increasing, and almost everywhere,

vn ≤ max(u1, . . . , un) = un.

Since
∫
Ω

vndμ ≤
∫
Ω

undμ ≤ c,

the sequence (vn) ⊂ L is fundamental. By definition, vn ↑ u, u ∈ L+, and

∫
Ω

u dμ = lim
n→∞

∫
Ω

vndμ.

For k ≤ n, we have almost everywhere that

uk,n ≤ vn ≤ un.

Hence we obtain, almost everywhere, that uk ≤ u ≤ lim
n→∞un and

∫
Ω

ukdμ ≤
∫
Ω

u dμ ≤ lim
n→∞

∫
Ω

undμ.

It is easy to conclude the proof. ��

Theorem 2.2.11 Every countable union of negligible sets is negligible.

Proof Let (Sk) be a sequence of negligible sets. For every k, there exists vk ∈ L+
such that for every x ∈ Sk , vk(x) = +∞. We replace vk by v+

k , and we multiply by
a strictly positive constant such that

vk ≥ 0,
∫
Ω

vkdμ ≤ 1

2k
.
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The sequence un =
n∑

k=1

vk is increasing and

∫
Ω

undμ ≤
n∑

k=1

1

2k
≤ 1.

Hence un ↑ u and u ∈ L+. Since for every x ∈
∞⋃
k=1

Sk , u(x) = +∞, the set
∞⋃
k=1

Sk

is negligible. ��
By definition, functions ofL+ are finite almost everywhere. Hence the difference

of two functions ofL+ is well defined almost everywhere. Assume that f, g, v,w ∈
L+ and that f − g = v − w almost everywhere. Then f + w = v + g almost
everywhere and

∫
Ω

f dμ +
∫
Ω

w dvμ =
∫
Ω

f + w dμ =
∫
Ω

v + g dμ =
∫
Ω

v dμ +
∫
Ω

g dμ,

so that
∫
Ω

f dμ −
∫
Ω

g dμ =
∫
Ω

v dμ −
∫
Ω

w dμ.

Definition 2.2.12 A real function u almost everywhere defined on Ω belongs to
L1 = L1(Ω,μ) if there exists f, g ∈ L+ such that u = f − g almost everywhere.
The integral (with respect to μ) of u is defined by

∫
Ω

u dμ =
∫
Ω

f dμ −
∫
Ω

g dμ.

By the preceding computation, the integral is well defined.

Proposition 2.2.13

(a) If u ∈ L1, then |u| ∈ L1.
(b) If u, v ∈ L1 and if α, β ∈ R, then αu + βv ∈ L1 and∫

Ω

αu + βv dμ = α

∫
Ω

u dμ +β

∫
Ω

v dμ.

(c) If u ∈ L1 and if u ≥ 0 almost everywhere, then
∫
Ω

u dμ ≥ 0.

Proof Observe that

|f − g| = max(f, g) − min(f, g). ��
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Lemma 2.2.14 Let u ∈ L1 and ε > 0. Then there exists v,w ∈ L+ such that

u = v − w almost everywhere, w ≥ 0, and
∫
Ω

w dμ ≤ ε.

Proof By definition, there exists f, g ∈ L+ such that u = f −g almost everywhere.
Let (gn) be a fundamental sequence such that gn ↑ g. Since

∫
Ω

g dμ = lim
n→∞

∫
Ω

gndμ,

there exists n such that
∫
Ω

g − gn dμ ≤ ε. We choose w = g − gn ≥ 0 and

v = f − gn. ��
We extend the property of monotone convergence to L1.

Theorem 2.2.15 (Levi’s Monotone Convergence Theorem) Let (un) ⊂ L1 be an
almost everywhere increasing sequence such that

c = sup
n

∫
Ω

undμ < ∞.

Then lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞ undμ = lim

n→∞

∫
Ω

undμ.

Proof After replacing un by un − u0, we can assume that u0 = 0. By the preceding

lemma, for every k ≥ 1, there exist vk,wk ∈ L+ such that wk ≥ 0,
∫
Ω

wkdμ ≤
1/2k , and, almost everywhere,

uk − uk−1 = vk − wk.

Since (uk) is almost everywhere increasing, vk ≥ 0 almost everywhere.
We define

fn =
n∑

k=1

vk, gn =
n∑

k=1

wk.

The sequences (fn) and (gn) are almost everywhere increasing, and

∫
Ω

gndμ =
n∑

k=1

∫
Ω

wkdμ ≤
n∑

k=1

1

2k
≤ 1,

∫
Ω

fndμ =
∫
Ω

un + gndμ ≤ c + 1.
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Lemma 2.2.10 implies that almost everywhere,

lim
n→∞ fn = f ∈ L+, lim

n→∞ gn = g ∈ L+

and
∫
Ω

f dμ = lim
n→∞

∫
Ω

fndμ,

∫
Ω

g dμ = lim
n→∞

∫
Ω

g dμ.

We deduce from Theorem 2.2.11 that almost everywhere,

f − g = lim
n→∞(fn − gn) = lim

n→∞un.

Hence lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞undμ =

∫
Ω

f dμ−
∫
Ω

g dμ = lim
n→∞

∫
Ω

fn − gndμ = lim
n→∞

∫
Ω

undμ. ��

Theorem 2.2.16 (Fatou’s Lemma) Let (un) ⊂ L1 and f ∈ L1 be such that

(a) sup
n

∫
Ω

undμ < ∞;

(b) for every n, f ≤ un almost everywhere.

Then lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞undμ ≤ lim

n→∞

∫
Ω

undμ.

Proof We choose k, and we define, for m ≥ k,

uk,m = min(uk, . . . , um).

The sequence (uk,m) decreases to vk = inf
n≥k

un, and

∫
Ω

f dμ ≤
∫
Ω

uk,mdμ.

The preceding theorem, applied to (−uk,m), implies that vk ∈ L1 and

∫
Ω

vkdμ = lim
m→∞

∫
Ω

uk,mdμ ≤ lim
m→∞ min

k≤n≤m

∫
Ω

undμ = inf
n≥k

∫
Ω

undμ.
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The sequence (vk) increases to lim
n→∞un and

∫
Ω

vkdμ ≤ sup
n

∫
Ω

undμ < ∞.

It follows from the preceding theorem that lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞undμ = lim

k→∞

∫
Ω

vkdμ ≤ lim
k→∞ inf

n≥k

∫
Ω

undμ = lim
n→∞

∫
Ω

undμ. ��

Theorem 2.2.17 (Lebesgue’s Dominated Convergence Theorem) Let (un) ⊂ L1

and f ∈ L1 be such that

(a) un converges almost everywhere;
(b) for every n, |un| ≤ f almost everywhere.

Then lim
n→∞un ∈ L1 and

∫
Ω

lim
n→∞ undμ = lim

n→∞

∫
Ω

undμ.

Proof Fatou’s lemma implies that u = lim
n→∞un ∈ L1 and

2
∫
Ω

f dμ ≤ lim
n→∞

∫
Ω

2f − |un − u|dμ = 2
∫
Ω

f dμ − lim
n→∞

∫
Ω

|un − u|dμ.

Hence

lim
n→∞ |

∫
Ω

un − u dμ| ≤ lim
n→∞

∫
Ω

|un − u|dμ = 0. ��

Theorem 2.2.18 (Comparison Theorem) Let (un) ⊂ L1 and f ∈ L1 be such
that

(a) un converges almost everywhere to u;
(b) |u| ≤ f almost everywhere.

Then u ∈ L1.

Proof We define

vn = max(min(un, f ),−f ).

The sequence (vn) ⊂ L1 is such that
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(a) vn converges almost everywhere to u;
(b) for every n, |vn| ≤ f almost everywhere.

The preceding theorem implies that u = lim
n→∞vn ∈ L1. ��

Definition 2.2.19 A real function u defined almost everywhere on Ω is measurable
(with respect to μ) if there exists a sequence (un) ⊂ L such that un → u almost
everywhere. We denote the space of measurable functions (with respect to μ) on Ω

byM =M(Ω,μ).

Proposition 2.2.20

(a) L ⊂ L+ ⊂ L1 ⊂M.
(b) If u ∈M, then |u| ∈M.
(c) If u, v ∈M and if α, β ∈ R, then αu + βv ∈M.
(d) If u ∈M and if, almost everywhere, |u| ≤ f ∈ L1, then u ∈ L1.

Proof Property (d) follows from the comparison theorem. ��

Notation Let u ∈ M be such that u ≥ 0 and u �∈ L1. We write
∫
Ω

u dμ = +∞.

Hence the integral of a measurable nonnegative function always exists.

Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21 Let u ∈ L1. Then there exists (un) ⊂ L such that

(a)
∫
Ω

|u − un|dμ → 0, n → ∞;

(b) un → u, n → ∞, a.e. on Ω .

Proof By definition, there exists f, g ∈ L+ such that

∫
Ω

u dμ =
∫
Ω

f dμ −
∫
Ω

g dμ, u = f − g, a.e.

and (fn), (gn) ⊂ L such that

∫
Ω

f dμ = lim
n→∞

∫
Ω

fn dμ,

∫
Ω

g dμ = lim
n→∞

∫
Ω

gn dμ, fn ↑ f, gn ↑ g, n → ∞.

We define the sequence (un) ⊂ L by un = fn − gn. Since a.e.

|u − un| ≤ f − fn + g − gn,

it is easy to finish the proof. ��

Lemma 2.2.22 Let (un) ⊂ L1 be a sequence converging a.e. to an a.e. finite
function u. Then u ∈M.



2.2 The Lebesgue Integral 35

Proof The preceding lemma implies the existence of a sequence (vn) ⊂ L such
that, for every n,

∫
Ω

|un − vn| dμ ≤ 1/2n.

Since, for every k,

∫
Ω

k∑
n=1

|un − vn| dμ ≤
k∑

n=1

1/2n ≤ 1,

it follows from Levi’s monotone convergence theorem that a.e.

∞∑
n=1

|un − vn| < +∞.

Hence we obtain that a.e.

un − vn → 0, n → ∞,

and

u = lim un = lim vn ∈M. ��

Lemma 2.2.23 Let (un) ⊂M. Then there exists f ∈ L+ such that f ≥ 0 and a.e.

sup
n

∣∣un(x)
∣∣ > 0 ⇒ f (x) > 0. (∗)

Proof For every n, there exists a sequence (un,j ) ⊂ L converging a. e. to un. Let
us define ψ on [0,+∞[ by ψ(0) = 1 and ψ(t) = 1/t, t > 0. By Theorem 2.2.11,
the function

f =
∞∑
n=1

∞∑
j=1

2−n−j ψ

(∫
Ω

|un,j | dμ
)

|un,j |

satisfies (∗). Since, for every k,

∫
Ω

k∑
n=1

k∑
j=1

2−n−jψ

(∫
Ω

|un,j | dμ
)

|un,j | dμ ≤
k∑

n=1

k∑
j=1

2−n−j ≤ 1,

Lemma 2.2.10 implies that f ∈ L+. ��
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Theorem 2.2.24 Let (un) ⊂ M be a sequence converging a. e. to an a.e. finite
function u. Then u ∈M.

Proof Let f ∈ L+ be given by the preceding lemma and define,

vn = max(min(nf, un),−nf ).

It follows from the comparaison theorem that (vn) ⊂ L1. Since vn → u a.e. on Ω ,
Lemma 2.2.22 implies that u ∈M. ��

The class of measurable functions is the smallest class containingL that is closed
under almost everywhere convergence.

Definition 2.2.25 A subset A of Ω is measurable (with respect to μ) if the
characteristic function of A is measurable. The measure of A is defined by

μ(A) =
∫
Ω

χAdμ.

Proposition 2.2.26 Let A and B be measurable sets, and let (An) be a sequence of

measurable sets. Then A \ B,
∞⋃
n=1

An and
∞⋂
n=1

An are measurable, and

μ(A ∪ B) + μ(A ∩ B) = μ(A) + μ(B).

If, moreover, for every n, An ⊂ An+1, then

μ

( ∞⋃
n=1

An

)
= lim

n→∞μ(An).

If, moreover, μ(A1) < ∞, and for every n, An+1 ⊂ An, then

μ

( ∞⋂
n=1

An

)
= lim

n→∞μ(An).

Proof Observe that

χA∪B + χA∩B = max(χA, χB) + min(χA, χB) = χA + χB,

χA\B = χA − min(χA, χB),

χ∪∞
n=1An

= lim
n→∞ max(χA1 , . . . , χAn),

χ∩∞
n=1An

= lim
n→∞ min(χA1 , . . . , χAn).

The proposition follows then from the preceding theorem and Levi’s theorem. ��
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Proposition 2.2.27 A subset of Ω is negligible if and only if it is measurable and
its measure is equal to 0.

Proof Let A ⊂ Ω be a negligible set. Since χA = 0 almost everywhere, we have

by definition that χA ∈ L1 and μ(A) =
∫
Ω

χAdμ = 0.

Let A be a measurable set such that μ(A) = 0. For every n,
∫
Ω

nχAdμ = 0.

By Levi’s theorem, u = lim
n→∞nχA ∈ L1. Since u is finite almost everywhere and

u(x) = +∞ on A, the set A is negligible. ��
The hypothesis in the following definition will be used to prove that the set {u >

t} is measurable when the function u ≥ 0 is measurable.

Definition 2.2.28 A positive measure on Ω is an elementary integral μ : L → R

on Ω such that

(J5) for every u ∈ L, min(u, 1) ∈ L.

Proposition 2.2.29 Let μ be a positive measure on Ω , u ∈ M, and t ≥ 0. Then
min(u, t) ∈M.

Proof If t = 0, min(u, 0) = u+ ∈ M. Let t > 0. There is a sequence (un) ⊂ L
converging to u almost everywhere. Then vn = t min(t−1un, 1) ∈ L and vn →
min(u, t) almost everywhere. ��

Theorem 2.2.30 Let μ be a positive measure on Ω , and let u : Ω → [0,+∞] be
almost everywhere finite. The following properties are equivalent:

(a) u is measurable;
(b) for every t ≥ 0, {u > t} = {x ∈ Ω : u(x) > t} is measurable.

Proof Assume that u is measurable. For every t ≥ 0 and n ≥ 1, the preceding
proposition implies that

un = n[min(u, t + 1/n) − min(u, t)]

is measurable. It follows from Theorem 2.2.24 that

χ {u>t} = lim
n→∞ un ∈M.

Hence {u > t} is measurable.
Assume that u satisfies (b). Let us define, for n ≥ 1, the function

un = 1

2n

∞∑
k=1

χ {u>k/2n}. (∗)
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For every x ∈ Ω , u(x) − 1/2n ≤ un(x) ≤ u(x). Hence (un) is simply convergent
to u. Theorem 2.2.24 implies that (un) ⊂M and u ∈M. ��

Corollary 2.2.31 Let u, v ∈M. Then uv ∈M.

Proof If f is measurable, then for every t ≥ 0, the set

{f 2 > t} = {|f | > √
t}

is measurable. Hence f 2 is measurable. We conclude that

uv = 1

4
[(u + v)2 − (u − v)2] ∈M. ��

Definition 2.2.32 A function u : Ω → [0,+∞] is admissible (with respect to the
positive measure μ) if u is measurable and if for every t > 0,

μu(t) = μ({u > t}) = μ({x ∈ Ω : u(x) > t}) < +∞.

The function μu is the distribution function of u.

Corollary 2.2.33 (Markov Inequality) Let u ∈ L1, u ≥ 0. Then u is admissible,
and for every t > 0,

μu(t) ≤ t−1
∫
Ω

u dμ.

Proof Observe that for every t > 0, v = tχ {u>t} ≤ u. By the comparison theorem,

v ∈ L1 and
∫
Ω

v dμ ≤
∫
Ω

u dμ. ��

Corollary 2.2.34 (Cavalieri’s Principle) Let u ∈ L1, u ≥ 0. Then

∫
Ω

u dμ =
∫ ∞

0
μu(t)dt.

Proof The sequence (un) defined by (∗) is increasing and converges simply to
u. The function μu :]0,+∞[→ [0,+∞[ is decreasing. We deduce from Levi’s
theorem that

∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ = lim
n→∞

1

2n

∞∑
k=1

μu

(
k

2n

)
=
∫ ∞

0
μu(t)dt. ��
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Definition 2.2.35 Let Ω be an open subset of RN . The Lebesgue measure on Ω is
the positive measure defined by the Cauchy integral

ΛN : K(Ω) → R : u �→
∫
Ω

u dx.

We define the functional spaces L+(Ω) = L+(Ω,ΛN) and L1(Ω) =
L1(Ω,ΛN). From now on, the Lebesgue integral (with respect to ΛN ) of
u ∈ L1(Ω) will be denoted by

∫
Ω

u dx. The Lebesgue measure of a ΛN -measurable
subset A of Ω is defined by

m(A) =
∫
Ω

χ
Adx.

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RN .

Theorem 2.2.36 We consider the Lebesgue measure on R
N .

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RN , there exist a sequence (Gk) of open sets of

R
N and a negligible set S of RN such that A ∪ S =

∞⋂
k=1

Gk .

(c) For every measurable set A of RN , there exist a sequence (Fk) of closed sets of

R
N and a negligible set T of RN such that A =

∞⋃
k=1

Fk ∪ T .

Proof

(a) Let G be an open bounded set and define

un(x) = min{1, n d(x,RN \ G)}. (∗)

Since (un) ⊂ K(RN) and un → χG, the set G is measurable. For every open

set G, Gn = G ∩ B(0, n) is measurable. Hence G =
∞⋃
n=1

Gn is measurable.

Taking the complement, every closed set is measurable.
(b) Let A be a measurable set of RN . By definition, there exist a sequence (un) ⊂
K(RN) and a negligible set R of RN such that un → χA on R

N \ R. There is
also f ∈ L+ such that R ⊂ S = {f = +∞}. By Proposition 1.3.10, f is l.s.c.
Proposition 1.3.12 implies that for every t ∈ R, {f > t} is open. Let us define
the open sets

Un = {un > 1/2} ∪ {f > n} and Gk =
∞⋃
n=k

Un.
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It is clear that for every k, A∪S ⊂ Gk and A∪S =
∞⋂
k=1

Gk . Since S is negligible

by definition, the proof is complete.
(c) Taking the complement, there exist a sequence (Fk) of closed sets of RN and a

negligible set S of RN such that

A ∩ (RN \ S) =
∞⋃
k=1

Fk.

It suffices then to define T = A ∩ S. ��

Proposition 2.2.37 Let a < b. Then

m(]a, b[) = m([a, b]) = b − a.

In particular, m({a}) = 0, and every countable set is negligible.

Proof Let (un) be the sequence defined by (*). It is easy to verify that

Sn,j = 2−j
∑
k∈Z

un(k/2j )

satisfies the inequalities

b − a − 2

n
− 1

2j−1 ≤ Sn,j ≤ b − a + 1

2j−1 .

The definition of the Cauchy integral implies that

b − a − 2

n
≤
∫
R

undx = lim
j→∞ Sn,j ≤ b − a.

Since un ↑ χ ]a,b[, it follows from Definition 2.2.8 that

m(]a, b[) =
∫
R

χ ]a,b[dx = lim
n→∞

∫
R

undx = b − a.

Since [a, b] =
∞⋂
n=1

]a − 1/n, b + 1/n[, we deduce from Proposition 2.2.26. that

m([a, b]) = lim
n→∞ b − a + 2/n = b − a. ��
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Notation If u is integrable on [a, x[, we write

∫ x

a

u(t)dt =
∫

[a,x[
u(t)dt =

∫
R

χ ]a,x[u(t)dt.

The next result, due to A. Cauchy, is the fundamental theorem of calculus.

Theorem 2.2.38

(a) Let u ∈ C([a, b]). Then for every a ≤ x ≤ b

d

dx

∫ x

a

u(t)dt = u(x).

(b) Let u ∈ C1([a, b]). Then

∫ b

a

u′(t)dt = u(b) − u(a).

Proof

(a) Let us define v on [a, b] by

v(x) =
∫ x

a

u(t)dt.

For every a ≤ x < b and for every 0 < ε ≤ b − x, we have that

∣∣∣∣v(x + ε) − v(x)

ε
− u(x)

∣∣∣∣ = 1

ε

∣∣∣∣
∫ x+ε

x

(u(t) − u(x))dt

∣∣∣∣

≤ 1

ε

∫ x+ε

x

|u(t) − u(x)|dt

≤ sup
x<t<x+ε

|u(t) − u(x)|.

Since u is continuous, we obtain

lim
ε↓0

∣∣∣∣v(x + ε) − v(x)

ε
− u(x)

∣∣∣∣ = 0.

Similarly, for a < x ≤ b,

lim
ε↓0

∣∣∣∣v(x) − v(x − ε)

ε
− u(x)

∣∣∣∣ = 0.
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(b) Since, for every a ≤ x ≤ b, we have that

d

dx

[∫ x

a

u′(t)dt − u(x)

]
= u′(x) − u′(x) = 0,

we conclude that

∫ b

a

u′(t)dt − u(b) = −u(a). ��

Examples

(a) Let λ ∈ R\{−1} and 0 < a < b. Then

∫ b

a

xλdx =
[
xλ+1

λ + 1

]b
a

.

(b) Let λ > −1 and b > 0. For every n > 1/b, χ [1/n,b[xλ is integrable. Levi’s
monotone convergence theorem implies that

∫ b

0
xλdx = bλ+1

(λ + 1)
.

(c) Let λ < −1 and a > 0. For every n > a, χ [a,n[xλ is integrable. Levi’s
monotone convergence theorem implies that

∫ ∞

a

xλdx = aλ+1

|λ + 1| .

(d) (Cantor sets). Let 0 < ε ≤ 1 and (�n) ⊂ ]0, 1[ be such that

ε =
∞∑
n=0

2n�n.

From the interval C0 = [0, 1], remove the open middle interval J0,1 of length �0.
Remove from the two remaining closed intervals the middle open intervals J1,1 and
J1,2 of length �1. In general, remove from the 2n remaining closed intervals the
middle open intervals Jn,1, . . . , Jn,2n of length �n. Define

Cn+1 = Cn \
2n⋃
k=1

Jn,k, C =
∞⋂
n=1

Cn.
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The set C is the Cantor set (corresponding to (�n)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each Cn is closed.

The interior of C is empty. Indeed, each Cn consists of 2n closed intervals of equal
length, so that φ is the only open subset in C.

The Lebesgue measure of C is equal to 1 − ε. By induction, we have for every n

that

m(Cn+1) = 1 −
n∑

j=0

2j �j .

Proposition 2.2.26 implies that

m(C) = 1 −
∞∑
j=0

2j �j = 1 − ε.

The set C is not countable. Let (xn) ⊂ C. Denote by [a1, b1] the interval of C1 not
containing x1. Denote by [a2, b2] the first interval of C2 ∩[a1, b1] not containing x2.
In general, let [an, bn] denote the first interval of Cn ∩ [an−1, bn−1] not containing
xn. Define x = sup

n
an = lim

n→∞ an. For every n, we have

[an, bn] ⊂ Cn, xn �∈ [an, bn], x ∈ [an, bn].

Hence x ∈ C, and for every n, xn �= x.
For ε = 1, C is not countable and negligible.
Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at

every point of C.
The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by

Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.
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Definition 2.3.1 Define on R, f (t) = (1 − |t |)+. The family fj,k(x) =
N∏

n=1

f (2j xn − kn), j ∈ N, k ∈ Z
N , is such that fj,k ∈ K(RN),

spt fj,k = B∞[k/2j , 1/2j ],
∑
k∈ZN

fj,k = 1, fj,k ≥ 0.

Proposition 2.3.2 Let Ω be an open set in R
N and let u ∈ K(Ω). Then the

sequence

uj =
∑
k∈ZN

u(k/2j )fj,k

converges uniformly to u on Ω .

Proof Let ε > 0. By uniform continuity, there exists m such that ωu(1/2m) ≤ ε.
Hence for j ≥ m,

|u(x) − uj (x)| = |
∑
k∈ZN

(u(x) − u(k/2j ))fj,k(x)| ≤ ε
∑
k∈ZN

fj,k(x) = ε. ��

Proposition 2.3.3 Let u ∈ K(RN). Then

(a) for every x
N

∈ R, u(., x
N
) ∈ K(RN−1);

(b)
∫
RN−1

u(x′, .)dx′ ∈ K(R);

(c)
∫
RN

u(x)dx =
∫
R

dx
N

∫
RN−1

u(x′, x
N
)dx′.

Proof Every restriction of a continuous function is continuous.

Let us define v(x
N
) =

∫
RN−1

u(x′, x
N
)dx′. Lebesgue’s dominated convergence

theorem implies that v is continuous on R. Since the support of u is a compact
subset of RN , the support of v is a compact subset of R.

We have, for every j ∈ N and every k ∈ Z, by definition of the integral that

∫
RN

fj,k(x)dx =
∫
R

dx
N

∫
RN−1

fj,k(x
′, x

N
)dx′.

Hence for every j ∈ N,

∫
RN

uj (x)dx =
∫
R

dx
N

∫
RN−1

uj (x
′, x

N
)dx′.

There is R > 1 such that
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spt u ⊂ {x ∈ R
N : |x|∞ ≤ R − 1}.

For every j ∈ N, by the definition of the integral, we obtain

∣∣∣∣
∫
RN

u(x) − uj (x)dx

∣∣∣∣ ≤ (2R)N max
x∈RN

∣∣u(x) − uj (x)
∣∣ ,

and
∣∣∣∣
∫
R

dx
N

∫
RN−1

u(x′, x
N
) − uj (x

′, x
N
)dx′

∣∣∣∣ ≤ (2R)N max
x∈RN

∣∣u(x) − uj (x)
∣∣ .

It is easy to conclude the proof using the preceding proposition. ��

Definition 2.3.4 The elementary integral μ on Ω = Ω1 × Ω2 is the product of the
elementary integrals μ1 on Ω1 and μ2 on Ω2 if for every u ∈ L(Ω,μ),

(a) u(., x2) ∈ L(Ω1, μ1) for every x2 ∈ Ω2;

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.

We assume that μ is the product of μ1 and μ2.

Lemma 2.3.5 Let u ∈ L+(Ω,μ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L+(Ω1, μ1);

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L+(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.

Proof Let (un) ⊂ L(Ω,μ) be a fundamental sequence such that un ↑ u. By
definition,

vn =
∫
Ω

un(x1, .)dμ1 ∈ L(Ω2, μ2),

and (vn) is a fundamental sequence. But then vn ↑ v, v ∈ L+(Ω2, μ2), and

∫
Ω2

v(x2)dμ2 = lim
n→∞

∫
Ω2

vn(x2)dμ2.

For almost every x2 ∈ Ω2, v(x2) ∈ R. In this case, (un(., x2)) ⊂ L(Ω1, μ1) is a
fundamental sequence, and un(., x2) ↑ u(., x2). Hence u(., x2) ∈ L+(Ω1, μ1) and
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∫
Ω1

u(x1, x2)dμ1 = lim
n→∞

∫
Ω1

un(x1, x2)dμ1 = lim
n→∞ vn(x2) = v(x2).

It follows that
∫
Ω1

u(x1, .)dμ1 ∈ L+(Ω2, μ2) and

∫
Ω

u(x1, x2)dμ = lim
n→∞

∫
Ω

un(x1, x2)dμ

= lim
n→∞

∫
Ω2

dμ2

∫
Ω1

un(x1, x2)dμ1

= lim
n→∞

∫
Ω2

vn(x2)dμ2

=
∫
Ω2

v(x2)dμ2 =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1. ��

Lemma 2.3.6 Let S ⊂ Ω be negligible with respect to μ. Then for almost every
x2 ∈ Ω2,

Sx2 = {x1 ∈ Ω1 : (x1, x2) ∈ S}

is negligible with respect to μ1.

Proof By assumption, there is u ∈ L+(Ω,μ) such that

S ⊂ {(x1, x2) ∈ Ω : u(x1, x2) = +∞}.

The preceding lemma implies that for almost every x2 ∈ Ω2,

Sx2 ⊂ {x1 ∈ Ω1 : u(x1, x2) = +∞}

is negligible with respect to μ1. ��

Theorem 2.3.7 (Fubini) Let u ∈ L1(Ω,μ). Then

(a) for almost every x2 ∈ Ω2, u(., x2) ∈ L1(Ω1, μ1);

(b)
∫
Ω1

u(x1, .)dμ1 ∈ L1(Ω2, μ2);

(c)
∫
Ω

u(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1.

Proof By assumption, there is f, g ∈ L+(Ω,μ) such that u = f − g almost
everywhere on Ω . By the preceding lemma, for almost every x2 ∈ Ω2,

u(x1, x2) = f (x1, x2) − g(x1, x2)
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almost everywhere on Ω1. The conclusion follows from Lemma 2.3.5. ��
The following result provides a way to prove that a function on a product space

is integrable.

Theorem 2.3.8 (Tonelli) Let u : Ω → [0,+∞[ be such that

(a) for every n ∈ N, min(n, u) ∈ L1(Ω,μ);

(b) c =
∫
Ω2

dμ2

∫
Ω1

u(x1, x2)dμ1 < +∞.

Then u ∈ L1(Ω,μ).

Proof Let us define un = min(n, u). Fubini’s theorem implies that

∫
Ω

un(x1, x2)dμ =
∫
Ω2

dμ2

∫
Ω1

un(x1, x2)dμ1 ≤ c.

The conclusion follows from Levi’s monotone convergence theorem. ��
The following version of Fubini’s theorem is due to J.A. Baker.

Theorem 2.3.9 Let U be a bounded open subset of RN , and let μ be an elementary
integral on the set Ω . Assume that f ∈ L1(Ω,μ) and

F : U × Ω → R : (x, y) �→ F(x, y)

verify
(α) |F(x, y)| ≤ f (y);
(β) for μ − almost every y ∈ Ω, F(·, y) is continuous on U ;
(γ ) for all x ∈ U,F(x, ·) is μ − measurable on Ω.

Then

(a) the function G(x) =
∫
Ω

F(x, y)dμ is ΛN -integrable on U ;

(b) the function H(y) =
∫
U

F(x, y)dx is μ-integrable on Ω;

(c)
∫
U

dx

∫
Ω

F(x, y)dμ =
∫
Ω

dμ

∫
U

F(x, y)dx.

Proof Let us define on U × Ω

Fj(x, y) =
∑
k∈ZN

F

(
k

2j
, y

)
fj,k(x),

where F(x, y) = 0 for x ∈ R
N\U . Assumptions (α) and (β) ensure that, for almost

every y ∈ Ω and for every x ∈ U ,
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lim
j→∞Fj (x, y) = F(x, y) , |Fj (x, y)| ≤ f (y). (∗)

Lebesgue’s dominated convergence theorem, assumption (γ ), and the continuity of
Fj (·, y) imply that

G(x) = lim
j→∞

∫
Ω

Fj (x, y)dμ and H(y) = lim
j→∞

∫
U

Fj (x, y)dx.

Let us define

Gj(x) =
∫
Ω

Fj (x, y)dμ =
∑
k∈ZN

∫
Ω

F

(
k

2j
, y

)
dμ fj,k(x)

and

Hj(y) =
∫
U

Fj (x, y)dx = 2−jN
∑
k∈ZN

F

(
k

2j
, y

)
.

By definition, for every j ≥ 1, Gj is continuous and Hj is μ-measurable. It follows
from (∗) that

|Gj(x)| ≤
∫
Ω

f (y)dμ and |Hj(y)| ≤ m(U)f (y).

We deduce from Lebesgue’s dominated convergence theorem that

∫
U

G(x)dx = lim
j→∞

∫
U

Gj (x)dx and
∫
Ω

H(y)dμ = lim
j→∞

∫
Ω

Hj (y)dμ.

Since
∫
U

Gj (x)dx =
∫
U

dx

∫
Ω

Fj (x, y)dμ =
∫
Ω

dμ

∫
U

Fj (x, y)dx =
∫
Ω

Hj (y)dμ,

the proof is complete. ��

2.4 Change of Variables

Let Ω be an open set of RN , and let ΛN be the Lebesgue measure on Ω . We define

L+(Ω) = L+(Ω,ΛN),L1(Ω) = L1(Ω,ΛN).
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Definition 2.4.1 Let Ω and ω be open. A diffeomorphism is a continuously
differentiable bijective mapping f : Ω → ω such that for every x ∈ Ω ,

Jf (x) = det f ′(x) �= 0.

We assume that f : Ω → ω is a diffeomorphism. The next theorem is proved in
Sect. 9.1.

Theorem 2.4.2 Let u ∈ K(ω). Then u(f )|Jf | ∈ K(Ω) and

∫
Ω

u(f (x))|Jf (x)|dx =
∫
ω

u(y)dy. (∗)

Lemma 2.4.3 Let u ∈ L+(ω). Then u(f )|Jf | ∈ L+(Ω), and (∗) is valid.

Proof Let (un) ⊂ K(ω) be a fundamental sequence such that un ↑ u. By the
preceding theorem, vn = un(f )|Jf | ∈ K(Ω), and (vn) is a fundamental sequence.
It follows that
∫
Ω

u(f (x))|Jf (x)|dx = lim
n→∞

∫
Ω

un(f (x))|Jf (x)|dx = lim
n→∞

∫
ω

un(y)dy =
∫
ω

u(y)dy.

��

Lemma 2.4.4 Let S ⊂ ω be a negligible set. Then f−1(S) is a negligible set.

Proof By assumption, there is u ∈ L+(ω) such that

S ⊂ {y ∈ ω : u(y) = +∞}.

The preceding lemma implies that the set

f−1(S) ⊂ {x ∈ Ω : u(f (x)) = +∞}

is negligible. ��

Theorem 2.4.5 Let u ∈ L1(ω). Then u(f )|Jf | ∈ L1(Ω), and (∗) is valid.

Proof By assumption, there exists v,w ∈ L+(ω) such that u = v − w almost
everywhere on ω. It follows from the preceding lemma that

u(f )|Jf | = v(f )|Jf | − w(f )|Jf |

almost everywhere on Ω . It is easy to conclude the proof using Lemma 2.4.3. ��
Let
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B
N

= {x ∈ R
N : |x| < 1}

be the unit ball in R
N , and let V

N
= m(B

N
) be its volume. By the preceding theorem,

for every r > 0,

m(B(0, r)) =
∫

|y|<r

dy = rN
∫

|x|<1
dx = rNV

N
.

We now define polar coordinates. Let N ≥ 2 and R
N∗ = R

N \ {0}. Let

S
N−1 = {σ ∈ R

N : |σ | = 1}

be the unit sphere in R
N . The polar change of variables is the homeomorphism

]0,∞[×S
N−1 −→ R

N∗ : (r, σ ) �−→ rσ.

Definition 2.4.6 The surface measure on S
N−1 is defined on C(SN−1) by

∫
SN−1

f (σ)dσ = N

∫
B
N

f

(
x

|x|
)
dx.

Observe that the function f (x/|x|) is bounded and continuous on B
N

\ {0}.
Since S

N−1 is compact, Dini’s theorem implies that the surface measure is a
positive measure.

Lemma 2.4.7 Let u ∈ K(RN). Then

(a) for every r > 0, the function σ �→ u(rσ ) belongs to C(SN−1);

(b)
d

dr

∫
|x|<r

u(x)dx = rN−1
∫
SN−1

u(rσ )dσ ;

(c)
∫
RN

u(x)dx =
∫ ∞

0
rN−1dr

∫
SN−1

u(rσ )dσ .

Proof

(a) The restriction of a continuous function is a continuous function.

(b) Let w(r) =
∫

|x|<r

u(x)dx and v(r) =
∫
SN−1

u(rσ )dσ , r > 0. By definition, we

have

v(r) = N

∫
B
N

u

(
r

|x|x
)
dx.

Choose r > 0 and ε > 0. By definition of the modulus of continuity, we
have
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∣∣∣∣w(r + ε) − w(r) −
∫
r<|x|<r+ε

u(rx/|x|)dx
∣∣∣∣ =

∣∣∣∣
∫
r<|x|<r+ε

u(x) − u(rx/|x|)dx
∣∣∣∣

≤ ωu(ε)V
N
[(r + ε)N − rN ].

The preceding theorem implies that

∫
r<|x|<r+ε

u(rx/|x|)dx =
∫

|x|<r+ε

u(rx/|x|)dx−
∫

|x|<r

u(rx/|x|)dx = (r+ε)N−rN

N
v(r).

Hence we find that

∣∣∣∣w(r + ε) − w(r) − (r + ε)N − rN

N
v(r)

∣∣∣∣ ≤ ωu(ε)V
N
[(r + ε)N − rN ],

so that

lim
ε → 0
ε > 0

∣∣∣∣w(r + ε) − w(r)

ε
− rN−1v(r)

∣∣∣∣ = 0.

The right derivative of w is equal to rN−1v. Similarly, the left derivative of w is
equal to rN−1v.

(c) The fundamental theorem of calculus implies that for 0 < a < b,

∫
a<|x|<b

u(x)dx = w(b)−w(a) =
∫ b

a

v(r)rN−1dr =
∫ b

a

rN−1dr

∫
SN−1

u(rσ )dσ.

Taking the limit as a → 0 and b → +∞, we obtain (c). ��

Theorem 2.4.8 Let u ∈ L1(RN). Then

(a) for almost every r > 0, the function σ → u(rσ ) belongs to L1(SN−1, dσ );

(b) the function r →
∫
SN−1

u(rσ )dσ belongs to L1(]0,∞[, rN−1dr);

(c)
∫
RN

u(x)dx =
∫ ∞

0
rN−1dr

∫
SN−1

u(rσ )dσ .

Proof By the preceding theorem, the Lebesgue measure on R
N is the product of

the surface measure on S
N−1 and the measure rN−1dr on ]0,∞[. It suffices then to

use Fubini’s theorem. ��

Theorem 2.4.9 The volume V
N

is given by the formulas

V1 = 2, V2 = π and V
N

= 2π

N
VN−2.
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Proof Let N ≥ 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

V
N

=
∫

|x|<1
dx

=
∫
x2

3+...+x2

N
<1

dx3 . . . dx
N

∫
x2

1+x2
2<1−(x2

3+...+x2

N
)

dx1dx2

= π

∫
x2

3+...+x2

N
<1

1 − (x2
3 + . . . + x2

N
)dx3 . . . dx

N

= π(N − 2)VN−2

∫ 1

0
(1 − r2)rN−3dr = 2π

N
VN−2. ��

2.5 Comments

The construction of the Lebesgue integral in Chap. 2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space L+ defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (un) of elementary functions such that

sup
n

∫
Ω

un dμ < ∞.

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

– Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

– The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].
Theorem 2.3.9 is due to J.A Baker, Math. Chronicle 19 (1990) 19–22.
Lemma 2.4.7 is also due to Baker [4]. The book by Saks [67] is still an excellent

reference on integration theory.
The history of integration theory is described in [39, 57]. See also [31] on the life

and the work of Émile Borel.
An informal version of the Lebesgue dominated convergence theorem appears

(p. 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).
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2.6 Exercises for Chap. 2

1. (Independence of J4.) The functional defined on

L =
{
u : N → R : lim

k→∞ u(k) exists

}

by 〈f, u〉 = lim
k→∞ u(k) satisfies (J1−2−3) but not J4.

2. (Independence of J5.) The elementary integral defined on

L = {u : [0, 1] → R : x �→ ax : a ∈ R}

by

∫
u dμ = u(1)

is not a positive measure.
3. (Counting measure.) Let Ω be a set. The elementary integral defined on

L = {u : Ω → R : {u(x) �= 0} is finite}

by

∫
Ω

u dμ =
∑

u(x) �=0

u(x),

satisfies

L1(N, μ) =
{
u : N → R :

∞∑
n=0

|u(n)| < ∞
}

and

∫
N

u dμ =
∞∑
n=0

u(n).

Prove also that when Ω = R, the set R is not measurable.
4. (Axiomatic definition of the Cauchy integral.) Let us recall that τyu(x) = u(x −

y). Let f : K(RN) → R be a linear functional such that

(a) for every u ∈ K(RN), u ≥ 0 ⇒ 〈f, u〉 ≥ 0;
(b) for every y ∈ R

N and for every u ∈ K(RN), 〈f, τyu〉 = 〈f, u〉.
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Then there exists c ≥ 0 such that for every u ∈ K(RN), 〈f, u〉 = c

∫
RN

u dx.

Hint: Use Proposition 2.3.2.
5. Let μ be an elementary integral on Ω . Then the following statements are

equivalent:

(a) u ∈ L1(Ω,μ).
(b) There exists a decreasing sequence (un) ⊂ L+(Ω,μ) such that almost

everywhere, u = lim
n→∞un and inf

∫
Ω

undμ > −∞.

6. Let Ω = B(0, 1) ⊂ R
N . Then

λ + N > 0 ⇐⇒ |x|λ ∈ L1(Ω), λ + N < 0 ⇐⇒ |x|λ ∈ L1(RN \ Ω).

7. Let u : R2 → R be such that for every y ∈ R, u(., y) is continuous and for every
x ∈ R, u(x, .) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to u on R

2.

8. Construct a sequence (ωk) of open dense subsets of R such that m

( ∞⋂
k=0

ωk

)
= 0.

Hint: Let (qn) be an enumeration of Q, and let In,k be the open interval with

center qn and length 1/2n+k . Define ωk =
∞⋃
n=0

In,k .

9. Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d(u, v) = max

0≤x≤1
|u(x) − v(x)|.

Hint: Let Y be the set of functions in X that are differentiable at at least one
point, and define, for n ≥ 1,

Fn = {u ∈ X : there exists 0 ≤ x ≤ 1 such that,
for all 0 ≤ y ≤ 1, |u(x) − u(y)| ≤ n|x − y|}.

Since Y ⊂
∞⋃
n=1

Fn, it suffices to prove that
∞⋂
n=1

Gn is dense in X, where Gn =
X \ Fn. By Baire’s theorem, it suffices to prove that every Gn is open and dense.

It is clear that

Gn = {u ∈ X : for all 0 ≤ x ≤ 1, there exists 0 ≤ y ≤ 1
such that n|x − y| < |u(x) − u(y)|}.

Let u ∈ Gn. The function

f (x) = max{|u(x) − u(y)| − n(x − y)| : 0 ≤ y ≤ 1},
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is such that

inf
0≤x≤1

f (x) = min
0≤x≤1

f (x) > 0.

It follows that Gn is open.
We use the functions fj,k of Definition 2.3.1. Let u ∈ X and ε > 0. Define

uj (x) =
∑

0≤k≤2j

u(k/2j )fj,k(x),

gm(x) = ε d(2mx,N).

Then for j and m large enough,

d(u, uj ) < ε, uj + gm ∈ Gn.

It follows that Gn is dense.
10. Let μ be a positive measure on the set Ω , and let u : Ω → [0,+∞[ be a μ-

measurable function. Prove that

u ∈ L1(Ω,μ) ⇔ μu ∈ L1(]0,+∞[).

In this case
∫
Ω

udμ =
∫ ∞

0
μu(t)dt.

11. (Proof of Euler’s identity by M. Ivan, 2008).

(a)
∫ 1

−1
dy

∫ 1

−1

dx

1 + 2xy + y2
=
∫ 1

−1

log 1+y
1−y

y
dy = 2

∞∑
n=0

∫ 1

−1

y2n

2n + 1
dy

= 4
∞∑
n=0

1

(2n + 1)2
.

(b)
∫ 1

−1
dx

∫ 1

−1

dy

1 + 2xy + y2
=
∫ 1

−1

π

2
√

1 − x2
dx = π2

2
.

(c) The formula
∞∑
n=0

1

(2n + 1)2
= π2

8
is equivalent to the formula

∞∑
n=1

1

n2
= π2

6
.



56 2 The Integral

12. Let u ∈ C1(RN)
⋂
K(RN). Then

u(x) = 1

NV
N

∫
RN

∇u(x − y) · y
|y|N dy.

Hint: For every σ ∈ S
N−1,

u(x) =
∫ ∞

0
∇u(x − rσ ) · σdr.

13. The Newton potential of the ball BR = B(0, R) ⊂ R
3 is defined, for |y| > R,

by

ϕ(y) =
∫
BR

dx

|y − x| .

Since BR is invariant by rotation, we may assume that y = (0, 0, a), where
a = |y|. It follows that

ϕ(y) =
∫
BR

dx√
x2

1 + x2
2 + (x3 − a)2

= 2π
∫ R

−R

dx3

∫ √
R2−x2

3

0

r√
r2 + (x3 − a)2

dr

= π

∫ R

−R

(√
R2 + a2 − 2ax3 − a + x3

)
dx3

= 4

3
π
R3

a
= 4

3
π
R3

|y| .

14. The Newton potential of the sphere S
2 is defined, for |y| �= 1, by

ψ(y) =
∫
S2

dσ

|y − σ | .

For |y| > R, we have that

4

3
π
R3

|y| =
∫ R

0
r2f (r, y)dr,

where

f (r, y) =
∫
S2

dσ

|y − rσ | .
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It follows that

4π
R2

|y| = R2f (R, y).

In particular, for |y| > 1,

ψ(y) = f (1, y) = 4π

|y| .



Chapter 3
Norms

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1 A norm on a real vector space X is a function

X → R : u �→ ||u||

such that

(N1) for every u ∈ X \ {0}, ||u|| > 0;
(N2) for every u ∈ X and for α ∈ R, ||αu|| = |α| ||u||;
(N3) (Minkowski’s inequality) for every u, v ∈ X,

||u + v|| ≤ ||u|| + ||v||.

A (real) normed space is a (real) vector space together with a norm on that space.

Examples 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The
space Y together with ||.|| (restricted to Y ) is a normed space.

2. Let (X1, ||.||1), (X2, ||.||2) be normed spaces. The space X1 × X2 together with

||(u1, u2)|| = max(||u1||1, ||u2||2)

is a normed space.
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3. We define the norm on the space R
N to be

|x|∞ = max
{
|x1|, . . . , |x

N
|
}
.

Every normed space is a metric space.

Proposition 3.1.2 Let X be a normed space. The function

X × X → R : (u, v) �→ ||u − v||

is a distance on X. The following mappings are continuous:

X → R : u �→ ||u||,
X × X → X : (u, v) �→ u + v,

R × X → X : (α, u) �→ αu.

Proof By N1 and N2,

d(u, v) = 0 ⇐⇒ u = v, d(u, v) = || − (u − v)|| = ||v − u|| = d(v, u).

Finally, by Minkowski’s inequality,

d(u,w) ≤ d(u, v) + d(v,w).

Since by Minkowski’s inequality,

∣∣∣||u|| − ||v||
∣∣∣ ≤ ||u − v||,

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. ��

Definition 3.1.3 Let X be a normed space and (un) ⊂ X. The series
∞∑
n=0

un

converges, and its sum is u ∈ X if the sequence
k∑

n=0

un converges to u. We then

write
∞∑
n=0

un = u.

The series
∞∑
n=0

un converges normally if
∞∑
n=0

||un|| < ∞.
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Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 In a Banach space X, the following statements are equivalent:

(a)
∞∑
n=0

un converges;

(b) lim
j → ∞
j < k

k∑
n=j+1

un = 0.

Proof Define Sk =
k∑

n=0

un. Since X is complete, we have

(a) ⇐⇒ lim
j → ∞
j < k

||Sk − Sj || = 0 ⇐⇒ lim
j → ∞
j < k

∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

un

∣∣∣∣∣∣

∣∣∣∣∣∣ = 0 ⇐⇒ b). ��

Proposition 3.1.6 In a Banach space, every normally convergent series converges.

Proof Let
∞∑
n=0

un be a normally convergent series in the Banach space X.

Minkowski’s inequality implies that for j < k,

∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

un

∣∣∣∣∣∣

∣∣∣∣∣∣ ≤
k∑

n=j+1

||un||.

Since the series is normally convergent,

lim
j → ∞
j < k

k∑
n=j+1

||un|| = 0.

It suffices then to use the preceding proposition. ��

Examples 1. The space of bounded continuous functions on the metric space X,

BC(X) =
{
u ∈ C(X) : sup

x∈X
|u(x)| < ∞

}
,

together with the norm

||u||∞ = sup
x∈X

|u(x)|,
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is a Banach space. Convergence with respect to ||.||∞ is uniform convergence.
2. Let μ be a positive measure on Ω . We denote by L1(Ω,μ) the quotient of
L1 (Ω,μ) by the equivalence relation “equality almost everywhere”. We define
the norm

||u||1 =
∫
Ω

|u| dμ.

Convergence with respect to ||.||1 is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L1(Ω,μ) is a Banach space.

3. Let ΛN be the Lebesgue measure on the open subset Ω of RN . We denote by
L1(Ω) the space L1(Ω,ΛN). Convergence in mean is not implied by simple
convergence, and almost everywhere convergence is not implied by convergence
in mean.

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||1 =
∫
Ω

|u|dx ≤ m(Ω)||u||∞.

Hence BC(Ω) ⊂ L1(Ω), and the canonical injection is continuous, since

||u − v||1 ≤ m(Ω)||u − v||∞.

In order to characterize the convergence in L1(Ω,μ) we shall define the notions
of convergence in measure and of equi-integrability.

We consider a positive measure μ on Ω . We identify two μ-measurable functions
on Ω when they are μ-almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (un) converges in measure to
a measurable function u if for every t > 0,

lim
n→∞μ{|un − u| > t} = 0.

Proposition 3.1.8 Assume that the sequence (un) converges in measure to u.
Then there exists a subsequence (unk

) converging almost everywhere to u on Ω .

Proof There exists a subsequence (unk
) such that, for every k,

μ{|unk
− u| > 1/2k} ≤ 1/2k.

Let us define

Ak = {|unk
− u| > 1/2k}, Bk = Ω\Ak

and
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A =
∞⋂
j=1

∞⋃
k=j

Ak, B =
∞⋃
j=1

∞⋂
k=j

Bk

so that A = Ω\B. For every x ∈ B, there exists j ≥ 1 such that

k ≥ j ⇒ |unk
(x) − u(x)| ≤ 1/2k.

Hence, for every x ∈ B, lim
k→∞ unk

(x) = u(x).

Since, for every j ,

μ(A) ≤ μ

⎛
⎝ ∞⋃

k=j

Ak

⎞
⎠ ≤ 2/2j ,

we conclude that μ(A) = 0. ��

Proposition 3.1.9 Let (un) be a sequence of measurable functions such that

(a) (un) converges to u almost everywhere on Ω ,
(b) for every ε > 0, there exists a measurable subset B of Ω such that μ(B) < ∞

and sup
n

∫
Ω\B

|un|dμ ≤ ε.

Then (un) converges in measure to u.

Proof Let t > 0 and let ε > 0. By assumption (b) there exists a measurable

subset B of Ω such that μ(B) < ∞ and sup
n

∫
Ω\B

|un|dμ ≤ εt/3. It follows

from Fatou’s lemma that
∫
Ω\B

|u|dμ ≤ εt/3. Lebesgue’s dominated convergence

theorem implies the existence of m such that

n ≥ m ⇒
∫
B

χ |un−u|>t dμ ≤ ε/3.

We conclude using Markov’s inequality that, for n ≥ m,

μ {|un − u| > t} ≤
∫
B

χ |un−u|>t dμ + 1

t

∫
Ω\B

|un − u|dμ

≤ ε

3
+ 1

t

∫
Ω\B

|un|dμ + 1

t

∫
Ω\B

|u|dμ ≤ ε. ��
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Proposition 3.1.10 Let u ∈ L1(Ω,μ) and let ε > 0. Then

(a) there exists δ > 0 such that, for every measurable subset A of Ω

μ(A) ≤ δ ⇒
∫
A

|u|dμ ≤ ε ;

(b) there exists a measurable subset B of Ω such that μ(B) < ∞ and∫
Ω\B

|u|dμ ≤ ε.

Proof (a) By Lebesgue’s dominated convergence theorem, there exists m such
that

∫
|u|>m

|u|dμ ≤ ε/2.

Let δ = ε/(2m). For every measurable subset A of Ω such that μ(A) ≤ δ, we
have that

∫
A

|u|dμ ≤ mμ(A) +
∫

|u|>m

|u|dμ ≤ ε.

(b) By Lebesgue’s dominated convergence theorem, there exists n such that

∫
|u|≤1/n

|u|dμ ≤ ε.

The set B = {|u| > 1/n} is such that μ(B) < ∞ and
∫
Ω\B

|u|dμ ≤ ε. ��

Definition 3.1.11 A subset S of L1(Ω,μ) is equi-integrable if

(a) for every ε > 0, there exists δ > 0 such that, for every measurable subset A of

Ω satisfying μ(A) ≤ δ, sup
u∈S

∫
A

|u|dμ ≤ ε,

(b) for every ε > 0, there exists a measurable subset B of Ω such that μ(B) < ∞
and sup

u∈S

∫
Ω\B

|u|dμ ≤ ε.

Theorem 3.1.12 (Vitali) Let (un) ⊂ L1(Ω,μ) and let u be a measurable function.
Then the following properties are equivalent:

(a) ‖un − u‖1 → 0, n → ∞,
(b) (un) converges in measure to u and {un : n ∈ N} is equi-integrable.

Proof Assume that (a) is satisfied. Markov’s inequality implies that, for every t > 0,
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μ{|un − u| > t} ≤ 1

t
‖un − u‖1 → 0, n → ∞.

Let ε > 0. There exists m such that

n ≥ m ⇒ ‖un − u‖1 ≤ ε/2.

In particular, for every measurable subset A of Ω and for every n ≥ m,

∫
A

|un|dμ ≤
∫
A

|u|dμ +
∫
A

|un − u|dμ ≤
∫
A

|u|dμ + ε/2.

Proposition 3.1.10 implies the existence of δ > 0 such that, for every measurable
subset A of Ω ,

μ(A) ≤ δ ⇒
∫
A

sup
(

2|u|, |u1|, ..., |um−1|
)
dμ ≤ ε.

We conclude that, for every measurable subset A of Ω ,

μ(A) ≤ δ ⇒ sup
n

∫
A

|un|dμ ≤ ε.

Similarly, Proposition 3.1.10 implies the existence of a measurable subset B of Ω

such that μ(B) < ∞ and

∫
Ω\B

sup
(

2|u|, |u1|, ..., |um−1|
)
dμ ≤ ε.

We conclude that sup
n

∫
Ω\B

|un|dμ ≤ ε.

Assume now that (b) is satisfied. Let ε > 0. By assumption, there exists δ > 0
such that, for every measurable subset A of Ω ,

μ(A) ≤ δ ⇒ sup
n

∫
A

|un|dμ ≤ ε,

and there exists a measurable subset B of Ω such that μ(B) < ∞ and

sup
n

∫
Ω\B

|un|dμ ≤ ε.

We assume that μ(B) > 0. The case μ(B) = 0 is simpler. Since (un) converges in
measure to u, Proposition 3.1.8 implies the existence of a subsequence (unk

) such
that unk

→ u almost everywhere on Ω . It follows from Fatou’s lemma that, for
every measurable subset A of Ω ,
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μ(A) ≤ δ ⇒
∫
A

|u|dμ ≤ ε,

and that
∫
Ω\B

|u|dμ ≤ ε.

There exists also m such that

n ≥ m ⇒ μ{|un − u| > ε/μ(B)} ≤ δ.

Let us define An = {|un − u| > ε/μ(B)}, so that, for n ≥ m, μ(An) ≤ δ. For every
n ≥ m, we obtain

∫
Ω

|un − u|dμ ≤
∫
Ω\B

|un| + |u|dμ +
∫
An

|un| + |u|dμ +
∫
B\An

|un − u|dμ

≤ 4ε +
∫
B\An

ε/μ(B)dμ ≤ 5ε.

Since ε > 0 is arbitrary, the proof is complete. ��
The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 Let S ⊂ L1(Ω,μ) be such that c = sup
u∈S

‖u‖1 < +∞. The

following properties are equivalent:

(a) for every ε > 0 there exists δ > 0 such that, for every measurable subset A of
Ω

μ(A) ≤ δ ⇒ sup
u∈S

∫
A

|u|dμ ≤ ε,

(b) there exists a strictly increasing convex function F : [0,+∞[→ [0,+∞[ such
that

lim
t→∞F(t)/t = +∞, M = sup

u∈S

∫
Ω

F(|u|)dμ < +∞.

Proof Since, by Markov’s inequality

sup
u∈S

μ{|u| > t} ≤ c/t,

assumption (a) implies the existence of a sequence (nk) of integers such that, for
every k,
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nk < nk+1 and sup
u∈S

∫
|u|>nk

|u|dμ ≤ 1/2k.

Let us define F(t) = t +
∞∑
k=1

(t − nk)
+. It is clear that F is strictly increasing and

convex. Moreover, for every j ,

t > 2n2j ⇒ j ≤ F(t)/t

and, for every u ∈ S, by Levi’s theorem,

∫
Ω

F(|u|)dμ =
∫
Ω

|u|dμ+
∞∑
k=1

∫
Ω
(|u|−nk)

+dμ ≤
∫
Ω

|u|dμ+
∞∑
k=1

∫
|u|>nk

|u|dμ ≤ c+1,

so that S satisfies (b).
Assume now that S satisfies (b). Let ε > 0. There exists s > 0 such that for every

t ≥ s, F (t)/t ≥ 2M/ε. Hence for every u ∈ S we have that

∫
|u|>s

|u|dμ ≤ ε

2M

∫
|u|>s

F (|u|)dμ ≤ ε/2.

We choose δ = ε/(2s). For every measurable subset A of Ω such that μ(A) ≤ δ

and for every u ∈ S, we obtain

∫
A

|u|dμ ≤ sμ(A) +
∫

|u|>s

|u|dμ ≤ ε. ��

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir l’opération que l’on considère, de même qu’on fait la
théorie de l’addition sans définir la nature des termes à
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.
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Proposition 3.2.1 Let X and Y be normed spaces and A : X → Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

(b) c = sup
u ∈ X
u �= 0

||Au||
||u|| < ∞.

Proof If c < ∞, we obtain

||Au − Av|| = ||A(u − v)|| ≤ c||u − v||.

Hence A is continuous.
If A is continuous, there exists δ > 0 such that for every u ∈ X,

||u|| = ||u − 0|| ≤ δ ⇒ ||Au|| = ||Au − A0|| ≤ 1.

Hence for every u ∈ X \ {0},

||Au|| = ||u||
δ

||A
(

δ

||u||u
)

|| ≤ ||u||
δ

. ��

Proposition 3.2.2 The function

||A|| = sup
u∈X
u�=0

||Au||
||u|| = sup

u∈X||u||=1

||Au||

defines a norm on the space L(X, Y ) = {A : X → Y : A is linear and continuous}.
Proof By the preceding proposition, if A ∈ L(X, Y ), then 0 ≤ ||A|| < ∞. If
A �= 0, it is clear that ||A|| > 0. It follows from axiom N2 that

||αA|| = sup
u ∈ X||u|| = 1

||αAu|| = sup
u ∈ X||u|| = 1

|α| ||Au|| = |α| ||A||.

It follows from Minkowski’s inequality that

||A + B|| = sup
u ∈ X||u|| = 1

||Au + Bu|| ≤ sup
u ∈ X||u|| = 1

(||Au|| + ||Bu||) ≤ ||A|| + ||B||. ��

Proposition 3.2.3 (Extension by density) Let Z be a dense subspace of a normed
space X, Y a Banach space, and A ∈ L(Z, Y ). Then there exists a unique mapping
B ∈ L(X, Y ) such that B

∣∣
Z

= A. Moreover, ||B|| = ||A||.
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Proof Let u ∈ X. There exists a sequence (un) ⊂ Z such that un → u. The
sequence (Aun) is a Cauchy sequence, since

||Auj − Auk|| ≤ ||A|| ||uj − uk|| → 0, j, k → ∞

by Proposition 1.2.3. We denote by f its limit. Let (vn) ⊂ Z be such that vn → u.
We have

||Avn −Aun|| ≤ ||A|| ||vn −un|| ≤ ||A|| (||vn −u|| + ||u−un||) → 0, n → ∞.

Hence Avn → f , and we define Bu = f . By Proposition 3.1.2, B is linear. Since
for every n,

||Aun|| ≤ ||A|| ||un||,

we obtain by Proposition 3.1.2 that

||Bu|| ≤ ||A|| ||u||.

Hence B is continuous and ||B|| ≤ ||A||. It is clear that ||A|| ≤ ||B||. Hence ||A|| =
||B||.

If C ∈ L(X, Y ) is such that C
∣∣
Z

= A, we obtain

Cu = lim
n→∞Cun = lim

n→∞Aun = lim
n→∞Bun = Bu. ��

Proposition 3.2.4 Let X and Y be normed spaces, and let (An) ⊂ L(X, Y ) and
A ∈ L(X, Y ) be such that ||An − A|| → 0. Then (An) converges simply to A.

Proof For every u ∈ X, we have

||Anu − Au|| = ||(An − A)u|| ≤ ||An − A|| ||u||. ��

Proposition 3.2.5 Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (An) ⊂ L(X, Y ) be such that

(a) c = sup
n

||An|| < ∞;

(b) for every v ∈ Z, (Anv) converges.

Then An converges simply to A ∈ L(X, Y ), and

||A|| ≤ lim
n→∞ ||An||.
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Proof Let u ∈ X and ε > 0. By density, there exists v ∈ B(u, ε) ∩ Z. Since (Anv)

converges, Proposition 1.2.3 implies the existence of n such that

j, k ≥ n ⇒ ||Ajv − Akv|| ≤ ε.

Hence for j, k ≥ n, we have

||Aju − Aku|| ≤ ||Aju − Ajv|| + ||Ajv − Akv|| + ||Akv − Aku||
≤ 2c ||u − v|| + ε

= (2c + 1)ε.

The sequence (Anu) is a Cauchy sequence, since ε > 0 is arbitrary. Hence (Anu)

converges to a limit Au in the complete space Y . It follows from Proposition 3.1.2
that A is linear and that

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞ ||An|| ||u||.

But then A is continuous and ||A|| ≤ lim
n→∞ ||An||. ��

Theorem 3.2.6 (Banach–Steinhaus theorem) Let X be a Banach space, let Y be
a normed space, and let (An) ⊂ L(X, Y ) be such that for every u ∈ X,

sup
n

||Anu|| < ∞.

Then

sup
n

||An|| < ∞.

First Proof Theorem 1.3.13 applied to the sequence Fn : u �→ ||Anu|| implies the
existence of a ball B(v, r) such that

c = sup
n

sup
u∈B(v,r)

||Anu|| < ∞.

It is clear that for every y, z ∈ Y ,

||y|| ≤ max{||z + y||, ||z − y||}. (*)

Hence for every n and for every w ∈ B(0, r), ||Anw|| ≤ c, so that

sup
n

||An|| ≤ c/r.
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Second Proof Assume to obtain a contradiction that supn ||An|| = +∞. By
considering a subsequence, we assume that n 3n ≤ ||An||. Let us define inductively
a sequence (un). We choose u0 = 0. There exists vn such that ||vn|| = 3−n and
3
4 3−n||An|| ≤ ||Anvn||. By (∗), replacing if necessary vn by −vn, we obtain

3

4
3−n||An|| ≤ ||Anvn|| ≤ ||An(un−1 + vn)||.

We define un = un−1 + vn, so that ||un − un−1|| = 3−n. It follows that for every
k ≥ n,

||uk − un|| ≤ 3−n/2.

Hence (un) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

||u − un|| ≤ 3−n/2.

We conclude that

||Anu|| ≥ ||Anun|| − ||An(un − u)||

≥ ||An||
[

3

4
3−n − ||un − u||

]

≥ n 3n

[
3

4
3−n − 1

2
3−n

]
= n/4. ��

Corollary 3.2.7 Let X be a Banach space, Y a normed space, and (An) ⊂ L(X, Y )

a sequence converging simply to A. Then (An) is bounded, A ∈ L(X, Y ), and

||A|| ≤ lim
n→∞ ||An||.

Proof For every u ∈ X, the sequence (Anu) is convergent, hence bounded, by
Proposition 1.2.3. The Banach–Steinhaus theorem implies that sup

n
||An|| < ∞. It

follows from Proposition 3.1.2 that A is linear and

||Au|| = lim
n→∞ ||Anu|| ≤ lim

n→∞ ||An|| ||u||,

so that A is continuous and ||A|| ≤ lim
n→∞ ||An||. ��

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.
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Examples (Convergence of functionals) We define the linear continuous functionals
fn on L1(]0, 1[) to be

〈fn, u〉 =
∫ 1

0
u(x)xn dx.

Since for every u ∈ L1(]0, 1[) such that ||u||1 = 1, we have

|〈fn, u〉| <
∫ 1

0
|u(x)|dx = 1,

it is clear that

||fn|| = sup
u ∈ L1

||u||1 = 1

|〈fn, u〉| ≤ 1.

Choosing vk(x) = (k + 1)xk , we obtain

lim
k→∞〈fn, vk〉 = lim

k→∞
k + 1

k + n + 1
= 1.

It follows that ||fn|| = 1, and for every u ∈ L1(]0, 1[) such that ||u||1 = 1,

|〈fn, u〉| < ||fn||.

Lebesgue’s dominated convergence theorem implies that (fn) converges simply to
f = 0. Observe that

||f || < lim
n→∞ ||fn||.

Definition 3.2.8 A seminorm on a real vector space X is a function F : X →
[0,+∞[ such that

(a) for every u ∈ X and for every α ∈ R, F(αu) = |α|F(u), (positive
homogeneity);

(b) for every u, v ∈ X, F(u + v) ≤ F(u) + F(v), (subadditivity).

Examples (a) Any norm is a seminorm.
(b) Let X be a real vector space, Y a normed space, and A : X → Y a linear

mapping. The function F defined on X by F(u) = ‖Au‖ is a seminorm.
(c) Let X be a normed space, Y a real vector space, and A : X → Y a surjective

linear mapping. The function F defined on Y by
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F(v) = inf
{
‖u‖: Au = v

}

is a seminorm.

Proposition 3.2.9 Let F be a seminorm defined on a normed space X. The
following properties are equivalent

(a) F is continuous;
(b) c = sup

u∈X‖u‖=1

F(u) < ∞.

Proof If F satisfies (b), then

∣∣F(u) − F(v)
∣∣ ≤ F(u − v) ≤ c‖u − v‖,

so that F is continuous.
It is easy to prove that the continuity of F at 0 implies (b). ��
Let F be a seminorm on the normed space X and consider a convergent series

∞∑
k=1

uk . For every n,

F

( n∑
k=1

uk

)
≤

n∑
k=1

F(uk).

If, moreover, F is continuous, it follows that

F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤ +∞.

Zabreiko’s theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 Let X be a Banach space and let F : X → [0,+∞[ be a

seminorm such that, for any convergent series
∞∑
k=1

uk,

F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤ +∞.

Then F is continuous.
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Proof Let us define, for any t > 0, Gt = {u ∈ X : F(u) ≤ t}. Since X =
∞⋃
n=1

Gn,

Baire’s theorem implies the existence of m such that Gm contains a closed ball
B[a, r]. Using the propreties of F , we obtain

B[0, r] ⊂ 1

2
B[a, r] + 1

2
B[−a, r] ⊂ Gm/2 + Gm/2 ⊂ Gm.

Let us define t = m/r , so that B[0, 1] is contained in Gt , and, for every k,
B[0, 1/2k] is contained in Gt/2k . Let u ∈ B[0, 1]. There exists u1 ∈ Gt such that
‖u − u1‖ ≤ 1/2. We construct by induction a sequence (uk) such that

uk ∈ Gt/2k−1 , ‖u − u1 − . . . − uk‖ ≤ 1/2k.

By assumption

F(u) = F

( ∞∑
k=1

uk

)
≤

∞∑
k=1

F(uk) ≤
∞∑
k=1

t/2k−1 = 2t.

Since u ∈ B[0, 1] is arbitrary, we obtain

sup
u∈X
‖u‖=1

F(u) ≤ 2t.

It suffices then to use Proposition 3.2.9. ��
Let A be a linear mapping between two normed spaces X and Y . If A is

continuous, then the graph of A is closed in X × Y :

un
X−→ u,Aun

Y−→ v ⇒ v = Au.

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is
valid when X and Y are Banach spaces.

Theorem 3.2.11 Let X and Y be Banach spaces and let A : X → Y be a linear
mapping with a closed graph. Then A is continuous.

Proof Let us define on X the seminorm F(u) = ‖Au‖. Assume that the series
∞∑
k=1

uk converges to u in X and that
∞∑
k=1

F(uk) < +∞. Since Y is a Banach space,

∞∑
k=1

Auk converges to v in Y . But the graph of the linear mapping A is closed, so

that v = Au and
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F(u) = ‖Au‖ = ‖v‖ = ‖
∞∑
k=1

Auk‖ ≤
∞∑
k=1

‖Auk‖ =
∞∑
k=1

F(uk).

We conclude using Zabreiko’s theorem:

sup
u∈X‖u‖=1

‖Au‖ = sup
u∈X‖u‖=1

F(u) < +∞. ��

The open mapping theorem was proved by J. Schauder in 1930.

Theorem 3.2.12 Let X and Y be Banach spaces and let A ∈ L(X, Y ) be surjective.
Then {Au : u ∈ X, ‖u‖ < 1} is open in Y .

Proof Let us define on Y the seminorm F(v) = inf{‖u‖ : Au = v}. Assume that

the series
∞∑
k=1

vk converges to v in Y and that
∞∑
k=1

F(vk) < +∞. Let ε > 0. For

every k, there exists uk ∈ X such that

‖uk‖ ≤ F(vk) + ε/2k and Auk = vk.

Since X is a Banach space, the series
∞∑
k=1

uk converges to u in X. Hence we obtain

‖u‖ ≤
∞∑
k=1

‖uk‖ ≤
∞∑
k=1

F(vk) + ε

and

Au =
∞∑
k=1

Auk =
∞∑
k=1

vk = v,

so that F(v) ≤
∞∑
k=1

F(vk) + ε. Since ε > 0 is arbitrary, we conclude that F(v) ≤
∞∑
k=1

F(vk). Zabreiko’s theorem implies that

{Au : u ∈ X, ‖u‖ < 1} = {v ∈ Y : F(v) < 1}

is open in Y . ��
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3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function

X × X → R : (u, v) �→ (u|v)

such that

(S1) for every u ∈ X \ {0}, (u|u) > 0;
(S2) for every u, v,w ∈ X and for every α, β ∈ R, (αu + βv|w) = α(u|w) +

β(v|w);
(S3) for every u, v ∈ X, (u|v) = (v|u).
We define ||u|| = √

(u|u). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2 Let u, v,w ∈ X and let α, β ∈ R. Then

(a) (u|αv + βw) = α(u|v) + β(u|w);
(b) ||αu|| = |α| ||u||.

Proposition 3.3.3 Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (parallelogram identity) ||u + v||2 + ||u − v||2 = 2||u||2 + 2||v||2;
(b) (polarization identity) (u|v) = 1

4 ||u + v||2 − 1
4 ||u − v||2;

(c) (Pythagorean identity) (u|v) = 0 ⇐⇒ ||u + v||2 = ||u||2 + ||v||2.

Proof Observe that

||u + v||2 = ||u||2 + 2(u|v) + ||v||2, (∗)

||u − v||2 = ||u||2 − 2(u|v) + ||v||2. (∗∗)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. ��

Proposition 3.3.4 Let X be a pre-Hilbert space and let u, v ∈ X. Then

(a) (Cauchy–Schwarz inequality) |(u|v)| ≤ ||u|| ||v||;
(b) (Minkowski’s inequality) ||u + v|| ≤ ||u|| + ||v||.
Proof It follows from (∗) and (∗∗) that for ||u|| = ||v|| = 1,

|(u|v)| ≤ 1

2

(
||u||2 + ||v||2

)
= 1.
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Hence for u �= 0 �= v, we obtain

|(u|v)|
||u|| ||v|| =

∣∣∣∣
(

u

||u||
∣∣ v

||v||
)∣∣∣∣ ≤ 1.

By (∗) and the Cauchy–Schwarz inequality, we have

||u + v||2 ≤ ||u||2 + 2||u|| ||v|| + ||v||2 =
(
||u|| + ||v||

)2
. ��

Corollary 3.3.5 (a) The function ||u|| = √
(u|u) defines a norm on the pre-Hilbert

space X.
(b) The function

X × X → R : (u, v) �→ (u|v)

is continuous.

Definition 3.3.6 A family (ej )j∈J in a pre-Hilbert space X is orthonormal if

(ej |ek) = 1, j = k,

= 0, j �= k.

Proposition 3.3.7 (Bessel’s inequality) Let (en) be an orthonormal sequence in a
pre-Hilbert space X and let u ∈ X. Then

∞∑
n=0

∣∣(u|en)
∣∣2 ≤ ||u||2.

Proof It follows from the Pythagorean identity that

||u||2 =
∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

(u|en)en +
k∑

n=0

(u|en)en
∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

(u|en)en
∣∣∣∣∣
∣∣∣∣∣
2

+
k∑

n=0

∣∣(u|en)
∣∣2

≥
k∑

n=0

∣∣(u|en)
∣∣2. ��



78 3 Norms

Proposition 3.3.8 Let (e0, . . ., ek) be a finite orthonormal sequence in a
pre-Hilbert space X, u ∈ X, and x0, . . . , xk ∈ R. Then

∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

(u | en)en
∣∣∣∣∣
∣∣∣∣∣ ≤

∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

xnen

∣∣∣∣∣
∣∣∣∣∣ .

Proof It follows from the Pythagorean identity that

∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

xnen

∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

(u | en)en +
k∑

n=0

((u | en) − xn)en

∣∣∣∣∣
∣∣∣∣∣
2

=
∣∣∣∣∣
∣∣∣∣∣u −

k∑
n=0

(u | en)en
∣∣∣∣∣
∣∣∣∣∣
2

+
k∑

n=0

∣∣(u | en) − xn
∣∣2. ��

Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10 Let (en) be a Hilbert basis of a pre-Hilbert space X and let
u ∈ X. Then

(a) u =
∞∑
n=0

(u | en)en;

(b) (Parseval’s identity) ||u||2 =
∞∑
n=0

|(u | en)|2.

Proof Let ε > 0. By definition, there exists a sequence x0, . . . , xj ∈ R such that

||u −
j∑

n=0

xnen|| < ε.

It follows from the preceding proposition that for k ≥ j ,

||u −
k∑

n=0

(u | en)en|| < ε.

Hence u =
∞∑
n=0

(u | en)en, and by Proposition 3.1.2,
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∣∣∣∣∣
∣∣∣∣∣ lim
k→∞

k∑
n=0

(u | en)en
∣∣∣∣∣
∣∣∣∣∣
2

= lim
k→∞

∣∣∣∣∣
∣∣∣∣∣

k∑
n=0

(u | en)en
∣∣∣∣∣
∣∣∣∣∣
2

= lim
k→∞

k∑
n=0

∣∣(u | en)
∣∣2 =

∞∑
n=0

∣∣(u | en)
∣∣2.

��

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 Assume the existence of a sequence (fj ) generating a dense
subset of the normed space X. Then X is separable.

Proof By assumption, the space of (finite) linear combinations of (fj ) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of (fj )

is dense in X. Since this space is countable, X is separable. ��

Proposition 3.3.12 Let X be an infinite-dimensional pre-Hilbert space. The follow-
ing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof By the preceding proposition, (b) implies (a).
If X is separable, it contains a sequence (fj ) generating a dense subspace. We

may assume that (fj ) is free. Since the dimension of X is infinite, the sequence (fj )

is infinite. We define by induction the sequences (gn) and (en):

e0 = f0/||f0||,

gn = fn −
n−1∑
j=0

(fn|ej )ej , en = gn/||gn||, n ≥ 1.

The sequence (en) generated from (fn) by the Gram–Schmidt orthonormalization
process is a Hilbert basis of X. ��

Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Riesz–Fischer) Let (en) be an orthonormal sequence in the

Hilbert space X. The series
∞∑
n=0

cnen converges if and only if
∞∑
n=0

c2
n < ∞. Then

∣∣∣∣∣
∣∣∣∣∣

∞∑
n=0

cnen

∣∣∣∣∣
∣∣∣∣∣
2

=
∞∑
n=0

c2
n.

Proof Define Sk =
k∑

n=0

cnen. The Pythagorean identity implies that for j < k,
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||Sk − Sj ||2 =
∣∣∣∣∣∣

∣∣∣∣∣∣
k∑

n=j+1

cnen

∣∣∣∣∣∣

∣∣∣∣∣∣
2

=
k∑

n=j+1

c2
n.

Hence

lim
j → ∞
j < k

||Sk − Sj ||2 = 0 ⇐⇒ lim
j → ∞
j < k

k∑
n=j+1

c2
n = 0 ⇐⇒

∞∑
n=0

c2
n < ∞.

Since X is complete, (Sk) converges if and only if
∞∑
n=0

c2
n < ∞. Then

∞∑
n=0

cnen =
lim
k→∞Sk , and by Proposition 3.1.2,

|| lim
k→∞ Sk||2 = lim

k→∞ ||Sk||2 = lim
k→∞

k∑
n=0

c2
n =

∞∑
n=0

c2
n. ��

Examples 1. Let μ be a positive measure on Ω . We denote by L2(Ω,μ) the
quotient of

L2(Ω,μ) =
{
u ∈M(Ω,μ) :

∫
Ω

|u|2dμ < ∞
}

by the equivalence relation “equality almost everywhere.” If u, v ∈ L2(Ω,μ),
then u + v ∈ L2(Ω,μ). Indeed, almost everywhere on Ω , we have

|u(x) + v(x)|2 ≤ 2(|u(x)|2 + |v(x)|2).

We define the scalar product

(u|v) =
∫
Ω

uv dμ

on the space L2(Ω,μ).
The scalar product is well defined, since almost everywhere on Ω ,

|u(x) v(x)| ≤ 1

2
(|u(x)|2 + |v(x)|2).

By definition,
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||u||2 =
(∫

Ω

|u|2dμ
)1/2

.

Convergence with respect to ||.||2 is convergence in quadratic mean. We will
prove in Sect. 4.2, on Lebesgue spaces, that L2(Ω,μ) is a Hilbert space. If
μ(Ω) < ∞, it follows from the Cauchy–Schwarz inequality that for every
u ∈ L2(Ω,μ),

||u||1 =
∫
Ω

|u| dμ ≤ μ(Ω)1/2||u||2.

Hence L2(Ω,μ) ⊂ L1(Ω,μ), and the canonical injection is continuous.
2. Let ΛN be the Lebesgue measure on the open subset Ω of RN . We denote by

L2(Ω) the space L2(Ω,ΛN). Observe that

1

x
∈ L2(]1,∞[) \ L1(]1,∞[) and

1√
x

∈ L1(]0, 1[) \ L2(]0, 1[).

If m(Ω) < ∞, the comparison theorem implies that for every u ∈ BC(Ω),

||u||22 =
∫
Ω

u2dx ≤ m(Ω)||u||2∞.

Hence BC(Ω) ⊂ L2(Ω), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) Let (en) be an orthonormal sequence
in L2(]a, b[). The following properties are equivalent:

(a) (en) is a Hilbert basis;

(b) for every a ≤ t ≤ b,
∞∑
n=1

(∫ t

a

en(x)dx

)2

= t − a;

(c)
∞∑
n=1

∫ b

a

(∫ t

a

en(x)dx

)2

dt = (b − a)2

2
.

Proof Property (b) follows from (a) and Parseval’s identity applied to χ [a,t].
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.

��

Example The sequence en(x) =
√

2

π
sin n x is orthonormal in L2(]0, π [). Since

2

π

∞∑
n=1

∫ π

0

(∫ t

0
sin n x dx

)2

dt = 3
∞∑
n=1

1

n2
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and since by a classical identity due to Euler,

∞∑
n=1

1

n2 = π2

6
,

the sequence (en) is a Hilbert basis of L2(]0, π [).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1 Let X be a real vector space and let A : X → X be a linear
mapping. The eigenvectors corresponding to the eigenvalue λ ∈ R are the nonzero
solutions of

Au = λu.

The multiplicity of λ is the dimension of the space of solutions. The eigenvalue λ is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range
of A.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X → X such that for every u, v ∈ X, (Au|v) = (u|Av).

Proposition 3.4.3 Let X be a pre-Hilbert space and A : X → X a symmetric
continuous operator. Then

||A|| = sup
u ∈ X||u|| = 1

|(Au|u)|.

Proof It is clear that

a = sup
u ∈ X||u|| = 1

|(Au|u)| ≤ b = sup
u, v ∈ X

||u|| = ||v|| = 1

|(Au|v)| = ||A||.

If ||u|| = ||v|| = 1, it follows from the parallelogram identity that
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|(Au|v)| = 1

4
|(A(u + v)|u + v) − (A(u − v)|u − v)|

≤ a

4
[||u + v||2 + ||u − v||2]

= a

4
[2||u||2 + 2||v||2] = a.

Hence b = a. ��

Corollary 3.4.4 Under the assumptions of the preceding proposition, there exists a
sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λun|| → 0, |λ1| = ||A||.

Proof Consider a maximizing sequence (un):

||un|| = 1, |(Aun|un)| → sup
u ∈ X||u|| = 1

|(Au|u)| = ||A||.

By passing if necessary to a subsequence, we can assume that (Aun|un) → λ1,
|λ1| = ||A||. Hence

0 ≤ ||Aun − λ1un||2 = ||Aun||2 − 2λ1(Aun|un) + λ2
1||un||2

≤ 2λ2
1 − 2λ1(Aun|un) → 0, n → ∞. ��

Definition 3.4.5 Let X and Y be normed spaces. A mapping A : X → Y is compact
if the set {Au : u ∈ X, ||u|| ≤ 1} is precompact in Y .

By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6 Let X be a Hilbert space and let A : X → X be a symmetric
compact operator. Then there exists an eigenvalue λ1 of A such that |λ1| = ||A||.
Proof We can assume that A �= 0. The preceding corollary implies the existence of
a sequence (un) ⊂ X such that

||un|| = 1, ||Aun − λ1un|| → 0, |λ1| = ||A||.

Passing if necessary to a subsequence, we can assume that Aun → v. Hence un →
u = λ−1

1 v, ||u|| = 1, and Au = λ1u. ��
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Theorem 3.4.7 (Poincaré’s principle) Let X be a Hilbert space and A : X → X

a symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, . . . , en−1) and the corresponding eigenvalues (λ1, . . . , λn−1). Then there exists
an eigenvalue λn of A such that

|λn| = max
{|(Au|u)| : u ∈ X, ||u|| = 1, (u|e1) = . . . = (u|en−1) = 0

}

and λn → 0, n → ∞.

Proof The closed subspace of X

Xn = {u ∈ X : (u|e1) = . . . = (u|en−1) = 0
}

is invariant by A. Indeed, if u ∈ Xn and 1 ≤ j ≤ n − 1, then

(Au|ej ) = (u|Aej ) = λj (u|ej ) = 0.

Hence An = A

∣∣∣
Xn

is a nonzero symmetric compact operator, and there exist an

eigenvalue λn of An such that |λn| = ||An|| and a corresponding eigenvector en ∈
Xn such that ||en|| = 1. By construction, the sequence (en) is orthonormal, and the
sequence (|λn|) is decreasing. Hence |λn| → d, n → ∞, and for j �= k,

||Aej − Aek||2 = λ2
j + λ2

k → 2d2, j, k → ∞.

Since A is compact, d = 0. ��

Theorem 3.4.8 Under the assumptions of the preceding theorem, for every u ∈ X,

the series
∞∑
n=1

(u|en)en converges and u −
∞∑
n=1

(u|en)en belongs to the kernel of A:

Au =
∞∑
n=1

λn(u|en)en. (*)

Proof For every k ≥ 1, u−
k∑

n=1

(u|en)en ∈ Xk+1. It follows from Proposition 3.3.8.

that
∣∣∣∣∣∣

∣∣∣∣∣∣Au −
k∑

n=1

λn(u|en)en
∣∣∣∣∣∣

∣∣∣∣∣∣ ≤ ||Ak+1||
∣∣∣∣∣∣

∣∣∣∣∣∣ u −
k∑

n=1

(u|en)en
∣∣∣∣∣∣

∣∣∣∣∣∣ ≤ ||Ak+1|| ||u|| → 0, k → ∞.
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Bessel’s inequality implies that
∞∑
n=1

|(u|en)|2 ≤ ||u||2. We deduce from the Riesz–

Fischer theorem that
∞∑
n=1

(u|en)en converges to v ∈ X. Since A is continuous,

Av =
∞∑
n=1

λn(u|en)en = Au

and A(u − v) = 0. ��
Formula (∗) is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].
The first proof of the Banach–Steinhaus theorem in Sect. 3.2 is due to Favard

[22], and the second proof to Royden [66].
Theorem 3.2.10 is due to P.P. Zabreiko, Funct. Anal. and Appl. 3 (1969) 70-72.
Let us recall the elegant notion of vector space over the reals used by S. Banach

in [6] :

Suppose that a non-empty set E is given, and that to each ordered pair (x, y) of elements
of E there corresponds an element x + y of E (called the sum of x and y) and that for
each number t and x ∈ E an element tx of E (called the product of the number t with
the element x) is defined in such a way that these operations, namely addition and scalar
multiplication satisfy the following conditions (where x, y and z denote arbitrary elements
of E and a, b are numbers):

1) x + y = y + x,
2) x + (y + z) = (x + y) + z,
3) x + y = x + z implies y = z,
4) a(x + y) = ax + ay,
5) (a + b)x = ax + bx,
6) a(bx) = (ab)x,
7) 1 · x = x.

Under these hypotheses, we say that the set E constitutes a vector or linear space. It is
easy to see that there then exists exactly one element, which we denote by Θ , such that
x + Θ = x for all x ∈ E and that the equality ax = bx where x �= Θ yields a = b;
furthermore, that the equality ax = ay where a �= 0 implies x = y.

Put, further, by definition :

−x = (−1)x and x − y = x + (−y).

The space L1(RN) with the pointwise sum

(u + v)(x) = u(x) + v(x),
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and the scalar multiplication

(a · u)(x) = a u(x),

is not a vector space. Indeed one has in general to allow −∞ and +∞ as values
of the elements of L1(RN). Hence the pointwise sum and the scalar multiplication
by 0 are not, in general, well defined. On the other hand the space L1(Ω,μ), with
the pointwise sum and the scalar multiplication, is a vector space since it consists of
equivalence classes of μ-almost everywhere defined and finite function on Ω .

3.6 Exercises for Chap. 3

1. Prove that BC(Ω) ∩ L1(Ω) ⊂ L2(Ω).
2. Define a sequence (un) ⊂ BC(]0, 1[) such that ||un||1 → 0, ||un||2 = 1, and

||un||∞ → ∞.
3. Define a sequence (un) ⊂ BC(R) ∩ L1(R) such that ||un||1 → ∞, ||un||2 = 1

and ||un||∞ → 0.
4. Define a sequence (un) ⊂ BC(]0, 1[) converging simply to u such that

||un||∞ = ||u||∞ = ||un − u||∞ = 1.
5. Define a sequence (un) ⊂ L1(]0, 1[) such that ||un||1 → 0 and for every

0 < x < 1, lim
n→∞un(x) = 1. Hint: Use characteristic functions of intervals.

6. On the space C([0, 1]) with the norm ||u||1 =
∫ 1

0
|u(x)|dx, is the linear

functional

f : C([0, 1]) → R : u �→ u(1/2)

continuous?
7. Let X be a normed space such that every normally convergent series converges.

Prove that X is a Banach space.
8. A linear functional defined on a normed space is continuous if and only if its

kernel is closed. If this is not the case, the kernel is dense.
9. Is it possible to derive the norm on L1(]0, 1[) (respectively BC(]0, 1[)) from a

scalar product?
10. Prove Lagrange’s identity in pre-Hilbert spaces:

∣∣∣∣||v||u − ||u||v∣∣∣∣2 = 2||u||2||v||2 − 2||u|| ||v||(u|v).

11. Let X be a pre-Hilbert space and u, v ∈ X \ {0}. Then

∣∣∣∣
∣∣∣∣ u

||u||2 − v

||v||2
∣∣∣∣
∣∣∣∣ = ||u − v||

||u|| ||v|| .
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Let f, g, h ∈ X. Prove Ptolemy’s inequality:

||f || ||g − h|| ≤ ||h|| ||f − g|| + ||g|| ||h − f ||.

12. (The Jordan–von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

(u|v) = 1

4

(||u + v||2 − ||u − v||2).
Verify that

(f + g|h) + (f − g|h) = 2(f |h),

(u|h) + (v|h) = 2

(
u + v

2
|h
)

= (u + v|h).

13. Let f be a linear functional on L2(]0, 1[) such that u ≥ 0 ⇒ 〈f, u〉 ≥ 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||2. Prove that
f is not necessarily continuous with respect to the norm ||.||1.

14. Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (un) such that
||un|| = 1 and ||Aun|| → ∞. Then use the Banach–Steinhaus theorem to
obtain a contradiction.

15. In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.

16. Assume that μ(Ω) < ∞. Let (un) ⊂ L1(Ω,μ) be such that

(a) sup
n

∫
Ω

|un|�n(1 + |un|)dμ < +∞;

(b) (un) converges almost everywhere to u.

Then un → u in L1(Ω,μ).

17. Let us define, for n ≥ 1, un(x) = cos 3nx

n
.

(a) The series
∞∑
n=1

un converges in L2(]0, 2π [).

(b) For every x ∈ A = {2kπ/3j : j ∈ N, k ∈ Z},
∞∑
n=1

un(x) = +∞.

(c) For every x ∈ B = {(2k + 1)π/3j : j ∈ N, k ∈ Z},
∞∑
n=1

un(x) = −∞.

(d) The sets A and B are dense in R.



Chapter 4
Lebesgue Spaces

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1 A subset C of a vector space X is convex if for every u, v ∈ C and
every 0 < λ < 1, we have (1 − λ)x + λy ∈ C.

A point x of the convex set C is internal if for every y ∈ X, there exists ε > 0
such that x + εy ∈ C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x ∈ C and every λ > 0, we have λx ∈ C.
Let C be a convex set. A function F : C →] − ∞,+∞] is convex if for every

x, y ∈ C and every 0 < λ < 1, we have F((1−λ)x +λy) ≤ (1−λ)F (x)+λF(y).
A function F : C → [−∞,+∞[ is concave if −F is convex.
Let C be a cone. A function F : C →] − ∞,+∞] is positively homogeneous if

for every x ∈ C and every λ > 0, we have F(λx) = λF(x).

Examples Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
a normed space are convex.

Proposition 4.1.2 The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3 Let Y be a hyperplane of a real vector space X, f : Y → R linear
and F : X →] − ∞,+∞] convex and positively homogeneous such that f ≤ F on
Y and

Y ∩ int{x ∈ X : F(x) < ∞} �= φ.
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Then there exists g : X → R linear such that g ≤ F on X and g
∣∣
Y

= f .

Proof There exists z ∈ X such that X = Y ⊕ Rz. We must prove the existence of
c ∈ R such that for every y ∈ Y and every t ∈ R,

〈f, y〉 + ct ≤ F(y + tz).

Since F is positively homogeneous, it suffices to verify that for every u, v ∈ Y ,

〈f, u〉 − F(u − z) ≤ c ≤ F(v + z) − 〈f, v〉.

For every u, v ∈ Y , we have by assumption that

〈f, u〉 + 〈f, v〉 ≤ F(u + v) ≤ F(u − z) + F(v + z).

We define

a = sup
u∈Y

〈f, u〉 − F(u − z) ≤ b = inf
v∈Y F (v + z) − 〈f, v〉.

Let u ∈ Y∩ int{x ∈ X : F(x) < ∞}. For t large enough, F(tu−z) = tF (u−z/t) <

+∞. Hence −∞ < a. Similarly, b < +∞. We can choose any c ∈ [a, b]. ��
Let us state a cornerstone of functional analysis, the Hahn–Banach theorem.

Theorem 4.1.4 Let Y be a subspace of a separable normed space X, and let f ∈
L(Y,R). Then there exists g ∈ L(X,R) such that ||g|| = ||f || and g

∣∣∣
Y
= f .

Proof Let (zn) be a sequence dense in X. We define f0 = f , Y0 = Y , and Yn =
Yn−1+Rzn, n ≥ 1. Let there be fn ∈ L(Yn,R) such that ||fn|| = ||f || and fn

∣∣∣
Yn−1

=
fn−1. If Yn+1 = Yn, we define fn+1 = fn. If this is not the case, the preceding

lemma implies the existence of fn+1 : Yn+1 → R linear such that fn+1

∣∣∣
Yn

= fn and

for every x ∈ Yn+1,

〈fn+1, x〉 ≤ ||f || ||x||.

On Z =
∞⋃
n=0

Yn we define h by h

∣∣∣
Yn

= fn, n ≥ 0. The space Z is dense in X,

h ∈ L(Z,R), ||h|| = ||f ||, and h

∣∣∣
Y
= f . Finally, by Proposition 3.2.3, there exists

g ∈ L(X,R) such that ||g|| = ||h|| and g

∣∣∣
Z
= h. ��

Notation The dual of a normed space X is defined by X∗ = L(X,R). Let us recall
that the norm on X∗ is defined by
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||g|| = sup
u∈X‖u‖≤1

|〈g, u〉| = sup
u∈X‖u‖≤1

〈g, u〉.

Theorem 4.1.5 Let Z be a subspace of a separable normed space X, and let u ∈
X\Z. Then

0 < d(u,Z) = max{〈g, u〉 : g ∈ X∗, ||g|| ≤ 1, g
∣∣∣
Z
= 0}.

In particular if u ∈ X\{0}, then

||u|| = max
g∈X∗
‖g‖≤1

〈g, u〉 = max
g∈X∗
‖g‖≤1

|〈g, u〉|.

Proof Let us first prove that

c = sup
{
〈g, u〉 : g ∈ X∗ : ||g|| ≤ 1, g

∣∣∣
Z
= 0
}

≤ δ = d(u,Z).

Assume that ||g|| ≤ 1 and g

∣∣∣
Z
= 0. Then, for every z ∈ Z,

〈g, u〉 = 〈g, u − z〉 ≤ ||g|| ||u − z|| ≤ ||u − z||,

so that 〈g, u〉 ≤ δ and c ≤ δ.

It suffices then to prove the existence of g ∈ X∗ such that ||g|| ≤ 1, g
∣∣∣
Z
= 0 and

〈g, u〉 = δ. Let us define the functional f on Y = Ru ⊕ Z by

〈f, tu + z〉 = tδ.

Since, for t �= 0,

〈f, tu + z〉 ≤ |t |δ ≤ |t | ||u + z/t || = ||tu + z||,

the functional f is such that ||f || ≤ 1. The preceding theorem implies the existence

of g ∈ X∗ such that ||g|| = ||f || ≤ 1 and g

∣∣∣
Y
= f . In particular 〈g, u〉 = δ and

g

∣∣∣
Z
= 0. ��

The next theorem is due to P. Roselli and the author. Let us define

C+ = {(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 0

}
.
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Theorem 4.1.6 (Convexity Inequality) Let F : C+ → R be a positively

homogeneous function, and let uj ∈ L1(Ω,μ) be such that uj ≥ 0,
∫
Ω

ujdμ > 0,

j = 1, 2. If F is convex, then

F

(∫
Ω

u1dμ,

∫
Ω

u2dμ

)
≤
∫
Ω

F(u1, u2)dμ.

If F is concave, the reverse inequality holds.

Proof We define F(x) = +∞, x ∈ R
2 \ C+, and yj =

∫
Ω

ujdμ, j = 1, 2.

Lemma 4.1.3 implies the existence of α, β ∈ R such that

F(y1, y2) = αy1 + βy2 and, for all x1, x2 ∈ R, αx1 + βx2 ≤ F(x1, x2). (∗)

For every 0 ≤ λ ≤ 1, we have

α(1 − λ) + βλ ≤ F(1 − λ, λ) ≤ (1 − λ)F (1, 0) + λF(0, 1),

so that c = sup
0≤λ≤1

|F(1 − λ, λ)| < ∞. Since

∣∣F(u1, u2)
∣∣ ≤ c(u1 + u2),

the comparison theorem implies that F(u1, u2) ∈ L1(Ω,μ). We conclude from (∗)
that

F

(∫
Ω

u1dμ,

∫
Ω

u2dμ

)
= α

∫
Ω

u1dμ + β

∫
Ω

u2dμ

=
∫
Ω

αu1 + βu2dμ

≤
∫
Ω

F(u1, u2)dμ. ��

Lemma 4.1.7 Let F : C+ → R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof Assume that F(., 1) is convex. It suffices to prove that for every x, y ∈ ◦
C+,

F(x + y) ≤ F(x) + F(y). The preceding inequality is equivalent to

F

(
x1 + y1

x2 + y2
, 1

)
≤ x2

x2 + y2
F

(
x1

x2
, 1

)
+ y2

x2 + y2
F

(
y1

y2
, 1

)
. ��
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Remark Define F on R
2 by

F(y, z) = −√
yz, (y, z) ∈ C+,

= +∞, (y, z) ∈ R
2 \ C+.

The function F is positively homogeneous and, by the preceding lemma, is convex
on C+, hence on R

2. It is clear that 0 = F on Y = R × {0}. There is no linear
function g : R2 → R such that g ≤ F on R

2 and g = 0 on Y .

The convexity inequality implies a version of the Cauchy–Schwarz inequality: if
v,w ∈ L1(Ω,μ), then

∫
Ω

|vw|1/2dμ ≤
(∫

Ω

|v|dμ
)1/2 (∫

Ω

|w|dμ
)1/2

.

Definition 4.1.8 Let 1 < p < ∞. The exponent p′ conjugate to p is defined by
1/p + 1/p′ = 1. On the Lebesgue space

Lp(Ω,μ) =
{
u ∈M(Ω,μ) :

∫
Ω

|u|pdμ < ∞
}
,

we define the functional ||u||p =
(∫

Ω

|u|pdμ
)1/p

.

Theorem 4.1.9 Let 1 < p < ∞.

(a) (Hölder’s inequality.) Let v ∈ Lp(Ω,μ) and w ∈ Lp′
(Ω,μ). Then

∫
Ω

|vw|dμ ≤ ||v||p||w||p′ .

(b) (Minkowski’s inequality.) Let v,w ∈ Lp(Ω,μ). Then

||v + w||p ≤ ||v||p + ||w||p.

(c) (Hanner’s inequalities.) Let v,w ∈ Lp(Ω,μ). If 2 ≤ p < ∞, then

||v + w||pp + ||v − w||pp ≤ (||v||p + ||w||p)p + ∣∣||v||p − ||w||p
∣∣p .

If 1 < p ≤ 2, the reverse inequality holds.

Proof On C+, we define the continuous positively homogeneous functions

F(x1, x2) = x
1/p
1 x

1/p′
2 ,
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G(x1, x2) = (x
1/p
1 + x

1/p
2 )p,

H(x1, x2) = (x
1/p
1 + x

1/p
2 )p + |x1/p

1 − x
1/p
2 |p.

Inequality (a) follows from the convexity inequality applied to F and u =
(|v|p, |w|p′

). Inequality (b) follows from the convexity inequality applied to G

and u = (|v|p, |w|p). Finally, inequalities (c) follow from the convexity inequality
applied to H and u = (|v|p, |w|p). When v = 0 or w = 0, the inequalities are
obvious.

On [0,+∞[, we define f = F(., 1), g = G(., 1), h = H(., 1). It is easy to
verify that

f ′′(x) = 1 − p

p2
x

1
p

−2
,

g′′(x) = 1 − p

p
x

− 1
p

−1
(x

− 1
p + 1)p−2,

h′′(x) = 1 − p

p
x

− 1
p

−1
[
(x

− 1
p + 1)p−2 − |x− 1

p − 1|p−2
]
.

Hence f and g are concave. If 2 ≤ p < ∞, then h is concave, and if 1 < p ≤ 2,
then h is convex. It suffices then to use the preceding lemma. ��

4.2 Lebesgue Spaces

Let μ : L→ R be a positive measure on the set Ω .

Definition 4.2.1 Let 1 ≤ p < ∞. The space Lp(Ω,μ) is the quotient ofLp(Ω,μ)

by the equivalence relation “equality almost everywhere.” By definition,

||u||Lp(Ω,μ) = ||u||p =
(∫

Ω

|u|pdμ
)1/p

.

When ΛN is the Lebesgue measure on the open subset Ω of R
N , the space

Lp(Ω,ΛN) is denoted by Lp(Ω).

In practice, we identify the elements of Lp(Ω,μ) and the functions of Lp(Ω,μ).

Proposition 4.2.2 Let 1 ≤ p < ∞. Then the space Lp(Ω,μ) with the norm ||.||p
is a normed space.

Proof Minkowski’s inequality implies that if u, v ∈ Lp(Ω,μ), then u + v ∈
Lp(Ω,μ) and
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||u + v||p ≤ ||u||p + ||v||p.

It is clear that if u ∈ Lp(Ω,μ) and λ ∈ R, then λu ∈ Lp(Ω,μ) and ||λu||p =
|λ| ||u||p. Finally, if ||u||p = 0, then u = 0 almost everywhere and u = 0 in
Lp(Ω,μ). ��

The next inequalities follow from Hölder’s inequality.

Proposition 4.2.3 (Generalized Hölder’s Inequality) Let 1 < pj < ∞, uj ∈
Lpj (Ω,μ), 1 ≤ j ≤ k, and 1/p1 + . . . + 1/pk = 1. Then

k∏
j=1

uj ∈ L1(Ω,μ)

and

∫
Ω

k∏
j=1

|uj |dμ ≤
k∏

j=1

||uj ||pj
.

Proposition 4.2.4 (Interpolation Inequality) Let 1 ≤ p < q < r < ∞,

1

q
= 1 − λ

p
+ λ

r
,

and u ∈ Lp(Ω,μ) ∩ Lr(Ω,μ). Then u ∈ Lq(Ω,μ) and

||u||q ≤ ||u||1−λ
p ||u||λr .

Proposition 4.2.5 Let 1 ≤ p < q < ∞, μ(Ω) < ∞, and u ∈ Lq(Ω,μ). Then
u ∈ Lp(Ω,μ) and

||u||p ≤ μ(Ω)
1
p

− 1
q ||u||q .

Proposition 4.2.6 Let 1 ≤ p < ∞ and (un) ⊂ Lp(Ω,μ) be such that

(a) ||un||p → ||u||p, n → ∞;
(b) un converges to u almost everywhere.

Then ||un − u||p → 0, n → ∞.

Proof Since almost everywhere

0 ≤ 2p(|un|p + |u|p) − |un − u|p,

Fatou’s lemma ensures that
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2p+1
∫
Ω

|u|pdμ ≤ lim
∫
Ω

[
2p(|un|p + |u|p) − |un − u|p]dμ

= 2p+1
∫

|u|pdμ − lim
∫
Ω

|un − u|pdμ.

Hence lim ||un − u||pp ≤ 0. ��
The next result is more precise.

Theorem 4.2.7 (Brezis–Lieb Lemma) Let 1 ≤ p < ∞ and let (un) ⊂ Lp(Ω,μ)

be such that

(a) c = sup
n

||un||p < ∞;

(b) un converges to u almost everywhere.

Then u ∈ Lp(Ω,μ) and

lim
n→∞

(||un||pp − ||un − u||pp
) = ||u||pp.

Proof By Fatou’s lemma, ||u||p ≤ c. Let ε > 0. There exists, by homogeneity,
c(ε) > 0 such that for every a, b ∈ R,

∣∣|a + b|p − |a|p − |b|p∣∣ ≤ ε|a|p + c(ε)|b|p.

We deduce from Fatou’s lemma that
∫
Ω

c(ε)|u|pdμ ≤ lim
n→∞

∫
Ω

ε|un − u|p + c(ε)|u|p − ∣∣|un|p − |un − u|p − |u|p∣∣dμ

≤ (2c)pε +
∫
Ω

c(ε)|u|pdμ − lim
n→∞

∫
Ω

∣∣|un|p − |un − u|p − |u|p∣∣dμ,

or

lim
n→∞

∫
Ω

∣∣|un|p − |un − u|p − |u|p∣∣dμ ≤ (2c)pε.

Since ε > 0 is arbitrary, the proof is complete. ��
We define

Rh(s) = s + h, s ≤ −h,

= 0, |s| < h,

= s − h, s ≥ h.

Theorem 4.2.8 (Degiovanni–Magrone) Let μ(Ω) < ∞, 1 ≤ p < ∞, and (un) ⊂
Lp(Ω,μ) be such that



4.2 Lebesgue Spaces 97

(a) c = sup
n

||un||p < ∞;

(b) un converges to u almost everywhere.

Then

lim
n→∞

(
||un||pp − ||Rhun||pp

)
= ||u||pp − ||Rhu||pp.

Proof Let us define

f (s) = |s|p − |Rh(s)|p.

For every ε > 0, there exists c(ε) > 0 such that

|f (s) − f (t)| ≤ ε
∣∣|s|p + |t |p∣∣+ c(ε).

It follows from Fatou’s lemma that

2ε
∫
Ω

|u|pdμ+c(ε)m(Ω) ≤ lim
n→∞

∫
Ω

ε
(|un|p+|u|p)+c(ε)−∣∣f (un)−f (u)

∣∣dμ

≤ ε cp + ε

∫
Ω

|u|pdμ + c(ε)μ(Ω) − lim
n→∞

∫
Ω

∣∣f (un) − f (u)
∣∣dμ.

Hence

lim
n→∞

∫
Ω

∣∣f (un) − f (u)
∣∣dμ ≤ ε cp.

Since ε > 0 is arbitrary, the proof is complete. ��

Theorem 4.2.9 (F. Riesz, 1910) Let 1 ≤ p < ∞. Then the space Lp(Ω,μ) is
complete.

Proof Let (un) be a Cauchy sequence in Lp(Ω,μ). There exists a subsequence
vj = unj

such that for every j ,

||vj+1 − vj ||p ≤ 1/2j .

We define the sequence

fk =
k∑

j=1

|vj+1 − vj |.

Minkowski’s inequality ensures that
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∫
Ω

f
p
k dμ ≤

⎛
⎝ k∑

j=1

1/2j

⎞
⎠

p

< 1.

Levi’s theorem implies the almost everywhere convergence of fk to f ∈ Lp(Ω,μ).
Hence vk converges almost everywhere to a function u. For m ≥ k + 1, it follows
from Minkowski’s inequality that

∫
Ω

|vm − vk|pdμ ≤
⎛
⎝m−1∑

j=k

1/2j

⎞
⎠

p

≤ (2/2k)p.

By Fatou’s lemma, we obtain

∫
Ω

|u − vk|pdμ ≤ (2/2k)p.

In particular, u = u − v1 + v1 ∈ Lp(Ω,μ). We conclude by invoking the Cauchy
condition:

||u − uk||p ≤ ||u − vk||p + ||vk − uk||p ≤ 2/2k

+||unk
− uk||p → 0, k → ∞. ��

Proposition 4.2.10 Let 1 ≤ p < ∞ and let un → u in Lp(Ω,μ). Then there exist
subsequences vj = unj

and g ∈ Lp(Ω,μ) such that almost everywhere,

|vj | ≤ g and vj → u, j → ∞.

Proof If the sequence (un) converges in Lp(Ω,μ), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (vj ) in the proof of the preceding theorem
converges almost everywhere to u, and for every j ,

|vj | ≤ |v1| +
∞∑
j=1

|vj+1 − vj | = |v1| + f ∈ Lp(Ω,μ). ��

Theorem 4.2.11 (Density Theorem) Let 1 ≤ p < ∞ and L ⊂ Lp(Ω,μ). Then
L is dense in Lp(Ω,μ).

Proof Let u ∈ Lp(Ω,μ). Since u is measurable with respect to μ on Ω , there
exists a sequence (un) ⊂ L such that un → u almost everywhere. We define

vn = max(min(|un|, u),−|un|).
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By definition, |vn| ≤ |un|, and almost everywhere,

|vn − u|p ≤ |u|p ∈ L1, |vn − u|p → 0, n → ∞.

It follows from Lebesgue’s dominated convergence theorem that ||vn − u||p → 0,
n → ∞. Hence

Y = {u ∈ Lp(Ω,μ) : there exists f ∈ L such that |u| ≤ f almost everywhere}

is dense in Lp(Ω,μ). It suffices to prove that L is dense in Y .
Let u ∈ Y , f ∈ L be such that |u| ≤ f almost everywhere and (un) ⊂ L such

that un → u almost everywhere. We define

wn = max(min(f, un),−f ).

By definition, wn ∈ L and, almost everywhere,

|wn − u|p ≤ 2pf p ∈ L1, |wn − u|p → 0, n → ∞.

It follows from Lebesgue’s dominated convergence theorem that ||wn − u||p → 0,
n → ∞. Hence L is dense in Y . ��

Theorem 4.2.12 Let Ω be open in R
N and 1 ≤ p < ∞. Then the space Lp(Ω) is

separable.

Proof By the preceding theorem, K(Ω) is dense in Lp(Ω). Proposition 2.3.2
implies that for every u ∈ K(Ω),

uj =
∑
k∈ZN

u(k/2j )fj,k

converges to u in Lp(Ω). We conclude the proof using Proposition 3.3.11. ��

4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siècle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnêtes fonctions qui servent à quelque chose.

Henri Poincaré
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Regularization by convolution allows one to approximate locally integrable func-
tions by infinitely differentiable functions.

Definition 4.3.1 Let Ω be an open subset of RN . The space of test functions on Ω

is defined by

D(Ω) = {u ∈ C∞(RN) : spt u is a compact subset of Ω}.

Let α = (α1, . . . , α
N
) ∈ N

N be a multi-index. By definition,

|α| = α1 + . . . + α
N
, Dα = ∂

α1
1 . . . ∂

α
N

N
, ∂j = ∂

∂xj
.

Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element inD(Ω).

Proposition 4.3.2 The function defined on R by

f (x) = exp(1/x), x < 0,
= 0, x ≥ 0,

is infinitely differentiable.

Proof Let us prove by induction that for every n and every x < 0,

f (n)(0) = 0, f (n)(x) = Pn(1/x) exp(1/x),

where Pn is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

lim
x→0−

f (n)(x) − f n(0)

x
= lim

x→0−
Pn(1/x) exp(1/x)

x
= 0.

Hence f (n+1)(0) = 0. Finally, we have for x < 0,

f (n+1)(x) = (−1/x2)(Pn(1/x) + P ′
n(1/x)) exp(1/x) = Pn+1(1/x) exp(1/x). ��

Definition 4.3.3 We define on R
N the function

ρ(x) = c−1 exp(1/(|x|2 − 1)), |x| < 1,
= 0, |x| ≥ 1,
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where

c =
∫
B(0,1)

exp(1/(|x|2 − 1))dx.

The regularizing sequence ρn(x) = nNρ(nx) is such that

ρn ∈ D(RN), spt ρn = B[0, 1/n],
∫
RN

ρn dx = 1, ρn ≥ 0.

Definition 4.3.4 Let Ω be an open set of RN . By definition, ω ⊂⊂ Ω if ω is open
and ω is a compact subset of Ω . We define, for 1 ≤ p < ∞,

L
p

loc(Ω) = {u : Ω → R : for all ω ⊂⊂ Ω,u

∣∣∣
ω

∈ Lp(ω)}.

A sequence (un) converges to u in L
p

loc(Ω) if for every ω ⊂⊂ Ω ,

∫
ω

|un − u|pdx → 0, n → ∞.

Definition 4.3.5 Let u ∈ L1
loc(Ω) and v ∈ K(RN) be such that spt v ⊂ B[0, 1/n].

For n ≥ 1, the convolution v ∗ u is defined on

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n}

by

v ∗ u(x) =
∫
Ω

v(x − y)u(y)dy =
∫
B(0,1/n)

v(y)u(x − y)dy.

If |y| < 1/n, the translation of u by y is defined on Ωn by τyu(x) = u(x − y).

Proposition 4.3.6 Let u ∈ L1
loc(Ω) and v ∈ D(RN) be such that spt v ⊂

B[0, 1/n]. Then v ∗ u ∈ C∞(Ωn), and for every α ∈ N
N , Dα(v ∗ u) = (Dαv) ∗ u.

Proof Let |α| = 1 and x ∈ Ωn. There exists r > 0 such that B[x, r] ⊂ Ωn. Hence

ω = B(x, r + 1/n) ⊂⊂ Ω,

and for 0 < |ε| < r ,

v ∗ u(x + εα) − v ∗ u(x)

ε
=
∫
ω

v(x + εα − y) − v(x − y)

ε
u(y)dy.
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But

lim
ε → 0
ε �= 0

v(x + εα − y) − v(x − y)

ε
= Dαv(x − y)

and

sup
y ∈ ω

0 < |ε| < r

∣∣∣∣v(x + εα − y) − v(x − y)

ε

∣∣∣∣ < ∞.

Lebesgue’s dominated convergence theorem implies that

Dα(v ∗ u)(x) =
∫
ω

Dαv(x − y)u(y)dy = (Dαv) ∗ u(x).

It is easy to conclude the proof by induction. ��

Lemma 4.3.7 Let ω ⊂⊂ Ω .

(a) Let u ∈ C(Ω). Then for every n large enough,

sup
x∈ω

|ρn ∗ u(x) − u(x)| ≤ sup
|y|<1/n

sup
x∈ω

|τyu(x) − u(x)|.

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then for every n large enough,

||ρn ∗ u − u||Lp(ω) ≤ sup
|y|<1/n

||τyu − u||Lp(ω).

Proof For every n large enough, ω ⊂⊂ Ωn. Let u ∈ C(Ω). Since

∫
B(0,1/n)

ρn(y)dy = 1,

we obtain for every x ∈ ω,

∣∣ ρn ∗ u(x) − u(x)
∣∣ =

∣∣∣∣
∫
B(0,1/n)

ρn(y)
(
u(x − y) − u(x)

)
dy

∣∣∣∣
≤ sup

|y|<1/n
sup
x∈ω

∣∣u(x − y) − u(x)
∣∣.

Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. By Hölder’s inequality, for every x ∈ ω, we have
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∣∣ ρn ∗ u(x) − u(x)
∣∣ =

∣∣∣∣
∫
B(0,1/n)

ρn(y)
(
u(x − y) − u(x)

)
dy

∣∣∣∣

≤
(∫

B(0,1/n)
ρn(y)

∣∣u(x − y) − u(x)
∣∣pdy

)1/p

.

Fubini’s theorem implies that

∫
ω

∣∣ρn ∗ u(x) − u(x)
∣∣pdx ≤

∫
ω

dx

∫
B(0,1/n)

ρn(y)
∣∣u(x − y) − u(x)

∣∣pdy

=
∫
B(0,1/n)

dy

∫
ω

ρn(y)
∣∣u(x − y) − u(x)

∣∣pdx

≤ sup
|y|<1/n

∫
ω

∣∣u(x − y) − u(x)
∣∣pdx. ��

Lemma 4.3.8 (Continuity of Translations) Let ω ⊂⊂ Ω .

(a) Let u ∈ C(Ω). Then lim
y→0

sup
x∈ω

|τyu(x) − u(x)| = 0.

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then lim
y→0

||τyu − u||Lp(ω) = 0.

Proof We choose an open subset U such that ω ⊂⊂ U ⊂⊂ Ω . If u ∈ C(Ω), then
property (a) follows from the uniform continuity of u on U .

Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞, and ε > 0. The density theorem implies the
existence of v ∈ K(U) such that ||u − v||Lp(U) ≤ ε. By (a), there exists 0 < δ <

d(ω, ∂U) such that for every |y| < δ, sup
x∈ω

|τyv(x) − v(x)| ≤ ε. We obtain for every

|y| < δ,

||τyu − u||Lp(ω) ≤ ||τyu − τyv||Lp(ω) + ||τyv − v||Lp(ω) + ||v − u||Lp(ω)

≤ 2||u − v||Lp(U) + m(ω)1/psup
x∈ω

|τyv(x) − v(x)|

≤ (2 + m(ω)1/p)ε.

Since ε > 0 is arbitrary, the proof is complete. ��
We deduce from the preceding lemmas the following regularization theorem.
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Theorem 4.3.9

(a) Let u ∈ C(Ω). Then ρn ∗ u converges uniformly to u on every compact subset
of Ω .

(b) Let u ∈ L
p

loc(Ω), 1 ≤ p < ∞. Then ρn ∗ u converges to u in L
p

loc(Ω).

The following consequences are fundamental.

Theorem 4.3.10 (Annulation Theorem) Let u ∈ L1
loc(Ω) be such that for every

v ∈ D(Ω),

∫
Ω

v(x)u(x)dx = 0.

Then u = 0 almost everywhere on Ω .

Proof By assumption, for every n, ρn ∗ u = 0 on Ωn. ��

Theorem 4.3.11 Let 1 ≤ p < ∞. ThenD(Ω) is dense in Lp(Ω).

Proof By the density theorem, K(Ω) is dense in Lp(Ω). Let u ∈ K(Ω). There
exists an open set ω such that spt u ⊂ ω ⊂⊂ Ω . For j large enough, the support
of uj = ρj ∗ u is contained in ω. Since uj ∈ C∞(RN) by Proposition 4.3.6, uj ∈
D(Ω). The regularization theorem ensures that uj → u in Lp(Ω). ��

Definition 4.3.12 A partition of unity subordinate to the covering of the compact
subset Γ of RN by the open sets U1, . . . , Uk is a sequence ψ1, . . . , ψk such that

(a) ψj ∈ D(Uj ), ψj ≥ 0, j = 1, . . . , k;

(b)
k∑

j=1

ψj = 1 on Γ ,
k∑

j=1

ψj ≤ 1 on R
N .

Let us prove the theorem of partition of unity.

Theorem 4.3.13 Let U1, . . . , Uk be a covering by open sets of the compact subset
Γ of RN . Then there exists a partition of unity subordinates to U1, . . . , Uk .

Proof Let K be a compact subset of the open subset U of RN . We choose an open
set ω such that K ⊂ ω ⊂⊂ U . For n large enough, ϕ = ρn ∗ χ

ω is such that
ϕ ∈ D(U), ϕ = 1 on K and 0 ≤ ϕ ≤ 1 on R

N .
For n large enough, the finite sequence

Fj = {x : d(x,RN\Uj ) ≥ 1/n}, j = 1, . . . , k

is a covering of Γ by closed sets. Indeed if this is not the case, there exists, by the

compactness of Γ , x ⊂ Γ \
k⋃

j=1

Uj . This is a contradiction.
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By the first part of the proof, there exists, for j = 1, . . . , k, ϕj ∈ D(Uj ) such
that ϕj = 1 on Γ

⋂
Fj and 0 ≤ ϕj ≤ 1 on R

N . Let us define the functions

ψ1 = ϕ1,

ψ2 = ϕ2(1 − ϕ1),

. . .

ψk = ϕk(1 − ϕ1) . . . (1 − ϕk−1).

It is easy to prove, by a finite induction, that

ψ1 + . . . + ψk = 1 − (1 − ϕ1) . . . (1 − ϕk).

Assume that x ∈ Γ . There exists j such that x ∈ Fj . By definition, we conclude
that ϕj (x) = 1 and ψ1(x) + . . . + ψk(x) = 1. ��
Now we consider Euclidean space.

Proposition 4.3.14 Let 1 ≤ p < ∞ and u ∈ Lp(RN). Then ||ρn ∗ u||p ≤ ||u||p
and ρn ∗ u → u in Lp(RN).

Proof It follows from Hölder’s inequality that

∣∣ρn ∗ u(x)
∣∣ =

∣∣∣∣
∫
RN

u(y)ρn(x − y)dy

∣∣∣∣ ≤
∣∣∣∣
∫
RN

∣∣u(y)∣∣pρn(x − y)dy

∣∣∣∣
1/p

.

Fubini’s theorem implies that

∫
RN

∣∣ρn ∗ u(x)
∣∣pdx ≤

∫
RN

dx

∫
RN

∣∣u(y)∣∣pρn(x − y)dy

=
∫
RN

dy

∫
RN

∣∣u(y)∣∣pρn(x − y)dx

=
∫
RN

∣∣u(y)∣∣pdy.

Hence ||ρn ∗ u||p ≤ ||u||p.
Let u ∈ Lp(RN) and ε > 0. The density theorem implies the existence of v ∈

K(RN) such that ||u − v||p ≤ ε. By the regularization theorem, ρn ∗ v → v in
Lp(RN). Hence there exists m such that for every n ≥ m, ||ρn ∗ v − v||p ≤ ε. We
obtain for every n ≥ m that

||ρn ∗ u − u||p ≤ ||ρn ∗ (u − v)||p + ||ρn ∗ v − v||p + ||v − u||p ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��
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Proposition 4.3.15 Let 1 ≤ p < ∞, f ∈ Lp(RN), and g ∈ K(RN). Then

∫
RN

(ρn ∗ f )g dx =
∫
RN

f (ρn ∗ g)dx.

Proof Fubini’s theorem and the parity of ρ imply that

∫
RN

(ρn ∗ f )(x)g(x)dx =
∫
RN

dx

∫
RN

ρn(x − y)f (y)g(x)dy

=
∫
RN

dy

∫
RN

ρn(x − y)f (y)g(x)dx

=
∫
RN

(ρn ∗ g)(y)f (y)dy. ��

4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1 Let X be a precompact metric space, and let S be a set of uniformly
continuous functions on X such that

(a) c = sup
u∈S

sup
x∈X

∣∣u(x)∣∣ < ∞;

(b) for every ε > 0, there exists δ > 0 such that sup
u∈S

ωu(δ) ≤ ε.

Then S is precompact in BC(X).

Proof Let ε > 0 and let δ corresponds to ε by (b). There exists a finite covering of
the precompact space X by balls B[x1, δ], . . . , B[xk, δ]. There exists also a finite
covering of [−c, c] by intervals [y1 − ε, y1 + ε], . . . , [yn − ε, yn + ε]. Let us denote
by J the (finite) set of mappings from {1, . . . , k} to {1, . . . , n}. For every j ∈ J , we
define

Sj = {u ∈ S : |u(x1) − yj (1)| ≤ ε, . . . , |u(xk) − yj (k)| ≤ ε}.

By definition, (Sj )j∈J is a covering of S. Let u, v ∈ Sj and x ∈ X. There exists m

such that d(x, xm) ≤ δ. We have

∣∣u(xm) − yj (m)

∣∣ ≤ ε,
∣∣v(xm) − yj (m)

∣∣ ≤ ε

and, by (b),

∣∣u(x) − u(xm)
∣∣ ≤ ε,

∣∣v(x) − v(xm)
∣∣ ≤ ε.
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Hence |u(x) − v(x)| ≤ 4ε, and since x ∈ X is arbitrary, ||u − v||∞ ≤ 4ε. If Sj is
nonempty, then Sj ⊂ B[u, 4ε]. Since ε > 0 is arbitrary, S is precompact in BC(X)

by Fréchet’s criterion. ��
We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2 Let Ω be an open subset of RN , 1 ≤ p < ∞, and let S ⊂ Lp(Ω)

be such that

(a) c = sup
u∈S

||u||Lp(Ω) < ∞;

(b) for every ε > 0, there exists ω ⊂⊂ Ω such that sup
u∈S

∫
Ω\ω

|u|pdx ≤ εp;

(c) for every ω ⊂⊂ Ω , lim
y→0

sup
u∈S

||τyu − u||Lp(ω) = 0.

Then S is precompact in Lp(Ω).

Proof Let ε > 0 and let ω corresponds to ε by (b). Assumption (c) implies the
existence of 0 < δ < d(ω, ∂Ω) such that for every |y| ≤ δ,

sup
u∈S

||τyu − u ||Lp(ω) ≤ ε.

We choose n > 1/δ. We deduce from Lemma 4.3.7 that

sup
u∈S

||ρn ∗ u − u||Lp(ω) ≤ sup
u∈S

sup
|y|<1/n

||τyu − u||Lp(ω) ≤ ε. (∗)

We define

U = {x ∈ R
N : d(x, ω) < 1/n} ⊂⊂ Ω.

Let us prove that the family R = {ρn ∗ u
∣∣
ω

: u ∈ S} satisfies the assumptions of
Ascoli’s theorem in BC(ω).

1. By (a), for every u ∈ S and for every x ∈ ω, we have

∣∣ρn ∗ u(x)
∣∣ ≤

∫
U

ρn(x − z)
∣∣u(z)∣∣dz ≤ sup

RN

|ρn| ||u||L1(U) ≤ c1.

2. By (a), for every u ∈ S and for every x, y ∈ ω, we have

∣∣ρn ∗ u(x) − ρn ∗ u(y)
∣∣ ≤

∫
U

∣∣ρn(x − z) − ρn(y − z)
∣∣ ∣∣u(z)∣∣dz

≤ sup
z

∣∣ρn(x − z) − ρn(y − z)
∣∣ ||u||L1(U) ≤ c2|x − y|.
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Hence R is precompact in BC(ω). Since

||v||Lp(ω) ≤ m(ω)1/p sup
ω

|v|,

R is precompact in Lp(ω). But then (∗) implies the existence of a finite covering
of S

∣∣
ω

in Lp(ω) by balls of radius 2ε. Assumption (b) ensures the existence of a
finite covering of S in Lp(Ω) by balls of radius 3ε. Since ε > 0 is arbitrary, S is
precompact in Lp(Ω) by Fréchet’s criterion. ��

4.5 Comments

Figure 4.1 gives a geometric interpretation of Lemma 4.1.3. It is contained in the
Lectures on Analysis by G. Choquet (W.A. Benjamin, New York, 1969).

Proofs of the Hahn–Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by Favard
[22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.

Fig. 4.1 Lemma of the Hahn-Banach theorem
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4.6 Exercises for Chap. 4

1. (Young’s inequality.) Let 1 < p < ∞. Then for every a, b ≥ 0,

ab ≤ ap

p
+ bp

′

p′ .

First proof: A = �n ap, B = �n bp
′
, exp

(
A

p
+ B

p′

)
≤ expA

p
+ expB

p′ .

Second proof:
bp

′

p′ = sup
a≥0

(
ab − ap

p

)
.

2. (Hölder’s inequality.) Let 1 < p < ∞. If ||u||p �= 0 �= ||v||p′ , then by Young’s
inequality,

∫
Ω

∣∣ u

||u||p
v

||v||p′

∣∣dμ ≤ 1.

3. (Minkowski’s inequality.) Prove that

(a) ||u||p = sup
||w||p′=1

∫
Ω

uw dμ

(b) ||u + v||p ≤ ||u||p + ||v||p
4. (Minkowski’s inequality.) Let 1 < p < ∞ and define, on Lp(Ω,μ), the convex

function G(u) =
∫
Ω

|u|pdμ. Then with λ = ||v||p/(||u||p + ||v||p),

G

(
u + v

||u||p + ||v||p
)

= G

(
(1 − λ)

u

||u||p + λ
v

||v||p
)

≤ (1 − λ)G

(
u

||u||p
)

+ λG

(
v

||v||p
)

= 1.

Hence ||u + v||p ≤ ||u||p + ||v||p.
5. (Jensen’s inequality)

(a) Let f : [0,+∞[→ R be a convex function and y > 0. There exists α, β ∈
R such that

f (y) = αy + β and, for all x ≥ 0, αx + β ≤ f (x).

(b) Let f : [0,+∞[→ R be a convex function. Let μ be a positive measure
on Ω such that μ(Ω) = 1, and let u ∈ L1(Ω,μ) be such that u ≥ 0 and∫
Ω

u dμ > 0. Then
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f

(∫
Ω

u dμ

)
≤
∫
Ω

f (u)dμ ≤ +∞.

If f is concave, the reverse inequality holds.
6. Assume that μ(Ω) = 1. Then for every u ∈ L1(Ω,μ), u ≥ 0,

0 ≤ exp
∫
Ω

�n u dμ ≤
∫
Ω

u dμ ≤ �n

∫
Ω

exp u dμ ≤ +∞.

7. Let Ω = B(0, 1) ⊂ R
N . Then

λp + N > 0 ⇐⇒ |x|λ ∈ Lp(Ω), λp + N < 0 ⇐⇒ |x|λ ∈ Lp(RN \ Ω).

8. A differentiable function u : R → R satisfies

x2u′(x) + u(x) = 0

if and only if u(x) = cf (x), where c ∈ R and f is the function defined in
Proposition 4.3.2.

9. Let 1 < p < ∞, (un) ⊂ L1(Ω,μ) and let u : Ω → R be μ-measurable. Then
the following properties are equivalent:

(a) ‖un − u‖p → 0, n → ∞;
(b) (un) converges in measure to u and {|un|p : n ∈ N} is equi-integrable.

10. (Rising sun lemma, F. Riesz, 1932.) Let g ∈ C([a, b]). The set

E =
{
a < x < b : g(x) < max[x,b] g

}

consists of a finite or countable union of disjoint intervals ]ak, bk[ such that
g(ak) ≤ g(bk). Hint: If ak < x < bk , then g(x) < g(bk).

11. (Maximal inequality, Hardy–Littlewood, 1930.) Let u ∈ L1(]a, b[), u ≥ 0. The
maximal function defined on ]a, b[ by

Mu(x) = sup
x<y<b

1

y − x

∫ y

x

u(s)ds

satisfies, for every t > 0,

|{Mu > t}| ≤ t−1
∫ b

a

u(s)ds.

Hint: Use the rising sun lemma with
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g(x) =
∫ x

a

u(s)ds − tx.

12. (Lebesgue’s differentiability theorem) Let u ∈ L1(]a, b[). Prove that for almost
every a < x < b,

lim
y→x
y>x

1

y − x

∫ y

x

|u(s) − u(x)|ds = 0.

Hint: Use Theorem 4.3.11 and the maximal inequality.
13. (Godunova’s inequality) Let f : [0,+∞[→ [0,+∞[ be convex, and let

u : R → [0,+∞[ be Lebesgue-measurable. Then

∫ ∞

0
f

(∫ x

0
u(t)

dt

x

)
dx

x
≤
∫ ∞

0
f (u(x))

dx

x
≤ +∞.

Hint:

∫ ∞

0
f

(∫ x

0
u(t)

dt

x

)
dx

x
≤
∫ ∞

0
dx

∫ x

0
f (u(t))

dt

x2

=
∫ ∞

0
dt

∫ ∞

t

f (u(t))
dx

x2

=
∫ ∞

0
f (u(t))

dt

t
.

14. (Hardy’s inequality) Let 1 < p < ∞ and v : R → [0,+∞[ be Lebesgue-
measurable. Then

∫ ∞

0

[∫ x

0
v(t)

dt

x

]p
dx ≤

(
p

p − 1

)p ∫ ∞

0
vp(x)dx ≤ +∞. (∗)

Verify that this inequality is optimal using the family

fε(x) = 1, 0 < x ≤ 1,

= x−ε−1/p, x > 1.

Hint. Godunova’s inequality

∫ ∞

0

[∫ x

0
u(t)

dt

x

]p
dx

x
≤
∫ ∞

0
up(x)

dx

x

is equivalent to (∗) where
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v(x) = x−1/pu(x1−1/p).

15. (Knopp’s inequality) Let v : R → [0,+∞[ be Lebesgue-measurable. Then

∫ ∞

0
exp

(∫ x

0
v(t)

dt

x

)
dx ≤ e

∫ ∞

0
exp v(x)dx ≤ +∞. (∗∗)

Hint. Godunova’s inequality

∫ ∞

0
exp

(∫ x

0
u(t)

dt

x

)
dx

x
≤
∫ ∞

0
exp u(x)

dx

x

is equivalent to (∗∗) where

v(x) = u(x) − ln x.



Chapter 5
Duality

5.1 Weak Convergence

A fruitful process in functional analysis is to associate to every normed space X the
dual space X∗ of linear continuous functionals on X.

Definition 5.1.1 Let X be a normed space. The dual X∗ of X is the space of linear
continuous functionals on X. A sequence (fn) ⊂ X∗ converges weakly to f ∈ X∗
if (fn) converges simply to f . We then write fn ⇀ f .

Let us translate Proposition 3.2.5 and Corollary 3.2.7.

Proposition 5.1.2 Let Z be a dense subset of a normed space X and (fn) ⊂ X∗
such that:

(a) sup
n

||fn|| < ∞;

(b) for every v ∈ Z, 〈fn, v〉 converges.

Then (fn) converges weakly to f ∈ X∗ and

||f || ≤ lim
n→∞ ||fn||.

Theorem 5.1.3 (Banach–Steinhaus) Let X be a Banach space and (fn) ⊂ X∗
simply convergent to f . Then (fn) is bounded, f ∈ X∗, and

||f || ≤ lim
n→∞ ||fn||.

Theorem 5.1.4 (Banach) Let X be a separable normed space. Then every
sequence bounded in X∗ contains a weakly convergent subsequence.
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Proof A Cantor diagonal argument will be used. Let (fn) be bounded in X∗, and let
(vk) be dense in X. Since (〈fn, v1〉) is bounded, there exists a subsequence (f1,n)

of (fn) such that 〈f1,n, v1〉 converges as n → ∞. By induction, for every k, there
exists a subsequence (fk,n) of (fk−1,n) such that 〈fk,n, vk〉 converges as n → ∞.
The sequence gn = fn,n is bounded, and for every k, 〈gn, vk〉 converges as n → ∞.
By Proposition 5.1.2, (gn) converges weakly in X∗. ��

Example (Weak Convergence) Let us prove that BC(]0, 1[) is not separable.
We define on this space the functionals 〈fn, u〉 = u(1/n). It is clear that ||fn|| = 1.
For every strictly increasing sequence (nk), there exists u ∈ BC(]0, 1[) such that
u(1/nk) = (−1)k . Hence,

lim
k→∞

〈fnk
, u〉 = −1, lim

k→∞ 〈fnk
, u〉 = 1,

and the sequence (fnk
) is not weakly convergent.

Let Ω be an open subset of RN . We define

K+(Ω) = {u ∈ K(Ω) : for all x ∈ Ω,u(x) ≥ 0}.

Theorem 5.1.5 Let μ : K(Ω) → R be a linear functional such that for every
u ∈ K+(Ω), 〈μ, u〉 ≥ 0. Then μ is a positive measure.

Proof We have to only verify that if un ↓ 0, then 〈μ, un〉 → 0. By the theorem of
partition of unity, there exists ψ ∈ D(Ω) such that 0 ≤ ψ ≤ 1 and ψ = 1 on spt
u0. By the positivity of μ, we obtain

0 ≤ 〈μ, ||un||∞ψ − un〉.

We conclude, using Dini’s theorem, that

0 ≤ 〈μ, un〉 ≤ 〈μ,ψ〉||un||∞ → 0. ��

Let μ : K(Ω) → R be the difference of two positive measures μ+ and μ−. Then
for every u ∈ K+(Ω),

sup{〈μ, f 〉 : f ∈ K(Ω), |f | ≤ u} ≤ 〈μ+, u〉 + 〈μ−, u〉 < +∞.

We shall prove the converse.

Definition 5.1.6 Let M ≥ 1. A measure is a linear functional μ : K(Ω;RM) → R

such that for every u ∈ K+(Ω),

〈|μ|, u〉 = sup{〈μ, f 〉 : f ∈ K(Ω;RM), |f | ≤ u} < +∞.



5.1 Weak Convergence 115

The measure is scalar when M = 1 and vectorial when M ≥ 2.

Theorem 5.1.7 Let μ : K(Ω;RM) → R be a measure. Then the functional defined
on K(Ω) by

〈|μ|, u〉 = 〈|μ|, u+〉 − 〈|μ|, u−〉

is a positive measure.

Proof

1. Let u, v ∈ K+(Ω), f, g ∈ K(Ω;RM) be such that |f | ≤ u and |g| ≤ v. Then

〈μ, f 〉 + 〈μ, g〉 = 〈μ, f + g〉 ≤ 〈|μ|, u + v〉.

Taking the supremum, we obtain

〈|μ|, u〉 + 〈|μ|, v〉 ≤ 〈|μ|, u + v〉.

2. Let u, v ∈ K+(Ω), h ∈ K(Ω;RM) be such that |h| ≤ u + v. Define f and g on
Ω by

f = uh/(u + v), g = vh/(u + v), u + v > 0,
f = g = 0, u + v = 0.

It is easy to verify that f, g ∈ K(Ω;RM) and |f | ≤ u, |g| ≤ v, so that

〈μ, h〉 = 〈μ, f 〉 + 〈μ, g〉 ≤ 〈|μ|, u〉 + 〈|μ|, v〉.

Taking the supremum, we obtain

〈|μ|, u + v〉 ≤ 〈|μ|, u〉 + 〈|μ|, v〉.

Hence, by the preceding step,

〈|μ|, u + v〉 = 〈|μ|, u〉 + 〈|μ|, v〉.

3. Let uk, vk ∈ K+(Ω), k = 1, 2, be such that u1 − v1 = u2 − v2. Then

〈|μ|, u1〉 + 〈|μ|, v2〉 = 〈|μ|, u1 + v2〉 = 〈|μ|, u2 + v1〉 = 〈|μ|, u2〉 + 〈|μ|, v1〉,

so that

〈|μ|, u1〉 − 〈|μ|, v1〉 = 〈|μ|, u2〉 − 〈|μ|, v2〉.



116 5 Duality

Since for every u, v ∈ K(Ω),

(u + v)+ − (u + v)− = u + v = u+ + v+ − (u− + v−),

we conclude that

〈|μ|, u + v〉 = 〈|μ|, u〉 + 〈|μ|, v〉.

4. It is clear that for every u ∈ K(Ω) and every λ ∈ R,

〈|μ|, λu〉 = λ〈|μ|, u〉,

and that for u ∈ K+(Ω), 〈|μ|, u〉 ≥ 0. ��

Corollary 5.1.8 (Jordan Decomposition Theorem) Let μ : K(Ω) → R be a
scalar measure. Then μ = μ+ − μ−, where

μ+ = |μ| + μ

2
, μ− = |μ| − μ

2

are positive measures.

We need a new function space.

Definition 5.1.9 We define

C0(Ω) = {u ∈ BC(Ω) : for every ε > 0, there exists a compact subset K of Ω

such that sup
Ω\K

|u| < ε

}
.

Example The space C0(R
N) is the set of continuous functions on R

N tending to 0
at infinity.

Proposition 5.1.10 The space C0(Ω) is the closure of K(Ω) in BC(Ω). In
particular, C0(Ω) is separable.

Proof If u belongs to the closure of K(Ω) in BC(Ω), then for every ε > 0, there
exists v ∈ K(Ω) such that ||u − v||∞ < ε. Let K = spt u. We obtain

sup
Ω\K

∣∣u(x)∣∣ = sup
Ω\K

∣∣u(x) − v(x)
∣∣ < ε.

If u ∈ C0(Ω), then for every ε > 0, there exists a compact subset K of Ω such
that supΩ\K |u(x)| < ε. The theorem of partitions of unity implies the existence of
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ϕ ∈ D(Ω) such that 0 ≤ ϕ ≤ 1 and ϕ = 1 on K . Define v = ϕu. Then v ∈ K(Ω)

and

||u − v||∞ = sup
Ω\K

(
1 − ϕ(x)

)∣∣u(x)∣∣ < ε.

Hence, C0(Ω) is the closure of K(Ω) in BC(Ω). By Propositions 2.3.2 and 3.3.11,
C0(Ω) is separable. ��

Definition 5.1.11 The total variation of the measure μ : K(Ω;RM) → R is
defined by

||μ||Ω = sup{〈μ, f 〉 : f ∈ K(Ω;RM), ||f ||∞ ≤ 1}.

The measure μ is finite if ||μ||Ω < ∞. By the preceding proposition, every finite
measure μ has a continuous extension to C0(Ω;RM). A sequence (μn) of finite
measures converges weakly to μ if for every f ∈ C0(Ω;RM),

〈μn, f 〉 → 〈μ, f 〉.

Theorem 5.1.12 (de la Vallée Poussin, 1932) Every sequence (μn) of measures
on Ω such that sup

n
||μn||Ω < ∞ contains a weakly convergent subsequence.

Proof By the preceding proposition, C0(Ω;RM) is separable. It suffices then to use
Banach’s theorem. ��

5.2 James Representation Theorem

Let us define two useful classes of normed spaces.

Definition 5.2.1 A normed space is smooth if its norm F(u) = ||u|| has a linear
directional derivative F ′(u) for every u �= 0:

〈F ′(u), v〉 = d

dε

∣∣∣
ε=0

F(u + εv).

Definition 5.2.2 A normed space is uniformly convex if for every 0 < ε ≤ 1,

δX(ε) = inf

{
1 − ||u + v

2
|| : ||u|| = ||v|| = 1, ||u − v|| ≥ 2ε

}
> 0.

The function δX(ε) is the modulus of convexity of the space.
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The proof of the next result is left to the reader.

Proposition 5.2.3 Let X be a smooth normed space and u ∈ X \ {0}. Then
||F ′(u)|| = 1 and

〈F ′(u), u〉 = ||u|| = max
f∈X∗

||f ||=1

〈f, u〉.

Choose f �= 0 in the dual of the normed space X and consider the dual problem

{
maximize 〈f, u〉,
u ∈ X, ||u|| = 1.

(P)

Lemma 5.2.4 Let X be a smooth normed space, f ∈ X∗ \ {0}, and u a solution of
(P). Then f = ||f ||F ′(u).

Proof By assumption, 〈f, u〉 = ||f ||. Let v ∈ X. The function

g(ε) = ||f || ||u + εv|| − 〈f, u + εv〉

reaches its minimum at ε = 0. Hence, g′(0) = 0 and

||f ||〈F ′(u), v〉 − 〈f, v〉 = 0.

Since v ∈ X is arbitrary, the proof is complete. ��

Lemma 5.2.5 Let X be a uniformly convex Banach space and f ∈ X∗ \ {0}. Then
(P) has a unique solution.

Proof Let (un) ⊂ X be a maximizing sequence for the problem (P):

||un|| = 1, 〈f, un〉 → ||f ||, n → ∞.

Let us prove that (un) is a Cauchy sequence. Let 0 < ε < 1, and let δX(ε) be the
modulus of convexity of X at ε. There exists m such that for j, k ≥ m,

||f ||(1 − δX(ε)) < (〈f, uj 〉 + 〈f, uk〉)/2 = 〈f, uj + uk

2
〉 ≤ ||f || ||uj + uk||

2
.

Hence, j, k ≥ m ⇒ ||uj − uk|| < 2ε. Since X is complete, (un) converges to
u ∈ X. By continuity, ||u|| = 1 and 〈f, u〉 = ||f ||. Hence, u is a solution of (P).

Assume that u and v are solutions of (P). The sequence (u, v, u, v, . . .) is
maximizing. Hence, it is a Cauchy sequence, so that u = v. ��

From the two preceding lemmas, we infer the James representation theorem.
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Theorem 5.2.6 Let X be a smooth uniformly convex Banach space and f ∈ X∗ \
{0}. Then there exists one and only one u ∈ X such that

||u|| = 1, 〈f, u〉 = ||f ||, f = ||f || F ′(u).

From the James representation theorem, we deduce a variant of the Hahn–
Banach theorem.

Theorem 5.2.7 Let Y be a subspace of a smooth uniformly convex Banach space
X and f ∈ Y ∗. Then there exists one and only one g ∈ X∗ such that ||g|| = ||f ||
and g

∣∣∣
Y

= f .

Proof Existence If f = 0, then g = 0. Let f �= 0. After extending f to Y by
Proposition 3.2.3, we can assume that Y is closed.

The James representation theorem implies the existence of one and only one
u ∈ Y such that

||u|| = 1, 〈f, u〉 = ||f ||, f = ||f ||(F
∣∣∣
Y
)′(u).

Define g = ||f || F ′(u). It is clear that ||g|| = ||f || and

g

∣∣∣
Y

= ||f ||(F
∣∣∣
Y
)′(u) = f.

Uniqueness If h ∈ X∗ is such that ||h|| = ||f || and h

∣∣∣
Y

= f , then

〈h, u〉 = 〈f, u〉 = ||f || = ||h||.

Lemma 5.2.4 implies that h = ||h||F ′(u) = ||f ||F ′(u). ��

5.3 Duality of Hilbert Spaces

By the Cauchy–Schwarz inequality, for every g fixed in the Hilbert space X, the
linear functional

X → R : v �→ (g|v)

is continuous. The Fréchet–Riesz theorem asserts that every continuous linear
functional on X has this representation.
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Theorem 5.3.1 Let X be a Hilbert space and f ∈ X∗. Then there exists one and
only one g ∈ X such that for every v ∈ X,

〈f, v〉 = (g|v).

Moreover, ||g|| = ||f ||.
Proof Existence If f = 0, then g = 0. Assume that f �= 0. It follows from the
parallelogram identity that for 0 < ε ≤ 1, δ(ε) ≥ 1 − √

1 − ε2 > 0. Hence, X is
uniformly convex.

If u ∈ X \ {0}, we find that

〈F ′(u), v〉 = d

dε

∣∣∣
ε=0

||u + εv|| = ||u||−1(u|v).

Hence, X is smooth.
The James representation theorem implies the existence of u ∈ X such that

||u|| = 1, 〈f, u〉 = ||f ||, f = ||f ||F ′(u).

But then, for every v ∈ X,

〈f, v〉 = ||f ||(u|v) = (||f ||u|v).

Uniqueness If for every v ∈ X,

(g|v) = 〈f, v〉 = (h|v),

then ||g − h||2 = 0 and g = h. ��

Definition 5.3.2 The vector space X is the direct sum of the subspaces Y and Z if
Y ∩Z = {0} and X = {y + z : y ∈ Y, z ∈ Z}. We then write X = Y ⊕Z, and every
u ∈ X has a unique decomposition u = y + z, y ∈ Y , z ∈ Z.

Definition 5.3.3 The orthogonal space to a subset Y of a pre-Hilbert space X is
defined by

Y⊥ = {z ∈ X : for every y ∈ Y, (z|y) = 0}.

It is easy to verify that Y⊥ is a closed subspace of X.

Corollary 5.3.4 Let Y be a closed subspace of a Hilbert space X. Then X is the
direct sum of Y and Y⊥.
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Proof If u ∈ Y ∩ Y⊥, then (u|u) = 0 and u = 0.
Let u ∈ X. The Fréchet–Riesz theorem implies the existence of y ∈ Y such that

for every v ∈ Y , (u|v) = (y|v). But then z = u − y ∈ Y⊥. ��

Corollary 5.3.5 A subspace Y of a Hilbert space X is dense if and only if Y⊥ =
{0}.
Proof Let Y be a subspace of X. Then Y is a closed subspace of X. By continuity

of the scalar product, Y⊥ = Y
⊥

. It follows from the preceding corollary that

X = Y ⊕ Y
⊥ = Y ⊕ Y⊥.

��

Definition 5.3.6 A sequence (un) converges weakly to u in the Hilbert space X if
for every v ∈ X, (un|v) → (u|v). We then write un ⇀ u.

Proposition 5.3.7 Let Z be a dense subset of a Hilbert space X and (un) ⊂ X be
such that:

(a) sup
n

||un|| < ∞;

(b) for every v ∈ Z, (un|v) converges.

Then (un) converges weakly in X.

Proof It suffices to use Proposition 5.1.2 and the Fréchet–Riesz theorem. ��

Theorem 5.3.8 Let (un) be a sequence weakly convergent to u in the Hilbert space
X. Then (un) is bounded and

||u|| ≤ lim
n→∞ ||un||.

Proof It suffices to use Theorem 5.1.3 and the Fréchet–Riesz theorem. ��

Theorem 5.3.9 Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Proof Let (un) be a bounded sequence in the Hilbert space X, and let Y be the
closure of the space generated by (un). The sequence (un) is bounded in the
separable Hilbert space Y . By the Banach theorem and the Fréchet–Riesz theorem,
there exists a subsequence vk = unk

weakly converging to u in Y . For every v ∈ X,
v = y+z, y ∈ Y , and z ∈ Y⊥ by Corollary 5.3.4. By definition, (vk|z) = (u|z) = 0.
Hence, (vk|v) → (u|v) and vk ⇀ u in X. ��

Definition 5.3.10 Let μ : L→ R and ν : L→ R by positive measures on Ω . By

definition, μ ≤ ν if for every u ∈ L, u ≥ 0,
∫
Ω

u dμ ≤
∫
Ω

u dν.
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Lemma 5.3.11 Let μ ≤ ν. Then L1(Ω, ν) ⊂ L1(Ω,μ), and for every u ∈
L1(Ω, ν), ||u||L1(Ω,μ) ≤ ||u||L1(Ω,ν).

Proof Let u ∈ L1(Ω, ν). By the density theorem, there exists a sequence (un) ⊂ L
such that un → u in L1(Ω, ν) and ν-almost everywhere. Clearly, un → u μ-almost
everywhere. By Fatou’s lemma, u ∈ L1(Ω,μ) and

∫
Ω

|u|dμ ≤ lim
n→∞

∫
Ω

|un|dμ ≤ lim
n→∞

∫
Ω

|un|dν =
∫
Ω

|u|dν. ��

Lemma 5.3.12 (von Neumann) Let μ ≤ ν and ν(Ω) < +∞. Then there exists
one and only one function g : Ω → [0, 1] measurable with respect to ν and such
that for every u ∈ L1(Ω, ν),

∫
Ω

u dμ =
∫
Ω

ug dν.

Proof By assumption, L2(Ω, ν) ⊂ L1(Ω, ν). Let us define f on L2(Ω, ν) by

〈f, u〉 =
∫
Ω

u dμ.

By the Cauchy–Schwarz inequality, we have

|〈f, u〉| ≤ (μ(Ω))1/2
(∫

Ω

u2dμ

)1/2

≤ (μ(Ω))1/2
(∫

Ω

u2dν

)1/2

.

The Fréchet–Riesz theorem implies the existence of one and only one function g ∈
L2(Ω, ν) such that for every v ∈ L2(Ω, ν),

∫
Ω

v dμ =
∫
Ω

vg dν. (∗)

In particular, we obtain

0 ≤
∫
Ω

g−dμ = −
∫
Ω

(g−)2dν

and ν({g < 0}) = 0. Similarly, we have

0 ≤
∫
Ω

(1 − g)−dν −
∫
Ω

(1 − g)−dμ = −
∫
Ω

[
(1 − g)−

]2
dν

and ν({g > 1}) = 0. Let u ∈ L1(Ω, ν), u ≥ 0, and define un = min(u, n). We
deduce from (∗) and Levi’s theorem that
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∫
Ω

u dμ = lim
n→∞

∫
Ω

undμ = lim
n→∞

∫
Ω

ung dν =
∫
Ω

ug dν.

Since u = u+ − u−, the preceding equality holds for every u ∈ L1(Ω, ν). ��
Let us prove Lebesgue’s decomposition theorem.

Theorem 5.3.13 Let μ : L → R and ν : L → R be positive measures on Ω

such that μ(Ω) < ∞, ν(Ω) < ∞. Then there exist h ∈ L1(Ω, ν) and Σ ⊂ Ω ,
measurable with respect to μ and ν, such that:

(a) ν(Σ) = 0, h ≥ 0;
(b) for every u ∈ L1(Ω,μ) ∩ L1(Ω, ν), uh ∈ L1(Ω, ν) and

∫
Ω

u dμ =
∫
Ω

uh dν +
∫
Σ

u dμ.

Proof Let X = L1(Ω,μ) ∩ L1(Ω, ν). The preceding lemma implies the existence
of g : Ω → [0, 1], measurable with respect to μ and ν, such that for every v ∈ X,

∫
Ω

v dμ =
∫
Ω

vg dμ +
∫
Ω

vg dν.

Let Σ = {g = 1}. Since for every v ∈ X,

∫
Ω

v(1 − g)dμ =
∫
Ω

vg dν, (∗)

we obtain ν(Σ) = 0. Let us define h = χΩ\Σg/(1 − g). Choose u ∈ X, u ≥ 0, and
define

un = (1 + g + . . . + gn)u.

We deduce from (∗) and Levi’s theorem that

∫
Ω\Σ

u dμ =
∫
Ω\Σ

ug/(1 − g)dν =
∫
Ω

uh dν.

Since u = u+ −u−, the preceding equality holds for every u ∈ X. Finally, we have

∫
Ω

h dν = μ(Ω \ Σ) < +∞. ��

Remark Every other decomposition of μ corresponding to h0 and Σ0 is such that
μ(Σ0 \ Σ) = μ(Σ \ Σ0) = 0 and ν({h0 �= h}) = 0.
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Let us prove the polar decomposition of vector measures theorem.

Theorem 5.3.14 Let Ω be an open subset of RN , and let μ : K(Ω;RM) → R be
a measure such that ||μ||Ω < +∞. Then there exists a function g : Ω → R

M such
that:

(a) g is |μ|-measurable;
(b) |g(x)| = 1, |μ|-almost everywhere on Ω;

(c) for all f ∈ K(Ω;RM), 〈μ, f 〉 =
∫
Ω

f · g d|μ|.

Proof Let e1, . . . , eM be the standard basis of RM , and for 1 ≤ k ≤ M , define μk

on K(Ω) by

〈μk, u〉 = 〈μ, u ek〉.

It is clear that for all u ∈ K(Ω),

|〈μk, u〉| ≤
∫
Ω

|u| d|μ| ≤ ||μ||1/2
Ω ||u||L2(Ω,|μ|).

Since K(Ω) is dense in L2(Ω, |μ|), Proposition 3.2.3 implies the existence of a
continuous extension of μk to L2(Ω, |μ|). By the Fréchet–Riesz representation
theorem, there exists gk ∈ L2(Ω, |μ|) such that for all u ∈ K(Ω),

〈μk, u〉 =
∫
Ω

u gk d|μ|.

We define g =
M∑
k=1

gkek , so that for all f ∈ K(Ω;RM),

〈μ, f 〉 =
M∑
k=1

〈μ, fkek〉 =
M∑
k=1

∫
Ω

fkgk d|μ| =
∫
Ω

f · g d|μ|.

Let u ∈ K+(Ω). We have, by Definition 5.1.6,

c = sup

{∫
Ω

f · g d|μ| : f ∈ K(Ω;RM), |f | ≤ u

}
=
∫
Ω

u d|μ|.

It is clear that c ≤
∫

u|g| d|μ|. Theorem 4.2.11 implies the existence of (wn) ⊂
K(Ω;RM) converging to g in L2(Ω, |μ|). Let us define

vn = u wn/

√
|wn|2 + 1/n.
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We infer from Lebesgue’s dominated convergence theorem that

c ≤
∫
Ω

u|g| d|μ| = lim
n→∞

∫
Ω

vn · g d|μ| ≤ c.

We conclude that for all u ∈ K(Ω),

∫
Ω

u|g| d|μ| =
∫
Ω

u d|μ|.

Hence, |g|−1 is orthogonal toK(Ω) in L2(Ω, |μ|). By Corollary 5.3.5, |g|−1 = 0,
|μ|-almost everywhere. ��

5.4 Duality of Lebesgue Spaces

Let 1 < p < ∞, and let p′ be the exponent conjugate to p defined by 1/p+1/p′ =
1. By Hölder’s inequality, for every g fixed in Lp′

(Ω,μ), the linear functional

Lp(Ω,μ) → R : v �→
∫
Ω

gv dμ

is continuous. Riesz’s representation theorem asserts that every continuous linear
functional on Lp(Ω,μ) has this representation. We denote by μ : L→ R a positive
measure on Ω .

Theorem 5.4.1 Let 1 < p < ∞. Then the space Lp(Ω,μ) is smooth, and the
directional derivative of the norm F(u) = ||u||p is given, for u �= 0, by

〈F ′(u), v〉 = ||u||1−p
p

∫
Ω

|u|p−2uv dμ.

Proof We define G(u) =
∫
Ω

|u|pdμ, and we choose u, v ∈ Lp. By the fundamental

theorem of calculus, for 0 < |ε| < 1 and almost all x ∈ Ω ,

||u(x) + εv(x)|p − |u(x)|p| ≤ p

∣∣∣∣
∫ ε

0
|u(x) + tv(x)|p−1|v(x)|dt

∣∣∣∣
≤ p|ε|

(
|u(x)| + |v(x)|

)p−1|v(x)|.

It follows from Hölder’s inequality that

(|u(x)| + |v(x)|)p−1|v(x)| ∈ L1.
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Lebesgue’s dominated convergence theorem ensures that

〈G′(u), v〉 = d

dε

∣∣∣
ε=0

G(u + εv) = p

∫
Ω

|u|p−2uv dμ.

Hence for u �= 0,

〈F ′(u), v〉 = d

dε

∣∣∣
ε=0

p
√
G(u + εv) = G(u)

1−p
p

∫
Ω

|u|p−2uv dμ. ��

Theorem 5.4.2 (Clarkson, 1936) Let 1 < p < ∞. Then the space Lp(Ω,μ) is
uniformly convex.

Proof If Lp is not uniformly convex, then there exist 0 < ε ≤ 1 and (un), (vn) such
that

||un||p = ||vn||p = 1, ||un − vn||p → 2ε and ||un + vn||p → 2.

If 2 ≤ p < ∞, we deduce from Hanner’s inequality that

||un + vn||pp + ||un − vn||pp ≤ 2p.

Taking the limit, we obtain 2p + 2pεp ≤ 2p. This is a contradiction.
If 1 < p ≤ 2, we deduce from Hanner’s inequality that

( ∣∣∣∣
∣∣∣∣un + vn

2

∣∣∣∣
∣∣∣∣
p

+
∣∣∣∣
∣∣∣∣un − vn

2

∣∣∣∣
∣∣∣∣
p

)p

+
∣∣∣∣∣
∣∣∣∣
∣∣∣∣un + vn

2

∣∣∣∣
∣∣∣∣
p

−
∣∣∣∣
∣∣∣∣un − vn

2

∣∣∣∣
∣∣∣∣
p

∣∣∣∣∣
p

≤ 2.

Taking the limit, we find by strict convexity that

2 < (1 + ε)p + (1 − ε)p ≤ 2.

This is also a contradiction. ��

Theorem 5.4.3 (Riesz’s Representation Theorem) Let 1 < p < ∞ and f ∈
(Lp(Ω,μ))∗. Then there exists one and only one g ∈ Lp′

(Ω,μ) such that for
every v ∈ Lp(Ω,μ),

〈f, v〉 =
∫
Ω

gv dμ.

Moreover, ||g||p′ = ||f ||.
Proof Existence. If f = 0, then g = 0. Assume f �= 0. Since Lp is smooth
and uniformly convex by the preceding theorems, the James representation theorem
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implies the existence of u ∈ Lp such that

||u||p = 1, 〈f, u〉 = ||f ||, f = ||f ||F ′(u).

But then for every v ∈ Lp,

〈f, v〉 = ||f ||
∫
Ω

|u|p−2uv dμ.

Define g = ||f || |u|p−2u. It is easy to verify that g ∈ Lp′
and ||g||p′ = ||f ||.

Uniqueness It suffices to prove that if g ∈ Lp′
is such that for every v ∈ Lp,∫

Ω

gv dμ = 0, then g = 0. Since |g|p′−2g ∈ Lp, we obtain

||g||p′
p′ =

∫
Ω

|g|p′
dμ = 0. ��

Definition 5.4.4 Let 1 < p < ∞. We identify the spaces (Lp′
(Ω,μ))∗ and

Lp(Ω,μ). A sequence (un) converges weakly to u in Lp(Ω,μ) if for every
v ∈ Lp′

(Ω,μ),

∫
Ω

unv dμ →
∫
Ω

uv dμ.

We then write un ⇀ u.

Proposition 5.4.5 Let 1 < p < ∞, let Z be a dense subset of Lp′
(Ω,μ), and let

(un) ⊂ Lp(Ω,μ) be such that:

(a) sup
n

||un||p < ∞;

(b) for every v ∈ Z,
∫
Ω

unv dμ converges.

Then (un) converges weakly to u ∈ Lp(Ω,μ).

Proof It suffices to use Proposition 5.1.2. ��

Theorem 5.4.6 Let 1 < p < ∞, and let (un) be a sequence weakly convergent to
u in Lp(Ω,μ). Then (un) is bounded and

||u||p ≤ lim
n→∞ ||un||p.

Proof It suffices to use Theorem 5.1.3. ��
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Proposition 5.4.7 Let 1 < p < ∞, and let (un) ⊂ Lp(Ω,μ) be such that:

(a) c = sup ||un||p < ∞;
(b) (un) converges almost everywhere to u on Ω .

Then un ⇀ u in Lp(Ω,μ).

Proof By Fatou’s lemma, ||u||p ≤ c. We choose v in Lp′
(Ω,μ), and we define

An = {x ∈ Ω : |un(x) − u(x)| ≤ |v(x)|p′−1}, Bn = Ω \ An.

We deduce from Hölder’s and Minkowski’s inequalities that

∫
Ω

|un − u| |v|dμ ≤
∫
An

|un − u| |v|dμ + ||un − u||p
(∫

Bn

|v|p′
dμ

)1/p′

≤
∫
An

|un − u| |v|dμ + 2c

(∫
Bn

|v|p′
dμ

)1/p′

.

Lebesgue’s dominated convergence theorem ensures that

lim
n→∞

∫
An

|un − u| |v|dμ = 0 = lim
n→∞

∫
Bn

|v|p′
dμ. ��

Theorem 5.4.8 Let 1 < p < ∞, and let Ω be an open subset of RN . Then every
bounded sequence in Lp(Ω) contains a weakly convergent subsequence.

Proof By Theorem 4.2.11, Lp′
(Ω) is separable. It suffices then to use Banach’s

theorem. ��

Examples (Weak Convergence in Lp) What are the obstructions to the (strong)
convergence of weakly convergent sequences? We consider three processes by
which in Lp(Ω),

un ⇀ 0, un �→ 0.

Oscillation The sequence un(x) =
√

2
π

sin n x is orthonormal in L2(]0, π [). It
follows from Bessel’s inequality that un ⇀ 0. But ||un||2 = 1.

Concentration Let 1 < p < ∞, u ∈ K(RN) \ {0}, and un(x) = nN/pu(nx).
For every n, ||un||p = ||u||p > 0, and for all x �= 0, un(x) → 0, n → ∞. By
Proposition 5.4.6, un ⇀ 0 in Lp(RN).
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Translation Let 1 < p < ∞, u ∈ K(RN)\{0}, and un(x) = u(x1 −n, x2, . . . , x
N
).

For every n, ||un||p = ||u||p > 0, and for all x, un(x) → 0, n → ∞. By
Proposition 5.4.7, un ⇀ 0 in Lp(RN).

5.5 Comments

A representation theorem gives to an abstract mathematical object like a functional
a more concrete representation involving in many cases an integral. It replaces a
structural definition by an analytic description. The first representation theorem
(proved by Riesz in 1909 [61]) asserts that every continuous linear functional on
C([0, 1]) is representable by a Stieltjes integral (see Sect. 10.1). In this chapter, we
use as a basic tool the James representation theorem [35].

5.6 Exercises for Chap. 5

1. Define a sequence (fn) of finite measures on ]0, 1[ such that:

(a) ||fn|| → ||f ||;
(b) fn ⇀ f ;
(c) ||fn − f || �→ 0.

2. Let X be a Hilbert space, and let (un) ⊂ X be such that:

(a) lim ||un|| ≤ ||u||;
(b) un ⇀ u.

Then ||un − u|| → 0.
3. Let 1 < p < ∞ and (un) ⊂ Lp(Ω,μ) be such that:

(a) lim ||un||p ≤ ||u||p;
(b) un ⇀ u.

Then ||un − u||p → 0. Hint: If vn ⇀ v, then ||v||p ≤ lim || vn+v
2 ||p.

4. Let 1 < p < ∞ and un ⇀ u in Lp(Ω,μ). Is it true that

lim
n→∞(||un||pp − ||un − u||pp) = ||u||pp ?

Hint: When p �= 2, construct a counterexample using oscillating step functions.
5. Let X be a smooth uniformly convex Banach space and f, g ∈ X∗. Then

max
〈g,y〉=0
||y||=1

〈f, y〉 = min
λ∈R ||f − λg||.
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6. Let C be a closed convex subset of a uniformly convex Banach space X. Then
for every u ∈ X, there exists one and only one v ∈ C such that ||u − v|| =
d(u, C).

7. Let Ω be an open subset of RN and f ∈ L1
loc(Ω). Prove that

μ : K(Ω) → R : u �→
∫
Ω

f (x)u(x) dx

is a measure on Ω such that

||μ||Ω =
∫
Ω

|f (x)|dx.

8. Let μ be a positive measure on Ω such that μ(Ω) = 1. We define, onM(Ω,μ),

||u||∞ = inf{c ≥ 0 : almost everywhere on Ω, |u(x)| ≤ c}.

We also define

L∞(Ω,μ) = {u ∈M(Ω,μ) : ||u||∞ < +∞}.

We identify two functions of L∞(Ω,μ) when they are μ-almost everywhere
equal. If ||u||∞ < +∞, then u ∈

⋂
1≤p<∞

Lp(Ω,μ) and ||u||∞ = lim
p→∞||u||p.

9. Assume that μ(Ω) = 1. For every f ∈ (L1(Ω,μ))∗, there exists one and only
one g ∈ L∞(Ω,μ) such that for every v ∈ L1(Ω,μ),

〈f, v〉 =
∫
Ω

gv dμ.

Moreover, ||g||∞ = ||f ||. Hint: Use Riesz’s representation theorem on (Lp)∗,
1 < p < ∞.

10. Let Ω be a bounded open subset of RN , and let (gn) ⊂ L∞(Ω,ΛN) be such
that sup

n
||gn||∞ < +∞. Then there exist a subsequence (gnk

) of (gn) and g ∈
L∞(Ω,ΛN) such that for every v ∈ L1(Ω,ΛN),

lim
k→∞

∫
Ω

gnk
v dx =

∫
Ω

gv dx.



Chapter 6
Sobolev Spaces

6.1 Weak Derivatives

Throughout this chapter, we denote by Ω an open subset of RN . We begin with an
elementary computation.

Lemma 6.1.1 Let 1 ≤ |α| ≤ m and let f ∈ Cm(Ω). Then for every u ∈ Cm(Ω) ∩
K(Ω),

∫
Ω

f Dαu dx = (−1)|α|
∫
Ω

(Dαf )u dx.

Proof We assume that α = (0, . . . , 0, 1). Let u ∈ C1(Ω) ∩K(Ω), and define

g(x) = f (x)u(x), x ∈ Ω,

= 0, x ∈ R
N \ Ω.

The fundamental theorem of calculus implies that for every x′ ∈ R
N−1,

∫
R

Dαg(x′, x
N
)dx

N
= 0.

Fubini’s theorem ensures that
∫
Ω

(fDαu + (Dαf )u)dx =
∫
RN

Dαg dx =
∫
RN−1

dx′
∫
R

Dαg dx
N

= 0.

When |α| = 1, the proof is similar. It is easy to conclude the proof by induction.
��

Weak derivatives were defined by S.L. Sobolev in 1938.
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Definition 6.1.2 Let α ∈ N
N and f ∈ L1

loc(Ω). By definition, the weak derivative
of order α of f exists if there is g ∈ L1

loc(Ω) such that for every u ∈ D(Ω),

∫
Ω

f Dαu dx = (−1)|α|
∫
Ω

gu dx.

The function g, if it exists, will be denoted by ∂αf .

By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 Assume that ∂αf exists. On

Ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n},

we have that

Dα(ρn ∗ f ) = ρn ∗ ∂αf.

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for
every x ∈ Ωn,

Dα(ρn ∗ f )(x) =
∫
Ω

Dα
x ρn(x − y)f (y)dy

= (−1)|α|
∫
Ω

Dα
y ρn(x − y)f (y)dy

= (−1)2|α|
∫
Ω

ρn(x − y)∂αf (y)dy

= ρn ∗ ∂αf (x). ��

Theorem 6.1.4 (du Bois–Reymond Lemma) Let |α| = 1 and let f ∈ C(Ω) be
such that ∂αf ∈ C(Ω). Then Dαf exists and Dαf = ∂αf .

Proof By the preceding proposition, we have

Dα(ρn ∗ f ) = ρn ∗ ∂αf.

The fundamental theorem of calculus implies then that

ρn ∗ f (x + εα) = ρn ∗ f (x) +
∫ ε

0
ρn ∗ ∂αf (x + tα)dt.

By the regularization theorem,

ρn ∗ f → f, ρn ∗ ∂αf → ∂αf
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uniformly on every compact subset of Ω . Hence we obtain

f (x + εα) = f (x) +
∫ ε

0
∂αf (x + tα)dt,

so that ∂αf = Dαf by the fundamental theorem of calculus. ��

Notation From now on, the derivatives of a continuously differentiable function will
also be denoted by ∂α .

Let us prove the closing lemma. The graph of the weak derivative is closed in
L1

loc × L1
loc.

Lemma 6.1.5 Let (fn) ⊂ L1
loc(Ω) and let α ∈ N

N be such that in L1
loc(Ω),

fn → f, ∂αfn → g.

Then g = ∂αf .
Proof For every u ∈ D(Ω), we have by definition that

∫
Ω

fn∂
αu dx = (−1)|α|

∫
Ω

(∂αfn)u dx.

Since by assumption,

∣∣∣∣
∫
Ω

(fn − f )∂αu dx

∣∣∣∣ ≤ ||∂αu||∞
∫

spt u
|fn − f |dx → 0

and
∣∣∣∣
∫
Ω

(∂αfn − g)u dx

∣∣∣∣ ≤ ||u||∞
∫

spt u
|∂αfn − g|dx → 0,

we obtain
∫
Ω

f ∂αu dx = (−1)|α|
∫
Ω

gu dx. ��

Example (Weak Derivative) If −N < λ ≤ 1, the function f (x) = |x|λ is locally
integrable on R

N . We approximate f by

fε(x) =
(
|x|2 + ε

)λ/2
, ε > 0.

Then fε ∈ C∞(RN) and
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∂kfε(x) = λ xk

(
|x|2 + ε

) λ−2
2
,

∣∣∂kfε(x)
∣∣ ≤ λ|x|λ−1.

If λ > 1 − N , we obtain in L1
loc(R

N) that

fε(x) → f (x) = |x|λ,
∂kfε(x) → g(x) = λ xk|x|λ−2.

Hence ∂kf (x) = λ |x|λ−2xk .

Definition 6.1.6 The gradient of the (weakly) differentiable function u is
defined by

∇u = (∂1u, . . . , ∂
N
u).

The divergence of the (weakly) differentiable vector field v = (v1, . . . , v
N
) is

defined by

div v = ∂1v1 + . . . + ∂
N
v
N
.

Let 1 ≤ p < ∞ and u ∈ L1
loc(Ω) be such that ∂ju ∈ Lp(Ω), j = 1, . . . , N . We

define

||∇u||Lp(Ω) =
(∫

Ω

|∇u|pdx
)1/p

=
⎛
⎜⎝
∫
Ω

∣∣∣∣∣∣
N∑

j=1

(∂ju)
2

∣∣∣∣∣∣
p/2

dx

⎞
⎟⎠

1/p

.

Theorem 6.1.7 Let 1 < p < ∞ and let (un) ⊂ L1
loc(Ω) be such that

(a) un → u in L1
loc(Ω);

(b) for every n, ∇un ∈ Lp(Ω;RN);
(c) c = sup

n
||∇un||p < ∞.

Then ∇u ∈ Lp(Ω;RN) and

||∇u||p ≤ lim
n→∞ ||∇un||p.

Proof We define f onD(Ω;RN) by
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〈f, v〉 =
∫
Ω

u div v dx.

We have that

|〈f, v〉| = lim
n→∞ |

∫
Ω

un div v dx|

= lim
n→∞ |

∫
Ω

∇un · v dx|

≤ lim
n→∞ ||∇un||p

(∫
Ω

|v|p′
dx

)1/p′

.

Since D(Ω) is dense in Lp′
(Ω), Proposition 3.2.3 implies the existence of a

continuous extension of f to Lp′
(Ω;RN). By Riesz’s representation theorem, there

exists g ∈ Lp(Ω;RN) such that for every v ∈ D(Ω;RN),

∫
Ω

g · v dx = 〈f, v〉 =
∫
Ω

u div v dx.

Hence ∇u = −g ∈ Lp(Ω;RN). Choosing v = |∇u|p−2∇u, we find that

∫
Ω

|∇u|pdx =
∫
Ω

∇u · v dx ≤ lim
n→∞ ||∇un||p

(∫
Ω

|v|p′
dx

)1/p′

= lim
n→∞ ||∇un||p

(∫
Ω

|∇u|pdx
)1−1/p

.

��
Sobolev spaces are spaces of differentiable functions with integral norms. In

order to define complete spaces, we use weak derivatives.

Definition 6.1.8 Let k ≥ 1 and 1 ≤ p < ∞. On the Sobolev space

Wk,p(Ω) = {u ∈ Lp(Ω) : for every |α| ≤ k, ∂αu ∈ Lp(Ω)},

we define the norm

||u||Wk,p(Ω) = ||u||k,p =
⎛
⎝∑

|α|≤k

∫
Ω

|∂αu|pdx
⎞
⎠

1/p

.

On the space Hk(Ω) = Wk,2(Ω), we define the scalar product
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(u | v)Hk(Ω) =
∑
|α|≤k

(∂αu | ∂αv)L2(Ω).

The Sobolev space W
k,p

loc (Ω) is defined by

W
k,p

loc (Ω) = {u ∈ L
p

loc(Ω) : for all ω ⊂⊂ Ω,u

∣∣∣
ω

∈ Wk,p(ω)}.

A sequence (un) converges to u in W
k,p

loc (Ω) if for every ω ⊂⊂ Ω ,

||un − u||Wk,p(ω) → 0, n → ∞.

The space W
k,p

0 (Ω) is the closure ofD(Ω) in Wk,p(Ω). We denote by Hk
0 (Ω) the

space W
k,2
0 (Ω).

Theorem 6.1.9 Let k ≥ 1 and 1 ≤ p < ∞. Then the spaces Wk,p(Ω) and
W

k,p

0 (Ω) are complete and separable.

Proof Let M =
∑
|α|≤k

1. The space Lp(Ω;RM) with the norm

||(vα)||p =
⎛
⎝∑

|α|≤k

∫
Ω

|vα|pdx
⎞
⎠

1/p

is complete and separable. The map

Φ : Wk,p(Ω) → Lp(Ω;RM) : u �→ (∂αu)|α|≤k

is a linear isometry: ||Φ(u)||p = ||u||k,p. By the closing lemma, Φ(Wk,p(Ω)) is a
closed subspace of Lp(Ω;RM). It follows that Wk,p(Ω) is complete and separable.
Since W

k,p

0 (Ω) is a closed subspace of Wk,p(Ω), it is also complete and separable.
��

Theorem 6.1.10 Let 1 ≤ p < ∞. Then W
1,p
0 (RN) = W 1,p(RN).

Proof It suffices to prove thatD(RN) is dense in W 1,p(RN). We use regularization
and truncation.

Regularization Let u ∈ W 1,p(RN) and define un = ρn ∗ u. By Proposition 4.3.6,
un ∈ C∞(RN). Proposition 4.3.14 implies that in Lp(RN),

un → u, ∂kun = ρn ∗ ∂ku → ∂ku.

We conclude that W 1,p(RN) ∩ C∞(RN) is dense in W 1,p(RN).
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Truncation Let θ ∈ C∞(R) be such that 0 ≤ θ ≤ 1 and

θ(t) = 1, t ≤ 1,
= 0, t ≥ 2.

We define the sequence

θn(x) = θ(|x|/n).

Let u ∈ W 1,p(RN)∩C∞(RN). It is clear that un = θnu ∈ D(RN). It follows easily
from Lebesgue’s dominated convergence theorem that un → u in W 1,p(RN). ��

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Variables) Let Ω and ω be open subsets of RN ,
G : ω → Ω a diffeomorphism, and u ∈ W

1,1
loc (Ω). Then u ◦ G ∈ W

1,1
loc (ω) and

∂

∂yk
(u ◦ G) =

∑
j

∂u

∂xj
◦ G

∂Gj

∂yk
.

Proof Let v ∈ D(ω) and un = ρn ∗ u. By Lemma 6.1.1, for n large enough, we
have

∫
ω

un ◦ G(y)
∂v

∂yk
(y)dy = −

∫
ω

∑
j

∂un

∂xj
◦ G(y)

∂Gj

∂yk
(y) v(y)dy. (∗)

It follows from Theorem 2.4.5 with H = G−1 that
∫
Ω

un(x)
∂v

∂yk
◦ H(x)| detH ′(x)|dx

= −
∫
Ω

∑
j

∂un

∂xj
(x)

∂Gj

∂yk
◦ H(x)v ◦ H(x)| detH ′(x)|dx. (∗∗)

The regularization theorem implies that in L1
loc(Ω),

un → u,
∂un

∂xj
→ ∂u

∂xj
.

Taking the limit, it is permitted to replace un by u in (∗∗). But then it is also
permitted to replace un by u in (∗), and the proof is complete. ��

Proposition 6.1.12 (Derivative of a Product) Let u ∈ W
1,1
loc (Ω) and f ∈ C1(Ω).

Then f u ∈ W
1,1
loc (Ω) and
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∂k(f u) = f ∂ku + (∂kf )u.

Proof Let un = ρn ∗ u, so that by the classical rule of derivative of a product,

∂k(f un) = (∂kf )un + f ∂kun.

It follows from the regularization theorem that

f un → f u, ∂k(f un) → (∂kf )u + f ∂ku

in L1
loc(Ω). We conclude by invoking the closing lemma. ��

Proposition 6.1.13 (Derivative of the Composition of Functions) Let u ∈
W

1,1
loc (Ω), and let f ∈ C1(R) be such that c = sup

R

|f ′| < ∞. Then f ◦u ∈ W
1,1
loc (Ω)

and

∂k(f ◦ u) = f ′ ◦ u ∂ku.

Proof We define un = ρn ∗ u, so that by the classical rule,

∂k(f ◦ un) = f ′ ◦ un ∂kun.

We choose ω ⊂⊂ Ω . By the regularization theorem, we have in L1(ω),

un → u, ∂kun → ∂ku.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
un → u almost everywhere on ω. We obtain

∫
ω

|f ◦ un − f ◦ u|dx ≤ c

∫
ω

|un − u|dx → 0,

∫
ω

|f ′◦un ∂kun−f ′◦u ∂ku|dx ≤ c

∫
ω

|∂kun−∂ku|dx+
∫
ω

|f ′◦un−f ′◦u| |∂ku|dx → 0.

Hence in L1(ω),

f ◦ un → f ◦ u, f ′ ◦ un ∂kun → f ′ ◦ u ∂ku.

Since ω ⊂⊂ Ω is arbitrary, we conclude the proof by invoking the closing lemma.
��

On R, we define
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sgn(t) = t/|t |, t �= 0
= 0, t = 0.

Corollary 6.1.14 Let g : R → R be such that c = supR |g| < ∞ and, for some
sequence (gn) ⊂ C(R), g(t) = lim

n→∞ gn(t) everywhere on R. Define

f (t) =
∫ t

0
g(s)ds.

Then, for every u ∈ W
1,1
loc (Ω), f ◦ u ∈ W

1,1
loc (Ω) and

∇(f ◦ u) = (g ◦ u)∇u.

In particular u+, u−, |u| ∈ W
1,1
loc (Ω) and

∇u+ = χ {u>0}∇u,∇u− = −χ {u<0}∇u, χ {u=0}∇u = 0,∇|u| = (sgn u)∇u.

Proof We can assume that sup
n

sup
R

|gn| ≤ c. We define fn(t) =
∫ t

0
gn(s)ds. The

preceding proposition implies that

∇(fn ◦ u) = (gn ◦ u)∇u.

Since, in L1
loc(Ω), by Lebesgue’s dominated convergence theorem,

fn ◦ u → f ◦ u, (gn ◦ u)∇u → (g ◦ u)∇u,

the closing lemma implies that

∇(f ◦ u) = (g ◦ u)∇u.

��

Corollary 6.1.15 Let 1 ≤ p < ∞ and let u ∈ W 1,p(Ω)∩C(Ω) be such that u = 0
on ∂Ω . Then u ∈ W

1,p
0 (Ω).

Proof It is easy to prove by regularization that W 1,p(Ω) ∩K(Ω) ⊂ W
1,p
0 (Ω).

Assume that spt u is bounded. Let f ∈ C1(R) be such that |f (t)| ≤ |t | on R,

f (t) = 0, |t | ≤ 1,
= t, |t | ≥ 2.
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Define un = f (n u)/n. Then un ∈ K(Ω), and by the preceding proposition, un ∈
W 1,p(Ω). By Lebesgue’s dominated convergence theorem, un → u in W 1,p(Ω),
so that u ∈ W

1,p
0 (Ω).

If spt u is unbounded, we define un = θnu where (θn) is defined in the proof
of Theorem 6.1.10. Then spt un is bounded. By Lebesgue’s dominated convergence
theorem, un → u in W 1,p(Ω), so that u ∈ W

1,p
0 (Ω). ��

Proposition 6.1.16 Let Ω be an open subset of RN . Then there exist a sequence
(Un) of open subsets of Ω and a sequence of functions ψn ∈ D(Un) such that

(a) for every n, Un ⊂⊂ Ω and ψn ≥ 0;

(b)
∞∑
n=1

ψn = 1 on Ω;

(c) for every ω ⊂⊂ Ω there exists mω such that for n > mω we have Un ∩ ω = φ.

Proof Let us define ω−1 = ω0 = φ, and for n ≥ 1,

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n},
Kn = ωn \ ωn−1,

Un = ωn+1 \ ωn−2.

The theorem of partitions of unity implies the existence of ϕn ∈ D(Un) such that
0 ≤ ϕn ≤ 1 and ϕn = 1 on Kn. It suffices then to define

ψn = ϕn/

∞∑
j=1

ϕj . ��

Theorem 6.1.17 (Hajłasz) Let 1 ≤p <∞, u ∈ W
1,p
loc (Ω), and ε > 0. Then there

exists v ∈ C∞(Ω) such that

(a) v − u ∈ W
1,p
0 (Ω);

(b) ||v − u||W 1,p(Ω) < ε.

Proof Let (Un) and (ψn) be given by the preceding proposition. For every n ≥ 1,
there exists kn such that

vn = ρkn ∗ (ψnu) ∈ D(Un)

and

||vn − ψnu||1,p < ε/2n.
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By Proposition 3.1.6,
∞∑
n=1

(vn−ψnu) converges to w in W
1,p
0 (Ω). On the other hand,

we have on ω ⊂⊂ Ω that

∞∑
n=1

vn =
mω∑
n=1

vn ∈ C∞(ω),

∞∑
n=1

ψnu = u.

Setting v =
∞∑
n=1

vn, we conclude that

||v − u||1,p = ||w||1,p ≤
∞∑
n=1

||vn − ψnu||1,p < ε. ��

Corollary 6.1.18 (Deny–Lions) Let 1 ≤ p < ∞. Then C∞(Ω) ∩ W 1,p(Ω) is
dense in W 1,p(Ω).

6.2 Cylindrical Domains

Let U be an open subset of RN−1 and 0 < r ≤ ∞. Define

Ω = U× ]− r, r[, Ω+ = U× ]0, r[.

The extension by reflection of a function in W 1,p(Ω+) is a function in W 1,p(Ω).
For every u : Ω+ → R, we define on Ω:

ρu(x′, x
N
) = u

(
x′, |x

N
|
)
, σu(x′, x

N
) = (sgn x

N
)u
(
x′, |x

N
|
)
.

Lemma 6.2.1 (Extension by Reflection) Let 1 ≤ p < ∞ and u ∈ W 1,p(Ω+).
Then ρu ∈ W 1,p(Ω), ∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1, and ∂

N
(ρu) = σ(∂

N
u), so

that

||ρu||Lp(Ω) = 21/p||u||Lp(Ω+), ||ρu||W 1,p(Ω) = 21/p||u||W 1,p(Ω+).

Proof Let v ∈ D(Ω). Then by a change of variables,

∫
Ω

(ρu)∂
N
v dx =

∫
Ω+

u ∂
N
w dx, (∗)
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where

w(x′, x
N
) = v(x′, x

N
) − v(x′,−x

N
).

A truncation argument will be used. Let η ∈ C∞(R) be such that

η(t) = 0, t < 1/2,
= 1, t > 1,

and define ηn on Ω+ by

ηn(x) = η(n x
N
).

The definition of weak derivative ensures that
∫
Ω+

u ∂
N
(ηnw)dx = −

∫
Ω+

(∂
N
u)ηnw dx, (∗∗)

where

∂
N
(ηnw) = ηn∂

N
w + nη′(n x

N
)w.

Since w(x′, 0) = 0, w(x′, x
N
) = h(x′, x

N
)x

N
, where

h(x′, x
N
) =

∫ 1

0
∂
N
w(x′, t x

N
)dt.

Lebesgue’s dominated convergence theorem implies that

∣∣∣∣
∫
Ω+

n η′(n x
N
)w u dx

∣∣∣∣ =
∣∣∣∣
∫
U× ]0,1/n[

n η′(n x
N
)h x

N
u dx

∣∣∣∣
≤ ||η′||∞

∫
U× ]0,1/n[

|hu|dx → 0, n → ∞.

Taking the limit in (∗∗), we obtain

∫
Ω+

u ∂
N
w dx = −

∫
Ω+

(∂
N
u)w dx = −

∫
Ω

σ(∂
N
u)v dx.

It follows from (∗) that

∫
Ω

(ρu)∂
N
v dx = −

∫
Ω

σ(∂
N
u)v dx.
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Since v ∈ D(Ω) is arbitrary, ∂
N
(ρu) = σ(∂

N
u). By a similar but simpler argument,

∂k(ρu) = ρ(∂ku), 1 ≤ k ≤ N − 1. ��
It makes no sense to define an Lp function on a set of measure zero. We will

define the trace of a W 1,p function on the boundary of a smooth domain. We first
consider the case of RN+ .

Notation We define

D(Ω) = {u|Ω : u ∈ D(RN)},

R
N+ = {(x′, x

N
) : x′ ∈ R

N−1, x
N

> 0}.

Lemma 6.2.2 (Trace Inequality) Let 1 ≤ p < ∞. Then for every u ∈ D(RN+),

∫
RN−1

∣∣u(x′, 0)
∣∣pdx′ ≤ p||u||p−1

Lp(RN+ )
||∂

N
u||Lp

(RN+ )

.

Proof The fundamental theorem of calculus implies that for all x′ ∈ R
N−1,

∣∣u(x′, 0)
∣∣p ≤ p

∫ ∞

0

∣∣u(x′, x
N
)
∣∣p−1∣∣∂

N
u(x′, x

N
)
∣∣dx

N
.

When 1 < p < ∞, using Fubini’s theorem and Hölder’s inequality, we obtain

∫
RN−1

∣∣u(x′, 0)
∣∣pdx′ ≤ p

∫
R

N+
|u|p−1|∂

N
u|dx

≤ p

(∫
R

N+
|u|(p−1)p′

dx

)1/p′ (∫
R

N+
|∂
N
u|pdx

)1/p

= p

(∫
R

N+
|u|pdx

)1−1/p (∫
R

N+
|∂
N
u|pdx

)1/p

.

The case p = 1 is similar. ��

Proposition 6.2.3 Let 1 ≤ p < ∞. Then there exists one and only one continuous
linear mapping γ0 : W 1,p(RN+) → Lp(RN−1) such that for every u ∈ D(RN+),
γ0u = u(., 0).

Proof Let u ∈ D(RN+) and define γ0u = u(., 0). The preceding lemma implies that

||γ0u||Lp(RN−1) ≤ p1/p||u||W 1,p(RN+ ).
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The space D(RN+) is dense in W 1,p(RN+) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, γ0 has a unique continuous linear extension to W 1,p(RN+). ��

Proposition 6.2.4 (Integration by Parts) Let 1 ≤ p < ∞, u ∈ W 1,p(RN+), and

v ∈ D(RN+). Then

∫
R

N+
v ∂

N
u dx = −

∫
R

N+
(∂

N
v)u dx −

∫
RN−1

γ0v γ0u dx′,

and
∫
R

N+
v∂ku dx = −

∫
R

N+
(∂kv)u dx, 1 ≤ k ≤ N − 1.

Proof Assume, moreover, that u ∈ D(RN+). Integrating by parts, we obtain for all
x′ ∈ R

N−1,

∫ ∞

0
v(x′, x

N
)∂

N
u(x′, x

N
)dx

N
= −

∫ ∞

0
∂
N
v(x′, x

N
)u(x′, x

N
)dx

N
− v(x′, 0)u(x′, 0).

Fubini’s theorem implies that

∫
R

N+
v ∂

N
u dx = −

∫
R

N+
∂
N
vu dx −

∫
RN−1

v(x′, 0)u(x′, 0)dx′.

Let u ∈ W 1,p(RN+). Since D(RN+) is dense in W 1,p(RN+), there exists a sequence

(un) ⊂ D(RN+) such that un → u in W 1,p(RN+). By the preceding lemma, γ0un →
γ0u in Lp(RN−1). It is easy to finish the proof.

The proof of the last formulas is similar. ��

Notation For every u : RN+ → R, we define u on R
N by

u(x′, x
N
) = u(x′, x

N
), x

N
> 0,

= 0, x
N

≤ 0.

Proposition 6.2.5 Let 1 ≤ p < ∞ and u ∈ W 1,p(RN+). The following properties
are equivalent:

(a) u ∈ W
1,p
0 (RN+);

(b) γ0u = 0;
(c) u ∈ W 1,p(RN) and ∂ku = ∂ku, 1 ≤ k ≤ N .
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Proof If u ∈ W
1,p
0 (RN+), there exists (un) ⊂ D(RN+) such that un → u in

W 1,p(RN+). Hence γ0un = 0 and γ0un → γ0u in Lp(RN−1), so that γ0u = 0.
If γ0u = 0, it follows from the preceding proposition that for every v ∈ D(RN),

∫
RN

v ∂ku dx = −
∫
RN

∂kv u dx, 1 ≤ k ≤ N.

We conclude that (c) is satisfied.
Assume that (c) is satisfied. We define un = θnu, where (θn) is defined in

the proof of Theorem 6.1.10. It is clear that un → u in W 1,p(RN) and spt

un ⊂ B[0, 2n] ∩ R
N+ .

We can assume that spt un is a compact subset of R
N+ . We define yn =

(0, . . . , 0, 1/n) and vn = τynu. Since ∂kvn = τyn∂ku, the lemma of continuity
of translations implies that un → u in W 1,p(RN+).

We can assume that spt u is a compact subset of RN+ . For n large enough, ρn∗u ∈
D(RN+). Since ρn ∗ u → u is in W 1,p(RN), we conclude that u ∈ W

1,p
0 (RN). ��

6.3 Smooth Domains

In this section we consider an open subset Ω = {ϕ < 0} of RN of class C1 with a
bounded boundary Γ . We use the notations of Definition 9.4.1.

Let γ ∈ Γ . Since ∇ϕ(γ ) �= 0, we can assume that, after a permutation of
variables, ∂Nϕ(γ ) �= 0. By Theorem 9.1.1 there exist r > 0, R > 0, and

β ∈ C1(B(γ ′, R)×] − r, r[ )

such that, for |x′ − γ ′| < R and |t | < r , we have

ϕ(x′, xN) = t ⇔ xN = β(x′, t)

and the set

Uγ =
{(

x′, β(x′, t)
) : |x′ − γ ′| < R, |t | < r

}

is an open neighborhood of γ . Moreover

Ω ∩ Uγ =
{(

x′, β(x′, t)
) : |x′ − γ ′| < R,−r < t < 0

}

and
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Γ ∩ Uγ =
{(

x′, β(x′, 0)
) : |x′ − γ ′| < R

}
.

The Borel–Lebesgue theorem implies the existence of a finite covering
U1, . . . , Uk of Γ by open subsets satisfying the above properties. There exists
a partition of unity ψ1, . . . , ψk subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) Let 1 ≤ p < ∞ and let Ω be an open
subset of R

N of class C1 with a bounded boundary or the product of N open
intervals. Then there exists a continuous linear mapping

P : W 1,p(Ω) → W 1,p(RN)

such that Pu
∣∣
Ω

= u.

Proof Let Ω be an open subset of RN of class C1 with a bounded boundary, and let
u ∈ W 1,p(Ω). Proposition 6.1.11 and Lemma 6.2.1 imply that

PUu(x) = u(x′, β(x′,−|ϕ(x′, x
N
)|)) ∈ W 1,p(U).

Moreover,

||PUu||W 1,p(U) ≤ aU ||u||W 1,p(Ω). (∗)

We define ψ0 = 1 −
k∑

j=1

ψj ,

u0 = ψ0u, x ∈ Ω,

= 0, x ∈ R
N \ Ω,

and for 1 ≤ j ≤ k,

uj = PUj
(ψju), x ∈ Uj ,

= 0, x ∈ R
N \ Uj .

Formula (∗) and Proposition 6.1.12 ensure that for 0 ≤ j ≤ k,

||uj ||W 1,p(RN) ≤ bj ||u||W 1,p(Ω).

(The support of ∇ψ0 is compact!) Hence

Pu =
k∑

j=0

uj ∈ W 1,p(RN), ||Pu||W 1,p(RN) ≤ c||u||W 1,p(Ω),
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and for all x ∈ Ω ,

Pu(x) =
k∑

j=0

ψj (x)u(x) = u(x).

If Ω is the product of N open intervals, it suffices to use a finite number of
extensions by reflections and a truncation. ��

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) Let 1 ≤ p < ∞ and let Ω
be an open subset of RN of class C1 with a bounded boundary or the product of N
open intervals. Then the spaceD(Ω) is dense in W 1,p(Ω).

Proof Let u ∈ W 1,p(Ω). Theorem 6.1.10 implies the existence of a sequence
(vn) ⊂ D(RN) converging to Pu in W 1,p(RN). Hence un = vn

∣∣
Ω

converges to
u in W 1,p(Ω). ��

Theorem 6.3.3 (Trace Inequality) Let Ω be an open subset of RN of class C1 with
a bounded boundary Γ . Then there exist a > 0 and b > 0 such that, for 1 ≤ p < ∞
and for every u ∈ D(Ω̄),

∫
Γ

|u|pdγ ≤ a‖u‖pLp(Ω) + bp‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω).

Proof Let 1 < p < ∞, u ∈ D(Ω̄), and ν ∈ C∞(RN ;RN).
Since

div|u|pν = |u|p divν + pu|u|p−2∇u · ν,

the divergence theorem implies that

∫
Γ

|u|pν · ndγ =
∫
Ω

[
|u|p divν + pu|u|p−2∇u · ν

]
dx.

Assume that 1 ≤ ν · n on Γ . Using Hölder’s inequality, we obtain that, for 1 < p <

∞,

∫
Γ

|u|pdγ ≤
∫
Γ

|u|pν · ndγ ≤ a

∫
Ω

|u|pdx + bp

∫
Ω

|u|p−1|∇u|dx

≤ a

∫
Ω

|u|pdx + bp

(∫
Ω

|u|(p−1)p′
dx

)1/p′ (∫
Ω

|∇u|pdx
)1/p

= a

∫
Ω

|u|pdx + bp

(∫
Ω

|u|pdx
)1−1/p (∫

Ω

|∇u|pdx
)1/p

,

where a = ‖divν‖∞ and b = ‖ν‖∞.
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When p ↓ 1, it follows from Lebesgue’s dominated convergence theorem that

∫
Γ

|u|dγ ≤ a

∫
Ω

|u|dx + b

∫
Ω

|∇u|dx.

Let us construct an admissible vector field ν. Let U = {x ∈ R
N : ∇ϕ(x) �= 0}.

The theorem of partition of unity implies the existence of ψ ∈ D(U) such that
ψ = 1 on Γ . We define the vector field w by

w(x) = ψ(x)
∇ϕ(x)

|∇ϕ(x)| , x ∈ U

= 0, x ∈ R
N\U.

For n large enough, the C∞ vector field ν = 2ρn ∗ w is such that 1 ≤ ν · n on Γ .
��

Theorem 6.3.4 Under the assumptions of Theorem 6.3.3, there exists one and only
one continuous linear mapping

γ : W 1,p(Ω) → Lp(Γ )

such that for all u ∈ D(Ω̄), γ0u = u

∣∣∣
Γ

.

Proof It suffices to use the trace inequality, Proposition 3.2.3, and the density
theorem in Sobolev spaces. ��

Theorem 6.3.5 (Divergence Theorem) Let Ω be an open subset of RN of class C1

with a bounded boundary Γ and ν ∈ W 1,1(Ω;RN). Then

∫
Ω

div νdx =
∫
Γ

γ0ν · ndγ.

Proof When ν ∈ D(Ω̄;RN), the proof is given in Section 9.4. In the general case,
it suffices to use the density theorem in Sobolev spaces and the trace theorem. ��

6.4 Embeddings

Let 1 ≤ p, q < ∞. If there exists c > 0 such that for every u ∈ D(RN),

||u||Lq(RN) ≤ c||∇u||Lp(RN),
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then necessarily

q = p∗ = Np/(N − p).

Indeed, replacing u(x) by uλ(x) = u(λx), λ > 0, we find that

||u||Lq(RN) ≤ cλ

(
1+N

q
−N

p

)
||∇u||Lp(RN),

so that q = p∗.
We define for 1 ≤ j ≤ N and x ∈ R

N ,

x̂j = (x1, . . . , xj−1, xj+1, . . . , x
N
).

Lemma 6.4.1 (Gagliardo’s Inequality) Let N ≥ 2 and f1, . . . , f
N

∈

LN−1(RN−1). Then f (x) =
N∏

j=1

fj (x̂j ) ∈ L1(RN) and

||f ||L1(RN) ≤
N∏

j=1

||fj ||LN−1(RN−1).

Proof We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N ≥ 2. Let f1, . . . , fN+1 ∈ LN(RN) and

f (x, xN+1) =
N∏

j=1

fj (x̂j , xN+1)fN+1(x).

It follows from Hölder’s inequality that for almost every xN+1 ∈ R,

∫
RN

∣∣f (x, xN+1)
∣∣dx ≤

⎡
⎣
∫
RN

N∏
j=1

∣∣fj (x̂j , xN+1)
∣∣N ′

dx

⎤
⎦

1/N ′

||fN+1||LN(RN)

≤
N∏

j=1

[∫
RN−1

∣∣fj (x̂j , xN+1)
∣∣Ndx̂j

]1/N

||fN+1||LN(RN).

The generalized Hölder inequality implies that
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||f ||L1(RN+1) ≤
N∏

j=1

[∫
RN

∣∣fj (x̂j , xN+1)
∣∣Ndx̂j dxN+1

]1/N

||fN+1||LN(RN)

=
N+1∏
j=1

||fj ||LN(RN). ��

Lemma 6.4.2 (Sobolev’s Inequalities) Let 1 ≤ p < N . Then there exists a
constant c = c(p,N) such that for every u ∈ D(RN),

||u||Lp∗
(RN) ≤ c||∇u||Lp(RN).

Proof Let u ∈ C1(RN) be such that spt u is compact. It follows from the
fundamental theorem of calculus that for 1 ≤ j ≤ N and x ∈ R

N ,

∣∣u(x)∣∣ ≤ 1

2

∫
R

∣∣∂ju(x)∣∣dxj .

By the preceding lemma,

∫
RN

∣∣u(x)∣∣N/(N−1)
dx ≤

N∏
j=1

[
1

2

∫
RN

∣∣∂ju(x)∣∣dx
]1/(N−1)

.

Hence we obtain

||u||N/(N−1) ≤ 1

2

N∏
j=1

||∂ju||1/N1 ≤ c
N
||∇u||1.

For p > 1, we define q = (N − 1)p∗/N > 1. Let u ∈ D(RN). The preceding
inequality applied to |u|q and Hölder’s inequality imply that

(∫
|u|p∗

dx

)N−1
N ≤ q c

N

∫
RN

|u|q−1|∇u|dx

≤ q c
N

(∫
RN

|u|(q−1)p′
dx

)1/p′ (∫
RN

|∇u|pdx
)1/p

.

It is easy to conclude the proof. ��

Lemma 6.4.3 (Morrey’s Inequalities) Let N < p < ∞ and λ = 1 − N/p. Then
there exists a constant c = c(p,N) such that for every u ∈ D(RN) and every
x, y ∈ R

N ,
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∣∣u(x) − u(y)
∣∣ ≤ c|x − y|λ‖∇u‖Lp(RN),

‖u‖∞ ≤ c‖u‖W 1,p(RN).

Proof Let u ∈ D(RN), and let us define B = B(a, r), a ∈ R
N, r > 0, and

�
u = 1

m(B)

∫
B

u dx.

We assume that 0 ∈ B̄. It follows from the fundamental theorem of calculus and
Fubini’s theorem that

∣∣∣∣
�

u − u(0)

∣∣∣∣ ≤ 1

m(B)

∫
B

∣∣u(x) − u(0)
∣∣dx

≤ 1

m(B)

∫
B

dx

∫ 1

0

∣∣∇u(tx)
∣∣ |x|dt

≤ 2r

m(B)

∫ 1

0
dt

∫
B

∣∣∇u(tx)
∣∣dx

= 2r

m(B)

∫ 1

0

dt

tN

∫
B(ta,tr)

∣∣∇u(y)
∣∣dy.

Hölder’s inequality implies that

∣∣∣∣
�

u − u(0)

∣∣∣∣ ≤ 2r

m(B)

∫ 1

0
m
(
B(ta, tr)

)1/p′ dt

tN
‖∇u‖Lp(B) = 2

λV
1/p
N

rλ‖∇u‖Lp(B).

After a translation, we obtain that, for every x ∈ B[a, r],
∣∣∣∣
�

u − u(x)

∣∣∣∣ ≤ cλr
λ‖∇u‖Lp(B).

Let x ∈ R
N . Choosing a = x and r = 1, we find

|u(x)| ≤
∣∣∣∣
�

u

∣∣∣∣+ cλ‖∇u‖Lp(B) ≤ c
(‖u‖Lp(B) + ‖∇u‖Lp(B)

)
.

Let x, y ∈ R
N . Choosing a = (x + y)/2 and r = |x − y|/2, we obtain

|u(x) − u(y)| ≤ 21−λcλ|x − y|λ‖∇u‖Lp(B). ��
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Notation We define

C0(Ω) = {u∣∣
Ω

: u ∈ C0(R
N)}.

Theorem 6.4.4 (Sobolev’s Embedding Theorem, 1936–1938) Let Ω be an open
subset of R

N of class C1 with a bounded boundary or the product of N open
intervals.

(a) If 1 ≤ p < N and if p ≤ q ≤ p∗, then W 1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is continuous.

(b) If N < p < ∞ and λ = 1 − N/p, then W 1,p(Ω) ⊂ C0(Ω), the canonical
injection is continuous, and there exists c = c(p,Ω) such that for every u ∈
W 1,p(Ω) and all x, y ∈ Ω ,

∣∣u(x) − u(y)
∣∣ ≤ c||u||W 1,p(Ω)|x − y|λ.

Proof Let 1 ≤ p < N and u ∈ W 1,p(RN). By Theorem 6.1.10, there exists a
sequence (un) ⊂ D(RN) such that un → u in W 1,p(RN).

We can assume that un → u almost everywhere on R
N . It follows from Fatou’s

lemma and Sobolev’s inequality that

||u||Lp∗
(RN) ≤ lim

n→∞ ||un||Lp∗
(RN) ≤ c lim

n→∞ ||∇un||Lp(RN) = c||∇u||Lp(RN).

Let P be the extension operator corresponding to Ω and v ∈ W 1,p(Ω). We have

||v||Lp∗
(Ω) ≤ ||Pv||Lp∗

(RN) ≤ c||∇Pv||Lp(RN) ≤ c1||v||W 1,p(Ω).

If p ≤ q ≤ p∗, we define 0 ≤ λ ≤ 1 by

1

q
= 1 − λ

p
+ λ

p∗ ,

and we infer from the interpolation inequality that

||v||Lq(Ω) ≤ ||v||1−λ
Lp(Ω)||v||λ

Lp∗
(Ω)

≤ cλ1 ||v||W 1,p(Ω).

The case p > N follows from Morrey’s inequalities. ��

Lemma 6.4.5 Let Ω be an open subset of RN such that m(Ω) < +∞, and let
1 ≤ p ≤ r < +∞. Assume that X is a closed subspace of W 1,p(Ω) such that
X ⊂ Lr(Ω). Then, for every 1 ≤ q < r,X ⊂ Lq(Ω) and the canonical injection is
compact.
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Proof The closed graph theorem implies the existence of c > 0 such that, for every
u ∈ X,

‖u‖Lr(Ω) ≤ c‖u‖W 1,p(Ω).

Our goal is to prove that

S = {u ∈ X : ‖u‖W 1,p(Ω) ≤ 1}

is precompact in Lq(Ω) for 1 ≤ q < r . Let 1/q = 1−λ+λ/r . By the interpolation
inequality, for every u ∈ S,

‖u‖Lq(Ω) ≤ ‖u‖λLr (Ω)‖u‖1−λ

L1(Ω)
≤ cλ‖u‖1−λ

L1(Ω)
.

Hence it suffices to prove that S is precompact in L1(Ω).
Let us verify that S satisfies the assumptions of M. Riesz’s theorem in L1(Ω):

(a) It follows from Hölder’s inequality that, for every u ∈ S,

‖u‖L1(Ω) ≤ ‖u‖Lr(Ω)m(Ω)1−1/r ≤ cm(Ω)1−1/r .

(b) Similarly, we have that, for every u ∈ S,

∫
Ω\ωk

|u|dx ≤ ‖u‖Lr(Ω)m(Ω\ωk)
1−1/r ≤ cm(Ω\ωk)

1−1/r

where

ωk = {x ∈ Ω : d(x, ∂Ω) > 1/k}.

Lebesgue’s dominated convergence theorem implies that

lim
k→∞m(Ω\ωk) = 0.

(c) Let ω ⊂⊂ Ω . Assume that |y| < d(ω, ∂Ω) and u ∈ C∞(Ω) ∩ W 1,p(Ω).

Since, by the fundamental theorem of calculus,

∣∣∣τyu(x) − u(x)

∣∣∣ =
∣∣∣∣
∫ 1

0
y · ∇u(x − ty)dt

∣∣∣∣ ≤ |y|
∫ 1

0

∣∣∣∇u(x − ty)

∣∣∣dt,

we obtain
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‖τyu − u‖L1(ω) ≤ |y|
∫
ω

dx

∫ 1

0

∣∣∣∇u(x − ty)

∣∣∣dt

= |y|
∫ 1

0
dt

∫
ω

∣∣∣∇u(x − ty)

∣∣∣dx

= |y|
∫ 1

0
dt

∫
ω−ty

∣∣∣∇u(z)

∣∣∣dz ≤ |y| ‖∇u‖L1(Ω).

Using Corollary 6.1.18, we conclude by density that, for every u ∈ S,

‖τyu − u‖L1(ω) ≤ ‖∇u‖L1(Ω)|y| ≤ ‖∇u‖Lp(Ω)m(Ω)1−1/p|y| ≤ c1|y|. ��

Theorem 6.4.6 (Rellich–Kondrachov Embedding Theorem) Let Ω be a
bounded open subset of RN of class C1 or the product of N bounded open intervals:

(a) If 1 ≤ p < N and 1 ≤ q < p∗, then W 1,p(Ω) ⊂ Lq(Ω), and the canonical
injection is compact.

(b) If N < p < ∞, then W 1,p ⊂ C0(Ω̄), and the canonical injection is compact.

Proof Let 1 ≤ p < N, 1 ≤ q < p∗. It suffices to use Sobolev’s embedding
theorem and the preceding lemma.

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. ��

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s Inequality in W
1,p
0 ) Let 1 ≤ p < ∞, and let Ω be an

open subset of RN such that Ω ⊂ R
N−1×]0, a[. Then for every u ∈ W

1,p
0 (Ω),

||u||Lp(Ω) ≤ a

2
||∇u||Lp(Ω).

Proof Let 1<p<∞ and v ∈ D(]0, a[). The fundamental theorem of calculus and
Hölder’s inequality imply that for 0 < x < a,

∣∣v(x)∣∣ ≤ 1

2

∫ a

0

∣∣v′(t)
∣∣dt ≤ a1/p′

2

∣∣∣
∫ a

0

∣∣v′(t)
∣∣pdt

∣∣∣1/p.

Hence we obtain

∫ a

0

∣∣v(x)∣∣pdx ≤ ap/p′

2p
a

∫ a

0

∣∣v′(x)
∣∣pdx = ap

2p

∫ a

0

∣∣v′(x)
∣∣pdx.



6.4 Embeddings 155

If u ∈ D(Ω), we infer from the preceding inequality and from Fubini’s theorem
that

∫
Ω

|u|pdx =
∫
RN−1

dx′
∫ a

0

∣∣u(x′, x
N
)
∣∣pdx

N

≤ ap

2p

∫
RN−1

dx′
∫ a

0

∣∣∂
N
u(x′, x

N
)
∣∣pdx

N

= ap

2p

∫
Ω

|∂
N
u|pdx.

It is easy to conclude by density. The case p = 1 is similar. ��

Definition 6.4.8 A metric space is connected if the only open and closed subsets of
X are φ and X.

Theorem 6.4.9 (Poincaré’s Inequality in W 1,p) Let 1 ≤ p < ∞, and let Ω be
a bounded open connected subset of RN . Assume that Ω is of class C1. Then there
exists c = c(p,Ω), such that, for every u ∈ W 1,p(Ω),

∥∥∥u −
�

u

∥∥∥
Lp(Ω)

≤ c‖∇u‖Lp(Ω),

where
�

u = 1

m(Ω)

∫
Ω

u dx.

Assume that Ω is convex. Then, for every u ∈ W 1,p(Ω),

∥∥∥u −
�

u

∥∥∥
Lp(Ω)

≤ 2N/p d ‖∇u‖Lp(Ω),

where d = sup
x,y∈Ω

|x − y|.

Proof Assume that Ω is of class C1. It suffices to prove that

λ = inf
{
‖∇u‖p : u ∈ W 1,p(Ω),

�
u = 0, ‖u‖p = 1

}
> 0.

Let (un) ⊂ W 1,p(Ω) be a minimizing sequence :

‖un‖p = 1,
�

un = 0, ‖∇un‖p → λ.
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By the Rellich–Kondrachov theorem, we can assume that un → u in Lp(Ω). Hence
‖u‖p = 1 and

�
u = 0. If λ = 0, then, by the closing lemma, ∇u = 0. Since Ω is

connected, u = � u = 0. This is a contradiction.
Assume now that Ω is convex and that u ∈ C∞(Ω)

⋂
W 1,p(Ω). Hölder’s

inequality implies that

∫
Ω

∣∣∣u(y) −
�

u

∣∣∣pdy ≤
∫
Ω

dy

[∫
Ω

|u(x) − u(y)|
m(Ω)

dx

]p

≤ 1

m(Ω)

∫
Ω

dy

∫
Ω

∣∣∣u(x) − u(y)

∣∣∣pdx.

It follows from the fundamental theorem of calculus and Hölder’s inequality that

∫
Ω

dy

∫
Ω

∣∣∣u(x) − u(y)

∣∣∣pdx ≤ dp

∫
Ω

dy

∫
Ω

dx

[∫ 1

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣dt
]p

≤ dp

∫
Ω

dy

∫
Ω

dx

∫ 1

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdt

= 2dp

∫
Ω

dy

∫
Ω

dx

∫ 1/2

0

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdt

= 2dp

∫
Ω

dy

∫ 1/2

0
dt

∫
Ω

∣∣∣∇u((1 − t)x + ty)

∣∣∣pdx

≤ 2Ndp

∫
Ω

dy

∫
Ω

∣∣∣∇u(z)

∣∣∣pdz.

We obtain that
∫
Ω

∣∣∣u(y) −
�

u

∣∣∣pdy ≤ 2Ndp

∫
Ω

∣∣∣∇u(y)

∣∣∣pdy.

We conclude by density, using Corollary 6.1.18. ��

Theorem 6.4.10 (Hardy’s Inequality) Let 1 < p < N . Then for every u ∈
W 1,p(RN), u/|x| ∈ Lp(RN) and

||u/|x|||Lp(RN) ≤ p

N − p
||∇u||Lp(RN).

Proof Let u ∈ D(RN) and v ∈ D(RN ;RN). We infer from Lemma 6.1.1 that

∫
RN

|u|pdiv v dx = −p

∫
RN

|u|p−2u∇u · v dx.

Approximating v(x) = x/|x|p by vε(x) = x/(|x|2 + ε)p/2, we obtain
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(N − p)

∫
RN

|u|p/|x|pdx = −p

∫
RN

|u|p−2u∇u · x/|x|pdx.

Hölder’s inequality implies that

∫
RN

|u|p/|x|pdx ≤ p

N − p

(∫
RN

|u|(p−1)p′
/|x|pdx

)1/p′ (∫
RN

|∇u|pdx
)1/p

= p

N − p

(∫
RN

|u|p/|x|pdx
)1−1/p (∫

RN

|∇u|pdx
)1/p

.

We have thus proved Hardy’s inequality in D(RN). Let u ∈ W 1,p(RN). Theo-
rem 6.1.10 ensures the existence of a sequence (un) ⊂ D(RN) such that un → u in
W 1,p(RN). We can assume that un → u almost everywhere on R

N . We conclude
using Fatou’s lemma that

||u/|x|||p ≤ lim
n→∞ ||un/|x|||p ≤ p

N − p
lim

n→∞ ||∇un||p = p

N − p
||∇u||p. ��

Fractional Sobolev spaces are interpolation spaces between Lp(Ω) and W 1,p(Ω).

Definition 6.4.11 Let 1 ≤ p < ∞, 0 < s < 1, and u ∈ Lp(Ω). We define

|u|Ws,p(Ω) = |u|s,p =
(∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|N+sp

dxdy

)1/p

≤ +∞.

On the fractional Sobolev space

Ws,p(Ω) = {u ∈ Lp(Ω) : |u|Ws,p(Ω) < +∞},

we define the norm

||u||Ws,p(Ω) = ||u||s,p = ||u||Lp(Ω) + |u|Ws,p(Ω).

We give, without proof, the characterization of traces due to Gagliardo [26].

Theorem 6.4.12 Let 1 < p < ∞.

(a) For every u ∈ W 1,p(RN), γ0u ∈ W 1−1/p,p(RN−1).
(b) The mapping γ0 : W 1,p(RN) → W 1−1/p,p(RN−1) is continuous and

surjective.
(c) The mapping γ0 : W 1,1(RN) → L1(RN−1) is continuous and surjective.
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6.5 Comments

The main references on Sobolev spaces are the books:

– R. Adams and J. Fournier, Sobolev spaces [1]
– H. Brezis, Analyse fonctionnelle, théorie et applications [8]
– V. Maz’ya, Sobolev spaces with applications to elliptic partial differential

equations [51]

Our proof of the trace inequality follows closely:

– A.C. Ponce, Elliptic PDEs, measures, and capacities, European Mathematical
Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of Poincaré’s inequalities, for every smooth, bounded open connected
set Ω , we have that

λ1(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H 1
0 (Ω),

∫
Ω

u2dx = 1

}
> 0,

μ2(Ω) = inf

{∫
Ω

|∇u|2dx : u ∈ H 1(Ω),

∫
Ω

u2dx = 1,
∫
Ω

udx = 0

}
> 0.

Hence the first eigenvalue λ1(Ω) of Dirichlet’s problem

{−Δu = λu in Ω,

u = 0 on ∂Ω,

and the second eigenvalue μ2(Ω) of the Neumann problem

{ −Δu = λu in Ω,

n · ∇u = 0 on ∂Ω,

are strictly positive. Let us denote by B an open ball such that m(B) = m(Ω). Then

λ1(B) ≤ λ1(Ω) (Faber–Krahn inequality),
μ2(Ω) ≤ μ2(B) (Weinberger, 1956).

Moreover, if Ω is convex with diameter d, then

π2/d2 ≤ μ2(Ω) (Payne–Weinberger, 1960).

We prove in Theorem 6.4.9 the weaker estimate
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1/(2Nd2) ≤ μ2(Ω).

There exists a bounded, connected open set Ω ⊂ R
2 such that μ2(Ω) = 0. Consider

on two sides of a square Q, two infinite sequences of small squares connected to Q

by very thin pipes.

6.6 Exercises for Chap. 6

1. Let Ω = B(0, 1) ⊂ R
N . Then for λ �= 0,

(λ − 1)p + N > 0 ⇐⇒ |x|λ ∈ W 1,p(Ω),

λp + N < 0 ⇐⇒ |x|λ ∈ W 1,p(RN \ Ω),

p < N ⇐⇒ x

|x| ∈ W 1,p(Ω;RN).

2. Let 1 < p < ∞ and u ∈ Lp(Ω). The following properties are equivalent:

(a) u ∈ W 1,p(Ω);

(b) sup

{∫
Ω

u div v dx : v ∈ D(Ω,RN), ||v||
Lp′

(Ω)
= 1

}
< ∞;

(c) there exists c > 0 such that for every ω ⊂⊂ Ω and for every y ∈ R
N such

that |y| < d(ω, ∂Ω),

||τyu − u||Lp(ω) ≤ c|y|.

3. Let 1 ≤ p < N and let Ω be an open subset of RN . Define

S(Ω) = inf
u ∈ D(Ω)

||u||Lp∗
(Ω) = 1

||∇u||Lp(Ω).

Then S(Ω) = S(RN).
4. Let 1 ≤ p < N . Then

1

2N
S(RN) = inf

{
||∇u||Lp(RN+ )/||u||Lp∗

(RN+ ) : u ∈ H 1(RN+) \ {0}
}
.

5. Poincaré–Sobolev inequality.

(a) Let 1 < p < N , and let Ω be an open bounded connected subset of RN of
class C1. Then there exists c > 0 such that for every u ∈ W 1,p(Ω),
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∣∣∣∣
∣∣∣∣u − �

∫
u

∣∣∣∣
∣∣∣∣
Lp∗

(Ω)

≤ c||∇u||Lp(Ω),

where �

∫
u = 1

m(Ω)

∫
Ω

u dx. Hint: Apply Theorem 6.4.4 to u − �

∫
u.

(b) Let A = {u = 0} and assume that m(A) > 0. Then

‖u‖Lp∗
(Ω) ≤ c

(
1 +

[m(Ω)

m(A)

]1/p∗)
‖∇u‖Lp(Ω).

Hint:

∣∣∣�
∫

u

∣∣∣m(A)1/p∗ ≤ ‖u − �

∫
u‖Lp∗

(Ω).

6. Nash’s inequality. Let N ≥ 3. Then for every u ∈ D(RN),

||u||2+4/N
2 ≤ c||u||4/N1 ||∇u||22.

Hint: Use the interpolation inequality.

7. Let 1 ≤ p < N and q = p(N − 1)/(N − p). Then for every u ∈ D(RN+),

∫
RN−1

∣∣u(x′, 0)
∣∣qdx′ ≤ q||u||q−1

Lp∗
(RN+ )

||∂
N
u||Lp(RN+ ).

8. Verify that Hardy’s inequality is optimal using the family

uε(x) = 1, |x| ≤ 1,

= |x| p−N
p

−ε
, |x| > 1.

9. Let 1 ≤ p < N . ThenD(RN \ {0}) is dense in W 1,p(RN).
10. Let 2 ≤ N < p < ∞. Then for every u ∈ W

1,p
0 (RN \ {0}), u/|x| ∈ Lp(RN)

and

||u/|x|||Lp(RN) ≤ p

p − N
||∇u||Lp(RN).

11. Let 1 ≤ p < ∞. Verify that the embedding W 1,p(RN) ⊂ Lp(RN) is not
compact. Let 1 ≤ p < N . Verify that the embedding W

1,p
0 (B(0, 1)) ⊂

Lp∗
(B(0, 1)) is not compact.

12. Let us denote by Dr (R
N) the space of radial functions in D(RN). Let N ≥ 2

and 1 ≤ p < ∞. Then there exists c(N, p) > 0 such that for every u ∈
Dr (R

N),
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∣∣u(x)∣∣ ≤ c(N, p)||u||1/p′
p ||∇u||1/pp |x|(1−N)/p.

Let 1 ≤ p < N . Then there exists d(N, p) > 0 such that for every u ∈
Dr (R

N),

∣∣u(x)∣∣ ≤ d(N, p)||∇u||p|x|(p−N)/p.

Hint: Let us write u(x) = u(r), r = |x|, so that

rN−1
∣∣u(r)∣∣p ≤ p

∫ ∞

r

∣∣u(s)∣∣p−1∣∣du
dr

(s)
∣∣sN−1ds,

∣∣u(r)∣∣ ≤
∫ ∞

r

∣∣∣du
dr

(s)

∣∣∣ds.

13. Let us denote by W
1,p
r (RN) the space of radial functions in W 1,p(RN). Verify

that the spaceDr (R
N) is dense in W

1,p
r (RN).

14. Let 1 ≤ p < N and p < q < p∗. Verify that the embedding W
1,p
r (RN) ⊂

Lq(RN) is compact. Verify also that the embedding W
1,p
r (RN) ⊂ Lp(RN) is

not compact.
15. Let 1 ≤ p < ∞ and let Ω be an open subset of RN . Prove that the map

W 1,p(Ω) → W 1,p(Ω) : u �→ u+

is continuous. Hint: ∇u+ = H(u)∇u, where

H(t) = 1, t > 0,
= 0, t ≤ 0.

16. Sobolev implies Poincaré. Let Ω be an open subset of RN (N ≥ 2) such that
m(Ω) < +∞, and let 1 ≤ p < +∞. Then there exists c = c(p,N) such that,
for every u ∈ W

1,p
0 (Ω),

‖u‖p ≤ c m(Ω)1/N‖∇u‖p.

Hint. (a) If 1 ≤ p < N , then

‖u‖p ≤ m(Ω)1/N‖u‖p∗ ≤ c m(Ω)1/N‖∇u‖p.

(b) If p ≥ N , then

‖u‖p = ‖u‖q∗ ≤ c‖∇u‖q ≤ c m(Ω)1/N‖∇u‖p.
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17. Let Ω be an open bounded convex subset of R
N,N ≥ 2, and u ∈

C1(Ω)
⋂

W 1,1(Ω). Then, for every x ∈ Ω ,

∣∣∣∣u(x) −
�

u

∣∣∣∣ ≤ 1

N

dN

m(Ω)

∫
Ω

|∇u(y)|
|y − x|N−1 dy,

where
�

u = 1

m(Ω)

∫
Ω

u(x)dx and d = sup
x,y ∈ Ω

|y − x|.
Hint. Define

v(y) = |∇u(y)| , y ∈ Ω,

= 0 , y ∈ R
N\Ω.

(a) u(x) − u(y) =
∫ |y−x|

0
∇u(x + rσ ) · σdr, σ = y − x

|y − x| .

(b)

m(Ω)

∣∣∣u(x) −
�

u

∣∣∣ ≤
∫
Ω

dy

∫ |y−x|

0
v(x + rσ )dr

=
∫
ω−x

dz

∫ |z|

0
v

(
x + r

z

|z|
)
dr

≤
∫
SN−1

dσ

∫ d

0
ρN−1dρ

∫ ∞

0
v(x + rσ )dr

= dN

N

∫
RN

v(x + z)

|z|N−1
dz.

18. Let us define, for every bounded connected open subset Ω of RN , and for 1 ≤
p < ∞,

λ(p,Ω) = inf

{
‖∇u‖p : u ∈ W 1,p(Ω),

�
u = 0, ‖u‖p = 1

}
.

For every 1 ≤ p < ∞, there exists a bounded connected open subset Ω of R2

such that λ(p,Ω) = 0.
Hint. Consider on two sides of a square Q two infinite sequences of small
squares connected to Q by very thin pipes.

19. Prove that, for every 1 ≤ p < ∞,

inf
{
λ(p,Ω) : Ω is a smooth bounded connected open subset of R

2, m(Ω) = 1
}

= 0.
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Hint. Consider a sequence of pairs of disks smoothly connected by very thin
pipes.

20. Generalized Poincaré’s inequality. Let 1 ≤ p < ∞, let Ω be a smooth bounded
connected open subset of RN , and let f ∈ [W 1,p(Ω)]∗ be such that

< f, 1 >= 1.

Then there exists c > 0 such that, for every u ∈ W 1,p(Ω),

‖u− < f, u > ‖p ≤ c‖∇u‖p.



Chapter 7
Capacity

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1 A capacity on X is a function

cap : K→ [0,+∞] : K → cap(K)

such that:

(C1) (monotonicity.) For every A,B ∈ K such that A ⊂ B, cap(A) ≤ cap(B).
(C2) (regularity.) For every K ∈ K and for every a > cap(K), there exists U ∈ O

such that K ⊂ U , and for all C ∈ K satisfying C ⊂ U , cap(C) < a.
(C3) (strong subadditivity.) For every A,B ∈ K,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).

The Lebesgue measure of a compact subset of RN is a capacity.
We denote by cap a capacity on X. We extend the capacity to the open subsets

of X.

Definition 7.1.2 The capacity of U ∈ O is defined by

cap(U) = sup{cap(K) : K ∈ K and K ⊂ U}.

Lemma 7.1.3 Let A,B ∈ O and K ∈ K be such that K ⊂ A ∪ B. Then there exist
L,M ∈ K such that L ⊂ A, M ⊂ B, and K = L ∪ M .
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Proof The compact sets K \ A and K \ B are disjoint. Hence there exist disjoint
open sets U and V such that K \ A ⊂ U and K \ B ⊂ V . It suffices to define
L = K \ U and M = K \ V . ��

Proposition 7.1.4

(a) (monotonicity.) For every A,B ∈ O such that A ⊂ B, cap(A) ≤ cap(B).
(b) (regularity.) For every K ∈ K, cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}.
(c) (strong subadditivity.) For every A,B ∈ O,

cap(A ∪ B) + cap A ∩ B) ≤ cap(A) + cap(B).

Proof

(a) Monotonicity is clear.
(b) Let us define Cap(K) = inf{cap(U) : U ∈ O and U ⊃ K}. By definition,

cap(K) ≤ Cap(K). Let a > cap(K). There exists U ∈ O such that K ⊂ U and
for every C ∈ K satisfying C ⊂ U , cap(C) < a. Hence Cap(K) ≤ cap(U) <

a. Since a > cap(K) is arbitrary, we conclude that Cap(K) ≤ cap(K).
(c) Let A,B ∈ O, a < cap(A ∪ B), and b < cap(A ∩ B). By definition, there exist

K,C ∈ K such that K ⊂ A ∪ B, C ⊂ A ∩ B, a < cap(K), and b ≤ cap(C).
We can assume that C ⊂ K . The preceding lemma implies the existence of
L,M ∈ K such that L ⊂ A, M ⊂ B, and K = L ∪ M . We can assume that
C ⊂ L ∩ M . We obtain by monotonicity and strong subadditivity that

a + b ≤ cap(K) + cap(C) ≤ cap(L ∪ M) + cap(L ∩ M)

≤ cap(L) + cap(M) ≤ cap(A) + cap(B).

Since a < cap(A∪B) and b < cap(A∩B) are arbitrary, the proof is complete. ��
We extend the capacity to all subsets of X.

Definition 7.1.5 The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U ∈ O and U ⊃ A}.

By regularity, the capacity of compact subsets is well defined.

Proposition 7.1.6

(a) (monotonicity). For every A,B ⊂ X, cap(A) ≤ cap(B).
(b) (strong subadditivity). For every A,B ⊂ X,

cap(A ∪ B) + cap(A ∩ B) ≤ cap(A) + cap(B).
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Proof

(a) Monotonicity is clear.
(b) Let A,B ⊂ X and U,V ∈ O be such that A ⊂ U and B ⊂ V . We have

cap(A ∪ B) + cap(A ∩ B) ≤ cap(U ∪ V ) + cap(U ∩ V ) ≤ cap(U) + cap(V ).

It is easy to conclude the proof. ��

Proposition 7.1.7 Let (Kn) be a decreasing sequence in K. Then

cap

( ∞⋂
n=1

Kn

)
= lim

n→∞ cap(Kn).

Proof Let K =
∞⋂
n=1

Kn and U ∈ O, U ⊃ K . By compactness, there exists m such

that Km ⊂ U . We obtain, by monotonicity, cap(K) ≤ lim
n→∞cap(Kn) ≤ cap(U). It

suffices then to take the infimum with respect to U . ��

Lemma 7.1.8 Let (Un) be an increasing sequence in O. Then

cap

( ∞⋃
n=1

Un

)
= lim

n→∞ cap(Un).

Proof Let U =
∞⋃
n=1

Un and K ∈ K,K ⊂ U . By compactness, there exists m such

that K ⊂ Um. We obtain by monotonicity cap(K) ≤ lim
n→∞cap(Un) ≤ capU . It

suffices then to take the supremum with respect to K . ��

Theorem 7.1.9 Let (An) be an increasing sequence of subsets of X. Then

cap

( ∞⋃
n=1

An

)
= lim

n→∞ cap(An).

Proof Let A =
∞⋃
n=1

An. By monotonicity, lim
n→∞cap(An) ≤ cap(A). We can assume

that lim
n→∞cap(An) < +∞. Let ε > 0 and an = 1 − 1/(n + 1). We construct, by

induction, an increasing sequence (Un) ⊂ O such that An ⊂ Un and

cap(Un) ≤ cap(An) + ε an. (∗)
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When n = 1, (∗) holds by definition. Assume that (∗) holds for n. By definition,
there exists V ∈ O such that An+1 ⊂ V and

cap(V ) ≤ cap(An+1) + ε(an+1 − an).

We define Un+1 = Un∪V , so that An+1 ⊂ Un+1. We obtain, by strong subadditivity,

cap(Un+1) ≤ cap(Un) + cap(V ) − cap(Un ∩ V )

≤ cap(An) + ε an + cap(An+1) + ε(an+1 − an) − cap(An)

= cap(An+1) + ε an+1.

It follows from (∗) and the preceding lemma that

cap(A) ≤ cap

( ∞⋃
n=1

Un

)
= lim

n→∞ cap(Un) ≤ lim
n→∞ cap(An) + ε.

Since ε > 0 is arbitrary, the proof is complete. ��

Corollary 7.1.10 (Countable Subadditivity) Let (An) be a sequence of subsets of

X. Then cap

( ∞⋃
n=1

An

)
≤

∞∑
n=1

cap(An).

Proof Let Bk =
k⋃

n=1

Ak . We have

cap

( ∞⋃
n=1

An

)
= cap

( ∞⋃
k=1

Bk

)
= lim

k→∞ cap(Bk) ≤
∞∑
n=1

cap(An). ��

Definition 7.1.11 The outer Lebesgue measure of a subset of RN is defined by

m∗(A) = inf{m(U) : U is open and U ⊃ A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the spaceD1,p(RN).

Definition 7.2.1 Let 1 ≤ p < N . On the space

D1,p(RN) = {u ∈ Lp∗
(RN) : ∇u ∈ Lp(RN ;RN)},
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we define the norm

||u||D1,p
(RN)

= ||∇u||p.

Proposition 7.2.2 Let 1 ≤ p < N .

(a) The spaceD(RN) is dense inD1,p(RN).
(b) (Sobolev’s inequality.) There exists c = c(p,N) such that for every u ∈
D1,p(RN),

||u||p∗ ≤ c||∇u||p.

(c) The spaceD1,p(RN) is complete.

Proof The space D(RN) is dense in D1,p(RN) with the norm ||u||p∗ + ||∇u||p.
The argument is similar to that of the proof of Theorem 6.1.10.

Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u ∈
D1,p(RN),

||∇u||p ≤ ||u||p∗ + ||∇u||p ≤ (c + 1)||∇u||p.

Let (un) be a Cauchy sequence in D1,p(RN). Then un → u in Lp∗
(RN), and

for 1 ≤ k ≤ N , ∂kun → vk in Lp(RN). By the closing lemma, for 1 ≤ k ≤ N ,
∂ku = vk . We conclude that un → u inD1,p(RN). ��

Proposition 7.2.3 Every bounded sequence in D1,p(RN) contains a subsequence
converging in L1

loc(R
N) and almost everywhere on R

N .

Proof Cantor’s diagonal argument will be used. Let (un) be bounded inD1,p(RN).
By Sobolev’s inequality, for every k ≥ 1, (un) is bounded in W 1,1(B(0, k)).
Rellich’s theorem and Proposition 4.2.10 imply the existence of a subsequence
(u1,n) of (un) converging in L1(B(0, 1)) and almost everywhere on B(0, 1). By
induction, for every k, there exists a subsequence (uk,n) of (uk−1,n) converging in
L1(B(0, k)) and almost everywhere on B(0, k). The sequence vn = un,n converges
in L1

loc(R
N) and almost everywhere on R

N . ��

Definition 7.2.4 Let 1 ≤ p < N and let K be a compact subset of R
N . The

capacity of degree p of K is defined by

capp(K) = inf

{∫
RN

|∇u|pdx : u ∈ D1,p
K (RN)

}
,

where

D1,p
K (RN) = {u ∈ D1,p(RN) : there exists U open such that K ⊂ U and χU ≤ u

almost everywhere}.
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Theorem 7.2.5 The capacity of degree p is a capacity on R
N .

Proof

(a) Monotonicity is clear by definition.
(b) Let K be compact and a > capp(R

N). There exist u ∈ D1,p(RN) and U open

such that K ⊂ U , χU ≤ u almost everywhere, and
∫
RN

|∇u|pdx < a. For every

compact set C ⊂ U , we have

capp(C) ≤
∫
RN

|∇u|pdx < a,

so that capp is regular.
(c) Let A and B be compact sets, a > capp(A), and b > capp(B). There exist

u, v ∈ D1,p(RN) and U and V open sets such that A ⊂ U , B ⊂ V , χU ≤ u,
and χV ≤ v almost everywhere and

∫
RN

|∇u|pdx < a,

∫
RN

|∇v|pdx < b.

Since max(u, v) ∈ D1,p
A∪B(R

N) and min(u, v) ∈ D1,p
A∩B(R

N), Corollary 6.1.14
implies that

∫
RN

|∇ max(u, v)|pdx+
∫
RN

|∇ min(u, v)|p =
∫
RN

|∇u|pdx+
∫
RN

|∇v|pdx ≤ a+b.

We conclude that

capp(A ∪ B) + capp(A ∩ B) ≤ a + b.

Since a > capp(A) and b > capp(B) are arbitrary, capp is strongly subadditive.

��
The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6 There exists a constant c = c(p,N) such that for every A ⊂
R

N ,

m∗(A) ≤ c capp(A)N/(N−p).

Proof Let K be a compact set and u ∈ D1,p
K (RN). It follows from Sobolev’s

inequality that

m(K) ≤
∫
RN

|u|p∗
dx ≤ c

(∫
RN

|∇u|pdx
)p∗/p

.
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By definition,

m(K) ≤ c capp(K)N/(N−p).

To conclude, it suffices to extend this inequality to open subsets of R
N and to

arbitrary subsets of RN . ��
The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7 Let K be a compact set. Then

capp(∂K) = capp(K).

Proof Let a > capp(∂K). There exist u ∈ D1,p(RN) and an open set U such that
∂K ⊂ U , χU ≤ u almost everywhere, and

∫
RN

|∇u|pdx < a.

Let us define V = U ∪ K and v = max(u, χV ). Then v ∈ D1,p
K (RN) and

∫
RN

|∇v|pdx ≤
∫
RN

|∇u|pdx,

so that capp(K) < a. Since a > capp(∂K) is arbitrary, we obtain

capp(K) ≤ capp(∂K) ≤ capp(K). ��

Example Let 1 ≤ p < N and let B be a closed ball in R
N . We deduce from the

preceding propositions that

0 < capp(B) = capp(∂B).

Theorem 7.2.8 Let 1 < p < N and U an open set. Then

capp(U) = inf

{∫
RN

|∇u|pdx : u ∈ D1,p(RN), χU ≤ u almost everywhere

}
.

Proof Let us denote by Capp(U) the second member of the preceding equality. It
is clear by definition that capp(U) ≤ Capp(U).
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Assume that capp(U) < ∞. Let (Kn) be an increasing sequence of compact

subsets of U such that U =
∞⋃
n=1

Kn, and let (un) ⊂ D1,p(RN) be such that for every

n, χKn ≤ un almost everywhere and

∫
RN

|∇un|pdx ≤ capp(Kn) + 1/n.

The sequence (un) is bounded in D1,p(RN). By Proposition 7.2.3, we can assume
that un → u in L1

loc(R
N) and almost everywhere. It follows from Sobolev’s

inequality that u ∈ Lp∗
(RN). Theorem 6.1.7 implies that

∫
RN

|∇u|pdx ≤ lim
n→∞

∫
RN

|∇un|pdx ≤ lim
n→∞ capp(Kn) ≤ capp(U).

By Theorem 7.1.9, lim
n→∞capp(Kn) = capp(U).) Since almost everywhere, χU ≤ u,

we conclude that Capp(U) ≤ capp(U). ��

Corollary 7.2.9 Let 1 < p < N , and let U and V be open sets such that U ⊂ V

and m(V \ U) = 0. Then capp(U) = capp(V ).

Proof Let u ∈ D1,p(RN) be such that χU ≤ u almost everywhere. Then χV ≤ u

almost everywhere. ��

Corollary 7.2.10 (Capacity Inequality) Let 1 < p < N and u ∈ D(RN). Then
for every t > 0,

capp({|u| > t}) ≤ t−p

∫
RN

|∇u|pdx.

Proof By Corollary 6.1.14, |u|/t ∈ D1,p(RN). ��

Definition 7.2.11 Let 1 ≤ p < N . A function v : RN → R is quasicontinuous
of degree p if for every ε > 0, there exists an open set such that capp(ω) ≤ ε

and v
∣∣
RN\ω is continuous. Two quasicontinuous functions of degree p, v, and w are

equal quasi-everywhere if capp({|v − w| > 0}) = 0.

Proposition 7.2.12 Let 1 < p < N and let v and w be quasicontinuous functions
of degree p and almost everywhere equal. Then v and w are quasi-everywhere
equal.

Proof By assumption, m(A) = 0, where A = {|v − w| > 0}, and for every n, there
exists an open set such that capp(ωn) ≤ 1/n and |v − w|∣∣

RN\ωn
are continuous. It

follows that A ∪ ωn is open. We conclude, using Corollary 7.2.9, that
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capp(A) ≤ capp(A ∪ ωn) = capp(ωn) → 0, n → ∞.
��

Proposition 7.2.13 Let 1 < p < N and u ∈ D1,p(RN). Then there exists a
function v quasicontinuous of degree p and almost everywhere equal to u.

Proof By Proposition 7.2.2, there exists (un) ⊂ D(RN) such that un → u

in D1,p(RN). Using Proposition 7.2.3, we can assume that un → u almost
everywhere and

∞∑
k=1

2kp

∫
RN

|∇(uk+1 − uk)|pdx < ∞.

We define

Uk = {|uk+1 − uk| > 2−k}, ωm =
∞⋃

k=m

Uk.

Corollary 7.2.10 implies that for every k,

capp(Uk) ≤ 2kp

∫
RN

|∇(uk+1 − uk)|pdx.

It follows from Corollary 7.1.10 that for every m,

capp(ωm) ≤
∞∑

k=m

2kp

∫
RN

|∇(uk+1 − uk)|pdx → 0, m → ∞.

We obtain, for every x ∈ R
N \ ωm and every k ≥ j ≥ m,

|uj (x) − uk(x)| ≤ 21−j ,

so that (un) converges simply to v on R
N\

∞⋂
m=1

ωm. Moreover, v
∣∣
RN\ωm

is continuous,

since the convergence of (un) on R
N \ ωm is uniform. For x ∈

∞⋂
m=1

ωm, we define

v(x) = 0. Since by Proposition 7.2.6, m(ωm) → 0, we conclude that u = v almost
everywhere. ��
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1 Let Ω be an open subset of R
N . The divergence of v ∈

C1(Ω;RN) is defined by

div v =
N∑

k=1

∂kvk.

The total variation of u ∈ L1
loc(Ω) is defined by

||Du||Ω = sup

{∫
Ω

u div v dx : v ∈ D(Ω;RN), ||v||∞ ≤ 1

}
,

where

||v||∞ = sup
x∈Ω

(
N∑

k=1

(vk(x))
2

)1/2

.

Theorem 7.3.2 Let (un) be such that un → u in L1
loc(Ω). Then

||Du||Ω ≤ lim
n→∞ ||Dun||Ω.

Proof Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1. We have, by definition,

∫
Ω

u div v dx = lim
n→∞

∫
Ω

un div v dx ≤ lim
n→∞ ||Dun||Ω.

It suffices then to take the supremum with respect to v. ��

Theorem 7.3.3 Let u ∈ W
1,1
loc (Ω). Then the following properties are equivalent:

(a) ∇u ∈ L1(Ω;RN);
(b) ||Du||Ω < ∞.

In this case,

||Du||Ω = ||∇u||L1(Ω).



7.3 Functions of Bounded Variations 175

Proof

(a) Assume that ∇u ∈ L1(Ω;RN). Let v ∈ D(Ω;RN) be such that ||v||∞ ≤ 1. It
follows from the Cauchy–Schwarz inequality that

∫
Ω

u div v dx = −
∫
Ω

N∑
k=1

vk∂ku dx ≤
∫
Ω

|∇u|dx.

Hence ||Du||Ω ≤ ||∇u||L1(Ω).
Theorem 4.3.11 implies the existence of (wn) ⊂ D(Ω;RN) converging to

∇u in L1(Ω;RN). We can assume that wn → ∇u almost everywhere on Ω .
Let us define

vn = wn/

√
|wn|2 + 1/n.

We infer from Lebesgue’s dominated convergence theorem that

||∇u||L1(Ω) =
∫
Ω

|∇u|dx = lim
n→∞

∫
Ω

vn · ∇u dx ≤ ||Du||Ω.

(b) Assume that ||Du||Ω < ∞, and define

ωn = {x ∈ Ω : d(x, ∂Ω) > 1/n and |x| < n}.

Then by the preceding step, we obtain

||∇u||L1(ωn)
= ||Du||ωn ≤ ||Du||Ω < ∞.

Levi’s theorem ensures that ∇u ∈ L1(Ω;RN). ��

Example There exists a function everywhere differentiable on [−1, 1] such that
||Du||]−1,1[ = +∞. We define

u(x) = 0, x = 0,
= x2 sin 1

x2 , 0 < |x| ≤ 1.

We obtain

u′(x) = 0, x = 0,
= 2x sin 1

x2 − 2
x

cos 1
x2 , 0 < |x| ≤ 1.

The preceding theorem implies that
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+∞ = lim
n→∞ ||u′||L1(]1/n,1[) ≤ ||Du||]−1,1[.

Indeed,

2
∫ 1

0
| cos

1

x2 |dx
x

=
∫ ∞

1
| cos t |dt

t
= +∞.

The function u has no weak derivative!

Example (Cantor’s Function) There exists a continuous nondecreasing function
with almost everywhere zero derivative and positive total variation. We use the
notation of the last example of Sect. 2.2. We consider the Cantor set C corresponding
to �n = 1/3n+1. Observe that

m(C) = 1 −
∞∑
j=0

2j /3j+1 = 0.

We define on R,

un(x) =
(

3

2

)n ∫ x

0
χCn(t)dt.

It is easy to verify by symmetry that

||un+1 − un||∞ ≤ 1

3

1

2n+1
.

By the Weierstrass test, (un) converges uniformly to the Cantor’s function u ∈
C(R). For n ≥ m, u′

n = 0 on R \ Cm. The closing lemma implies that u′ = 0
on R \ Cm. Since m is arbitrary, u′ = 0 on R \ C. Theorems 7.3.2 and 7.3.3 ensure
that

||Du||R ≤ lim
n→∞ ||u′

n||L1(R) = 1.

Let v ∈ D(R) be such that ||v||∞ = 1 and v = −1 on [0, 1] and integrate by parts:

∫
R

v′u dx = lim
n→∞

∫
R

v′un dx = − lim
n→∞

∫
R

vu′
ndx = lim

n→∞

(
3

2

)n

m(Cn) = 1.

We conclude that ||Du||R = 1. The function u has no weak derivative.

Definition 7.3.4 Let Ω be an open subset of RN . On the space

BV (Ω) = {u ∈ L1(Ω) : ||Du||Ω < ∞},
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we define the norm

||u||BV (Ω) = ||u||L1(Ω) + ||Du||Ω
and the distance of strict convergence

dS(u, v) = ||u − v||L1(Ω) + ∣∣||Du||Ω − ||Dv||Ω
∣∣.

Remark It is clear that convergence in norm implies strict convergence.

Example The space BV (]0, π [), with the distance of strict convergence, is not
complete. We define on ]0, π [,

un(x) = 1

n
cos nx,

so that un → 0 in L1(]0, π [). By Theorem 7.3.3, for every n,

||Dun||]0,π [ =
∫ π

0
| sin nx|dx = 2.

Hence lim
j,k→∞ dS(uj , uk) = lim

j,k→∞ ||uj − uk||L1(]0,π [) = 0. If lim
n→∞dS(un, v) = 0,

then v = 0. But lim
n→∞dS(un, 0) = 2. This is a contradiction.

Proposition 7.3.5 The normed space BV (Ω) is complete.

Proof Let (un) be a Cauchy sequence on the normed space BV (Ω). Then (un) is a
Cauchy sequence in L1(Ω), so that un → u in L1(Ω).

Let ε > 0. There exists m such that for j, k ≥ m, ||D(uj − uk)||Ω ≤ ε.
Theorem 7.3.2 implies that for k ≥ m, ||D(uk − u)|| ≤ lim

j→∞
||D(uj − uk)||Ω ≤ ε.

Since ε > 0 is arbitrary, ||D(uk − u)||Ω → 0, k → ∞. ��

Lemma 7.3.6 Let u ∈ L1
loc(R

N) be such that ||Du||RN < ∞. Then

||∇(ρn ∗ u)||L1(RN) ≤ ||Du||RN and ||Du||RN = lim
n→∞ ||∇(ρn ∗ u)||L1(RN).

Proof Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. It follows from Proposi-
tion 4.3.15 that

∫
RN

(ρn ∗ u) div v dx =
∫
RN

u

N∑
k=1

ρn ∗ ∂kvkdx =
∫
RN

u

N∑
k=1

∂k(ρn ∗ vk)dx.

The Cauchy–Schwarz inequality implies that for every x ∈ R
N ,
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N∑
k=1

(ρn ∗ vk(x))
2 =

N∑
k=1

(∫
RN

ρn(x − y)vk(y)dy

)2
≤

N∑
k=1

∫
RN

ρn(x − y)(vk(y))
2dy ≤ 1.

Hence we obtain
∫
RN

(ρn ∗ u) div v dx ≤ ||Du||RN ,

and by Theorem 7.3.3, ||∇(ρn ∗ u)||L1(RN) ≤ ||Du||RN .
By the regularization theorem, ρn∗u → u in L1

loc(R
N). Theorems 7.3.2 and 7.3.3

ensure that

||Du||RN ≤ lim
n→∞ ||∇(ρn ∗ u)||L1(RN). ��

Theorem 7.3.7

(a) For every u ∈ BV (RN), (ρn ∗ u) converges strictly to u.
(b) (Gagliardo–Nirenberg inequality.) Let N ≥ 2. There exists cN > 0 such that

for every u ∈ BV (RN),

||u||N/(N−1)(R
N) ≤ cN ||Du||RN .

Proof

(a) Proposition 4.3.14 and the preceding lemma imply the strict convergence of
(ρn ∗ u) to u.

(b) Let N ≥ 2. We can assume that ρnk
∗ u → u almost everywhere on R

N . It
follows from Fatou’s lemma and Sobolev’s inequality inD1,1(RN) that

||u||N/(N−1) ≤ lim
k→∞

||ρnk ∗ u||N/(N−1) ≤ cN lim
n→∞ ||∇(ρnk ∗ u)||1 = cN ||Du||

RN .

��

7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1 Let Ω be an open subset of R
N of class C1 with a bounded

boundary Γ . Then

∫
Γ

dγ = ||DχΩ ||RN .
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Proof Let v ∈ D(RN ;RN) be such that ||v||∞ ≤ 1. The divergence theorem and
the Cauchy–Schwarz inequality imply that

∫
Ω

div v dx =
∫
Γ

v · n dγ ≤
∫
Γ

|v| |n|dγ ≤
∫
Γ

dγ.

Taking the supremum with respect to v, we obtain ||DχΩ ||RN ≤
∫
Γ

dγ .

We use the notations of Definition 9.4.1 and define

U = {x ∈ R
N : ∇ϕ(x) �= 0},

so that Γ ⊂ U . The theorem of partitions of unity ensures the existence of ψ ∈
D(U) such that 0 ≤ ψ ≤ 1 and ψ = 1 on Γ . We define

v(x) = ψ(x)∇ϕ(x)/|∇ϕ(x)|, x ∈ U

= 0, x ∈ R
N \ U.

It is clear that v ∈ K(RN ;RN), and for every γ ∈ Γ , v(γ ) = n(γ ). For every m ≥
1, wm = ρm ∗ v ∈ D(RN ;RN). We infer from the divergence and regularization
theorems that

lim
m→∞

∫
Ω

div wm dx = lim
m→∞

∫
Γ

wm · n dγ =
∫
Γ

n · n dγ =
∫
Γ

dγ.

By definition, ||v||∞ ≤ 1, and by the Cauchy–Schwarz inequality,

N∑
k=1

(ρm∗vk(x))2 =
N∑

k=1

(∫
RN

ρm(x − y)vk(y)dy

)2
≤

N∑
k=1

∫
RN

ρm(x−y)(vk(y))
2dy ≤ 1.

We conclude that
∫
Γ

dγ ≤ ||DχΩ ||RN . ��
The preceding theorem suggests a functional definition of the perimeter due to

De Giorgi.

Definition 7.4.2 Let A be a measurable subset of RN . The perimeter of A is defined
by p(A) = ||DχA||RN .

Definition 7.4.3 Let N ≥ 2 and let Ω be an open subset of R
N . The Cheeger

constant of Ω is defined by

h(Ω) = inf{p(ω)/m(ω) : ω ⊂⊂ Ω and ω is of class C1}.



180 7 Capacity

Example Let Ω = B(0, 1) ⊂ R
N . For every 0 < r < 1, h(Ω) ≤ N/r , so that

h(Ω) ≤ N . Assume that ω ⊂⊂ Ω is of class C1. The divergence theorem, applied
to the vector field v(x) = x, implies that

Nm(ω) =
∫
ω

divvdx =
∫
∂ω

v.ndγ ≤
∫
∂ω

dγ = p(ω).

We conclude that h(Ω) = N .

Theorem 7.4.4 (S.T. Yau, 1975) Let Ω be an open subset of RN . Then

h(Ω) = inf
u∈D(Ω)

u�=0

∫
Ω

|∇u|dx
∫
Ω

|u|dx
.

Proof

(a) Let u ∈ D(Ω). Using Cavalieri principle (Corollary 2.2.34), the Morse–Sard
theorem (Theorem 9.3.1), and the coarea formula (Theorem 9.3.3), we obtain

h(Ω)

∫
Ω

|u|dx = h(Ω)

[∫ ∞

0
m({u > t})dt +

∫ 0

−∞
m({u < t})dt

]

≤
∫ ∞

0
dt

∫
u=t

dγ +
∫ 0

−∞
dt

∫
u=t

dγ =
∫
Ω

|∇u|dx,

so that

h(Ω) ≤ c = inf
u∈D(Ω)

u�=0

∫
Ω

|∇u|dx
∫
Ω

|u|dx
.

(b) Let ω ⊂⊂ Ω be of class C1. For n large enough, un = ρn ∗ χω ∈ D(Ω).
Proposition 4.3.14 and Lemma 7.3.6 imply that, as n → ∞,

‖un‖1 → ‖χω‖1 = m(ω), ‖∇un‖1 → ‖Dχω‖RN = p(ω).

We conclude that

p(ω)

m(ω)
= lim

n→∞

∫
Ω

|∇un|dx∫
Ω

|un|dx
≥ c,

and h(Ω) ≥ c. ��
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Corollary 7.4.5 (J. Cheeger, 1970) Let Ω be an open subset of RN . Then

h2(Ω)

4
≤ inf

u∈D(Ω)
u�=0

∫
Ω

|∇u|2dx
∫
Ω

u2dx

.

Proof Let u ∈ D(Ω). By the preceding theorem, the function v = u2 satisfies

h(Ω)

∫
Ω

|v|dx ≤
∫
Ω

|∇v|dx.

The Cauchy-Schwarz inequality implies that

h(Ω)

∫
Ω

u2dx ≤
∫
Ω

2|u| |∇u|dx ≤ 2

(∫
Ω

u2dx

)1/2 (∫
Ω

|∇u|2dx
)1/2

. ��

Lemma 7.4.6 Let 1 ≤ p < N , let K be a compact subset of RN , and a > capp(K).

Then there exist V open and v ∈ D(RN) such that K ⊂ V , χV ≤ v, and∫
Ω

|∇v| dx < a.

Proof By assumption, there exist u ∈ D1,p(RN) and U open such that K ⊂ U ,
χU ≤ u, and

∫
RN

|∇u|pdx < a.

There exists V open such that K ⊂ V ⊂⊂ U . For m large enough, χV ≤ w = ρm∗u
and

∫
RN

|∇w|pdx < a.

Let θn(x) = θ(|x|/n) be a truncating sequence. For n large enough, χV ≤ v = θnw

and
∫
RN

|∇v|pdx < a. ��

Theorem 7.4.7 Let N ≥ 2 and let K be a compact subset of RN . Then

cap1(K) = inf{p(U) : U is open and bounded, and U ⊃ K}.
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Proof We denote by Cap1(K) the second member of the preceding equality. Let U
be open, bounded, and such that U ⊃ K . Define un = ρn ∗ χU . For n large enough,
u ∈ D1,1

K (RN). Lemma 7.3.6 implies that for n large enough,

cap1(K) ≤
∫
RN

|∇un|dx ≤ ||DχU ||RN = p(U).

Taking the infimum with respect to U , we obtain cap1(K) ≤ Cap1(K).
Let a > cap1(K). By the preceding lemma, there exist V open and v ∈ D(RN)

such that K ⊂ V , χV ≤ v, and
∫
RN

|∇v|dx < a. We deduce from the Morse–Sard

theorem and from the coarea formula that

Cap1(K) ≤
∫ 1

0
dt

∫
v=t

dγ ≤
∫ ∞

0
dt

∫
v=t

dγ =
∫
RN

|∇v|dx < a.

Since a > cap1(K) is arbitrary, we conclude that Cap1(K) ≤ cap1(K). ��

7.5 Distribution Theory

La mathématique est l’art de donner le même nom à
des choses diffèrentes.

Henri Poincaré

La mathématique est la science des choses qui
se réduisent à leur définition.

Paul Valéry

Distribution theory is a general framework including locally integrable functions.
A distribution is a continuous linear functional on the space of test functions.
Every distribution is infinitely differentiable, and differentiation of distributions is a
continuous operation. We denote by Ω an open subset of RN .

Definition 7.5.1 A sequence (un) converges to u inD(Ω) if there exists a compact
subset K of Ω such that for every n, spt un ⊂ K , and if for every α ∈ N

N ,

||∂α(un − u)||∞ → 0, n → ∞.

Definition 7.5.2 A distribution on Ω is a linear functional f : D(Ω) → R such
that for every sequence (un) converging to u in D(Ω), 〈f, un〉 → 〈f, u〉, n → ∞.
We denote byD∗(Ω) the space of distributions on Ω .
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Example The distribution corresponding to f ∈ L1
loc(Ω) is defined onD(Ω) by

〈f, u〉 =
∫
Ω

fudx.

By the annulation theorem, the functional f : D(Ω) → R characterizes the function
f ∈ L1

loc(Ω). Assume that un → u inD(Ω). Then there exists a compact subset K
of Ω such that, for every n, spt un ⊂ K . Hence we obtain

∣∣∣∣
∫
Ω

fundx −
∫
Ω

fudx

∣∣∣∣ ≤
∫
Ω

|f | |un − u|dx ≤
∫
K

|f |dx‖un − u‖∞ → 0, n → ∞.

Definition 7.5.3 Let f ∈ D∗(Ω) and α ∈ N
N . The derivative of order α of f (in

the sense of distributions) is defined onD(Ω) by

〈∂αf, u〉 = (−1)|α|〈f, ∂αu〉.

It is easy to verify that ∂αf ∈ D∗(Ω).

Examples

(a) If g = ∂αf in the weak sense, then g = ∂αf in the sense of distributions.
Indeed, for every u ∈ D(Ω),

〈∂αf, u〉 = (−1)|α|〈f, ∂αu〉 = (−1)|α|
∫
Ω

f ∂αudx =
∫
Ω

gudx = 〈g, u〉.

(b) The everywhere derivable function

f (x) = 0, x = 0,

= x2 sin
1

x2 , 0 < |x| < 1,

has a classical derivative f ′ and a derivative in the sense of distributions

D(−1, 1[) → R : u �→ −
∫ 1

−1
f u′dx.

Those two objects are different since, for every ε > 0,
∫ ε

−ε

|f ′|dx = +∞.

Definition 7.5.4 The sequence (fn) converges to f in D∗(Ω) if for every u ∈
D(Ω), 〈fn, u〉 → 〈f, u〉, n → ∞.
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Example If fn → f in L1
loc(Ω), then fn → f in D∗(Ω). Indeed, for every u ∈

D(Ω)

∣∣∣∣
∫
Ω

fnudx −
∫
Ω

fudx

∣∣∣∣ ≤
∫
Ω

|fn−f | |u|dx ≤ ‖u‖∞
∫

spt u

|fn−f |dx → 0, n → ∞.

Theorem 7.5.5 Let α ∈ N
N and let (fn) be a sequence converging to f inD∗(Ω).

Then (∂αfn) converges to ∂αf inD∗(Ω).

Proof For every u ∈ D(Ω), we have

〈∂αf, u〉 = (−1)|α|〈f, ∂αu〉 = lim
n→∞(−1)|α|〈fn, ∂

αu〉 = lim
n→∞〈∂αfn, u〉. ��

We now prove a variant of the Banach–Steinhaus theorem.

Theorem 7.5.6 Let (fj ) ⊂ D∗(Ω) be a sequence converging simply to the
functional f : D(Ω) → R. Then f ∈ D∗(Ω), so that fj → f inD∗(Ω).

Proof The linearity of f is clear. Assume, for the sake of obtaining a contradiction,
that there exists (un) ⊂ D(Ω) such that un → 0 inD(Ω) and lim

n→∞|f (un)| > 0. We

can assume that lim
n→∞f (un) > 0. Using Cantor’s diagonal argument, we construct a

subsequence (νk) of (un) such that for every k and every |α| ≤ k,

0 < c < f (νk), ‖∂ανk‖∞ ≤ 1/2k.

We choose νk1 = ν1 and fj1 such that c < 〈fj1 , νk1〉. Given νk1 , . . . , νkn−1 and
fj1 , . . . , fjn−1 , there exists νkn such that for m ≤ n − 1,

|〈fjm, νkn〉| ≤ 1/2n−m.

There also exists fjn such that

nc <

n∑
m=1

〈fjn, νkm〉.

By the Weierstrass test,
∞∑

m=1

νkm = w inD(Ω). Hence we obtain, for every n,

〈fjn, w〉 =
∞∑

m=1

〈fjn, νkm〉 > nc −
∞∑

m=n+1

1/2m−n = nc − 1.

But then 〈fjn, w〉 → +∞, n → ∞. This is a contradiction. ��
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The preceding theorem explains why every natural linear functional defined on
D(Ω) is continuous.

Distributions also generalize positive measures and bounded measures.

Theorem 7.5.7 Let f : D(Ω) → R be a linear functional such that 〈f, u〉 ≥ 0
when u ≥ 0. Then f is a distribution and the restriction to D(Ω) of a positive
measure μ : K(Ω) → R.

Proof Let ω ⊂⊂ Ω . By the theorem of partitions of unity, there exists ψ ∈ D(Ω)

such that 0 ≤ ψ ≤ 1 and ψ = 1 on ω. For every u ∈ D(Ω) such that spt u ⊂ ω,
we have

〈f, u〉 ≤ 〈f, ‖u‖∞ψ〉 = cω‖u‖∞.

Hence f is a distribution.
Let v ∈ K(Ω) be such that spt v ⊂ ω, and define vn = ρn ∗ v. For n large

enough, spt vn ⊂ ω. The regularization theorem implies that

lim
j,k→∞ |〈f, vj 〉 − 〈f, vk〉| ≤ cω lim

j,k→∞ ‖vj − vk‖∞ = 0.

We define

〈μ, v〉 = lim
n→∞〈f, vn〉. ��

Lemma 7.5.8 Let f : D(Ω;RM) → R be a linear functional such that

cf = sup{〈f, ν〉 : ν ∈ D(Ω;RM), ‖ν‖∞ ≤ 1} < +∞.

Then f is the restriction toD(Ω;RM) of a finite measure μ : K(Ω;RM) → R such
that cf = ‖μ‖Ω = ∫

Ω
d|μ|, and there exists g : Ω → R

M satisfying:

(a) g is |μ|-measurable;
(b) |g(x)| = 1, |μ|-almost everywhere on Ω;
(c) for all ν ∈ D(Ω;RM), 〈f, ν〉 = ∫

Ω
ν · g d|μ|.

Proof Let ν ∈ K(Ω;RM). For n large enough, spt ρn∗ν ⊂⊂ Ω . The regularization
theorem implies that

lim
j,k→∞ |〈f, ρj ∗ ν〉 − 〈f, ρk ∗ ν〉| ≤ cf lim

j,k→∞ ‖ρj ∗ ν − ρk ∗ ν‖∞ = 0.

We define

〈μ, ν〉 = lim
n→∞〈f, ρn ∗ ν〉.
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Since

〈μ, ν〉 ≤ cf lim
n→∞ ‖ρn ∗ ν‖∞ = cf ‖ν‖∞,

the functional μ : K(Ω;RM) → R is a bounded measure such that

‖μ‖Ω = sup{〈μ, ν〉 : ν ∈ K(Ω;RM), ‖ν‖∞ ≤ 1} ≤ cf .

We conclude that ‖μ‖Ω = cf .
Let (ψn) ⊂ D(Ω) be given by Proposition 6.1.16 so that ψn ≥ 0 and, for every

ω ⊂⊂ Ω ,
mω∑
n=1

ψn = 1 on ω. Let us recall that

∫
Ω

m∑
n=1

ψn d|μ| = sup{〈μ, ν〉 : ν ∈ K(Ω;RM), |ν| ≤
m∑

n=1

ψn} ≤ ‖μ‖Ω.

Using Levi’s theorem, we obtain

∫
Ω

d|μ| =
∫
Ω

∞∑
ν=1

ψn d|μ| = sup{〈μ, ν〉 : ν ∈ K(Ω;RM), ‖ν‖∞ ≤ 1} = ‖μ‖Ω.

Finally the existence of g : Ω → R
M satisfying (a), (b), and (c) follows from

Theorem 5.3.14. ��

Theorem 7.5.9 Let u ∈ L1
loc(Ω) be such that

‖Du‖Ω = sup{
∫
Ω

u div νdx : ν ∈ D(Ω;RN), ‖ν‖∞ ≤ 1} < +∞.

Then

f : D(Ω;RN) → R : ν �→
N∑

j=1

〈∂ju, νj 〉

is the restriction to D(Ω;RN) of a finite measure Du : K(Ω;RN) → R such that
‖Du‖Ω = ∫

Ω
d|Du|, and there exists g : Ω → R

N satisfying:

(a) g is |Du|-measurable;
(b) |g(x)| = 1, |Du|-almost everywhere on Ω;

(c) for all ν ∈ D(Ω;RN),

N∑
j=1

〈∂ju, νj 〉 =
∫
Ω

ν · g d|Du|.
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Proof Since, for every ν ∈ D(Ω;RN),

〈f, ν〉 =
N∑

j=1

〈∂ju, νj 〉 = −
∫
Ω

u divνdx,

it suffices to use the preceding lemma. ��
The next result improves Theorem 7.4.1.

Theorem 7.5.10 Let Ω be an open subset of R
N of class C1 with a bounded

boundary Γ , and let ν ∈ K(RN ;RN). Then

〈DχΩ, ν〉 = −
∫
Γ

ν · n dγ.

Proof The regularization theorem and the divergence theorem imply that

〈DχΩ, ν〉 = lim
m→∞

N∑
j=1

〈∂jχΩ, ρm ∗ ν〉

= lim
m→∞ −

N∑
j=1

∫
Ω

∂j (ρm ∗ ν)dx

= lim
m→∞ −

∫
Γ

ρm ∗ ν · n dγ

= −
∫
Γ

ν · n dγ. ��

Theorem 7.5.11 (Density theorem in BV (Ω)). Let u ∈ BV (Ω). Then there exists
(un) ⊂ C∞(Ω)

⋂
W 1,1(Ω) such that

lim
n→∞ ‖un − u‖L1(Ω) = 0, lim

n→∞

∫
Ω

|∇un|dx = ‖Du‖Ω.

Proof Let us first prove that, for every ε > 0, there exists v ∈ C∞(Ω)
⋂

W 1,1(Ω)

such that

‖v−u‖L1(Ω) ≤ ε ,

∫
Ω

|∇v|dx ≤ ‖Du‖Ω + ε.

Let (Un) and (ψn) be given by Proposition 6.1.16. Since ψn ∈ D(Un), there exists,
for every n ≥ 1, kn such that

vn = ρkn ∗ (ψnu) ∈ D(Un)
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and

||vn − ψnu||L1(Ω) + ||ρkn ∗ (u∇ψn) − u∇ψn||L1(Ω) ≤ ε/2n. (∗)

On every ω ⊂⊂ Ω , we have that

∞∑
n=1

vn =
mω∑
n=1

vn ∈ C∞(ω).

Hence

v =
∞∑
n=1

vn ∈ C∞(Ω).

Moreover (∗) implies that

‖v − u‖L1(Ω) = ‖
∞∑
n=1

(vn − ψnu)‖L1(Ω) ≤ ε.

We deduce from Proposition 4.3.6 and Theorem 7.5.9 (c) that, for every x ∈ Ω ,

∇vn(x) =
∫
Ω

∇xρkn(x − y)ψn(y)u(y)dy

= −
∫
Ω

∇yρkn(x − y)ψn(y)u(y)dy

=
∫
Ω

ρkn(x − y)ψn(y)g(y)d|Du| +
∫
Ω

ρkn(x − y)u(y)∇ψn(y)dy

=
∫
Ω

ρkn(x − y)ψn(y)g(y)d|Du| + ρkn ∗ (u∇ψn)(x).

It follows from Fubini’s theorem and Theorem 7.5.9 (b) that

∫
Ω

dx

∣∣∣∣
∫
Ω

ρkn(x − y)ψn(y)g(y)d|Du|
∣∣∣∣ ≤

∫
Ω

dx

∫
Ω

ρkn(x − y)ψn(y)d|Du|

=
∫
Ω

d|Du|
∫
Ω

ρkn(x − y)ψn(y)dx

=
∫
Ω

ψnd|Du|. (∗∗)

It is clear that, for every x ∈ Ω ,
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∇v(x) =
∞∑
n=1

∇vn(x)

=
∞∑
n=1

∫
Ω

ρkn(x − y)ψn(y)g(y)d|Du| +
∞∑
n=1

ρkn ∗ (u∇ψn)(x)

=
∞∑
n=1

∫
Ω

ρkn(x − y)ψn(y)g(y)d|Du| +
∞∑
n=1

[
ρkn ∗ (u∇ψn) − u∇ψn

]
(x).

Using (∗) and (∗∗), we conclude from Levi’s theorem that

∫
Ω

|∇v|dx ≤
∞∑
n=1

∫
Ω

ψnd|Du| +
∞∑
n=1

ε/2n =
∫
Ω

∞∑
n=1

ψnd|Du| + ε = ‖Du‖Ω + ε.

The first part of the proof implies the existence of a sequence (un) ⊂ C∞(Ω)⋂
W 1,1(Ω) such that, for every n,

‖un − u‖L1(Ω) ≤ 1/n,
∫
Ω

|∇un|dx ≤ ‖Du‖Ω + 1/n.

Using Theorems 7.3.2 and 7.3.3, we obtain

‖Du‖Ω ≤ lim
n→∞

∫
Ω

|∇un|dx ≤ lim
n→∞

∫
Ω

|∇un|dx ≤ ‖Du‖Ω. ��

We shall prove various representation theorems.
Notation. Let 1 ≤ p < +∞ and let Ω be an open subset of RN . On Lp(Ω;RM),
we define the norm

‖ν‖p ≡
(∫

Ω

|ν|pdx
)1/p

=
⎛
⎝
∫
Ω

(
M∑
k=1

ν2
k

)p/2

dx

⎞
⎠

1/p

.

Let us recall that 1/p + 1/p′ = 1.

Lemma 7.5.12 Let 1 < p < +∞ and let g ∈
(
Lp(Ω;RM)

)∗
. Then there exists

one and only one h ∈ Lp′
(Ω;RM) such that, for every ν ∈ Lp(Ω;RM),

〈g, ν〉 =
∫
Ω

h.ν dx. (∗)

Moreover ‖g‖(Lp)∗ = ‖h‖p′ .

Proof By the Riesz’s representation theorem, there exists one and only one h ∈
Lp′

(Ω;RM) satisfying (∗). Moreover
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‖g‖(Lp)∗ = sup
‖ν‖p=1

∫
Ω

h · ν dx = ‖h‖p′ . ��

Theorem 7.5.13 Let 1 < p < +∞ and let f ∈ D∗(Ω). The following properties
are equivalent:

(a) there exists h ∈ Lp′
(Ω;RN) such that div h = f ;

(b) ‖f ‖∗ = sup{〈f, u〉 : u ∈ D(Ω), ‖∇u‖p ≤ 1} < +∞.

Moreover

‖f ‖∗ = min
{
‖h‖p′ : h ∈ Lp′

(Ω;RN), div h = f
}
.

Proof If f satisfies (a), it follows from Hölder’s inequality that, onD(Ω),

〈f, u〉 = 〈div h, u〉 = −
∫
Ω

h · ∇u dx ≤ ‖h‖p′ ‖∇u‖p.

Hence ‖f ‖∗ ≤ ‖h‖p′ .
Assume that f satisfies (b). We define Y = {∇u : u ∈ D(Ω)

}
. Since

A : D(Ω) → Y : u → ∇u

is bijective, the Hahn–Banach theorem implies the existence of g ∈ (Lp(Ω;RN)
)∗

such that, for every u ∈ D(Ω), 〈g,∇u〉 = 〈f, u〉 and

‖g‖(Lp)∗ = ‖f ‖∗.

By the preceding lemma, there exists h ∈ Lp′
(Ω;RN) such that, for every ν ∈

Lp(Ω;RN), 〈g, ν〉 = − ∫
Ω

h · ν dx and

‖h‖p′ = ‖g‖(Lp)∗ .

We conclude that ‖h‖p′ = ‖f ‖∗ and that, for every u ∈ D(Ω),

〈f, u〉 = 〈g,∇u〉 = −
∫
Ω

h · ∇u dx = 〈div h, u〉. ��

We now state the representation theorem of L. Schwartz.

Theorem 7.5.14 Let f ∈ D∗(Ω), and let ω ⊂⊂ Ω be the product of N open
intervals. Then there exist g ∈ C0(ω) and β ∈ N

N such that f = ∂βg onD(ω).

Lemma 7.5.15 Let f ∈ D∗(Ω). Then there exist α ∈ N
N and c ≥ 0 such that for

all u ∈ D(ω),

|〈f, u〉| ≤ c‖∂αu‖∞.
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Proof By the fundamental theorem of calculus, for every n ≥ 1, there exists cn > 0
such that for all u ∈ D(ω),

sup
|α|≤n

‖∂αu‖∞ ≤ cn‖∂(n,...,n)u‖∞.

Assume, to obtain a contradiction, that for every n ≥ 1, there exists un ∈ D(ω)

such that

ncn‖∂(n,...,n)un‖∞ < 〈f, un〉.

Define νn = un/(ncn‖∂(n,...,n)un‖∞). Since for every n ≥ |α|, ‖∂ανn‖∞ ≤ 1/n,
we conclude that νn → 0 in D(Ω) and 〈f, νn〉 → 0. But this is impossible, since
for every n, 〈f, νn〉 > 1. ��

We prove the existence of primitives of a distribution.

Lemma 7.5.16 Let f ∈ D∗(ω), 1 ≤ k ≤ N, γ ∈ N
N , and c ≥ 0 be such that for

all u ∈ D(ω),

|〈f, u〉| ≤ c‖∂k∂γ u‖∞.

Then there exist F ∈ D∗(ω) and C ≥ 0 such that f = ∂kF and for all u ∈ D(ω),

|〈F, u〉 ≤ C‖∂γ u‖∞.

Proof We can assume that ω = ]0, 1[N and k = N . Let ϕ ∈ D
(
]0, 1[

)
be such that∫ 1

0
ϕds = 1. For every u ∈ D(ω), there exists one and only one ν ∈ D(ω) such

that

u(x) =
∫ 1

0
u(x′, s)ds ϕ(xN) + ∂Nν(x).

The function ν is given by the formula

ν(x) =
∫ xN

0

[
u(x′, t) −

∫ 1

0
u(x′, s)ds ϕ(t)

]
dt.

The distribution F is defined by the formula

〈F, u〉 = −〈f, ν〉.

Since ‖∂N∂γ ν‖∞ ≤ d‖∂γ u‖∞, it is easy to finish the proof. ��
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Let us define

k(x, y) = −(1 − y)x, 0 ≤ x ≤ y ≤ 1,
= −(1 − x)y, 0 ≤ y ≤ x ≤ 1,

and

K(x, y) =
N∏

n=1

k(xn, yn).

Lemma 7.5.17 For every u ∈ D
(
]0, 1[N

)
, we have that

u(x) =
∫

]0,1[N
K(x, y)∂(2,...,2)u(y)dy.

Proof When N = 1, it suffices to integrate by parts. When N ≥ 2, the result follows
by induction from Fubini’s theorem. ��

We now prove the representation theorem of A. Pietsch (1960).

Lemma 7.5.18 Let μ be a finite measure on ω. Then there exists g ∈ C0(ω) such
that μ = ∂(2,...,2)g onD(ω).

Proof We can assume that ω = ]0, 1[N . By assumption, for every u ∈ C0(ω),

∣∣〈μ, u〉∣∣ ≤ c‖u‖∞, (∗)

where c = ‖μ‖ω.
Let u ∈ D(ω). By the preceding lemma, we have that

〈μ, u〉 = 〈μ,

∫
ω

K(x, y)∂(2,...,2)u(y)dy〉.

We shall prove that

〈μ, u〉 =
∫
ω

g(y)∂(2,...,2)u(y)dy,

where

g(y) = 〈μ,K(·, y)〉.

Since

∣∣K(x, y) − K(x, z)
∣∣ ≤

N∑
i=1

|yj − zj |,
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it follows from (∗) that

∣∣g(y) − g(z)
∣∣ ≤ c

N∑
j=1

|yj − zj |.

It is clear by definition that g = 0 on ∂ω.
Define ν = ∂(2,...,2)u. The preceding lemma implies that

∥∥u(x) − 2−jN
∑
k∈NN

|k|∞<2j

K(x, k/2j )ν(k/2j )
∥∥∞ → 0, j → ∞.

It follows from (∗) that

∣∣∣〈μ, u〉 − 2−jN
∑
k∈NN

|k|∞<2j

g(k/2j )ν(k/2j )

∣∣∣→ 0, j → ∞.

Since

∣∣∣
∫
ω

g(y)ν(y)dy − 2−jN
∑
k∈NN

|k|∞<2j

g(k/2j )ν(k/2j )

∣∣∣→ 0, j → ∞,

we conclude that 〈μ, u〉 =
∫
ω

g(y)ν(y)dy. ��
Proof (of Theorem 7.5.14.) Lemmas 7.5.15 and 7.5.16 imply the existence of α ∈
N
N and of a finite measure μ on ω such that f = ∂αμ onD(ω). By Lemma 7.5.17

there exists g ∈ C0(ω) such that μ = ∂(2,...,2)g onD(ω). ��

7.6 Comments

The book by Maz’ya [51] is the main reference on functions of bounded variations
and on capacity theory. The derivative of the function of unbounded variation
in Sect. 7.3 is Denjoy–Perron integrable (since it is a derivative); see Analyse,
fondements techniques, évolution by J. Mawhin [49].

7.7 Exercises for Chap. 7

1. Let 1 ≤ p < N . Then
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λp + N < 0 ⇔ (1 + |x|2)λ/2 ∈ W 1,p(RN),

(λ − 1)p + N < 0 ⇔ (1 + |x|2)λ/2 ∈ D1,p(RN).

2. What are the interior and the closure of W 1,1(Ω) in BV (Ω)?
3. Let u ∈ L1

loc(Ω). The following properties are equivalent:

(a) ||Du||Ω < ∞;
(b) there exists c > 0 such that for every ω ⊂⊂ Ω and every y ∈ R

N such that
|y| < d(ω, ∂Ω)

||τyu − u||L1(ω) ≤ c|y|.

4. Relative variational capacity. Let Ω be an open bounded subset of RN (or more
generally, an open subset bounded in one direction). Let 1 ≤ p < ∞ and let
K be a compact subset of Ω . The capacity of degree p of K relative to Ω is
defined by

capp,Ω(K) = inf

{∫
Ω

|∇u|pdx : u ∈ W
1,p
K (Ω)

}
,

where

W
1,p
K (Ω) = {u ∈ W

1,p
0 (Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω

and χω ≤ u a.e. on Ω}.

Prove that the capacity of degree p relative to Ω is a capacity on Ω .
5. Verify that

capp,Ω(K) = inf

{∫
Ω

|∇u|pdx : u ∈ DK(Ω)

}
,

where

DK(Ω) = {u ∈ D(Ω) : there exists ω such that K ⊂ ω ⊂⊂ Ω and χω ≤ u}.

6. (a) If capp,Ω(K) = 0, then m(K) = 0. Hint: Use Poincaré’s inequality.
(b) If p > N and if capp,Ω(K) = 0, then K = φ. Hint: Use Morrey

inequalities.
7. Assume that capp,Ω(K) = 0. Then for every u ∈ D(Ω), there exists (un) ⊂
D(Ω \ K) such that |un| ≤ |u| and un → u in W 1,p(Ω).

8. Dupaigne–Ponce (2004). Assume that cap1,Ω(K) = 0. Then W 1,p(Ω \ K) =
W 1,p(Ω). Hint: Consider first the bounded functions in W 1,p(Ω \ K).

9. For every u ∈ BV (RN), ||D|u|||RN ≤ ||Du+||RN + ||Du−||RN = ‖Du‖RN .
Hint: Consider a sequence (un) ⊂ W 1,1(RN) such that un → u strictly in

BV (RN).
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10. Let u ∈ L1(Ω) and f ∈ BC1(Ω). Then ||D(f u)||Ω ≤ ||f ||∞||Du||Ω +
||∇f ||∞||u||L1(Ω).

11. Cheeger constant. Let Ω be an open subset of RN . Then for 1 ≤ p < ∞ and
every u ∈ W

1,p
0 (Ω),

(
h(Ω)

p

)p ∫
Ω

|u|pdx ≤
∫
Ω

|∇u|pdx.

12. Let u ∈ W 1,1(Ω). Then

∫
Ω

√
1+|∇u|2dx = sup

{∫
Ω

(vN+1 + u

N∑
k=1

∂kνk)dx : ν ∈ D(Ω;RN+1), ‖ν‖∞ ≤ 1

}
.

13. Support of a distribution. Let f ∈ D∗(Ω) and ω ⊂ Ω . The restriction of f

to ω is zero if for all u ∈ D(ω), 〈f, u〉 = 0. The support of f , denoted by spt
f , is the subset of Ω complementary to the largest open set in Ω on which the
restriction of f is zero. Prove that the support of f is well defined.

14. Generalized divergence theorem. Let A be a measurable subset of RN such that
‖DχA‖RN < ∞. Then spt |DχA| ⊂ ∂A, and there exists g : RN → R

N such
that:

(a) g is |DχA|-measurable;
(b) |g(x)| = 1, |DχA|-almost everywhere on R

N ;

(c) for all ν ∈ D(RN ;RN),

∫
A

div ν dx =
∫
RN

ν · gd |DχA|.

15. Let Ω be an open subset of RN of class C1 with a bounded boundary or the
product of N open intervals. If N ≥ 2 and if 1 ≤ q ≤ N/(N − 1), then
BV (Ω) ⊂ Lq(Ω) and the canonical injection is continuous.

16. Let Ω be an open bounded subset of R
N of class C1 or the product of N

bounded open intervals. If N ≥ 2 and if 1 ≤ q < N/(N − 1), then
BV (Ω) ⊂ Lq(Ω) and the canonical injection is compact. Moreover Poincaré’s
inequality is valid: there exists c = c(Ω) > 0 such that, for every u ∈ BV (Ω),

∥∥∥∥u −
�

u

∥∥∥∥
L1(Ω)

≤ c ‖Du‖Ω.

17. Let 1 < p < +∞ and k ≥ 1. Define M =
∑
|α|≤k

1. The space W−k,p′
(Ω) is the

space of distributions

g =
∑
|α|≤k

(−1)|α|∂αgα,

where gα ∈ Lp′
(Ω;RM). Prove that g ∈ W−k,p′

(Ω) if and only if g is the

restriction toD(Ω) of f ∈
(
W

k,p

0 (Ω)
)∗

.



Chapter 8
Elliptic Problems

8.1 The Laplacian

The Laplacian, defined by

Δu = div ∇u = ∂2u

∂x2
1

+ . . . + ∂2u

∂x2
N

,

is related to the mean of functions.

Definition 8.1.1 Let Ω be an open subset of RN and u ∈ L1
loc(Ω). The mean of u

is defined on

D = {(x, r) : x ∈ Ω, 0 < r < d(x, ∂Ω)}

by

M(x, r) = V −1
N

∫
BN

u(x + ry)dy.

Lemma 8.1.2 Let u ∈ C2(Ω). The mean of u satisfies on D the relation

lim
r↓0

2
N + 2

r2 [M(x, r) − u(x)] = Δu(x).

Proof Since we have uniformly for |y| < 1,

u(x + ry) = u(x) + r∇u(x) · y + r2

2
D2u(x)(y, y) + o(r2),
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we obtain by symmetry

∫
BN

xjdx = 0,
∫
BN

xjxkdx = 0, j �= k,

∫
BN

x2
j dx = VN

N + 2
,

and

M(x, r) = u(x) + r2

2

1

N + 2
Δu(x) + o(r2). ��

Lemma 8.1.3 Let u ∈ C2(Ω). The following properties are equivalent:

(a) Δu ≤ 0;
(b) for all (x, r) ∈ D, M(x, r) ≤ u(x).

Proof By the preceding lemma, (a) follows from (b).
Assume that (a) is satisfied. Differentiating under the integral sign and using the

divergence theorem, we obtain

∂M

∂r
(x, r) = V −1

N

∫
BN

∇u(x + ry) · ydy = rV −1
N

∫
BN

Δu(x + ry)
1 − |y|2

2
dy ≤ 0.

We conclude that

M(x, r) ≤ lim
r↓0

M(x, r) = u(x). ��

Definition 8.1.4 Let u ∈ L1
loc(Ω). The function u is superharmonic if for every

v ∈ D(Ω) such that v ≥ 0,
∫
Ω

uΔvdx ≤ 0.

The function u is subharmonic if −u is superharmonic.

The function u is harmonic if for every v ∈ D(Ω),
∫
Ω

uΔvdx = 0.

We extend Lemma 8.1.3 to locally integrable functions.

Theorem 8.1.5 (Mean-Value Inequality) Let u ∈ L1
loc(Ω). The following proper-

ties are equivalent:

(a) u is superharmonic;
(b) for almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), M(x, r) ≤ u(x).

Proof Let un = ρn ∗ u. Property (a) is equivalent to

(c) for every n, Δun ≤ 0 on Ωn.

Property (b) is equivalent to

(d) for all x ∈ Ωn and for all 0 < r < d(x, ∂Ωn), V
−1
N

∫
BN

un(x + ry)dy ≤ un(x).
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We conclude the proof using Lemma 8.1.3.

(a) ⇒ (c). By Proposition 4.3.6, we have on Ωn that

Δun(x) = Δρn ∗ u(x) =
∫
Ω

(
Δρn(x − y)

)
u(y)dy ≤ 0.

(c) ⇒ (a). It follows from the regularization theorem that for every v ∈ D(Ω),
v ≥ 0,

∫
Ω

uΔvdx = lim
n→∞

∫
Ω

unΔvdx = lim
n→∞

∫
Ω

(Δun)vdx ≤ 0.

(b) ⇒ (d). We have on Ωn that

V −1
N

∫
BN

un(x + ry)dy = V −1
N

∫
B(0,1/n)

dz

∫
BN

ρn(z)u(x + ry − z)dy

≤
∫
B(0,1/n)

ρn(z)u(x − z)dz = un(x).

(d) ⇒ (b). For j ≥ 1, we define

ωj = {x ∈ Ω : d(x, ∂Ω) > 1/j and |x| < j}.

Proposition 4.2.10 and the regularization theorem imply the existence of a sub-
sequence (unk

) converging to u in L1(ωj ) and almost everywhere on ωj . Hence
for almost all x ∈ ωj and for all 0 < r < d(x, ∂ωj ), M(x, r) ≤ u(x). Since

Ω =
∞⋃
j=1

ωj , property (b) is satisfied. ��

Theorem 8.1.6 (Maximum Principle) Let Ω be an open connected subset of RN

and u ∈ L1
loc(Ω) a superharmonic function such that u ≥ 0 almost everywhere on

Ω and u = 0 on a subset of Ω with positive measure. Then u = 0 almost everywhere
on Ω .

Proof Define

U1 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) = 0}.
U2 = {x ∈ Ω : there exists 0 < r < d(x, ∂Ω) such that M(x, r) > 0}.

It is clear that U1 and U2 are open subsets of Ω such that Ω = U1 ∪ U2. By the
preceding theorem, we obtain
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U2 = {x ∈ Ω : for all 0 < r < d(x, ∂Ω),M(x, r) > 0},

so that U1 and U2 are disjoint. If Ω = U2, then u > 0 almost everywhere on Ω by
the preceding theorem. We conclude that Ω = U1 and u = 0 almost everywhere
on Ω . ��

8.2 Eigenfunctions

En nous servant de quelques conceptions de l’analyse
fonctionnelle nous représentons notre problème dans une forme
nouvelle et démontrons que dans cette forme le problème admet
toujours une solution unique.
Si la solution cherchée existe dans le sens classique, alors notre
solution se confond avec celle-ci.

S.L. Sobolev

Let Ω be a smooth bounded open subset of RN with frontier Γ . An eigenfunction
corresponding to the eigenvalue λ is a nonzero solution of the problem

{−Δu = λu in Ω,

u = 0 on Γ.
(P)

We will use the following weak formulation of problem (P): find u ∈ H 1
0 (Ω)

such that for all v ∈ H 1
0 (Ω),

∫
Ω

∇u · ∇v dx = λ

∫
Ω

uv dx.

Theorem 8.2.1 There exist an unbounded sequence of eigenvalues of (P)

0 < λ1 ≤ λ2 ≤ · · · ,

and a sequence of corresponding eigenfunctions that is a Hilbert basis of H 1
0 (Ω).

Proof On the space H 1
0 (Ω), we define the inner product

a(u, v) =
∫
Ω

∇u · ∇v dx

and the corresponding norm ||u||a = √
a(u, u).
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For every u ∈ H 1
0 (Ω), there exists one and only one Au ∈ H 1

0 (Ω) such that for
all v ∈ H 1

0 (Ω),

a(Au, v) =
∫
Ω

uv dx.

Hence problem (P) is equivalent to

λ−1u = Au.

Since a(Au, u) =
∫
Ω

u2dx, the eigenvalues of A are strictly positive. The operator

A is symmetric, since

a(Au, v) =
∫
Ω

uv dx = a(u,Av).

It follows from the Cauchy–Schwarz and Poincaré inequalities that

||Au||2a =
∫
Ω

u Au dx ≤ ||u||L2(Ω)||Au||L2(Ω) ≤ c||u||L2(Ω)||Au||a.

Hence

||Au||a ≤ c||u||L2(Ω).

By the Rellich–Kondrachov theorem, the embedding H 1
0 (Ω) → L2(Ω) is compact,

so that the operator A is compact. We conclude using Theorem 3.4.8. ��

Proposition 8.2.2 (Poincaré’s Principle) For every n ≥ 1,

λn = min

{∫
Ω

|∇u|2dx : u ∈H 1
0 (Ω),

∫
Ω

u2dx = 1,
∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
.

Proof We deduce from Theorem 3.4.7 that

λ−1
n = max

{
a(Au, u)

a(u, u)
: u ∈ H 1

0 (Ω), u �= 0, a(u, e1) = . . . = a(u, en−1) = 0

}
.

Since ek is an eigenfunction,

a(u, ek) = 0 ⇐⇒
∫
Ω

uekdx = 0.
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Hence we obtain

λ−1
n = max

{ ∫
Ω

u2dx∫
Ω

|∇u|2dx : u ∈ H 1
0 (Ω), u �= 0,

∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
,

or

λn = min

{∫
Ω |∇u|2dx∫
Ω u2dx

: u ∈ H 1
0 (Ω), u �= 0,

∫
Ω

ue1dx = . . . =
∫
Ω

uen−1dx = 0

}
. ��

Proposition 8.2.3 Let u ∈ H 1
0 (Ω) be such that ||u||2 = 1 and ||∇u||22 = λ1. Then

u is an eigenfunction corresponding to the eigenvalue λ1.

Proof Let v ∈ H 1
0 (Ω). The function

g(ε) = ||∇(u + εv)||22 − λ1||u + εv||22
reaches its minimum at ε = 0. Hence g′(0) = 0 and

∫
Ω

∇u · ∇v dx − λ1

∫
Ω

uv dx = 0. ��

Proposition 8.2.4 Let Ω be a smooth bounded open connected subset of RN . Then
the eigenvalue λ1 of (P) is simple, and e1 is almost everywhere strictly positive
on Ω .

Proof Let u be an eigenfunction corresponding to λ1 and such that ||u||2 = 1.
By Corollary 6.1.14, v = |u| ∈ H 1

0 (Ω) and ||∇v||22 = ||∇u||22 = λ1. Since
||v||2 = ||u||2 = 1, the preceding proposition implies that v is an eigenfunction
corresponding to λ1. Assume that u+ �= 0. Then u+ is an eigenfunction correspond-
ing to λ1, and by the maximum principle, u+ > 0 almost everywhere on Ω . Hence
u = u+. Similarly, if u− �= 0, then −u = u− > 0 almost everywhere on Ω . We
can assume that e1 > 0 almost everywhere on Ω . If e2 corresponds to λ1, then e2 is

either positive or negative, and
∫
Ω

e1e2dx = 0. This is a contradiction. ��

Example Let Ω = ]0, π [. Then (P) becomes

{−u′′ = λu in ]0, π [,
u(0) = u(π) = 0.

Sobolev’s embedding theorem and the du Bois–Reymond lemma imply that u ∈
C2(]0, π [) ∩ C([0, π ]). Hence λn = n2 and en =

√
2
π

sin nx
n

. The sequence (en) is a
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Hilbert basis on H 1
0 (]0, π [) with scalar product

∫ π

0
u′v′ dx, and the sequence (nen)

is a Hilbert basis of L2(]0, π [) with scalar product
∫ π

0
uv dx.

Definition 8.2.5 Let G be a subgroup of the orthogonal group O(N). The open
subset Ω of RN is G-invariant if for every g ∈ G and every x ∈ Ω , g−1x ∈ Ω . Let
Ω be G-invariant. The action of G on H 1

0 (Ω) is defined by gu(x) = u(g−1x). The
space of fixed points of G is defined by

Fix(G) = {u ∈ H 1
0 (Ω) : for every g ∈ G, gu = u}.

A function J : H 1
0 (Ω) → R is G-invariant if for every g ∈ G, J ◦ g = J .

Proposition 8.2.6 Let Ω be a G-invariant open subset of R
N satisfying the

assumptions of Proposition 8.2.4. Then e1 ∈ Fix(G).

Proof By a direct computation, we obtain, for all g ∈ G,

||ge1||2 = ||e1||2 = 1, ||∇ge1||22 = ||∇e1||22 = λ1.

Propositions 8.2.3 and 8.2.4 imply the existence of a scalar λ(g) such that

e1(g
−1x) = λ(g)e1(x).

Integrating on Ω , we obtain λ(g) = 1. But then ge1 = e1. Since g ∈ G is arbitrary,
e1 ∈ Fix(G). ��

Example (Symmetry of the First Eigenfunction) For a ball or an annulus

Ω = {x ∈ R
N : r < |x| < R},

we choose G = O(N). Hence e1 is a radial function.

We define v(|x|) = u(x). By a simple computation, we have

∂2

∂x2
k

u(x) = v′′(|x|) x2
k

|x|2 + v′(|x|)
(

1

|x| − x2
k

|x|3
)
.

Hence we obtain

Δu = v′′ + (N − 1)v′/|x|.

Let Ω = B(0, 1) ⊂ R
3. The first eigenfunction, u(x) = v(|x|), is a solution of
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−v′′ − 2v′/r = λv.

The function w = rv satisfies

−w′′ = λw,

so that

w(r) = a sin(
√
λr − b)

and

v(r) = a
sin(

√
λr − b)

r
.

Since u ∈ H 1
0 (Ω) ⊂ L6(Ω), b = 0 and λ = π2. Finally, we obtain

u(x) = a
sin(π |x|)

|x| .

It follows from Poincaré’s principle that

π2 = min
{
||∇u||2

L2(Ω)
/||u||2

L2(Ω)
: u ∈ H 1

0 (Ω) \ {0}
}
.

Let us characterize the eigenvalues without using the eigenfunctions.

Theorem 8.2.7 (Max-inf Principle) For every n ≥ 1,

λn = max
V∈Vn−1

inf
u∈V⊥

||u||
L2 =1

∫
Ω

|∇u|2dx,

whereVn−1 denotes the family of all (n − 1)-dimensional subspaces of H 1
0 (Ω).

Proof Let us denote by Λn the second member of the preceding equality. It follows
from Poincaré’s principle that λn ≤ Λn.

Let V ∈ Vn−1. Since the codimension of V ⊥ is equal to n − 1, there exists

x ∈ R
N \ {0} such that u =

n∑
j=1

xj ej ∈ V ⊥. Since

∫
Ω

|∇u|2dx =
n∑

j=1

λjx
2
j

∫
Ω

e2
j dx ≤ λn

∫
Ω

u2dx,

we obtain
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inf
u∈V⊥

||u||
L2 =1

∫
Ω

|∇u|2dx ≤ λn.

Since V ∈ Vn−1 is arbitrary, we conclude that Λn ≤ λn. ��

8.3 Symmetrization

La considération systématique des ensembles E[a ≤ f < b]
m’a été pratiquement utile parce qu’elle m’a toujours forcé à
grouper les conditions donnant des effets voisins.

Henri Lebesgue

Fig. 8.1 Isodiametric inequality

According to the isodiametric inequality in R
2, among all domains with a fixed

diameter, the disk has the largest area. A simple proof was given by J.E. Littlewood
in 1953 in A Mathematician’s Miscellany. We can assume that the domain Ω is
convex and that the horizontal axis is tangent to Ω at the origin. We obtain

A = 1

2

∫ π
2

0
ρ2(θ) + ρ2

(
θ + π

2

)
dθ ≤ π(d/2)2.

We will prove the isoperimetric inequality in R
N using Schwarz’s symmetriza-

tion.
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In this section, we consider Lebesgue’s measure on R
N . We define

K+(RN) = {u ∈ K(RN) : for all x ∈ R
N, u(x) ≥ 0},

L
p
+(RN) = {u ∈ Lp(RN) : for almost all u(x) ≥ 0},

W
1,p
+ (RN) = W 1,p(RN) ∩ L

p
+(RN),

BV+(RN) = BV (RN) ∩ L1+(RN).

Definition 8.3.1 Schwarz’s symmetrization of a measurable subset A of R
N is

defined by A∗ = {x ∈ R
N : |x|NVN < m(A)}. An admissible function u : RN →

[0,+∞] is a measurable function such that for all t > 0, mu(t) = m({u > t}) < ∞.
Schwarz’s symmetrization of an admissible function u is defined on R

N by

u∗(x) = sup{t ∈ R : x ∈ {u > t}∗}.

The following properties are clear:

(a) χA∗ = χ∗
A;

(b) m(A∗ \ B∗) ≤ m(A \ B);
(c) u∗ is radially decreasing, |x| ≤ |y| ⇒ u∗(x) ≥ u∗(y);
(d) u ≤ v ⇒ u∗ ≤ v∗.

Lemma 8.3.2 Let (An) be an increasing sequence of measurable sets. Then

∞⋃
n=1

A∗
n =

( ∞⋃
n=1

An

)∗
.

Proof By definition, A∗
n = B(0, rn),

( ∞⋃
n=1

An

)∗
= B(0, r), where rNn VN =

m(An), rNVN = m

( ∞⋃
n=1

An

)
. It suffices to observe that by Proposition 2.2.26,

m

( ∞⋃
n=1

An

)
= lim

n→∞m(An). ��

Theorem 8.3.3 Let u be an admissible function. Then u∗ is lower semicontinuous,
and for all t > 0, {u > t}∗ = {u∗ > t} and mu(t) = mu∗(t).

Proof Let t > 0. Using the preceding lemma, we obtain

{u > t}∗ =
(⋃

s>t

{u > s}
)∗

=
⋃
s>t

{u > s}∗ ⊂ {u∗ > t} ⊂ {u > t}∗.

In particular, {u∗ > t} is open and m{u > t} = m{u∗ > t}. ��
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Proposition 8.3.4 Let 1 ≤ p < ∞ and u, v ∈ L
p
+(RN). Then u∗, v∗ ∈ L

p
+(RN)

and

||u∗||p = ||u||p, ||u∗ − v∗||p ≤ ||u − v||p.

Proof Using Cavalieri’s principle and the preceding theorem, we obtain

||u∗||pp =
∫ ∞

0
m(u∗)p (t)dt =

∫ ∞

0
mup(t)dt = ||u||pp.

Assume that p ≥ 2, and define g(t) = |t |p, so that g is convex, even, of class
C2, and g(0) = g′(0) = 0. For a < b, the fundamental theorem of calculus implies
that

g(b − a) =
∫ b

a

ds

∫ b

s

g′′(t − s)dt.

Hence we have that

g(u − v) =
∫ ∞

0
ds

∫ ∞

s

g′′(t − s)
[
χ{u>t}(1 − χ{v>s}) + χ{v>t}(1 − χ{u>s})

]
dt.

Integrating on R
N and using Fubini’s theorem, we find that

∫
RN

g(u−v)dx =
∫ ∞

0
ds

∫ ∞

s

g′′(t−s)[m({u > t}\{v > s})+m({v > t}\{u > s})]dt.

Finally, we obtain

∫
RN

g(u∗ − v∗)dx ≤
∫
RN

g(u − v)dx.

If 1 ≤ p < 2, it suffices to approximate |t |p by gε(t) = (t2 + ε2)p/2 − εp, ε > 0.
��

Approximating Schwarz’s symmetrizations by polarizations, we will prove that
if u ∈ W

1,p
+ (RN), then u∗ ∈ W

1,p
+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Definition 8.3.5 Let σH be the reflection with respect to the frontier of a closed
affine half-space H of RN . The polarization (with respect to H ) of a function u :
R

N → R is defined by

uH (x) = max{u(x), u(σH (x))}, x ∈ H,

= min{u(x), u(σH (x))}, x ∈ R
N \ H.
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The polarization AH of A ⊂ R
N is defined by χAH = χH

A . We denote by H the
family of all closed affine half-spaces of RN containing 0.

Let us recall that a closed affine half-space of RN is defined by

H = {x ∈ R
N : a · x ≤ b},

where a ∈ S
N−1 and b ∈ R. It is clear that

σH (x) = x + 2(b − a · x)a.

The following properties are easy to prove:

(a) if A is a measurable subset of RN , then m(AH) = m(A);
(b) {uH > t} = {u > t}H ;
(c) if u is admissible, (uH )∗ = u∗;
(d) if moreover, H ∈ H, (u∗)H = u∗.

Lemma 8.3.6 Let f : R → R be convex and a ≤ b, c ≤ d. Then

f (b − d) + f (a − c) ≤ f (a − d) + f (b − c).

Proof Define x = b − d, y = b − a, and z = d − c. By convexity, we have

f (x) − f (x − y) ≤ f (x + z) − f (x + z − y). ��

Proposition 8.3.7 Let 1 ≤ p < ∞ and u, v ∈ Lp(RN). Then uH , vH ∈ Lp(RN),
and

||uH ||p = ||u||p, ||uH − vH ||p ≤ ||u − v||p.

Proof Observe that

∫
RN

|u(x)|pdx =
∫
H

|u(x)|p + |u(σH (x))|pdx

=
∫
H

|uH (x)|p + |uH (σH (x))|pdx =
∫
RN

|uH (x)|pdx.

Using the preceding lemma, it is easy to verify that for all x ∈ H ,

|uH (x) − vH (x)|p + |uH (σH (x)) − vH (σH (x))|p
≤ |u(x) − v(x)|p + |u(σH (x)) − v(σH (x))|p.

It suffices then to integrate over H . ��
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Lemma 8.3.8 Let u : R
N → R be a uniformly continuous function. Then the

function uH : RN → R is uniformly continuous, and for all δ > 0, ωuH (δ) ≤ ωu(δ).

Proof Let δ > 0 and x, y ∈ R
N be such that |x − y| ≤ δ. If x, y ∈ H or if

x, y ∈ R
N \ H , we have

|σH (x) − σH (y)| = |x − y| ≤ δ

and

|uH (x) − uH (y)| ≤ max(|u(x) − u(y)|, |u(σH (x)) − u(σH (y))|) ≤ ωu(δ).

If x ∈ H and y ∈ R
N \ H , we have

|x − σH (y)| = |σH (x) − y| ≤ |σH (x) − σH (y)| = |x − y| ≤ δ

and

|uH (x) − uH (y)| ≤ max(|u(x) − u(σH (y))|, |u(σH (x)) − u(y)|,
|u(σH (x)) − u(σH (y))|, |u(x) − u(y)|) ≤ ωu(δ).

We conclude that

ωuH (δ) = sup
|x−y|≤δ

|uH (x) − uH (y)| ≤ ωu(δ). ��

Lemma 8.3.9 Let 1 ≤ p < ∞, u ∈ Lp(RN), and H ∈ H. Define g(x) = e−|x|2 .
Then

∫
RN

ug dx ≤
∫
RN

uHg dx. (*)

If, moreover, 0 ∈ o

H and

∫
RN

ug dx =
∫
RN

uHg dx, (**)

then uH = u.

Proof For all x ∈ H , we have

u(x)g(x) + u(σH (x))g(σH (x)) ≤ uH (x)g(x) + uH (σH (x))g(σH (x)).

It suffices then to integrate over H to prove (∗).
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If (∗∗) holds, we obtain, almost everywhere on H ,

u(x)g(x) + u(σH (x))g(σH (x)) = uH (x)g(x) + uH (σH (x))g(σH (x)).

If 0 ∈ o

H , then g(σH (x)) < g(x) for all x ∈ o

H , so that

u(x) = uH (x), u(σH (x)) = uH (σH (x)). ��

Lemma 8.3.10 Let u ∈ Lp(RN)
⋂

C(RN)(1 ≤ p < ∞) be such that, for all
H ∈ H, uH = u. Then u ≥ 0 and u = u∗.

Proof Let x, y ∈ R
N be such that x �= y and |x| ≤ |y|. There exists H ∈ H such

that x ∈ H and y = σH (x). By assumption, we have

u(y) = uH (y) ≤ uH (x) = u(x).

Hence

|x| ≤ |y| ⇒ u(y) ≤ u(x).

We conclude that there exists a (continuous) decreasing function v : [0,+∞[→ R

such that u(x) = v(|x|). Since u ∈ Lp(RN), it is clear that

lim
r→+∞ v(r) = 0.

Hence u ≥ 0 and for all t > 0, {u > t} = {u∗ > t}, so that u = u∗. ��
Consider a sequence of closed affine half-spaces

Hn = {x ∈ R
N : an · x ≤ bn}

such that ((an, bn)) is dense in S
N−1× ]0,+∞[.

The following result is due to J. Van Schaftingen.

Theorem 8.3.11 Let 1 ≤ p < ∞ and u ∈ L
p
+(RN). Define

u0 = u,

un+1 = u
H1...Hn+1
n .

Then the sequence (un) converges to u∗ in Lp(RN).

Proof Assume that u ∈ K+(RN). There exists r > 0 such that spt u ⊂ B[0, r].
Hence for all n,

spt un ⊂ B[0, r].
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The sequence (un) is precompact in C(B[0, r]) by Ascoli’s theorem, since

(a) for every n, ||un||∞ = ||u||∞;
(b) for every ε > 0, there exists δ > 0, such that for every n, ωun(δ) ≤ ωu(δ) ≤ ε.

Assume that (unk
) converges uniformly to v. Observe that

spt v ⊂ B[0, r].

We shall prove that v = u∗. Since by Proposition 8.3.4,

||u∗ − v∗||1 = ||u∗
nk

− v∗||1 ≤ ||unk
− v||1 → 0, k → ∞,

it suffices to prove that v = v∗.
Let m ≥ 1. For every nk ≥ m, we have

unk+1 = u
H1...Hm...Hnk+1
nk

.

Lemma 8.3.9 implies that

∫
RN

uH1...Hm
nk

g dx ≤
∫
RN

unk+1g dx.

It follows from Proposition 8.3.7 that

∫
RN

vH1...Hmg dx ≤
∫
RN

vg dx.

By Lemma 8.3.9, vH1 = v, and by induction, vHm = v.
Let a ∈ S

N−1, b ≥ 0, and H = {x ∈ R
N : a · x ≤ b}. There exists

a sequence (nk) such that (ank
, bnk

) → (a, b). We deduce from Lebesgue’s
dominated convergence theorem that

||vH − v||1 = ||vH − vHnk ||1 → 0, k → ∞.

Hence for all H ∈ H, v = vH . Lemma 8.3.10 ensures that v = v∗.
Let u ∈ L

p
+(RN) and ε > 0. The density theorem implies the existence of

w ∈ K+(RN) such that ||u − w||p ≤ ε. By the preceding step, the sequence

w0 = w,

wn+1 = w
H1...Hn+1
n ,

converges to w∗ in Lp(RN). Hence there exists m such that for n ≥ m, ||wn −
w∗||p ≤ ε. It follows from Propositions 8.3.4 and 8.3.7 that for n ≥ m,
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||un −u∗||p ≤ ||un −wn||p +||wn −w∗||p +||w∗ −u∗||p ≤ 2||u−w||p + ε ≤ 3ε.

Since ε > 0 is arbitrary, the proof is complete. ��

Proposition 8.3.12 Let 1 ≤ p < ∞ and u ∈ W 1,p(RN). Then uH ∈ W 1,p(RN)

and ||∇uH ||p = ||∇u||p.

Proof Define v = u ◦ σH . Observe that

uH = 1

2
(u + v) + 1

2
|u − v|, on H,

= 1

2
(u + v) − 1

2
|u − v|, on R

N \ H.

Since the trace of |u − v| is equal to 0 on ∂H , uH ∈ W 1,p(RN). Let x ∈ H .
Corollary 6.1.14 implies that for u(x) ≥ v(x),

∇uH (x) = ∇u(x),∇uH (σH (x)) = ∇u(σH (x)),

and for u(x) < v(x),

∇uH (x) = ∇v(x),∇uH (σH (x)) = ∇v(σH (x)).

We conclude that on H ,

|∇uH (x)|p + |∇uH (σH (x))|p = |∇u(x)|p + |∇u(σH (x))|p. ��

Proposition 8.3.13 Let u ∈ BV (RN). Then uH ∈ BV (RN) and ||DuH || ≤ ||Du||.
Proof Let un = ρn ∗ u. Propositions 4.3.14 and 8.3.7 imply that un → u and
uH
n → uH in L1(RN). Theorem 7.3.3 and Proposition 8.3.12 ensure that

||DuH
n || = ||∇uH

n ||1 = ||∇un||1.

We conclude by Theorem 7.3.2 and Lemma 7.3.6 that

||DuH || ≤ lim ||DuH
n || = lim ||∇un||1 = ||Du||. ��

Theorem 8.3.14 (Pólya–Szegő Inequality) Let 1 < p < ∞ and u ∈ W
1,p
+ (RN).

Then u∗ ∈ W
1,p
+ (RN) and ||∇u∗||p ≤ ||∇u||p.

Proof The sequence (un) given by Theorem 8.3.11 converges to u∗ in Lp(RN). By
Proposition 8.3.12, for every n, ||∇un||p = ||∇u||p. It follows from Theorem 6.1.7
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that

||∇u∗||p ≤ lim ||∇un||p = ||∇u||p. ��

Theorem 8.3.15 (Hilden’s Inequality, 1976) Let u ∈ BV+(RN). Then u∗ ∈
BV+(RN) and ||Du∗|| ≤ ||Du||.
Proof The sequence (un) given by Theorem 8.3.11 converges to u∗ in L1∗

(RN). By
Proposition 8.3.13, for every n,

||Dun+1|| ≤ ||Dun|| ≤ ||Du||.

It follows from Theorem 7.3.2 that

||Du∗|| ≤ lim ||Dun|| ≤ ||Du||. ��

Theorem 8.3.16 (De Giorgi’s Isoperimetric Inequality) Let N ≥ 2, and let A be
a measurable subset of RN with finite measure. Then

NV
1/N
N (m(A))1−1/N ≤ p(A).

Proof If p(A) = +∞, the inequality is clear. If this is not the case, then χA ∈
BV+(RN). By definition of Schwarz’s symmetrization,

A∗ = B(0, r), VNrN = m(A).

Theorems 7.4.1 and 8.3.15 imply that

NVNrN−1 = p(A∗) = ||DχA∗ ||RN = ||Dχ∗
A||RN ≤ ||DχA||RN = p(A).

It is easy to conclude the proof. ��
Using scaling invariance, we obtain the following version of the isoperimetric

inequality.

Corollary 8.3.17 Let A be a measurable subset of RN with finite measure, and let
B be an open ball of RN . Then

p(B)/m(B)1−1/N ≤ p(A)/m(A)1−1/N .

The constant NV
1/N
N , corresponding to the characteristic function of a ball, is the

optimal constant for the Gagliardo–Nirenberg inequality.
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Theorem 8.3.18 Let N ≥ 2 and u ∈ LN/(N−1) such that ||Du|| < +∞. Then

NV
1/N
N ||u||N/(N−1) ≤ ||Du||.

Proof

(a) Let p = N/(N − 1), v ∈ Lp(RN), v ≥ 0, and g ∈ Lp′
(RN). If ||g||p′ = 1, we

deduce from Fubini’s theorem and Hölder’s inequality that

∫
RN

gvdx =
∫
RN

dx

∫ ∞

0
gχv>tdt =

∫ ∞

0
dt

∫
RN

gχv>tdx ≤
∫ ∞

0
m({v > t})1/pdt.

Hence we obtain

||v||p = max||g||p′=1

∫
RN

gvdx ≤
∫ ∞

0
m({v > t})1/pdt. (∗)

(b) Let u ∈ D(Ω). Using inequality (∗), the Morse–Sard theorem (Theorem 9.3.1),
the coarea formula (Theorem 9.3.3), and the isoperimetric inequality, we obtain

NV
1/N
N ||u||p ≤ NV

1/N
N [||u+||p + ||u−||p]

≤ NV
1/N
N

[∫ ∞

0
m({u > t})1/pdt +

∫ 0

−∞
m({u < t})1/pdt

]

≤
∫ ∞

0
dt

∫
u=t

dγ +
∫ 0

−∞
dt

∫
u=t

dγ =
∫
RN

|∇u|dx.

(c) By density, we obtain, for every u ∈ D1,1(RN),

NV
1/N
N ||u||p ≤ ||∇u||1.

We conclude using Proposition 4.3.14 and Lemma 7.3.6. ��

Definition 8.3.19 Let Ω be an open subset of RN . We define

λ1(Ω) = inf
{
||∇u||22/||u||22 : u ∈ W

1,2
0 (Ω) \ {0}

}
.

Theorem 8.3.20 (Faber–Krahn Inequality) Let Ω be an open subset of RN with
finite measure. Then λ1(Ω

∗) ≤ λ1(Ω).
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Proof Define Q(u) = ||∇u||22/||u||22. Let u ∈ W
1,2
0 (Ω) \ {0} and v = |u|. By

Corollary 6.1.14, Q(v) = Q(u). Proposition 8.3.4 and the Pólya–Szegő inequality
imply that Q(v∗) ≤ Q(v). It is easy to verify that v∗ ∈ W

1,2
0 (Ω∗) \ {0}. Hence we

obtain

λ1(Ω
∗) ≤ Q(v∗) ≤ Q(v) = Q(u).

Since u ∈ W
1,2
0 (Ω) \ {0} is arbitrary, it is easy to conclude the proof. ��

Using scaling invariance, we obtain the following version of the Faber–Krahn
inequality.

Corollary 8.3.21 Let Ω be an open subset of RN , and let B be an open ball of RN .
Then

λ1(B)m(B)2/N ≤ λ1(Ω)m(Ω)2/N .

Remark Equality in the isoperimetric inequality or in the Faber–Krahn inequality is
achieved only when the corresponding domain is a ball.

8.4 Elementary Solutions

There exists no locally integrable function corresponding to the Dirac measure.

Definition 8.4.1 The Dirac measure is defined on K(RN) by

〈δ, u〉 = u(0).

Definition 8.4.2 The elementary solutions of the Laplacian are defined on R
N\{0}

by

EN(x) = 1

2π
log

1

|x| , N = 2,

EN(x) = 1

(N − 2)NVN

1

|x|N−2
, N ≥ 3.

Theorem 8.4.3 Let N ≥ 2. InD∗(RN), we have

−ΔEN = δ.

Proof Define v(x) = w(|x|). Since
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Δv = w′′ + (N − 1)w′/|x|,

it is easy to verify that on R
N\{0},ΔEN = 0. It is clear that EN ∈ L1

loc(R
N).

Let u ∈ D(RN) and R > 0 be such that spt u ⊂ B(0, R). We have to verify that

−u(0) =
∫
RN

ENΔu dx = lim
ε→0

∫
ε<|x|<R

ENΔu dx.

We obtain using the divergence theorem that

f (ε) =
∫
ε<|x|<R

(ENΔu − uΔEN) dx =
∫
∂B(0,ε)

(
u∇EN · γ

|γ | − EN∇u · γ

|γ |
)

dγ.

By a simple computation,

∫
∂B(0,ε)

∇EN · γ

|γ | = −1, lim
ε→0

∫
∂B(0,ε)

ENdγ = 0,

so that lim
ε→0

f (ε) = −u(0). ��

Definition 8.4.4 Let f, g ∈ D∗(Ω). By definition, f ≤ g if for every u ∈ D(Ω)

such that u ≥ 0, 〈f, u〉 ≤ 〈g, u〉.

Theorem 8.4.5 (Kato’s Inequality) Let g ∈ L1
loc(Ω) be such that Δg ∈ L1

loc(Ω).
Then

(sgn g) Δg ≤ Δ|g|.

Proof Let u ∈ D(Ω) and ω ⊂⊂ Ω be such that u ≥ 0 and spt u ⊂ ω. Define
gn = ρn ∗ g, and for ε > 0, fε(t) = (t2 + ε2)1/2. Since gn → g in L1(ω), we can
assume, passing if necessary to a subsequence, that gn → g almost everywhere on
ω.

For all ε > 0 and for n large enough, we have

∫
Ω

f ′
ε(gn)(Δgn)u dx ≤

∫
Ω

(Δfε(gn))u dx =
∫
Ω

fε(gn)Δu dx.

When n → ∞, we find that

∫
Ω

f ′
ε(g)(Δg)u dx ≤

∫
Ω

fε(g)Δu dx.

When ε ↓ 0, we obtain
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∫
Ω

(sgn g)(Δg)u dx ≤
∫
Ω

|g| Δu dx. ��

8.5 Comments

The notion of polarization of sets appeared in 1952, in a paper by Wolontis [87].
Polarizations of functions were first used by Baernstein and Taylor to approximate
symmetrization of functions on the sphere in the remarkable paper [3]. The
explicit approximation of Schwarz’s symmetrization by polarizations is due to Van
Schaftingen [84]. See [73, 85] for other aspects of polarizations. The proof of
Proposition 8.3.4 uses a device of Alberti [2]. The notion of symmetrization, and
more generally, the use of reflections to prove symmetry, goes back to Jakob Steiner
[79].

The elegant proof of Theorem 8.3.18 is due to O.S. Rothaus, J. Funct. Anal. 64
(1985) 296–313.

8.6 Exercises for Chap. 8

1. Let u ∈ C(Ω). The spherical means of u are defined on D by

S(x, r) = (NVN)−1
∫
SN−1

u(x + rσ )dσ.

Verify that when u ∈ C2(Ω),

lim
r↓0

2N

r2
[S(x, r) − u(x)] = Δu(x).

2. Let u ∈ C(Ω) be such that for every (x, r) ∈ D, u(x) = M(x, r). Then for
every x ∈ Ωn, ρn ∗ u = u.

The argument is due to A. Ponce:

ρn ∗ u(x) =
∫
RN

ρn(x − y)u(y)dy =
∫ ∞

0
dt

∫
ρ(x−y)>t

u(y)dy

= u(x)

∫ ∞

0
dt

∫
ρ(x−y)>t

dy = u(x).

3. (Weyl’s theorem.) Let u ∈ L1
loc(Ω). The following properties are equivalent:

(a) u is harmonic;
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(b) for almost all x ∈ Ω and for all 0 < r < d(x, ∂Ω), u(x) = M(x, r);
(c) there exists v ∈ C∞(Ω), almost everywhere equal to u, such that Δv = 0.

4. Let u ∈ C2(Ω) be a harmonic function. Assume that u ≥ 0 on B[0, R] ⊂ Ω .
Then for every 0 < r < R and |y| < R − r , we have

|u(y) − u(0)| ≤ 1

rNVN

∫
r−|y|<|x|<r+|y|

u(x)dx

= (r + |y|)N − (r − |y|)N
rN

u(0).

Hint: Use the mean-value property.
5. (Liouville’s theorem.) Let u ∈ C∞(RN) be a harmonic function, bounded from

below on R
N . Then u is constant.

6. Let Ω be an open connected subset of RN , and let u ∈ C∞(Ω) be a harmonic
function such that for some x ∈ Ω , u(x) = inf

Ω
u. Then u is constant.

7. If u ∈ D(]0, π [), then

∫ π

0

∣∣∣du
dx

∣∣∣2 − u2dx =
∫ π

0

∣∣∣du
dx

− cos x

sin x
u

∣∣∣2dx.

Hence

min
u∈H1

0 (]0,π [)
||u||2=1

∫ π

0

∣∣∣du
dx

∣∣∣2dx = 1.

8. (Min–max principle.) For every n ≥ 1,

λn = min
V∈Vn

max
u∈V

||u||2=1

∫
Ω

|∇u|2dx,

whereVn denotes the family of all n-dimensional subspaces of H 1
0 (Ω).

9. Let us recall that

λ1(G) = inf
{
||∇u||22/||u||22 : u ∈ W

1,2
0 (G) \ {0}

}
.

Let Ω be an open subset of RM , and ω an open subset of RN . Then:

(a) λ1(Ω × ω) = λ1(Ω) + λ1(ω);
(b) λ1(R

N) = 0;
(c) λ1(Ω × R

N) = λ1(Ω).
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10. Define u ∈ D+(RN) such that for every y ∈ R
N , τyu �= u∗, and for 1 ≤ p <

∞, ||∇u||p = ||∇u∗||p. Hint: Consider two functions v and w such that v = v∗,
w = w∗, v ≡ 1 on B(0, 1), and spt w ⊂ B[0, 1/2], and define u = v + τyw.

11. (Hardy–Littlewood inequality.) Let 1 < p < ∞, u ∈ L
p
+(RN), and v ∈

L
p′
+ (RN). Then

∫
RN

u v dx ≤
∫
RN

u∗v∗dx.

12. Let 1 ≤ p < ∞ and u, v ∈ L
p
+(RN). Then

||u + v||p ≤ ||u∗ + v∗||p.

Hint: Assume first that p > 1. Observe that

||u + v||p = sup
w∈Lp′
||w||

p′

∫
RN

(u + v)w dx.

13. Let Ω be a domain in R
N invariant under rotations. A function u : Ω → R is

foliated Schwarz’s symmetric with respect to e ∈ S
N−1 if u(x) depends only on

(r, θ) = (|x|, cos−1( x
|x| · e)) and is decreasing in θ .

Let e ∈ S
N−1. We denote by He the family of closed half-spaces H in R

N

such that 0 ∈ ∂H and e ∈ H .
Prove that a function u : Ω → R is foliated Schwarz’s symmetric with

respect to e if and only if for every H ∈ He, uH = u.
14. Let u ∈ Lp(RN)(1 ≤ p < ∞), and let the closed affine half-space H ⊂ R

N

be such that uH = u. Then, for every n ≥ 1, (ρn ∗ u)H = ρn ∗ u.
Hint. For every x, y ∈ H , we have

|x − y| = ∣∣σH (x) − σH (y)
∣∣ ≤ ∣∣x − σH (y)

∣∣= ∣∣σH (x) − y
∣∣.

Hence we obtain, for every x ∈ H ,

ρn ∗ u(x) − ρn ∗ u
(
σH (x)

)

=
∫
H

[
u(y) − u

(
σH (y)

)] [
ρn(x − y) − ρn

(
σH (x) − y

)]
dy ≥ 0.

15. Let u ∈ Lp(RN)(1 ≤ p < ∞) be such that, for all H ∈ H, uH = u. Then
u ≥ 0 and u = u∗.



Chapter 9
Appendix: Topics in Calculus

9.1 Change of Variables

Our basic tool in this appendix is the following version of the implicit function
theorem.

Theorem 9.1.1 Let U be an open subset of RN , ϕ ∈ C1(U), and a = (a′, aN) ∈ U

such that ∂Nϕ(a) �= 0. Then there exist r > 0, R > 0 and

β ∈ C1(B(a′, R)×]ϕ(a) − r, ϕ(a) + r[ )

such that, for |x′ − a′| < R, |t − ϕ(a)| < r , we have

ϕ(x′, xN) = t ⇐⇒ xN = β(x′, t),

and the set

Ua = {(x′, β(x′, t)) : |x′ − a′| < R, |t − ϕ(a)| < r
}

is an open neighborhood of a.

Definition 9.1.2 Let U and ω be open subsets of RN . A diffeomorphism f : U →
ω is a continuously differentiable bijective mapping such that, for every x ∈ U ,

Jf (x) = detDf (x) �= 0.

Theorem 9.1.3 Let f : U → ω be a diffeomorphism and u ∈ K(ω). Then u(f ) ∈
K(U) and
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∫
U

u
(
f (x)

)|Jf (x)|dx =
∫
ω

u(y)dy. (∗)

Lemma 9.1.4 Formula (∗) is valid when N = 1.

Proof We can assume that U =]a, b[. Then by the fundamental theorem of
calculus, we have

∫ b

a

u
(
f (x)

)
Df (x)dx =

∫ f (b)

f (a)

u(y)dy.

If Df > 0, then ω =]f (a), f (b)[. If Df < 0, then ω =]f (b), f (a)[. Hence
formula (∗) is valid. ��
Proof of Theorem 9.1.3 We will use induction on N . By Lemma 9.1.4, formula
(∗) is valid when N = 1. Assume that (∗) is valid in dimension N − 1. Let a ∈ U .
Since f is a diffeomorphism, ∇fN(a) �= 0. After a permutation of variables, we can
assume that ∂NfN(a) �= 0. Let r > 0, R > 0, β, and Ua be given by Theorem 9.1.1
applied to ϕ = fN . We factorize f = (f ′, fN) as f = h(g) on Ua by

g(x′, xN) = (x′, fN(x′, xN)
)
, h(x′, t) = (Φt (x

′), t),

where Φt(x
′) = f ′(x′, β(x′, t)).

We assume that u ∈ K(f (Ua)). Since f = h(g) on Ua , we have that Df =
Dh(g)Dg and Jf = Jh(g)Jg . We define v = u(h)|Jh|, so that

∫
Ua

u
(
f (x)

)|Jf (x)|dx =
∫

u
(
h(g(x))

)|Jh(g(x))| |Jg(x)|dx

=
∫

v
(
g(x)

)|Jg(x)|dx.

Fubini’s theorem and Lemma 9.1.4 imply that

∫
v
(
g(x)

)|Jg(x)|dx =
∫

dx′
∫

v
(
x′, fN(x′, xN)

)|∂NfN(x′, xN)|dxN

=
∫

dx′
∫

v(x′, t)dt

=
∫

u
(
h(x′, t)

)|Jh(x′, t)|dx′dt.

It follows from Fubini’s theorem and the induction assumption that
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∫
u
(
h(x′, t)

)|Jh(x′, t)|dx′dt =
∫

dt

∫
u(Φt , x

′), t)|JΦt (x
′)|dx′

=
∫

dt

∫
u(y′, t)dy′

=
∫
f (Ua)

u(y)dy.

Hence formula (∗) is valid when u ∈ K(f (Ua)).
Let u ∈ K(ω). The Borel–Lebesgue theorem implies the existence of a finite

covering of the compact set f−1(spt u) by open subsets (Uaj ) given by the implicit
function theorem as before. There exists also a continuous partition of unity (ψj )

subordinate to the covering of spt u by (f (Uaj )). Since u =
∑
j

ψju, it is easy

to conclude the proof. ��

9.2 Surface Integrals

In this section, we assume that U is an open subset of RN , u ∈ C1(U), and f ∈
K(U). Our goal is to prove that, under some assumptions,

∫
U

f (x)|∇u(x)|dx =
∫
R

dt

∫
u=t

f (γ )dγ, (∗)

d

dt

∫
u<t

f (x)|∇u(x)|dx =
∫
u=t

f (γ )dγ, (∗∗)

where

(u < t) = {u < t} = {x ∈ U : u(x) < t}

and

(u = t) = {u = t} = {γ ∈ U : u(γ ) = t}.

Definition 9.2.1 Let a ∈ U be such that ∇u(a) �= 0. After a permutation of
variables, we can assume that ∂Nu(a) �= 0. Let r > 0, R > 0, β, and Ua be given
by Theorem 9.1.1 applied to ϕ = u. Let f ∈ K(Ua). We define for |t − u(a)| < r ,

∫
u=t

f (γ )dγ =
∫
B(a′,R)

f
(
x′, β(x′, t)

)√
1 + |∇x′β(x′, t)|2dx′.
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Lemma 9.2.2 Let f ∈ K(Ua). Then we have that

∫
Ua

f (x)|∇u(x)|dx =
∫ u(a)+r

u(a)−r

dt

∫
u=t

f (γ )dγ.

Moreover formula (∗∗) is valid for |t − u(a)| < r .

Proof We define the change of variables h(x′, t) = (x′, β(x′, t)), and we choose

u(a) − r ≤ b < c ≤ u(a) + r.

We obtain, using Theorem 9.1.3 and Fubini’s theorem, that

∫
b<u<c

f (x)|∇u(x)|dx =
∫ c

b
dt

∫
B(a′,R)

f
(
x′, β(x′, t)

)∣∣∇u(x′, β(x′, t))
∣∣ ∣∣∂tβ(x′, t)

∣∣dx′.

Since, by definition, u(x′, β(x′, t)) = t , it follows that

∇x′u
(
x′, β(x′, t)

)+ ∂Nu
(
x′, β(x′ + t)

)∇x′β(x′, t) = 0,

∂Nu
(
x′, β(x′, t)

)
∂tβ(x

′, t) = 1

and

∣∣∇u(x′, β(x′, t)
∣∣2∣∣∂tβ(x′, t)

∣∣2 = 1 + ∣∣∇x′β(x′, t)
∣∣2.

Hence we obtain
∫
b<u<c

f (x)|∇u(x)|dx =
∫ c

b

dt

∫
B(a′,R)

f
(
x′, β(x′, t)

)√
1 + |∇x′β(x′, t)|2dx′

=
∫ c

b

dt

∫
u=t

f (γ )dγ.

In particular, for |t − u(a)| < r , the fundamental theorem of calculus implies that

lim
ε↓0

1

ε

∫
t<u<t+ε

f (x)|∇u(x)|dx =
∫
u=t

f (γ )dγ = lim
ε↓0

1

ε

∫
t−ε<u<t

f (x)|∇u(x)|dx.��

Definition 9.2.3 A regular value of u ∈ C1(U) is a real number c such that

x ∈ U and u(x) = c ⇒ ∇u(x) �= 0.

Definition 9.2.4 Let f ∈ K(U) and let c be a regular value of u ∈ C1(U). The
Borel–Lebesgue theorem implies the existence of a finite covering of the compact
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set spt f ∩ {u = c} by open subsets (Uaj )1≤j≤k given by Definition 9.2.1. There
exists a continuous partition of unity (ψj ) subordinate to the covering (Uaj )1≤j≤k .
By definition

∫
u=c

f (γ )dγ =
k∑

j=1

∫
u=c

ψj (γ )f (γ )dγ.

Let us prove that the surface integral
∫
u=c

f (γ )dγ depends only on f, u, and c.

Theorem 9.2.5 Let f ∈ K(U), and let c be a regular value of u ∈ C1(U). Then
formula (∗∗) is valid at t = c.

Proof Let us define ψ0 = 1 −
k∑

j=1

ψj . Since ψ0 = 0 on a neighborhood of spt f ∩
{u = c}, it follows from Lemma 9.2.2 and Definition 9.2.4 that

d

dt

∣∣∣
t=c

∫
u<t

f (x)|∇u(x)|dx =
k∑

j=0

d

dt

∣∣∣
t=c

∫
u<t

ψj (x)f (x)|∇u(x)|dx

=
k∑

j=1

∫
u=c

ψj (γ )f (γ )dγ

=
∫
u=c

f (γ )dγ. ��

Proposition 9.2.6 Let f ∈ K(U), and let u ∈ C1(U) be such that, for every x ∈ U ,
∇u(x) �= 0. Then formula (∗) is valid.

Proof The Borel–Lebesgue theorem implies the existence of a finite covering of the
compact set spt f by open subsets (Uaj ) given by Definition 9.2.1. There exists a
continuous partition of unity ψj subordinate to the finite covering (Uaj ). It follows
from Lemma 9.2.2 and Definition 9.2.4 that
∫
U

f (x)|∇u(x)|dx =
∑
j

∫
Uaj

ψj (x)f (x)|∇u(x)|dx

=
∑
j

∫
R

dt

∫
u=t

ψj (γ )f (γ )dγ

=
∫
R

dt
∑
j

∫
u=t

ψj (γ )f (γ )dγ =
∫
R

dt

∫
u=t

f (γ )dγ. ��
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9.3 The Morse–Sard Theorem

The Morse–Sard theorem ensures that almost all values of a smooth function are
regular.

Theorem 9.3.1 Let U be an open subset of RN , let u ∈ C∞(U), and define

C1 = {x ∈ U : ∇u(x) = 0}.

Then Lebesgue’s measure of u(C1) is equal to 0.

Lemma 9.3.2 Let u ∈ CN+1(U) and define

CN = {x ∈ U : for |α| ≤ N, ∂αu(x) = 0}.

Then Lebesgue’s measure of u(CN) is equal to 0.

Proof Since U is covered by a countable family of closed cubes, it suffices to prove
that u(CN ∩ K) is negligible, where K = B∞[x, r/2] ⊂ U .

By definition of CN , Taylor’s formula implies the existence of c ≥ 0 such that
for every x ∈ CN ∩ K and every y ∈ K ,

∣∣u(x) − u(y)
∣∣ ≤ c

∥∥x − y
∥∥N+1

∞ .

We divide K into 2jN cubes with edge r/2j . Then u(CN ∩ K) is contained in at
most 2jN intervals of length 2c(r/2j )N+1. We conclude that

m
(
(CN ∩ K)

) ≤ 2jN2c(r/2j )N+1 = 2crN+1/2j → 0, j → ∞. ��

Proof of Theorem 9.3.1 We will use induction on N . By Lemma 9.3.2, the theorem
is valid when N = 1.

Assume that the theorem is valid in dimension N − 1, and define

Ck = {x ∈ U : for every |α| ≤ k, ∂αu(x) = 0
}
.

By Lemma 9.3.2 it suffices to prove that u(Ck\Ck+1) is negligible for 1 ≤ k ≤
N − 1.

Let a ∈ (Ck\Ck+1
)
. By definition, there exist α ∈ N

N and 1 ≤ j ≤ N such that
|α| = k, ∂αu(a) = 0, and ∂j ∂

αu(a) �= 0. After a permutation of variables, we can
assume that ∂N∂αu(a) �= 0. Let r > 0, R > 0, β, and Ua be given by Theorem 9.1.1
applied to ϕ = ∂αu. Since u ∈ C∞(U), it follows that β ∈ C∞(B(a′, R)×]− r, r[).

Let us define v on B(a′, R) by v(x′) = u
(
x′, β(x′, 0)

)
. It follows from the

induction assumption that
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m
{
v(x′) : x′ ∈ B(a′, R) and ∇v(x′) = 0

} = 0 (∗)

Let x ∈ Ck ∩ Ua . Since, by definition, ϕ(x) = ∂αu(x) = 0 and ∇u(x) = 0, we
obtain β(x′, 0) = xN and

v(x′) = u(x′, β(x′, 0)) = u(x)

∇v(x′) = ∇x′u(x′, β(x′, 0)) + ∂Nu(x′, β(x′, 0))∇x′β(x′, 0)

= ∇x′u(x) + ∂Nu(x)∇x′β(x′, 0) = 0.

We deduce from (∗) that

m
(
u(Ck ∩ Ua)

) = 0.

Let us define, for n ≥ 1,

Kn = {x ∈ Ck : d(x, Ck+1) ≥ 1/n, d(x, ∂U) ≥ 1/n, |x| ≤ 1/n}.

The Borel–Lebesgue theorem implies the existence of a finite covering of the
compact set Kn by open subsets (Uaj ) satisfying m(u(Ck ∩ Uaj )) = 0. It follows
that, for n ≥ 1, m(u(Kn)) = 0. We conclude that

m
(
u
(
Ck\Ck+1

)) = m
(
u
( ∞⋃

n=1

Kn

)) = 0. ��

The following theorem is a version of the coarea formula.

Theorem 9.3.3 Let U be an open subset of RN , let u ∈ C∞(U), and let f ∈ C(U)

be such that
∫
U

|f | |∇u|dx < ∞. Then

∫
U

f (x)|∇u(x)|dx =
∫
R

dt

∫
u=t

f (γ )dγ.

Proof We define

C = {x ∈ U : ∇u(x) = 0
}

and

ωn = {x ∈ U : d(x, C) > 1/n, d(x, ∂U) > 1/n and |x| < n
}
.

For every n ≥ 1, there exists ϕn ∈ D(ωn+1) such that 0 ≤ ϕn ≤ 1 and ϕn = 1 on
ωn.
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Proposition 9.2.6 implies that

∫
U

f ϕn|∇u|dx =
∫
ωn+1

f ϕn|∇u|dx =
∫
R

dt

∫
u

∣∣
ωn+1

=t

f ϕndγ.

If t is a regular value of u, it is clear that

∫
u

∣∣
ωn+1

=t

f ϕndγ =
∫
u=t

f ϕndγ.

Hence the Morse–Sard theorem implies that

∫
U

f ϕn|∇u|dx =
∫
R

dt

∫
u=t

f ϕndγ,

where the surface integral is defined only when t is a regular value of u. It follows
from the definition of ϕn that ϕn ↑ χU\C . We can assume that f ≥ 0. We conclude,
using Levi’s theorem, that

∫
U

f |∇u|dx = lim
n→∞

∫
U

f ϕn|∇u|dx = lim
n→∞

∫
R

dt

∫
u=t

f ϕndγ =
∫
R

dt

∫
u=t

f dγ.

��

9.4 The Divergence Theorem

An open subset of RN is smooth if its boundary is a smooth manifold.

Definition 9.4.1 Let m ≥ 1. The open subset Ω of RN is of class Cm if there exists
ϕ ∈ Cm(RN) such that

(a) Ω =
{
x ∈ R

N : ϕ(x) < 0
}

;

(b) Γ = ∂Ω =
{
γ ∈ R

N : ϕ(γ ) = 0
}

;

(c) for every γ ∈ Γ,∇ϕ(γ ) �= 0.

The exterior normal at γ ∈ Γ is defined by

n(γ ) = ∇ϕ(γ )/

∣∣∣∇ϕ(γ )

∣∣∣.

The boundary integral is the elementary integral defined on K(RN) by

∫
Γ

u dγ =
∫
ϕ=0

u dγ.
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Notation Let us define η : R → R by

η(t) = 1, t ≤ −1,

= −t, −1 ≤ t ≤ 0,

= 0, t ≥ 0.

Lemma 9.4.2 For every n ≥ 1, we have that (ρn∗η)′ = −ρn∗χ ]−1,0[, 0 ≤ ρn∗η ≤
1, and 0 ≤ ρn ∗ χ ]−1,0[ ≤ 1.

Proof Proposition 4.3.6 implies that, for every x ∈ R,

(ρn ∗ η)′(x) =
∫
R

ρ′
n(x − y)η(y)dy

=
∫ −1

−∞
ρ′
n(x − y)dy −

∫ 0

−1
ρ′
n(x − y)y dy

= −
∫ 0

−1
ρn(x − y)dy.

Since 0 ≤ η ≤ 1, we obtain 0 ≤ ρn ∗ η ≤ ρn ∗ 1 = 1. The case of χ ]−1,0[ is
identical. ��

Theorem 9.4.3 (Divergence Theorem) Let Ω be an open subset of RN of class
C1, and let ν ∈ C1(RN ;RN) ∩K(RN ;RN). Then

∫
Ω

div ν dx =
∫
Γ

ν · n dγ.

Proof Lemmas 6.1.1 and 9.4.2 imply that, for every ε > 0 and n ≥ 1,

∫
RN

ρn ∗ η(ϕ/ε) div ν dx = 1

ε

∫
RN

ρn ∗ χ ]−1,0[(ϕ/ε)∇ϕ · ν dx.

Using the regularization theorem and Lebesgue’s dominated convergence theorem,
we obtain, for every ε > 0,

∫
RN

η(ϕ/ε) div ν dx = 1

ε

∫
RN

χ]−1,0[(ϕ/ε)∇ϕ · ν dx.

Using again Lebesgue’s dominated convergence theorem and Theorem 9.2.5, we
conclude that
∫
ϕ<0

div ν dx = lim
ε→0
ε>0

∫
RN

η(ϕ/ε) div ν dx = lim
ε→0
ε>0

1

ε

∫
−ε<ϕ<0

ν ·∇ϕ dx =
∫
Γ

ν · ∇ϕ

|∇ϕ|dγ. ��
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9.5 Comments

The proofs of Theorem 9.1.3, Lemma 9.2.2, and Theorem 9.3.1 depend only
on the implicit function theorem for one equation and one dependent variable
(Theorem 9.1.1). A direct proof of this result is given in the book of Krantz and
Parks on the implicit function theorem ([41], Theorem 3.2.1).

The change of variable formula for a double integral was discovered by L. Euler
(De formulis integralibus duplicatis, Novi Comm. acad. Scient. Petropolitanae, 14
(1769) 72–103). The proof consists in factorizing the change of variables leaving
one variable fixed and transforming the other. A more recent version is given in
Differential and Integral Calculus by R. Courant, vol. II, p. 247. The same book
contains the coarea formula (for regular values) under the name of resolution of
multiples integrals (p. 302).

The proof of the Morse–Sand theorem for smooth functions (Theorem 9.3.1) is
due to Milnor. The short proof of the divergence theorem in Sect. 9.4 was inspired
by Example 7.2, Chapter 3, in the book [40] by Krantz and Parks.



Chapter 10
Epilogue: Historical Notes on Functional
Analysis

Differentiae et summae sibi reciprocae sunt, hoc est summa
differentiarum seriei est seriei terminus, et differentia
summarum seriei est ipse seriei terminus, quorum illud ita
enuntio:

∫
dx aequ. x; hoc ita: d

∫
x aequ. x.

G. Leibniz

10.1 Integral Calculus

In a concise description of mathematical methods, Henri Lebesgue underlined the
importance of definitions and axioms (see [47]):

When a mathematician foresees, more or less clearly, a proposition, instead of having
recourse to experiment like the physicist, he seeks a logical proof. For him, logical
verification replaces experimental verification. In short, he does not seek to discover new
materials but tries to become aware of the richness that he already unconsciously possesses,
which is built in the definitions and axioms. Herein lies the supreme importance of these
definitions and axioms, which are indeed subjected logically only to the condition that they
be compatible, but which could lead only to a purely formal science, void of meaning, if
they had no relationship to reality.

Leibniz conceived integration as the reciprocal of differentiation:

∫
dx = d

∫
x = x.

The computation of the integral of f is reduced to the search for its primitive,
solution of the differential equation

F ′ = f.
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The textbooks by Cauchy, in particular the Analyse algébrique (1821) (see [7])
and the Résumé des leçons données à l’Ecole Royale Polytechnique sur le calcul
infinitésimal (1823), opened a new area in analysis. Cauchy was the first to consider
the problem of existence of primitives:

In integral calculus, it seemed necessary to me to demonstrate in general the existence of
integrals or primitive functions before giving their various properties. In order to reach this,
it was necessary to establish the notion of integral between two given limits or definite
integral.

Cauchy defines and proves the existence of the integral of continuous functions:

According to the preceding lecture, if one divides X − x0 into infinitesimal elements x1 −
x0, x2 − x1 · · ·X − xn−1, the sum

S = (x1 − x0)f (x0) + (x1 − x2)f (x1) + · · · + (X − xn−1)f (xn−1)

will converge to a limit given by the definite integral

∫ X

x0

f (x)dx.

So Cauchy proved the existence of primitives of continuous functions using integral
calculus.

Though every continuous function has a primitive, Weierstrass proved in 1872
the existence of continuous nowhere differentiable functions. In a short note [44],
Lebesgue proved the existence of primitives of continuous functions without using
integral calculus. His proof is clearly functional-analytic.

In 1881 [37], Camille Jordan defined the functional space of functions of bounded
variation, which he called functions of limited oscillation. His goal was to linearize
Dirichlet’s condition for the convergence of Fourier series:

Let x1, . . . , xn be a series of values of x between 0 and ε, and y1, . . . , yn the corresponding
values of f (x). The points x1, y1; . . . ; xn, yn will form a polygon.

Consider the differences

y2 − y1, y3 − y2, . . . , yn − yn−1.

We will call the sum of the positive terms of this sequence the positive oscillation of the
polygon; negative oscillation is the sum of the negative terms; total oscillation is the sum
of those two partial oscillations in absolute value.

Let us vary the polygon; two cases may occur:

1◦ The polygon may be chosen so that its oscillations exceed every limit.
2◦ For every chosen polygon, its positive and negative oscillations will be less than some

fixed limits Pε and Nε . We will say in that case that F(x) is a function of limited
oscillation in the interval from 0 to ε; Pε will be its positive oscillation; Nε its negative
oscillation; Pε + Nε its total oscillation.
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This case will necessarily occur if F(x) is the difference of two finite functions f (x) −
ϕ(x), because it is clear that the positive oscillation of the polygon will be =

<
f (ε)− f (0),

and its negative oscillation =
<

ϕ(ε) − ϕ(0).

The converse is easy to prove. Indeed, it is easy to verify that

1◦ The oscillation of a function from 0 to ε is equal to the sum of its oscillations from 0 to
x and from x to ε, x being any quantity between 0 and ε.

2◦ We have that F(x) = F(0)+Px −Nx , Px and Nx denoting the positive and the negative
oscillations from 0 to x. But F(0)+ Px and Nx are finite functions nondecreasing from
0 to ε.

Hence Dirichlet’s proof is applicable, without modification, to every function of
bounded oscillation from x = 0 to x = ε, ε being any finite quantity.

The functions of limited oscillations constitute a well-defined class, whose study could
be of some interest.

Functions of bounded variation will play a fundamental role in the following
domains:

(a) Convergence of Fourier series;
(b) Rectification of curves;
(c) Integration;
(d) Duality.

Let u : [0, 1] → R be a continuous function. The length of the graph of u is
defined by

L(u) = sup

⎧⎨
⎩

k∑
j=0

[
(aj+1 − aj )

2 + (u(aj+1) − u(aj )
)2]1/2 :

k ∈ N, 0 = a0 < a1 < . . . < ak+1 = 1

}
.

In 1887, in Volume III of the first edition of his Cours d’Analyse at the École
Polytechnique, Jordan proved that L(u) is finite if and only if u is of bounded
variation. The case of surfaces is much more delicate (see Sect. 10.3).

In 1894 [80], Stieltjes defined a deep generalization of the integral associated
with an increasing function ϕ:

More generally, let us consider the sum

f (ξ1)
[
ϕ(x1) − ϕ(x0)

]+ f (ξ2)
[
ϕ(x2) − ϕ(x1)

]+ . . . + f (ξn)
[
ϕ(xn) − ϕ(xn−1)

]
. (A)

It will still have a limit, which we shall denote by

∫ b

a

f (u)dϕ(u).
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We will have only to consider some very simple cases like f (u) = uk , f (u) = 1
z+u

,
and there is no interest in giving to the function f (u) its full generality. Thus it will suffice,
as an example, to suppose the function f (u) continuous, and then the proof presents no
difficulty, and we have no need to develop it, since it is done as in the ordinary case of a
definite integral.

It is easy to extend Stieltjes’s definition to every function ϕ of bounded variation.
Stieltjes breaks the reciprocity between integral and derivative.

In 1903 [32], J. Hadamard characterized the continuous linear functionals on
C([a, b]):

It is easy to reach this, following Weierstrass and Kirchhoff, and introducing a function
F(x), with a finite number of maxima and minima and such that

∫ +∞

−∞
F(x)dx = 1;

e.g., F(x) = 1√
π
e−x2

.

Starting then from the well-known identity

lim
μ=±∞μ

∫ a

b

f (x)F [μ(x − x0)]dx = f (x0), a < x0 < b,

and assuming (as the authors quoted before) the operation U to be continuous (in the sense
of Bourlet), it will suffice to define

U [μFμ(x − x0)] = Φ(x0, μ)

to show that our operation could be represented as

U [f (x)] = lim
μ=±∞

∫ b

a

f (x)Φ(x, μ)dx.

In 1909 [61], F. Riesz discovered a representation depending on only one function:

In the present note, we shall develop a new analytic expression of the linear operation,
containing only one generating function.

Given the linear operation A[f (x)], we can determine a function of bounded variation
α(x) such that for every continuous function f (x), we have

A[f (x)] =
∫ 1

0
f (x)dα(x).

Riesz’s theorem asserts that every continuous linear functional on C([0, 1]) is
representable by Stieltjes’s integral.
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10.2 Measure and Integral

Les notions introduites sont exigées par la solution d’un
problème, et, en vertu de la seule présence parmi les notions
antérieures, elles posent à leur tour de nouveaux problèmes.

Jean Cavaillès

In 1898, Emile Borel defined the measure of sets in his Leçons sur la théorie des
fonctions:

The procedure that we have employed actually amounts to this: we have recognized that a
definition of measure could be useful only if it had certain fundamental properties: we have
stated these properties a priori, and we have used them to define the class of sets that we
consider measurable.

Those essential properties that we summarize here, since we shall use them, are the
following: The measure of a sum of a denumerable infinity of sets is equal to the sum
of their measures; the measure of the difference of two sets is equal to the difference
of their measures; the measure is never negative; every set with a nonzero measure is
not denumerable. It is mainly this last property that we shall use. Besides, it is explicitly
understood that we speak of measures only for those sets that we called measurable.

Of course, when we speak of the sum of several sets, we assume that every pair them
have no common points, and when we speak of their difference, we assume that one set
contains all the points of the other.

Following Lebesgue:

The descriptive definition of measure stated by M. Borel is without doubt the first clear
example of the use of actual infinity in mathematics.

However, Borel does not prove the existence of the measure!
Lebesgue’s integral first appeared on 29 April 1901. In the note [42], Lebesgue

proved the existence of Borel’s measure as a restriction of Lebesgue’s measure.
In the introduction of his thesis [43], Lebesgue stated his program:

In this work, I try to give definitions as general and precise as possible of some of the
numbers considered in Analysis: definite integral, length of a curve, area of a surface.

He formulated the problem of the measure of sets:

We intend to assign to every bounded set a positive or zero number called its measure and
satisfying the following conditions:

1. There exist sets with nonzero measure.
2. Two equal sets have equal measures.
3. The measure of the sum of a finite number or of a countable infinity of sets, without

common points, is the sum of the measures of those sets.

We will solve this problem of measure only for the sets that we will call measurable.

In his Leçons sur l’intégration et la recherche des fonctions primitives of 1904,
see [45], Lebesgue formulated the problem of integration:
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We intend to assign to every bounded function f (x) defined on a finite interval (a, b),
positive, negative, or zero, a finite number

∫ b

a
f (x)dx, which we call the integral of f (x)

in (a, b) and which satisfies the following conditions:

1. For every a, b, h, we have

∫ b

a

f (x)dx =
∫ b+h

a+h

f (x − h)dx.

2. For every a, b, c, we have

∫ b

a

f (x)dx +
∫ c

b

f (x)dx +
∫ a

c

f (x)dx = 0.

3.

∫ b

a

[f (x) + ϕ(x)]dx =
∫ b

a

f (x)dx +
∫ b

a

ϕ(x)dx.

4. If we have f � 0 and b > a, we also have

∫ b

a

f (x)dx � 0.

5. We have

∫ 1

0
1 × dx = 1.

6. If fn(x) increases and converges to f (x), then the integral of fn(x) converges to the
integral of f (x).

Formulating the six conditions of the integration problem, we define the integral. This
definition belongs to the class of those that could be called descriptive; in those definitions,
we state the characteristic properties of the object we want to define. In the constructive
definitions, we state which operations are to be done in order to obtain the object we
want to define. Constructive definitions are more often used in Analysis; however, we use
sometimes descriptive definitions; the definition of the integral, following Riemann, is
constructive; the definition of primitive functions is descriptive.

In 1906, in his thesis [23], Maurice Fréchet tried to extend the fundamental notions
of analysis to abstract sets:

In this Mémoire we will use an absolutely general point of view that encompass these
different cases.

To this end, we shall say that a functional operation U is defined on a set E of
elements of every kind (numbers, curves, points, etc.) when to every element A of E there
corresponds a determined numerical value of U : U(A). The search for properties of those
operations constitutes the object of the Functional Calculus.

Fréchet defined distance which he called, in French, écart:

We can associate to every pair of elements A,B a number (A,B) ≥ 0, which we will
call the distance of the two elements and which satisfies the following properties: (a) The
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distance (A,B) is zero only if A and B are identical. (b) If A,B,C are three arbitrary
elements, we always have (A,B) ≤ (A,C) + (C,B).

In [24], Fréchet defined additive families of sets and additive functions of sets:

An additive family of sets is a collection of sets such that:

1. If E1, E2 are two sets of this family, the set E1 −E2 of elements of E1, if they exist and
that are not in E2, belongs also to the family.

2. If E1, E2, . . . is a denumerable sequence of sets of this family, their sum, i.e., the set
E1 +E2 + · · · of elements belonging at least to one set of the sequence, belongs also to
the family.

A set function f (E) defined on an additive family of setsF is additive onF if E1, E2, . . .

being a denumerable sequence of sets of F and disjoint, i.e., without pairwise common
elements, we have

f (E1 + E2 + . . .) = f (E1) + f (E2) + · · · .

When the sequence is infinite, the second member has obviously to converge regardless of
the order of the terms. Hence the series in the second member has to converge absolutely.

Fréchet defined the integral without using topology. Additive functions of sets will
be called measures.

In [12], Daniell chose a different method. He introduced a spaceL of elementary
functions and an elementary integral

L→ R : u �→
∫

u dμ

satisfying the axioms of linearity, positivity, and monotone convergence.
The two axiomatics are equivalent if to Daniell’s axioms we add Stone’s axiom

(1948):

for every u ∈ L,min(u, 1) ∈ L,

or the axiom

for every u, v ∈ L, uv ∈ L.

The choice of primitive notions and axioms is rather arbitrary. There are no
absolutely undefinable notions or unprovable propositions.

The axiomatization of integration by Fréchet opened the way to the axiomatiza-
tion of probability by Kolmogorov in 1933. The unification of measure, integral, and
probability was one the greatest scientific achievements of the twentieth century.

In his thesis [5], Banach defined the complete normed spaces:

There exists an operation, called norm (we shall denote it by the symbol ||X||), defined
in the field E, having as an image the set of real numbers and satisfying the following
conditions:

||X|| ≥ 0,
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||X|| = 0 if and only if X = θ ,
||a · X|| = |a| · ||X||,
||X + Y || ≤ ||X|| + ||Y ||.

If 1. {Xn} is a sequence of elements of E, 2. lim
r→∞
p→∞

||Xr − Xp|| = 0, there exists an

element X such that

lim
n→∞ ||X − Xn|| = 0.

Banach emphasized the efficiency of the axiomatic method:

The present work intends to prove theorems valid for different functional fields, which I
will specify in the sequel. However, in order not to be forced to prove them individually for
every particular field, a tedious task, I chose a different way: I consider in some general way
sets of elements with some axiomatic properties, I deduce theorems, and I prove afterward
that the axioms are valid for every specific functional field.

The fundamental book of Banach [6], Théorie des opérations linéaires, was
published in 1932. Banach deduces Riesz’s representation theorem from the Hahn–
Banach theorem.

The original proof of the Hahn–Banach theorem holds in every real vector space.
Let F : X → R be a positively homogeneous convex function, and let f : Z →
R be a linear function such that f ≤ F on the subspace Z of X. By the well-
ordering theorem, the set X \ Z can be so ordered that each nonempty subset has a
least element. It follows then, from Lemma 4.1.3, by transfinite induction, that there
exists g : X → R such that g ≤ F on X and g

∣∣
Z

= f .
Let us recall the principle of transfinite induction (see [72]). Let B be a subset of

a well-ordered setA such that

{y ∈ A : y < x} ⊂ B⇒ x ∈ B.

Then B = A.
In set theory, the well-ordering theorem is equivalent to the axiom of choice and

to Zorn’s lemma. In 1905, Vitali proved the existence of a subset of the real line that
is not Lebesgue measurable. His proof depends on the axiom of choice.

10.3 Differential Calculus

L’activité des mathématiciens est une activité expérimentale.

Jean Cavaillès

Whereas the integral calculus transforms itself into an axiomatic theory, the
differential calculus fits into the general theory of distributions.
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The fundamental notions are

– Weak solutions;
– Weak derivatives;
– Functions of bounded variation;
– Distributions.

In [60], Poincaré defined the notion of weak solution of a boundary value
problem:

Let u be a function satisfying the following conditions:

du

dn
+ h u = ϕ, (10.3)

Δu + f = 0. (10.4)

Now let v be an arbitrary function, which I assume only continuous, together with a
first-order derivative. We shall have

∫ (
v
du

dn
− u

dv

dn

)
dω =

∫
(vΔ u − uΔ v)dτ,

so that
∫

v f dτ +
∫

uΔ v dτ +
∫

vϕ dω =
∫

u

(
h v + dv

dn

)
dω. (10.5)

Condition (10.5) is thus a consequence of condition (10.3).
Conversely, if condition (10.5) is satisfied for every function v, condition (10.3) will be

also satisfied, provided that u and du
dn

are finite, well-defined, and continuous functions.

But it can happen that in some cases, we are unaware that du
dn

is a well-defined and
continuous function; we cannot assert then that condition (10.5) entails condition (10.3),
and it is even possible that condition (10.3) is meaningless.

Poincaré named condition (10.5) a modified condition and asserted (p. 121):

It is obviously equivalent to condition (10.3) from the physical point of view.

This Mémoire of Poincaré contains (p. 70) the first example of an integral inequality
between a function and its derivatives:

Let V be an arbitrary function of x, y, z; define:

A =
∫

V 2dτ, B =
∫ [(

dV

dx

)2

+
(
dV

dy

)2

+
(
dV

dz

)2
]
dτ.

I will write to shorten:

B =
∫ ∑(

dV

dx

)2

dτ.

I assume first that V satisfies the condition:
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∫
V dτ = 0

and I intend to estimate the lower limit of the quotient B
A

.

The maximum principle is stated on p. 92. Poincaré’s principle appears in [59] for
the formal construction of the eigenvalues and eigenfunctions of the Laplacian.
In [60], Poincaré proved the existence of eigenvalues (for Dirichlet’s boundary
conditions) using the theory of meromorphic functions (see [50]).

Let us recall that we denote by L(u) the length of the graph of the continuous
function u : [0, 1] → R. Following Jordan, L(u) < ∞ if and only if u is of
bounded variation. It follows then from a theorem due to Lebesgue that u is almost
everywhere differentiable on [0, 1]. In [82], Tonelli proved a theorem equivalent to

L(u) =
∫ 1

0

√
1 + (u′(x))2 dx ⇐⇒ u ∈ W 1,1(]0, 1[).

A counterexample due to Schwarz, published in 1882 in the Cours d’Analyse of
Hermite, shows that it is not possible to extend the definition of length due to Jordan
to surfaces. Let z = u(x, y) be a nonparametric surface, with u continuous on
[0, 1] × [0, 1]. Let Ω =]0, 1[×]0, 1[ and define, on X = C(Ω), the distance

d(u, v) = max{|u(x, y) − v(x, y)| : (x, y) ∈ Ω}.

The space of quasilinear functions on Ω is defined by

Y = {u ∈ X : there exists a triangulation τ of Ω
such that, for every T ∈ τ, u

∣∣
T

is affine}.

The graph of u ∈ Y consists of triangles. The sum of the areas of those triangles is
called the elementary area of the graph of u and is denoted by B(u).

Lebesgue’s area of the graph of u is defined by

A(u) = inf

{
lim

n→∞B(un) : (un) ⊂ Y and d(un, u) → 0, n → ∞
}
. (∗)

In [83] (see also [53]), Tonelli stated two theorems equivalent to

A(u) < ∞ ⇐⇒ ||Du||Ω < ∞,

A(u) =
∫
Ω

√
1 +

(
∂u

∂x

)2

+
(
∂u

∂y

)2

dx dy ⇐⇒ u ∈ W 1,1(Ω).

Lebesgue’s area is a lower semicontinuous function on X. It extends the elementary
area: for every u ∈ Y , A(u) = B(u).
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In [25], Fréchet observed that Lebesgue’s definition allows one to extend lower
semicontinuous functions. Let Y be a dense subset of a metric space X, and let
B : Y → [0,+∞] be an l.s.c. function. The function A defined by (∗) is an l.s.c.
extension of B on X such that for every l.s.c. extension C of B on X and for every
u ∈ X, C(u) ≤ A(u).

In [48], Leray defined the weak derivatives of L2 functions and called them
quasi-dérivées.

In [75], announced in [74] and translated in [78], Sobolev defined the distribu-
tions of finite order on R

N , which he called fonctionnelles. (A distribution f on R
N

is of order k if for every sequence (un) ⊂ D(RN) such that the supports of un are
contained in some compact set and such that sup

|α|≤k

||∂αun||∞ → 0, n → ∞, we have

〈f, un〉 → 0, n → ∞.) Sobolev defined the derivative of a fonctionnelle by duality
and associated a fonctionnelle with every locally integrable function on R

N .
Without reference to his theory of fonctionnelles, Sobolev defined in [77] the

weak derivatives of integrable functions. Regularization by convolution is due to
Leray for L2 functions (see [48]) and to Sobolev for Lp functions (see [77]).

In [69], Laurent Schwartz defined general distributions. In [70], he defined the
tempered distributions and their Fourier transform. The treatise [71] is a masterful
exposition of distribution theory.

Let g : R → R be a function of bounded variation on every bounded interval.
The formula of integration by parts shows that for every u ∈ D(R),

∫
R

u d g = −
∫
R

u′g dx.

Stieltjes’s integral with respect to g is nothing but the derivative of g in the sense
of distributions! Riesz’s representation theorem asserts that every continuous linear
functional on C([0, 1]) is the derivative in the sense of distributions of a function of
bounded variation.

10.4 Comments

Some general historical references are [15, 19, 29]. We recommend also [46] on
Jordan, [52] on Hadamard, [81] on Fréchet, and [38] on Banach.
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Index of Notation

u|A : restriction of u to the subset A of its domain
u+ : 27
u− : 27
ωu : 9
spt u : 23
μu : 38
mu : 206
u ∗ v : 101
τyu : 101
u∗ : 206
uH : 207
∇u : 134
div u : 134
Δu = div ∇u

||u||Lp(Ω,μ) : 94
||∇u||Lp(Ω) : 134
||u||Wk,p(Ω) : 135
||Du||Ω : 174
||u||BV (Ω) : 176
||μ||Ω : 117
|μ| : 114
ρn : 101
χA : 14
μ(A) : 36
m(A) : 39
p(A) : 179
A∗ : 206
AH : 208
ω ⊂⊂ Ω : 101
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248 Index of Notation

VN : 51
C(Ω) : 23
K(Ω) : 23
D(Ω) : 100
C0(Ω) : 116
L(Ω,μ) : 26
L+(Ω,μ) : 28
L1(Ω,μ) : 30
M(Ω,μ) : 34
Lp(Ω,μ) : 93
Lp(Ω,μ) : 94
L

p

loc(Ω) : 101
Wk,p(Ω) : 135
Hk(Ω) : 135
W

k,p

loc (Ω) : 136

W
k,p

0 (Ω) : 136
Hk

0 (Ω) : 136
Ws,p(Ω) : 157
D1,p(RN) : 168
BV (Ω) : 176
D∗(Ω) : 182
L(X, Y ) : 68
X∗ : 113
1/p + 1/p′ = 1
p∗ = p∗(N) = Np/(N − p)

Fundamental Theorem of Calculus
Let u ∈ C([a, b]). For all a ≤ x ≤ b, we have

d

dx

∫ x

a

u(t)dt = u(x).

Let u ∈ C1([a, b]). For all a ≤ x ≤ b, we have

∫ x

a

du

dt
(t)dt = u(x) − u(a).



Index

B
Boundary, 7

C
Capacity, 165
— of degree p, 169
Closed subset, 6
Closure, 7
Coarea formula, 227
Cone, 89
Continuity, 9
—, uniform, 9
Convergence
—, simple, 15
—, uniform, 15
Convex set, 89
Convolution, 101
Covering, 8
Criterion
—, de la Vallée Poussin, 66
—, Fréchet, 8
—, Vitali, 64
—, Vitali–Dalzell, 81

D
Diffeomorphism, 49, 221
Distance, 4
Distribution, 182

E
Eigenfunction, 200
Eigenvalue, 82

—, multiplicity, 82
—, simple, 82
Eigenvector, 82
Elementary solutions, 215
Exponent
—, conjugate, 93
—, critical, 150
Exterior normal, 228

F
Function
—, admissible, 38, 206
—, bounded variation, 176, 186
—, characteristic, 14
—, concave, 89
—, convex, 89
—, distribution, 38, 206
—, distance, 15
—, G-invariant, 203
—, harmonic, 198
—, integrable, 30
—, locally integrable, 101
—, lower semicontinuous, 11
—, measurable, 34
—, positively homogeneous, 89
—, quasicontinuous, 172
—, subharmonic, 198
—, superharmonic, 198
—, test, 100
—, upper semicontinuous, 11

H
Hilbert basis, 78
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250 Index

I
Identity
—, Parseval, 78
—, parallelogram, 76
—, polarization, 76
—, Pythagorean, 76
Inequality
—, Bessel, 77
—, capacity, 172
—, Cauchy–Schwarz, 76
—, convexity, 92
—, Faber–Krahn, 214
—, Gagliardo, 149
—, Gagliardo–Nirenberg, 178, 214
—, Hanner, 93
—, Hardy, 156
—, Hilden, 213
—, Hölder, 93
—, Hölder generalized, 95
—, interpolation, 95
—, isoperimetric, 213
—, Kato, 216
—, mean-value, 198
—, Markov, 38
—, Minkowski, 59, 76, 93
—, Morrey, 150
—, Poincaré, 154, 155
—, Pólya–Szegő, 212
—, Sobolev, 150, 169
—, trace, 147
—, triangular, 4
—, Yau, 180
Integral
—, elementary, 26
—, Cauchy, 24
—, Lebesgue, 30
Interior, 7

L
Lemma
—, Brezis–Lieb, 96
—, closing, 133
—, continuity of translations, 103
—, Degiovanni–Magrone, 96
—, du Bois–Reymond, 132
—, extension by reflection, 141
—, Fatou, 32
—, von Neumann, 122

M
Mapping
—, bounded, 17

—, compact, 83
—, continuous, 9
—, uniformly continuous, 9
Measure, 114
—, finite, 117
—, Lebesgue, 39
—, outer, 168
—, positive, 37
—, scalar, 115
— of a subset, 36
—, surface, 50, 225
—, vectorial, 115
Modulus of continuity, 9
Modulus of convexity, 117

N
Norm, 59, 68

O
Orthogonal, 120
Orthonormal, 77
Open subset, 6
— of class Cm, 228
—, cylindrical, 141
—, G-invariant, 203

P
Partition of unity, 104, 140
Perimeter, 179
Polarization, 207
Principle
—, Cavalieri, 38
—, Ekeland’s variational, 11
—, maximum, 199
—, max-inf, 204
—, Poincaré, 84, 201
Product of elementary integrals, 45

S
Scalar product, 76
Schwarz’s symmetrization, 206
Sequence
—, bounded, 5
—, Cauchy, 5
—, convergent, 5
—, fundamental, 27
—, minimizing, 10
—, regularizing, 101
—, truncation, 136
—, weakly convergent, 113, 121, 127
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Series
—, convergent, 3, 60
—, normally convergent, 60
Set
—, closed, 6
—, convex, 89
—, dense, 7
—, measurable, 36
—, negligible, 27
—, open, 6
Space
—, Banach, 61
—, compact, 5
—, complete, 5
—, dual, 113
—, fractional Sobolev, 157
—, Hilbert, 79
—, Lebesgue, 30, 93, 94
—, metric, 4
—, normed, 59
—, precompact, 5
—, pre-Hilbert, 76
—, separable, 8
—, smooth, 117
—, Sobolev, 135, 169
—, uniformly convex, 117
Subsequence, 5
Support, 23
Symmetric operator, 82

T
Theorem
—, annulation, 104
—, Ascoli, 106
—, Baire, 7
—, Banach, 113
—, Banach–Steinhaus, 70, 113, 121, 127, 184
—, change of variables, 49, 137, 221
—, Clarkson, 126
—, closed graph, 74
—, comparison, 33

—, de la Vallée Poussin, 117
—, density, 98, 104
—, density in Sobolev spaces, 147
—, Deny–Lions, 141
—, Dini, 16
—, divergence, 148, 229
—, elementary spectral, 84
—, extension in Sobolev spaces, 146
—, Fréchet–Riesz, 120
—, Fubini, 46, 47
—, Hahn–Banach, 90, 119
—, Hajłasz, 140
—, James representation, 119
—, Lebesgue’s decomposition, 123
—, Lebesgue’s dominated convergence, 33
—, Levi, 31
—, Morse–Sard, 226
—, open mapping, 75
—, partition of unity, 104, 140
—, polar decomposition of vector measures,

124
—, regularization, 104
—, Rellich–Kondrachov, 154
—, Riesz representation, 126
—, F. Riesz, 97
—, M. Riesz, 107
—, Riesz–Fischer, 79
—, separability, 99
—, Sobolev, 152
—, trace, 148
—, Zabreiko, 73
Total variation, 117, 174
Trace, 143, 147

U
Upper envelope, 13

W
Weak derivative, 132
Weierstrass test, 18
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