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Preface to the Second Edition

In this second edition, some improvements have been carried out and supplementary
material has been inserted.

In particular, the section on distribution theory and the chapter on “Topics in
Calculus” have been completely rewritten and extended. New proofs of the density
theorem in the space of functions of bounded variations and of the coarea formula
are given.

In this book, the abstract integration theory depends only on Daniell’s axioms
and, when it is necessary, on Stone axiom, without any other assumption. In this
general framework, we have added in Chap. 3 a proof of Vitali’s characterization
of convergence in L'(Q, ) in terms of equi-integrability and convergence in
measure. In the same chapter, we have added Zabreiko’s theorem on the continuity
of seminorms and its applications to the closed graph theorem and to the open
mapping theorem.

I want to thank my colleagues Jacques Boé&l, Augusto Ponce, and Jean Van
Schaftingen for their suggestions, and I am particularly obliged to Cathy Brichard
for her help in the realization of this second edition.

Louvain-la-Neuve, Belgium Michel Willem

vii



Preface to the First Edition

L’induction peut étre utilement employée en Analyse comme un
moyen de découvertes. Mais les formules générales ainsi
obtenues doivent tre ensuite vérifiées a I’aide de démonstrations
rigoureuses et propres a faire connaitre les conditions sous
lesquelles subsistent ces mémes formules.

Augustin Louis Cauchy

Mathematical analysis leads to exact results by approximate computations. It is

based on the notions of approximation and limit process. For instance, the derivative

is the limit of differential quotients, and the integral is the limit of Riemann sums.
How to compute double limits? In some cases,

lim u, dx = lim u, dx,
QH—)OO n—o0 Q

— lim u, = lim —u,.
X n—>00 n—00 JXj
In the preceding formulas, three functional limits and one numerical limit appear.
The first equality leads to the Lebesgue integral (1901), and the second to the
distribution theory of Sobolev (1935) and Schwartz (1945).
In 1906, Fréchet invented an abstract framework for the limiting process: metric
spaces. A metric space is a set X with a distance

d:XxX—>R:,v)— du,v)
satisfying some axioms. If the real vector space X is provided with a norm
X—>R:uw |ull,
then the formula

d(u,v) = [lu—v|

ix
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defines a distance on X. Finally, if the real vector space X is provided with a scalar
product

Xx X —R:(u,v)— (uv),

then the formula

[l = v/ (ulu)

defines a norm on X.

In 1915, Fréchet defined additive functions of sets, or measures. He extended the
Lebesgue integral to abstract sets. In 1918, Daniell proposed a functional definition
of the abstract integral. The elementary integral

ﬁ—)R:ut—)/ndu,
Q

defined on a vector space L of elementary functions on €2 satisfies certain axioms.
When u is a nonnegative pu-integrable function, its integral is given by the
Cavalieri principle:

o
/ udp :f nw({x € Q:u(x) > t})dt.
Q 0
To measure a set is to integrate its characteristic function:
u(A) = / xadu.
Q
In particular, the volume of a Lebesgue-measurable subset A of RY is defined by

m(A):/ xadx.
RN

A function space is a space whose points are functions. Let | < p < oo. The
real Lebesgue space L? (€2, u) with the norm

1/p
[lullp = </ Iul”du>
Q

is a complete normed space, or Banach space. The space L(Q2, j1), with the scalar
product

(ulv) = / uvdp,
Q
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is a complete pre-Hilbert space, or Hilbert space.

Duality plays a basic role in functional analysis. The dual of a normed space is
the set of continuous linear functionals on this space. Let 1 < p < oo and define p/,
the conjugate exponent of p,by 1/p+1/p’ = 1. The dual of L?(£2, w) is identified
with L? (R, ).

Weak derivatives are also defined by duality. Let f be a continuously differen-
tiable function on an open subset & of RY . Multiplying % = g by the fest function
u € D(R2) and integrating by parts, we obtain

d
f—udxz—/ gudx.
Q" Oxk Q

The preceding relation retains its meaning if f and g are locally integrable functions
on 2. If this relation is valid for every test function u € D(£2), then by definition,
g is the weak derivative of f with respect to x;. Like the Lebesgue integral, the
weak derivatives satisfy some simple double-limit rules and are used to define some
complete normed spaces, the Sobolev spaces W57 ().

A distribution is a continuous linear functional on the space of test functions
D(R2). Every locally integrable function f on €2 is characterized by the distribution

D(Q)—>R:u»—>/fudx.
Q

The derivatives of the distribution f are defined by

Whereas weak derivatives may not exist, distributional derivatives always exist! In
this framework, Poisson’s theorem in electrostatics becomes

1
—-A (—) =4r4,
|x|

where § is the Dirac measure on R3.
The perimeter of a Lebesgue-measurable subset A of RV, defined by duality, is
the variation of its characteristic function:

p(A) = sup{/ div vdx : v € DRY; RY), [v]loo < 1}~
A

The space of functions of bounded variation BV (R") contains the Sobolev space
WELRN).
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Chapter 8 contains many applications to elliptic problems and to analytic or
geometric inequalities. In particular, the isoperimetric inequality and the Faber—
Krahn inequality are proved by purely functional-analytic methods.

The isoperimetric inequality in RV asserts that the ball has the largest volume
among all domains with fixed perimeter. In R?, the isoperimetric inequality is
equivalent to

4 m(A) < p(A)>.
The Faber—Krahn inequality asserts that among all domains with fixed volume,

the ball has the lowest fundamental eigenvalue for the Dirichlet problem. This
fundamental eigenvalue is defined by

—Ae = Are in Q,
e>0 in 2,
e=0 on 9%2.

Our approach is elementary and constructive. Integration theory is based on
only one property: monotone convergence. It appears successively as an axiom,
a definition, and a theorem. The inequalities of Holder, Minkowski, and Hanner
follow from the same elementary inequality, the convexity inequality. Weak conver-
gence, convergence of test functions, and convergence of distributions are defined
sequentially. The Hahn-Banach theorem is proved constructively in separable
normed spaces and in uniformly convex smooth Banach spaces.

For the convenience of the reader, we recall the Appendix some topics in
calculus. The Epilogue contains historical remarks on the close relations between
functional analysis and the integral and differential calculus.

The readers must have a good knowledge of linear algebra, classical differential
calculus, and the Riemann integral.
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Chapter 1 ®
Distance Pt

1.1 Real Numbers

Analysis is based on the real numbers.

Definition 1.1.1 Let S be a nonempty subset of R. A real number x is an upper
bound of S if for all s € §, s < x. A real number x is the supremum of S if x is an
upper bound of S, and for every upper bound y of §, x < y. A real number x is the
maximum of S if x is the supremum of S and x € S. The definitions of lower bound,
infimum, and minimum are similar. We shall write sup S, max S, inf S, and min S.

Let us recall the fundamental property of R.
Axiom 1.1.2 Every nonempty subset of R that has an upper bound has a supremum.

In the extended real number system, every subset of R has a supremum and an
infimum.

Definition 1.1.3 The extended real number system R = R U {—00, 400} has the
following properties:

(a) ifx € R, then —00 < x < +ooand x+(+00) = +00+x = +00, x+(—00) =

—00 + x = —00;
(b) if x > 0, then x - (+00) = (400) - x = 400, X - (—00) = (—00) - x = —00;
(c) if x <0, then x - (+00) = (+00) - x = —00, x - (—00) = (—00) - x = +00.

If S C R has no upper bound, then sup S = +o0. If S has no lower bound, then
inf § = —oo0. Finally, sup ¢ = —oc and inf¢ = +00.

Definition 1.1.4 Let X be asetand F : X — R. We define

sup F = sup F(x) =sup{F(x) : x € X},inf F = inf F(x) =inf{F(x) : x € X}.
X xeX X xeX

© Springer Nature Switzerland AG 2022 1
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Proposition 1.1.5 Let X and Y be sets and f : X x Y — R. Then

sup sup f(x, y) = sup sup f(x,y), sup mf fx,y) = mf sup f(x, y).
xeX yeY yeY xeX xeX Y YeY yex

Definition 1.1.6 A sequence (x,) C Ris increasing if for every n, x, < x,41.
The sequence (x;) is decreasing if for every n, x,4+1 < x,. The sequence (x,) is
monotonic if it is increasing or decreasing.

Definition 1.1.7 The lower limit of (x,) C R is defined by lim x, = sup 1nfxn

n—o0 Kk n=>k
The upper limit of (x,) is defined by hm X, = infsup x;,.
n>k
Remarks
(a) The sequence a; = in£ X, 1s increasing, and the sequence by = supux, is
nz n>k
decreasing.

(b) The lower limit and the upper limit always exist, and

lim x, < lim x,.
n—>oo n—oo

Proposition 1.1.8 Let (x,), (y,) C ]—00, +00] be such that —oo < lim x, and

n—oo

—00 < lim y,. Then
n—od

lim x, + lim y, < lim (x; + yn).
n—0oo n— 00 n—oo
Let (x,), (yp) C [—00, 400[ be such that lim x, < 400 and hm Yp < +00.

n—o0
Then

lim (Xn +yn) < lim Xn + lim Yn-
n—00 n—00 n— 00

Definition 1.1.9 A sequence (x,) C R converges to x € R if for every ¢ > 0, there
exists m € N such that for every n > m, |x, — x| < &. We then write lim x, = x.
n—oo

The sequence (x,) is a Cauchy sequence if for every ¢ > 0, there exists m € N
such that for every j, k > m, |x; — x| < €.
Theorem 1.1.10 The following properties are equivalent:

(a) (x,) converges;
(b) (xp) is a Cauchy sequence;
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(c) —o00 < lim x, < lim x, < +o0.
n—oo n—od

If any and hence all of these properties hold, then lim x,= lim x,= lim x,.
n—oo n—oQ n—oo

Let us give a sufficient condition for convergence.

Theorem 1.1.11 Every increasing and majorized, or decreasing and minorized,
sequence of real numbers converges.

Remark Every increasing sequence of real numbers that is not majorized converges
in R to +o00. Every decreasing sequence of real numbers that is not minorized
converges in R to —oo. Hence, if (x,) is increasing, then

lim x, = supx,,
n—oo n

and if (x,) is decreasing, then

lim x, = infx,.
n—od n

In particular, for every sequence (x,) C @,

lim x, = lim inf x,
n—o0 k—oon>k

and

lim x, = lim supx,.
n—00 k—>oonzk

[e¢)
Definition 1.1.12 The series Zx,, converges, and its sum is x € R if the sequence

n=0
k oo

an converges to x. We then write an = X.
n=0 n=0

Theorem 1.1.13 The following statements are equivalent:

o
(a) an converges;
n=0

k
(b) jlirr;o Z xp = 0.
j<k n=j+1
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o0 o
Theorem 1.1.14 Let (x,) be such that Z|xn| converges. Then an converges

n=0
and

00
D
n=0

00
=< Z % .
n=0

1.2 Maetric Spaces

Metric spaces were created by Maurice Fréchet in 1906.

Definition 1.2.1 A distance on a set X is a function
XxX—>R:(u,v)—>du,v)

such that

(Dy) foreveryu,ve X,du,v) =0+ u=v;
(Dy) foreveryu,v e X,du,v) =d,u);

n=0

(D3) (triangle inequality) for every u, v, w € X, d(u, w) < d(u,v) +d(v, w).

A metric space is a set together with a distance on that set.

Examples

1. Let (X, d) be a metric space and let S C X. The set S together with d (restricted

to S x S) is a metric space.

2. Let (X1, d1) and (X3, d») be metric spaces. The set X| x X together with

d((x1, x2), (¥1, ¥2)) = max{d (x1, y1), d2(x2, y2)}

is a metric space.
3. We define the distance on the space R" to be

d(x,y) =max{|x; — y1l, ..., [xp — yul}.

4. We define the distance on the space C([0,1]) = {u : [0,1] - R :

continuous} to be

d(u,v) = max |u(x) —v(x)|.
x€[0,1]

u is
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Definition 1.2.2 Let X be a metric space. A sequence (u,) C X converges to u €
X if

lim d(u,,u) =0.
n—>oo

We then write lim u, = u or u, — u, n — oo. The sequence (u,) is a Cauchy
n—oo

sequence if

lim d(uj, uk) =0.

Jk—00
The sequence (u,,) is bounded if

supd(ug, u,) < 00.
n

Proposition 1.2.3 Every convergent sequence is a Cauchy sequence. Every Cauchy
sequence is a bounded sequence.

Proof 1f (u,) converges to u, then by the triangle inequality, it follows that
0<duj,ur) <duj,u)+du,u)

and lim d(u;,ux) = 0.
J.k—00

If (u,) is a Cauchy sequence, then there exists m such that for j, k > m,
d(uj,ur) < 1. We obtain for every n that

d(l/t(), ul’l) S maX{d(UO, u[), L] d(u07 Mm—l)a d(u07 Mm) + 1} d

Definition 1.2.4 A sequence (up;) is a subsequence of a sequence (u,) if for every
j, njy <njyi.

Definition 1.2.5 Let X be a metric space. The space X is complete if every Cauchy
sequence in X converges. The space X is precompact if every sequence in X
contains a Cauchy subsequence. The space X is compact if every sequence in X
contains a convergent subsequence.

Remark

(a) Completeness allows us to prove the convergence of a sequence without using
the limit.

(b) Compactness will be used to prove existence theorems and to find hidden
uniformities.

The proofs of the next propositions are left to the reader.
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Proposition 1.2.6 Every Cauchy sequence containing a convergent subsequence
converges. Every subsequence of a convergent, Cauchy, or bounded sequence
satisfies the same property.

Proposition 1.2.7 A metric space is compact if and only if it is precompact and
complete.

Theorem 1.2.8 The real line R, with the usual distance, is complete.

Example (A Noncomplete Metric Space) We define the distance on X = C([0, 1])
to be

1
d(u,v) = / lu(x) —v(x)|dx.
0

Every sequence (u,) C X such that

(a) for every x and for every n, u,(x) < u,y4+1(x);
1 1

(b) supf Uy (x)dx = lim / u,(x)dx < +o0;
n 0 n—oo 0

is a Cauchy sequence. Indeed, we have that

1 1
lim / luj(x) —ur(x)ldx = lim |/ (uj(x) —up(x))dx| =0.
0 Jj.k—=oo  Jo

Jjk—o00

But X with d is not complete, since the sequence defined by
i (x) = min{n, 1/y/x}

satisfies (a) and (b) but is not convergent. Indeed, assuming that (u,) converges to u
in X, we obtain, for 0 < ¢ < 1, that

1

1 1
/ lu(x) — 1/4/x|dx = lim / lu(x) —up(x)|dx < lim / lu(x) —up(x)|dx = 0.
e n—o0 e n— oo 0

But this is impossible, since u(x) = 1/4/x has no continuous extension at 0.

Definition 1.2.9 Let X be a metric space, u € X, and r > 0. The open and closed
balls of center u and radius r are defined by

Bu,ry={ve X:dw,u) <r}, Blu,rl={veX:dw,u) <r}.

The subset S of X is open if for all u € § there exists r > 0 such that B(u, r) C S.
The subset S of X is closed if X \ § is open.
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Example Open balls are open; closed balls are closed.

Proposition 1.2.10 The union of every family of open sets is open. The intersection
of a finite number of open sets is open. The intersection of every family of closed
sets is closed. The union of a finite number of closed sets is closed.

Proof The properties of open sets follow from the definition. The properties of
closed sets follow by considering complements. O

Definition 1.2.11 Let S be a subset of a metric space X. The interior of S, denoted
by S, is the largest open set of X contained in S. The closure of S, denoted by S, is the

smallest closed set of X containing S. The boundary of S is defined by S = S\ S.
The set S is dense if § = X.

Proposition 1.2.12 Let X be a metric space, S C X, andu € X. Then the following
properties are equivalent:

(a) u € S;
(b) forallr >0, Bu,r)NS # ¢;
(c) there exists (u,) C S such that u,, — u.

Proof 1t is clear that (b) < (c). Assume that u ¢ S. Then there exists a closed
subset F' of X such that u ¢ F and § C F. By definition, then exists r > 0
such that B(u,r) NS = ¢. Hence (b) implies (a). If there exists r > 0 such that
B(u,r)NS = ¢,then F = X\ B(u, r) is a closed subset containing S. We conclude
that u ¢ S Hence (a) implies (b). O

Theorem 1.2.13 (Baire’s Theorem) In a complete metric space, every intersection
of a sequence of open dense subsets is dense.

Proof Let (U,) be a sequence of dense open subsets of a complete metric space X.
We must prove that for every open ball B of X, BN (ﬂj’lonU,,) # ¢. Since B N Uy
is open (Proposition 1.2.10) and nonempty (density of Up), there is a closed ball
Bluo, ro] C B N Up. By induction, for every n, there is a closed ball

Bluy, ry] C Bup—1,rpn—1) N U,

such that r, < 1/n. Then (u,) is a Cauchy sequence. Indeed, for j, k
d(uj,ur) < 2/n. Since X is complete, (u,) converges to u € X. For j
uj € Bluy, ry), so that forevery n,u € Bluy, ry]. It follows thatu € BN (N2 Uy).

O

Example Let us prove that R is uncountable. Assume that (7,,) is an enumeration of
RR. Then for every n, the set U, = R\ {r,} is open and dense. But then (1,2, U, is
dense and empty. This is a contradiction.
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Definition 1.2.14 Let X be a metric space with distance d and let S C X. The
subset S is complete, precompact, or compact if S with distance d is complete,
precompact, or compact. A covering of S is a family ¥ of subsets of X such that the
union of # contains S.

Proposition 1.2.15 Let X be a complete metric space and let S C X. Then S is
closed if and only if S is complete.

Proof 1t suffices to use Proposition 1.2.12 and the preceding definition. O

Theorem 1.2.16 (Fréchet’s Criterion, 1910) Let X be a metric space and let S C
X. The following properties are equivalent:

(a) S is precompact;
(b) forevery ¢ > O, there is a finite covering of S by balls of radius .

Proof Assume that S satisfies (b). We must prove that every sequence (u,) C S
contains a Cauchy subsequence. Cantor’s diagonal argument will be used. There
is a ball B; of radius 1 containing a subsequence (u; ,) from (u,). By induction,
for every k, there is a ball By of radius 1/k containing a subsequence (uy ,) from
(uk—1.n). The sequence v, = uy, is a Cauchy sequence. Indeed, for m,n > k,
Um, Uy € By and d (v, vy) < 2/k.

Assume that (b) is not satisfied. There then exists ¢ > 0 such that S has no finite
covering by balls of radius ¢. Let ug € S There is u; € S\ Blug, €]. By induction,
for every k, there is

k—1

Uk eS\UB[uj,s].

=0
Hence for j < k, d(uj,ux) > ¢, and the sequence (u,) contains no Cauchy
subsequence. O
Every precompact space is separable.

Definition 1.2.17 A metric space is separable if it contains a countable dense
subset.

Proposition 1.2.18 Let X and Y be separable metric spaces, and let S be a
subset of X.

(a) The space X x Y is separable.
(b) The space S is separable.

Proof Let (e;) and (f;,) be sequences dense in X and Y. The family {(e,, fi) :
(n, k) € N?} is countable and dense in X x Y. Let

F={(nk)eN?>:k>1,B(en, 1/k) NS # ¢}.
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For every (n, k) € F, we choose f, x € B(en, 1/k) N S. The family {f, x : (n, k) €
¥} is countable and dense in S. m|

1.3 Continuity

Let us define continuity using distances.
Definition 1.3.1 Let X and Y be metric spaces. A mapping u : X — Y is
continuous at y € X if for every ¢ > 0, there exists § > 0 such that

sup{dy (u(x), u(y)) : x € X,dx(x,y) <8} <e. (%)

The mapping u is continuous if it is continuous at every point of X. The mapping u
is uniformly continuous if for every ¢ > 0, there exists § > 0 such that

@y (8) = sup{dy (u(x), u(y)) : x,y € X,dx(x,y) <8} <e.
The function w, is the modulus of continuity of u.

Remark 1t is clear that uniform continuity implies continuity. In general, the
converse is false. We shall prove the converse when the domain of the mapping
is a compact space.

Example The distance d : X x X — R is uniformly continuous, since

|d(x1, x2) —d(y1, y2)| < 2max{d(x1, y1), d(x2, y2)}.

Lemma 1.3.2 Let X and Y be metric spaces,u : X — Y, andy € X. The following
properties are equivalent:

(a) u is continuous at y;
(b) if (yn) converges toy in X, then (u(y,)) converges tou(y) inY.

Proof Assume that u is not continuous at y. Then there is & > 0 such that for every
n, there exists y, € X such that

dx(yn,y) = 1/n and  dy(u(yn), u(y)) > e.

But then (y,) converges to y in X and (u(y,)) is not convergent to u(y).

Let u be continuous at y and (y,) converging to y. Let ¢ > 0. There exists
8 > 0 such that (x) is satisfied, and there exists m such that for every n > m,
dx(yn,y) < 8. Hence forn > m, dy (u(y,), u(y)) < e. Since ¢ > 0 is arbitrary,
(u(yn)) converges to u(y). |



10 1 Distance

Proposition 1.3.3 Ler X and Y be metric spaces, K a compact subset of X, and u :
X — Y a continuous mapping, constant on X \ K. Then u is uniformly continuous.

Proof Assume that u is not uniformly continuous. Then there is ¢ > 0 such that for
every n, there exist x, € X and y, € K such that

dx (xn, yn) < 1/n and dy (u(x,), u(y,)) > e.
By compactness, there is a subsequence (y,,) converging to y. Hence (x,,)
converges also to y. It follows from the continuity of u at y and from the preceding

lemma that

e < lim dyu(xn), u(yn,))
k—o00

< lim dyu(xy,), u(y)) + lim dyu(y), u(y,)) =0.
k— o0 k— o0
This is a contradiction. d

Lemma 1.3.4 Let X be a set and F : X — ]—o00, 400] a function. Then there
exists a sequence (y,) C X such that lim F(y,) = i%f F. The sequence (y,) is
n—oQ

called a minimizing sequence.

Proof If c = ir)}f F € R, then for every n > 1, there exists y, € X such that
c<F(y) <c+1/n.
If ¢ = —o0, then for every n > 1, there exists y, € X such that

F(y,) < —n.

In both cases, the sequence (y,) is a minimizing sequence. If ¢ = +o0, the result is
obvious. O

Proposition 1.3.5 Let X be a compact metric space, and let F : X — R be a
continuous function. Then F is bounded, and there exists y, z € X such that

F(y)=minF, F(z)= F.
» min (2) max

Proof Let (y,) C X be a minimizing sequence: lim F(y,) = ix}}f F. There is a
n—oo

subsequence (yy, ) converging to y. We obtain

F(y) = lim F(y,,) = infF.
k—o00 X

Hence y minimizes F on X. To prove the existence of z, consider — F. O
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The preceding proof suggests a generalization of continuity.

Definition 1.3.6 Let X be a metric space. A function F : X — ]—o00, 400] is
lower semicontinuous (l.s.c.) at y € X if for every sequence (y,) converging to y in
X’

F(y) < lim F(y,).
n—0oo

The function F is lower semicontinuous if it is lower semicontinuous at every point
of X. A function F' : X — [—00, +00[ is upper semicontinuous (u.s.c.) at y € X if
for every sequence (y,) converging to y in X,

lim F(y,) < F(y).
n—oo

The function F is upper semicontinuous if it is upper semicontinuous at every point
of X.

Remark A function F : X — R is continuous at y € X if and only if F is both
Ls.c. and u.s.c. at y.

Let us generalize the preceding proposition.
Proposition 1.3.7 Let X be a compact metric space and let F : X —]— 00, 0] be

an l.s.c. function. Then F is bounded from below, and there exists y € X such that

F(y) = min F.
» min

Proof Let (y,) C X be a minimizing sequence. There is a subsequence (yy,)
converging to y. We obtain

F(y) < lim F(yn)=infF.
k—o00 X

Hence y minimizes F on X. |
When X is not compact, the situation is more delicate.

Theorem 1.3.8 (Ekeland’s Variational Principle) Let X be a complete metric
space, and let F : X — ]—00, 400] be an l.s.c. function such that c = infy F € R.
Assume that ¢ > 0 and z € X are such that

F(2) SiI)}fF-Fe‘.

Then there exists y € X such that

(a) F(y) = F(2);
(b) d(y.z) < 1;
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(c) foreveryx € X\ {3}, F(y) —ed(x,y) < F(x).

Proof Let us define inductively a sequence (y,). We choose yg = z and
Yn+1 € Sp={x € X : F(x) < F(yn) — & d(yn, x)}

such that

N =

F(ynt1) —inf F < [F(yn) —ing]- ()

Since for every n,
& dYn, yn+1) = F(yn) — F(Ynt1),
we obtain
¢ = F(ynt1) = F(yn) = F(yo) = F(2),
and for every k > n,
&d(yn, yi) = F(yn) — F(yi)- (k)
Hence

Jim d(yn, yi) = 0.

k>n

Since X is complete, the sequence (y,) converges to y € X. Since F is l.s.c., we
have

F(y) = lim F(y,) = F(2).
It follows from () that for every n,
ed(yn, y) = F(yn) — F(y).
In particular, for every n, y € §,, and for n = 0,
ed(z,y)<F@Q) —-F()<c+e—c=ce.
Finally, assume that

F(x) = F(y) —ed(x,y).
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The fact that y € S, implies that x € S,,. By (), we have

2F (yn+1) — F(yn) = ing = F(x),
so that
F(y) < lim F(y) < F(x).
We conclude that x = y, because
ed(x,y) < F(y) — F(x) <0. 0

Definition 1.3.9 Let X be a set. The upper envelope of a family of functions F; :
X — ]—o00,00], j € J,is defined by

sup Fj | (x) = sup F;(x).
jelJ jelJ

Proposition 1.3.10 The upper envelope of a family of l.s.c. functions at a point of
a metric space is l.s.c. at that point.

Proof Let F; : X — ]—o00,+00] be a family of ls.c. functions at y. By
Proposition 1.1.5, we have, for every sequence (y,) converging to y,

sup Fj(y) <sup lim F;(y,) = supsupinf F;(ynti)
j j noe j kM
< supinfsup F; (k) = lim sup F;(y,).
Kk m j ' n— 00 j
Hence sup Fj is Ls.c. at y. O

J

Proposition 1.3.11 The sum of two l.s.c. functions at a point of a metric space is
l.s.c. at this point.

Proof Let F,G : X — ]—00, 00] be L.s.c. at y. By Proposition 1.1.8, we have for
every sequence (y,) converging to y that

F(y)+G(y) = lim F(y,) + lim G(y,) < lim (F(yn) + G(yn))-

Hence F + G is l.s.c. at y. O
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Proposition 1.3.12 Let F : X — ] — o0,00]. The following properties are
equivalent:

(a) Fisls.c
(b) foreveryt e R, {F >t} ={x € X : F(x) > t} is open.

Proof Assume that F is not l.s.c. Then there exists a sequence (x,) converging to x
in X, and there exists ¢ € R such that

lim F(x,) <t < F(x).

n—oo

Hence for every r > 0, B(x,r) ¢ {F > t}, and {F > t} is not open.
Assume that {F > t} is not open. Then there exists a sequence (x,) converging
to x in X such that for every n,

F(x,) <t < F(x).

Hence lim F(x,) < F(x) and F is not Ls.c. at x. O
n—odo

Theorem 1.3.13 Let X be a complete metric space, and let (Fj : X — R) ey bea
family of L.s.c. functions such that for every x € X,

sup Fj(x) < +o0. ()
jeJ

Then there exists a nonempty open subset V of X such that

sup sup Fj(x) < +oo.
jeJ xeV

Proof By Proposition 1.3.10, the function F = sup F; is ls.c. The preceding
jeJ
! o
proposition implies that for every n, U, = {F > n} is open. By (%), ﬂU = ¢.
n=1
Baire’s theorem implies the existence of n such that U, is not dense. But then
{F < n} contains a nonempty open subset V. O

Definition 1.3.14 The characteristic function of A C X is defined by

Xalx) =1, xeA,
=0, xeX\A.

Proposition 1.3.15 Let X be a metric space and A C X. Then

A is open <= X g is l.s.c.; Ais closed <= X 4 is u.s.c.
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Definition 1.3.16 Let S be a nonempty subset of a metric space X. The distance of
x to S is defined on X by d(x, S) = ing d(x,s).

NS
Proposition 1.3.17 The function “distance to S” is uniformly continuous on X.

Proof Letx,y € X ands € S. Since d(x,s) <d(x,y)+d(y,s), we obtain

d(x,S) < §2§ dx,y)+dy,s)) =dx,y) +d(y,S).

We conclude by symmetry that |d(x, ) —d(y, S)| <d(x,y). |

Definition 1.3.18 Let Y and Z be subsets of a metric space. The distance from Y
to Z is defined by d(Y, Z) = inf{d(y,z) : y € Y,z € Z}.

Proposition 1.3.19 Let Y be a compact subset, and let Z be a closed subset of a
metric space X such thatY N Z = ¢. Thend(Y, Z) > 0.

Proof Assume that d(Y, Z) = 0. Then there exist sequences (y,) C Y and (z,) C
Z such that d(y,, z,) — 0. By passing, if necessary, to a subsequence, we can
assume that y, — y. Butthend(y,z,) > Oandye Y N Z. O

1.4 Convergence

Definition 1.4.1 Let X be a set and let Y be a metric space. A sequence of mappings
u, : X — Y converges simply tou : X — Y if forevery x € X,

Iim d(u,(x), u(x)) =0.
n—oo
The sequence (u,) converges uniformly to u if

lim supd(u,(x),u(x)) =0.

II—)OOXEX

Remarks

(a) Clearly, uniform convergence implies simple convergence.

(b) The converse is false in general. Let X = 10, I[, Y = R, and u,,(x) = x". The
sequence (u#,) converges simply but not uniformly to 0.

(c) We shall prove a partial converse due to Dini.

Notation Letu, : X — Rbea sequence of functions. We write u, 1 u when for
every x and for every n, u,(x) < u,41(x) and
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u(x) =supu,(x) = lim u,(x).
n n—oo

We write u,, | u when for every x and every n, u,41(x) < u,(x) and

u(x) =infu,(x) = lim u,(x).
n n—oo

Theorem 1.4.2 (Dini) Let X be a compact metric space, and let u,, : X — R be a
sequence of continuous functions such that

(@) uy * uoruy | u;
(b) u: X — R is continuous.

Then (uy) converges uniformly to u.

Proof Assume that

0 < lim sup |u,(x) —u(x)| = inf sup |u,(x) — u(x)|.
n=>0 yex nz0yex

There exist ¢ > 0 and a sequence (x,,) C X such that for every n,
€ < |un(xn) — u(xn)l.

By monotonicity, we have for 0 < m < n that
& =< um(xn) — ulxp)|.

By compactness, there exists a sequence (x,,) converging to x. By continuity, we
obtain for every m > 0,

& = fum(x) —u(x)|.
But then (u,,) is not simply convergent to u. O

Example (Dirichlet Function) Let us show by an example that two simple limits
suffice to destroy every point of continuity. Dirichlet’s function

u(x) = lim lim (cos wm!x)*"
m—00 n— 00
is equal to 1 when x is rational and to 0 when x is irrational. This function
is everywhere discontinuous. Let us prove that uniform convergence preserves
continuity.

Proposition 1.4.3 Let X and Y be metric spaces, y € X, andu, : X — Y a
sequence such that
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(a) (u,) converges uniformly to u on X;
(b) for every n, uy, is continuous at y.

Then u is continuous at y.

Proof Let ¢ > 0. By assumption, there exist n and § > 0 such that

supd(uy(x),u(x)) <eand sup du,(x),u,(y)) <e.
xeX xeB[y.d]

Hence for every x € Bly, 4],
d(u(x), u(y)) <dx), up(x)) +dn(x), un(y)) +dp(y), u(y)) < 3e.
Since ¢ > 0 is arbitrary, u is continuous at y. O

Definition 1.4.4 Let X be aset and let Y be a metric space. On the space of bounded
mappings from X to Y,

BX,Y)={u:X—>7Y: sup dux),u(y)) < oo},
x,yeX

we define the distance of uniform convergence

d(u,v) = supd(u(x), v(x)).
xeX

Proposition 1.4.5 Let X be a set and let Y be a complete metric space. Then the
space B(X, Y) is complete.

Proof Assume that (u,) is such that

lim supd(uj(x), ur(x)) =0.

Jk—00 v ex

Then for every x € X,
lim d(u;j(x),ur(x)) =0,
Jk—00 X

and the sequence (u,(x)) converges to a limit u(x). Let & > 0. There exists m such
that for j,k > mand x € X,

d(uj(x), up(x)) <e.
By continuity of the distance, we obtain, for k > m and x € X,

d(u(x), ug(x)) <e.
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Hence for k > m,

sup d(u(x), ug(x)) <e.
xeX

Since ¢ > 0 is arbitrary, (u,) converges uniformly to u. It is clear that u is bounded.
0

Corollary 1.4.6 (Weierstrass Test) Let X be a set, and let u,, : X — R be a
sequence of functions such that

o0
c= Z sup |u, (x)| < 400.

n=1 xeX

o0
Then the series Z u, converges absolutely and uniformly on X.
n=l1
o
Proof 1t is clear that for every x € X, Z|un(x)| < ¢ < oo. Let us write v; =

n=1

J
Zun. By assumption, we have for j < k that

n=1

k k

sup [v;(x) — k()] =sup| D u,(x)| < D supluy(x)| -0, j — oo
xeX xeX n=j+1 nzj_HxEX

Hence lim d(v;, vx) =0, and (v;) converges uniformly on X. O
Jjk—00

Example (Lebesgue Function) Let us show by an example that a uniform limit
suffices to destroy every point of differentiability. Let us define

o0

fo =y zin sin2"x = > ().
n=1

n=1

Since for every n, suplu, (x)| = 27", the convergence is uniform, and the function
xeR

f is continuous on R. Let x € R and hy = :|:7T/2m2+1. A simple computation
shows that forn > m + 1, u,(x + h4) — u, (x) = 0 and

(X 4 hy) =ty (x) 27

I [cos m y F sin 2m2x].
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Let us choose 7 = hy or h = h_ such that the absolute value of the expression in
brackets is greater than or equal to 1. By the mean value theorem,

m—1

m—1
Z up(x +h) — u,(x) - Z on=n _ =12 —=(n—1)+1 _ ym?—3m+3
, < .
n=l1 n=lI
Hence
2_
gromtl S —3mt3 _ i un(x +h) —un ()| | fx+h) = f(x)
T I b h h ’

and for every ¢ > 0,

fx+h) — fx)

h =t

su
O<|h|<e

The Lebesgue function is everywhere continuous and nowhere differentiable.
Uniform convergence of the derivatives preserves differentiability.

1.5 Comments

Our main references on functional analysis are the three classical works

— S. Banach, Théorie des opérations linéaires [6],
— F. Riesz and B.S. Nagy, Le¢ ons d’analyse fonctionnelle [62],
— H. Brezis, Analyse fonctionnelle, théorie et applications [8].

The proof of Ekeland’s variational principle [20] in Sect. 1.3 is due to Crandall [21].
The proof of Baire’s theorem, Theorem 1.2.13, depends implicitly on the axiom
of choice. We need only the following weak form.

Axiom of Dependent Choices Let S be a nonempty set, and let R C S x S be such
that for each a € S, there exists b € S satisfying (a, b) € S. Then there is a sequence
(ay) C S suchthat (a,—1,a,) € R,n=1,2,....

We use the notation of Theorem 1.2.13. On
S = {(m,u,r):m eNueX, r>0,Bu,r)C B},
we define the relation R by

((m, u,r)y, (n,v, s)) € R
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ifandonlyifn =m+1,s < 1/n, and

Blv,s] C Bu,r)N ([ U)).
j=I

Baire’s theorem follows then directly from the axiom of dependent choices.
In 1977, C.E. Blair proved that Baire’s theorem implies the axiom of dependent
choices, Bull. Acad. Polon. Sci. Série Sc. Math. Astr. Phys. 25 (1977) 933-934.
The reader will verify that the axiom of dependent choices is the only principle
of choice that we use in this book.

1.6 Exercises for Chap. 1

La mathématique est une science de problemes.

Georges Bouligand

1. Every sequence of real numbers contains a monotonic subsequence. Hint: Let
E ={neN:foreveryk > n, x; <x,}.

If E is infinite, (x,) contains a decreasing subsequence. If E is finite, (x,)
contains an increasing subsequence.
2. Every bounded sequence of real numbers contains a convergent subsequence.
3. Let (K,) be a decreasing sequence of compact sets and U an open set in a
o0

metric space such that ﬂ K, C U. Then there exists n such that K,, C U.

n=1
4. Let (Uy) be an increasing sequence of open sets and K a compact set in a metric

o
space such that K C U U, . Then there exists n such that K C U,,.

n=1

o
5. Define a sequence (S;) of dense subsets of R such that ﬂS,, = ¢. Define a
n=1
family (U;) jes of open dense subsets of R such that m Uj =¢.
jeJ
6. In a complete metric space, every countable union of closed sets with empty
interior has an empty interior. Hint: Use Baire’s theorem.
7. Dirichlet’s function is 1.s.c. on R \ Q and u.s.c. on Q.
8. Let (u;) be a sequence of functions defined on [a, b] and such that for every n,

a<x=<y=<b=u,x)Zu,(y).
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10.

1.

12.

13.

14.

Assume that (u,) converges simply to u € C([a, b]). Then (u,) converges
uniformly to u.

. (Banach fixed-point theorem) Let X be a complete metric space, and let f :

X — X be such that

Lip(f) = sup{d(f(x), f(¥))/d(x,y) 1 x,y € X, x # y} < 1.

Then there exists one and only one x € X such that f(x) = x. Hint: Consider
a sequence defined by xo € X, x,+1 = f(xp).

(McShane’s extension theorem) Let Y be a subset of a metric space X, and let
f Y — R be such that

A = Lip(f) = sup{[f(x) = fF(MI/d(x,y) :x,y € ¥, x # y} < +00.

Define on X

g(x) =sup{f(y) —Ad(x,y):y €Y}

Then g|y = f and

Lip(g) = sup{|g(x) — g(y)/d(x,y) : x,y € X, x # y} = Lip(f).

(Fréchet’s extension theorem) Let Y be a dense subset of a metric space X, and
let f:Y — [0, 400] be an l.s.c. function. Define on X

glx) = inf{ lim f(x,): (x,) CYandx, — x}.

Then g is l.s.c., g|Y = f, and for every l.s.c. function 4 : X — [0, +o0] such
thath|, = f,h < g.

Let X be a metric space and u : X — [0, +00] an l.s.c. function such that
u # +o00. Define

uy(x) =influ(y) +ndx,y):y € X}.

Then u,, 1 u, and forevery x,y € X, |u,(x) —u,(y)| <nd(x,y).

Let X be a metric space and v : X — ]—o00, 0o]. Then v is Ls.c. if and only
if there exists a sequence (v,) C C(X) such that v, 1 v. Hint: Consider the
function u = Z + tan~lv.

(Sierpinski, 1921.) Let X be a metric space and # : X — R. The following
properties are equivalent:
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o0
(a) There exists (u,) C C(X) such that for every x € X, Z |un(x)| < oo and

n=1

u(x) = Zun (x).

n=1

(b) There exists f, g : X — [0, +o00[ L.s.c. such that for every x € X, u(x) =
fx) —gx).
15. We define

X ={u :]0, I[— R : u is bounded and continuous}.
‘We define the distance on X to be

du,v) = sup |u(x)—v(x)|.
xel0,1[

‘What are the interior and the closure of

Y = {u € X : u is uniformly continuous}?



Chapter 2 ®
The Integral Qe

Le vrai est simple et clair ; et quand notre maniére d’y arriver
est embarrassée et obscure, on peut dire qu’elle méne au vrai et
n’est pas vraie.

Fontenelle

2.1 The Cauchy Integral

The Lebesgue integral is a positive linear functional satisfying the property of
monotone convergence. It extends the Cauchy integral.

Definition 2.1.1 Let £2 be an open subset of RY . We define
C(2) ={u : 2 — R : u is continuous},
K(2) ={u € C(RNY: spt u is a compact subset of £2}.

The support of u, denoted by spt u, is the closure of the set of points at which u is
different from O.

Let u € K(RY). By definition, there is R > 1 such that
sptu C {x eRY : |x|oo < R—1}.
Let us define the Riemann sums of u:

S =271N3" u(k/29).

keZN
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24 2 The Integral

The factor 2=/¥ is the volume of the cube with side 2~/ in RV. Let C = [0, 11V
and let us define the Darboux sums of u:

Aj =27V minfu(x) : 2/x—k e €}, B; =27/ > max{u(x) : 2/x—k € C}.
keZN keZN

Let ¢ > 0. By uniform continuity, there is j such that w, (1/2/) < &. Observe that
B —A; < (2R)N8, Aj_1 <A;<S;<Bj <Bj.

The Cauchy integral of u is defined by

/RN u(x)dx = lim §; = lim A; = lim B;.

Jj—>00 j—00 Jj—>00
Theorem 2.1.2 The space K(RN) and the Cauchy integral

AN:W(RN)—>R:LH—> udx
RN

are such that

(a) foreveryu € KRN), |u| € KRN);
(b) foreveryu,v € KRN) and, every a, B € R,

/au—i—ﬁvdx:oz/ udx + B vdx;
RV RN RN

(c) foreveryu € KRN such that u > 0, / udx > 0;
RN

(d) for every sequence (uy) C KR such that u, $ 0, lim u,dx = 0.

n—oo RN

Proof Properties (a)—(c) are clear. Property (d) follows from Dini’s theorem. By
definition, there is R > 1 such that

sptuoCK:{xeRN:|x|oo§R—l}.

By Dini’s theorem, (u,) converges uniformly to O on K. Hence
0< / updx < QR)Y maxu,(x) —> 0, n — oo. m|
RN xekK

It is not always permitted to permute limit and integral.

Example Let us define (u,) C K(R) by
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up(x) =2nx(1 —x)" 1, 0<x<1

=0, x<0orx>1,

where n > 2. Then
(a) forevery x € R, lim u,(x) = 0;
n—00
(b) foreveryn > 2,/ up(x)dx = 1;
(c) foreveryn > 2, s%{t u, = [0, 1].
It is easy to verify (a), since, forevery 0 < x < 1,

Up11(x)

=1-x*<1,
n—o0 U, (x)

The fundamental theorem of calculus (Theorem 2.2.38) implies (b).
The (concrete) Lebesgue integral is the smallest extension of the Cauchy integral
satisfying the property of monotone convergence

(a) if (uy,) is a sequence of integrable functions such that u, 1 u and

sup/ U, dAy < 400,
RN

n

then u(x) = limu, (x) is integrable and

/N u dAN = lim Up dAN,
R

n—>0o0 JpN

and the property of linearity,
(b) if u and v are integrable functions and if « and B are real numbers, then ou +
B is integrable and

/au—i—ﬁvdAN:a/ udAN—i—,B/ vdAy.
RN RN RN

By definition, a function u: RY —] — oo, +00] belongs to LT(RY, Ay)
if there exists a sequence (u,) of functions of K(RY) such that u, 1t u and
sup,, /RN updx < +o00. The integral of u, defined by the formula

f MdANZ lim Up dx,
RN

n—oo RN

depends only on u and satisfies property (a). It is clear that K(RY) c LT (RN, Ay).
Moreover, for every u € K(RY),
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fudAsz udx.
RN RN

Let f,g € LT(RY, Ay). The difference f(x) — g(x) is well defined except
if f(x) = g(x) = 4o00. A subset S of RY is negligible if there exists h €
LT(RN, Ay) such that, for every x € S, h(x) = 400.

By definition, a function u: RN — [—oc0, +-00] belongs to L' (RY, Ay) if there
exists f,g € LT(RY, Ay) such that u = f — g except on a negligible subset of
RN . The integral of u, defined by the formula

/ udAN=[ fdAN—/ gdAN
RN RN RN

depends only on u and satisfies properties (a) and (b).

After a descriptive definition of the (concrete) Lebesgue integral, it was necessary
to give a constructive definition in order to prove its existence.

The Lebesgue integral will be constructed in an abstract framework, the elemen-
tary integral, generalizing the Cauchy integral.

2.2 The Lebesgue Integral

Les inégalités peuvent s’intégrer.

Paul Lévy

Elementary integrals were defined by Daniell in 1918.

Definition 2.2.1 An elementary integral on the set £2 is defined by a vector space
L = L($2, p) of functions from £2 to R and by a functional

M:L—>R:ur—>/udu
2

such that

(J1) foreveryu e L, |u| € L;
(J») foreveryu,v € Land,everya, B € R,

fau—i—ﬂvdu:a/ud,u~l—,3/ vdu;
2 Q Q

(J3) forevery u € L such thatu > O,/ud,u > (.
Q
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(J4) forevery sequence (u,) C L such thatu, | 0, lim / u,du = 0.
n—oQ Q

Proposition 2.2.2 Letu,v € L. Then u™, u™, max(u, v), min(u, v) € L.

Proof Let us recall that u™ = max(u, 0), 4~ = max(—u, 0),

1 1 1 1
max(u,v):z(u+v)+5|u—v|, min(u,v):z(u+v)—5|u—v|. O

Proposition 2.2.3 Letu, v € L be such that u < v. Then /

ud,ug/vdpc.
Q 2

Proof We deduce from (J;) and (J3) that

OS/v—udu:/vdu—/udu. |
2 2 Q

Definition 2.2.4 A fundamental sequence is an increasing sequence (1,) C L such
that

lim updp = sup/ Updp < 00.
n J@

n—o00 Q

Definition 2.2.5 A subset S of £2 is negligible (with respect to p) if there is a
fundamental sequence (u,) such that for every x € S, lim u,(x) = +o0o0. A
n—oo

property is true almost everywhere if the set of points of §2 where it is false is
negligible.
Let us justify the definition of a negligible set.

Proposition 2.2.6 Let (u,) be a decreasing sequence of functions of L such
that everywhere u, > 0 and almost everywhere, lim u,(x) = 0. Then
n— o0

lim up,dpu=0.

n—oo 0
Proof Let ¢ > 0. By assumption, there is a fundamental sequence (v,) such that if

lim u,(x) > 0, then lim v,(x) = +o00. We replace v, by v,f , and we multiply by
n— oo n— oo

a strictly positive constant such that
vy >0, / vpdp < €.
Q

We define w, = (1, — v,)". Then w, | 0, and we deduce from axiom (J) that
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0< lim/ Updu < lim/ Wy + v dp = lim/ wydu +limf vpdu
Q Q Q 2

= lim/ vpdu < e.
2
Since ¢ > 0 is arbitrary, the proof is complete. O

Proposition 2.2.7 Let (u,) and (v,) be fundamental sequences such that almost
everywhere,

u(x) = nlij;o up(x) < nlggo vp (%) = v(x).

Then

lim updp < lim vpdt.
n— 00 7 n—od 0

Proof We choose k and we define w, = (ux —v,,)". Then (w,) C Lis a decreasing
sequence of positive functions such that almost everywhere,

lim wy, (x) = (ug(x) = v))" < @x) —vx)* =0.

We deduce from the preceding proposition that

/ urdp < lim/ wy +v,du = lim/ wnd,u—i—lim/ vy du = lim/ v dL.
2 2 2 2 2

Since k is arbitrary, the proof is complete. O

Definition 2.2.8 A function u : 2 — ]—o00, +00] belongs to LT = L£1T(2, 1)
if there exists a fundamental sequence (u,) such that u;,, 1 u. The integral (with
respect to ) of u is defined by

/ udpu = lim updiL.
k7] n—oo 0
By the preceding proposition, the integral of u is well defined.

Proposition 2.2.9 Letu,v € LT and a, B > 0. Then
(a) max(u,v), min(u, v),ut € LT;

(b) om+,3v€.£+and/ otu+ﬂvdp.=ot/ udu—l—ﬂ/ vdu,
2 2 2

(c) ifu < v almost everywhere, then udp < vdu.
2 2

Proof Proposition 2.2.7 is equivalent to (c). O
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Lemma 2.2.10 (Monotone Convergence in L) Let (u,) C L1 be everywhere
(or almost everywhere) increasing and such that

c= sup/ updp < oo.
n Jo
Then (u,,) converges everywhere (or almost everywhere) tou € L' and

/udu: lim UpdL.
Q

n—oo k7]
Proof We consider almost everywhere convergence. For every k, there is a funda-
mental sequence (ux, ,) such that uy , 1 u.

The sequence v, = max(u1,p, ..., Uy ) is increasing, and almost everywhere,

v, <max(uy, ..., Uy) = Uy.

/ vpd L f/ updp < c,
2 2

the sequence (v,) C L is fundamental. By definition, v, 1 u, u € L%, and

Since

/ udpu = lim vpdiL.
Q n—>oo Q
For k < n, we have almost everywhere that

Ukn = Uy =< Up.

Hence we obtain, almost everywhere, that u; <u < lim u, and
n—oo

/ukd,ugf udu < lim upd.
Q Q

n— o0 k7]
It is easy to conclude the proof. O

Theorem 2.2.11 Every countable union of negligible sets is negligible.

Proof Let (S;) be a sequence of negligible sets. For every k, there exists v € LT
such that for every x € Sk, vk (x) = 4+00. We replace vi by v,j, and we multiply by
a strictly positive constant such that

1
v >0, / vdp < —.
?) 2k
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n
The sequence u,, = E g is increasing and
k=1

n
1
/ updp <y — < 1.
2 o1 2

o o
Hence u, 1+ u and u € LT. Since for every x € USk, u(x) = +oo, the set USk

k=1 k=1
is negligible. O

By definition, functions of £ are finite almost everywhere. Hence the difference
of two functions of £+ is well defined almost everywhere. Assume that f, g, v, w €
LT and that f — g = v — w almost everywhere. Then f + w = v + g almost
everywhere and

/fdﬂ+/WdUM=/f+de=/v+gdu=/vdu+fgdu,
2 2 2 2 2 Q
so that

/fd,u—/gdu:/vd,u—/wdu.

2 2 2 2

Definition 2.2.12 A real function u almost everywhere defined on 2 belongs to
L' = £1(2, w) if there exists f, g € £+ such that u = f — g almost everywhere.
The integral (with respect to u) of u is defined by

/Qudu=/gfdu—/ggdu-

By the preceding computation, the integral is well defined.

Proposition 2.2.13

(a) IfueLl,then lul € £

(b) Ifu,ve L andifa, B € R, then au + v € L' and
/au—l—,BvdpL:a/ udu+,3/ vdu.
Q Q 2

(c) Ifuce L' and if u > 0 almost everywhere, then / udu > 0.
Q

Proof Observe that

|f — gl = max(f, g) — min(f, g). o
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Lemma 22.14 Let u € L' and ¢ > 0. Then there exists v, w € LT such that

u = v — w almost everywhere, w > 0, and/ wdu < e.
Q

Proof By definition, there exists f, g € L suchthatu = f— g almost everywhere.
Let (g,) be a fundamental sequence such that g, 1 g. Since

/gdu: lim gndpt,
o n—o0 Q

there exists n such that / g —gndn < e Wechoose w = g — g, > 0 and
2
v=f —gn. O
We extend the property of monotone convergence to L

Theorem 2.2.15 (Levi’s Monotone Convergence Theorem) Let (u,) C L' be an
almost everywhere increasing sequence such that

c:sup/ updp < 0.
2

n

Then lim u, € L' and
n—0oo

/ lim u,dp = lim upd.
Q

n— 00 n— 00 0

Proof After replacing u,, by u, — ug, we can assume that uy = 0. By the preceding

lemma, for every k > 1, there exist vg, wx € L7 such that w; > 0, / wrdp <
Q

1/ 2k, and, almost everywhere,
U — Uk—] = Vf — Wk.

Since (uy) is almost everywhere increasing, vy > 0 almost everywhere.
We define

n n
fnzzvk, gn=2wk.
k=1 k=1

The sequences ( f) and (g,) are almost everywhere increasing, and

n n
1
gdu:i/wkdufg — <1, /fd,uz/u +gndpn <c+1.
/52 ! —Je =2t 2" a
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Lemma 2.2.10 implies that almost everywhere,
lim f,=feL", lim g,=ge L'
n—oo

n—o00

and
/ fdu= lim / fndu,/ gdu = lim / gdu.
0 n—0o0 Q Q n—oo Q
We deduce from Theorem 2.2.11 that almost everywhere,
f—g= lim (f, —gu) = lim u,.
n—>0o0 n—0o0

Hence lim u, € L' and
n—>oo

2 The Integral

/ lim u,,d,u:/ fdu,—/gdu: lim/fn—gnduz lim/undu.lj

Theorem 2.2.16 (Fatou’s Lemma) Let (u,,) C L' and fe L' be such that

(a) sup/ Uupdp < 0o;
n Je
(b) foreveryn, f < u, almost everywhere.

Then lim u, € L' and

n—oo

/ lim u,dp < lim [ w,dp.
2

n—00 n—oo Jo

Proof We choose k, and we define, for m > k,
Uk = Min(Ug, ..., Upy).

The sequence (uy,,,) decreases to vy = in£ Uy, and
n>

/ fdMS/ U md L.
2 22

The preceding theorem, applied to (—ux_, ), implies that vy € L' and

/vkd,uz lim ugmdp < lim min /und,u,zinf/ upd.
2 m=00 Jo 2 nzk J o

m—00 k<n<m
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The sequence (vg) increases to lim u, and
n—oo

/ vedp < sup/ Updp < oo.
Q n J@

It follows from the preceding theorem that lim u, € L' and
n—oo

/ lim u,dp = lim / vrdp < lim inf/ updp = lim updp. 0O
O n—o0o k—oo Jo k—oon>k J o n—-o0o Jo

Theorem 2.2.17 (Lebesgue’s Dominated Convergence Theorem) Let (i1,,) C Ll
and f € L' be such that

(a) uy, converges almost everywhere;
(b) foreveryn, |u,| < f almost everywhere.

Then lim u, € L' and
n—>oo

/ lim u,dpu = lim / Upd.
Qn—>oo n—oo Q

Proof Fatou’s lemma implies that u = lim u, € L' and
n—o0o

2/fdu§ lim 2f—|un—u|du=2/fdu— fim f g — uldpe.
2 2 2 n—-oo Jo

n— oo

Hence

lim | U, —udp| < lim / lu, —uldu = 0. |
0 n—oo k7]

n— oo

Theorem 2.2.18 (Comparison Theorem) Let (u,) C L' and f € L' be such
that

(a) u, converges almost everywhere to u;
(b) |u|l < f almost everywhere.

Thenu € L.
Proof We define

v, = max(min(uy,, f), —f).

The sequence (v,) C £ is such that
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(a) v, converges almost everywhere to u;
(b) forevery n, |v,| < f almost everywhere.

The preceding theorem implies that u = lim v, € L O
n—oo

Definition 2.2.19 A real function u defined almost everywhere on £2 is measurable

(with respect to w) if there exists a sequence (u,) C L such that u, — u almost

everywhere. We denote the space of measurable functions (with respect to ) on 2

by M= M(£2, 10).

Proposition 2.2.20

(@ LcLtcL'cMm

(b) Ifu € M, then |u] € M.

(c) Ifu,ve Mandifa, B € R, then au + Bv € M.

(d) Ifu € Mand if. almost everywhere, \u| < f € L', thenu € L.

Proof Property (d) follows from the comparison theorem. O

Notation Letu € Mbe such that u > 0 and u ¢ L1 We write f udu = +oo.
Q

Hence the integral of a measurable nonnegative function always exists.
Measurability is preserved by almost everywhere convergence.

Lemma 2.2.21 Letu € L. Then there exists (uy) C L such that

(a) / lu —upldu — 0,n — oo;
(b) uy, — u,n — o0, a.e. on 2.

Proof By definition, there exists f, g € £ such that

/udu:/fdu—/gdu, u=f—g, ae.
Q 2 Q

and (fy), (gn) C L such that

[ rdi=tin [ goan, [ gdn=tim [ oidu it fo1en— o
We define the sequence (u,) C L by u, = f, — g,. Since a.e.

lu —un| < f = fo +8— 8n,
it is easy to finish the proof. O

Lemma 2.2.22 Let (u,) C L' be a sequence converging a.e. to an a.e. finite
Sfunction u. Then u € M.
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Proof The preceding lemma implies the existence of a sequence (v,) C L such
that, for every n,

/ ltn — vp| dp < 1/27.
2

Since, for every k,

k k
[DNCETAETED RVEAE
Qn:l n=1

it follows from Levi’s monotone convergence theorem that a.e.

o
Z|un — vy| < +o0.

n=1
Hence we obtain that a.e.
U, — v, —> 0,n — oo,
and
u =lim u, = lim v, € M. |
Lemma 2.2.23 Let (u,) C M. Then there exists f € LT such that f > 0 and a.e.

sup}un(x)‘ >0= f(x) > 0. (%)

Proof For every n, there exists a sequence (u,,;) C L converging a. e. to u,. Let
us define i on [0, +o0o[ by ¥ (0) = 1 and () = 1/¢,¢ > 0. By Theorem 2.2.11,
the function

=352 ([ gt ) s
n=1 j=I

satisfies (). Since, for every k,

k k k k
XS ([ ot )t = 32 <

n=1 j=1 n=1 j=1

Lemma 2.2.10 implies that f € £ O
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Theorem 2.2.24 Let (u,) C M be a sequence converging a. e. to an a.e. finite
function u. Then u € M.

Proof Let f € L7 be given by the preceding lemma and define,
v, = max(min(nf, u,), —nf).

It follows from the comparaison theorem that (v,) C L' Since v, — uae.on s2,
Lemma 2.2.22 implies that u € M. O

The class of measurable functions is the smallest class containing £ that is closed
under almost everywhere convergence.

Definition 2.2.25 A subset A of 2 is measurable (with respect to w) if the
characteristic function of A is measurable. The measure of A is defined by

M(A)ZfXAdM-
2

Proposition 2.2.26 Let A and B be measurable sets, and let (A,) be a sequence of

o o0
measurable sets. Then A \ B, UA” and ﬂAn are measurable, and

n=1 n=1
u(AU B) + n(AN B) = n(A) + n(B).

If, moreover, for every n, A, C Ap+1, then

o0
Iz (U An> = lim p(Ay).
n=1

If, moreover, w(A1) < oo, and for every n, A,+1 C Ay, then

o0
w (ﬂ An> = lim j1(Ap).
n=1
Proof Observe that

XAUB + X anp = max(X, Xp) +min(X 4, Xg) = XA + XB,

Xa\B = Xa—min(X 4, Xp),

XUsozlAn :nll)rgomax(XAl,...,XAn),
Xml(zilAn :nli)rrgomln(XAl,...,XAn).

The proposition follows then from the preceding theorem and Levi’s theorem. O
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Proposition 2.2.27 A subset of §2 is negligible if and only if it is measurable and
its measure is equal to 0.

Proof Let A C $2 be a negligible set. Since X 4 = 0 almost everywhere, we have

by definition that X 4 € £ and (A) = / Xadp = 0.
2

Let A be a measurable set such that u(A) = 0. For every n, / nXadp = 0.
2

By Levi’s theorem, u = lim nX4 € L. Since u is finite almost everywhere and
n—oo

u(x) = +oo on A, the set A is negligible. O

The hypothesis in the following definition will be used to prove that the set {# >
t} is measurable when the function # > 0 is measurable.

Definition 2.2.28 A positive measure on £2 is an elementary integral © : £ — R
on £2 such that

(J5) foreveryu € L, min(u,1) € L.
Proposition 2.2.29 Let i be a positive measure on 2, u € M, andt > 0. Then
min(u, t) € M.

Proof If t = 0, min(u,0) = ut € M. Lett > 0. There is a sequence (u,) C £
converging to u almost everywhere. Then v, = t min(t"'u,, 1) € £ and v, —
min(u, t) almost everywhere. O

Theorem 2.2.30 Let (1 be a positive measure on §2, and let u : 2 — [0, +00] be
almost everywhere finite. The following properties are equivalent:

(a) u is measurable;
(b) foreveryt >0, {u >t} ={x € 2 :u(x) > t} is measurable.

Proof Assume that u is measurable. For every + > 0 and n > 1, the preceding
proposition implies that

u, = n[min(u, t + 1/n) — min(u, t)]
is measurable. It follows from Theorem 2.2.24 that
X{u>[} = lim u, < M.
n—>0oo

Hence {u# > t} is measurable.
Assume that u satisfies (b). Let us define, for n > 1, the function

1 o0
n = 5o D Xiuskjamy- ()
k=1
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For every x € 2, u(x) — 1/2" < u,(x) < u(x). Hence (u,) is simply convergent
to u. Theorem 2.2.24 implies that (u,) C Mand u € M. O

Corollary 2.2.31 Letu,v € M. Then uv € M.

Proof If f is measurable, then for every ¢ > 0, the set

(2> ={fl> V1)

is measurable. Hence f? is measurable. We conclude that

1
uv:Z[(u—i-v)z—(u—v)z]eM. O
Definition 2.2.32 A function u : 2 — [0, +00] is admissible (with respect to the
positive measure ) if u is measurable and if for every r > 0,
pu(t) = pfu > 1}) = n({x € 2 1 u(x) > t}) < +o0.
The function w, is the distribution function of u.

Corollary 2.2.33 (Markov Inequality) Letu € L', u > 0. Then u is admissible,
and for every t > 0,

() <t f udp.
2

Proof Observe that for every t > 0, v = tX (4>} < u. By the comparison theorem,

veﬁland/vd,uS/udu. O
2 2

Corollary 2.2.34 (Cavalieri’s Principle) Leru € Llu > 0. Then

/ udu:/oouu(t)dt.
2 0

Proof The sequence (u,) defined by (x) is increasing and converges simply to
u. The function w, :]0, +oo[— [0, +oo[ is decreasing. We deduce from Levi’s
theorem that

1 k *
/Q”dﬂznll)ngo Qundﬂ:nlipgoZ_”k;uu (2_n>=/() Hu()dt. O
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Definition 2.2.35 Let £2 be an open subset of R". The Lebesgue measure on £2 is
the positive measure defined by the Cauchy integral

AN:‘K(Q)—>]R:LH—>/ udx.
Q

We define the functional spaces £7(2) = L1(£2,Ay) and L) =
! (82, Ay). From now on, the Lebesgue integral (with respect to Ay) of
uell (£2) will be denoted by f o 4 dx. The Lebesgue measure of a A y-measurable
subset A of §2 is defined by

m(A):/ Xadx.
2

Topology is not used in the abstract theory of the Lebesgue integral. In contrast,
the concrete theory of the Lebesgue measure depends on the topology of RV .

Theorem 2.2.36 We consider the Lebesgue measure on RN

(a) Every open set is measurable, and every closed set is measurable.
(b) For every measurable set A of RV, there exist a sequence (Gy) of open sets of

o
RY and a negligible set S of RN such that AU S = ﬂ Gy.
k=1
(c) For every measurable set A of RV, there exist a sequence (Fy,) of closed sets of
o

RY and a negligible set T of RN such that A = U F,UT.
k=1

Proof

(a) Let G be an open bounded set and define
U (x) =min{1,nd(x,RN\G)}. (%)

Since (u,) C K(RN) and u, — X, the set G is measurable. For every open

o0
set G, G, = G N B(0, n) is measurable. Hence G = UG,, is measurable.

n=1
Taking the complement, every closed set is measurable.

(b) Let A be a measurable set of RY. By definition, there exist a sequence (u,) C
K(RY) and a negligible set R of RY such that u, — X4 on RV \ R. There is
also f € L1 suchthat R C § = {f = +o0}. By Proposition 1.3.10, f is l.s.c.
Proposition 1.3.12 implies that for every t € R, {f > ¢} is open. Let us define
the open sets

o
Uy, = {u, > 1/2}U{f >n} and Gk:UU”'
n=k
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o
It is clear that for every k, AUS C Gy and AUS = m G. Since S is negligible

k=1
by definition, the proof is complete.

(c) Taking the complement, there exist a sequence (Fy) of closed sets of RY and a
negligible set S of RV such that

o0
AN@®V\ ) = F.
k=1
It suffices then to define T = AN S. m]

Proposition 2.2.37 Leta < b. Then
m(la, b)) = m([a, b)) = b —a.

In particular, m({a}) = O, and every countable set is negligible.

Proof Let (u,) be the sequence defined by (*). It is easy to verify that
Suj =277 un(k/27)
keZ

satisfies the inequalities

2 1
b—a————===<8,j<b—-a+

n 2/-1 2/-1"

The definition of the Cauchy integral implies that

2
b—a——f/llndx: lim S, <b—a.
R

n Jj—00

Since u,, 1 Xjq,p[, it follows from Definition 2.2.8 that

m(la, b)) = / Xla,ppdx = lim Uupdx =b —a.
R

n—oQ R

o0
Since [a, b] = ﬂ]a — 1/n, b + 1/n[, we deduce from Proposition 2.2.26. that

n=1

m([a,b]):nlingob—a+2/n=b—a. O
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Notation If u is integrable on [a, x[, we write

/xu(t)dt=/ u(t)dtz/ Xla xu(t)dt.
a [a,x[ R

The next result, due to A. Cauchy, is the fundamental theorem of calculus.

Theorem 2.2.38
(a) Letu € C([a, b]). Then for everya <x <b

% /x u(t)dt = u(x).
(b) Letu € C'([a, b]). Then

b
/ u' (t)dt = u(b) — u(a).

Proof
(a) Letus define v on [a, b] by

v(x) = /x u(t)dt.

For every a < x < b and for every 0 < ¢ < b — x, we have that

v(ix +¢&) —v(x) _
€

x+e
/ (u(t) —u(x))dt

1

1 x+e
2/ lu(t) — u(x)|dt

sup |u(?) — u(x)|.

x<t<x+e

IA

IA

Since u is continuous, we obtain

lim —U(x +e) —vl) - u(x)‘ =0.
el0 &

Similarly, fora < x < b,
lim M —u(x)| = 0.
el0 &
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(b) Since, for every a < x < b, we have that

4 I:/x u' (t)dt — u(x)] =u'(x) —u'(x) =0,
dx | J,

we conclude that

b
f ' (t)dt —u(b) = —u(a). |

Examples

(a) LetA € R\{—1}and 0 < a < b. Then

b a1 7b
/ x)‘dxz[x i| .
p A+1],

(b) Let A > —1 and b > 0. For every n > 1/b, X[l/n,b[x)‘ is integrable. Levi’s
monotone convergence theorem implies that

(c) Let A, < —1 and @ > 0. For every n > a, X[zn(x" is integrable. Levi’s
monotone convergence theorem implies that

/OO . a}»-l—l
x*dx = .
a A+ 1]

(d) (Cantor sets). Let0 < & <1 and (¢,) C ]0, 1] be such that

00
&= Z 2"0,,.
n=0

From the interval Co = [0, 1], remove the open middle interval Jy 1 of length £g.
Remove from the two remaining closed intervals the middle open intervals J; | and
J12 of length £;. In general, remove from the 2" remaining closed intervals the
middle open intervals Jy 1, ..., Jy 2» of length £,,. Define

2" 00

Cor1 =Ca\ | J s C=[C.

k=1 n=1
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The set C is the Cantor set (corresponding to (£,)). Let us describe the fascinating
properties of the Cantor set.

The set C is closed. Indeed, each C,, is closed.

The interior of C is empty. Indeed, each C,, consists of 2" closed intervals of equal
length, so that ¢ is the only open subset in C.

The Lebesgue measure of C is equal to 1 — ¢. By induction, we have for every n
that

n
m(Cppr) =1 — sz'e.,.
j=0

Proposition 2.2.26 implies that

o
m(C):l—ZZjEjzl—s.
j=0

The set C is not countable. Let (x,) C C. Denote by [ay, b1] the interval of C| not
containing x1. Denote by [a2, b;] the first interval of C> N[ay, b1] not containing x».
In general, let [a,, b,] denote the first interval of C,, N [a,—1, b,—1] not containing
Xxp. Define x = supa, = lim a,. For every n, we have

n n— 00

[an, bp] C Cy, x4 & lan, byl, x € [ay, by].

Hence x € C, and for every n, x, # x.

For ¢ = 1, C is not countable and negligible.

Finally, the characteristic function of C is u.s.c., integrable, and discontinuous at
every point of C.

The first Cantor sets were defined by Smith in 1875, by Volterra in 1881, and by
Cantor in 1883.

2.3 Multiple Integrals

Fubini’s theorem reduces the computation of a double integral to the computation
of two simple integrals.
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Definition 2.3.1 Define on R, f(t) = (1 — |¢|)*. The family fix@x) =
N

[[f@xn —ka). j €N,k € ZV . is such that f; € KRY),

n=1

SPtfjk = Boolk/27, 17271, Y fix =1, fjx = 0.
keZN

Proposition 2.3.2 Let §2 be an open set in RY and let u € K(82). Then the
sequence

wj= Y uk/2) fjx

keZN

converges uniformly to u on §2.

Proof Let ¢ > 0. By uniform continuity, there exists m such that w, (1/2™) < e.
Hence for j > m,

() —uj) =1 D @) —uk/2) fial <e Y fixx)=e. 4
kezZN kezZN
Proposition 2.3.3 Let u € K(RY). Then
(a) foreveryx €R u(.x )€ FRN-1y.

(b) u(x', )dx' € KR);
N—-1

(c) /I;N u(x)dx = /Rde /RNAM(X ,xN)dx.

Proof Every restriction of a continuous function is continuous.

Let us define v(xN) = / u(x’, xN)dx/. Lebesgue’s dominated convergence
R 1

theorem implies that v is continuous on R. Since the support of u is a compact
subset of RV, the support of v is a compact subset of R.
We have, for every j € N and every k € Z, by definition of the integral that

[ satode= [ ax [ s ar

Hence for every j € N,

. — (! ’
/RN uj(x)dx = /I:Rde /RN?I uj(x ,xN)dx .

There is R > 1 such that



2.3 Multiple Integrals 45

sptuc{xeRN:|x|oo§R—l}.

For every j € N, by the definition of the integral, we obtain

’

‘/ u(x) —uj(x)dx
RN

< RN max |u(x) —u;j(x)
xeRN ’

and
N
/Rde A;Nil u(x/,xN) —uj(x, xN)dx/ < (2R) ;161%?(/ lu(x) —u;x)|.
It is easy to conclude the proof using the preceding proposition. O

Definition 2.3.4 The elementary integral i on £2 = §2] X §2; is the product of the
elementary integrals (1 on £21 and o on £2; if for every u € L(£2, u),

(@) u(.,x2) € L(8£21, uy) for every xo € §27;
(b) / u(xy, Jdur € L(822, 12);

29
(©) / M(Xl,xz)d/i:/ sz/ u(xy, x2)duy.
2 2, 2

We assume that p is the product of w1 and 5.
Lemma 2.3.5 Letu € L7(82, ). Then
(a) for almost every x3 € §22, u(., x3) € L2y, ni);
) [ utn s € L@

21
(c) f u(x1,X2)dM=/ sz/ u(xy, x2)d 1.
2 2y 21

Proof Let (u,) C L(£2, ) be a fundamental sequence such that u,, 1 u. By
definition,

vy, = / Mn(.x1, )dﬂ] S -E(QZ’ /1’2)’
2
and (v,) is a fundamental sequence. But then v, 1 v, v € £ (£2, u2), and

/ v(x2)dps = lim / o (xa)d iz,
2 n—o0 Jo

For almost every x, € §27, v(x2) € R. In this case, (u,(., x2)) C L(£2], n1)isa
fundamental sequence, and u, (., x2) 1 u(., x2). Hence u(., x2) € £¥(£21, u1) and
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[ wen i = tim [ unenandin = fim v, = oG,
2 =00 Jo, n— 00

It follows that / u(xy, )dpy € LT(822, o) and
2,

/M(Xl,xz)du= lim /”n(xl»)@)d,u
0 n—oo o

= 1im[ sz/ u, (x1, x2)dpy
n—>oo Jo 2,

= lim v (x2)d a2
n—oo 92

/ v(x)dps = / dis / u(er, x2)dpr. .
25 2 21

Lemma 2.3.6 Let S C $2 be negligible with respect to . Then for almost every
Xy € .Qz,

Sy, = {x1 € 21 : (x1,x2) € S}

is negligible with respect to [41.

Proof By assumption, there is u € £1(£2, 1) such that
S C {(x1,x2) € 2 :u(xy, x2) = +o0}.
The preceding lemma implies that for almost every x; € £22,
Sy, C {x1 € 821 1 u(x1, x2) = 400}
is negligible with respect to (1. O

Theorem 2.3.7 (Fubini) Letu € £'(82, ). Then
(a) for almost every x3 € §22, u(., x3) € L£21, 11);
(b) f u(r, ddpr € L2, 1);

21
(c) / M(Xl,xz)dﬂ=/ duz/ u(xy, x2)duy.
2 22 2

Proof By assumption, there is f,g € £1(£2, ) such that u = f — g almost
everywhere on §2. By the preceding lemma, for almost every x2 € 22,

u(xy, x2) = f(xy, x2) — glxy, x2)
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almost everywhere on £21. The conclusion follows from Lemma 2.3.5. O

The following result provides a way to prove that a function on a product space
is integrable.

Theorem 2.3.8 (Tonelli) Letu : 2 — [0, +00[ be such that
(a) foreveryn € N, min(n, u) € Ll(.Q, w;

(b) c=/ d,uz/ u(xy, x2)dpuy < +oo.
2 21

Thenu € L1(£2, ).

Proof Let us define u,, = min(n, u). Fubini’s theorem implies that

/ un(xl,xz)d/t=/ duz/ up(x1, x2)duy < c.
2 2 2

The conclusion follows from Levi’s monotone convergence theorem. O
The following version of Fubini’s theorem is due to J.A. Baker.
Theorem 2.3.9 Let U be a bounded open subset of RN, and let i be an elementary
integral on the set 2. Assume that f € L'(2, ) and
F:Ux2—->R:(x,y)—~ F(x,y)

verify
(@) [Fx, I = f(y)
(B) for u — almost every y € §2, F(-,y) is continuous on U;

(y) forallx € U, F(x, ) is u — measurable on §2.
Then

(a) the function G(x) = / F(x,y)du is Ay-integrable on U;
Q
(b) the function H(y) = / F(x, y)dx is p-integrable on $2;

U
(c) /dx/ F(x,y)du:/ du/ F(x,y)dx.
U 2 2 U

Proof Letus defineon U x 2
k
Fi,yy =30 F(550) fixt),
kezZN

where F(x, y) = 0for x € RV\U. Assumptions («) and (8) ensure that, for almost
every y € £2 and for every x € U,
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lim Fj(x,y)=F(x,y) , |FiGx»I<fO). )
J—>00

Lebesgue’s dominated convergence theorem, assumption (y), and the continuity of
F;(-,y) imply that

G(x) = lim / Fi(x,y)du and H(y) = lim / Fi(x,y)dx.
J—>00 (9] J—>00 U

Let us define

k
Gj(x>=fQF,~<x,y)du= > /!2F<§,y> du fix(x)

keZN

and

- k
H; () =/UFj(x,y)dx =27N 3 F(E, )

keZN

By definition, for every j > 1, G is continuous and H; is p-measurable. It follows
from (x) that

IGj(X)IS/_CZf(y)dM and  [H;(y)| =m(U)f().

We deduce from Lebesgue’s dominated convergence theorem that

/G(x)dx: lim / Gj(x)dx and /H(y)du: lim / H;(y)du.
U j—=ooJuy 2 jmooJe

Since

/Gj(x)dxzfdx[ Fj(x,y)duzf du/ Fj(x,y)dxzf Hi(y)du,
U U 2 2 U 2

the proof is complete. O

2.4 Change of Variables

Let £2 be an open set of RY, and let Ay be the Lebesgue measure on £2. We define

LY (2) = LT, Ay), L£1(2) = £1(2, Ay).
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Definition 2.4.1 Let 2 and @ be open. A diffeomorphism is a continuously
differentiable bijective mapping f : 2 — w such that for every x € £2,

J(x) =det f'(x) #0.

We assume that f : £2 — o is a diffeomorphism. The next theorem is proved in
Sect.9.1.

Theorem 2.4.2 Letu € K(w). Then u(f)|Jr| € K(82) and

fg u(f DTy () ldx = / u(y)dy. )

Lemma 2.4.3 Letu € L1 (w). Then u(HlJrl e LT(2), and (%) is valid.

Proof Let (u,) C K(w) be a fundamental sequence such that u, 1 u. By the
preceding theorem, v, = u,(f)|Jr| € K(£2), and (v,) is a fundamental sequence.
It follows that

/Q u(f N5 ()ldx = lim /Q n (f DI () ldx = lim. / un(y)dy = / u(y)dy.

O
Lemma 2.4.4 Let S C w be a negligible set. Then f~1(S) is a negligible set.
Proof By assumption, there is u € LT (w) such that
SC{yew:uly) =—+oco}
The preceding lemma implies that the set
SIS C e 2 tu(f(x) = +o0)
is negligible. O

Theorem 2.4.5 Letu € L' (w). Then u(HJrl € L1($2), and (*) is valid.

Proof By assumption, there exists v, w € L (w) such that u = v — w almost
everywhere on w. It follows from the preceding lemma that

u(HIpl=v(Hrl =w(HIIyl

almost everywhere on 2. It is easy to conclude the proof using Lemma 2.4.3. O

Let
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BN:{XGRN:|x|<1}

be the unit ball in RV, and let VN = m(BN) be its volume. By the preceding theorem,
for every r > 0,

m(BO, r)) = /

Iyl<r

dy:rN/ dx =NV .
|x]<1

N

We now define polar coordinates. Let N > 2 and ]R*N = RN\ {0}. Let
SVl={s eRY : |o| =1}
be the unit sphere in RN . The polar change of variables is the homeomorphism

10, oo[><SN*1 — R*N 2 (r,0) —> ro.

Definition 2.4.6 The surface measure on SV ! is defined on C(S¥~!) by

/SM f(o)do = N/BN f <|i—|) dx.

Observe that the function f(x/|x]|) is bounded and continuous on BN \ {0}.
Since S¥~! is compact, Dini’s theorem implies that the surface measure is a
positive measure.

Lemma 2.4.7 Let u € K(RN). Then

(a) forevery r > 0, the function o +— u(ro) belongs to C(SN™1);

(b) i u(x)dx:rN_I/ u(ro)do;
dr |x|<r SN-1

(c) / u(x)dx:/ rN_ldr/ u(ro)do.
RN 0 SN-1

Proof

(a) The restriction of a continuous function is a continuous function.

(b) Letw(r) = / u(x)dx and v(r) = / u(ro)do,r > 0. By definition, we

|x|<r SN-1

v(r) = N/ u (Lx> dx.
B x|
N

Choose r > 0 and ¢ > 0. By definition of the modulus of continuity, we
have

have
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‘w(r—i—e)—w(r)—/ u(rx/|xdx

r<|x|<r+e

/ u(x) —u(rx/|x|)dx
r<|x|<r+e

< @)V, [+ o)V =],

The preceding theorem implies that

(r—i—s)N—rN

/ u(rx/lx))dx = / u(rx/lxl)dx—/ u(rx/|x|)dx = ————v(r).
r<l|x|<r+e |x|<r+e |x|<r N

Hence we find that

(r +8)N —rN

‘w(r +8) —w(r) = ——— ()| S @@V [+ )Y = "],
so that
lim M _ rN_lv(r) —0.
©20 ‘

The right derivative of w is equal to #~!v. Similarly, the left derivative of w is
equal to rV " 1v.
(c) The fundamental theorem of calculus implies that for 0 < a < b,

b b
/ u(x)dx = wb)—w(a) = / v(r)erldr = / erldr/ u(ro)do.
a<|x|<b a a SN-1

Taking the limit as a — 0 and b — +o00, we obtain (c). |

Theorem 2.4.8 Letu € LI(RN ). Then
(a) for almost every r > O, the function 0 — u(ro) belongs to L! (SN do);

(b) the function r — / u(ro)do belongs to L! (0, oo[, r¥N1dr);
SN-1

(c)/ u(x)dx:/oorN_ldr/ u(ro)do.
RN 0 SN—I

Proof By the preceding theorem, the Lebesgue measure on RY is the product of
the surface measure on SV ~! and the measure N ~1dr on 10, col. It suffices then to
use Fubini’s theorem. |

Theorem 2.4.9 The volume ‘iv is given by the formulas

2w
Vi=2,Vo=m and VN = WVN_Z.
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Proof Let N > 3. Fubini’s theorem and Theorems 2.4.5 and 2.4.8 imply that

\4 =/ dx
N Ixl<1
:/ dxz...dx / dxidx)
x§+..<+x1\2/<1 N x12+x§<1—(x§+-4.+x]\2,)

=7'r/ 1—(x§+...+x2)dx3...dx
x§+..‘+x1\2]<l N N

1
2y, N-3 2
=a(N—-2)Vy_o|] (1 —=r)r dr = WVN_z. m|
0

2.5 Comments

The construction of the Lebesgue integral in Chap. 2 follows the article [65] by
Roselli and the author. Our source was an outline by Riesz on p. 133 of [62].
However, the space £ defined by Riesz is much larger, since it consists of all
functions u that are almost everywhere equal to the limit of an almost everywhere
increasing sequence (u,) of elementary functions such that

sup/ U, dp < oo.
n J@

Using our definition, it is almost obvious that in the case of the concrete Lebesgue
integral:

— Every integrable function is almost everywhere equal to the difference of two
lower semicontinuous functions.

— The Lebesgue integral is the smallest extension of the Cauchy integral satisfying
the properties of monotone convergence and linearity.

Our approach was used in Analyse Réelle et Complexe by Golse et al. [30].

Theorem 2.3.9 is due to J.A Baker, Math. Chronicle 19 (1990) 19-22.

Lemma 2.4.7 is also due to Baker [4]. The book by Saks [67] is still an excellent
reference on integration theory.

The history of integration theory is described in [39, 57]. See also [31] on the life
and the work of Emile Borel.

An informal version of the Lebesgue dominated convergence theorem appears
(p. 121) in Théorie du Potentiel Newtonien, by Henri Poincaré (1899).
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2.6 Exercises for Chap. 2

1. (Independence of J4.) The functional defined on
L= {u :N— R: lim uk) exists}
k— 00
by (f,u) = klim u(k) satisfies (J1_»_3) but not Jy4.
—00
2. (Independence of J5.) The elementary integral defined on
L={u:[0,11>R:x+ ax:aecR}

by

/ udu=u(l)
is not a positive measure.
3. (Counting measure.) Let £2 be a set. The elementary integral defined on

L={u:2 — R:{u(x) # 0} is finite}

by
[oan= ¥ o
2 u(x)£0
satisfies
o0
LIN, p) = {u:N—)R:ZW(mH < 00
n=0
and

/ udp = Zu(n).
N n=0

Prove also that when §2 = RR, the set R is not measurable.
4. (Axiomatic definition of the Cauchy integral.) Let us recall that Tyu(x) = u(x —
y).Let f: K(RY) - R be a linear functional such that

(a) forevery u € KRN), u > 0= (f,u) > 0;
(b) forevery y € RY and for every u € KRN), (f, tyu) = (f, u).
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Then there exists ¢ > 0 such that for every u € KRN, (fiu) = c/ udx.
RN
Hint: Use Proposition 2.3.2.
5. Let u be an elementary integral on 2. Then the following statements are

equivalent:

@ ueL(2 .
(b) There exists a decreasing sequence (u,) C L1(£2,u) such that almost

everywhere, u = lim u, and inf | u,du > —oo.
n— o0 o

6. Let 2 = B(0,1) c RV. Then
A+N>0 x* e L{(Q2), A+ N <0< |x* € LIR" \ ).

7. Letu : R — R be such that for every y € R, u(., y) is continuous and for every
x € R, u(x,.) is continuous. Then u is Lebesgue measurable. Hint: Prove the
existence of a sequence of continuous functions converging simply to u on R

o0
8. Construct a sequence (wy) of open dense subsets of R such that m (ﬂ a)k) =0.

k=0
Hint: Let (g,) be an enumeration of Q, and let I, ; be the open interval with

o
center g, and length 1/2’”‘]‘. Define w; = UI"*"'
=0

n=|
9. Prove, using Baire’s theorem, that the set of nowhere differentiable functions is
dense in X = C([0, 1]) with the distance d (u, v) = max1 lu(x) —v(x)|.

0<x<
Hint: Let Y be the set of functions in X that are differentiable at at least one

point, and define, forn > 1,

F, = {u € X : there exists 0 < x < 1 such that,
forall0 <y <1, |u(x) —u®)| <nlx —yl}.

o0 o0
Since Y C UF"’ it suffices to prove that ﬂGn is dense in X, where G, =
n=1 n=1
X \ F,. By Baire’s theorem, it suffices to prove that every G, is open and dense.
It is clear that

Gp={ue X :forall0 <x <1, thereexists0 <y <1
such that n|x — y| < |u(x) —u(y)|}.

Let u € G,,. The function

J&x) = max{lu(x) —u(y)| —n(x =y)|: 0=y =<1},
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is such that

inf = mi 0.
051251f(x) Ogglf(x)>

It follows that G, is open.
We use the functions f; ; of Definition 2.3.1. Letu € X and & > 0. Define

wjx)= Y uk/2)fjrx),

0<k=<2/
gm(x) =ed2"x,N).
Then for j and m large enough,
du,uj) <e, uj+gm€ Gy
It follows that G,, is dense.
10. Let u be a positive measure on the set §2, and let u: 2 — [0, +o00[ be a u-

measurable function. Prove that

ue L2, 1)< w e L0, +o00D).

f udp = /‘00 Wy (t)dt.
2 0

11. (Proof of Euler’s identity by M. Ivan, 2008).

In this case

1 1 d 1 Jog 112 © o1

@ [ af e TR a2y [
1 g 14+2xy+y -1 Yy =) 2n + 1
o0

1
=42 G

n=0
1 1 1 2
dy T T
(b)/dx/ :/ dx = —.
-1 —1 14+ 2xy 42 —12/1—x2 2

00 2
T 1 T
——— = — is equivalent to the formula —_ = —.
12 g 0 nZ_l 26

(¢) The formula Z
n=0
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12. Letu € C'@RY) N K(RYN). Then

1 v —y)-
ux) = / u(x Ny) ydy'
NV Jry [yl

Hint: For every ¢ € SVN~1,
o
ulx) = / Vu(x —ro)-odr.
0

13. The Newton potential of the ball B = B(0, R) C R3 is defined, for ly| > R,

by
dx
w(y)=/ .
BRr |y _-x|

Since Bp is invariant by rotation, we may assume that y = (0, 0, a), where
a = |y|. It follows that

dx
p(y) =
Br \/x% +x3 + (x3 — a)?

R JR2=x2 r
= 271/ dx3/ ——dr

R
:n/ (w/R2+a2—2aX3—a+x3) dx3

—R
4 RP 4 R
=-T— =-n—.
3 a 3 |yl

14. The Newton potential of the sphere S is defined, for |y| # 1, by

d
w<y)=f 7
s2 ly —ol

For |y| > R, we have that

4 R3 R,
—-T— = ref(r, y)dr,
3|yl 0

where

d
£y =/ _do
S

2 [y —ro]
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It follows that

In particular, for |y| > 1,

R2
dr = R*f(R. ).
y

4
v = fy) = —.
[yl

57



Chapter 3 ®)
Norms G

3.1 Banach Spaces

Since their creation by Banach in 1922, normed spaces have played a central role
in functional analysis. Banach spaces are complete normed spaces. Completeness
allows one to prove the convergence of a sequence or of a series without using the
limit.

Definition 3.1.1 A norm on a real vector space X is a function

X—>R:u ||ul|

such that
(N1) foreveryu € X \ {0}, ||u|| > O;
(N,) foreveryu € X and for o € R, ||au|| = |a| ||u]l;

(N3)  (Minkowski’s inequality) for every u, v € X,

[l + vl < [lull + [|v]].

A (real) normed space is a (real) vector space together with a norm on that space.
Examples 1. Let (X, ||.||) be a normed space and let Y be a subspace of X. The

space Y together with ||.|| (restricted to Y) is a normed space.
2. Let (X1, ].1l1), (X2, ].l]2) be normed spaces. The space X1 x X, together with

[l Ger, u2) || = max (w1, [luzll2)
is a normed space.
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60 3 Norms
3. We define the norm on the space R" to be

oo = max{lxil, ... 1x 1}.

Every normed space is a metric space.

Proposition 3.1.2 Let X be a normed space. The function
XxX—>R:,v) e ||lu—v|
is a distance on X. The following mappings are continuous:
X —>R:u|ull,
XxX—>X:(u,v)—>u+v,
RxX— X:(x,u) = au.
Proof By N1 and N>,
du,v) =0<=u=v, du,v)=|—w—-v)||=|v—ull =d,u).
Finally, by Minkowski’s inequality,
du,w) <du,v)+d(v, w).

Since by Minkowski’s inequality,

Jlall = loll| = Il = .

the norm is continuous on X. It is easy to verify the continuity of the sum and of the
product by a scalar. O

o0
Definition 3.1.3 Let X be a normed space and (u,) C X. The series Z”"

n=0
k

converges, and its sum is # € X if the sequence E u, converges to u. We then

n=0
o0
write E Up = U.
n=0

o o
The series Zu” converges normally if Z| lu,|| < oo.
n=0 n=0
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Definition 3.1.4 A Banach space is a complete normed space.

Proposition 3.1.5 In a Banach space X, the following statements are equivalent:

o0
(a) Z u, converges;

n=0
k
b) 1 =0.
i<k n=j+1
k
Proof Define Sy = Zun. Since X is complete, we have
n=0
k
(@) lim || —S;[|=0 lim || Y u,||=0&b). O
j— oo j— -
j<k j<k =it

Proposition 3.1.6 In a Banach space, every normally convergent series converges.
o
Proof Let Zun be a normally convergent series in the Banach space X.

n=0
Minkowski’s inequality implies that for j < k,

k k
DTl = D0 luall.
n=j+1 n=j+1

Since the series is normally convergent,
k

dlim Y [ul| =0.

—> 00 =
Jj <k =it

It suffices then to use the preceding proposition. O

Examples 1. The space of bounded continuous functions on the metric space X,

BC(X) = {u € C(X) :sup lu(x)| < oo},
xeX

together with the norm

lltlloo = sup |u(x)],
xeX
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is a Banach space. Convergence with respect to ||.|| is uniform convergence.

2. Let u be a positive measure on $2. We denote by LY (£2, p) the quotient of
L' (£2, ) by the equivalence relation “equality almost everywhere”. We define
the norm

[ull1 =/ luldp.
2

Convergence with respect to ||.||; is convergence in mean. We will prove in
Sect. 4.2, on Lebesgue spaces, that L! (£2, ) is a Banach space.

3. Let Ay be the Lebesgue measure on the open subset 2 of RY. We denote by
L'(£2) the space L'(£2, Ay). Convergence in mean is not implied by simple
convergence, and almost everywhere convergence is not implied by convergence
in mean.

If m(£2) < oo, the comparison theorem implies that for every u € BC(£2),

el =f9|u|dx < m()][ullso-

Hence BC(£2) C L'(£2), and the canonical injection is continuous, since
llu —vll1 < m(82)||lu — vlloo.
In order to characterize the convergence in L' (§2, 1) we shall define the notions
of convergence in measure and of equi-integrability.

We consider a positive measure p on §2. We identify two p-measurable functions
on §2 when they are pu-almost everywhere equal.

Definition 3.1.7 A sequence of measurable functions (u,) converges in measure to
a measurable function u if for every ¢t > 0,

lim w{lu, —u| >t} =0.
n— o0

Proposition 3.1.8 Assume that the sequence (u,) converges in measure to u.
Then there exists a subsequence (u,,) converging almost everywhere to u on 2.

Proof There exists a subsequence (u,, ) such that, for every k,
pllun, —ul > 1/25) < 172,
Let us define
A = (un, —ul > 1/2°), Br = 2\A

and
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=Ny

||C8

s-Une

IID8

so that A = 2\ B. For every x € B, there exists j > 1 such that
k> j = fun (x) —u(x)] < 1/2%,

Hence, for every x € B, lim u,, (x) = u(x).
k— 00

Since, for every j,

o
p) < | A ] =272,
k=j

we conclude that £(A) = 0. |

Proposition 3.1.9 Let (u,,) be a sequence of measurable functions such that

(a) (u,) converges to u almost everywhere on 2,
(b) for every e > 0, there exists a measurable subset B of §2 such that u(B) < 0o

and sup lupldu < e.
n JQ\B

Then (uy) converges in measure to u.
Proof Lett > 0 and let ¢ > 0. By assumption (b) there exists a measurable

subset B of £2 such that u(B) < oo and sup/ luy,ldu < et/3. It follows
n J2\B

from Fatou’s lemma that / luldp < et/3. Lebesgue’s dominated convergence
2\B
theorem implies the existence of m such that

nzm:>/ Xjup—u|>r dpr < €/3.
B

We conclude using Markov’s inequality that, for n > m,

1
w{luy —ul >t} < / Xy —u|>t du + _/ luy, —uldp
B t Jo\B

e 1 1
f“i“/ |un|dﬂ+_/ luldu < e. 0
3 tJos rJa\B
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Proposition 3.1.10 Letu € L'($2, i) and let & > 0. Then

(a) there exists § > 0 such that, for every measurable subset A of §2
p) <62 [ uidu < e
A

(b) there exists a measurable subset B of §2 such that w(B) < oo and

luldu < e.
2\B

Proof  (a) By Lebesgue’s dominated convergence theorem, there exists m such
that

f luldu < e/2.
|u|>m

Let § = ¢/(2m). For every measurable subset A of £2 such that u(A) < §, we
have that

/ uldp < mu(A) +/ uldp < e.
A |u|>m

(b) By Lebesgue’s dominated convergence theorem, there exists n such that

/ uldu < s.
lu|<1/n

The set B = {|u| > 1/n} is such that u(B) < oo and/ luldp < e. i
Q\B

Definition 3.1.11 A subset S of L'(£2, ) is equi-integrable if
(a) for every ¢ > 0, there exists § > 0 such that, for every measurable subset A of
§2 satisfying u(A) <4, sup/ luldu < e,
ueSJA
(b) for every ¢ > 0, there exists a measurable subset B of §2 such that u(B) < oo
and sup/ luldp < e.
ues J2\B
Theorem 3.1.12 (Vitali) Let (u,) C L1 (£2, ) and let u be a measurable function.
Then the following properties are equivalent:

(a) llup —ulli - 0,n — oo,
(b) (u,) converges in measure to u and {u, : n € N} is equi-integrable.

Proof Assume that (a) is satisfied. Markov’s inequality implies that, for every ¢ > 0,
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1
wllupg —ul >t} < ;”un —ull1 = 0,n — oo.
Let ¢ > 0. There exists m such that
n>m=|lu, —ul <¢/2.

In particular, for every measurable subset A of £2 and for every n > m,

/|un|du5/ Iuldu+/ |un—u|dus/ uld + /2.
A A A A

Proposition 3.1.10 implies the existence of § > 0 such that, for every measurable
subset A of 2,

WA <5 = f sup (21l . . 1)l < .
A
We conclude that, for every measurable subset A of £2,
w(A) <6 = sup/ lunldu < e.
n JA

Similarly, Proposition 3.1.10 implies the existence of a measurable subset B of §2
such that w(B) < oo and

/ sup (20l | . 1) < .
Q\B

We conclude that sup/ lupldu < e.
Q\B

n
Assume now that (b) is satisfied. Let ¢ > 0. By assumption, there exists § > 0

such that, for every measurable subset A of 2,

w(Ad) <é= sup/ lupldi < e,
n A

and there exists a measurable subset B of §2 such that u(B) < oo and

supf lunldpn < e.
n JQ\B

We assume that u(B) > 0. The case u(B) = 0 is simpler. Since (u,) converges in
measure to u, Proposition 3.1.8 implies the existence of a subsequence (u,,) such
that u,, — wu almost everywhere on £2. It follows from Fatou’s lemma that, for
every measurable subset A of £2,
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H(A) <8 / uldu < e,
A

and that

/ uldp < e.
2\B

There exists also m such that
n>m= u{lu, —u|l >e/u(B)} <34.

Let us define A, = {|u,, — u| > ¢/u(B)}, so that, forn > m, u(A,) < 4. For every
n > m, we obtain

f |Mn—u|dMSf |Mn|+|M|dM+/ |Mn|+|u|d,u+/ |un —uldp
2 \B Ay B\A,

<de+ / e/u(B)dp < Se.
B\A,

Since ¢ > 0 is arbitrary, the proof is complete. O
The following characterization is due to de la Vallée Poussin.

Theorem 3.1.13 Let S C L'(82, u) be such that ¢ = suplul; < —+oo. The
ues

following properties are equivalent:

(a) for every ¢ > O there exists § > 0 such that, for every measurable subset A of
2

nA) <é= sup/ luldp < e,
A

uesS

(b) there exists a strictly increasing convex function F : [0, +oo[— [0, +o00[ such
that

lim F(t)/t = +o0, M = sup/ F(uDdu < 4+o00.
t—>0o0 0

uesS

Proof Since, by Markov’s inequality

sup u{lu| >t} < c/t,
ues

assumption (a) implies the existence of a sequence (ny) of integers such that, for
every k,
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uesS

ng < ngs1  and sup/ luldu < 1/2F.
|u|>ng

o0
Let us define F(t) =t + Z(t — ng)T. It is clear that F is strictly increasing and
k=1

convex. Moreover, for every j,

t>2nm;=j<F@)/t

and, for every u € S, by Levi’s theorem,

u|>ny

oo o0
/F(Iul)du=/ |u|dM+Zf(|M|—nk)+dM§/ Iuldu+2/ luldp < c+1,
Q 2 k=1 2 2 k=1 |

so that § satisfies (b).
Assume now that S satisfies (b). Let & > 0. There exists s > 0 such that for every
t>s, F(t)/t > 2M/¢e. Hence for every u € S we have that

&
uldp < —[ F(lulydu < /2.
/‘u|>s 2M lu|>s

We choose 6§ = ¢/(2s). For every measurable subset A of §2 such that u(A) < §
and for every u € S, we obtain

f |u|dusm(A>+/ uldu < e. !
A lu|>s

3.2 Continuous Linear Mappings

On a le droit de faire la théorie générale des opérations sans
définir I’opération que 1’on considere, de méme qu’on fait la
théorie de I’addition sans définir la nature des termes a
additionner.

Henri Poincaré

In general, linear mappings between normed spaces are not continuous.
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Proposition 3.2.1 Let X and Y be normed spaces and A : X — Y a linear
mapping. The following properties are equivalent:

(a) A is continuous;

A
(b) c = sup [l Aull <
wex ull
u#0

Proof 1f ¢ < oo, we obtain
[|Au — Av]| = [|A(u — V)| < c|lu —v]|.

Hence A is continuous.
If A is continuous, there exists § > 0 such that for every u € X,

[lull = llu = Ol| =8 = [|Aul| = ||[Au — AO]| < 1.

Hence for every u € X \ {0},

_ ull 8 [ul]
Au|| = ——=[lA| —u ||| = —. 0
8 [ 8

Proposition 3.2.2 The function

[|Aul|
[|All = sup ——— = sup ||Aull|
ueX ||Lt|| ueX
u#0 [lul|=1

defines a norm on the space L(X,Y) ={A : X — Y : A is linear and continuous}.
Proof By the preceding proposition, if A € L(X,Y), then 0 < ||A]| < oo. If
A #£ 0, itis clear that ||A]| > 0. It follows from axiom N, that

llaAll= sup |leAul||= sup |a||lAul| = |af[lA]l.
uelX uelX
[ull =1 [ull =1

It follows from Minkowski’s inequality that
II[A+ Bl|= sup [lAu+ Bul| < sup (||Aull+[[Bul]) < [|A]l+[IB]l. q

ueX uelX
[ull =1 [lull =1

Proposition 3.2.3 (Extension by density) Let Z be a dense subspace of a normed
space X, Y a Banach space, and A € L(Z,Y). Then there exists a unique mapping
B € L(X,Y) such that B|Z = A. Moreover, ||B|| = ||A]|.
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Proof Let u € X. There exists a sequence (u,) C Z such that u, — u. The
sequence (Au,) is a Cauchy sequence, since

l|Auj — Augll < [|All [luj —urll = 0, j, k— o0

by Proposition 1.2.3. We denote by f its limit. Let (v,) C Z be such that v, — u.
We have

[|Avy — Aun | < [|Al] [lvn —unll < [[A[l (Hlvp —ull +|lu —unll) = 0, n— oo.

Hence Av, — f, and we define Bu = f. By Proposition 3.1.2, B is linear. Since
for every n,

Aun[| < [[AIl [lunll,
we obtain by Proposition 3.1.2 that
[[Bull < [|A[l [|u].
Hence B is continuous and || B|| < ||A||. Itis clear that || A|| < ||B||. Hence ||A|| =

[1BIl.
If C € £(X,Y) is such that C|, = A, we obtain

Cu = lim Cu, = lim Au, = lim Bu, = Bu. |
n—o00 n—00 n—oo

Proposition 3.2.4 Let X and Y be normed spaces, and let (A;) C L(X,Y) and
A € L(X,Y) be such that ||A, — Al| — 0. Then (A,) converges simply to A.

Proof For every u € X, we have

[|Anu — Aul] = |[(An — Dul| < [|Ay — Al [|ul]. O

Proposition 3.2.5 Let Z be a dense subset of a normed space X, let Y be a Banach
space, and let (A,) C L(X,Y) be such that

(a) ¢ =sup|[A,]| < oo,
n
(b) foreveryv € Z, (A,v) converges.
Then A,, converges simplyto A € L(X,Y), and

1Al = lim [[A,]].
n—o00
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Proof Letu € X and ¢ > 0. By density, there exists v € B(u, €) N Z. Since (A,v)
converges, Proposition 1.2.3 implies the existence of n such that

Jok>=n=||Ajv— Apv|| < e.
Hence for j, k > n, we have

[|Aju — Agull < [|Aju — Ajv|| + ||Ajv — Agvl| + [[Agv — Agul]
<2llu—vll+e¢
= (2c + De.

The sequence (A,u) is a Cauchy sequence, since ¢ > 0 is arbitrary. Hence (A, u)
converges to a limit Au in the complete space Y. It follows from Proposition 3.1.2
that A is linear and that

Au|| = lim [[Apu|l < Lm [[An]|[|u]l.
n—oo n—o0
But then A is continuous and ||A|| < lim ||A,]||. ]
n—>oo

Theorem 3.2.6 (Banach—Steinhaus theorem) Ler X be a Banach space, let Y be
a normed space, and let (A,) C L(X, Y) be such that for everyu € X,

sup |[|Aqu|| < oo.
n

Then

sup [|An]] < oo.
n

First Proof Theorem 1.3.13 applied to the sequence F,, : u > ||A,ul|| implies the
existence of a ball B(v, r) such that

c=sup sup ||Ajul| < oo.
n ueB(v,r)

It is clear that for every y,z € Y,
[yl < max{||z + yll, llz — yII}. (*)
Hence for every n and for every w € B(0, r), ||A,w]|| < ¢, so that

sup [|Anll < c/r.
n
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Second Proof Assume to obtain a contradiction that sup, [|A,|| = +oo. By
considering a subsequence, we assume that n 3" < [|A,||. Let us define inductively
a sequence (u,). We choose ug = 0. There exists v, such that ||v,|| = 37" and

%3’"||A,,|| < ||Apvy|l. By (%), replacing if necessary v, by —v,, we obtain
3 —n
Z3 ARl < [lApvnll < [|An(up—1 + vl

We define u,, = u,—1 + vy, so that ||lu, — u,—1|| = 37". It follows that for every
k>n,

ke — upll <37%/2.

Hence (u,) is a Cauchy sequence that converges to u in the complete space X.
Moreover,

lu —upll <37"/2.
We conclude that
NAnull = [|Anunll — [1An(uy — u)l|

3 _
> ||An|||:z3 " —|uy _u”]

3 1
>n 3”[—3_” — —3_"i| =n/4. O
4 2
Corollary 3.2.7 Let X be a Banach space, Y a normed space, and (A,) C L(X,Y)
a sequence converging simply to A. Then (A,,) is bounded, A € L(X,Y), and

Al < lim [[An]].
n—o00

Proof For every u € X, the sequence (A,u) is convergent, hence bounded, by
Proposition 1.2.3. The Banach-Steinhaus theorem implies that sup||A,|| < oco. It
n

follows from Proposition 3.1.2 that A is linear and

NAul| = lim [[Apu|| < Lm [|Ay]|[|ull,
n— o0 n—o00
so that A is continuous and ||A|| < lim ||A,]||. ]
n—oo

The preceding corollary explains why every natural linear mapping defined on a
Banach space is continuous.
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Examples (Convergence of functionals) We define the linear continuous functionals
fn on L'(10, 1]) to be

1
(f»u) =/ u(x)x"dx.
0

Since for every u € L'(]0, 1[) such that |u||; = 1, we have

1
[{fn, u)| < /0 lu(x)|dx =1,
it is clear that

Ifall =" sup  [(fu,u)] < 1.

uel
[lulli =1
Choosing v (x) = (k + 1)x¥, we obtain

o vr) = lim — !

lim im —— =
k—o0 koo k+n+1

It follows that || f,,|| = 1, and for every u € L'(]0, 1[) such that ||u||; = I,

| (s ] < 1 full-

Lebesgue’s dominated convergence theorem implies that ( ;) converges simply to
f = 0. Observe that

Al < Lim [ f]l.
n—o0

Definition 3.2.8 A seminorm on a real vector space X is a function F: X —
[0, +o0] such that

(a) for every u € X and for every ¢ € R, F(au) = |«|F(u), (positive
homogeneity);
(b) foreveryu,v e X, F(u +v) < F(u) + F(v), (subadditivity).

Examples (a) Any norm is a seminorm.

(b) Let X be a real vector space, Y a normed space, and A: X — Y a linear
mapping. The function F defined on X by F(u) = ||Au|| is a seminorm.

(c) Let X be a normed space, Y a real vector space, and A: X — Y a surjective
linear mapping. The function F defined on Y by
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F(v) = inf[ lull: Au = v]
is a seminorm.

Proposition 3.2.9 Let F be a seminorm defined on a normed space X. The
following properties are equivalent
(a) F is continuous;
(b) ¢ = sup F(u) < oo.
ueX
[luell=1
Proof If F satisfies (b), then
|Fu) — F(v)| < F(u —v) < cllu— v,
so that F is continuous.
It is easy to prove that the continuity of F at O implies (b). O

Let F be a seminorm on the normed space X and consider a convergent series

o
Z u. For every n,
k=1

n n
F(Z uk> <Y Fu).
k=1 k=1
If, moreover, F is continuous, it follows that
o0 o0
(X)) =2 Fm = o
k=1 k=1

Zabreiko’s theorem asserts that the converse is valid when X is a Banach space.

Theorem 3.2.10 Let X be a Banach space and let F: X — [0,4+00[ be a
o0

seminorm such that, for any convergent series Z U,
k=1

F(Z uk> <D Flu) < +oo.

k=1

Then F is continuous.
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o
Proof Let us define, forany t > 0, G; = {u € X: F(u) < t}. Since X = U G,

n=1
Baire’s theorem implies the existence of m such that G,, contains a closed ball
Bla, r]. Using the propreties of F, we obtain

1 1 — — —
B[0,r] C EB[a, rl+ EB[—a,r] CGup+Gmp CGp.

Let us define t = m/r, S0 that B[O, 1] is contained in G,, and, for every k,
B[O, 1/2"] is contained in Gt/zk. Let u € B[O, 1]. There exists #; € G; such that
lu —u1|| < 1/2. We construct by induction a sequence (uy) such that

up € Gyppit  llu—uy — .. — el < 1725,
By assumption
o o0 (0.¢]
Fu)=F (Z uk> <Y F) <) t/2 =2
k=1 k=1 k=1

Since u € B[O, 1] is arbitrary, we obtain

sup F(u) < 2t.

ueX
lull=1

It suffices then to use Proposition 3.2.9. O

Let A be a linear mapping between two normed spaces X and Y. If A is
continuous, then the graph of A is closed in X x Y:

X Y
U, — u, Au, — v = v=Au.

The closed graph theorem, proven by S. Banach in 1932, asserts that the converse is
valid when X and Y are Banach spaces.

Theorem 3.2.11 Let X and Y be Banach spaces and let A: X — Y be a linear
mapping with a closed graph. Then A is continuous.

Proof Let us define on X the seminorm F(u) = | Au|. Assume that the series
o0 o

Z uy converges to u in X and that Z F(ux) < 4oo0. Since Y is a Banach space,

k=1 k=1
0

Z Auy converges to v in Y. But the graph of the linear mapping A is closed, so

k=1
that v = Au and
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Fu) = Aull = ol = | D Aull < D I Auell = Y F ().
k=1

k=1 k=1

We conclude using Zabreiko’s theorem:

sup ||Aul| = sup F(u) < 4o0.
ueX ueX o
flufl=1 lul=1

The open mapping theorem was proved by J. Schauder in 1930.

Theorem 3.2.12 Let X and Y be Banach spaces and let A € L(X,Y) be surjective.
Then {Au :u € X, |u|l < 1} isopeninY.

Proof Let us define on Y the seminorm F'(v) = inf{||u| : Au = v}. Assume that
o0 o
the series Z Vg converges to v in Y and that Z F(v) < 4+o00. Let ¢ > 0. For

k=1 k=1
every k, there exists u; € X such that

lugll < F(ug) + /25 and  Aug = vy

o0
Since X is a Banach space, the series Z uy converges to u# in X. Hence we obtain
k=1

o0 o
lull <Y gl < D7 F () + ¢
k=1 k=1

and

o
so that F'(v) < Z F(vr) + ¢. Since ¢ > 0 is arbitrary, we conclude that F(v) <

k=1
o
Z F (vi). Zabreiko’s theorem implies that
k=1

{Au:ue X, ul|l<1l}={etY:F) <1}

isopenin?Y. O



76 3 Norms
3.3 Hilbert Spaces

Hilbert spaces are Banach spaces with a norm derived from a scalar product.

Definition 3.3.1 A scalar product on the (real) vector space X is a function
XxX—>R:(u,v)+— (uv)

such that

(81) forevery u € X \ {0}, (ulu) > 0;

(82) for every u, v, w € X and for every «, 8 € R, (au + fv|w) = a(u|w) +
Bv|w);

(83) forevery u,v € X, (ulv) = (v|u).

We define ||u|| = +/(u|u). A (real) pre-Hilbert space is a (real) vector space together
with a scalar product on that space.

Proposition 3.3.2 Letu,v, w € X and let o, § € R. Then

(a) (ulov + pw) = a(ulv) + Bulw);

(b) llou|| = laf [|ul].

Proposition 3.3.3 Let X be a pre-Hilbert space and let u, v € X. Then

(a) (parallelogram identity) ||u + v||* + ||u — v||* = 2||ul]*> + 2||v])?*;
(b) (polarization identity) (ulv) = *||u + v||> — Flju — v||%;
(c) (Pythagorean identity) (u|v) = 0 <= ||lu + v||*> = [|u]|* + ||v]|*

Proof Observe that

e+ vlI* = [Jul|* + 2@ulv) + ||v] |, (%)

e —vl* = [Jul|* = 2@|v) + ||v]|*. (%)

By adding and subtracting, we obtain parallelogram and polarization identities. The
Pythagorean identity is clear. O
Proposition 3.3.4 Let X be a pre-Hilbert space and let u, v € X. Then

(a) (Cauchy-Schwarz inequality) |(u|v)| < ||ul] ||v]|;
(b) (Minkowski’s inequality) ||lu + v|| < |lu]| + ||v]|.

Proof 1t follows from () and () that for ||u|| = ||v]| = 1,

[(u|v)| < %(I|u||2+ ||v||2> =1.
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Hence for u # 0 # v, we obtain

[(u|v)] ZKL L>‘<1
[u]] [[v]] [l V]| /] —

By () and the Cauchy—Schwarz inequality, we have
2

i+ w12 < 1Jul =+ 20ful 1ol + 1011 = (11ull + o] 0

Corollary 3.3.5 (a) The function ||u|| = +/(u|u) defines a norm on the pre-Hilbert
space X.
(b) The function
XxX—>R:(u,v)— (ulv)

s continuous.

Definition 3.3.6 A family (e;) jcs in a pre-Hilbert space X is orthonormal if

(ejlex) =1, J=k,
=0, j#k

Proposition 3.3.7 (Bessel’s inequality) Let (e,) be an orthonormal sequence in a
pre-Hilbert space X and letu € X. Then

> 2
> lwlen)|” < llull>.
n=0

Proof 1t follows from the Pythagorean identity that

2

k k
||M||2 =||u— Z(u|en)en + Z(u|en)en
n=0 n=0

k 2k
= |lu — Z(u|en)en + Z|(”|en)|2
n=0 n=0

k
> |(ulen)|. 0
n=0
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Proposition 3.3.8 Let (ep,...,ex) be a finite orthonormal sequence in a
pre-Hilbert space X, u € X, and xo, ..., x; € R. Then

=

k
=3 e
n=0

k
w—y (ulenen
n=0

Proof 1t follows from the Pythagorean identity that

Kk 2 k k 2
w— xnen|| =[lu—= (uleden+ Y (] en) = xa)en
n=0 n=0 n=0
k 2k
2
={lu—= wleden|| +D|wlen) —xal. O
n=0 n=0

Definition 3.3.9 A Hilbert basis of a pre-Hilbert space X is an orthonormal
sequence generating a dense subspace of X.

Proposition 3.3.10 Let (e,) be a Hilbert basis of a pre-Hilbert space X and let
u € X. Then

(@) u="Y (uleen;

n=0

o
(b) (Parseval’s identity) ||u||* = Zl(u | e,,)|2.
n=0

Proof Let e > 0. By definition, there exists a sequence xo, ..., x; € R such that

J
=) xnenll <e.
n=0

It follows from the preceding proposition that for k > j,

k
= (| enenll < e

n=0

]

Hence u = Z(u | en)en, and by Proposition 3.1.2,
n=0



3.3 Hilbert Spaces 79

2 2

= lim
k— 00

k
lim uleye
k%ozo( | en)en
=

k [e'9)
= Jim 3~ fen)[ =3 Jlen)].
n=0 n=0

We characterize pre-Hilbert spaces having a Hilbert basis.

Proposition 3.3.11 Assume the existence of a sequence (f;) generating a dense
subset of the normed space X. Then X is separable.

Proof By assumption, the space of (finite) linear combinations of (f;) is dense in
X. Hence the space of (finite) linear combinations with rational coefficients of (f;)
is dense in X. Since this space is countable, X is separable. O

Proposition 3.3.12 Let X be an infinite-dimensional pre-Hilbert space. The follow-
ing properties are equivalent:

(a) X is separable;
(b) X has a Hilbert basis.

Proof By the preceding proposition, (b) implies (a).

If X is separable, it contains a sequence (f;) generating a dense subspace. We
may assume that (f;) is free. Since the dimension of X is infinite, the sequence (f;)
is infinite. We define by induction the sequences (g,) and (e,):

eo = fo/ll foll,
n—1

gn=fo— Y _(falejej.en = gu/llgnll. n > 1.
j=0

The sequence (e,) generated from (f,) by the Gram—Schmidt orthonormalization
process is a Hilbert basis of X. O

Definition 3.3.13 A Hilbert space is a complete pre-Hilbert space.

Theorem 3.3.14 (Rlesz—Flscher) Let (e;) be an orthonormal sequence in the

Hilbert space X. The series chen converges if and only if Z 2 < oo. Then
n=0 n=0

00 2
D cnen
n=0

k
Proof Define Sy = chen. The Pythagorean identity implies that for j < k,
n=0
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2

k k
2 2
ISk =SilP =] D cuen|| = D> e
n=j+1 n=j+1
Hence
k [e'¢)
im [ISc—SjIP=0 lim Y =0 i <oo.
j— o0 j— o0 -

j<k j<k n=j+1 n=0

o0 o0
Since X is complete, (Sx) converges if and only if Zcﬁ < 00. Then chen =

. . n=0 n=0
lim Sg, and by Proposition 3.1.2,
k—o00
k 00
lim S¢l)?> = lim ||Se])? = lim Y 2= ¢
I lim S|l = lim ||S] k%oz;) g 2;) g 0
n=» n=

Examples 1. Let p be a positive measure on 2. We denote by L?(£2, 1) the
quotient of

L2292, 1) = {u e M(2, 1) : f lulPdu < oo}
2

by the equivalence relation “equality almost everywhere.” If u, v € L%*(£2, i),
thenu +v e Lz(.Q, w). Indeed, almost everywhere on §2, we have

|t (x) + () * < 2(lu@)? + [v)]?).

We define the scalar product
(ulv) = / uvdp
2

on the space L2(82, ).
The scalar product is well defined, since almost everywhere on §2,

1
lu(x) v(x)| < 5(|u(x)|2 + Jv(x) ).

By definition,
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12
||u||2=</ |u|2du) .
2

Convergence with respect to ||.||2 is convergence in quadratic mean. We will
prove in Sect.4.2, on Lebesgue spaces, that L2(£2, ) is a Hilbert space. If
n(82) < oo, it follows from the Cauchy—Schwarz inequality that for every
ueL*(2,w),

lully = /Q luldp < w(2)"2[ull2.

Hence L*(£2, u) € L'(£2, 1), and the canonical injection is continuous.
2. Let Ay be the Lebesgue measure on the open subset £2 of RY. We denote by
L?(£2) the space L>(£2, Ay). Observe that

1 2 1 1 1 2
— € L2(11,00D \ L' (11, 00) and —= € L'(10, 1D \ L*(10, 1D.

Jx

If m(£2) < oo, the comparison theorem implies that for every u € BC(£2),
llull3 =/ wdx < m(2)|lullZ
2

Hence BC(£2) C L*(£2), and the canonical injection is continuous.

Theorem 3.3.15 (Vitali 1921, Dalzell 1945) Let (e,,) be an orthonormal sequence
in L*>(la, b]). The following properties are equivalent:

(a) (ey) is a Hilbert basis;
2

0 t
(b) foreverya <t <b, Z (/ e,,(x)dx) =t—a;

n=1

o b 2 _ 2
() };/ﬂ </aten(x)dx) di = (Z’T").

Proof Property (b) follows from (a) and Parseval’s identity applied to X4,
Property (c) follows from (b) and Levi’s theorem. The converse is left to the reader.
O

[2
Example The sequence e, (x) = ,/ — sinn x is orthonormal in L0, m[). Since
T

2 00 T t 2 00 1
—Z/ (/ sinnxdx) dt=3%" —
ﬂn:1 0 0 n:ln
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and since by a classical identity due to Euler,
26
n=1 n 6

the sequence (e;,) is a Hilbert basis of L%(10, ).

3.4 Spectral Theory

Spectral theory allows one to diagonalize symmetric compact operators.

Definition 3.4.1 Let X be a real vector space and let A : X — X be a linear
mapping. The eigenvectors corresponding to the eigenvalue A € R are the nonzero
solutions of

Au = Au.
The multiplicity of X is the dimension of the space of solutions. The eigenvalue A is
simple if its multiplicity is equal to 1. The rank of A is the dimension of the range

of A.

Definition 3.4.2 Let X be a pre-Hilbert space. A symmetric operator is a linear
mapping A : X — X such that for every u, v € X, (Aulv) = (u]|Av).

Proposition 3.4.3 Let X be a pre-Hilbert space and A : X — X a symmetric
continuous operator. Then

Al = sup [(Aulu)|.
ueX
[lul| =1
Proof 1t is clear that
a= sup [(Aulu)| <b= sup [(Aulv)| = [|A]].
uelX u,veX
[lul| =1 [lull = [v]| =1

If ||u|| = ||v]| = 1, it follows from the parallelogram identity that
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1
|(Aufv)| = Z1(A@ + v)lu +v) = (A = v)|u = v)|
a 2 2
= Ul vl o+ e = w7
a
= 1[2”“"2 +2||*] = a.
Hence b = a. o

Corollary 3.4.4 Under the assumptions of the preceding proposition, there exists a
sequence (u,) C X such that

unll = 1, [|Aup — dunll — 0, [A1] = [[A]].
Proof Consider a maximizing sequence (u):
llunll = 1, [(Auplup)| —  sup  [(Aulu)| = [|A]].
uelX
lull =1
By passing if necessary to a subsequence, we can assume that (Auy|u,) — Ap,
[X1] = ||A]|. Hence
0 < [|Aun — Arutn|[* = 1| Auy|* — 201 (Attn|ttn) + A7 tn] |

< 2)\% — 27 (Auyluy) — 0, n— oo. |

Definition 3.4.5 Let X and Y be normed spaces. A mapping A: X — Y is compact
if the set {Au: u € X, ||u|| < 1} is precompactin Y.

By Proposition 3.2.1, every linear compact mapping is continuous.

Theorem 3.4.6 Let X be a Hilbert space and let A: X — X be a symmetric
compact operator. Then there exists an eigenvalue )1 of A such that |L1| = ||Al|.

Proof We can assume that A # 0. The preceding corollary implies the existence of
a sequence (u,) C X such that

llunll = 1, [|Aup — Aqunll — 0, |A1] = [[A]l.

Passing if necessary to a subsequence, we can assume that Au,, — v. Hence u,, —
u:kl_lv,llu||zl,andAuzklu. |
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Theorem 3.4.7 (Poincaré’s principle) Let X be a Hilbert space and A : X — X
a symmetric compact operator with infinite rank. Let there be given the eigenvectors
(e1, ..., en—1) and the corresponding eigenvalues (M1, ..., Ay—1). Then there exists
an eigenvalue )\, of A such that

Al = max{|(Aulw)| :u € X, ||ull = 1, (uler) = ... = (ulex—1) = 0}

and A, — 0, n — o0.

Proof The closed subspace of X
X, = {u e X :(uley) =...= (uley—1) = 0}
is invariant by A. Indeed, ifu € X,, and 1 < j <n — 1, then
(Aulej) = (u|Aej) = Aj(ule;) = 0.

Hence A, = A| is a nonzero symmetric compact operator, and there exist an

eigenvalue A, of A”,, such that |1,| = ||A,]|| and a corresponding eigenvector e; €
X, such that ||e, || = 1. By construction, the sequence (e, ) is orthonormal, and the
sequence (|1,]) is decreasing. Hence |A,| — d, n — oo, and for j # k,

|Aej — Aer||* =25 +2; — 2d*,  j. k — oc.

Since A is compact, d = 0. O

Theorem 3 4.8 Under the assumptions of the preceding theorem, for every u € X,

the series Z(u len)e, converges and u — Z(u len)en belongs to the kernel of A:

n=1 n=1
o0
Au = hn(ulen)en. ()
n=1
k
Proof Forevery k > 1, u — 2:(u|e,1)e,Z € Xk+1. It follows from Proposition 3.3.8.
n=1
that
k k
Au — an(MIEn)en < NAgall |ju— Z(MIEn)en < Ag41ll llull = 0, k — oo.
n=1 n=1
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o0
Bessel’s inequality implies that X:|(u|e,,)|2 < ||u||2. We deduce from the Riesz—

n=1
00

Fischer theorem that Z(u|en)e,Z converges to v € X. Since A is continuous,

n=1

o
Av = Z,\n(men)e,, = Au

n=1

and A(u —v) =0. |

Formula () is the diagonalization of symmetric compact operators.

3.5 Comments

The de la Vallée Poussin criterion was proved in the beautiful paper [17].

The first proof of the Banach—Steinhaus theorem in Sect. 3.2 is due to Favard
[22], and the second proof to Royden [66].

Theorem 3.2.10 is due to P.P. Zabreiko, Funct. Anal. and Appl. 3 (1969) 70-72.

Let us recall the elegant notion of vector space over the reals used by S. Banach
in [6] :

Suppose that a non-empty set E is given, and that to each ordered pair (x, y) of elements
of E there corresponds an element x + y of E (called the sum of x and y) and that for
each number ¢t and x € E an element tx of E (called the product of the number ¢ with
the element x) is defined in such a way that these operations, namely addition and scalar
multiplication satisfy the following conditions (where x, y and z denote arbitrary elements
of E and a, b are numbers):

Dx+y=y+x,

D x+G+a=C&+y +z
3) x+y=x+zimpliesy =z,
4) a(x +y) =ax + ay,

5) (a + b)x = ax + bx,

6) a(bx) = (ab)x,

7 1-x=x.

Under these hypotheses, we say that the set E constitutes a vector or linear space. It is
easy to see that there then exists exactly one element, which we denote by @, such that
x + © = x for all x € E and that the equality ax = bx where x # © yields a = b;
furthermore, that the equality ax = ay where a # 0 implies x = y.

Put, further, by definition :

—x=(-Dx and x—y=x+(—y).
The space L' (RV) with the pointwise sum

(u+v)(x) =ulkx) + v(x),
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and the scalar multiplication

(a-u)(x) =au(x),

is not a vector space. Indeed one has in general to allow —oo and +oo as values
of the elements of £! (RN)Y. Hence the pointwise sum and the scalar multiplication
by 0 are not, in general, well defined. On the other hand the space L!(£2, 1), with
the pointwise sum and the scalar multiplication, is a vector space since it consists of
equivalence classes of p-almost everywhere defined and finite function on £2.

3.6 Exercises for Chap.3

—_

10.

11.

. Prove that BC(£2) N L1(2) c L*(2).

Define a sequence (u,,) C BC(]0, 1[) such that ||u,||; — O, |luxll2 = 1, and
[lttn]]loo — 00.

. Define a sequence (1) C BC(R) N L'(R) such that ||u,||1 — 00, ||un|l2 =1

and ||uy,|leo — O.

. Define a sequence (u,) C BC(0, 1[) converging simply to u# such that

llunlloo = lttlloo = llun — ulloo = 1.

Define a sequence (uy) C L'qo, 1[) such that ||u,||1 — O and for every

0 <x <1, lim u,(x) = 1. Hint: Use characteristic functions of intervals.
n—>oo

1
On the space C([0, 1]) with the norm ||u||; = / |u(x)|dx, is the linear
0

functional
f:C(0, 1) —> R:uw u(l/2)

continuous?

Let X be a normed space such that every normally convergent series converges.
Prove that X is a Banach space.

A linear functional defined on a normed space is continuous if and only if its
kernel is closed. If this is not the case, the kernel is dense.

. Is it possible to derive the norm on L'qo, 1)) (respectively BC(]0, 1[)) from a

scalar product?
Prove Lagrange’s identity in pre-Hilbert spaces:

2
[[[Tollu = lullv] |~ = 21l vl* = 21wl o]l @lv).
Let X be a pre-Hilbert space and u, v € X \ {0}. Then

v

H u =l
lull> ol

llael w1l
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12.

13.

14.

15.

16.

17.
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Let f, g, h € X. Prove Ptolemy’s inequality:

ANl = Al < [IAIILE = gll 4 gl 1R = f1I.

(The Jordan—von Neumann theorem.) Assume that the parallelogram identity
is valid in the normed space X. Then it is possible to derive the norm from a
scalar product. Define

1
(uv) = Z(nu + o> = [lu — vl]?).
Verify that

(f +glh) + (f — glh) = 2(f1h).

(u|h) + (v|h) =2 <¥|h> = (u +v|h).

Let f be a linear functional on L2(]0, 1[) such that u > 0 = (f, u) > 0. Prove,
by contradiction, that f is continuous with respect to the norm ||.||,. Prove that
f is not necessarily continuous with respect to the norm ||.||1.

Prove that every symmetric operator defined on a Hilbert space is continuous.
Hint: If this were not the case, there would exist a sequence (u;) such that
[lun|l = 1 and ||Au,|| — o0. Then use the Banach—Steinhaus theorem to
obtain a contradiction.

In a Banach space an algebraic basis is either finite or uncountable. Hint: Use
Baire’s theorem.

Assume that ©(£2) < oo. Let (u,) C L'(£2, ) be such that

(a) sup/ lunl€n(1 + lunDdp < 400;
n J
(b) (u;) converges almost everywhere to u.

Then u,, — u in L'(2, p).

cos3"x
Let us define, forn > 1, u, (x) = .

o
(a) The series Z u, converges in L2(10, 2x]).

n=1

o0
(b) Foreveryx € A= {2kn/3/: j e N,k € Z}, Y u,(x) = +oo.

n=1

o0
(c) Forevery x € B ={(2k + 1)71/3/: jeN kelZ}, Zun(x) = —00.

n=1

(d) The sets A and B are dense in R.



Chapter 4 ®
Lebesgue Spaces oo

4.1 Convexity

The notion of convexity plays a basic role in functional analysis and in the theory of
inequalities.

Definition 4.1.1 A subset C of a vector space X is convex if for every u, v € C and
every 0 < A < 1, wehave (1 —A)x + Ay € C.

A point x of the convex set C is internal if for every y € X, there exists ¢ > 0
such that x 4+ ¢y € C. The set of internal points of C is denoted by int C.

A subset C of X is a cone if for every x € C and every A > 0, we have Ax € C.

Let C be a convex set. A function F : C —] — 00, 400] is convex if for every
x,y€Candevery) <A < I,wehave F((1 —=M)x+xy) < (1—-M)Fx)+LF(y).

A function F : C — [—o00, +00] is concave if —F is convex.

Let C be a cone. A function F : C —] — oo, +00] is positively homogeneous if
for every x € C and every A > 0, we have F(Ax) = LF (x).

Examples Every linear function is convex, concave, and positively homogeneous.
Every norm is convex and positively homogeneous. Open balls and closed balls in
a normed space are convex.

Proposition 4.1.2 The upper envelope of a family of convex (respectively positively
homogeneous) functions is convex (respectively positively homogeneous).

Lemma 4.1.3 Let Y be a hyperplane of a real vector space X, f : Y — R linear
and F : X —] — 00, 400] convex and positively homogeneous such that f < F on
Y and

YN int{x € X : F(x) < oo} # ¢.
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Then there exists g : X — R linear such that g < F on X and g\Y = f.

Proof There exists z € X such that X = Y & Rz. We must prove the existence of
¢ € R such that for every y € Y and every t € R,

(f,y)y+ct < F(y +1tz2).
Since F is positively homogeneous, it suffices to verify that for every u, v € Y,
(fiu)—Flu—z) <c<Flv+2) —(fiv).
For every u, v € Y, we have by assumption that
(fruy+({fiv) = Fu+v) < Flu—-2)+ F(v+2).
We define

a=sup{fiu)— F(u—2)<b= inlf/F(v—{-z)—(f,v).
ve

ueY
Letu € YNint{x € X : F(x) < oo}. Fort large enough, F (tu—z) = tF(u—z/t) <
+o00. Hence —oo < a. Similarly, b < +00. We can choose any ¢ € [a, b]. m]
Let us state a cornerstone of functional analysis, the Hahn—Banach theorem.

Theorem 4.1.4 Let Y be a subspace of a separable normed space X, and let f €
LY, R). Then there exists g € L(X, R) such that ||g|| = || f]] andg‘y: f-

Proof Let (z,) be a sequence dense in X. We define fo = f,Yg=Y,and ¥, =
Y,_1+Rz,,n > 1. Letthere be f,, € L(Y,, R) suchthat||f,|| = || f]| and f,,‘ =
fo—1- If Yyp1 = Y, we define f,,+1 = f,. If this is not the case, the precélciilng
lemma implies the existence of f,+1 : ¥,+1 — R linear such that f;, ’Y = f, and

for every x € Y41,

(far1, x) < 1S 1x]]

o0
On Z = UY,, we define / by h

, = fn, n = 0. The space Z is dense in X,

n=0
h e L(Z,R), ||k]| = ||f]l, and h‘Yz f. Finally, by Proposition 3.2.3, there exists
g€ L(X,R) suchthat||g||:||h||andg‘Z: h. O

Notation The dual of a normed space X is defined by X* = £(X, R). Let us recall
that the norm on X* is defined by
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llgll = sup |{g,u)| = sup (g, u).

ueX ueX
llull=1 llull=1

Theorem 4.1.5 Let Z be a subspace of a separable normed space X, and let u €
X\Z. Then

0<d(. 2) = max{(g.u): g € X", |lg]| < L.g| =0},

In particular if u € X\{0}, then

[lul| = max (g, u) = max [{g, u)|.
gex* gex*
llgll<1 llgll<1

Proof Let us first prove that

c=sup{(g,u): g € X*: gll < 1. =0} <8 =dw.2).

Assume that ||g]| < 1 and g‘z= 0. Then, for every z € Z,

(8 u) = (g, u—2z) < |lgll [lu—z|| < [lu—z]|,

so that (g, u) < §and c <.
It suffices then to prove the existence of g € X™* such that ||g|| < 1, g = 0 and
(g, u) = 8. Let us define the functional f on Y = Ru & Z by

(f,tu+2z) =16.
Since, for ¢t # 0,
(fitu+z) <|t18 < |t| [lu +z/tl| = |ltu + 2|,

the functional f is such that || f|| < 1. The preceding theorem implies the existence

of g € X* such that ||g|| = ||f|| < 1 and g)Yz f. In particular (g, u) = § and
=0. O
g Z
The next theorem is due to P. Roselli and the author. Let us define

C+ = {(xl,xz) € R2 x1 >0, x ZO}.
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Theorem 4.1.6 (Convexity Inequality) Let FF : Cy — R be a positively
homogeneous function, and let u; € L! (£2, ) be such that u; > 0, ujdp > 0,
2

Jj = 1,2. If F is convex, then

F(/ uldu,/ uzdu> S/ F(uy, uz)dp.
2 2 2

If F is concave, the reverse inequality holds.

Proof We define F(x) = +oo, x € R*\ Cy4, and yj = /ujdu,j = 1,2.
Q

Lemma 4.1.3 implies the existence of «, 8 € R such that
F(y1,y2) = ay1 + By and, for all x1, x2 € R, ax) + Bxz < F(x1, x2). ()
For every 0 < A < 1, we have
a(l =) +BA<F(1—2,X1) <(0-=1F(,0)+AF(0,1),

sothat c = sup [F(1 — A, A)| < oo. Since
0<i<l

|F(uy, uz)| < c(uy + uz),

the comparison theorem implies that F(u1, u») € L' (82, ). We conclude from ()

that
F(f uldu,/ uzdu>=a/ MldM+,3/ uxdp
2 2 2 2

=f auy + Busrdp
kP,

< f Fur, undp. .
2

Lemma 4.1.7 Let F : C. — R be a continuous and positively homogeneous
function. If F(., 1) is convex (respectively concave), then F is convex (respectively
concave).

Proof Assume that F(., 1) is convex. It suffices to prove that for every x, y € Co‘+,
F(x 4+ y) < F(x) + F(y). The preceding inequality is equivalent to

F(x‘+y‘,1>5 a F(ﬂ,1)+ 2 F(ﬂ,l). o
X2+ 2 X2+ ¥ X2 X2+ 2 %)
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Remark Define F on R? by

F(y,2) =—yz, (y,2) € Cy,
=+00,  (y,2) €R*\ (.

The function F is positively homogeneous and, by the preceding lemma, is convex

on C, hence on R2. It is clear that 0 = F on ¥ = R x {0}. There is no linear
function g : R> — Rsuchthat g < FonR>and g =0on Y.

The convexity inequality implies a version of the Cauchy—Schwarz inequality: if
v,we LY($, W), then

12 12
f|vw|1/2dus(f Ivldu) (/ ledu) .
2 2 2

Definition 4.1.8 Let 1 < p < oo. The exponent p’ conjugate to p is defined by
1/p+ 1/p’ = 1. On the Lebesgue space

LP(2,n) = {u e M(£2, 1) :/ lu|Pdu < oo},
2

1/p
we define the functional ||u||, = (/ |u|pd,u> .
Q

Theorem 4.1.9 Let 1 < p < oo.
(a) (Holder’s inequality.) Let v € LP (2, u) and w € L”/(.Q, w). Then

/ lvwldp < [vllpllwll .
Q
(b) (Minkowski’s inequality.) Let v, w € LP (82, ). Then
v +wllp < [vllp + [lwllp.
(c) (Hanner’s inequalities.) Let v, w € LP (2, n). If2 < p < o0, then

p p p
v+ wllf + v —wllp < U, + wll)? + |[lvll, = [lwll,]”

If 1 < p <2, the reverse inequality holds.

Proof On C., we define the continuous positively homogeneous functions

1 1/p
F(x1,x2) = xl/pxz/P )
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G(x1,x2) = (x,/7 +x)/ Py,

1 1 1 1
H()C],,Xz) = (xl/p +x2/p)P + |x1/17 _XZ/PV)-

Inequality (a) follows from the convexity inequality applied to F and u =
(Jv|?, |w|p/). Inequality (b) follows from the convexity inequality applied to G
and u = (|v|?, |w|?). Finally, inequalities (c) follow from the convexity inequality
applied to H and u = (|v|?, |[w|”). When v = 0 or w = 0, the inequalities are
obvious.

On [0, +oo[, we define f = F(.,1),g = G(.,1), h = H(.,1). Itis easy to
verify that

1— 1_
1o = —Lxr 7,
p
" 1 - 1y 1 -2
g (x) = x 7 (x4 DT
— 1 1 1
W) = —LP x5! [(x‘? P2 — 1|f’—2] .
p

Hence f and g are concave. If 2 < p < o0, then & is concave, and if | < p < 2,
then 4 is convex. It suffices then to use the preceding lemma. O

4.2 Lebesgue Spaces

Let 1 : £ — R be a positive measure on the set £2.

Definition 4.2.1 Let1 < p < oo. The space L (2, w) is the quotient of L7 (£2, )
by the equivalence relation “equality almost everywhere.” By definition,

1/p
NullLr 2,0 = lullp, = </Q |u|1’d,u> :

When Ay is the Lebesgue measure on the open subset £2 of RV, the space
LP($2, Ay) is denoted by L (S2).

In practice, we identify the elements of L?(£2, ) and the functions of L7 (£2, ).

Proposition 4.2.2 Let 1 < p < oo. Then the space L ($2, u) with the norm ||.||,
is a normed space.

Proof Minkowski’s inequality implies that if u,v € LP(£2, ), then u + v €
LP($2, i) and
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llu +vllp < lullp + 0]l p.

It is clear that if u € LP(§2, u) and A € R, then Au € LP(£2, n) and |[Au]|, =
|A] |[u||p. Finally, if [|u]||, = O, then u = 0 almost everywhere and u = 0 in
LP(£2, ). O

The next inequalities follow from Holder’s inequality.

Proposition 4.2.3 (Generalized Holder’s Inequality) Let 1 < p; < oo, u; €
k

LPi(2,u), 1 < j <k and 1/p; + ...+ 1/py = 1. Then ]_[uj e L2,
j=1
and

k k
f [ estdu < [T sl
25 L

j=l1 j=l1

Proposition 4.2.4 (Interpolation Inequality) Letr1 < p < g <r < 00,

andu € LP(£2, ) N L" (82, ). Thenu € L9(82, ) and

1-x A
Hullg < {lull, " ully

Proposition 4.2.5 Let 1 < p < g < 00, u(£2) < oo, and u € L9(82, ). Then
ue LP($2, 1) and

11
lullp = n(2)r aflully.

Proposition 4.2.6 Let 1 < p < oo and (u,) C LP (82, ) be such that

(a) llunllp = llullp, n — oo;
(b) u, converges to u almost everywhere.

Then |luy, — ul|p — 0, n — oc.

Proof Since almost everywhere
0 < 2P(junl” + ul?) — lup — ul”,

Fatou’s lemma ensures that
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2”+1f lulPdu < h_m/ [27 (un|? + [u|P) = |up — u|P]|dp
2 2
=2rtl [ |u|pdu—mf lun — u|Pdp.
2

Hence 1im||un—u||z <0. |
The next result is more precise.

Theorem 4.2.7 (Brezis—Lieb Lemma) Ler 1 < p < oo and let (u,) C LP(£2, 1)
be such that

(a) ¢ =sup |lupllp < 00;
n
(b) u, converges to u almost everywhere.

Thenu € LP (82, ) and
H p Py p
im (Jfunllfy = lun = ullp) = [l

Proof By Fatou’s lemma, [|u||, < c. Let ¢ > 0. There exists, by homogeneity,
c(&) > 0 such that for every a, b € R,

|la + b|” — |a|? — |b]?| < elal” + c(e)|b]”.
We deduce from Fatou’s lemma that

/ c@ulPdp < lim [ eluy —ul” + c(@)ul” — |lunl” — lup — ul? — [ul?|dp
2

n—o0o J

§(2c)”e+/ c(@uldu — Tim f [l = lut — ul? = |u|”|dpe,
Q n—oo Jo

or
T [ Jltal? iy ul” = ] < 207,
n—-oo Jo
Since ¢ > 0 is arbitrary, the proof is complete. ]
We define

Ry(s)=s+h, s<-h,
=0, ls| < h,
=s—h, s>h.

Theorem 4.2.8 (Degiovanni—-Magrone) Let u(£2) < oo, 1 < p < o0, and (u,) C
L? (82, i) be such that
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(a) ¢ =suplluy|lp < o0o;
n
(b) u, converges to u almost everywhere.

Then
gim (a5 = 11 Ruteal ) = 1l — | Rl
Proof Let us define
f(s) = Is? = [Rn(s)I7.
For every ¢ > 0, there exists c(e) > 0 such that
£ () = fOI < ellsI” + 11]7] + c(e).
It follows from Fatou’s lemma that

2 | lulPdptem($2) < lim f & (tnlP+lul?)+c(e)=| f ()~ f (w)|dpe
2

n—oo JQ

sscf’+e/ ulPdp + c(e)u(2) — Tim /lf(un)—f(u)ldu.
2 n—oo JQ

Hence
lim / |fun) — f)|dp < & cP.
n—oo JQ
Since ¢ > 0 is arbitrary, the proof is complete. ]

Theorem 4.2.9 (F. Riesz, 1910) Let 1 < p < o0. Then the space LP($2, 1) is
complete.

Proof Let (u,) be a Cauchy sequence in LP(£§2, ). There exists a subsequence
Vj = Uy such that for every j,

vj+1 —vjllp < 1/27.

We define the sequence

k
fe=Y " lvjp1 — vl
j=1

Minkowski’s inequality ensures that
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k p

/fk”dus S| <1
2

j=1

Levi’s theorem implies the almost everywhere convergence of fi to f € LP(£2, ).
Hence vy converges almost everywhere to a function u. For m > k + 1, it follows
from Minkowski’s inequality that

m—1 p

[ o= wiran = (X2 | < ety
2

i=k

By Fatou’s lemma, we obtain
[ = wiran < @2ty
2

In particular, u = u — vy + vy € L?($2, ). We conclude by invoking the Cauchy
condition:

k
e —urllp < llu = vellp + vk — ullp < 2/2

+llup, —uillp = 0, k — oo. O

Proposition 4.2.10 Let 1 < p < oo and let u, — u in LP (82, ). Then there exist
subsequences vj = u,; and g € LP(§2, ) such that almost everywhere,

vj| <gandv; - u, j— oo.

Proof 1f the sequence (u,) converges in L”(§2, ), it satisfies the Cauchy condition
by Proposition 1.2.3. The subsequence (v;) in the proof of the preceding theorem
converges almost everywhere to u, and for every j,

o
il < loil+ Y 1vjp1 —vjl = [vi] + f € LP(2, ). a
j=1

Theorem 4.2.11 (Density Theorem) Let 1 < p < oo and L C LP($2, u). Then
Lis densein LP (82, |1).

Proof Let u € LP(£2, ). Since u is measurable with respect to u on 2, there
exists a sequence (u,) C L such that u,, — u almost everywhere. We define

vp = max(min(|uy |, u), —[unl).
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By definition, |v,| < |u,|, and almost everywhere,
[vg —ul? < |ul? € L', Jva —u|? > 0, n— oco.

It follows from Lebesgue’s dominated convergence theorem that ||v, — ul|, — 0,
n — oo. Hence

Y ={u e LP(£2, u) : there exists f € L such that |u| < f almost everywhere}

is dense in L? (2, ). It suffices to prove that £ is dense in Y.
Letu € Y, f € L be such that |u| < f almost everywhere and (u,) C L such
that u#,, — u almost everywhere. We define

wy = max(min(f, u,), —f).
By definition, w,, € £ and, almost everywhere,
lwy, —ul? <2PfP e L', |w, —ul” - 0, n— oo.

It follows from Lebesgue’s dominated convergence theorem that [|w, — u||, — 0,
n — oo. Hence L is densein Y. O

Theorem 4.2.12 Let 2 be open in RN and 1 < p < oo. Then the space LP($2) is
separable.

Proof By the preceding theorem, K(£2) is dense in LP(£2). Proposition 2.3.2
implies that for every u € K($2),

wj= Y uk/2) fjx

keZN

converges to u in L?(£2). We conclude the proof using Proposition 3.3.11. O

4.3 Regularization

La logique parfois engendre des monstres. Depuis un
demi-siécle on a vu surgir une foule de fonctions bizarres qui
semblent s’efforcer de ressembler aussi peu que possible aux
honnétes fonctions qui servent a quelque chose.

Henri Poincaré
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Regularization by convolution allows one to approximate locally integrable func-

tions by infinitely differentiable functions.

Definition 4.3.1 Let £2 be an open subset of R . The space of test functions on £2
is defined by

D(2)={u € C°°(RN) : spt u is a compact subset of £2}.

Leta = (aq, ..., aN) € NV be a multi-index. By definition,
o
|| = oy +...+aN, D¢ :8;’“ ...BNN, 9 = 8_x,
Using a function defined by Cauchy in 1821, we shall verify that 0 is not the only
element in D(£2).
Proposition 4.3.2 The function defined on R by

fx) =exp(l/x), x <0,
=0, x >0,

is infinitely differentiable.
Proof Let us prove by induction that for every n and every x < 0,
FP0) =0, f®00) = Pu(1/x) exp(1/x),

where P, is a polynomial. The statement is true for n = 0. Assume that it is true for
n. We obtain

P = 1O L Pa(1/x) exp(1/x)
llm —_— = llm =

x—0~ X x—>0~ X

0.

Hence f®+1(0) = 0. Finally, we have for x < 0,

FO ) = (= 1/x)(Pa(1/x) + PL(1/x)) exp(1/x) = Pyy1(1/x)exp(1/x). O

Definition 4.3.3 We define on RY the function

p(x) =c texp(1/(Ix|* = ), |x] < 1,
=0, x| > 1,
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where
c =/ exp(1/(Jx|> = 1))dx.
B(0,1)
The regularizing sequence p,(x) = n" p(nx) is such that

pn € DRY),  spt p, = B[O, 1/n], fRN pndx =1, py > 0.

Definition 4.3.4 Let £2 be an open set of RY. By definition,  CC £ if w is open
and o is a compact subset of £2. We define, for | < p < oo,

Ll (2)={u:2 > R:forallw CC 2,u| €L’ (w)}.

w

A sequence (u,) converges to u in L]I;C (£2) if for every w CC $2,

/|un—u|pdx —- 0, n— oco.
w

Definition 4.3.5 Letu € LIIOC(SZ) and v € K(RN) be such that sptv C B[O, 1/n].

For n > 1, the convolution v *x u is defined on
2, ={xe€R:dx,08) > 1/n}

by

v ur) = /Q o(x — Yu(y)dy = / v(ux — y)dy.

B(0,1/n)
If |y| < 1/n, the translation of u by y is defined on £2, by Tyu(x) = u(x — y).

Proposition 4.3.6 Let u € L\ (£2) and v € DRYN) be such that spt v C

loc

B[O, 1/n]. Then v x u € C*®(82,), and for every o € NV, D¥(v % u) = (D%v) * u.

Proof Let |x| = 1 and x € £2,,. There exists r > 0 such that B[x, r] C £2,. Hence
w=Bx,r+1/n) CC £2,

and for0 < |e| < r,

vk u(x +ea) — v *ux) :/ ey _y)“(y)dy

& ® &
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But
8 — J— —
im YETEXTy) — ok ”:D"v(x—y)
e—>0 e
e#0
and
v(x +ea —y) —v(x —y)
sup < 00.
yEw 3
O<lel<r

Lebesgue’s dominated convergence theorem implies that
D*(vxu)(x) = / D%v(x — y)u(y)dy = (D*v) * u(x).
w

It is easy to conclude the proof by induction. O

Lemma 4.3.7 Let w CC £2.
(a) Letu € C(82). Then for every n large enough,

sup |on * u(x) —u(x)| < sup sup|ryu(x) —u(x)|.
XEW lyl<l/nxew

(b) Letu € Lf;c(.Q), 1 < p < o¢. Then for every n large enough,

lon *u —ullpr@wy < sup |ltyu —ullrr(w)-
yI<l/n

Proof For every n large enough, w CC §2,,. Letu € C(§2). Since

/ en(W)dy =1,
B(0,1/n)

we obtain for every x € w,

| o xu(x) —u(x) | =

[ om0 et = - utw)ay
B(0,1/n)

< sup sup ]u(x —y)— u(x)}.
lyl<1/nx€w

Letu € L?

loc(§2), 1 < p < oco. By Holder’s inequality, for every x € w, we have
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psutn) —ue) | = | [ g ey - u(x))dy‘
B(0,1/n)

1/p
< (/ e |ulx — y) — u(x>|"dy) .
B(0,1/n)

Fubini’s theorem implies that

/|pn*u<x)—u<x)|”dx s/dx/ P |Cx = y) — u)|"dy
@ © B(0,1/n)

=f dy/pn<y>\u(x—y)—u<x)|”dx
B(0,1/n) w

< sup / ’u(x —y) — u(x)‘pdx.
lyl<l/n/o

Lemma 4.3.8 (Continuity of Translations) Let w CC 2.
(a) Letu € C(82). Then lirr}) sup [tyu(x) —u(x)| = 0.

Yy—=>Uxew

(b) Letu € sz)c(.Q), 1 < p < o0. Then lir%||ryu —ullpr@) = 0.
y—>
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Proof We choose an open subset U such that w CC U CC £2.If u € C(2), then

property (a) follows from the uniform continuity of # on U.

p
Letu € Ly,

(£2),1 < p < 00, and ¢ > 0. The density theorem implies the

existence of v € K(U) such that |[u — v|| r@) < &. By (a), there exists 0 < § <
d(w, dU) such that for every |y| < §, sup|tyv(x) — v(x)| < &. We obtain for every

XEw

Iyl <,

Tyu — ullLrw) < lltyu — TyvllLr(w) + 1Ty — vllLr(w) + 11V — ul|Lr(w)

<2[|lu = vllLrw) + m(@)/Psup|ryv(x) — v(x)]|
XEW

< 24 m(w)/P)e.

Since ¢ > 0 is arbitrary, the proof is complete.

We deduce from the preceding lemmas the following regularization theorem.



104 4 Lebesgue Spaces

Theorem 4.3.9

(a) Letu € C(82). Then p, * u converges uniformly to u on every compact subset
of £2.

(b) Letu e LIOC(.Q) 1 < p < 0. Then p, * u converges to u in LIOC(Q).

The following consequences are fundamental.

Theorem 4.3.10 (Annulation Theorem) Let u Llloc(.Q) be such that for every
v e D(),

/ v(xX)u(x)dx = 0.
2

Then u = 0 almost everywhere on S2.

Proof By assumption, for every n, p, * u = 0 on £2,. O

Theorem 4.3.11 Let 1 < p < 00. Then D(S2) is dense in LP (£2).

Proof By the density theorem, K($2) is dense in LP(£2). Let u € K(§2). There
exists an open set w such that spt u C w CC §2. For j large enough, the support
of uj = p; * u is contained in w. Since u; € C>®(RM) by Proposition 4.3.6, uj €
D(£2). The regularization theorem ensures that u; — u in L?(£2). m|

Definition 4.3.12 A partition of unity subordinate to the covering of the compact
subset I of RN by the open sets Uy, ..., Uy is a sequence ¥, ..., ¥y such that

@ ¥y € DU Yy 20.) =1,k

(b) Zl/fj_mnr Za,p, <1lonRV.

j=1 J=1
Let us prove the theorem of partition of unity.

Theorem 4.3.13 Let Uy, ..., Uy be a covering by open sets of the compact subset
I" of RN. Then there exists a partition of unity subordinates to Uy, . .., Uy.

Proof Let K be a compact subset of the open subset U of RY. We choose an open
set w such that K C w CC U. For n large enough, ¢ = p, * X, is such that
peDWU),p=1onKand0 < ¢ <1onR".

For n large enough, the finite sequence

={x:dx,RN\U) > 1/n}, j=1,....k

is a covering of I" by closed sets. Indeed if this is not the case, there exists, by the
k

compactness of I, x C I'\ U Uj;. This is a contradiction.
j=1
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By the first part of the proof, there exists, for j = 1,...,k, ¢; € D(U;) such
thatg; = lon I"( Fjand 0 < ¢; < 1 on RV Let us define the functions
Y1 = o1,
Y2 = @2(1 — ¢1),

Yk =01 =) ... (1 —@r_1).

It is easy to prove, by a finite induction, that

Vvit+...+=1-0—-9¢)...(d — ).
Assume that x € I". There exists j such that x € F;. By definition, we conclude
that pj(x) = land Y1 (x) + ...+ Yy(x) = L. O
Now we consider Euclidean space.

Proposition 4.3.14 Let 1 < p < oo and u € LP(RY). Then ||p, *ullp < [lullp
and py x u — u in LP(RV).

Proof 1t follows from Holder’s inequality that

1/p
<

|pn + u(x)| = ‘/ u(y)on(x — )dy
RN

/RNlu(y)\ppn(x — y)dy

Fubini’s theorem implies that

f |pn s u(x)|"dx Ef dx/ lu)|” pn(x = y)dy
RN RN RN

= [y [ el pute = i
RN RV

=f lu(y)|"dy.
RN

Hence || oy * ullp < |lull,.

Let u € L?(RV) and & > 0. The density theorem implies the existence of v €
K(RN) such that |lu — v]] p =< €. By the regularization theorem, p, * v — v in
LP(RN). Hence there exists m such that for every n > m, ||p, % v — V||, <. We
obtain for every n > m that

llon *u —ullp < lpn * (u = V)[|p 4+ [lpn* v —vllp + [lv—ull, < 3e.

Since ¢ > 0 is arbitrary, the proof is complete. O
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Proposition 4.3.15 Ler1 < p < oo, f € LP(RN), and g € K(RN). Then

f (on * flgdx = / f(pn * g)dx.
RN RN

Proof Fubini’s theorem and the parity of p imply that
/ (on * f)(x)g(x)dx zf dX/ pn(x — ¥) f(y)g(x)dy
RN RN RN
= / dy/ pn(x = ¥) f(y)g(x)dx
RN RN

_ / (n * ) f ). 0
RN

4.4 Compactness

We prove a variant of Ascoli’s theorem.

Theorem 4.4.1 Let X be a precompact metric space, and let S be a set of uniformly
continuous functions on X such that
(a) ¢ =sup sup |u(x)| < 005

ueS xeX

(b) forevery ¢ > 0, there exists § > 0 such that sup w,(§) < e.
ues

Then S is precompact in BC(X).

Proof Let ¢ > 0 and let § corresponds to ¢ by (b). There exists a finite covering of
the precompact space X by balls B[x1, é], ..., B[xk, §]. There exists also a finite
covering of [—c, c] by intervals [y; — e, y1 +¢€], ..., [yn — &, yn + €]. Let us denote
by J the (finite) set of mappings from {1, ..., k} to {1, ..., n}. Forevery j € J, we
define

Si={ueS:|lux) -yl <e ..., lulp)—yjwpl <e}

By definition, (S;) ey is a covering of S. Letu, v € §; and x € X. There exists m
such that d(x, x,,,) < 6. We have

luCxm) = yiem| <& |vGm) = yjim| < ¢
and, by (b),

lu@) —uGxm)| <& |o@x) —vxw)| <e.
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Hence |u(x) — v(x)| < 4e, and since x € X is arbitrary, ||u — v||cc < 4&.If §; is
nonempty, then S§; C Blu, 4¢]. Since ¢ > 0 is arbitrary, S is precompact in BC(X)
by Fréchet’s criterion. O

We prove a variant of M. Riesz’s theorem (1933).

Theorem 4.4.2 Let 2 be an open subset of RY, 1 < p < oo, and let S C LP(£2)
be such that

(a) ¢ =sup ||ullLr(2) < 00;
ues

(b) forevery e > 0, there exists w CC §2 such that sup / lu|Pdx < eP;
ueS J2\o
(c) forevery w CC £2, lim sup ||tyu — ul|prw) = 0.
y=0 yes

Then S is precompact in L? ($2).
Proof Let ¢ > 0 and let w corresponds to & by (b). Assumption (c) implies the
existence of 0 < § < d(w, d52) such that for every |y| < §,

sup ||tyu —u |lLrw) <.
ues

We choose n > 1/§. We deduce from Lemma 4.3.7 that

sup ||on * u — ullLr@) < sup sup ||tyu —ullLrw) < é. (%)
uesS ues |yl<l/n
We define

U={xeR":dx 0 <1/n} cc 2.

Let us prove that the family R = {p, * u|w : u € S} satisfies the assumptions of
Ascoli’s theorem in BC(w).
1. By (a), for every u € S and for every x € w, we have

o ()| s/ pu(x = D|u(@)|dz < suplpul 1l 1) < 1.
U RN

2. By (a), for every u € S and for every x, y € w, we have

IA

low # 1(6) — pu % 1 ()| f o x = 2) — only — 2] |u(@)]dz

IA

sup|pn (x — 2) — pu(y — 2| lull1 ) < calx — yl.
Z
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Hence R is precompact in BC(w). Since

0] L (@) < m(w)"/P sup|v],
w

R is precompact in L? (w). But then (x) implies the existence of a finite covering
of S|w in L?(w) by balls of radius 2¢. Assumption (b) ensures the existence of a
finite covering of S in L?(£2) by balls of radius 3¢. Since ¢ > 0 is arbitrary, S is
precompact in L?(§2) by Fréchet’s criterion. O

4.5 Comments

Figure 4.1 gives a geometric interpretation of Lemma 4.1.3. It is contained in the
Lectures on Analysis by G. Choquet (W.A. Benjamin, New York, 1969).

Proofs of the Hahn—Banach theorem without the axiom of choice (in separable
spaces) are given in the treatise by Garnir et al. [28] and in the lectures by Favard
[22].

The convexity inequality is due to Roselli and the author [64]. In contrast to
Jensen’s inequality [36], it is not restricted to probability measures. But we have
to consider positively homogeneous functions. See [16] for the relations between
convexity and lower semicontinuity.

Fig. 4.1 Lemma of the Hahn-Banach theorem



4.6 Exercises for Chap. 4 109
4.6 Exercises for Chap.4

1. (Young’s inequality.) Let 1 < p < oo. Then for every a, b > 0,

/

, A B expA expB
First proof: A = ¢n a?, B = {n b? , exp (— + —/) < P + P
P P P p

P p
Second proof: —- = sup (ab - a_>
p

a>0 p
2. (Holder’s inequality.) Let 1 < p < oo. If [|u||, # O # ||vl|,r, then by Young’s
inequality,
u v
ldp < 1.

e lullp ]l

3. (Minkowski’s inequality.) Prove that

@ llull, = sup / uw dpe
llwl| =1/
®) u+vllp < Illullp + lvilp
4. (Minkowski’s inequality.) Let | < p < oo and define, on L?(§2, ), the convex

function G(u):f lu|Pdp. Then with A = [[v]],/(ullp, + [lv]]p),
2

G<$)—G<(1—A) Y Y. )
lull, + 1l /) [lullp [lvllp
5(1—A)G( ! )+AG< v ):1
[luellp [lvllp

Hence [lu + v||p < [lullp + [[V]]p.
5. (Jensen’s inequality)

(a) Let f : [0, 4+0o[— R be a convex function and y > 0. There exists «, § €
R such that

fO)=cay+pBand forallx > 0,ax + B < f(x).

(b) Let f : [0, +0o[— R be a convex function. Let u be a positive measure
on §2 such that u(£2) = 1, and let u € Ll(.Q, ) be such that u > 0 and

/ud,u > 0. Then
2
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f(/gudu)s/ﬂf(u)duﬁoo.

If f is concave, the reverse inequality holds.

. Assume that (£ (£2) = 1. Then for every u € Ll(.Q, w),u >0,

Ogexpf Enuduf/ud,ugénf expu du < +o0o0.
Q Q Q

Let 2 = B(0,1) c RY. Then
Ap+N>0 |x|* € LP(2),\p+ N <0< |x* € LP(RV \ ).
A differentiable function u# : R — R satisfies
2.7
x“u(x)+ulx)=0

if and only if u(x) = cf(x), where ¢ € R and f is the function defined in
Proposition 4.3.2.

Letl < p < o0, (u,) C L'(2, ) and let u: £2 — R be pu-measurable. Then
the following properties are equivalent:

@ llup —ullp — 0,n — o00;
(b) (up) converges in measure to u and {|u,|”: n € N} is equi-integrable.

(Rising sun lemma, F. Riesz, 1932.) Let g € C([a, b]). The set

E:{a<x<b:g(x)<maxg}
[x,b]

consists of a finite or countable union of disjoint intervals ]ak, bx[ such that
g(ar) < g(by). Hint: If ay < x < by, then g(x) < g(by).

(Maximal inequality, Hardy—-Littlewood, 1930.) Let u € Ll(]a, b[),u > 0. The
maximal function defined on Ja, b[ by

1 y
Mu(x) = sup / u(s)ds
x<y<b y =X Jx

satisfies, for every ¢t > 0,

b
{Mu > t}| < fl/ u(s)ds.

Hint: Use the rising sun lemma with



4.6 Exercises for Chap. 4 111

gx) = /xu(s)ds —tx.

12. (Lebesgue’s differentiability theorem) Let u € L'(Ja, b]). Prove that for almost
everya < x < b,

y—x
y>x

lim —f |u(s) —u(x)|ds = 0.

Hint: Use Theorem 4.3.11 and the maximal inequality.
13. (Godunova’s inequality) Let f: [0, +oo[— [0, +oo[ be convex, and let
u: R — [0, 400 be Lebesgue-measurable. Then

o x dt\ dx © dx
/ f (/ u(t)—) — = / fux)— < +oo.
0 0 X X 0 X

o0 x dt\ dx o0 x dt
f f(/ u(r)—)—g/ dx/ Fans
0 0 X X 0 0 X

= [ar [ rwanS
0 t X
=/ f(u(t))ﬂ.
0 t

14. (Hardy’s inequality) Let | < p < oo and v: R — [0, +o00o[ be Lebesgue-
measurable. Then

o) X p p 00
/ |:/ v(t)ﬂi| dx < <L> / v (x)dx < +o00. (%)
0 0 x p—1 0

Verify that this inequality is optimal using the family

Hint:

fe(x) =1, 0<x<l,

=x P x> 1.

Hint. Godunova’s inequality

oo X dt? dx o0 dx
/ [/ u(t)—} —5/ ul (x)—
0 0 X X 0 X

is equivalent to () where
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v(x) = x " VPux1mVPy,

15. (Knopp’s inequality) Let v: R — [0, +o0o[ be Lebesgue-measurable. Then

/ooexp </x v(t)£> dx < e/wexp v(x)dx < +o0. ()
0 0 X 0

Hint. Godunova’s inequality

o0 x dr\ dx o0 dx
/ exp </ u(t)—) — < / exp u(x)—
0 0 X X 0 X

is equivalent to () where

v(x) = u(x) — Inx.



Chapter 5 ®
Duality Qe

5.1 Weak Convergence

A fruitful process in functional analysis is to associate to every normed space X the
dual space X™* of linear continuous functionals on X.

Definition 5.1.1 Let X be a normed space. The dual X™* of X is the space of linear
continuous functionals on X. A sequence (f,) C X* converges weakly to f € X*
if (f,) converges simply to f. We then write f, — f.

Let us translate Proposition 3.2.5 and Corollary 3.2.7.

Proposition 5.1.2 Let Z be a dense subset of a normed space X and (f;) C X*
such that:

(a) supl|fll < o0;
n
(b) foreveryv € Z, {fn, v) converges.

Then (f,) converges weakly to f € X* and

A = lim [[fpll.
n—oo

Theorem 5.1.3 (Banach-Steinhaus) Letr X be a Banach space and (f,) C X*
simply convergent to f. Then (fy) is bounded, f € X*, and

A= lim [[fpll.
n—od

Theorem 5.1.4 (Banach) Let X be a separable normed space. Then every
sequence bounded in X* contains a weakly convergent subsequence.
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Proof A Cantor diagonal argument will be used. Let ( f;,) be bounded in X*, and let
(vk) be dense in X. Since ({fy, v1)) is bounded, there exists a subsequence (fi,,)
of (f,) such that (f; ,, vi) converges as n — oo. By induction, for every k, there
exists a subsequence (fx,n) of (fk—1,,) such that (fx », vk) converges as n — 00.
The sequence g, = f, » is bounded, and for every k, (g,, vk) converges as n — 0.
By Proposition 5.1.2, (g,,) converges weakly in X*. O

Example (Weak Convergence) Let us prove that BC(]O, 1[) is not separable.
We define on this space the functionals ( f;,, u) = u(1/n). It is clear that || f,,|| = 1.
For every strictly increasing sequence (ny), there exists u € BC(]0, 1[) such that
u(1/ny) = (—1)k. Hence,

li_m <fnkau> = _17 m (fnk’u> = 17
k— 00 k— 00

and the sequence ( fy,,) is not weakly convergent.
Let £2 be an open subset of RY. We define

Ki(2) ={u € K(§2) : forall x € 2, u(x) > 0}.

Theorem 5.1.5 Let u : K(£2) — R be a linear functional such that for every
u € K (82), (i, u) > 0. Then p is a positive measure.

Proof We have to only verify that if u,, | 0, then (u, u,) — 0. By the theorem of
partition of unity, there exists ¢ € D(£2) suchthat 0 < ¢ < 1 and = 1 on spt
up. By the positivity of u, we obtain

0 < (. llunlloo¥ — un).

We conclude, using Dini’s theorem, that

0 =< (u,un) = (1, Y)llunlloo — 0. 0

Let i : K(£2) — R be the difference of two positive measures 4 and p—. Then
for every u € K (£2),

sup{(u, ) f € K(&2), [f| < u} < (py, u) + (-, u) < +o0.

We shall prove the converse.

Definition 5.1.6 Let M > 1. A measure is a linear functional u : K($2; RM )— R
such that for every u € K1 (£2),

(Il, u) = sup{{u, f): f € K2;RM), | f] < u} < +o0.
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The measure is scalar when M = 1 and vectorial when M > 2.

Theorem 5.1.7 Let u : K(£2; RM) — R be a measure. Then the functional defined
on K(£2) by

(Il ) = (Il ™) = (Il u™)

is a positive measure.
Proof
1. Letu,v € Ky (2), f, g € K(£2; RM) be such that | f| < u and |g| < v. Then

(w, [+, &) =, f+g <A{lul,u+v).

Taking the supremum, we obtain

(Iels w) + (Il v) = (lpl, w4 v).

2. Letu,v e Ky (£2), h € K(2; RM) be such that || < u + v. Define f and g on
£2 by

f=uh/(u+v),g=vh/(u+v), u+v=>0,
f:g:()’ M+U=O

It is easy to verify that f, g € K(£22; RM) and | f| < u, |g| < v, so that

(i, by = (s f) =+ (s g) = (el u) + (el v).

Taking the supremum, we obtain

(Il u +v) < (Il u) 4 (|, v).

Hence, by the preceding step,

(Il u +v) = (el u) + ([l v).

3. Letug, vy € Ky (£2),k = 1,2, be such that u; — v = up — vy. Then

(Il ur) + (lls v2) = (Il ur 4 v2) = (|l ua + v1) = (Il uz) + (el vi),

so that

(Il uy) = (lls v1) = (lls uz) = (Il v2).
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Since for every u, v € K(£2),
U+ —@w+v)y =ut+v=ut+vT =@ +v),
we conclude that

(leels w +v) = (Il u) + (|l v).

4. Itis clear that for every u € K(§2) and every A € R,

(Iel, Au) = A(|pel, ),

and that for u € K4 (£2), (|u], u) > 0. m|

Corollary 5.1.8 (Jordan Decomposition Theorem) Letr n : K(£2) — R be a
scalar measure. Then (L = 4 — u—, where

Il + lul —
=, M_:—

M+ ) )

are positive measures.
We need a new function space.

Definition 5.1.9 We define

Co(£2) = {u € BC(£2) : for every ¢ > 0, there exists a compact subset K of £2

such that sup |u| <e¢.
2\K

Example The space Cy (RN) is the set of continuous functions on RY tending to 0
at infinity.

Proposition 5.1.10 The space Co(§2) is the closure of K(§2) in BC($2). In
particular, Cy(82) is separable.

Proof 1f u belongs to the closure of K(£2) in BC(S2), then for every ¢ > 0, there
exists v € K(§2) such that ||u — v|| < €. Let K = spt u. We obtain

sup |u(x)| = sup |u(x) — v(x)| < €.
2\K 2\K

If u € Cp(£2), then for every ¢ > 0, there exists a compact subset K of §2 such
that supg, g |u(x)| < &. The theorem of partitions of unity implies the existence of



5.2 James Representation Theorem 117

@ € D($2) suchthat 0 < ¢ < 1 and ¢ = 1 on K. Define v = gu. Then v € K(£2)
and

llu = vlloe = sup (1= ))[u)| <e.
2\K

Hence, Cy($2) is the closure of K(§2) in BC(£2). By Propositions 2.3.2 and 3.3.11,
Co(£2) is separable. |

Definition 5.1.11 The total variation of the measure u : K(£2; RM) - R is
defined by

llulle = supl{u, f) : f € K2; RM), || flloo < 1).

The measure p is finite if ||u||2 < oo. By the preceding proposition, every finite
measure  has a continuous extension to Co(£2; RM). A sequence (u,) of finite
measures converges weakly to y if for every f € Co(£2; RM),

(s f)— (1, f).

Theorem 5.1.12 (de la Vallée Poussin, 1932) Every sequence () of measures
on §2 such that sup ||u,||e < 0o contains a weakly convergent subsequence.
n

Proof By the preceding proposition, Co(£2; RM) is separable. It suffices then to use
Banach’s theorem. |

5.2 James Representation Theorem

Let us define two useful classes of normed spaces.

Definition 5.2.1 A normed space is smooth if its norm F(x) = [|u|| has a linear
directional derivative F’(u) for every u # 0:

d
(F'(w),v) = T |, Flutev).

Definition 5.2.2 A normed space is uniformly convex if forevery 0 < ¢ < 1,
. u-+v
Sx(e) = lnf{l ==l luff =il = 1 llu — vl = 28} > 0.

The function §x (¢) is the modulus of convexity of the space.
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The proof of the next result is left to the reader.

Proposition 5.2.3 Let X be a smooth normed space and u € X \ {0}. Then
[|F'(w)|| = 1 and

(F'(u), u) = ||ul| = max {f,u).
lIfli=1

Choose f # 0 in the dual of the normed space X and consider the dual problem

{ maximize (f, u), @)

uelX, |ull=1

Lemma 5.2.4 Let X be a smooth normed space, f € X* \ {0}, and u a solution of
(P). Then f = || fIIF'(u).

Proof By assumption, (f, u) = || f||. Let v € X. The function

g = IfIl llu+ev|| = (f,u+ev)
reaches its minimum at £ = 0. Hence, g’(0) = 0 and
FICE @), v) = (f, v) = 0.
Since v € X is arbitrary, the proof is complete. O

Lemma 5.2.5 Let X be a uniformly convex Banach space and f € X* \ {0}. Then
(P) has a unique solution.

Proof Let (u,) C X be a maximizing sequence for the problem (#):
llunll =1, (f,un) = IIfIl, n— o0.

Let us prove that (u,) is a Cauchy sequence. Let 0 < ¢ < 1, and let §x (&) be the

modulus of convexity of X at €. There exists m such that for j, k > m,

u uj +ug + ug
2

+Mk||

AN =dx(©) < (fruj) +{fru)/2=(f, ——) =< IIfII|| .

Hence, j,k > m = |lu; — ux|| < 2¢. Since X is complete, (u,) converges to

u € X. By continuity, ||#|| = 1 and (f, u) = || f||. Hence, u is a solution of (P).
Assume that u and v are solutions of (#). The sequence (u,v,u,v,...) is

maximizing. Hence, it is a Cauchy sequence, so that u = v. O

From the two preceding lemmas, we infer the James representation theorem.
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Theorem 5.2.6 Let X be a smooth uniformly convex Banach space and f € X* \
{0}. Then there exists one and only one u € X such that

lull =1, (fou)=IIfIl,  f=fll F.

From the James representation theorem, we deduce a variant of the Hahn—
Banach theorem.

Theorem 5.2.7 Let Y be a subspace of a smooth uniformly convex Banach space
X and f € Y*. Then there exists one and only one g € X* such that ||g|| = || f]]

d =f.
andg| = f

Proof Existence If f = 0, then g = 0. Let f # 0. After extending f to Y by
Proposition 3.2.3, we can assume that Y is closed.

The James representation theorem implies the existence of one and only one
u € Y such that

Null=1, (fiu) =1l f=||f||(Fy)’(u)-
Define g = || f|| F/(u). It is clear that ||g|| = || f]| and

g, = I71ICF| Y = f.

Uniqueness If h € X* is such that ||k|| = || f|| and h’y = f, then

(hou)y = (f,u) =[£Il = [IA]].

Lemma 5.2.4 implies that & = ||h||F'(u) = || f||F' (u). |

5.3 Duality of Hilbert Spaces

By the Cauchy—Schwarz inequality, for every g fixed in the Hilbert space X, the
linear functional

X —>R:v (g|v)

is continuous. The Fréchet—Riesz theorem asserts that every continuous linear
functional on X has this representation.
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Theorem 5.3.1 Let X be a Hilbert space and f € X*. Then there exists one and
only one g € X such that for every v € X,

(f;v) = (g]v).

Moreover, ||gl| = || f]I.

Proof Existence If f = 0, then g = 0. Assume that f # 0. It follows from the
parallelogram identity that for 0 < ¢ < 1,68(¢) > 1 — 1 — €2 > 0. Hence, X is
uniformly convex.

Ifu € X \ {0}, we find that

) d _
(F'@),v) = —| _ llu+evll = [Jull Yulv).
&€ le=0

Hence, X is smooth.
The James representation theorem implies the existence of u € X such that

llull =1, (fou)=IIfIl,  f=IfIF@).

But then, for every v € X,
(fov) = 1f1lulv) = (1 f1u]v).

Uniqueness If for every v € X,

(glv) = (f,v) = (hv),
then ||g — h||> = 0 and g = h. O
Definition 5.3.2 The vector space X is the direct sum of the subspaces Y and Z if
YNZ={0}land X ={y+z:y €Y, ze Z}. Wethen write X = Y @ Z, and every

u € X has a unique decompositionu =y +z,y€ Y,z € Z.

Definition 5.3.3 The orthogonal space to a subset Y of a pre-Hilbert space X is
defined by

Yt={(zeX: forevery y € Y, (z]y) = 0}.

It is easy to verify that Y is a closed subspace of X.

Corollary 5.3.4 Let Y be a closed subspace of a Hilbert space X. Then X is the
direct sum of Y and Y.
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Proof Tfu € Y NYL, then (ulu) =0and u = 0.
Let u € X. The Fréchet-Riesz theorem implies the existence of y € Y such that
foreveryv € Y, (ulv) = (y|v). Butthenz =u — y € Y+ |

Corollary 5.3.5 A subspace Y of a Hilbert space X is dense if and only if Y+ =
{0}.

Proof Let Y be a subspace of X. Then Y is a closed subspace of X. By continuity
of the scalar product, Y- = Y. It follows from the preceding corollary that

O
X=Yo7 =Yar
Definition 5.3.6 A sequence (u,) converges weakly to u in the Hilbert space X if
for every v € X, (u,|v) — (u|v). We then write u, — u.
Proposition 5.3.7 Let Z be a dense subset of a Hilbert space X and (u,) C X be
such that:
(a) supllup|| < oo,
n
(b) foreveryv € Z, (u,|v) converges.
Then (u,) converges weakly in X.
Proof 1t suffices to use Proposition 5.1.2 and the Fréchet-Riesz theorem. O

Theorem 5.3.8 Let (u,,) be a sequence weakly convergent to u in the Hilbert space
X. Then (uy) is bounded and

lull = Lim [lupl].
n—o00

Proof 1t suffices to use Theorem 5.1.3 and the Fréchet-Riesz theorem. O

Theorem 5.3.9 Every bounded sequence in a Hilbert space contains a weakly
convergent subsequence.

Proof Let (u,) be a bounded sequence in the Hilbert space X, and let Y be the
closure of the space generated by (u,). The sequence (u,) is bounded in the
separable Hilbert space Y. By the Banach theorem and the Fréchet—Riesz theorem,
there exists a subsequence vy = u,, weakly converging to u in Y. For every v € X,
v=y+z,y €Y, and z € Y by Corollary 5.3.4. By definition, (vx|z) = (u|z) = 0.
Hence, (vi|v) — (u|v) and vy — u in X. O

Definition 5.3.10 Let u : £L — Rand v : £ — R by positive measures on §2. By
definition, u < vifforeveryu € L,u > 0, / udu < [ udv.
2 Q
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Lemma 5.3.11 Let n < v. Then L'(2,v) C LY (2, ), and for every u €
Ll(-Qa\)), ||M||L|(Q,M) < ||”||L1(_Q,\;)~

Proof Letu € L'(£2, v). By the density theorem, there exists a sequence (u,) C £
such that u, — u in Ll(.Q, v) and v-almost everywhere. Clearly, u;, — u p-almost
everywhere. By Fatou’s lemma, u € L'(£2, 1) and

/Iulduf lim f lnldpe < lim / |un|dv=/ uldv. 0
2 n—>00 JQ nmee e 2

Lemma 5.3.12 (von Neumann) Let u < v and v(§2) < +00. Then there exists
one and only one function g : 2 — [0, 1] measurable with respect to v and such

that for every u € L'(£2, v),
/udu:f ug dv.
2 Q

Proof By assumption, L?(£2,v) C L'(£2,v). Let us define f on L%(£2, v) by

<f,u>=/9udu«.

By the Cauchy—Schwarz inequality, we have

1/2 1/2
1(fou)] < (u(2)'/? ( / uzdu) < (u(2n'? ( / u2dv> .
2 2

The Fréchet—Riesz theorem implies the existence of one and only one function g €
L2(£2, v) such that for every v € L2(22,v),

/vdu:/ vg dv. (%)
2 Q

In particular, we obtain

05/ g du = —/ (g7)2dv
2 2

and v({g < 0}) = 0. Similarly, we have

2
Oif(l—g)_dv—f(l—g)_du=—/[(l—g)_] dv
2 2 2

and v({g > 1}) = 0. Letu € L'(£2,v), u > 0, and define u, = min(u, n). We
deduce from (x) and Levi’s theorem that
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f udu = lim updp = lim Ung d\):f ug dv.
Q Q = Jje 2

n—oo

Since u = u™ — u~, the preceding equality holds for every u € L'(£2, v). O
Let us prove Lebesgue’s decomposition theorem.

Theorem 5.3.13 Let n : L — Randv : L — R be positive measures on §2
such that 1(82) < oo, v(§2) < oo. Then there exist h € LY (2,v)and ¥ C £,
measurable with respect to (. and v, such that:

(a) W(X)=0h=>0;
(b) foreveryu € L'(2, w) N L' (82, v), uh € L'(82,v) and

/ud,u:/uhd\)—i—/udu.
2 2 X

Proof Let X = L'(£2, u) N L'(£2, v). The preceding lemma implies the existence
of g : 2 — [0, 1], measurable with respect to . and v, such that for every v € X,

/vdu:/vgdu+/vgdv.
2 Q2 Q2

Let ¥ = {g = 1}. Since for every v € X,

/ v(l —g)du =/ vg dv, (%)
Q Q

we obtain v(X) = 0. Let us define 7 = X 2\ xg/(1 — g). Choose u € X, u > 0, and
define

up=N0+g+...+g"u.

We deduce from (*) and Levi’s theorem that

/ udu:/ ug/(l—g)dv:/ uh dv.
[229)) oQ\x 2

Since u = ut — u~, the preceding equality holds for every u € X. Finally, we have

/hd\):u(.Q\Z‘)<+oo. O
Q

Remark Every other decomposition of u corresponding to ho and Xy is such that
pn(Xo \ X) = (¥ \ o) = 0and v({ho # h}) = 0.
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Let us prove the polar decomposition of vector measures theorem.

Theorem 5.3.14 Let 2 be an open subset of RN, and let i : K(2; RM) — R be
a measure such that ||jt||@ < +00. Then there exists a function g = 2 — RM such
that:

(a) gis|u|-measurable;
(b) |g(x)| =1, |u|-almost everywhere on §2;

(c) forall f € K(2; RM), (u, f) =/Qf'gd|ﬂ|-

Proof Let ey, ..., ep be the standard basis of RM andfor 1 < k < M, define Ik
on K(£2) by

(e, u) = (W, u eg).

It is clear that for all u € K(£2),
1/2
|<uk,u>|s/ﬂ|u|d|u|s||m|Q Nl 2202,

Since K(£2) is dense in L2(£2, |m), Proposition 3.2.3 implies the existence of a
continuous extension of i to L2(£2,|u|). By the Fréchet-Riesz representation
theorem, there exists g € L?($2, |e]) such that for all u € K($2),

(Mg, u) =/ u gk dlul.
2

M
We define g = ngek, so that for all f € K(£2; RM),
k=1

M M
by =Y siey =Y [ fecdini= [ f-gdal
k=1 k=179 $2
Let u € K1 (£2). We have, by Definition 5.1.6,

C=Sup{/9f~gdl,u|ifEW(Q;RM),IfISM}=/Qudlltl-

It is clear that ¢ < /u|g| d|p|. Theorem 4.2.11 implies the existence of (w,) C
K($2; RM) converging to g in L(£2, |m]). Let us define

Up = U wy/y/ |wa > +1/n.
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We infer from Lebesgue’s dominated convergence theorem that

csf ulgl dipl = lim f v g dlul <c.
Q n—oo _Q

We conclude that for all u € K(£2),

/ulgldlul=/ udlul.
2 2

Hence, |g|— 1 is orthogonal to K(£2) in L2(.Q, [1e]). By Corollary 5.3.5, |g|—1 = 0,
| |-almost everywhere. |

5.4 Duality of Lebesgue Spaces

Let 1 < p < 00, and let p’ be the exponent conjugate to p definedby 1/p+1/p’ =
1. By Holder’s inequality, for every g fixed in L” (82, W), the linear functional

L”(Q,u)—>R:vr—>/ gvdu
2

is continuous. Riesz’s representation theorem asserts that every continuous linear
functional on L?(£2, ) has this representation. We denote by n : £ — R a positive
measure on £2.

Theorem 54.1 Let 1 < p < o0. Then the space LP(S2, 1) is smooth, and the
directional derivative of the norm F(u) = ||ul|, is given, for u # 0, by

1— _
(F'(u), v) = |lull}; f’/ P2 dpe.
2

Proof We define G(u) = / |u|?dw, and we choose u, v € L?. By the fundamental

Q
theorem of calculus, for 0 < |¢| < 1 and almost all x € £2,

llu(x) + ev()” = u()|”] < p V lu(x) + tv() [P~ u(x)|de
0

p—1
< plel(lueol + vl)” el
It follows from Holder’s inequality that

(u@)| + v)D? @) e L.
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Lebesgue’s dominated convergence theorem ensures that

(G (), v) = —

d
‘ Gu+ev) = p/ lulP"2uv du.
de le=0 Q

Hence for u # 0,

(F'(u), v) ‘ UGt ev) = Gu) 7 /|u|p 2uv dp. o

Theorem 5.4.2 (Clarkson, 1936) Let 1 < p < oo. Then the space LP($2, i) is
uniformly convex.

Proof If L? is not uniformly convex, then there exist 0 < ¢ < 1 and (u,), (v,) such
that

Hunllp = lvnllp =1,  lun —vpllp — 26 and  ||uy + vpllp — 2.
If 2 < p < oo, we deduce from Hanner’s inequality that
||un+vn||£+||un_vn||p<2p

Taking the limit, we obtain 27 + 2P¢P < 2P This is a contradiction.
If 1 < p <2, we deduce from Hanner’s inequality that

p p p p
Taking the limit, we find by strict convexity that
2<(1+8)?+0—-¢)f <2
This is also a contradiction. O

Theorem 5.4.3 (Riesz’s Representation Theorem) Let 1 < p < o0 and f €
(LP(£2, u))*. Then there exists one and only one g € LP (£2, 1) such that for
everyv € LP (82, ),

(f,v) =f guvdp.
2

Moreover, ||g|ly = Il f]I.

Proof Existence. If f = 0, then g = 0. Assume f # 0. Since L? is smooth
and uniformly convex by the preceding theorems, the James representation theorem
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implies the existence of # € L? such that

lull, =1, (fru)=1fIl,  f=IFIF@).

But then for every v € L?,
(fiv) = IIfII/Q lulP~2uv du.

Define g = || f|| |u|P~2u. It is easy to verify that g € L? and llgllp =111l

Uniqueness 1t suffices to prove that if g € L?" is such that for every v € L7,

/ gvdpu =0, then g = 0. Since Igll’/_zg € L?, we obtain
fos

gl =/ 1817 dp = 0. O
2

Definition 5.4.4 Let 1 < p < oo. We identify the spaces (LI’/(.Q, ©w))* and
LP($2, ). A sequence (u,) converges weakly to u in LP($2, u) if for every

veLr(2, ),
/u,ﬂ;du—)/ uv du.
Q Q

We then write u,, — u.

Proposition 5.4.5 Let 1 < p < oo, let Z be a dense subset of LP/(.Q, w), and let
(un) C LP(82, 1) be such that:

(a) supllup|lp < o0o;
n
(b) foreveryv e Z, / uyv di converges.
2

Then (u,) converges weakly tou € LP (82, ).

Proof 1t suffices to use Proposition 5.1.2. O

Theorem 5.4.6 Let 1 < p < oo, and let (uy) be a sequence weakly convergent to
uin LP($2, w). Then (uy) is bounded and

llullp = lim |unllp.
n—00

Proof 1t suffices to use Theorem 5.1.3. O
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Proposition 5.4.7 Let 1 < p < oo, and let (u,) C LP (82, u) be such that:

(a) ¢ =suplluyllp < o0;
(b) (u,) converges almost everywhere to u on 2.

Then u, — uin LP (82, ).
Proof By Fatou’s lemma, ||u]|, < c. We choose v in LP’(Q, ), and we define

Ay ={x € Q2 up(x) —u@)| < @)P ), B, =2\ Ay

We deduce from Holder’s and Minkowski’s inequalities that

) v0:4
/|un—u| IvldMS/ |un—u||v|du+||un—u||p(/ Ivlpdu>
2 Ay, B,
) 1/p
s/ it — Ivld,u+2c(/ Ivl”du> .
A, B,

Lebesgue’s dominated convergence theorem ensures that

lim |y, —u| [v|du =0 = lim / |U|P/d/1,. O
n—>oo Bn

n—oo An

Theorem 5.4.8 Let 1 < p < 00, and let 2 be an open subset of RN. Then every
bounded sequence in LP ($2) contains a weakly convergent subsequence.

Proof By Theorem 4.2.11, LY (£2) is separable. It suffices then to use Banach’s
theorem. =

Examples (Weak Convergence in LP) What are the obstructions to the (strong)
convergence of weakly convergent sequences? We consider three processes by
which in L?(£2),

Uy — 0, up A 0.

2
b
follows from Bessel’s inequality that u,, — 0. But ||u,|[» = 1.

Oscillation The sequence u,(x) = sinn x is orthonormal in L2(]0, 7 [). It

Concentration Let 1 < p < oo, u € KRN)\ {0}, and u, (x) = n™/Pu(nx).
For every n, ||u,llp = llullp > 0, and for all x # 0, u,(x) — 0,n — oo. By
Proposition 5.4.6, u,, — 0in L?(R"N).
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Translation Let1 < p < oo, u € K(RV)\ {0}, and u,, (x) = u(x1 —n, x2, ..., xN).
For every n, |luyllp, = |lull, > 0, and for all x, u,(x) — 0, n — oo. By
Proposition 5.4.7, u,, — 0in L?(RN).

5.5 Comments

A representation theorem gives to an abstract mathematical object like a functional
a more concrete representation involving in many cases an integral. It replaces a
structural definition by an analytic description. The first representation theorem
(proved by Riesz in 1909 [61]) asserts that every continuous linear functional on
C([0, 1]) is representable by a Stieltjes integral (see Sect. 10.1). In this chapter, we
use as a basic tool the James representation theorem [35].

5.6 Exercises for Chap. 5

1. Define a sequence ( f;,) of finite measures on ]0, 1[ such that:

@ [ full = ILFI
) fo— 1
© fa = fII # 0.

2. Let X be a Hilbert space, and let (#,,) C X be such that:

(@) Tim|[uy|] < [lull;
(b) u, — u.

Then ||u,, — u|] — O.
3. Letl < p <ooand (u,) C LP($2, u) be such that:

@ Tim [Junllp < [lullp;
®) u, — u.

Then ||u, — ul|, — 0. Hint: If v, — v, then ||v||, < lim ||v";“)||,,.

4, Letl < p <ocoandu, — uin LP($2, n). Is it true that

Hm (unllh = Nl — ullB) = ||u]lb 2
rHOO(II nllp — lun 1) = llullp

Hint: When p # 2, construct a counterexample using oscillating step functions.

5. Let X be a smooth uniformly convex Banach space and f, g € X*. Then
ma. . y) = min — Agll.
max (f.y) =min||f — Agl|

IylI=1
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Let C be a closed convex subset of a uniformly convex Banach space X. Then
for every u € X, there exists one and only one v € C such that ||u — v|| =
d(u, C).

Let £2 be an open subset of RV and f € Ll (£2). Prove that

loc
w:K2) > R:um— / f@u(x) dx
2
is a measure on §2 such that

ulle =/ ()l
2

. Let u be a positive measure on §2 such that u(£2) = 1. We define, on M(£2, ),

[lu]|oo = inf{c > O : almost everywhere on £2, |u(x)| < c}.
We also define
L2, 1) = {u € M(2, 1) : |Julloc < 400}

We identify two functions of L*°(£2, u) when they are p-almost everywhere
equal. If [|u||cc < 400, thenu € ﬂ LP(£2, ) and ||ul|eo = lim [lullp.
p—00
1<p<oo
Assume that ;£ (§2) = 1. For every f € (L'(£2, w))*, there exists one and only
one g € L*°(£2, u) such that for every v € L'(£2, W,

(fiv) = / gudu.
2

Moreover, ||g|loc = || f]|. Hint: Use Riesz’s representation theorem on (L?)*,

l <p<oo.

Let £2 be a bounded open subset of RV, and let (g,) C L*(£2, Ay) be such

that sup||g.|lco < +00. Then there exist a subsequence (g,,) of (g,) and g €
n

L% (£2, Ay) such that for every v € L' (£2, Ay),

lim guvdx = / gvdx.
9}

k—o0 Jo



Chapter 6 ®
Sobolev Spaces oo

6.1 Weak Derivatives

Throughout this chapter, we denote by £2 an open subset of RY. We begin with an
elementary computation.

Lemma 6.1.1 Let 1 < || < m and let f € C"(82). Then for every u € C™(£2) N
K($2),

/ f D% dx = (=1l / (D% f)u dx.
2 2

Proof We assume that = (0, ..., 0, 1). Let u € C'(£2) N K(£2), and define

g(x) = f(xu(x), x € £2,
=0, x e RV\ 2.

The fundamental theorem of calculus implies that for every x’ € RV~1,
o / _
A&D g(x ,xN)de =0.

Fubini’s theorem ensures that

/(fD”‘u—l—(D“f)u)dx:/ D“gdx:/ dx//D“gdx =0.
2 RN RN-1 R N

When || = 1, the proof is similar. It is easy to conclude the proof by induction.
O

Weak derivatives were defined by S.L. Sobolev in 1938.
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132 6 Sobolev Spaces

Definition 6.1.2 Let o € NV and f € Llloc(.Q). By definition, the weak derivative
of order « of f exists if there is g € L1 (£2) such that for every u € D(S2),

loc

/fD“u dx:(—l)'“‘/ gu dx.
2 2

The function g, if it exists, will be denoted by 9% f.
By the annulation theorem, the weak derivatives are well defined.

Proposition 6.1.3 Assume that 3% f exists. On
2, ={xe€R:dx,02) > 1/n},
we have that
D¥(pn *x f) = pp *x 0° f.

Proof We deduce from Proposition 4.3.6 and from the preceding definition that for
every x € §2,,

D*(py * f)(x) = fg D3 pn(x — y) f(y)dy
= (D)« /Q D% pu(x — ) F(Y)dy

= (—1)%! /Q on(x — )% f(y)dy

= pn * 0% f(x). 0

Theorem 6.1.4 (du Bois—Reymond Lemma) Let || = 1 and let f € C(§2) be
such that 3% f € C(82). Then D* f exists and D* f = 3% f.

Proof By the preceding proposition, we have
D% (py * f) = pp % 3* f.
The fundamental theorem of calculus implies then that

pu % f &+ £0) = pu ¥ F (1) +/ pn % 0% f (x + ta)d.
0

By the regularization theorem,

onxf— f, pu*xd*f —>0%f
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uniformly on every compact subset of 2. Hence we obtain

f(x+8a):f(x)+/ 0% f (x + ta)dr,
0

so that 9% f = D* f by the fundamental theorem of calculus. O

Notation From now on, the derivatives of a continuously differentiable function will
also be denoted by 9.

Let us prove the closing lemma. The graph of the weak derivative is closed in
x L}

loc*

Ll

loc

Lemma 6.1.5 Let (f,) C L} (£2) and let & € NN be such that in L} (£2),

loc loc

fo— f fu— g

Then g = 93°f.
Proof For every u € D(82), we have by definition that

f fud%u dx = (=1l / (0% f)u dx.
2 2

Since by assumption,

’/ (fa = £)0%u dx SIIB“MIIOO/ |fn — fldx — O
2 spt u

and

‘[(a“fn—g)udx 5||u||oo/ 19 £, — gldx — 0,
2 spt u

we obtain

ffa“udXZ(—l)‘“'/ gudx. O
2 2

Example (Weak Derivative) If —N < A < 1, the function f(x) = |x|* is locally
integrable on R". We approximate f by

fw = (2 +6) 7 e

Then f, € C*(RY) and
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A=2

2

o fox) = hox (e +e) T

|9k fe ()] < Alx ML

If » > 1 — N, we obtain in L1 _(RY) that

loc

fo(x) = f(x) = x|},
O fe(x) = g(x) = A xelx| 2.

Hence 0 f(x) = A |x|k_2xk.

Definition 6.1.6 The gradient of the (weakly) differentiable function u is

defined by

Vu = (0u, ..., 8Nu).
The divergence of the (weakly) differentiable vector field v = (v, ...,vN) is
defined by

divv=09v1+...+0 v .
NN

Letl < p<ooandu € Llloc(.Q) be such that 9;u € LP(£2), j =1,...,N. We
define

pi2 N\ P

1/p N
||Vu||Lp(_Q)=</ |Vu|de) = / > @u)?|  dx
2 ot

Theorem 6.1.7 Let 1 < p < oo and let (u,) C L. (£2) be such that

loc

(a) up — win Ll (2);

(b) foreveryn, Vu, € LP(£2; RN);
(c) ¢ =sup||Vul|, < .
n

Then Vu € L?($2; RN) and

[IVullp = lim [[Vuyllp.
n—00

Proof We define f on D(£2; RV) by
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(f,v) =/ u divoudx.
Q
We have that

[{(f,v)| = lim | | u, divvdx|
n— oo o

= lim | | Vu,-vdx]|
n—oo Q

o\
fim ([Vita]l, (f |v|"dx) .
n—00 Q

Since D(£2) is dense in Ll’/(.Q), Proposition 3.2.3 implies the existence of a
continuous extension of f to L? (§2; RM), By Riesz’s representation theorem, there
exists g € LP(£2; RV) such that for every v € D(£2; RV),

/g~vdx=(f,v)=f u div v dx.
Q Q

Hence Vu = —g € LP(£2; RV). Choosing v = |Vu|P~2Vu, we find that

N
/|Vu|”dx=/ Vu-vdx lim ||Vun||p</ |v|1’dx)
Q Q n—oo Q

1-1/p
= lim ||wn||p<f |W|”dx) :
n—00 o

Sobolev spaces are spaces of differentiable functions with integral norms. In
order to define complete spaces, we use weak derivatives.

IA

IA

O

Definition 6.1.8 Letk > 1 and 1 < p < 00. On the Sobolev space
WhP(2) = {u e LP(2) : for every |a| < k, 0% € LP(2)},
we define the norm

I/p

el lwrn gy = lulle,p = Z/ |0%u|Pdx
2

lo| <k

On the space HX(§2) = W*2(£2), we define the scalar product
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(u | U)Hk(.Q) = Z (aau | aaU)LZ(_Q).

lee| <k
The Sobolev space Wllf)’cp (£2) is defined by

Wl];’cp(g) ={ue sz)c(.Q) s forallw CC 2,u| € WP (w)}.
w

A sequence (u;) converges to u in Wllf)’cp (£2) if for every v CC £2,

||Mn — u”ka”(a)) —> 0, n — oQ.

The space W(I)(’p(.Q) is the closure of D(§2) in WK-P(§2). We denote by Hé‘(.Q) the
k.2
space Wy " (£2).

Theorem 6.1.9 Let k > 1 and 1 < p < oo. Then the spaces WkP(2) and
Wg P (§2) are complete and separable.

Proof Let M = Z 1. The space L”(£2; RM) with the norm

loe| <k

1/p

1wl = Z/ﬂlvalpdx

| <k
is complete and separable. The map
@ WhP(2) = LP(2:RM) s u > (0%) 0 <k

is a linear isometry: ||®@ (u)||, = ||u|l«,p. By the closing lemma, d(WhP(2))isa
closed subspace of L?(£2; RM)_ Tt follows that W57 (£2) is complete and separable.

Since Wé P (£2) is a closed subspace of Wk-P(£2), it is also complete and separable.
O

Theorem 6.1.10 Let 1 < p < oo. Then Wy’ (RN) = Wh-P(RV),

Proof 1t suffices to prove that D(RY) is dense in WP (RN). We use regularization
and truncation.

Regularization Letu € WLP(RN)Y and define u,, = Pn * u. By Proposition 4.3.6,
u, € C®(RN). Proposition 4.3.14 implies that in L? (R"),

Up — U, OxlUy = Py * OpU — OU.

We conclude that W7 (RV) N C®(RY) is dense in W7 (RN).
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Truncation Letd € C*°(R) be such that0 < 8 < 1 and

o) =1, <1,
=0, t>2.

We define the sequence

On(x) = 0(|x|/n).
Letu € WhP(RY)NC®(RN). It is clear that u,, = 6,u € DRN). It follows easily
from Lebesgue’s dominated convergence theorem that u,, — u in WLP(RY). O

We extend some rules of differential calculus to weak derivatives.

Proposition 6.1.11 (Change of Varlables) Let 2 and w be open subsets of RV,
G : w — $2 a diffeomorphism, and u € W1 (.Q) ThenuoG e W (a)) and

loc

0 d G
L woG) =Y oG L
Yk ; 0x; Oy

Proof Letv € D(w) and u, = p, * u. By Lemma 6.1.1, for n large enough, we
have

v _ ouy, . &
/w up 0 G(y) a—yk(y)dy— /w 2/: 7%, G(y) oo ) v(y)dy. (%)

It follows from Theorem 2.4.5 with H = G~ that

f un(x) 9v o H(x)|det H (x)|dx
2 0yk

/ Z Oun 995 | i eyw o Hx)|det H' ()ldox. (%)

Bx]

The regularization theorem implies that in Llloc(.Q),

ouy du
- —.
8)(]' 8)(]'

U, —> u,

Taking the limit, it is permitted to replace u, by u in (x*). But then it is also
permitted to replace u, by u in (x), and the proof is complete. O

Proposition 6. 1 12 (Derivative of a Product) Leru € Wl1 Cl (2) and f € CY(2).
Then fu € W (.Q) and
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I (fu) = fou + (0 fHu.
Proof Let u, = p, * u, so that by the classical rule of derivative of a product,
O (fun) = Ok flun + fOxun.
It follows from the regularization theorem that
fun = fu, (fun) = O flu+ foxu

in L1

1oc (§2). We conclude by invoking the closing lemma. O

Proposition 6.1.13 (Derivative of the Composition of Functions) Ler u €
Wl (2), and let f € C'(R) be such that ¢ = sup| '] < oo. Then fou € Wli)’cl(.Q)
R

loc

and
Ww(fou)= f ou dgu.
Proof We define u,, = p, * u, so that by the classical rule,
W(f ouy) = f ouy, Oguy.
We choose w CC 2. By the regularization theorem, we have in L! (w),
Uy, —> u, Oxuy —> du.

By Proposition 4.2.10, taking if necessary a subsequence, we can assume that
u, — u almost everywhere on w. We obtain

/|foun—fou|dx§c/|un—u|dx—>0,
w w

/ | f ouy Oxun— f ou dguldx < c/
w

0]

|8kun—8ku|dx+/ | f ou,— fou| |dkuldx — 0.
w

Hence in L (w),
fou,— fou, f ou,du, — f oudu.

Since w CC §2 is arbitrary, we conclude the proof by invoking the closing lemma.
0

On R, we define
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sgn(t) =t/|t|, t#0
=0, t=0.

Corollary 6.1.14 Let g : R — R be such that ¢ = supg |g| < oo and, for some
sequence (g,) C C(R), g(¢t) = lim g, (¢) everywhere on R. Define
n—>oo

t
f) = /0 g(s)ds.

Then, for every u € Wli)’cl(.Q), foue WZL’Cl(.Q) and
V(fou)=(gou)Vu.
In particular u™, u™, |u| € WlL’Cl(.Q) and

Vut = XusoyVu, Vu™ = =X« Vu, X(y=0yVu = 0, V|u| = (sgn u)Vu.

t
Proof We can assume that supsup |g,| < c. We define f,(t) = / gn(s)ds. The
n R 0

preceding proposition implies that

V(foou)=(gnou)Vu.

1

Since, in L]Oc

(£2), by Lebesgue’s dominated convergence theorem,
foou— fou,(gnou)Vu — (gou)Vu,

the closing lemma implies that

V(fou)=(gou)Vu.

O

Corollary 6.1.15 Let1 < p < coandletu € WP (2)NC(82) be such that u = 0
on 082. Thenu € WP (82).

Proof 1t is easy to prove by regularization that W7 (£2) N K(£2) C Wol’p(.Q).
Assume that spt u is bounded. Let f € C'(R) be such that | f(r)| < |¢| on R,

f@&)y=0, [ =<1,
=1, |t =2
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Define u, = f(n u)/n. Then u,, € K(£2), and by the preceding proposition, u, €
WP (£2). By Lebesgue’s dominated convergence theorem, u, — u in wlr (),

so that u € W, (82).
If spt u is unbounded, we define u, = 6,u where (6,) is defined in the proof
of Theorem 6.1.10. Then spt u,, is bounded. By Lebesgue’s dominated convergence

theorem, u,, — u in W7 (£2), so that u € W(;’p(.Q). |
Proposition 6.1.16 Let 2 be an open subset of RN. Then there exist a sequence
(Uy) of open subsets of §2 and a sequence of functions Y, € D(Uy,) such that
(a) foreveryn, U, CC $2 and r, > 0;

o0

(b) > W =10n82;
n=1
(c) forevery w CC S2 there exists m,, such that for n > mg, we have U, N w = ¢.

Proof Let us define w—_1 = wg = ¢, and forn > 1,
wp ={x €2 :d(x,082) > 1/nand |x| < n},

Ky, =, \ wp-1,
Up = wopr1 \ 0p—2.

The theorem of partitions of unity implies the existence of ¢, € D(U,) such that
0 < ¢, <1and g, = 1on K,. It suffices then to define

o
Y =@ul Y _ ;. o
=

Theorem 6.1.17 (Hajlasz) Let 1 <p <oo, u € Wlt’cp (£2), and ¢ > 0. Then there
exists v € C*°(82) such that

(@) v—ue WP ()
(b) ”U — M||Wl<p(9) < €.

Proof Let (U,) and () be given by the preceding proposition. For every n > 1,
there exists k;, such that

Un = Pk, * (Wpu) € DY)
and

[lvp — 1ﬂn"{“l,p <¢g/2".
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o0
By Proposition 3.1.6, Z(vn —Y,u) converges to w in WO1 "7 (£2). On the other hand,

n=1

we have on w CC §2 that

o mey o0
Zvn = Zvn € C®(w), anu =u.
n=1 n=1 n=1
o
Setting v = Zvn, we conclude that
n=1
o0
o —ullip =i, <Y llve — Yaullip <& o

n=1

Corollary 6.1.18 (Deny-Lions) Let 1 < p < oo. Then C®(2) N WhP(2) is
dense in WhP ().

6.2 Cylindrical Domains
Let U be an open subset of R¥Y~! and 0 < r < co. Define
R=Ux]-rr[, £2.=Ux]0,rl[.

The extension by reflection of a function in wlrp (£24) is a function in whr().
For every u : 24 — R, we define on £2:

/ _ / / _ !
pu(x ,xN) = u(x , IxN|), ou(x ,xN) = (sgn xN)u(x , |xN|>.

Lemma 6.2.1 (Extension by Reflection) Let 1 < p < oo and u € WhP(82,).
Then pu € WVP(£2), 3 (pu) = p(du), 1 <k < N — 1, and 8N(pu) = o(aNu), S0
that

1 1
pullLey = 2YPllullrey.  oullwioy =27 llullyisg,)-

Proof Let v € D(£2). Then by a change of variables,

(pu)o vdx = / ud wdx, (%)
/Q N 2, N
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where
1 _ ’ _ o
w(x ,xN) =v(x ,xN) v(x’, xN).
A truncation argument will be used. Let n € C*°(RR) be such that

n@) =0, t<1/2,
=1, t>1,

and define 1, on 2 by
() = n(n % ).
The definition of weak derivative ensures that
f ud (mpw)dx = — (0 u)yn,w dx, (k)
2. N 2, N
where
d (naw) = nad w+ni(nx Jw.

. ’ _ / _ /
Since w(x’,0) =0, w(x ,xN) =h(x ,xN)xN, where
1
/ _ /
h(x ,xN) = /0 BNw(x ,th)dt.

Lebesgue’s dominated convergence theorem implies that

! ’
nn(mx ) )wudx / nn(mx )hx udx
~/9+ N Ux 10,1/n[ NTON
< ||n/||oo/ lhuldx — 0, n — oo.
Ux 10,1/n[
Taking the limit in (), we obtain

/ uo wdx =— (Bu)wdxz—/ o(d u)vdx.
o, N o, N 2 N

It follows from () that

/_Q(pu)an dx = —/QO‘(aNM)U dx.
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Since v € D(S2) is arbitrary, BN (pu) = a(aNu). By a similar but simpler argument,
O (pu) = p(Ogu), 1 <k <N —1. m

It makes no sense to define an L? function on a set of measure zero. We will
define the trace of a W!? function on the boundary of a smooth domain. We first
consider the case of Rﬁ .

Notation We define

D(2) = {ulg : u € DRY)},
RY ={(',x) :x e RM L x > 0).

Lemma 6.2.2 (Trace Inequality) Let 1 < p < oo. Then for every u € D(@),
/ P < p—1
/R ', O da” < pllully, gy 1O wlr
Proof The fundamental theorem of calculus implies that for all x” € RV~1,
P * p—1
/ / - /
|u(x ,O)| < p/o |u(x ,xN)| |3Nu(x ,xN)|de.

When 1 < p < oo, using Fubini’s theorem and Holder’s inequality, we obtain

f lu(x’, 0)|dx’ < p/ [u|”~119 u|dx
RN-1 RN N

+

1/p 1/p
<p / |u|P~DP dx / 10 ulPdx
RY RY N

y

1-1/p 1/p

=p / |u|Pdx / |0 u|Pdx .
( RY RY N

The case p = 1 is similar. m|

Proposition 6.2.3 Let 1 < p < oco. Then there exists one and only one continuous
linear mapping yo : lel’(Rﬁ) — LP(RN™Y such that for every u € D(Rf),
you = u(., 0).

Proof Letu € D(@) and define you = u(., 0). The preceding lemma implies that

1
llyoullp@y-1y < p /P||u||W1,,,(M).
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The space D(M) is dense in Wl"’(]Rﬁ) by Theorem 6.1.10 and Lemma 6.2.1. By
Proposition 3.2.3, yp has a unique continuous linear extension to wlp (Rﬁ ). O

Proposition 6.2.4 (Integration by Parts) Let 1 < p < oo, u € WP (Rﬁ ), and
v E D(Rﬁ). Then

d udx =— d vudx — dx’,
A;ﬁv ) udx fRQ’(Nv)M X /RN_]yovyou X

and

/vE)kudxz—/ (Okv)udx, 1<k<N-1.
RY RY

+

Proof Assume, moreover, that u € Z)(@). Integrating by parts, we obtain for all
x e RN-1,

o0 o
l / _ / l _ ’ ’
/0 v(x ,xN)BNu(x ,xN)de = /(; 8Nv(x ,xN)u(x ,xN)de v(x", Ou(x’, 0).

Fubini’s theorem implies that

/ v udx = —/ 9 vu dx —/ v(x’, 0)u(x’, 0)dx'.
Ry N RY N RN-1

Letu € Wl’p(Rﬁ). Since D(M) is dense in Wl”’(Rﬁ), there exists a sequence

(up) C D(@) such that u,, — u in Wl’p(Rﬁ). By the preceding lemma, yyu, —
you in LP (RN=1) It is easy to finish the proof.
The proof of the last formulas is similar. O

Notation For every u : RY — R, we define @ on RY by

ﬁ(x’,xN) = u(x’,xN), x, > 0,
=0, x <0.
N

Proposition 6.2.5 Let1 < p < ocoandu € lel’(]Rf). The following properties
are equivalent:

1,
(a) ue Wy"®RY);

(b) you =0; o
(c) we WhPRN) and 9 = dju, 1 <k < N.
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Proof 1t u € Wy " (RY), there exists (u,) C D(RY) such that u, — u in
wi-P(RY). Hence you, = 0 and you, — you in L? (RN=1), so that you = 0.
If you = 0, it follows from the preceding proposition that for every v € D(RY),

/vak_udxz—/ wvudx, 1<k<N.
RN RN

We conclude that (c) is satisfied.
Assume that (c) is satisfied. We define u,, = 6,u, where (6,) is defined in
the proof of The&rem 6.1.10. It is clear that u, — u in WLP(RY) and spt

uy C B[O, 2n] NRY.

We can assume that spt u, is a compact subset of Rf . We define y, =
0,...,0,1/n) and v, = t,,u. Since v, = Ty,0ku, the lemma of continuity
of translations implies that u,, — u in wlp (Rﬁ ).

We can assume that spt u is a compact subset of Rﬁ. For n large enough, p, xu €

DRY). Since p, * u — u is in WP (RY), we conclude that u € Wg’p(RN). o

6.3 Smooth Domains

In this section we consider an open subset 2 = {¢ < 0} of RV of class C ! with a
bounded boundary I". We use the notations of Definition 9.4.1.

Let y € I'. Since Vp(y) # 0, we can assume that, after a permutation of
variables, dy¢(y) # 0. By Theorem 9.1.1 there exist r > 0, R > 0, and

BeC (B R)x1—rrl)
such that, for [x’ — ’| < R and |t| < r, we have
e, xn) =t & ay=pW 1)
and the set
U, = {(x/,/a(x/,z)): X' —y'| <R, |t] < r}

is an open neighborhood of y. Moreover

£2NUy = {(x/,ﬁ(x’,t)): Ix"—y| <R,—r <t<0]

and
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rnu, = {(x’,ﬂ(x’,O)): X — 9| < R}.

The Borel-Lebesgue theorem implies the existence of a finite covering
Ui, ..., U of I' by open subsets satisfying the above properties. There exists
a partition of unity 1, ..., ¥ subordinate to this covering.

Theorem 6.3.1 (Extension Theorem) Let 1 < p < oo and let 2 be an open
subset of RN of class C' with a bounded boundary or the product of N open
intervals. Then there exists a continuous linear mapping

P:whr(2) > whr®Y)

such that Puig =u.

Proof Let £2 be an open subset of RY of class C' with a bounded boundary, and let
u € WHP(£2). Proposition 6.1.11 and Lemma 6.2.1 imply that

Pyu(x) = u(x', B, lp@’, x )D) € WH ().
Moreover,
I Pyullwirwy < avllullwie(g)- (%)
k
We define Yo = 1 — Zlﬁj,
j=l1

up = You, x €82,
=0, x e RV \ 2,

andfor1 < j <k,

uj = Py;(Yju), xeUj,
=0, x e RN\ U;.

Formula (x) and Proposition 6.1.12 ensure that for 0 < j <k,

Nujllwir@yy < bjllullwir )
(The support of Vg is compact!) Hence

k
Pu=> uje WPRN), ||Pullyip@y, < cllullyiog)
j=0



6.3 Smooth Domains 147

and for all x € £2,
k
Pu(x) =) ¥j(x)u(x) = u(x).
j=0

If £2 is the product of N open intervals, it suffices to use a finite number of
extensions by reflections and a truncation. O

Theorem 6.3.2 (Density Theorem in Sobolev Spaces) Ler 1 < p < co and let 2

be an open subset of RN of class C_1 with a bounded boundary or the product of N
open intervals. Then the space D(S2) is dense in whr().

Proof Let u € WP (£2). Theorem 6.1.10 implies the existence of a sequence
(v,) € DRN) converging to Pu in Wl'p(RN). Hence u,, = vn|9 converges to
uin WhP(92). O
Theorem 6.3.3 (Trace Inequality) Let 2 be an open subset of RN of class C' with

a bounded boundary I'. Then there exista > 0 and b > 0 such that, for 1 < p < oo
and for every u € D(£2),

-1
/F ulPdy < alul} g, + bplul}y o) IVul o).

Proof Let1 < p < oo, u € D(2), and v € C°(RN; RV).
Since

div|u|Pv = |u|? divv + pulu|?~*Vu - v,

the divergence theorem implies that

[ [u|Pv - ndy = / [|u|P divv + pulu|P>Vu - v] dx.
r Q

Assume that 1 < v-n on I'. Using Holder’s inequality, we obtain that, for 1 < p <

m’
/lulpdyff [u|Pv - ndy §a/ |u|de+bp/ [P~ Y\ Vuldx
r r fol fol
, 1/p 1/p
ga/ lu|Pdx + bp (/ |u|<l’*1>f’dx> (/ \Vul”dx)
fo} fo} fo}
1-1/p 1/p
=a/ Iulpdx—l—bp(/ Iulpdx) (/ \Vulpdx) ,
o} Q fo}

where a = ||divv|| s and b = ||V]|co-
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When p | 1, it follows from Lebesgue’s dominated convergence theorem that

/|u|dy§a/ |u|dx+b/ |Vuldx.
r 2 2

Let us construct an admissible vector field v. Let U = {x € RN : Vo(x) # 0}.
The theorem of partition of unity implies the existence of ¥ € D(U) such that
¥ = 1 on I". We define the vector field w by

B Vo(x)
w(x) = w(x)W, xelU
=0, x e RM\U.

For n large enough, the C*° vector field v = 2p,, * wissuchthat 1 <v-non I'.
O

Theorem 6.3.4 Under the assumptions of Theorem 6.3.3, there exists one and only
one continuous linear mapping

y : WhP(22) > LP(I)

such that for allu € D(2), you = u -

Proof 1t suffices to use the trace inequality, Proposition 3.2.3, and the density
theorem in Sobolev spaces. O

Theorem 6.3.5 (Divergence Theorem) Let §2 be an open subset of RN of class C!
with a bounded boundary I" and v € W'1($2; RN). Then

/ div vdx=/ yov - ndy.
Q r

Proof Whenv € Z)(Q; RN ), the proof is given in Section 9.4. In the general case,
it suffices to use the density theorem in Sobolev spaces and the trace theorem. O

6.4 Embeddings

Let 1 < p, g < oo. If there exists ¢ > 0 such that for every u € DRN),

Nullpamyy = cllVullpr@wny,
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then necessarily
q=p"=Np/(N—p).

Indeed, replacing u(x) by u; (x) = u(Ax), A > 0, we find that

1422
||’4||Lq(RN)§C)~( 1 p>||vu||LI’(RN)7

so that ¢ = p™*.
We define for 1 < j < N and x € RV,

X; = (Xl,~~~,xj—17xj+1,-~,xN)-

Lemma 6.4.1 (Gagliardo’s Inequality) Let N > 2 and fi,..., ij €

N
LNV RN, Then f(x) = [ [ &) € L'RY) and
j=1

N
Ay < [T w1 vty
j=1

Proof We use induction. When N = 2, the inequality is clear. Assume that the
inequality holds for N > 2. Let fi, ..., fv+1 € LN (R") and

N
f&, xngn) = 1_[ fi(, xne) [ (x).

j=1
It follows from Holder’s inequality that for almost every xy+1 € R,

1/N’

N
_ N
fRN | (e, xn41)|dx < /RN H |fi (55, xn41)| " dx SNl Ly wwy
j=1

N N 1/N
s]‘[[/wl |15 (5 xn0)| dx?] 1 fn+illv )
j=1

The generalized Holder inequality implies that
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IA
1=

1/N
—~ N , ~
1Lyt [/RN | fi (55, xn+)] dxjdeH] N1l v gy

>
£ L

= Nl Ly @wy- 0

.
Il
-

Lemma 6.4.2 (Sobolev’s Inequalities) Let 1| < p < N. Then there exists a
constant ¢ = c(p, N) such that for every u € D(RN),

Ml ey < ellVaellpoany.

Proof Let u € C'(RV) be such that spt u is compact. It follows from the
fundamental theorem of calculus thatfor 1 < j < N and x € RN,

1
lux)| < Ef |0ju(x)|dx;.
R

By the preceding lemma,

/ |u(x)’N/(N—l)dx < ﬁ [l/ }a_u(x)|dx}1/(1v1)
]RN _j=l 2 ]RN 4 ’

Hence we obtain

N
1 /N
llellwyov—n = 5 [T18;u™ < ¢ [1Vulln.

j=1

For p > 1, we define ¢ = (N — 1)p*/N > 1. Letu € D(RY). The preceding
inequality applied to |u|? and Holder’s inequality imply that

N—-1

. N
(/ lu|? dx) <gqgc / lu)9™ Y Vu|dx
N RN
, 1/p' 1/p
<gqgc (/ lu|@—Dr dx) (/ |Vu|pdx> .
N RN RN

It is easy to conclude the proof. O

Lemma 6.4.3 (Morrey’s Inequalities) Ler N < p < ocoand . =1 — N/p. Then
there exists a constant ¢ = c(p, N) such that for every u € DM®RN) and every
x,y € RV,
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Py
|u(x) —u()| < clx — y*IVull Lp@my,
lulloo =< cllullyrp@n)-

Proof Letu € D(RN), and let us define B = B(a,r),a € RY.r > 0, and

fuz;/udx.
m(B) Jg

We assume that 0 € B. It follows from the fundamental theorem of calculus and
Fubini’s theorem that

‘fu—u(O)‘

— / |u(x) — u(0)|dx

1
@/ dx/ |Vu(tx)| |x|dt

< m(B)/ dt/ |Vu(tx)|dx

2r /
Vu(y)|dy.
m(B) Jo ¥ B(ta, tr)| |

IA

Holder’s inequality implies that

‘fu—u(O)

After a translation, we obtain that, for every x € Bla, r],

‘fu—u(x)

Letx € RV. Choosing a = x and r = 1, we find

fu

Let x, y € RV. Choosing a = (x + y)/2 and r = |x — y|/2, we obtain

1

2  dt 2
<-—l¥- m(B(ta, 1) """ SNVl 1wy = —=r* I VullLos).
(B) t )"VN/p

A
< ar*|VullLr(p)-

lu(x)| < + allVullzrsy < c(llullrsy + IVullLrs))-

lu(x) —u(y)| <2 cplx — y|* | VullLrs). O
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Notation We define

Co(£2) = {u|, : u € CoRM)}.

Theorem 6.4.4 (Sobolev’s Embedding Theorem, 1936-1938) Let $2 be an open
subset of RN of class C' with a bounded boundary or the product of N open
intervals.

(a) If1 < p<Nandif p<q < p*, then WP (2) C L4(82), and the canonical
injection is continuous.

(b) IfN < p <ooand» =1 — N/p, then WHP(2) C Co(R2), the canonical
injection is continuous, and there exists ¢ = c(p, §2) such that for every u €
WbLrP(2)andallx,y € 2,

u(x) — u)| < cllullyrp@)lx — yI*
Proof Let1 < p < Nandu € Wl"’(RN). By Theorem 6.1.10, there exists a
sequence (u,) C D(RY) such that u,, — u in WHP(RV).

We can assume that u,, — u almost everywhere on R¥ . It follows from Fatou’s
lemma and Sobolev’s inequality that

||u||LP*(RN) = nll)—ngollun”L!’*(RN) = CnILHOlO”V”n”LI’(RN) = C”V”HLP(RN)-

Let P be the extension operator corresponding to £2 and v € W7 (£2). We have

0llLoe 2y < 1PVl vy < elIVPOIILs@ny < ctllvllwoge)-

If p<q < p*, wedefine0 <A < 1by

I 1—a &
q p p*’

and we infer from the interpolation inequality that

1—x A A
Ivllza) < Nollzig) vl o) < Hlvllwr).

The case p > N follows from Morrey’s inequalities. O

Lemma 6.4.5 Let 2 be an open subset of RN such that m(2) < o0, and let
1 < p <r < 4oo. Assume that X is a closed subspace of WP (82) such that
X C L"(82). Then, forevery 1 < q < r, X C L1(82) and the canonical injection is
compact.
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Proof The closed graph theorem implies the existence of ¢ > 0 such that, for every
uelX,

lullzr 2y < cllullwire)-
Our goal is to prove that
S = {M e X: ||Mllwlp(_(2) < 1}

is precompact in L9(£2) for 1 < g < r.Let1/q = 1 —A+A/r. By the interpolation
inequality, for every u € S,

x -2 P Y
lullza(2) = lullzr@)lull i gy = ¢ lull g

Hence it suffices to prove that S is precompact in L' (£2).
Let us verify that S satisfies the assumptions of M. Riesz’s theorem in L' (£2):

(a) It follows from Holder’s inequality that, for every u € S,
lullpr @)y = lull Lreym(2)' =17 < em(s2)! =17

(b) Similarly, we have that, for every u € S,
f Juldzx < Jlullr@ym(2\wr)' " < em(2\op)' 71"
2\wi
where
o =1{x€R2:d(x,082) > 1/k}.

Lebesgue’s dominated convergence theorem implies that
lim m(£2\wx) = 0.
k— 00

(c) Letw CC £2. Assume that |y| < d(w, 32) and u € C®(2) N WP (£2).

Since, by the fundamental theorem of calculus,

1 1
Tyu(x) —u(x)‘ = ’/0 y-Vu(x —ty)dt| < |y|/0 ‘Vu(x —ty)‘dt,

we obtain
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1
oy =i < o [ dx [ |Vute = e far
® 0

1
= |y|/ dt/ ‘Vu(x—ty)‘dx
0 w
1
= IyI/ dt/
0 w—ty

Using Corollary 6.1.18, we conclude by density that, for every u € S,

Vu(z)‘dz < yHIVullprg)-

Ity — ull 1) < IVullpi@)lyl < IVullr@ym(2)' Pyl <cilyl. o

Theorem 6.4.6 (Rellich-Kondrachov Embedding Theorem) Let 2 be a
bounded open subset of RN of class C" or the product of N bounded open intervals:

(a) If1 < p < Nandl < q < p* then W-P(2) C LY(2), and the canonical
injection is compact. _
(b) If N < p < oo, then WLP < Cy(2), and the canonical injection is compact.

Proof Let 1 < p < N,1 < g < p*. It suffices to use Sobolev’s embedding
theorem and the preceding lemma.

The case p > N follows from Ascoli’s theorem and Sobolev’s embedding
theorem. O

We prove three fundamental inequalities.

Theorem 6.4.7 (Poincaré’s Inequality in W(}’p ) Let1 < p < oo, and let §2 be an
open subset ofRN such that 2 c RN=1x]0, al. Then for every u € Wol’p(.Q),

a
ullpr(ey < Ellvullm(m.

Proof Let 1 <p<ooandv € D(]0, a[). The fundamental theorem of calculus and
Holder’s inequality imply that for 0 < x < a,

1 [ 1/p' a 1/
lv@)| < 5/ [v'(1)|dr < aT’/ |v/(t)|pdt‘ "
0 0

Hence we obtain

¢ Pd <ap/17/ “ / Pd _ap “ / Pd
/0|v(x)| x < 7 a/o |v(x)| x_Z_P/O |v(x)| X.
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If u € D(£2), we infer from the preceding inequality and from Fubini’s theorem

that
a
/ lu|Pdx :/ dx"/ lu(x’, x )|pdx
2 RV-1 0 N N
a? [ ’ p
< — dx |3 u(x,x)| dx
2p RN-1 0 N N N
P
- a—f 19 u|Pdx.
2P Jo N
It is easy to conclude by density. The case p = 1 is similar. O

Definition 6.4.8 A metric space is connected if the only open and closed subsets of
X are ¢ and X.

Theorem 6.4.9 (Poincaré’s Inequality in W'?) Let 1 < p < oo, and let 2 be

a bounded open connected subset of RN. Assume that 2 is of class C'. Then there
exists ¢ = c(p, §2), such that, for every u € wlpr(),

o
1
U=——- udx.
JC m(Q)/sz

Assume that §2 is convex. Then, for every u € wlr (£2),

- £+

whered = sup |x — y|.
X,yeS

<c||Vu s
L = VullLr(2)

where

< 2NP @ |\ Vullr (@),
LP($2)

Proof Assume that £2 is of class C!. It suffices to prove that
A= inf{nwu,,: ue whr (), JCu =0, Jul, = 1} > 0.
Let (u,) C WhP(2) bea minimizing sequence :

lially = 1, fu —0, [ Vunlp — 2.
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By the Rellich-Kondrachov theorem, we can assume that u,, — u in L?(§2). Hence
lull, =1 and fu = 0. If A = 0, then, by the closing lemma, Vu = 0. Since 2 is

connected, u = f u = 0. This is a contradiction.

Assume now that £2 is convex and that u € C®(£2)() W1-P(£2). Holder’s

inequality implies that

/ u(y)—fu
2

_ p
pdyffdy[ e (x) M(y)ldx]
2 Q m($2)
<

1 P
< m(m/gdyfg\uu)—u(y)\ dx.

It follows from the fundamental theorem of calculus and Holder’s inequality that
» 1 p
/ dyf ‘u(x)—u(y)’ dx gdP/ dy/ dx [/ ‘Vu((l—t)x—i—ty)‘dt]
2 2 2 Q ?
§dl’/ dy/ dx/ ‘Vu((l —t)x+ty)‘pdt
2 2 0
1/2 »
=2d”/ dy/ dx/ ‘Vu((l—t)x—i—ty)‘ di
2 Q 0
1/2 »
:2d”/ dy/ dt/ ‘Vu((l—t)x+ty)‘ dx
Q 0 2

14
§2Nd”/ dy/ ’Vu(z)‘ dz.
2 2

/ \u(y)—fu\"dy ssz”/ [Vue)|dy.
22 2

We conclude by density, using Corollary 6.1.18.

We obtain that

Theorem 6.4.10 (Hardy’s Inequality) Let 1| < p < N. Then for every u
wbhr@®RN), u/|x| € LP(RN) and

D
/XUl Lp @y < N IVullprmny-

-P

Proof Letu € D(RY) and v € D(RY; RV). We infer from Lemma 6.1.1 that

/|u|pdivvdx=—p/ [u|?2uVu - v dx.
RN RN

Approximating v(x) = x/|x|? by ve(x) = x/(|x|> 4+ &)P/?, we obtain

O

S
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(N — p)/ lul?/1x|Pdx = —p/ lulP"2uVu - x/|x|Pdx.
RN RN

Holder’s inequality implies that

, /v 1/p
/ - (/ Iul(”_l)p/|x|pdx> (f |Vu|pdx>
RN N —p \Jr~ RV
)4 1-1/p 1/p
- (/ |u|"/|x|1’dx> (/ IVulpdx) |
N—p RN RN

We have thus proved Hardy’s inequality in D(RY). Let u € WP (RN). Theo-
rem 6.1.10 ensures the existence of a sequence (u,) C D(RY) such that u,, — u in
WP (RN). We can assume that u, — u almost everywhere on RV, We conclude
using Fatou’s lemma that

A

p
-p

. P .
u/lx < lim ||u,/|x < lim ||Vu = Vull,. 0O
Nu/lxllp < n_>_ooll al/1Xlp = N HOOII nllp [Vullp

Fractional Sobolev spaces are interpolation spaces between L” (§2) and whp ().

Definition 6.4.11 Let1 < p < 00,0 <s < 1,andu € LP(§2). We define

| (x) — u(y)|? I/p
5, = = — " dxd < 400.
lulws.r(2y = luls,p </Q L ey e 4xdY <

On the fractional Sobolev space
WP (2) = {u € LP(£2) : |ulws.r(2) < +00},
we define the norm

[ullws.pi2y = lulls,p = llullLr2) + lulws.p2).

We give, without proof, the characterization of traces due to Gagliardo [26].
Theorem 6.4.12 Let 1 < p < oo.

(a) Foreveryu € WHP(RN), you € W=1/p.p (RN,

(b) The mapping yo : WLP@RN) — w!=UrP@RN=Y) s continuous and
surjective.

(c¢) The mapping vy : whl RNy - L! (RN’I) is continuous and surjective.
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6.5 Comments

The main references on Sobolev spaces are the books:

— R. Adams and J. Fournier, Sobolev spaces [1]

— H. Brezis, Analyse fonctionnelle, théorie et applications [8]

— V. Maz’ya, Sobolev spaces with applications to elliptic partial differential
equations [51]

Our proof of the trace inequality follows closely:

— A.C. Ponce, Elliptic PDEs, measures, and capacities, European Mathematical
Society, 2016

The theory of partial differential equations was at the origin of Sobolev spaces.
We recommend [9] on the history of partial differential equations and [55] on the
prehistory of Sobolev spaces.

Because of Poincaré’s inequalities, for every smooth, bounded open connected
set §2, we have that

() = inf{f IVul?dx :u € Hol(.Q),/ uldx = 1} >0,
2 2

w2 (2) = inf{/ |Vul®dx :u € HI(Q),/ uldx = 1,/ udx = 0} > 0.
2 2 2
Hence the first eigenvalue A1 (£2) of Dirichlet’s problem

—Au =Au in $2,
u=0 onds2,

and the second eigenvalue w,($2) of the Neumann problem

—Au =Au in $2,
n-Vu=0 onas2,

are strictly positive. Let us denote by B an open ball such that m(B) = m(§2). Then

A (B) < A1(82)  (Faber—Krahn inequality),
w2($2) < ur(B)  (Weinberger, 1956).

Moreover, if §2 is convex with diameter d, then
72 /d2 < u2(82) (Payne—Weinberger, 1960).

We prove in Theorem 6.4.9 the weaker estimate
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1/2Nd?) < ua ().

There exists a bounded, connected open set £2 C RR? such that u»(§2) = 0. Consider
on two sides of a square Q, two infinite sequences of small squares connected to Q
by very thin pipes.

6.6 Exercises for Chap. 6

1. Let 2 = B(0, 1) ¢ RY. Then for 1 # 0,
A=Dp+N >0 |x|* e Whr (),
Ww+N <0< |x|* e WPRN\ 2),

p <N |x—| e Whr(2: RY).
X

2. Letl < p <ooandu € LP(§2). The following properties are equivalent:
(@) ue Whr);
(b) sup {/ udivvdx :v e DR,RY), ||U||LP’(.Q) = 1} < 00;
2

(c) there exists ¢ > 0 such that for every w CC £2 and for every y € R" such
that |y| < d(w, 082),

llTyu —ullprw) < clyl.

3. Let1 < p < N and let £2 be an open subset of RY . Define

S(82) = inf IVullpr (o).
u € D)

HMHLP*(_Q):I

Then S(£2) = S(RM).
4, Letl < p < N.Then

1 |
S S®Y) = inf {1Vl gy /lull o ey € H' @)\ (0}

5. Poincaré—Sobolev inequality.

(@) Let 1 < p < N, and let £2 be an open bounded connected subset of RV of
class C!. Then there exists ¢ > 0 such that for every u € Wl’p(.Q),
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u—fu

1
Wherefu = —/ u dx. Hint: Apply Theorem 6.4.4 to u —fu.
m($2) Jo
(b) Let A = {u = 0} and assume that m(A) > 0. Then

m($2)71/p*
Il oy < e (14 [2 5] ) IVulr@).

< c||Vullpr ),
LP* ()

Hint:
‘fu‘m(A)l/p* < llu _f“||Lp*(_(z)'

6. Nash’s inequality. Let N > 3. Then for every u € D(IR{N ),

244/N 4/N 2
el 157N < cllul [} )1V 3.

Hint: Use the interpolation inequality. L
7. Letl < p< Nandg = p(N — 1)/(N — p). Then for every u € Z)(Rﬁ),

’ q ;. qg—1
/Rw_l Ju ', 0" dx” < gllull] e g, 13, 1l -

8. Verify that Hardy’s inequality is optimal using the family

9. Let1 < p < N. Then D(RN \ {0}) is dense in W7 (RN).
10. Let2 < N < p < oc. Then for every u € W(}'P(RN \ {0}, u/|x| € LP(RN)
and

Hu/IxUlLp@ny < IVullpr@yy-

p—N

11. Let 1 < p < oo. Verify that the embedding wLP(RN) ¢ LP(RYM) is not
compact. Let 1 < p < N. Verify that the embedding Wé P(B(0, 1)) C
LP"(B(0, 1)) is not compact.

12. Let us denote by D, (RV) the space of radial functions in D(RY). Let N > 2

and 1 < p < oo. Then there exists ¢(N, p) > 0 such that for every u €
D, (RY),
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13.

14.

15.

16.
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1/p 1 _
|”0j|SC(N’PNWHJPHVMHquﬂu N)/p.

Let 1 < p < N. Then there exists d(N, p) > 0 such that for every u €
D, (RY),

lu ()| < d(N, p)IIVul|plx|P~N/P

Hint: Let us write u(x) = u(r), r = |x|, so that

o0
N Hu)|” < p/ |u(s>|”‘1\d—“(s>\sN—1ds,
P dr

lu(r)| < /roo‘z_z(s)‘ds_

Let us denote by er "P(RN) the space of radial functions in W7 (RN). Verify

that the space D, (RV) is dense in er P (RN).

Letl] < p < Nand p < g < p*. Verify that the embedding W,"”(RN)

L4(RN) is compact. Verify also that the embedding W,"”(RY) ¢ LP(RYN) is

not compact.

Let 1 < p < oo and let £2 be an open subset of RV . Prove that the map
whr2) > WhP(2):uv> u™

is continuous. Hint: Vu™ = H (u)Vu, where

HtH =1, >0,
=0, r=<O0.

Sobolev implies Poincaré. Let £2 be an open subset of RY (N > 2) such that
m($2) < +oo,and let 1 < p < +o00. Then there exists ¢ = ¢(p, N) such that,
for every u € W(;’p(.Q),
lullp < cm@) N[ Vull,.
Hint. (a)If 1 < p < N, then
lullp, < m() M ull e < e m(E)N | Vullp.

(b)If p > N, then

lull, = lullgs < clVuly < cmE)YN(Vul,.
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17.

18.

19.

6 Sobolev Spaces

Let £2 be an open bounded convex subset of RVN > 2, and u €
C'(2) W' 1(£2). Then, for every x € £2,

u(x)—fu

1
Wherefu = —/ u(x)dx andd = sup |y —x|.
m($2) Jo X,y € 2
Hint. Define

1 aV IVu(y)|
Nm(2) Joly—xy1%"

v(y) = |Vu(y)l ,yes,

=0 .y e RM\@.
ly—x| y—x
@ ulx)—uly) = / Vu(x +ro)-odr, o = .
0 ly — x|

(b)

[y—x]
m@fue = ful = [ay [T vt raar
Izl
/ dz/ <x+r—|> dr

d 00
5[ do/ pN_ldp/ v(x +ro)dr
SN-1 0 0

av v(x +2)
=2 B9,
N Jgy |z|N-1

Let us define, for every bounded connected open subset £2 of RV, and for 1 <
p < 09,

Mp, 2) = inf{nwup: ue W), qu =0, lull, = 1}.

For every 1 < p < oo, there exists a bounded connected open subset £2 of R?
such that A(p, £2) = 0.

Hint. Consider on two sides of a square Q two infinite sequences of small
squares connected to Q by very thin pipes.

Prove that, for every 1 < p < oo,

inf{x(p, 2): 2 is a smooth bounded connected open subset of R2, m(2) = 1} =0.
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Hint. Consider a sequence of pairs of disks smoothly connected by very thin
pipes.
20. Generalized Poincaré’s inequality. Let 1 < p < o0, let £2 be a smooth bounded
connected open subset of RV, and let f € [W!?(£2)]* be such that
< f,1>=1.

Then there exists ¢ > 0 such that, for every u € wlp (£2),

lu— < fou>llp <clVullp.



Chapter 7 ®
Capacity Qe

7.1 Capacity

The notion of capacity appears in potential theory. The abstract theory was
formulated by Choquet in 1954. In this section, we denote by X a metric space,
by K the class of compact subsets of X, and by O the class of open subsets of X.

Definition 7.1.1 A capacity on X is a function
cap : K — [0, +00] : K — cap(K)

such that:

(C1) (monotonicity.) For every A, B € K such that A C B, cap(A) < cap(B).

(Cy) (regularity.) For every K € % and for every a > cap(K), there exists U € O
such that K C U, and for all C € K satisfying C C U, cap(C) < a.

(C3) (strong subadditivity.) For every A, B € K,

cap(A U B) 4 cap(A N B) < cap(A) + cap(B).

The Lebesgue measure of a compact subset of RY is a capacity.
We denote by cap a capacity on X. We extend the capacity to the open subsets
of X.

Definition 7.1.2 The capacity of U € O is defined by

cap(U) = sup{cap(K) : K € Kand K C U}.

Lemma 7.1.3 Let A, B € O and K € K be such that K C A U B. Then there exist
L. M e Ksuchthat LC A, M C B,and K =L UM.
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166 7 Capacity

Proof The compact sets K \ A and K \ B are disjoint. Hence there exist disjoint
open sets U and V such that K \ A C U and K \ B C V. It suffices to define
L=K\Uand M =K\V. ]

Proposition 7.1.4

(a) (monotonicity.) For every A, B € O such that A C B, cap(A) < cap(B).
(b) (regularity.) For every K € K, cap(K) = inf{cap(U) : U € Oand U D K}.
(c) (strong subadditivity.) For every A, B € O,

cap(AU B) +cap AN B) < cap(A) + cap(B).

Proof

(a) Monotonicity is clear.

(b) Let us define Cap(K) = inf{cap(U) : U € O and U D K}. By definition,
cap(K) < Cap(K). Leta > cap(K). There exists U € O such that K C U and
for every C € K satisfying C C U, cap(C) < a. Hence Cap(K) < cap(U) <
a. Since a > cap(K) is arbitrary, we conclude that Cap(K) < cap(K).

(¢c) Let A, B €0,a < cap(AU B), and b < cap(A N B). By definition, there exist
K,C e Ksuchthat K C AUB,C C AN B,a < cap(K), and b < cap(C).
We can assume that C C K. The preceding lemma implies the existence of
L,M € Ksuchthat L C A, M C B,and K = L U M. We can assume that
C C L N M. We obtain by monotonicity and strong subadditivity that

a+b <cap(K) + cap(C) < cap(L U M) + cap(L N M)
< cap(L) + cap(M) < cap(A) + cap(B).
Since a < cap(AU B) and b < cap(A N B) are arbitrary, the proof is complete. O
We extend the capacity to all subsets of X.
Definition 7.1.5 The capacity of a subset A of X is defined by

cap(A) = inf{cap(U) : U e Oand U D A}.

By regularity, the capacity of compact subsets is well defined.
Proposition 7.1.6
(a) (monotonicity). For every A, B C X, cap(A) < cap(B).
(b) (strong subadditivity). For every A, B C X,

cap(A U B) 4 cap(A N B) < cap(A) + cap(B).
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Proof

(a) Monotonicity is clear.
(b) Let A, BC Xand U,V € Obesuchthat A C U and B C V. We have

cap(AU B) 4+ cap(AN B) <cap(U U V) +cap(U NV) <cap(U) + cap(V).

It is easy to conclude the proof. O

Proposition 7.1.7 Let (K,,) be a decreasing sequence in K. Then
(0.¢]
cap (q Kn> = nlggo cap(Ky).
n=

o0
Proof Let K = ﬂKn and U € O, U D K. By compactness, there exists m such
n=1

that K,, C U. We obtain, by monotonicity, cap(K) < lim cap(K,) < cap(U). It
n—oo
suffices then to take the infimum with respect to U. O

Lemma 7.1.8 Let (U,) be an increasing sequence in Q. Then

o
cap <U Un> = ,,‘L“E.‘o cap(Up).

n=1

o
Proof Let U = UU,, and K € K, K C U. By compactness, there exists m such
n=lI

that K C U,. We obtain by monotonicity cap(K) < lim cap(U,) < capU. It
n—oo
suffices then to take the supremum with respect to K. O

Theorem 7.1.9 Let (A,) be an increasing sequence of subsets of X. Then
o
cap (LJI A,,) = nli)n;o cap(Ap).
n=

o
Proof Let A = UA"' By monotonicity, lim cap(A,) < cap(A). We can assume
n—oo

n=1

that lim cap(A,) < +oo.Lete > Oanda, = 1 — 1/(n + 1). We construct, by
n—oo

induction, an increasing sequence (U,) C O such that A, C U, and

cap(Uy,) < cap(A,) + ¢ ap. ()
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When n = 1, (x) holds by definition. Assume that (x) holds for n. By definition,
there exists V € O such that A,+; C V and

cap(V) = Cap(An+1) + 8(an+l —ay).
We define U, 11 = U,UV,sothat A, C U,+1. We obtain, by strong subadditivity,

cap(Up+1) =< cap(Uy) + cap(V) — cap(U, N'V)
< cap(A,) + € ay + cap(A,+1) + &(an+1 — an) — cap(A,)
= cap(Ap+1) + € an+1.

It follows from () and the preceding lemma that
o0
cap(A) < cap <U Un> = lim cap(U,) < lim cap(A,) + ¢.
nel n—oQ n—oo

Since ¢ > 0 is arbitrary, the proof is complete. O

Corollary 7.1.10 (Countable Subadditivity) Let (A,) be a sequence of subsets of

X. Then cap(U An) < anp(A ).

n=1 n=1

k
Proof Let By = |_J Ax. We have

n=1

o0 o0 o0
cap <UA,1> = cap (UBk> = kli)ngo cap(By) < anp(An). O
n=1

k=1 n=1

Definition 7.1.11 The outer Lebesgue measure of a subset of R is defined by

m*(A) = inf{m(U) : U isopenand U D A}.

7.2 Variational Capacity

In order to define variational capacity, we introduce the space D7 (RV).

Definition 7.2.1 Let 1 < p < N. On the space

DYPRYY = (u e LP"RY) : Vu € LP(RY; RV)),
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we define the norm

1l gy vy = N1Vl

Proposition 7.2.2 Let1 < p < N.

(a) The space D(RN) is dense in D'-P (RN).
(b) (Sobolev’s inequality.) There exists ¢ = c(p, N) such that for every u €
DI RY),

ullps < cllVullp.

(c) The space DVP (RN is complete.

Proof The space D(RY) is dense in D7 (RY) with the norm [l px + [IVul]p.
The argument is similar to that of the proof of Theorem 6.1.10.

Sobolev’s inequality follows by density from Lemma 6.4.2. Hence for every u €
DY),

IVullp < [lullp +[IVullp < (¢ + DI Vullp.

Let (u,) be a Cauchy sequence in DP(RN). Then u, — u in LP"(RY), and
forl < k < N, ogu, — vi in LP(RN). By the closing lemma, for 1 < k < N,
Oxu = vi. We conclude that u,, — u in Dl’p(RN). O

Proposition 7.2.3 Every bounded sequence in D"P(RN) contains a subsequence

converging in LllOC (RN) and almost everywhere on RN

Proof Cantor’s diagonal argument will be used. Let (u;) be bounded in DLP(RN)Y.
By Sobolev’s inequality, for every k > 1, (u,) is bounded in W1 1(B(0, k)).
Rellich’s theorem and Proposition 4.2.10 imply the existence of a subsequence
(u1,n) of (u,) converging in LY(B(0, 1)) and almost everywhere on B(0, 1). By
induction, for every k, there exists a subsequence (ux ) of (ux—1,,) converging in
LY(B(0, k)) and almost everywhere on B(0, k). The sequence v, = u,_, converges

in L] (RV) and almost everywhere on R, O

Definition 7.2.4 Let 1| < p < N and let K be a compact subset of RY. The
capacity of degree p of K is defined by

cap,,(K) = inf{/ IVulPdx :u e z)}(”’(RN)} ,
RN
where

Z)}gp(RN) = {u € D"P(RV) : there exists U open such that K C U and xy < u

almost everywhere}.
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Theorem 7.2.5 The capacity of degree p is a capacity on RV .
Proof

()
(b)

(©)

Monotonicity is clear by definition.
Let K be compact and @ > cap,(R™). There exist u € D"7(R") and U open

such that K C U, xy < u almost everywhere, and / |Vul|’dx < a. For every
RN
compact set C C U, we have

cap,(C) < /RN |VulPdx < a,

so that cap, is regular.
Let A and B be compact sets, a > capp(A), and b > capp(B). There exist

u,v e DVPRY) and U and V open sets suchthat A C U, B C V, xy < u,
and xy < v almost everywhere and

/ [VulPdx < a, /|Vv|pdx<b.
RN RN

Since max(u, v) € Z)L’SB (RN) and min(u, v) € Z)%B (RV), Corollary 6.1.14
implies that

/ |V max (u, v)|de+f |V min(u, v)|? =/ |Vu|pdx+/ [Vu|Pdx < a+b.
RN RN RN RN
We conclude that

capp(A UB) + capp(A NB)<a-+b.

Since a > cap,(A) and b > cap ,(B) are arbitrary, cap, is strongly subadditive.
O

The variational capacity is finer than the Lebesgue measure.

Proposition 7.2.6 There exists a constant ¢ = c(p, N) such that for every A C
RY,

m*(A) < ¢ cap,(A)N/ NP,

Proof Let K be a compact set and u € Z)}gp (RM). Tt follows from Sobolev’s
inequality that

. P*/p
m(K) < / lul? dx < c </ |Vu|pdx> )
RN RN
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By definition,
m(K) < c cap,(K)N/N=P),

To conclude, it suffices to extend this inequality to open subsets of RY and to
arbitrary subsets of RV . O

The variational capacity differs essentially from the Lebesgue measure.

Proposition 7.2.7 Let K be a compact set. Then
capp(aK) = capp(K).

Proof Leta > cap, (3K). There exist u € D'?(RV) and an open set U such that
0K C U, xy < u almost everywhere, and

/ |VulPdx < a.
RN

Let us define V = U U K and v = max(u, xv). Then v € Z)}(’p(RN) and

/ |Vv|pdx§/ [Vul|Pdx,
RN RN

so that cap » (K) < a. Since a > cap p(a K) is arbitrary, we obtain

capP(K) < capp(aK) < capp(K). |

Example Let 1 < p < N and let B be a closed ball in RV. We deduce from the
preceding propositions that

0< cap,(B) = cap,(9B).
Theorem 7.2.8 Let 1 < p < N and U an open set. Then
cap,(U) = inf{/ IVulPdx :u € DVPRN), xu < u almost everywhere‘} .
RN

Proof Let us denote by Cap, (U) the second member of the preceding equality. It
is clear by definition that cap,(U) = Cap,(U).
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Assume that cap,(U) < oo. Let (K,) be an increasing sequence of compact
[ee)

subsets of U such that U = U K, and let () € DP(RN) be such that for every

n=1
n, xk, < u, almost everywhere and

/N |Vu,|Pdx < cap,(K») + 1/n.
R

The sequence (u,) is bounded in DPRM). By Proposition 7.2.3, we can assume

that u, — u in L}OC(RN ) and almost everywhere. It follows from Sobolev’s

inequality that u € L?"(R"). Theorem 6.1.7 implies that

/ [Vu|Pdx < lim |Vu,|Pdx < lim cap,(Ky,) < cap, (V).

RN n—o0o JRN n—o00

By Theorem 7.1.9, lim capp(Kn) = capp(U).) Since almost everywhere, xy < u,
n—oo

we conclude that Cap,(U) < capp(U). |

Corollary 7.2.9 Let1 < p < N, and let U and V be open sets such that U C V
andm(V \U) = 0. Then cap,(U) = cap, (V).

Proof Let u € DP(RN) be such that xy < u almost everywhere. Then xy < u
almost everywhere. O

Corollary 7.2.10 (Capacity Inequality) Let 1 < p < N and u € D(RYN). Then
foreveryt > 0,

cap, ({ul > 1}) < 17" /RN Vul?dx.

Proof By Corollary 6.1.14, |u|/t € D"PRN). O

Definition 7.2.11 Let | < p < N. A function v : R¥ — R is quasicontinuous
of degree p if for every & > 0, there exists an open set such that cap ,(w) < ¢
and v RN\ is continuous. Two quasicontinuous functions of degree p, v, and w are
equal quasi-everywhere if capp({|v —w| > 0}) =0.

Proposition 7.2.12 Let 1 < p < N and let v and w be quasicontinuous functions
of degree p and almost everywhere equal. Then v and w are quasi-everywhere
equal.

Proof By assumption, m(A) = 0, where A = {|v — w| > 0}, and for every n, there
exists an open set such that cap,, (wp) < 1/nand |v — w| |]RN\a) are continuous. It
follows that A U w, is open. We conclude, using Corollary 7.2.9, that
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cap,(A) < cap,(AUw,) = cap,(wp) — 0, n— oo.
Proposition 7.2.13 Let 1 < p < N and u € DP(RN). Then there exists a

function v quasicontinuous of degree p and almost everywhere equal to u.

Proof By Proposition 7.2.2, there exists (u,) C D®RY) such that u, — u
in OL?(RV). Using Proposition 7.2.3, we can assume that u, — u almost
everywhere and

o0

22]‘1’ /N |V (upr1 —up)|Pdx < oo.
R

k=1

We define
00
Ur = {luk+1 — ui| > 2_k}, Wy = U Uy.
k=m

Corollary 7.2.10 implies that for every &,

cap,(Uy) < 247 fR IVGtgr — )| dx.

It follows from Corollary 7.1.10 that for every m,

o
cap, (wm) < Zz"l’ /RN IV (urs1 — up)|Pdx — 0, m — oo.

k=m
We obtain, for every x € RV \ w,, and every k > j > m,

luj (x) — up(x)] < 2!,

o
so that (u,,) converges simply to v on RV\ ﬂ wy, . Moreover, v |R Mo is continuous,
m

m=1
o0

since the convergence of (u,) on RN \ @y, is uniform. For x € ﬂ wy,, we define

m=1
v(x) = 0. Since by Proposition 7.2.6, m(w,,) — 0, we conclude that u = v almost
everywhere. O
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7.3 Functions of Bounded Variations

A function is of bounded variation if its first-order derivatives, in the sense of
distributions, are bounded measures.

Definition 7.3.1 Let £2 be an open subset of RY. The divergence of v €
C'(£2; RV) is defined by

N
divv = Z O V.
k=1

The total variation of u € L] _

(£2) is defined by

||Dulle = sup{/ udivvdx :v e DE2;RY), |v]]eo < 1},
2

where

N 1/2
l[v]loc = sup (Z(vk(x))z) :

xesf k=1

Theorem 7.3.2 Let (u,) be such that u, — u in LllOC

(£2). Then

[|Dulle < lim ||Duyl|e.
n—oo
Proof Letv € D(£2; RY) be such that [lv]leo < 1. We have, by definition,

/udivvdx: lim u, divvdx < lim ||Duy||e.
0 n—-oo Jo n—oo

It suffices then to take the supremum with respect to v. O

Theorem 7.3.3 Letu € WILLI (£2). Then the following properties are equivalent:

(a) Vu € L'(§2; RN);
(b) ||Dulle < oo.

In this case,

[[Dulle = [IVullL1(g)-
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Proof

(a) Assume that Vi € L1(§2; RV). Let v € D(£2; RV) be such that ||v]|sc < 1. Tt
follows from the Cauchy—Schwarz inequality that

N
/ udivvdx = —/ kaaku dx < / |Vu|dx.
2 2 k=1 $2
Hence [|Dulle < [|Vullp1(g)-
Theorem 4.3.11 implies the existence of (w,) C D(£2; RY) converging to

Vu in L'(£2; RY). We can assume that w,, — Vu almost everywhere on 2.
Let us define

Vp = wy,/ |wn|2 +1/n.

We infer from Lebesgue’s dominated convergence theorem that

||Vu||L1(Q):/ |Vuldx = lim / v, - Vudx < ||Dul|g.
7 n— o0 o

(b) Assume that ||Du||p < oo, and define
wp =1{x€2:d(x,082) > 1/nand |x| < n}.
Then by the preceding step, we obtain
IVullpi,) = [Dullw, < |[Dullg < oo.

Levi’s theorem ensures that Vu € L'(£2; RV). |

Example There exists a function everywhere differentiable on [—1, 1] such that
[|Du|lj-1,1] = +00. We define

u(x) =0, x =0,

=x2sinx1—2, 0< x| <1.

We obtain

u'(x) =0, x =0,

C | 2 1
o = — £ = <
2x sin 2 3 Ccos 2 0< |x| 1.

The preceding theorem implies that
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oo = lim ||u < ||Dullj—1.1f-
+ Am L gyap = [1Dull-1

Indeed,

! 1 dx o dt
2 |cos—2—= | cost|— = +o0.
0 X< X 1 t

The function u has no weak derivative!

Example (Cantor’s Function) There exists a continuous nondecreasing function
with almost everywhere zero derivative and positive total variation. We use the
notation of the last example of Sect. 2.2. We consider the Cantor set C corresponding
to £, = 1/3"*1. Observe that

o0
m(C)=1-"Y 2//3+ =
j=0

3\" ¥
un(x)=(§> [) xc, ()dt.

It is easy to verify by symmetry that

We define on R,

1
on+l’

unt1 — unlloo = 5
By the Weierstrass test, (#,) converges uniformly to the Cantor’s function u €
C(R). Forn > m, uj, = 0 on R\ Cy,. The closing lemma implies that " = 0

on R\ Cy,. Since m is arbitrary, u’' = 0 on R \ C. Theorems 7.3.2 and 7.3.3 ensure
that

. /
[[Dullr = lim |u, || 1g) = 1.
n—oo

Let v € D(R) be such that ||v||c = 1 and v = —1 on [0, 1] and integrate by parts:

3 n
/ Vudx = lim | vuy,dx=— lim [ vuj,dx = lim <—> m(Cy) = 1.
R n—o0 \ 2

n— oo R n—odo R
We conclude that ||Du||r = 1. The function u has no weak derivative.
Definition 7.3.4 Let £2 be an open subset of R . On the space

BV(2) ={u e L'(2) : ||Dullg < oo},
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we define the norm

ullpv(2) = llullp (@) + |1Dulle
and the distance of strict convergence

ds(u,v) = [|lu — v||p1g) + ||| Dulle — [|Dvl|2|.

Remark 1t is clear that convergence in norm implies strict convergence.

Example The space BV (]0, m[), with the distance of strict convergence, is not
complete. We define on ]O, [,

1
un(x) = —cosnx,
n
so that u,, — 0 in L1(J0, 7 [). By Theorem 7.3.3, for every n,

T
[|Duy|lo,~[ = / | sinnx|dx = 2.
0

H lim dgs(u;, = 1 P — =0.If limd ,v) = 0,
ence j’kg)nc>o s(uj, uk) j,kli)noo luj — urllLrqo.xp im dg(un, v)
then v = 0. But lim dg(u,, 0) = 2. This is a contradiction.

n—oo
Proposition 7.3.5 The normed space BV (§2) is complete.

Proof Let (u,) be a Cauchy sequence on the normed space BV (§2). Then (u,,) is a
Cauchy sequence in LY(£2), so that u,, — u in L1(£2).
Let ¢ > 0. There exists m such that for j,k > m, ||[D(u; — up)lle =< e.
Theorem 7.3.2 implies that for k > m, |[|D(ux —u)|| < lim |[D(u; —up)lle < €.
— 00

Since ¢ > 0 is arbitrary, ||D(uy — u)||e — 0,k — oo. m|
Lemma 7.3.6 Letu € L} (RV) be such that || Du|lgn < oo. Then

IV (on % Wl 1@y = ||Dullgy and ||Dullgy = Hm [V (on * )]l L1 @n)-

Proof Let v € D(RY;RY) be such that ||v]|ooc < 1. It follows from Proposi-
tion 4.3.15 that

N N
div v dx = updx = 9 dx.
/RN(pn*u) iv v dx /RNul;pn* vedx /RNMI; K (o * vi)dx

The Cauchy—Schwarz inequality implies that for every x € RV,
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N N s N
S (on#ue()? = Y ( [ o y)w(y)dy) =Y [ -y < 1.
k=1 k=1 R =1"R

Hence we obtain
/ (pn *u) div v dx < ||Dul|pn,
RN

and by Theorem 7.3.3, ||V (o * u)|| 1wy < || Dullgy.

By the regularization theorem, pj,*u — u in LllOc (RN). Theorems 7.3.2 and 7.3.3
ensure that

[[Dullpy = Lim [[V(pn % )| 11 @N). O
n—00

Theorem 7.3.7

(a) Foreveryu € BV (RM), (pn * u) converges strictly to u.
(b) (Gagliardo—Nirenberg inequality.) Let N > 2. There exists cy > 0 such that
for everyu € BV (RYN),

Hulln/v—1)(RY) < en||Dullgn .

Proof

(a) Proposition 4.3.14 and the preceding lemma imply the strict convergence of
(o5 *x u) to u.

(b) Let N > 2. We can assume that p,, * 4 — u almost everywhere on RN It
follows from Fatou’s lemma and Sobolev’s inequality in D' (RV) that

Nullyyv—1) < ki%o”p”" *ullyyv—1) < ey lim 11V x s = enllDullgn.
o
7.4 Perimeter

The perimeter of a smooth domain is the total variation of its characteristic function.

Theorem 7.4.1 Let 2 be an open subset of RN of class C' with a bounded
boundary I'. Then

/dy= IDxollax.
I
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Proof Let v € DRY; RM) be such that ||v||oo < 1. The divergence theorem and
the Cauchy—Schwarz inequality imply that

/divvdx:/v~ndy§/ [v] |n|dy§/dy.
Q r r r

Taking the supremum with respect to v, we obtain || D xo||lpy < f dy.
r

We use the notations of Definition 9.4.1 and define
U={xeR":Vpx) #0},

so that I C U. The theorem of partitions of unity ensures the existence of ¥ €
D) suchthat) < ¢ < 1and ¥ = 1 on I". We define

v(x) =¥ (x)Vex)/IVex)|, x e U
=0, x e RN\ U.

It is clear that v € K(RY; RV), and for every y € I', v(y) = n(y). For every m >
L, wy = pm *v € DRY; RY). We infer from the divergence and regularization
theorems that

lim div wy, dx = lim wm-ndyz/n-ndJ/:/dy.
r r r

m—0Q Q m—00

By definition, ||v||ec < 1, and by the Cauchy—Schwarz inequality,

N

N 2 N
Y (omrvr)? = (/N P (x — )’)Uk()’)dY) < Z/N pm (x=y) (0 (»))*dy < 1.
k=1 =1 R =1 'R

We conclude that/dy <lIDxellgn- o
r

The preceding theorem suggests a functional definition of the perimeter due to
De Giorgi.
Definition 7.4.2 Let A be a measurable subset of RY . The perimeter of A is defined
by p(A) = [IDxallgn.

Definition 7.4.3 Let N > 2 and let 2 be an open subset of RY. The Cheeger
constant of §2 is defined by

h(2) = inf{p(w)/m(w) : @ CC 2 and w is of class C'}.
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Example Let 2 = B(0,1) C R¥. For every 0 < r < 1,h(£2) < N/r, so that
h(£2) < N. Assume that  CC £2 is of class C!. The divergence theorem, applied
to the vector field v(x) = x, implies that

Nm(w):/ divvdx:/ v.ndy 5/ dy = p(w).
w dw w
We conclude that 2(£2) = N.

Theorem 7.4.4 (S.T. Yau, 1975) Let 2 be an open subset of RN . Then

|Vu|dx
h(2) = inf 22—
ueD(2)
420 |u|dx

Proof

(a) Let u € D(82). Using Cavalieri principle (Corollary 2.2.34), the Morse—Sard
theorem (Theorem 9.3.1), and the coarea formula (Theorem 9.3.3), we obtain

00 0
h(.Q)f luldx = h($2) [/ m({u > t})dt +f m({u < t})dti|
2 0

o0
o0 0
5/ dt/ d)/—}—/ dt/ dy:/ |Vuldx,
0 u=t —00 u=t 2
h(2) <c= inf

/ \Vu|dx
2
uen(£2) ’

u#0 |M|dx
2

so that

(b) Let w CC £2 be of class C!. For n large enough, u, = p, * x», € D(£2).
Proposition 4.3.14 and Lemma 7.3.6 imply that, as n — oo,

lunllt = lxollt = m(w), [Vuullt = [Dxollgy = p(w).

We conclude that

/qunIdx
p(w) — lim Z2

m(a)) n— 00 / Iunldx
2

ZC’

and h(£2) > c. O
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Corollary 7.4.5 (J. Cheeger, 1970) Let 2 be an open subset of RV . Then

/ |Vu|>dx
Je

e
4 = lzrjl(fg)
ueu?g() uzdx

2

Proof Letu € D(£2). By the preceding theorem, the function v = u? satisfies

h(.Q)/ |v|dx§f |Vvldx.
2 2

The Cauchy-Schwarz inequality implies that

1/2 1/2
h(.Q)/ uzde/ 2lu| |Vu|dx§2(/ uzdx) (f |Vu|2dx> . O
2 2 2 2

Lemma 7.4.6 Let1 < p < N, let K be a compact subset of RN, and a > cap,(K).
Then there exist V open and v € Z)(RN ) such that K C V, xy < v, and

/ [Vu|dx < a.
Q

Proof By assumption, there exist u € D7 (RY) and U open such that K C U,
xu < u, and

/ |VulPdx < a.
RN

There exists V open such that K C V CC U. For m large enough, xy < w = py*u
and

/ IVw|Pdx < a.
RN

Let 6,(x) = 0(|x|/n) be a truncating sequence. For n large enough, xy < v =6,w
and

/ |Vv|Pdx < a. |
RN

Theorem 7.4.7 Let N > 2 and let K be a compact subset of RN. Then

cap(K) = inf{p(U) : U is open and bounded, and U D K}.
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Proof We denote by Cap; (K) the second member of the preceding equality. Let U
be open, bounded, and such that U D K. Define u,, = p, * xy. For n large enough,
ue D}gl (RV). Lemma 7.3.6 implies that for n large enough,

capy(K) < /RN |Vunldx < [IDxullgy = pU).

Taking the infimum with respect to U, we obtain cap; (K) < Cap;(K).
Let a > cap;(K). By the preceding lemma, there exist V open and v € D(RN)

suchthat K C V, xy <, and/ |[Vv|dx < a. We deduce from the Morse—Sard
N

theorem and from the coarea formula that

1 o0
Cap,(K) 5/ dt/ dy 5/ dt/ dy :/ [Vuldx < a.
0 v=t 0 v=t RN

Since a > cap;(K) is arbitrary, we conclude that Cap;(K) < cap;(K). O

7.5 Distribution Theory

La mathématique est ’art de donner le méme nom a
des choses differentes.

Henri Poincaré

La mathématique est la science des choses qui
se réduisent a leur définition.

Paul Valéry

Distribution theory is a general framework including locally integrable functions.
A distribution is a continuous linear functional on the space of test functions.
Every distribution is infinitely differentiable, and differentiation of distributions is a
continuous operation. We denote by £2 an open subset of RV

Definition 7.5.1 A sequence (u,,) converges to u in D(£2) if there exists a compact
subset K of £2 such that for every n, spt u,, C K, and if for every o € NV,

[10%(uy — 1) ||oo — 0,1 — 00.

Definition 7.5.2 A distribution on §2 is a linear functional f: D(§£2) — R such
that for every sequence (u,) converging to u in D(82), (f, u,) — (f,u),n — oo.
We denote by D*(£2) the space of distributions on £2.
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Example The distribution corresponding to f € Ll (£2) is defined on D(£2) by

loc

(fiu) = /Q fudx.

By the annulation theorem, the functional f: D(§2) — R characterizes the function
f e Llloc(.Q). Assume that u, — u in D(£2). Then there exists a compact subset K
of £2 such that, for every n, spt u,, C K. Hence we obtain

‘/;}fundx—/gfudx

Definition 7.5.3 Let f € D*(2) and « € NV The derivative of order o of f (in
the sense of distributions) is defined on D(S2) by

< /Q f] i — uldx < /K | fldx it — oo — 0,1 — oo.

(8% f,u) = (=D £, 8%).

It is easy to verify that 9% f € D*(£2).
Examples

(a) If g = 90 f in the weak sense, then g = 0% f in the sense of distributions.
Indeed, for every u € D($2),

(3% f,u) = (=D £, %) = (=)l / fo%udx = / gudx = (g, u).
2 2
(b) The everywhere derivable function
fx) =0, x=0,

= x?sin —, 0< x| <1,
X

has a classical derivative f’ and a derivative in the sense of distributions

1
D-1,1) > R: u > —/ fu'dx.
~1

&
Those two objects are different since, for every ¢ > 0, / | f|dx = 4o0.

—&

Definition 7.5.4 The sequence (f,,) converges to f in D*(£2) if for every u €
D(82), {fn,u) = {f,u),n — oo.
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Example If f, — fin L
D($2)

’/anudx—/;zfudx

Theorem 7.5.5 Leta € NV and let (f,) be a sequence converging to f in D*(£2).
Then (9% f,,) converges to 3% f in D*(£2).

(£2), then f,, — f in D*(£2). Indeed, for every u €

loc

s/ \fo— ] |u|dxs||u||oo/ \fu— fldx — 0.1 — oc.
2 spt u

Proof For every u € D(§2), we have
(0% fou) = (=DPU(f.8%) = lim (=DIN(f,, %) = Tim (3“ fo,u). O

We now prove a variant of the Banach—Steinhaus theorem.

Theorem 7.5.6 Let (f;) C D*(£2) be a sequence converging simply to the
functional f: D(2) — R. Then f € D*(£2), so that f; — f in D*(£2).

Proof The linearity of f is clear. Assume, for the sake of obtaining a contradiction,
that there exists (u,) C D(§2) suchthatu, — 0in D(2) and lim | f(u,)| > 0. We
n—od

can assume that lim f(u,) > 0. Using Cantor’s diagonal argument, we construct a
n—o0

subsequence (Vi) of (u,) such that for every k and every || < k,

0<c<fr), l8%u%le<1/2

We choose vg; = vy and f}, such that ¢ < (fj, vk,). Given vy, ..., v, , and
firs s fj,_,» there exists v, such that form <n — 1,
fj , | < 1/2]1 m

There also exists f;, such that

ne < Y Finr V-

m=1
o0
By the Weierstrass test, Z Vk,, = w in D(§2). Hence we obtain, for every n,
m=1
o0 o
([ w Zf/"’vk > ne — Z 172" =ne — 1.
m=1 m=n+1

But then (f},, w) — +00, n — oo. This is a contradiction. m|
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The preceding theorem explains why every natural linear functional defined on
D(£2) is continuous.
Distributions also generalize positive measures and bounded measures.

Theorem 7.5.7 Let f: D(§2) — R be a linear functional such that {f,u) > 0
when u > 0. Then f is a distribution and the restriction to D(82) of a positive
measure |u: K(2) — R.

Proof Let w CC £2. By the theorem of partitions of unity, there exists ¥ € D(£2)
such that 0 < ¥ < 1 and ¥ = 1 on w. For every u € D(£2) such that spt u C w,
we have

(fru) = (/. lullo¥) = collulloo.

Hence f is a distribution.
Let v € K(£2) be such that spt v C w, and define v, = p, * v. For n large
enough, spt v, C w. The regularization theorem implies that

Jim [(f,v)) = (fLud] < co lim lvj — villoo = 0.
J-k—00 Jrk—00

We define

{w,v) = lim (f, vn). 0

Lemma 7.5.8 Let f: D(2; RM) — R be a linear functional such that

cr=sup{(f,v): v eDE2;RY), v]loo < 1} < 4o00.
Then f is the restriction to D($2; RM) of a finite measure v : K(2; RM) — R such
thatcy = |ulle = fQ d| i), and there exists g: 2 — RM satisfying:

(a) gis|u|-measurable;
(b) |g(x)| =1, |u|-almost everywhere on §2;
(c) forallv e D(S2;RM), (f.v) = [ov-gd|ul.

Proof Letv € K(£2; RM). For n large enough, spt p,*v CC £2. The regularization
theorem implies that

Gim [(fp xv) = (foprxv) S cp m (o) % v — prk vlloo =0,
Jik—00 Jj.k—00

We define

{w,v) = lim (f, pp *v).
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Since
(m,v) <cp lim ||pn % vloc = crllvioo,
n— oo

the functional u: K(§2; RM) — R is a bounded measure such that
Inlle = sup{(u, v) : v e KE&2;RY), vlloo < 1} < cf.

We conclude that ||u|le = cy.
Let (lﬂn) C D(£2) be given by Proposition 6.1.16 so that v/, > 0 and, for every

o CC £2, Z ¥, = 1 on w. Let us recall that

n=1

/ andw = sup{{i. v): v € K(Q: RM), v < an} < lnle-

n=1

Using Levi’s theorem, we obtain
o0
/ d|ul =/ > W dlul = sup{{p. v): v € K(2: RM), [[v]loo < 1} = [lull -
2 Qv:l

Finally the existence of g: 2 — RM satisfying (a), (b), and (c) follows from
Theorem 5.3.14. i

Theorem 7.5.9 Letu € L!

loc

(£2) be such that
| Dullo = sup{/ udivvdx 1 v e DE2; RY), [v]loo < 1} < +o00.
2

Then

N
FiDE2;RY) > R:vi> Z(aju, vj)
j=1
is the restriction to D(82; RN) of a finite measure Du: K(2; RN) — R such that
| Dullo = fQ d|Du|, and there exists g: 2 — RV satisfying:

(a) gis|Du|-measurable;
(b) |g(x)| =1, |Dul-almost everywhere on §2;

N

(c) forallveD(Q;]RN), E (Bju,vj)=/ V- gd|Dul.
. 2
Jj=1



7.5 Distribution Theory 187

Proof Since, for every v € D(£2; RN),

N
(Oju, vj —/ u divvdx,
j=1 e

it suffices to use the preceding lemma. O
The next result improves Theorem 7.4.1.

Theorem 7.5.10 Let 2 be an open subset of RN of class C' with a bounded
boundary I', and let v € KRN ; RN). Then

(ng,v)z—/ v-ndy.
r

Proof The regularization theorem and the divergence theorem imply that

N
(Dxge,v) = lim_ 2(3/')(9, Pm * V)
j=

N
= m]me — /Z_:l./.;z 0j(om *v)dx

= lim —/pm*v-ndy
r

m— 00

=—/v~ndy. o
r

Theorem 7.5.11 (Density theorem in BV (§2)). Let u € BV (82). Then there exists
(n) C C™(2) N\ WL(82) such that

lim |lup, —ullp1p) =0, lim / [Vu,ldx = ||Du||s.
n— o0 n—0o0 0

Proof Let us first prove that, for every & > 0, there exists v € C*(£2) W!1(2)
such that

lv—ullpie) <€, / |Vuldx < ||Dullo + ¢.
2

Let (U,) and () be given by Proposition 6.1.16. Since ¥,, € D(U,), there exists,
for every n > 1, k, such that

Un = Pk, * (Ynu) € D(Up)
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and
llvn — Yuuell 12y + ok, * @VYR) —uVYllg) < e/2". (%)

On every w CC §2, we have that

My

o0
Z Vp = ZU” € C®(w).
n=1 n=1

Hence

v = Zvn € C®(R2).

n=1

Moreover (x) implies that

o0
||U - M”LI(Q) = || Z(vn - wnu)”Ll(.Q) =&

n=1

We deduce from Proposition 4.3.6 and Theorem 7.5.9 (c) that, for every x € £2,
V0,0 = [ Viept, (6 = 90 )y
== [ Vamn s =ty
= [ e =3 1ga1Dul+ [ o1, (6 = ) Vi ()

= fg Prp (X — VY () g()d|Dul + pg, * @Vir,)(x).

It follows from Fubini’s theorem and Theorem 7.5.9 (b) that

/dx
2

/ Pi, (X — Y)Y (¥)g(y)d|Dul| S/ dx/ P, (X — ¥)Un(y)d|Du|

Q Q Q

=f dIDMI/ Pi, (X — )Y (y)dx
2 Q

:/ Ynd|Dul. (%)
2

It is clear that, for every x € £2,
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Vo) =Y Vo, (x)
n=1
=> /Q Pl (X = Y (M)A Dul + Y pr, * V) (x)
n=1

n=1

=y fg P, (6 = )Y (A Dul + Y [k, # @V) — uV,] (x).
n=1

n=1

Using (x) and (%), we conclude from Levi’s theorem that

o o o
/ |Vuldx < Z/ Ynd|Du| + ) e/2" =/ > ¥ud|Du| + & = | Dullo + .
2 n=1 $2 n=1 Qn=1

The first part of the proof implies the existence of a sequence (u,) C C*(£2)
N WL1(£2) such that, for every n,

lun —ullpi@y < 1/n, / |Vupldx < ||Dullg + 1/n.
Q
Using Theorems 7.3.2 and 7.3.3, we obtain

IDulle < li_m/ Vuy|dx < Tim / Vinldx < [|Dulle. o
Q n—oo .Q

n—oo

We shall prove various representation theorems.
Notation. Let 1 < p < 400 and let £2 be an open subset of RY. On L7 (£2; RM),
we define the norm

||v||pz</9|v|"dx>l/p= L(%ui)mdx

k=1

1/p

Letusrecall that 1/p +1/p = 1.

k
Lemma 7.5.12 Let1 < p < +ooandlet g € (L”(.Q; RM)> . Then there exists
one and only one h € L”/(Q; RM) such that, for every v € LP(£2; RM),

(g, v):/ h.vdx. (%)
2

Moreover | gll(Lryx = |ll .

Proof By the Riesz’s representation theorem, there exists one and only one & €
LP (£22; RM) satisfying (). Moreover
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lgllzry- = sup fgh~vdx= 12l pr- O

vip=1

Theorem 7.5.13 Let 1 < p < +oo and let f € D*(§2). The following properties
are equivalent:

(a) there exists h € Lp/(.Q; RN) such that div h = f;
(D) 1fll« = sup{(f, u) : u € D(82), [|Vul, < 1} < +o0.

Moreover
171l = min{ 18], e L7 (2 RY), divh = £ .

Proof 1f f satisfies (a), it follows from Holder’s inequality that, on D(S2),

(fru)=(divh,u) = —/ h-Vudx < ||hllpy[IVullp.
2

Hence || fll« < 2l

Assume that f satisfies (b). We define ¥ = {Vu: u e Z)(.Q)}. Since
A: D) —>Y:u— Vu

is bijective, the Hahn-Banach theorem implies the existence of g € (L”(£2; RY))”
such that, for every u € D(£2), (g, Vu) = (f, u) and

lglwry = I.f 1+

By the preceding lemma, there exists 7 € LY (£22; RY) such that, for every v €
LP(2;RN), (g,v) = — [, h-vdx and

Al = gllzry-

We conclude that |||l > = || f ||« and that, for every u € D(£2),

(f,u)=(g,Vu)=—/h~Vudx=(dth,u). o
2

We now state the representation theorem of L. Schwartz.

Theorem 7.5.14 Let f € D*(£2), and let o CC $2 be the product of N open
intervals. Then there exist g € Co(w) and B € NN such that f = 8P g on D(w).

Lemma 7.5.15 Let f € D*(82). Then there exist « € NV and ¢ > 0 such that for
allu € D(w),

I(f )] < cllo“uloo.
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Proof By the fundamental theorem of calculus, for every n > 1, there exists ¢, > 0
such that for all u € D(w),

sup [[0%uloe < nlld™ ™t 0o
la|<n

Assume, to obtain a contradiction, that for every n > 1, there exists u, € D(w)
such that

nenll 87 upllso < (f, tn).
Define v, = u,/(nc, |8 ™u,|ls). Since for every n > |al, %, ]l00 < 1/n,

we conclude that v, — 0 in D(£2) and (f, v,) — 0. But this is impossible, since
for every n, (f, v,) > 1. m]

We prove the existence of primitives of a distribution.

Lemma 7.5.16 Let f € D*(w),1 <k <N,y € NV, and ¢ > 0 be such that for
allu € D(w),

[(f, u)] < cllod” ulloo
Then there exist F € D*(w) and C > 0 such that f = o F and for all u € D(w),
I(F,u) < Clla"ul -

Proof We can assume that w = 10, 1[N and k = N. Let (XS Z)(]O, 1[) be such that

1
/ ods = 1. For every u € D(w), there exists one and only one v € D(w) such
0
that

1
u(x) = / u(x’, s)ds (xy) + anv(x).
0

The function v is given by the formula

XN 1
v(x) =/ [M(x/,t) —/ u(x’, s)ds (p(t)]dt.
0 0
The distribution F is defined by the formula

<F,I/t> = _<f’ V>.

Since [|0y 0" V]lco < d||0” u]|c0, it is easy to finish the proof. O
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Let us define

k(x,y)==1—yx,0<x=<y=<1,
=—(1-x)y,0<y=<x=<1,

and

N
K(x.y) = [ ] kG yn)-
n=1

Lemma 7.5.17 For everyu € D(]O, 1[N>, we have that

u(x) :/ K (x, »)0%Du(y)dy.
10,1V

Proof When N = 1, it suffices to integrate by parts. When N > 2, the result follows
by induction from Fubini’s theorem. O

We now prove the representation theorem of A. Pietsch (1960).

Lemma 7.5.18 Let  be a finite measure on w. Then there exists g € Co(w) such
that ;n = 3% g on D(w).

Proof We can assume that » = ]0, 1[V. By assumption, for every u € Co(w),
(1, w)] < ellullos, (*)

where ¢ = ||l w-
Let u € D(w). By the preceding lemma, we have that

We shall prove that

(w,u) = / g Du(y)dy,
w
where

g(y) ={u, K(-, y)).

Since

N
|K(x.y) = K. =Y 1y —zjl.
i=1
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it follows from () that

N
g —g@] e 1y —zjl.

j=1

It is clear by definition that g = 0 on dw.
Define v = 9%~ y. The preceding lemma implies that

ucx) =279 Z K(x, k/2)v(k/2))|, — 0, — oo.
keNN
[kloo <2/

It follows from (x) that

‘(M, uy -2 3 g(k/zf)v(k/zf)‘ -0, ] — oo

keNN
lkloo <2/
Since
[ 50wy =2 7 g2 wik/2h] - 0. > oc,
@ keNN
koo <2J
we conclude that (u, u) = / gy)v(y)dy. O
w

Proof (of Theorem 7.5.14.) Lemmas 7.5.15 and 7.5.16 imply the existence of o €
NN and of a finite measure y on  such that f = 9% on D(w). By Lemma 7.5.17
there exists g € Co(w) such that = 32 g on D(w). m|

7.6 Comments

The book by Maz’ya [51] is the main reference on functions of bounded variations
and on capacity theory. The derivative of the function of unbounded variation
in Sect.7.3 is Denjoy—Perron integrable (since it is a derivative); see Analyse,
fondements techniques, évolution by J. Mawhin [49].

7.7 Exercises for Chap.7

1. Let1 < p < N. Then
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2.
3.

7 Capacity

MWH+N<0s (1+xPHM2 e whPRN),
A—Dp+N <0< 1+ |xHM? e DLP(RN).
What are the interior and the closure of W!-1(§2) in BV (§2)?
Letu € Llloc(.Q). The following properties are equivalent:

(@) [|Dulle < oo;
(b) there exists ¢ > 0 such that for every @ CC £2 and every y € R" such that
ly] < d(w, 082)

ltyu —ullpwy < clyl.

. Relative variational capacity. Let £2 be an open bounded subset of RY (or more

generally, an open subset bounded in one direction). Let I < p < oo and let
K be a compact subset of §2. The capacity of degree p of K relative to £2 is
defined by

cap, o(K) = inf{/ |Vu|Pdx :u e W}{"’(Q)} ,
2

where

Wll<’p(.{2) ={uc W(}”’(.Q) : there exists w such that K C w CC 2

and x, < u a.e.on £2}.

Prove that the capacity of degree p relative to 2 is a capacity on £2.

. Verify that

cap, o(K) = inf{/ |Vu|Pdx :u € Z)K(Q)} ,
Q
where

Dk (£2) = {u € D(£2) : there exists w such that K C w CC §2 and x,, < u}.

. (a) If capp o(K) =0, then m(K) = 0. Hint: Use Poincaré’s inequality.

(b) If p > N and if cap, o(K) = 0, then K = ¢. Hint: Use Morrey
inequalities.

. Assume that cap, o (K) = 0. Then for every u € D(S2), there exists (u,) C

D(2 \ K) such that |u,| < |u| and u, — uin WHP(£2).

Dupaigne—Ponce (2004). Assume that cap; o (K) = 0. Then whr(2\ K) =

WP (£2). Hint: Consider first the bounded functions in W7 (2 \ K).

For every u € BV (RY), | Dlulllgn < ||Dut|lgn + ||Du”||gxn = [ Dullgy.
Hint: Consider a sequence (u,) C w1 (RN) such that u,, — u strictly in

BV RM).
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1.

12.

13.

14.

15.

16.
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Letu € L'(2) and f € BC'(£2). Then [|D(fu)lle < |IflloollDulle +

IV flloollull L1 (@)-

Cheeger constant. Let £2 be an open subset of RY. Then for 1 < p < oo and
Lp

every u € Wy (£2),

p
<@> /|u|pdx§/ [VulPdx.
p 2 Q

Letu € W1(£2). Then

N
/ 1+ Vu|2dx = sup {/ (vN+1 + uzakvk)dx v e D(£2; RN“), Wloo < 1¢.
2 2
k=1

Support of a distribution. Let f € D*(£2) and w C £2. The restriction of f
to w is zero if for all u € D(w), (f, u) = 0. The support of f, denoted by spt
f, is the subset of £2 complementary to the largest open set in 2 on which the
restriction of f is zero. Prove that the support of f is well defined.
Generalized divergence theorem. Let A be a measurable subset of RY such that
IDxallgy < oo. Then spt |Dxa| C 9A, and there exists g: RN — RN such
that:

(a) gis|Dy4l|-measurable;
(b) |g(x)| =1, |Dxal-almost everywhere on RV ;

(© forallveZ)(RN;RN),/ divvdx=/ v-gd |Dyxal.
A RV

Let £2 be an open subset of R of class C! with a bounded boundary or the
product of N open intervals. If N > 2 andif 1 < ¢ < N/(N — 1), then
BV (£2) C L9(£2) and the canonical injection is continuous.

Let £2 be an open bounded subset of R of class C! or the product of N
bounded open intervals. If N > 2 andif 1 < g < N/(N — 1), then
BV (£2) C L1(£2) and the canonical injection is compact. Moreover Poincaré’s
inequality is valid: there exists ¢ = ¢(§2) > 0 such that, for every u € BV (£2),

u—fu

Letl < p < +ooand k > 1. Define M = Z 1. The space Wk (82) is the

lee] <k

< c||Dulq.
LY($2)

space of distributions

g= Yy (=D,

| <k

where go € L” (£2; RM). Prove that g € W7 (£2) if and only if g is the
k
restriction to D($2) of f € (Wé’p(ﬂ)) .



Chapter 8 )
Elliptic Problems Qe

8.1 The Laplacian

The Laplacian, defined by

. 0%u 92u
AM:dIVVM:—2++—2,
0x; oxy

is related to the mean of functions.

Definition 8.1.1 Let £2 be an open subset of RY and u € L}OC(Q). The mean of u
is defined on

D={x,r):xe€,0<r <d(x,d82)}

by

M(x,r) = VIGI/B u(x +ry)dy.
N

Lemma 8.1.2 Let u € C*(82). The mean of u satisfies on D the relation

2
lim 2 42_
rl0 r

[M(x,r) —u(x)] = Au(x).
Proof Since we have uniformly for |y| < 1,

2
ulx +ry) =ulx)+rvux) -y + %Dzu(X)(y, Y+ o),
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we obtain by symmetry

. 2 VN
/Bijdx—O,/BNx]xkdx—O,] ;ék,/Bijdx— N2
and
2
Mx,r) =u(x) + — Au(x) + o(r?). O
2 N+2

Lemma 8.1.3 Ler u € C*(82). The following properties are equivalent:

(a) Au <0;
(b) forall (x,r) € D, M(x,r) < u(x).

Proof By the preceding lemma, (a) follows from (b).
Assume that (a) is satisfied. Differentiating under the integral sign and using the
divergence theorem, we obtain

1—1|y)?

oM
W(x,r) = V,\Tlf Vu(x +ry)-ydy =rV/\71/ Au(x +ry) dy <0.
By

By

‘We conclude that

Mx,r) <limM(x,r) = u(x). |
rl0

Definition 8.1.4 Let u € Llloc(.Q). The function u is superharmonic if for every
v € D(S2) such that v > 0, / uAvdx < 0.

The function u is subharmgnic if —u is superharmonic.

The function u is harmonic if for every v € D(52), / uAvdx = 0.

2
We extend Lemma 8.1.3 to locally integrable functions.

1
loc

Theorem 8.1.5 (Mean-Value Inequality) Letu € L
ties are equivalent:

(£2). The following proper-

(a) u is superharmonic;
(b) for almost all x € 2 and forall0 <r < d(x,082), M(x,r) < u(x).

Proof Letu, = p, * u. Property (a) is equivalent to
(c) forevery n, Au, < 0on £2,.

Property (b) is equivalent to

(d) forall x € £2, andforall 0 < r < d(x, 082,), VIQI/ uy(x +ry)dy < u,(x).
By
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We conclude the proof using Lemma 8.1.3.

(a) = (c). By Proposition 4.3.6, we have on £2,, that
Ay (x) = Apy * u(x) = / (Apa(x = y))u(y)dy < 0.
2

(c) = (a). It follows from the regularization theorem that for every v € D(£2),
v>0,

f uAvdx = lim u,Avdx = lim / (Auy)vdx < 0.
0 n—>0o0o 0

n—o0 Q

(b) = (d). We have on £2,, that

V,;‘/ Uy (x +ry)dy = Vﬁ‘/ dz/ Pn(Du(x +ry — z2)dy
By B(.1/n)  JBy

< / on(DQu(x — 2)dz = u,(x).
B(0,1/n)

(d) = (b). For j > 1, we define

wj={x€2:dx,08)>1/jand |x| < j}.

Proposition 4.2.10 and the regularization theorem imply the existence of a sub-
sequence (u,,) converging to u in L' (w ;) and almost everywhere on w;. Hence

for almost all x € w; and for all 0 < r < d(x,0w;), M(x,r) < u(x). Since
o

2= Ua)j, property (b) is satisfied. O
j=1

Theorem 8.1.6 (Maximum Principle) Let $2 be an open connected subset of RN

andu € Llloc(.Q) a superharmonic function such that u > 0 almost everywhere on

§2 and u = 0 on a subset of §2 with positive measure. Then u = 0 almost everywhere
on §2.

Proof Define

Ui = {x € 2 : there exists 0 < r < d(x, 9§2) such that M (x, r) = 0}.
Uy = {x € 2 : there exists 0 < r < d(x, 9§2) such that M (x, r) > 0}.

It is clear that U; and U, are open subsets of §2 such that £2 = U; U U,. By the
preceding theorem, we obtain
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Uy={xe R :forall0 <r <d(x,08), M(x,r) > 0},
so that Uy and U, are disjoint. If £2 = U,, then u > 0 almost everywhere on £2 by

the preceding theorem. We conclude that £2 = Uj and # = 0 almost everywhere
on £2. |

8.2 Eigenfunctions

En nous servant de quelques conceptions de I’analyse
fonctionnelle nous représentons notre probleme dans une forme
nouvelle et démontrons que dans cette forme le probleme admet
toujours une solution unique.

Si la solution cherchée existe dans le sens classique, alors notre
solution se confond avec celle-ci.

S.L. Sobolev

Let £2 be a smooth bounded open subset of RY with frontier I". An eigenfunction
corresponding to the eigenvalue A is a nonzero solution of the problem

—Au = A in £2,
{ u u i @)

u=~0 on .

We will use the following weak formulation of problem (#): find u € HOl (£2)
such that for all v € HO1 (£2),

/VLPVUdX:X/ uv dx.
2 2

Theorem 8.2.1 There exist an unbounded sequence of eigenvalues of (P)
O<Ar=hp=<--,

and a sequence of corresponding eigenfunctions that is a Hilbert basis of H& (£2).

Proof On the space H(} (£2), we define the inner product
a(u,v) = / Vu-Vovdx
2

and the corresponding norm ||u||, = a(u, u).
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For every u € Hé (£2), there exists one and only one Au € HOl (£2) such that for
allv € H} (2),

a(Au,v) = / uv dx.
2
Hence problem (%) is equivalent to
A = Au.

Since a(Au, u) = f u’dx, the eigenvalues of A are strictly positive. The operator
2
A is symmetric, since

a(Au,v) = / uv dx = a(u, Av).
2
It follows from the Cauchy—Schwarz and Poincaré inequalities that

I Aull =/ u Audx < |lullp2g)l|Aull2(@) < cllull 2@yl lAulla-
2

Hence
Aulla < cllullp2p)-

By the Rellich-Kondrachov theorem, the embedding H (£2) — L?($2) is compact,
so that the operator A is compact. We conclude using Theorem 3.4.8. O

Proposition 8.2.2 (Poincaré’s Principle) For everyn > 1,

An:min{/ |Vu|2dx:ueH(}(Q),/ uzdle,/ ueldx:...:f uen_ldx:O}.
2 2 2 2

Proof We deduce from Theorem 3.4.7 that

1 {a(Au,u). . L _}
L, =max|——— :u € Hy(2),u #0,a(u,e;) =...=au,e,—1) =0¢.
a(u, u)

Since ey is an eigenfunction,

a(u,er) =0« / uerdx = 0.
2
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Hence we obtain

a7l Jo 1dx H () 750/ d / dx =0
=max{-———“———:uc Ju , | ueydx=...= | uep,_1dx=0¢,
n o IVuldx 0 a2 e !
or
| Jo 1VulPax |
An = min 72:146H0(.Q),u7$0,/ueldx=...:/uen_1dx=0 .0
o u-dx 2 2

Proposition 8.2.3 Leru € Hé (£2) be such that ||ull, = 1 and ||Vu||% = A1. Then
u is an eigenfunction corresponding to the eigenvalue A1.

Proof Letv € HO1 (£2). The function

g(e) = [IV(u + ev)|3 — Allu + evl|3

reaches its minimum at ¢ = 0. Hence g’(0) = 0 and

/Vu-Vvdx—)q/uvdxzo. a
Q Q

Proposition 8.2.4 Let 2 be a smooth bounded open connected subset of RN. Then
the eigenvalue A1 of (P) is simple, and ey is almost everywhere strictly positive
on 2.

Proof Let u be an eigenfunction corresponding to A; and such that |[u|l, = 1.
By Corollary 6.1.14, v = |u| € H}(£2) and [|Vv||3 = [|[Vu||} = Aj. Since
[lvll2 = |lull2 = 1, the preceding proposition implies that v is an eigenfunction

corresponding to A;. Assume that u™ # 0. Then u™ is an eigenfunction correspond-

ing to A, and by the maximum principle, ™ > 0 almost everywhere on £2. Hence
u=ut. Similarly, if u~ # 0, then —u = u~ > 0 almost everywhere on £2. We
can assume that e; > 0 almost everywhere on 2. If e; corresponds to A1, then e; is

either positive or negative, and / e1exdx = 0. This is a contradiction. O
2

Example Let 2 = ]0, m[. Then ($) becomes

—u” =Xy in]0, x|,
u(0) = u(r) = 0.

Sobolev’s embedding theorem and the du Bois—Reymond lemma imply that u €
C2(]O, 7[) NC([0, 7]). Hence A,, = n? and e, = \/EM The sequence (e;,) is a

/g n
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T
Hilbert basis on HO1 (10, 7 [) with scalar product / u'v' dx, and the sequence (ne,)
0

T
is a Hilbert basis of L2(]0, 7[) with scalar product / uvdx.
0

Definition 8.2.5 Let G be a subgroup of the orthogonal group O(N). The open
subset 2 of RV is G-invariant if for every g € G and every x € £, g~ 'x € £2. Let
§2 be G-invariant. The action of G on HO1 (£2) is defined by gu(x) = u(g~'x). The
space of fixed points of G is defined by

Fix(G) ={u € HOI(.Q) :forevery g € G, gu = u}.
A function J : HO1 (£2) — Ris G-invariant if forevery g € G, Jo g = J.

Proposition 8.2.6 Let 2 be a G-invariant open subset of RN satisfying the
assumptions of Proposition 8.2.4. Then e € Fix(G).

Proof By a direct computation, we obtain, for all g € G,
llgeill2 = llerlla = L, IVgeill; = [IVerll3 = 1.
Propositions 8.2.3 and 8.2.4 imply the existence of a scalar A(g) such that
e1(g7'x) = Agler (x).

Integrating on £2, we obtain A(g) = 1. But then ge; = e;. Since g € G is arbitrary,
e € Fix(G). |

Example (Symmetry of the First Eigenfunction) For a ball or an annulus
R={xeR":r<|x| <R},

we choose G = O(N). Hence e is a radial function.

We define v(]x|) = u(x). By a simple computation, we have

92 ” x,% , 1 x,%
—u(x) = v (|x]) + v (Ix]) —= -

ox2 [x|? [EEE
Hence we obtain
Au=v" 4+ (N — Dv'/|x|.

Let 2 = B(0, 1) c R3. The first eigenfunction, u(x) = v(|x]), is a solution of
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v =20 /r = Av.

The function w = rv satisfies

so that
w(r) = asin(v/Ar — b)
and

sin(v/Ar — b)
v(r) = af.

Since u € HJ(2) C L%(82), b = 0 and A = 7. Finally, we obtain

() = a sin(7r |x])
x|

It follows from Poincaré’s principle that
72 = min {||vu||iz(m/||u||iz(m tu € Hy(2)\ {0}} .

Let us characterize the eigenvalues without using the eigenfunctions.
Theorem 8.2.7 (Max-inf Principle) For everyn > 1,
An = max inf f [Vul?dx,

VE(V,,,1 uevl 2
llull ;2 =1

where V,_1 denotes the family of all (n — 1)-dimensional subspaces of HO1 (£2).

Proof Let us denote by A, the second member of the preceding equality. It follows
from Poincaré’s principle that A,, < A,,.
Let V € V,_;. Since the codimension of V= is equal to n — 1, there exists

n
x € RV \ {0} such that u = » "xje; € V. Since
j=1

n
/ |Vu|2dx ZZ)‘jsz'/ e?dx gkn/ u*dx,
2 i Q Q

we obtain
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inf |Vul?dx < hy.
uevLl
llull 2 =1
Since V € V,_; is arbitrary, we conclude that A, < A,,. O

8.3 Symmetrization

La considération systématique des ensembles Ela < f < b]
m’a été pratiquement utile parce qu’elle m’a toujours forcé a
grouper les conditions donnant des effets voisins.

Henri Lebesgue

PO+ BT

\L \1\\‘\

Fig. 8.1 Isodiametric inequality

According to the isodiametric inequality in R?, among all domains with a fixed
diameter, the disk has the largest area. A simple proof was given by J.E. Littlewood
in 1953 in A Mathematician’s Miscellany. We can assume that the domain £2 is
convex and that the horizontal axis is tangent to §2 at the origin. We obtain

_ 1 L 2 T 2
A—E/O o0+ " (04 T) db <22y

We will prove the isoperimetric inequality in RN using Schwarz’s symmetriza-
tion.
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In this section, we consider Lebesgue’s measure on RN . We define

Ky (RY) = (u e KRY) : forall x € RV, u(x) > 0},
LE@®N) = {u € LP(RV) : for almost all u(x) > 0},
WP @Yy = whr@®N) 0 L ®RY),
BVL([RY) = BV@RY) N LL®RM).

Definition 8.3.1 Schwarz’s symmetrization of a measurable subset A of R¥ is
defined by A* = {x € RV : |x|YVy < m(A)}. An admissible function u : RY —
[0, 400] is a measurable function such that forall > 0, m, (t) = m({u > t}) < oo.
Schwarz’s symmetrization of an admissible function  is defined on RY by

u*(x) =sup{t e R: x € {u > t}*}.

The following properties are clear:

(@) xax = X1

(b) m(A*\ B*) =m(A\ B);

(c) u*isradially decreasing, |x| < |y| = u*(x) > u*(y);

(d) u <v=u* <v*

Lemma 8.3.2 Let (A,) be an increasing sequence of measurable sets. Then
00 00 *

U A¥ = ( An> )

n=1
o0 *
Proof By definition, AY = B(0,ry,), (U A,,) = B(0,r), where r,I,VVN =
n=1

o0
m(A,), r¥vy = m(U A,,). It suffices to observe that by Proposition 2.2.26,

n=1
o0
m (U An> = lim m(Ap). O

n=1

Theorem 8.3.3 Let u be an admissible function. Then u* is lower semicontinuous,
and forallt > 0, {u > t}* = {u* > t} and m, (t) = m,=(t).

Proof Lett > 0. Using the preceding lemma, we obtain

(u>1}*= <U{u > s}) = U{u >sf c{ut >t} C{u>t)*.

s>t s>t

In particular, {u* > ¢t} is open and m{u > t} = m{u* > t}. O
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Proposition 8.3.4 Let 1 < p < coand u,v € LY (RY). Then u*, v* € LY (RV)
and

N [1p = Nullp, Hu™ = v*|lp < llu = vllp.

Proof Using Cavalieri’s principle and the preceding theorem, we obtain

o o
U = [ e = [ ode = 11,

Assume that p > 2, and define g(¢) = [¢|?, so that g is convex, even, of class
C?, and g(0) = g’(0) = 0. For a < b, the fundamental theorem of calculus implies

that
b b
glb—a) = / ds/ g’ (t —s)dt.
a N

Hence we have that
glu—v) = / dS/ g7t =) [ xu=1y(1 = xpo=s}) + Xpw>r1(1 = Xpu=s))] dt.

Integrating on RY and using Fubini’s theorem, we find that

/ gu—v)dx = /oods /oog”(t—s)[m({u > tN\{v > sP+m{v > t)\{u > s})]dt
RN 0 s

Finally, we obtain

/ g —v¥dx < / g(u —v)dx.
RN RN

If 1 < p < 2, it suffices to approximate || by gz (t) = (t> + £2)P/> — P, ¢ > 0.
O

Approximating Schwarz’s symmetrizations by polarizations, we will prove that

ifu € WPP(RY), then u* € WP (RY) and || Vu*||, < [|Vul|,.

Definition 8.3.5 Let oy be the reflection with respect to the frontier of a closed
affine half-space H of RY. The polarization (with respect to H) of a function u :
RY — R is defined by

uf (x) = max{u(x), u(oy (x))}, x¢€H,
= min{u(x), u(og(x))}, xeRN\H.
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The polarization A of A ¢ RY is defined by x v = x f . We denote by H the
family of all closed affine half-spaces of R" containing 0.

Let us recall that a closed affine half-space of R" is defined by
H:{xeRN:a-be},
where a € S~ and b € R. It is clear that
og(x)=x+4+2(b —a-x)a.

The following properties are easy to prove:
(a) if A is a measurable subset of RV, then m(AH) = m(A);
®) {u >t} ={u > 1},
(c) if u is admissible, (u)* = u*;
(d) if moreover, H € H, (u*) = u*.
Lemma 8.3.6 Let f : R — R be convex anda < b, c < d. Then
f—=d)+ fla—c) < fla—d)+ f(b—o).

Proof Definex =b—d,y =b —a,and z = d — c. By convexity, we have

fO—fx=—»=f&x+2)—-fx+z-y). O

Proposition 8.3.7 Let 1 < p < oo and u,v € LP(RN). Then uf, v e LP(RY),
and

H

H H
Nu™lp = lullp, [u™ =07, < [lu—vllp.

Proof Observe that

/ |u(x)|Pdx =/ luC)I” + lu(on (x))|Pdx
RN H

= / ™ @)1P + u™ (o (x))Pdx = / ju™ ()P dx.
H RN
Using the preceding lemma, it is easy to verify that for all x € H,

luf (x) — v ()P + [ul (op (x)) — v (oh (x))|P
< ux) —vX)|? + lu(oa(x)) — viog (x))|?.

It suffices then to integrate over H. O
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Lemma 8.3.8 Let u : RN — R be a uniformly continuous function. Then the
functionu® : RN — R is uniformly continuous, and for all § > 0, w,1(8) < wy(5).

Proof Let § > 0 and x,y € RY be such that |x — y| < 8. If x,y € H orif
x,y € RN\ H, we have

lor (x) —on(y)| = |x —y[ <6
and
" (x) — uf ()] < max(Ju(x) — u), u(on ) — ulon () < wu6).
If x € Hand y € RY \ H, we have
lx —on(| =loux) =yl <log(x) —ou(y)| = |x —y| <6
and

luf? (x) — uf (y)| < max(Ju(x) — u(op ()|, lulonx)) —u@)l,
lu(op (x)) —ulog (), [u(x) —u@)) < w,(d).

We conclude that

wn(®) = sup |uf(x) —uf ()| < 0, (8). O
[x—y|=<8

Lemma83.9 Ler1 < p < oo, u € LP(RY), and H € H. Define g(x) = e~ .

Then
/ ug dx < / uflg dx. (%)
RN RN
If, moreover, 0 eI; and
/ ug dx = / qu dx, ()
RN RN
then ufl = u.

Proof For all x € H, we have

u(x)g(x) + u(op (x)glon(x) < u ()gx) +u (o (x))glon(x)).

It suffices then to integrate over H to prove ().
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If (s) holds, we obtain, almost everywhere on H,
u(x)g(x) + u(on (x))gon (x)) = u™ ()g(x) + u™ (on (x))g(on (x)).
If0 € F7, then g(op (x)) < g(x) for all x €1, so that
u(x) = u™ @), u(op(x)) = u (o (x)). O

Lemma 8.3.10 Let u € LP(RN) N CERM1 < p < 00) be such that, for all
HeH u? =u. Thenu > 0and u = u*.

Proof Let x, y € RY be such that x # y and |x| < |y|. There exists H € H such
that x € H and y = oy (x). By assumption, we have

u(y) = uH(y) < uH(x) = u(x).
Hence
x| < |yl = u(y) < u(x).

We conclude that there exists a (continuous) decreasing function v : [0, +oo[— R
such that #(x) = v(|x]). Since u € L?(RY), it is clear that

lim v(r) =0.
r——+00

Hence u > O and for all t > 0, {u > t} = {u™* > t}, so that u = u*. O

Consider a sequence of closed affine half-spaces
H,={xeR" :q, x <by)

such that ((a,, b,)) is dense in S¥~1x 10, 4+o0].
The following result is due to J. Van Schaftingen.
Theorem 8.3.11 Let 1 < p < co andu € LY (RN). Define
uo =u,

Hy.oHypst
Up4+1 = Up B

Then the sequence (u,,) converges to u* in LP (RM).

Proof Assume that u € K (RY). There exists » > 0 such that spt u C B[O, r].
Hence for all n,

sptu, C B[O, r].
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The sequence (u,) is precompact in C(B[0, r]) by Ascoli’s theorem, since

(a) forevery n, [lunlloo = |lt]loo}
(b) forevery e > 0, there exists 6 > 0, such that for every n, w,,(§) < w,(8) < e.

Assume that (u,, ) converges uniformly to v. Observe that
sptv C B[O, r].
We shall prove that v = u*. Since by Proposition 8.3.4,
lu* = v*lh = [luy, — vl < llug, —vlh > 0, &k — oo,
it suffices to prove that v = v*.

Let m > 1. For every ny > m, we have

Hi...Hy...H,

_ k1
Unppy = Ung .

Lemma 8.3.9 implies that

ufl“'H’"g dx < Up, 8 dx.
RV K RV

It follows from Proposition 8.3.7 that

f le“'H’”gde/ vg dx.
RN RV

By Lemma 8.3.9, v = v, and by induction, v =y,

Leta € S "L b > 0, and H = {x € RY :g.x < b}. There exists
a sequence (ny) such that (a,,,b,) — (a,b). We deduce from Lebesgue’s
dominated convergence theorem that

H -l = ||vH —UH"k||1 — 0, k— oo

v
Hence for all H € H, v = v’. Lemma 8.3.10 ensures that v = v*.
Let u € LY(RY) and ¢ > 0. The density theorem implies the existence of
w € KL (RY) such that ||ju — w]| p < &. By the preceding step, the sequence

wo = w,
Hi..H, 11
Wyl =w, T,

converges to w* in L”(R"). Hence there exists m such that for n > m, ||w, —
w*||, < &. It follows from Propositions 8.3.4 and 8.3.7 that for n > m,
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Hutn —u*llp < |lttn = wallp + llwn —w*|], +lw* —u*|], <2l|lu—wll,+e < 3e.
Since ¢ > 0 is arbitrary, the proof is complete. O

Proposition 8.3.12 Let 1 < p < co andu € WHP(RYN). Then ufl € whH-r(RV)
and ||Vu® ||, = ||Vul|p.

Proof Define v = u o oy. Observe that

H 1(—i—)-i-ll |, onH
u? = —(u+v)+ —lu—v|, ,
2 2

1(+) 1| | RN\ H
== ——|lu—v|, on .
2Lt v 214

Since the trace of |u — v| is equal to 0 on dH, u? ¢ WLP(RN). Let x € H.
Corollary 6.1.14 implies that for u(x) > v(x),

Vul (x) = Vu(x), Vu (o4 (x)) = Vulon (x)),
and for u(x) < v(x),

Vull (x) = Vox), Vull (o (x)) = Vu(og (x)).
We conclude that on H,

IVuf? ()7 + |Vul (0n ()P = [Vux)|P + |Vu(on (x))|P. O

Proposition 8.3.13 Leru € BV(RN). Thenu® € BV (RN) and ||Du®|| < ||Dul]|.

Proof Let u,, = p, * u. Propositions 4.3.14 and 8.3.7 imply that u, — u and
uf — u in L'(R"). Theorem 7.3.3 and Proposition 8.3.12 ensure that

1D, 1| = IVu! 11 = [ Vunl|1.
We conclude by Theorem 7.3.2 and Lemma 7.3.6 that

[IDu’?|] < lim ||Duf || = lim || Vu,||1 = ||Dull. O

Theorem 8.3.14 (Polya—Szegd Inequality) Ler 1 < p < co and u € WP (RV),

Then u* € WL”(RN) and ||Vu*|], < ||Vull,.

Proof The sequence (u,) given by Theorem 8.3.11 converges to u* in L”(RV). By
Proposition 8.3.12, for every n, ||[Vu,||p = [|[Vullp. It follows from Theorem 6.1.7
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that
[IVu*||p < im||Vugll, = [|Vull,. o

Theorem 8.3.15 (Hilden’s Inequality, 1976) Let u € BV, (RM). Then u* €
BV, (RN) and || Du*|| < ||Dul].

Proof The sequence (u,) given by Theorem 8.3.11 converges to u™ in L " (RM). By
Proposition 8.3.13, for every n,

[|1Dupt1ll < [|1Duyll < [IDull.
It follows from Theorem 7.3.2 that
[|Du*|| < lim||Duy,|| < ||Dul]|. o

Theorem 8.3.16 (De Giorgi’s Isoperimetric Inequality) Let N > 2, and let A be
a measurable subset of RN with finite measure. Then

NV N (A=Y < p(A).

Proof If p(A) = 400, the inequality is clear. If this is not the case, then x4 €
BV, (RM). By definition of Schwarz’s symmetrization,

A* = B(0,r), Vyr" = m(A).
Theorems 7.4.1 and 8.3.15 imply that
NVNr¥=t = p(A") = [IDxasllpy = [IDx]Iey < [1Dxallpy = p(A).

It is easy to conclude the proof. O

Using scaling invariance, we obtain the following version of the isoperimetric
inequality.

Corollary 8.3.17 Let A be a measurable subset of RN with finite measure, and let
B be an open ball of RN. Then

p(B)/m(B)' VN < p(A)/m(A)!~VN,

The constant N Vl\l/ N, corresponding to the characteristic function of a ball, is the
optimal constant for the Gagliardo—Nirenberg inequality.
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Theorem 8.3.18 Let N > 2 and u € LN/~ sych that ||Du|| < 4+00. Then
1/N
NV ullvyv—1) < ||Dul|.

Proof

(a) Let p=N/(N —1),v e LP(RV), v > 0,and g € L RN). If ||g||» = 1, we
deduce from Fubini’s theorem and Holder’s inequality that

o0 o0 o0
/ gudx :/ dxf gXv>rdt =/ dt/ gXv>rdx 5/ m({v > tHPdz.
RN RN 0 0 RN 0

Hence we obtain

o0
llv]], = max f gvdxf/ m({v > tHPdr. (%)
lgll, =1 Jr¥ 0

(b) Letu € D(£2). Using inequality (), the Morse—Sard theorem (Theorem 9.3.1),
the coarea formula (Theorem 9.3.3), and the isoperimetric inequality, we obtain

1/N 1/N -
NV Ml < NV U + 1]

o0 0
<nv/N [/ m({u > t}))V/Pdr +/ m({u < t})l/pdt]
0 —00

oo 0
5/ dt/ dy+/ dt/ dy :/ [Vuldx.
0 u=t —00 u=t RN

(c) By density, we obtain, for every u € ph! (RN ),
1/N
NV Ml < [1Vull1.
We conclude using Proposition 4.3.14 and Lemma 7.3.6. O

Definition 8.3.19 Let £2 be an open subset of RY. We define

3(@) = int {1Vl B/11ull3 : u € W52\ (0}]

Theorem 8.3.20 (Faber-Krahn Inequality) Ler 2 be an open subset of RN with
finite measure. Then A1(2*) < 11(£2).
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Proof Define Q(u) = ||Vull3/||ull3. Let u Wé’Z(.Q) \ {0} and v = |u|. By
Corollary 6.1.14, Q(v) = Q(u). Proposition 8.3.4 and the Pélya—Szegd inequality
imply that Q (v*) < Q(v). It is easy to verify that v* € WS’Z(Q*) \ {0}. Hence we
obtain

M(27) < Q") < 0(v) = Q).

Since u € W&’z(.Q) \ {0} is arbitrary, it is easy to conclude the proof. O

Using scaling invariance, we obtain the following version of the Faber—Krahn
inequality.

Corollary 8.3.21 Let 2 be an open subset of RN, and let B be an open ball of RV .
Then

M BYM(BYN < ri(2)m(2)¥N.

Remark Equality in the isoperimetric inequality or in the Faber—Krahn inequality is
achieved only when the corresponding domain is a ball.

8.4 Elementary Solutions

There exists no locally integrable function corresponding to the Dirac measure.

Definition 8.4.1 The Dirac measure is defined on K(R") by

(8, u) = u(0).

Definition 8.4.2 The elementary solutions of the Laplacian are defined on RV \ {0}
by

1 1
En(x) = — log —, =2,
2 x|
En(x) - L N>3
X) = 5 ol
N (N —2)NVy |x|N-2

Theorem 8.4.3 Let N > 2. In D*(RN), we have
_AEy =36.

Proof Define v(x) = w(|x]). Since
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Av=w"+ (N — Dw'/|x|,

it is easy to verify that on R¥\{0}, AEy = 0. It is clear that Ey € LIOC(RN).
Let u € D(RY) and R > 0 be such that spt u C B(0, R). We have to verify that

—u(0) =/ EnAu dx = lim EnAu dx.
RN >0 Je<|x|<R
We obtain using the divergence theorem that

f(e) :/ (EyAu — uAEy) dx :/ <uVEN Y Eyvu- Y |> dy.
e<|x|<R B(0,¢) ly| ly

By a simple computation,

/ VEy -1 =—1, lim Endy =0,
3B(0,5) ly1 e=0J3B(0,¢)

so that lim f(g) = —u(0). |
e—0

Definition 8.4.4 Let f, g € D*(£2). By definition, f < g if for every u € D(£2)
such thatu > 0, (f, u) < (g, u).

Theorem 8.4.5 (Kato’s Inequality) Lerg € L!
Then

(82) be such that Ag € L; (£2).

loc loc

(sgn g) Ag < Algl.
Proof Letu € D(S2) and @ CC £2 be such that u > 0 and spt © C w. Define
gn = ppx g, and for e > 0, fo(t) = (12 + €2)1/2. Since g, — g in L' (w), we can
assume, passing if necessary to a subsequence, that g, — g almost everywhere on

w.
For all ¢ > 0 and for n large enough, we have

/ fg/(gn)(Agn)“ dx f/(Afs(gn))u dx:/ Sfe(gn)Au dx.
2 2 22

When n — oo, we find that

/ (@) (Aghu dx < / fo(g) Au dx.
2 2

When ¢ | 0, we obtain
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/(sgng)(Ag)u dxf/ |g| Au dx. O
2 2

8.5 Comments

The notion of polarization of sets appeared in 1952, in a paper by Wolontis [87].
Polarizations of functions were first used by Baernstein and Taylor to approximate
symmetrization of functions on the sphere in the remarkable paper [3]. The
explicit approximation of Schwarz’s symmetrization by polarizations is due to Van
Schaftingen [84]. See [73, 85] for other aspects of polarizations. The proof of
Proposition 8.3.4 uses a device of Alberti [2]. The notion of symmetrization, and
more generally, the use of reflections to prove symmetry, goes back to Jakob Steiner
[79].

The elegant proof of Theorem 8.3.18 is due to O.S. Rothaus, J. Funct. Anal. 64
(1985) 296-313.

8.6 Exercises for Chap. 8
1. Letu € C(£2). The spherical means of u are defined on D by
S(x,r) = (NVN)_I/ u(x + ro)do.
SN-1
Verify that when u € C3(2),
. 2N
lim —[S(x,r) —u(x)] = Au(x).

rl0 r2

2. Let u € C(£2) be such that for every (x,r) € D, u(x) = M(x,r). Then for
every X € §2,, pp *x U = u.
The argument is due to A. Ponce:

p  u(x) = / pux — Yu(y)dy = / dr / u(y)dy
RN 0 px—y)>t

= u(x)/ dt/ dy = u(x).
0 px—y)>t

3. (Weyl’s theorem.) Let u € Llloc(.Q). The following properties are equivalent:

(a) wu is harmonic;
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(b) for almostall x € £2 and forall0 < r < d(x,08),u(x) = M(x,r);
(c) there exists v € C*°(£2), almost everywhere equal to u, such that Av = 0.

. Let u € C%(£2) be a harmonic function. Assume that u > 0 on B[0, R] C £2.

Then for every 0 < r < R and |y| < R — r, we have

lu(y) —u0)| =

1 /
u(x)dx
INVN r—lyl<lx|<r+ly|

N _ (. N
=(r+|y|) rN(V (h4)) 1(0).

Hint: Use the mean-value property.

. (Liouville’s theorem.) Let u € C*°(RY) be a harmonic function, bounded from

below on RY. Then u is constant.
Let £2 be an open connected subset of RY, and let u € C°°(£2) be a harmonic
function such that for some x € 2, u(x) = igf u. Then u is constant.

2 T
— uldx =/
0

min / ‘_u dx =
0

ueHO] 10,7D)
[lullp=1

. Ifu € D0, 7[), then

du 2

dx

du  cosx

dx sin x

u X.

r

Hence

. (Min—-max principle.) For every n > 1,

Ay, = min max f |Vu|2dx,
Q

ueV
VE(V,, llullp=1

where V,, denotes the family of all n-dimensional subspaces of HOl (£2).
Let us recall that

2(G) = inf {IVul B/11ull3 : u € Wy (G) \ (0}

Let £2 be an open subset of RM, and w an open subset of RY . Then:
(@) A(£2 x ©) =11(£2) + 11 (0);

(b) 11 (RY) =0;

(©) A2 x RN) = 2;(£2).
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10.

11.

12.

13.

14.

15.
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Define u € Z)+(RN) such that for every y € RN, Tyu #u*,andfor 1 < p <
00, [|Vullp = ||Vu*||,. Hint: Consider two functions v and w such that v = v*,
w = w* v=1onB(0,1),and spt w C B[O, 1/2], and define u = v + t,w.

(Hardy-Littlewood inequality.) Let 1 < p < oo, u € L[J;(RN ), and v €

L” (RM). Then
/ uvdx < / u*v*dx.
RN RN

Letl <p<ocandu,v € Li(RN).Then
llu 4 vllp < |Ju™ 4 v*[],.

Hint: Assume first that p > 1. Observe that

[lu +v|lp, = sup / (u~+v)wdx.
weLV/ RN
lwll

Let £2 be a domain in RY invariant under rotations. A function u : 2 — R is
foliated Schwarz’s symmetric with respect to e € S¥ ! if u(x) depends only on
(r,0) = (|x|, cos_l(ﬁ - ¢)) and is decreasing in 6.

Let e € SV~!. We denote by H, the family of closed half-spaces H in R
suchthat0 € 9H ande € H.

Prove that a function # : 2 — R is foliated Schwarz’s symmetric with
respect to e if and only if for every H € H,, ufl = u.
Letu € LP(RV)(1 < p < 00), and let the closed affine half-space H c RY
be such that u” = u. Then, for everyn > 1, (p, * u)H = pp *U.
Hint. For every x, y € H, we have

Ix =yl = lon(x) —ouWM| = [x —ou(®)|= |oux) -yl

Hence we obtain, for every x € H,
on * u(x) — pp x u(op (x))
= /H[u(y) - M(UH()’))] [on(x = ¥) = pu(on (x) — y)]dy > 0.

Letu € LP(RV)(1 < p < 00) be such that, for all H € H, uf’ = u. Then
u>0and u = u*.



Chapter 9 ®
Appendix: Topics in Calculus Qe

9.1 Change of Variables

Our basic tool in this appendix is the following version of the implicit function
theorem.

Theorem 9.1.1 Let U be an open subset of]RN, NS CY\(U), anda = (d',an) € U
such that Oy (a) # 0. Then there existr > 0, R > 0 and

gecC! (Bd', R)x1p(a) —r, ¢(a) + r[)
such that, for |x’ —a’| < R, |t — ¢(a)| < r, we have
g, xy) =1 = xy = B, 1),
and the set
Us = {(', B 1) s ¥ —d'| < R, [t —g(a)| <1}
is an open neighborhood of a.

Definition 9.1.2 Let U and o be open subsets of R . A diffeomorphism f : U —
w is a continuously differentiable bijective mapping such that, for every x € U,

Jf(x) = det Df (x) # 0.

Theorem 9.1.3 Let f : U — w be a diffeomorphism and u € K(w). Then u(f) €
K(U) and
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/U u( £ )7 (O)ldx = f u(dy. ()

Lemma 9.1.4 Formula (%) is valid when N = 1.

Proof We can assume that U =l]a, b[. Then by the fundamental theorem of
calculus, we have

b f(b)
/ u(f () Df ()dx = /f O

If Df > 0, then w =]f(a), f(B)[. If Df < 0, then w =]f(b), f(a)[. Hence
formula (x) is valid. |

Proof of Theorem 9.1.3 We will use induction on N. By Lemma 9.1.4, formula
(x) is valid when N = 1. Assume that (x) is valid in dimension N — 1. Leta € U.
Since f is a diffeomorphism, V f (a) # 0. After a permutation of variables, we can
assume that dy fx(a) # 0.Letr > 0, R > 0, 8, and U, be given by Theorem 9.1.1
applied to ¢ = fn. We factorize f = (f', fy) as f = h(g) on U, by

g’ xn) = (X, fn (' xn) h(x' 1) = (D), 1),
where @, (x") = f'(x', B(x', 1)).

We assume that u € K(f(U,)). Since f = h(g) on U,, we have that Df =
Dh(g)Dg and Jy = J(g)Jg. We define v = u(h)|J], so that

/ u(f )y (x)|dx = /u(h(g(x)))lfh(g(X))l |Jg (x)]dx

a

= /v(g(X))IJg(X)Idx-

Fubini’s theorem and Lemma 9.1.4 imply that

/v(g(X))IJg(X)Idx =/dx/fv(x/, v xm)) 19N fv (', x) ldxy

:/dx’/v(x’,t)dt

= /u(h(x/, D) Jp(x', 1)|dx'dr.

It follows from Fubini’s theorem and the induction assumption that
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fu(h(x/,t))|Jh(x’,t)|dx'dt = /dt/u(@,,x/),t)|J¢[(x/)|dx/

:fdt/u(y’,t)dy’
=/ u(y)dy.
fWUa)

Hence formula (x) is valid when u € K(f (Uy,)).

Let u € K(w). The Borel-Lebesgue theorem implies the existence of a finite
covering of the compact set £~ ! (spt u) by open subsets (U, ;) given by the implicit
function theorem as before. There exists also a continuous partition of unity (y;)

subordinate to the covering of sptu by (f(Uy;)). Since u = Z Yju, it is easy

J
to conclude the proof. O

9.2 Surface Integrals

In this section, we assume that U is an open subset of RV uecC 1(U ), and f €
K(U). Our goal is to prove that, under some assumptions,

/ f(X)IVM(x)IdX=/df/ fydy, ()
U R u=t

%/u« J)IVulx)ldx = /u:t fdy, (k)
where
u<t)y={u<t)={xelU:ulkx) <t}
and

w=0)=u=ty={y el uly)=1.

Definition 9.2.1 Let ¢ € U be such that Vu(a) # 0. After a permutation of
variables, we can assume that dyu(a) # 0. Letr > 0, R > 0, 8, and U, be given
by Theorem 9.1.1 applied to ¢ = u. Let f € K(U,). We define for |t — u(a)| < r,

/ Fody = / £ B D)1+ 1V B, DPd .
u=t B(a',R)
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Lemma 9.2.2 Let f € K(U,). Then we have that

u(a)+r
/ FOOIVu)dx = / di / FOdy.
U, u(a)—r u=t

Moreover formula (xx) is valid for |t — u(a)| < r.

Proof We define the change of variables h(x’, r) = (x’, B(x', 1)), and we choose
u(la@)—r <b<c=<ula)+r.

We obtain, using Theorem 9.1.3 and Fubini’s theorem, that
C
[ rwmuelar= [Car [ e o)’ sl )] el
b<u<c b B(a',R)

Since, by definition, u(x’, B8(x’, 1)) = ¢, it follows that
Veu(x', B, 1) + onu(x', BGx" + 1)) Ve B(x', 1) =0,
avu(x', B, ) B 1) =1
and
/ / 2 / 2 , 2
|Vux', B, 0| [ B, )| =1+ |V B D).

Hence we obtain

/ ) Vu)ldx = / dr / £ B D1+ 190BG Pdx
b<u<c b B(da',R)
zf dt[ fdy.
b u=t

In particular, for | — u(a)| < r, the fundamental theorem of calculus implies that

lim 1 f f)|Vulx)|ldx =
t<u<t+e

€l0 €

1
fydy = limf/ F(x)|Vu(x)|ldx.0
€l0 €

u=t t—e<u<t

Definition 9.2.3 A regular value of u € CH(U) is a real number ¢ such that

x € Uand u(x) =c = Vu(x) # 0.

Definition 9.2.4 Let f € K(U) and let ¢ be a regular value of u € C'(U). The
Borel-Lebesgue theorem implies the existence of a finite covering of the compact
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set spt f N {u = c} by open subsets (Uq;)1<j<k given by Definition 9.2.1. There
exists a continuous partition of unity (v;) subordinate to the covering (U, j)lf j<k-
By definition

k

| sy =3[ winsmar,

/:1 u=c
Let us prove that the surface integral / f(y)dy depends only on f, u, and c.
u=c

Theorem 9.2.5 Let f € K(U), and let ¢ be a regular value of u € C'(U). Then
formula (xx) is valid at t = c.

k
Proof Let us define g =1 — Z ¥ ;. Since Yo = 0 on a neighborhood of spt f N
j=1
{u = ¢}, it follows from Lemma 9.2.2 and Definition 9.2.4 that

d
dt

k
d
STk =3 S [ s

1=¢ Jy<t

k
=> | v fdy

j=17u=¢
=/_ fdy. =

Proposition 9.2.6 Let f € K(U), and letu € C'(U) be such that, for every x € U,
Vu(x) # 0. Then formula (*) is valid.

Proof The Borel-Lebesgue theorem implies the existence of a finite covering of the
compact set spt f* by open subsets (Ug,) given by Definition 9.2.1. There exists a
continuous partition of unity v; subordinate to the finite covering (Uy,). It follows
from Lemma 9.2.2 and Definition 9.2.4 that

[ ronvuwias =3 [ viorwivuclas
J aj

=Y [ar | wonroay
F R u=t

= [aX [ sy =[a [ ey
R ; u=t R u=t
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9.3 The Morse-Sard Theorem

The Morse—Sard theorem ensures that almost all values of a smooth function are
regular.

Theorem 9.3.1 Let U be an open subset of RN, let u € C*(U), and define
Ci={xeU:Vu(x) =0}
Then Lebesgue’s measure of u(Cy) is equal to 0.
Lemma 9.3.2 Letu € CN1T\(U) and define
Cy ={xeU:for|a] <N, 3% (x) =0}.

Then Lebesgue’s measure of u(Cy) is equal to 0.

Proof Since U is covered by a countable family of closed cubes, it suffices to prove
that u(Cy N K) is negligible, where K = Boo[x,7/2] C U.

By definition of Cy, Taylor’s formula implies the existence of ¢ > 0 such that
foreveryx e Cy N K andevery y € K,

u) —u()| < cfx —y| ¥+

We divide K into 2/N cubes with edge r/ 2/. Then u(Cy N K) is contained in at
most 27V intervals of length 2¢(r/2/)N*!. We conclude that

m((Cy N K)) < 27N2c(r /2N T = 2erN ¥ 27 — 0, j — oo, O

Proof of Theorem 9.3.1 We will use induction on N. By Lemma 9.3.2, the theorem
is valid when N = 1.
Assume that the theorem is valid in dimension N — 1, and define

Ck = {x € U : forevery |a| <k, 0%u(x) = 0}.

By Lemma 9.3.2 it suffices to prove that u(Cy\Cr+1) is negligible for 1 < k <
N —1.

Leta € (Cx\Ck+1). By definition, there exista € NV and 1 < j < N such that
le| =k, 0%u(a) = 0, and 9;0%u(a) # 0. After a permutation of variables, we can
assume that dy0%u(a) # 0. Letr > 0, R > 0, 8, and U, be given by Theorem 9.1.1
applied to ¢ = 9%u. Since u € C*®°(U), it follows that 8 € C*°(B(a’, R)x]—r, r[).

Let us define v on B(a’, R) by v(x') = u(x’, B(x’,0)). It follows from the
induction assumption that
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m{v(x') : x' € B(a', R) and Vo(x") =0} =0 (%)

Let x € Cx N U,. Since, by definition, ¢(x) = 0%u(x) = 0 and Vu(x) = 0, we
obtain B(x’, 0) = xy and

v(x") = u(x’, B(x",0)) = u(x)
Vo) = Veu(x', B(x',0)) + dyu(x’, B(x', 0) Ve B(x', 0)
= Vou(x) + ovu(x)Vy (', 0) = 0.

We deduce from (%) that
m(u(Cr NUy)) = 0.
Let us define, forn > 1,
K, ={xeCr:dx,Cry1) = 1/n,d(x,0U) > 1/n,|x| < 1/n}.
The Borel-Lebesgue theorem implies the existence of a finite covering of the

compact set K, by open subsets (Ug;) satisfying m(u(Cx N Ug;)) = 0. It follows
that, forn > 1, m(u(K,)) = 0. We conclude that

m@@AQH»:mwoiKO)zﬁ a

The following theorem is a version of the coarea formula.

Theorem 9.3.3 Let U be an open subset of RV, let u € C*°(U), and let f € C(U)
be such that/ | f1Vuldx < oo. Then
U

/fmwwmwzfm/ FOdy.
U R u=t

Proof We define
C={xeU:Vulx) =0}
and
w, = {x eU:dx,C)>1/n,d(x,0U) > 1/nand |x| < n}

For every n > 1, there exists ¢, € D(w,+1) suchthat 0 < ¢, < 1 and ¢, = 1 on
wy.
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Proposition 9.2.6 implies that

/ fon|Vuldx = fon|Vuldx =/dtf fondy.
U Wn+1 R u

=t

Pp+1

If ¢ is a regular value of u, it is clear that

fondy =/ fondy.
=t u=t

(
Pn+1

Hence the Morse—Sard theorem implies that

f FoulVuldx = / dr [ Foudy,
U R u=t

where the surface integral is defined only when ¢ is a regular value of u. It follows
from the definition of ¢, that ¢, 1 X y\c. We can assume that f > 0. We conclude,
using Levi’s theorem, that

/f|Vu|dx: lim / fenlVuldx = lim /dt[ fgondy:/dt[ fdy.
U n—oo Ju = Jr u=t R u=t

O

9.4 The Divergence Theorem

An open subset of RV is smooth if its boundary is a smooth manifold.

Definition 9.4.1 Letm > 1. The open subset §2 of RY is of class C™ if there exists
¢ € C"™(RN) such that

() 2= {xeRN: 0(x) <o};

(b) F:BQ:HyERN:w(y)=O];
(c) foreveryy € I', Vo(y) # 0.

The exterior normal at y € I' is defined by
n(y) = Vo )/ |Vew)|.

The boundary integral is the elementary integral defined on K(R") by

/udy:/ udy.
r ¢=0
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Notation Let us define n: R — R by

n(m) =1, r=<-—1,
= —t, -1 <1t <0,
=0, t>0.

Lemma 9.4.2 Foreveryn > 1, we have that (p,*n) = —py*X1—1,0/, 0 < pp*n <
1, and 0 < p, * X1—1,0 < 1.

Proof Proposition 4.3.6 implies that, for every x € R,
(on %) (x) = / P (x = yIn()dy
R

1 0
= / pi/l(x —y)dy — / p,@(x —y)ydy
00 1

0
= _/lprz(x — y)dy.

Since 0 < n < 1, we obtain 0 < p, *n < p, * 1 = 1. The case of Xj_y o[ is
identical. O

Theorem 9.4.3 (Divergence Theorem) Ler 2 be an open subset of RN of class
C', and let v € C'(RY; RY) N K(RN; RN). Then

/ divvdx:/ v-ndy.
Q r

Proof Lemmas 6.1.1 and 9.4.2 imply that, for every ¢ > Oand n > 1,

, 1
/ pn *M(p/€) divvdx = —/ pn * X1—1,01(¢/€)Vep - v dx.
RN € JRN

Using the regularization theorem and Lebesgue’s dominated convergence theorem,
we obtain, for every € > 0,

. 1
[ nviodvvar== [ -iat/eve v
RN € JRN
Using again Lebesgue’s dominated convergence theorem and Theorem 9.2.5, we

conclude that

1 v
/ divvdx = lim/ n(p/€) divvdx = lim — U-V(pdx:/ V- ¢ dy. 0O
9<0 56;’8 RN 56;’8 € J_e<p<0 r 1Vel
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9.5 Comments

The proofs of Theorem 9.1.3, Lemma 9.2.2, and Theorem 9.3.1 depend only
on the implicit function theorem for one equation and one dependent variable
(Theorem 9.1.1). A direct proof of this result is given in the book of Krantz and
Parks on the implicit function theorem ([41], Theorem 3.2.1).

The change of variable formula for a double integral was discovered by L. Euler
(De formulis integralibus duplicatis, Novi Comm. acad. Scient. Petropolitanae, 14
(1769) 72-103). The proof consists in factorizing the change of variables leaving
one variable fixed and transforming the other. A more recent version is given in
Differential and Integral Calculus by R. Courant, vol. II, p. 247. The same book
contains the coarea formula (for regular values) under the name of resolution of
multiples integrals (p. 302).

The proof of the Morse—Sand theorem for smooth functions (Theorem 9.3.1) is
due to Milnor. The short proof of the divergence theorem in Sect. 9.4 was inspired
by Example 7.2, Chapter 3, in the book [40] by Krantz and Parks.



Chapter 10 ®
Epilogue: Historical Notes on Functional Qe
Analysis

Differentiae et summae sibi reciprocae sunt, hoc est summa
differentiarum seriei est seriei terminus, et differentia
summarum seriei est ipse seriei terminus, quorum illud ita
enuntio: [ dx aequ. x; hoc ita: d [ x aequ. x.

G. Leibniz

10.1 Integral Calculus

In a concise description of mathematical methods, Henri Lebesgue underlined the
importance of definitions and axioms (see [47]):

When a mathematician foresees, more or less clearly, a proposition, instead of having
recourse to experiment like the physicist, he seeks a logical proof. For him, logical
verification replaces experimental verification. In short, he does not seek to discover new
materials but tries to become aware of the richness that he already unconsciously possesses,
which is built in the definitions and axioms. Herein lies the supreme importance of these
definitions and axioms, which are indeed subjected logically only to the condition that they
be compatible, but which could lead only to a purely formal science, void of meaning, if
they had no relationship to reality.

Leibniz conceived integration as the reciprocal of differentiation:

[ax=a[x=x

The computation of the integral of f is reduced to the search for its primitive,
solution of the differential equation

F' =f.
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The textbooks by Cauchy, in particular the Analyse algébrique (1821) (see [7])
and the Résumé des lecons données a I’Ecole Royale Polytechnique sur le calcul
infinitésimal (1823), opened a new area in analysis. Cauchy was the first to consider
the problem of existence of primitives:

In integral calculus, it seemed necessary to me to demonstrate in general the existence of
integrals or primitive functions before giving their various properties. In order to reach this,
it was necessary to establish the notion of integral between two given limits or definite
integral.

Cauchy defines and proves the existence of the integral of continuous functions:

According to the preceding lecture, if one divides X — xo into infinitesimal elements x; —
X0, X2 —x1+++ X — x,_1, the sum

S = (x1 — x0) f(x0) + (x1 — x2) f(x1) + -+ + (X = xp—1) f (Xxn—1)

will converge to a limit given by the definite integral

X
/ f(x)dx.
X0

So Cauchy proved the existence of primitives of continuous functions using integral
calculus.

Though every continuous function has a primitive, Weierstrass proved in 1872
the existence of continuous nowhere differentiable functions. In a short note [44],
Lebesgue proved the existence of primitives of continuous functions without using
integral calculus. His proof is clearly functional-analytic.

In 1881 [37], Camille Jordan defined the functional space of functions of bounded
variation, which he called functions of limited oscillation. His goal was to linearize
Dirichlet’s condition for the convergence of Fourier series:

Letxy, ..., x, be a series of values of x between 0 and ¢, and y1, . .., y, the corresponding
values of f(x). The points xy, yi; ...; x5, ¥, will form a polygon.
Consider the differences

Y2 —=Y1,Y3 — Y2, ---3¥n — Yn—1-

We will call the sum of the positive terms of this sequence the positive oscillation of the
polygon; negative oscillation is the sum of the negative terms; fotal oscillation is the sum
of those two partial oscillations in absolute value.

Let us vary the polygon; two cases may occur:

1° The polygon may be chosen so that its oscillations exceed every limit.

2° For every chosen polygon, its positive and negative oscillations will be less than some
fixed limits P, and N.. We will say in that case that F(x) is a function of limited
oscillation in the interval from O to ; P, will be its positive oscillation; N, its negative
oscillation; P; + N, its total oscillation.
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This case will necessarily occur if F(x) is the difference of two finite functions f(x) —
@(x), because it is clear that the positive oscillation of the polygon will be = f(g) — f(0),
<
and its negative oscillation = ¢(g) — ¢(0).
<
The converse is easy to prove. Indeed, it is easy to verify that
1° The oscillation of a function from O to ¢ is equal to the sum of its oscillations from 0 to
x and from x to &, x being any quantity between 0 and ¢.
2° We have that F(x) = F(0)+ P, — Ny, P, and N, denoting the positive and the negative

oscillations from O to x. But F'(0) + Py and N, are finite functions nondecreasing from
Otoe.

Hence Dirichlet’s proof is applicable, without modification, to every function of
bounded oscillation from x = 0 to x = ¢, ¢ being any finite quantity.

The functions of limited oscillations constitute a well-defined class, whose study could
be of some interest.

Functions of bounded variation will play a fundamental role in the following
domains:

(a) Convergence of Fourier series;
(b) Rectification of curves;
(c) Integration;
(d) Duality.
Let u : [0, 1] — R be a continuous function. The length of the graph of u is
defined by

k 12
L(u) = sup Z[(ajﬂ—aj)2+(u(aj+1)—u(aj))2] :

J=0

kGN,0=a0<a1 <...<ak+1=1}.

In 1887, in Volume III of the first edition of his Cours d’Analyse at the Ecole
Polytechnique, Jordan proved that L(u) is finite if and only if u is of bounded
variation. The case of surfaces is much more delicate (see Sect. 10.3).

In 1894 [80], Stieltjes defined a deep generalization of the integral associated
with an increasing function ¢:

More generally, let us consider the sum

FED[e(D) =)+ fE)[e(2) —oGen] + ...+ fED[en) —eCa-D]. (A

It will still have a limit, which we shall denote by

b
/ fadeu).
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We will have only to consider some very simple cases like f(u) = u*, f(u) = _+1u s
and there is no interest in giving to the function f(u) its full generality. Thus it will suffice,

as an example, to suppose the function f(u) continuous, and then the proof presents no

difficulty, and we have no need to develop it, since it is done as in the ordinary case of a
definite integral.

It is easy to extend Stieltjes’s definition to every function ¢ of bounded variation.
Stieltjes breaks the reciprocity between integral and derivative.

In 1903 [32], J. Hadamard characterized the continuous linear functionals on
C(la, b)):

It is easy to reach this, following Weierstrass and Kirchhoff, and introducing a function
F (x), with a finite number of maxima and minima and such that

+00
/ F(x)dx =1;
—00

F(x) = L p—*
eg., F(x)= ﬁe .

Starting then from the well-known identity

lim M/a S Fu(x —xo)ldx = f(x0), a<xp<b,
pn==£00 b

and assuming (as the authors quoted before) the operation U to be continuous (in the sense
of Bourlet), it will suffice to define

UluF u(x — xo0)] = @ (xo, )

to show that our operation could be represented as

b
vtr@i = tim [ fwee wds.

In 1909 [61], F. Riesz discovered a representation depending on only one function:

In the present note, we shall develop a new analytic expression of the linear operation,
containing only one generating function.

Given the linear operation A[ f(x)], we can determine a function of bounded variation
a(x) such that for every continuous function f(x), we have

1
ALF ()] = /0 F)da().

Riesz’s theorem asserts that every continuous linear functional on C([0, 1]) is
representable by Stieltjes’s integral.
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10.2 Measure and Integral

Les notions introduites sont exigées par la solution d’un
probléme, et, en vertu de la seule présence parmi les notions
antérieures, elles posent a leur tour de nouveaux problemes.

Jean Cavailles

In 1898, Emile Borel defined the measure of sets in his Lecons sur la théorie des
fonctions:

The procedure that we have employed actually amounts to this: we have recognized that a
definition of measure could be useful only if it had certain fundamental properties: we have
stated these properties a priori, and we have used them to define the class of sets that we
consider measurable.

Those essential properties that we summarize here, since we shall use them, are the
following: The measure of a sum of a denumerable infinity of sets is equal to the sum
of their measures; the measure of the difference of two sets is equal to the difference
of their measures; the measure is never negative; every set with a nonzero measure is
not denumerable. It is mainly this last property that we shall use. Besides, it is explicitly
understood that we speak of measures only for those sets that we called measurable.

Of course, when we speak of the sum of several sets, we assume that every pair them
have no common points, and when we speak of their difference, we assume that one set
contains all the points of the other.

Following Lebesgue:

The descriptive definition of measure stated by M. Borel is without doubt the first clear
example of the use of actual infinity in mathematics.

However, Borel does not prove the existence of the measure!

Lebesgue’s integral first appeared on 29 April 1901. In the note [42], Lebesgue
proved the existence of Borel’s measure as a restriction of Lebesgue’s measure.

In the introduction of his thesis [43], Lebesgue stated his program:

In this work, I try to give definitions as general and precise as possible of some of the
numbers considered in Analysis: definite integral, length of a curve, area of a surface.

He formulated the problem of the measure of sets:

We intend to assign to every bounded set a positive or zero number called its measure and
satisfying the following conditions:

1. There exist sets with nonzero measure.

2. Two equal sets have equal measures.

3. The measure of the sum of a finite number or of a countable infinity of sets, without
common points, is the sum of the measures of those sets.

We will solve this problem of measure only for the sets that we will call measurable.

In his Lecons sur I’intégration et la recherche des fonctions primitives of 1904,
see [45], Lebesgue formulated the problem of integration:
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We intend to assign to every bounded function f(x) defined on a finite interval (a, b),
positive, negative, or zero, a finite number fab f(x)dx, which we call the integral of f(x)
in (a, b) and which satisfies the following conditions:

1. For every a, b, h, we have

b b+h
/ fx)dx = fx —h)dx.

+h

2. For every a, b, c, we have

b c a
/ fx)dx + / fx)dx + / fx)dx =0.
a b c

b b b
/ LF () + () ldx = / FEdx + / o()dx.

a a a

4. If we have f = 0 and b > a, we also have

b
/ f(x)dx 2 0.

5. We have

1
/ 1 xdx =1.
0

6. If f,(x) increases and converges to f(x), then the integral of f,(x) converges to the
integral of f(x).

Formulating the six conditions of the integration problem, we define the integral. This
definition belongs to the class of those that could be called descriptive; in those definitions,
we state the characteristic properties of the object we want to define. In the constructive
definitions, we state which operations are to be done in order to obtain the object we
want to define. Constructive definitions are more often used in Analysis; however, we use
sometimes descriptive definitions; the definition of the integral, following Riemann, is
constructive; the definition of primitive functions is descriptive.

In 1906, in his thesis [23], Maurice Fréchet tried to extend the fundamental notions
of analysis to abstract sets:

In this Mémoire we will use an absolutely general point of view that encompass these
different cases.

To this end, we shall say that a functional operation U is defined on a set E of
elements of every kind (numbers, curves, points, etc.) when to every element A of E there
corresponds a determined numerical value of U : U (A). The search for properties of those
operations constitutes the object of the Functional Calculus.

Fréchet defined distance which he called, in French, écart:

We can associate to every pair of elements A, B a number (A, B) > 0, which we will
call the distance of the two elements and which satisfies the following properties: (a) The
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distance (A, B) is zero only if A and B are identical. (b) If A, B, C are three arbitrary
elements, we always have (A, B) < (A, C) + (C, B).

In [24], Fréchet defined additive families of sets and additive functions of sets:
An additive family of sets is a collection of sets such that:

1. If Ey, E, are two sets of this family, the set £ — E; of elements of E|, if they exist and
that are not in E3, belongs also to the family.

2. If Ey, Ey, ... is a denumerable sequence of sets of this family, their sum, i.e., the set
E| + E, + - - - of elements belonging at least to one set of the sequence, belongs also to
the family.

A set function f(E) defined on an additive family of sets ¥is additiveon Fif E1, E, ...
being a denumerable sequence of sets of ¥ and disjoint, i.e., without pairwise common
elements, we have

fEx+Exy+..)=f(ED)+ f(E2)+---.

When the sequence is infinite, the second member has obviously to converge regardless of
the order of the terms. Hence the series in the second member has to converge absolutely.

Fréchet defined the integral without using topology. Additive functions of sets will
be called measures.

In [12], Daniell chose a different method. He introduced a space L of elementary
functions and an elementary integral

L—)R:uﬁ/udu

satisfying the axioms of linearity, positivity, and monotone convergence.
The two axiomatics are equivalent if to Daniell’s axioms we add Stone’s axiom
(1948):

forevery u € £, min(u, 1) € L,
or the axiom
forevery u,v € L,uv € L.

The choice of primitive notions and axioms is rather arbitrary. There are no
absolutely undefinable notions or unprovable propositions.

The axiomatization of integration by Fréchet opened the way to the axiomatiza-
tion of probability by Kolmogorov in 1933. The unification of measure, integral, and
probability was one the greatest scientific achievements of the twentieth century.

In his thesis [5], Banach defined the complete normed spaces:

There exists an operation, called norm (we shall denote it by the symbol || X]|), defined
in the field E, having as an image the set of real numbers and satisfying the following
conditions:

11Xl =0,



238 10 Epilogue: Historical Notes on Functional Analysis

[IX|] = 0if and only if X =0,
lla - X|| = lal - [IXI],
X+ Y[ < IXII+ Y]l

If 1. {X,} is a sequence of elements of E, 2. rl—1>n<30 [1X; — Xpll = 0, there exists an
p—>00
element X such that

lim [|X — Xa|| = 0.
n—oQ

Banach emphasized the efficiency of the axiomatic method:

The present work intends to prove theorems valid for different functional fields, which I
will specify in the sequel. However, in order not to be forced to prove them individually for
every particular field, a tedious task, I chose a different way: I consider in some general way
sets of elements with some axiomatic properties, I deduce theorems, and I prove afterward
that the axioms are valid for every specific functional field.

The fundamental book of Banach [6], Théorie des opérations linéaires, was
published in 1932. Banach deduces Riesz’s representation theorem from the Hahn—
Banach theorem.

The original proof of the Hahn—Banach theorem holds in every real vector space.
Let F : X — R be a positively homogeneous convex function, and let f : Z —
R be a linear function such that f < F on the subspace Z of X. By the well-
ordering theorem, the set X \ Z can be so ordered that each nonempty subset has a
least element. It follows then, from Lemma 4.1.3, by transfinite induction, that there
exists g : X — Rsuchthat g < FonXandg|Z = f.

Let us recall the principle of transfinite induction (see [72]). Let B be a subset of
a well-ordered set (A such that

{[yeA:y<x}CB=xe8B

Then 8 = A.

In set theory, the well-ordering theorem is equivalent to the axiom of choice and
to Zorn’s lemma. In 1905, Vitali proved the existence of a subset of the real line that
is not Lebesgue measurable. His proof depends on the axiom of choice.

10.3 Differential Calculus

L’activité des mathématiciens est une activité expérimentale.

Jean Cavailles

Whereas the integral calculus transforms itself into an axiomatic theory, the
differential calculus fits into the general theory of distributions.
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The fundamental notions are

— Weak solutions;

— Weak derivatives;

— Functions of bounded variation;
— Distributions.

In [60], Poincaré defined the notion of weak solution of a boundary value
problem:

Let u be a function satistying the following conditions:

du
— +hu=g¢, (10.3)
dn
Au+ f=0. (10.4)

Now let v be an arbitrary function, which I assume only continuous, together with a
first-order derivative. We shall have

du dv
/(v——u—)dw:/(vAu—uA v)dT,
dn dn
dv
/vfdr+/uAvdr—i—/v(pda):/u(hv—i-d—)da). (10.5)
n

Condition (10.5) is thus a consequence of condition (10.3).
Conversely, if condition (10.5) is satisfied for every function v, condition (10.3) will be

also satisfied, provided that u and ;’—Z are finite, well-defined, and continuous functions.
But it can happen that in some cases, we are unaware that 4% is a well-defined and
continuous function; we cannot assert then that condition (10.5) entails condition (10.3),

and it is even possible that condition (10.3) is meaningless.

so that

Poincaré named condition (10.5) a modified condition and asserted (p. 121):

It is obviously equivalent to condition (10.3) from the physical point of view.

This Mémoire of Poincaré contains (p. 70) the first example of an integral inequality
between a function and its derivatives:

Let V be an arbitrary function of x, y, z; define:

oo o ) (2 (1)

I will write to shorten:

B :/Z (%>2dr.

I assume first that V satisfies the condition:
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/th:O

and I intend to estimate the lower limit of the quotient %

The maximum principle is stated on p. 92. Poincaré’s principle appears in [59] for
the formal construction of the eigenvalues and eigenfunctions of the Laplacian.
In [60], Poincaré proved the existence of eigenvalues (for Dirichlet’s boundary
conditions) using the theory of meromorphic functions (see [50]).

Let us recall that we denote by L (u) the length of the graph of the continuous
function # : [0, 1] — R. Following Jordan, L(#) < oo if and only if u is of
bounded variation. It follows then from a theorem due to Lebesgue that u is almost
everywhere differentiable on [0, 1]. In [82], Tonelli proved a theorem equivalent to

1
L(u) =/ V14 @ (x)2dx < u e w0, 1D.
0

A counterexample due to Schwarz, published in 1882 in the Cours d’Analyse of
Hermite, shows that it is not possible to extend the definition of length due to Jordan
to surfaces. Let z = u(x, y) be a nonparametric surface, _With u continuous on
[0, 1] x [0, 1]. Let £2 =]0, 1[x]0, 1[ and define, on X = C(£2), the distance

d(u, v) = max{|u(x, y) — v(x, )| : (x, y) € 2}.

The space of quasilinear functions on £2 is defined by

Y = {u € X : there exists a triangulation t of £2
such that, forevery T € 7, u|T is affine}.

The graph of u € Y consists of triangles. The sum of the areas of those triangles is

called the elementary area of the graph of u and is denoted by B(u).
Lebesgue’s area of the graph of u is defined by

Au) = inf{ lim B(uy) : (u,) C Y andd(u,,u) - 0, n— oo} ()

In [83] (see also [53]), Tonelli stated two theorems equivalent to

A(u) < 00 <= ||Du||lo < o0,

9 2 2

u u L1

A(M)=f\/1+<—a> —l—(—) dxdy <= ue W (2).
2 x dy

Lebesgue’s area is a lower semicontinuous function on X. It extends the elementary
area: foreveryu € Y, A(u) = B(u).
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In [25], Fréchet observed that Lebesgue’s definition allows one to extend lower
semicontinuous functions. Let ¥ be a dense subset of a metric space X, and let
B : Y — [0, +oc] be an ls.c. function. The function A defined by (x) is an ls.c.
extension of B on X such that for every l.s.c. extension C of B on X and for every
uelX,Cu) < Au).

In [48], Leray defined the weak derivatives of L? functions and called them
quasi-dérivées.

In [75], announced in [74] and translated in [78], Sobolev defined the distribu-
tions of finite order on RY, which he called fonctionnelles. (A distribution f on RY
is of order k if for every sequence (u,) C D(RY) such that the supports of u,, are
contained in some compact set and such that sup [|%u,||cc — 0,1 — 00, we have

o|<k
(f, un) = 0, n — 00.) Sobolev defined the liérivative of a fonctionnelle by duality
and associated a fonctionnelle with every locally integrable function on RY .

Without reference to his theory of fonctionnelles, Sobolev defined in [77] the
weak derivatives of integrable functions. Regularization by convolution is due to
Leray for L? functions (see [48]) and to Sobolev for L? functions (see [77]).

In [69], Laurent Schwartz defined general distributions. In [70], he defined the
tempered distributions and their Fourier transform. The treatise [71] is a masterful
exposition of distribution theory.

Let g : R — R be a function of bounded variation on every bounded interval.
The formula of integration by parts shows that for every u € D(R),

/udg:—/u’gdx.
R R

Stieltjes’s integral with respect to g is nothing but the derivative of g in the sense
of distributions! Riesz’s representation theorem asserts that every continuous linear
functional on C([0, 1]) is the derivative in the sense of distributions of a function of
bounded variation.

10.4 Comments

Some general historical references are [15, 19, 29]. We recommend also [46] on
Jordan, [52] on Hadamard, [81] on Fréchet, and [38] on Banach.
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Index of Notation

ul| 4 : restriction of u to the subset A of its domain
ut:27

u— 27

wy 9

sptu:23

My - 38

my : 206
u*v:101

Tyu : 101

u* : 206

ufl 207

Vu: 134

divu: 134

Au = div Vu
[lullLr(2,u : 94
IVullpr(g) : 134
lullwer o) : 135
|| Dul|g : 174
[lullpv(2) : 176
[l = 117

|| 2 114

pn - 101

XA 14

u(A) :36

m(A) : 39

p(A) : 179

A* 1206

AH 208

w CC £2:101
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VN 051
C(2):23
K(2):23
D(2) : 100
Co(2) : 116
L(2, 1) :26
L2, 1) 128
L1822, ) : 30
M2, 1) : 34
LP(82, 1) :93
LP(82, 1) : 94
L] (£2):101
WkP(£2):135
HK(£2) : 135
WoP (£2) : 136
Wyl (2): 136
HY2): 136
WP (82) : 157
DLPRN) 168
BV (£2):176
D*(2) : 182
L(X,Y):68
X*:113
I/p+1/p' =1
p* = p*(N) = Np/(N - p)

Fundamental Theorem of Calculus
Letu € C([a, b]). Foralla < x < b, we have

d X
—/ u(t)dt = u(x).
dx J,

Let u € C'([a, b]). Foralla < x < b, we have

* du df —
/a E(t) t =ulx) —ua).

Index of Notation



Index

B
Boundary, 7

C

Capacity, 165

— of degree p, 169
Closed subset, 6
Closure, 7

Coarea formula, 227
Cone, 89

Continuity, 9

—, uniform, 9
Convergence

—, simple, 15

—, uniform, 15
Convex set, 89
Convolution, 101
Covering, 8
Criterion

—, de la Vallée Poussin, 66
—, Fréchet, 8

—, Vitali, 64

—, Vitali-Dalzell, 81

D

Diffeomorphism, 49, 221
Distance, 4

Distribution, 182

E
Eigenfunction, 200
Eigenvalue, 82
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—, multiplicity, 82

—, simple, 82
Eigenvector, 82
Elementary solutions, 215
Exponent

—, conjugate, 93

—, critical, 150

Exterior normal, 228

F

Function

—, admissible, 38, 206

—, bounded variation, 176, 186
—, characteristic, 14

—, concave, 89

—, convex, 89

—, distribution, 38, 206

—, distance, 15

—, G-invariant, 203

—, harmonic, 198

—, integrable, 30

—, locally integrable, 101
—, lower semicontinuous, 11
—, measurable, 34

—, positively homogeneous, 89
—, quasicontinuous, 172

—, subharmonic, 198

—, superharmonic, 198

—, test, 100

—, upper semicontinuous, 11

H
Hilbert basis, 78
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1

Identity

—, Parseval, 78

—, parallelogram, 76
—, polarization, 76

—, Pythagorean, 76
Inequality

—, Bessel, 77

—, capacity, 172

—, Cauchy—Schwarz, 76
—, convexity, 92

—, Faber-Krahn, 214
—, Gagliardo, 149

—, Gagliardo—Nirenberg, 178, 214
—, Hanner, 93

—, Hardy, 156

—, Hilden, 213

—, Holder, 93

—, Holder generalized, 95
—, interpolation, 95

—, isoperimetric, 213
—, Kato, 216

—, mean-value, 198

—, Markov, 38

—, Minkowski, 59, 76, 93
—, Morrey, 150

—, Poincaré, 154, 155
—, Pélya—Szegd, 212
—, Sobolev, 150, 169
—, trace, 147

—, triangular, 4

—, Yau, 180

Integral

—, elementary, 26

—, Cauchy, 24

—, Lebesgue, 30
Interior, 7

L

Lemma

—, Brezis-Lieb, 96

—, closing, 133

—, continuity of translations, 103
—, Degiovanni—-Magrone, 96

—, du Bois—Reymond, 132

—, extension by reflection, 141
—, Fatou, 32

—, von Neumann, 122

M
Mapping
—, bounded, 17

—, compact, 83

—, continuous, 9

—, uniformly continuous, 9
Measure, 114

—, finite, 117

—, Lebesgue, 39

—, outer, 168

—, positive, 37

—, scalar, 115

— of a subset, 36

—, surface, 50, 225

—, vectorial, 115
Modulus of continuity, 9
Modulus of convexity, 117

N
Norm, 59, 68

0

Orthogonal, 120
Orthonormal, 77
Open subset, 6

— of class C™, 228
—, cylindrical, 141
—, G-invariant, 203

P

Partition of unity, 104, 140
Perimeter, 179

Polarization, 207

Principle

—, Cavalieri, 38

—, Ekeland’s variational, 11
—, maximum, 199

—, max-inf, 204

—, Poincaré, 84, 201
Product of elementary integrals, 45

S

Scalar product, 76
Schwarz’s symmetrization, 206
Sequence

—, bounded, 5

—, Cauchy, 5

—, convergent, 5
—, fundamental, 27
—, minimizing, 10
—, regularizing, 101
—, truncation, 136

—, weakly convergent, 113, 121, 127

Index



Index

Series

—, convergent, 3, 60

—, normally convergent, 60
Set

—, closed, 6

—, convex, 89

—, dense, 7

—, measurable, 36

—, negligible, 27

—, open, 6

Space

—, Banach, 61

—, compact, 5

—, complete, 5

—, dual, 113

—, fractional Soboleyv, 157
—, Hilbert, 79

—, Lebesgue, 30, 93, 94
—, metric, 4

—, normed, 59

—, precompact, 5

—, pre-Hilbert, 76

—, separable, 8

—, smooth, 117

—, Soboleyv, 135, 169

—, uniformly convex, 117
Subsequence, 5

Support, 23

Symmetric operator, 82

T

Theorem

—, annulation, 104

—, Ascoli, 106

—, Baire, 7

—, Banach, 113

—, Banach-Steinhaus, 70, 113, 121, 127, 184
—, change of variables, 49, 137, 221
—, Clarkson, 126

—, closed graph, 74

—, comparison, 33
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—, de la Vallée Poussin, 117

—, density, 98, 104

—, density in Sobolev spaces, 147

—, Deny-Lions, 141

—, Dini, 16

—, divergence, 148, 229

—, elementary spectral, 84

—, extension in Sobolev spaces, 146

—, Fréchet-Riesz, 120

—, Fubini, 46, 47

—, Hahn—Banach, 90, 119

—, Hajtasz, 140

—, James representation, 119

—, Lebesgue’s decomposition, 123

—, Lebesgue’s dominated convergence, 33

—, Levi, 31

—, Morse-Sard, 226

—, open mapping, 75

—, partition of unity, 104, 140

—, polar decomposition of vector measures,
124

—, regularization, 104

—, Rellich—Kondrachov, 154

—, Riesz representation, 126

—, F. Riesz, 97

—, M. Riesz, 107

—, Riesz—Fischer, 79

—, separability, 99

—, Sobolev, 152

—, trace, 148

—, Zabreiko, 73

Total variation, 117, 174

Trace, 143, 147

U
Upper envelope, 13

W
Weak derivative, 132
Weierstrass test, 18
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