Keywords

2.1 Introduction

Let \(M \cong \mathbb {Z}^d\) be a free abelian group of rank d. We set \(M_\mathbb {Q}:= M \otimes \mathbb {Q}\) and denote by N the dual group \({{\,\mathrm{Hom}\,}}(M, \mathbb {Z})\) in the dual \(\mathbb {Q}\)-linear vector space \(N_\mathbb {Q}:= {{\,\mathrm{Hom}\,}}(M, \mathbb {Q})\). Let \(\langle \cdot , \cdot \rangle : M_\mathbb {Q}\times N_\mathbb {Q}\rightarrow \mathbb {Q}\) be the natural pairing.

A convex compact d-dimensional polytope \(\Delta \subseteq M_\mathbb {Q}\) is called lattice d-tope if all vertices of \(\Delta \) belong to the lattice \(M \subseteq M_\mathbb {Q}\), i.e., \(\Delta \) equals the convex hull \({{\,\mathrm{conv}\,}}(\Delta \cap M)\) of all lattice points in \(\Delta \). The usual interior \(\Delta ^{\circ }\) of \(\Delta \) is the complement \(\Delta \setminus \partial \Delta \), where \(\partial \Delta \) is the boundary of \(\Delta \). Another interior of a lattice polytope \(\Delta \) was introduced by Fine  [3, 13, 15, 20]:

Definition 1

Let \(\Delta \subseteq M_\mathbb {Q}\) be a lattice d-tope. Denote by \({\text {ord}}_\Delta \) the piecewise linear function \(N_\mathbb {Q}\rightarrow \mathbb {Q}\) with

$$\begin{aligned} {\text {ord}}_\Delta (y) := \min _{ x \in \Delta } \langle x, y \rangle \;\; (y \in N_\mathbb {Q}). \end{aligned}$$

Then the convex subset

$$ \Delta ^{{{\mathrm{FI}\,}}}:= \bigcap _{n \in N \setminus \{0 \}} \{ x \in M_\mathbb {Q}\, \mid \, \langle x, n \rangle \ge {\text {ord}}_\Delta (n) + 1 \} $$

is called the Fine interior of \(\Delta \).

One can show that only finitely many linear inequalities \(\langle x, n \rangle \ge {\text {ord}}_\Delta (n) + 1\) are necessary to define \(\Delta ^{{{\mathrm{FI}\,}}}\). Therefore, \(\Delta ^{{{\mathrm{FI}\,}}}\) is a convex hull of finitely many rational points \(p \in M_\mathbb {Q}\). Moreover, any lattice point \(p \in \Delta ^\circ \cap M\) in the usual interior of \(\Delta \) is contained in \(\Delta ^{{{\mathrm{FI}\,}}}\). Therefore, \(\Delta ^{{{\mathrm{FI}\,}}}\) contains the convex hull of \(\Delta \cap M\), i.e., we get the inclusion \({{\,\mathrm{conv}\,}}(\Delta ^{\circ } \cap M) \subseteq \Delta ^{{{\mathrm{FI}\,}}}\). In particular, \(\Delta ^{{{\mathrm{FI}\,}}}\) is non-empty if \(\Delta ^{\circ } \cap M\) is non-empty. Moreover, for any lattice polytope \(\Delta \) of dimension \(d \le 2\) one has the equality \({{\,\mathrm{conv}\,}}(\Delta ^{\circ } \cap M) = \Delta ^{{{\mathrm{FI}\,}}}\) [3]. The Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) of a lattice polytope \(\Delta \) of dimension \(d \ge 3\) may happen to be strictly larger than the convex hull \({{\,\mathrm{conv}\,}}(\Delta ^{\circ } \cap M)\). The simplest famous example of such a situation is due to M. Reid. Other similar examples based on hollow 3-topes can be found in Sect. 2.7:

Example 2

([20, Example 4.15])   Let \(M \subseteq \mathbb {Q}^4\) be 3-dimensional affine lattice defined by

$$ M := \left\{ ( m_1,m_2, m_3,m_4 ) \in \mathbb {Z}^4 \, \Big \vert \, \sum _{i=1}^4 m_i = 5, \; \sum _{i=1}^4 i m_i \equiv 0\ \left( \mathrm {mod}\ {5}\right) \right\} .$$

Consider the M-lattice 3-tope \(\Delta \subseteq M_\mathbb {Q}\) defined as the convex hull of 4 lattice points

$$\begin{aligned} (5,0,0,0), \;(0,5,0,0), \;(0,0,5,0), \text { and}\; (0,0,0,5) \in M. \end{aligned}$$

Then \({{\,\mathrm{conv}\,}}(\Delta ^{\circ } \cap M) = \emptyset \), but \(\Delta ^{{{\mathrm{FI}\,}}}\) is the 3-dimensional M-rational simplex

$$\begin{aligned} {{\,\mathrm{conv}\,}}\{(2,1,1,1), (1,2,1,1), (1,1,2,1), (1,1,1,2)\} \end{aligned}$$

and \(\Delta ^{{{\mathrm{FI}\,}}} \cap M\) is empty.

In this paper, we are interested in lattice d-topes \(\Delta \subseteq M_\mathbb {Q}\) obtained as Newton polytopes of Laurent polynomials \(f_\Delta \) in d variables \(x_1, \ldots , x_d\), i.e.,

$$\begin{aligned} f_\Delta (\mathbf{x}) = \sum _{m \in \Delta \cap M} a_m \mathbf{x}^m, \end{aligned}$$

where \(a_m \in \mathbb {C}\) are sufficiently general complex numbers. The importance of the Fine interior is explained by the following theorem [3, 15, 20]:

Theorem 3

Let \(\mathcal {Z}_\Delta \subseteq \mathbb {T}^d\) be a non-degenerate affine hypersurface in the d-dimensional algebraic torus \(\mathbb {T}^d\) defined by a Laurent polynomial \(f_\Delta \) with Newton d-tope \(\Delta \). Then the following conditions are equivalent:

  1. 1.

    a smooth projective compactification \(\mathcal {V}_\Delta \) of \(\mathcal {Z}_\Delta \) has non-negative Kodaira dimension, i.e., \(\kappa \ge 0\);

  2. 2.

     \(\mathcal {Z}_\Delta \) is birational to a minimal model \({\mathcal {S}}_\Delta \) with abundance;

  3. 3.

    the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) of \(\Delta \) is non-empty.

Remark 4

By well known results of Khovanskii [14], one has vanishing of the cohomology groups

$$\begin{aligned} h^{i}({\mathcal {O}}_{\mathcal {V}_\Delta }) = 0 \;\; (1 \le i \le d-2) \end{aligned}$$

and the equation \(h^{d-1}({\mathcal {O}}_{\mathcal {V}_\Delta }) = | \Delta ^{\circ } \cap M|\). The numbers \(h^{i}({\mathcal {O}}_{\mathcal {V}_\Delta })\) are birational invariants of \(\mathcal {Z}_\Delta \); they do not depend on a smooth projective compactification \(\mathcal {V}_\Delta \) of \(\mathcal {Z}_\Delta \). In particular, the number \(| \Delta ^{\circ } \cap M|\) is the geometric genus \(p_g\) of the affine hypersurface \(\mathcal {Z}_\Delta \subseteq \mathbb {T}^d\).

Smooth projective compactifications of non-degenerate hypersurfaces in \(\mathbb {T}^d\) can be obtained using the theory of toric varieties [14].

Let \(\Delta \subseteq M_\mathbb {Q}\) be a lattice d-tope. We consider the normal fan \(\Sigma ^{\Delta }\) of \(\Delta \) in the dual space \(N_\mathbb {Q}\), i.e., \(\Sigma ^{\Delta } := \{\sigma ^{\theta } \, | \, \theta \preceq \Delta \}\), where \(\sigma ^{\theta }\) is the cone generated by all inward-pointing facet normals of facets containing the face \(\theta \preceq \Delta \) of \(\Delta \). One has \(\dim (\sigma ^{\theta }) + \dim (\theta ) =d\) for any face \(\theta \preceq \Delta \). We denote by \(X_\Delta \) the normal projective toric variety constructed via the normal fan \(\Sigma ^{\Delta }\). In particular, the above function \( {\text {ord}}_\Delta :N_\mathbb {Q}\rightarrow \mathbb {Q}\) is a piecewise linear function with respect to this fan defining an ample Cartier divisor on \(X_\Delta \). In particular, the cones \(\sigma ^\theta \in \Sigma ^\Delta \) are defined as

$$ \sigma ^{\theta } = \left\{ y \in N_\mathbb {Q}\, \Big \vert \, {\text {ord}}_\Delta (y) = \langle x,y \rangle \; \text { for all } x \in \theta \right\} . $$

Remark 5

Using the normal fan \(\Sigma ^\Delta \), one can compute the fundamental group \(\pi _1(\mathcal {V}_\Delta )\) of a smooth projective birational model \(\mathcal {V}_\Delta \) of a non-degenerate affine hypersurface \(\mathcal {Z}_\Delta \) (given as in Theorem 3). The fundamental group \(\pi _1(\mathcal {V}_\Delta )\) does not depend on the choice of the smooth birational model and it is isomorphic to the quotient of the lattice N modulo the sublattice \(N'\) generated by all lattice points in \((d-1)\)-dimensional cones \(\sigma ^\theta \) of the normal fan \(\Sigma ^\Delta \) [4].

Example 6

The minimal model \({\mathcal {S}_\Delta }\) of a non-degenerate affine surface \(\mathcal {Z}_\Delta \) defined by a Laurent polynomial with the Newton polytope \(\Delta \) from Example 2 is a  Godeaux surface. It is a surface of general type with \(p_g = q=0\)\(K^2 =1\), and \(\pi _1({\mathcal {S}_\Delta }) \cong \mathbb {Z}/5 \mathbb {Z}\).

Definition 7

A lattice d-tope \(\Delta \) is called canonical Fano d-tope if \(| \Delta ^{\circ } \cap M| =1\). Up to a shift by a lattice vector, we will assume without loss of generality that \(0 \in M\) is the single lattice point in the interior \(\Delta ^{\circ }\) of the canonical Fano d-tope \(\Delta \), i.e., \(\Delta ^{\circ } \cap M = \{ 0 \}\).

All canonical Fano 3-topes have been classified [16]. There exists exactly \(674,\!688\) canonical Fano 3-topes \(\Delta \). The aim of this paper is to present computational results of their Fine interiors \(\Delta ^{{{\mathrm{FI}\,}}}\) and some related combinatorial invariants. These data are important for computing minimal smooth projective surfaces \(\mathcal {S}_\Delta \) with \(p_g=1\) and \(q =0\) which are birational to affine non-degenerate hypersurfaces \(\mathcal {Z}_\Delta \subseteq \mathbb {T}^3 \cong (\mathbb {C}^\times )^3\).

The simplest description of the minimal surface \(\mathcal {S}_\Delta \) has been obtained when \(\Delta \) is a reflexive 3-tope [5].

Definition 8

A lattice d-tope \(\Delta \subseteq M_\mathbb {Q}\) containing the origin \(0 \in M\) in its interior is called reflexive if the dual polytope

$$\begin{aligned} \Delta ^* := \{ y \in N\, \vert \, \langle x, y \rangle \ge -1 \; \text { for all } x \in \Delta \} \subseteq N_\mathbb {Q}\end{aligned}$$

is a lattice polytope.

There exist \(4,\!319\) reflexive 3-topes, classified by Kreuzer and Skarke [17]. They form a small subset in the list of all \(674,\!688\) canonical Fano 3-topes [16]. Reflexive 4-topes are also classified by Kreuzer and Skarke [18]. There exist \(473,\!800,\!776\) reflexive 4-topes, but the complete list of all canonical Fano 4-topes is unknown and expected to be much bigger.

If \(\Delta \) is a reflexive d-tope, then \(X_\Delta \) is a Gorenstein toric Fano d-fold and the Zariski closure \(\overline{Z}_\Delta \) in \(X_\Delta \) is a Gorenstein Calabi-Yau \((d-1)\)-fold. If \(d =3\), then \(\overline{Z}_\Delta \) is a K3-surface with at worst finitely many Du Val singularities of type \(A_k\). The minimal surface \(\mathcal {S}_\Delta \) is a smooth K3-surface which is obtained as the minimal (crepant) desingularization of \(\overline{Z}_\Delta \) [5].

One motivation for the present paper is due to Corti and Golyshev, who have found 9 interesting examples of canonical Fano 3-simplices \(\Delta \) such that the affine surfaces \(\mathcal {Z}_\Delta \) are birational to elliptic surfaces of Kodaira dimension \(\kappa =1\) [11].

The computation of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) for all canonical Fano 3-topes \(\Delta \subseteq M_\mathbb {Q}\) has shown that the dimension of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) has only three values: 0, 1, and 3. It is rather surprising that there are no canonical Fano 3-topes \(\Delta \) with \(\dim ( \Delta ^{{{\mathrm{FI}\,}}}) = 2\).

The condition \(\dim (\Delta ^{{{\mathrm{FI}\,}}}) =0\) holds if and only if \(\Delta ^{{{\mathrm{FI}\,}}}\) equals the lattice point \(0 \in M\). There exist exactly \(665,\!599\) canonical Fano 3-topes with \(\Delta ^{{{\mathrm{FI}\,}}} = \{0 \}\), where \(0 \in M\) is the only interior lattice point of \(\Delta \). These polytopes are characterized in [3, Proposition 3.4] by the condition that \(0 \in N\) is an interior lattice point of the lattice 3-tope

$$\begin{aligned}{}[\Delta ^*]:= {{\,\mathrm{conv}\,}}( \Delta ^* \cap N). \end{aligned}$$

Remark 9

If \(\Delta \) is a canonical Fano 3-tope, then \(\Delta ^{{{\mathrm{FI}\,}}} = \{0 \}\) if and only if the non-degenerate affine surface \(\mathcal {Z}_\Delta \) is birational to a K3-surface [3, Theorem 2.26].

The case \(\dim ( \Delta ^{{{\mathrm{FI}\,}}}) =1\) splits in two subcases. There exists exactly 20 canonical Fano 3-topes \(\Delta \) such that \(0 \in M\) is the midpoint of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\). Therefore, we call this Fine interior symmetric. Canonical Fano 3-topes with 1-dimensional symmetric Fine interior are characterized by the condition that \([\Delta ^*]\) is a reflexive 2-tope. The Fine interior of the remaining \(9,\!020~\) canonical Fano 3-topes with \(\dim ( \Delta ^{{{\mathrm{FI}\,}}}) =1\) contains \(0 \in M\) as a vertex. Therefore, we call this Fine interior asymmetric. Canonical Fano 3-topes with 1-dimensional asymmetric Fine interior are combinatorially characterized by the condition that \(0 \in N\) is contained in the relative interior of a facet \(\Theta \preceq [\Delta ^*]\) of the lattice 3-tope \([\Delta ^*]\). The minimal surfaces \(\mathcal {S}_\Delta \) corresponding to canonical Fano 3-topes with 1-dimensional Fine interior (symmetric and asymmetric) are elliptic surfaces of Kodaira dimension \(\kappa =1\).

There exist exactly 49 canonical Fano 3-topes with \(\dim (\Delta ^{{{\mathrm{FI}\,}}}) =3\). These polytopes are characterized by the condition that \(0 \in N\) is a vertex of the lattice 3-tope \([\Delta ^*]\). The surfaces \(\mathcal {S}_\Delta \) corresponding to canonical Fano 3-topes \(\Delta \) with 3-dimensional Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) are of general type (i.e., \(\mathcal {S}_\Delta \) has maximal Kodaira dimension \(\kappa =\dim (\mathcal {S}_\Delta )=2\)).

Remark 10

The Fine interior computations were done using

$$ \Delta ^{{{\mathrm{FI}\,}}} = \bigcap _{\theta \preceq \Delta } \; \bigcap _{n \in \mathcal {H}(\sigma ^{\theta })} \left\{ x \in M_\mathbb {Q}\, \Big \vert \, \langle x,n \rangle \ge {\text {ord}}_\Delta (n) +1 \right\} , $$

where \(\mathcal {H}(\sigma ^{\theta })\) denotes the set of all irreducible elements in the monoid \(\sigma ^{\theta } \cap N\). It is the minimal generating set of the monoid \(\sigma ^{\theta } \cap N\) and is called Hilbert basis of \(\sigma ^{\theta } \cap N\).

In the next sections we consider examples and discuss additional properties of canonical Fano 3-topes \(\Delta \) in dependence of their Fine interiors \(\Delta ^{{{\mathrm{FI}\,}}}\). All computations were done using the Graded Ring Database [8], including the data of all \(674,\!688\) canonical Fano 3-topes, and magma [7]. Therefore, all statements have been checked by computer calculations. The canonical Fano 3-topes used as examples in this paper appear with an ID that is the example’s ID in the Graded Ring Database.Footnote 1

2.2 Almost Reflexive Polytopes of Dimension 3 and 4

Definition 11

A canonical Fano d-tope \(\Delta \subseteq M_\mathbb {Q}\) is called almost reflexive if the convex hull of all N-lattice points in the dual polytope \(\Delta ^*\) is reflexive.

It is easy to show the following statement:

Proposition 12

If a canonical Fano d-tope \(\Delta \) is almost reflexive, then

$$\begin{aligned} \Delta ^{FI} = \{0 \}. \end{aligned}$$

Proof

If \([ \Delta ^*]\) is reflexive, then \(\Delta = (\Delta ^*)^*\) is contained in the dual reflexive polytope \([\Delta ^*]^*\). Therefore, the Fine interior of \(\Delta \) is contained in the Fine interior of the reflexive polytope \([\Delta ^*]^*\) and \(([\Delta ^*]^*)^\mathrm{FI} =\{ 0 \}\). Thus, \(\Delta ^\mathrm{FI} = \{0 \}\).   \(\square \)

The converse statement is not true in general for \(d \ge 5\), but there exist many equivalent characterizations of reflexive and almost reflexive d-topes among canonical Fano d-topes if \(d =3\) or \(d=4\).

Let us recall some combinatorial invariants of arbitrary lattice d-topes.

Definition 13

The Ehrhart power series of an arbitrary lattice d-tope \(\Delta \subseteq M_\mathbb {Q}\) is defined as

$$ P_\Delta (t) := \sum _{k \ge 0} \left| k \Delta \cap M\right| t^k, $$

where \(|k \Delta \cap M|\) denotes the number of lattice points in the k-th dilate \(k \Delta \) of \(\Delta \).

This Ehrhart series is a rational function of the form

$$ P_\Delta (t) = \frac{\psi _d (\Delta )t^ d + \cdots + \psi _1 (\Delta )t + \psi _0 (\Delta )}{(1 - t)^{d+1}}, $$

where \(\psi _i(\Delta )\) are non-negative integers for all \(0 \le i \le d\) [22] such that \(\psi _0(\Delta ) =1\) and \(\psi _1(\Delta ) = |\Delta \cap M| - d -1\). Moreover,  \(\sum _{i=0}^d \psi _i(\Delta ) = v(\Delta )\), where  \(v(\Delta ) := d! \cdot {{\,\mathrm{vol}\,}}(\Delta )\) denotes the normalized volume of \(\Delta \).

One has the following characterization of reflexive d-topes:

Proposition 14

([6, Theorem 4.6]) A canonical Fano d-tope \(\Delta \) is reflexive if and only if

$$\begin{aligned} \psi _i(\Delta ) = \psi _{d-i}(\Delta ) \; \; (0 \le i \le d). \end{aligned}$$

The Ehrhart reciprocity implies that the power series

$$ Q_\Delta (t) := \sum _{k \ge 1} \left| (k \Delta )^\circ \cap M\right| t^k $$

is a rational function

$$ Q_\Delta (t) = \frac{\varphi _{d+1}(\Delta )t^{d+1} + \cdots + \varphi _2 (\Delta )t + \varphi _1 (\Delta )t + \varphi _0 (\Delta )}{(1 - t)^{d+1}}, $$

where \(\varphi _0 (\Delta )=0\) and \(\varphi _1 (\Delta ) = |\Delta ^\circ \cap M|\). Using Serre duality, one obtains [12, Sect. 4, 5.11]

$$\begin{aligned} \varphi _i(\Delta ) = \psi _{d+1-i}(\Delta ) \; \; (1 \le i \le d+1), \end{aligned}$$

 i.e., in particular

$$\begin{aligned} \psi _d(\Delta )= \varphi _1(\Delta ) = |\Delta ^\circ \cap M| \end{aligned}$$

and

$$ \psi _{d-1}(\Delta ) =\varphi _2(\Delta ) = |2 \Delta ^\circ \cap M| - (d+1) |\Delta ^\circ \cap M|.$$

Therefore, the lattice d-tope \(\Delta \) is a canonical Fano d-tope if and only if \(\psi _d(\Delta ) =1\). Moreover,

$$\begin{aligned} \psi _{d-1}(\Delta ) = |(2 \Delta )^\circ \cap M| - (d+1) \end{aligned}$$

if \(\Delta \) is a canonical Fano d-tope.

Applying the above equations, one immediately obtains the following criterion for reflexivity of canonical Fano d-topes in the case \(d =3, 4\):

Proposition 15

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano d-tope with \(d \in \{ 3,4\}\). Then for \(d =3\), one has

$$ P_\Delta (t) = \frac{t^ 3 + (|(2 \Delta )^\circ \cap M| -4)t^2 + ( |\Delta \cap M| - 4)t + 1}{(1 - t)^{4}} $$

and for \(d =4\), one obtains

$$ P_\Delta (t) = \frac{t^ 4 + (|(2 \Delta )^\circ \cap M| -5)t^3 + \psi _2(\Delta ) t^2 + ( |\Delta \cap M| - 5)t + 1}{(1 - t)^{5}}. $$

In particular, \(\Delta \) is reflexive if and only if

$$ \left| \Delta \cap M\right| = \left| (2 \Delta )^\circ \cap M\right| . $$

Proposition 16

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano d-tope with \(d \in \{3,4\}\) such that \(0 \in N\) is an interior lattice point of \([\Delta ^*]\). Then \( [\Delta ^*]\) is reflexive, i.e., \(\Delta \) is almost reflexive.

Proof

Let \(n \in N\) be an interior lattice point of \([\Delta ^*]\). Then  \( \langle x, n \rangle \ge 0\) for all \(x \in \Delta \cap M\) because

$$ \Delta ^* = \{ y \in N_\mathbb {Q}\; |\; \langle x, y \rangle \ge -1 \;\; \text { for all } x \in \Delta \} $$

and \( \langle x, n \rangle \) is an integer. Since \(0 \in \Delta ^\circ \cap M\)\(M_\mathbb {Q}\) is the set of all non-negative \(\mathbb {Q}\)-linear combinations of all lattice points in \(\Delta \cap M\). This implies \( \langle x', n \rangle \ge 0\) for all \(x' \in M_\mathbb {Q}\), i.e., \(n =0\). Therefore, \([\Delta ^*]\) has only one interior lattice point \(0 \in N\), i.e., \([\Delta ^*]\) is a canonical Fano d-tope.

It is clear that \([\Delta ^*]\) is contained in the interior of \(2[\Delta ^*]\). Therefore, we have \([\Delta ^*] \cap N \subseteq (2[\Delta ^*])^\circ \cap N\). On the other hand, for any lattice point \(n \in (2[\Delta ^*])^\circ \), \( \langle x, n \rangle > -2~\) for all \(x \in \Delta \cap M\). Since \( \langle x, n \rangle ~\) is an integer, \(n \in \Delta ^* \cap N\), i.e.,

$$\begin{aligned}{}[\Delta ^*] \cap N = (2[\Delta ^*])^\circ \cap N . \end{aligned}$$

Using Proposition 15\([\Delta ^*]\) is reflexive.   \(\square \)

Corollary 17

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano d-tope with \(d \in \{3,4\}\) such that \(0 \in N\) is an interior lattice point of \([\Delta ^*]\). Then \([\Delta ^*]^*\) is the smallest (referring to inclusion) reflexive polytope containing \(\Delta \).

Proof

Let \(\Delta ' \subseteq M_\mathbb {Q}\) be a reflexive d-tope such that  \(\Delta \subseteq \Delta '\). Then \((\Delta ')^* \subseteq \Delta ^*\). Since \((\Delta ')^*\) is a lattice polytope, it is contained in \([\Delta ^*]\). Thus, \([\Delta ^*]^*\) is contained in \(((\Delta ')^*)^* = \Delta '\).   \(\square \)

Remark 18

If \(\Delta \) is a reflexive d-tope, then \([2\Delta ^\circ ] = \Delta \). If \(\Delta \) is a canonical Fano d-tope with \(d \in \{3,4\}\) such that \(\Delta ^{{{\mathrm{FI}\,}}}=\{0\}\) and \(\Delta \) is contained in a reflexive d-tope \(\Delta '\), then \([2\Delta ^\circ ]\) is contained in \([(2\Delta ')^\circ ] = \Delta '\). Therefore, \([2\Delta ^\circ ]\) is contained in the smallest reflexive polytope \([\Delta ^*]^*\) containing \(\Delta \), i.e.,

$$\begin{aligned}{}[2\Delta ^\circ ] \subseteq [\Delta ^*]^*. \end{aligned}$$

Computations showed that among all \(665,\!599\) canonical Fano 3-topes \(\Delta \) with \(\Delta ^\mathrm{FI} = \{0 \}\) there exist exactly \(211,\!941\) canonical Fano 3-tops such that \([2\Delta ^\circ ]\) is reflexive. For the remaining canonical Fano 3-topes \(\Delta \) the lattice 3-topes \([2\Delta ^\circ ]~\) are larger than \(\Delta \), but are not equal to the reflexive hull \([\Delta ^*]^*\).

Remark 19

Let \(\Delta \) be an almost reflexive 3-tope. We denote by \(\tau (\Delta )\) the lattice d-tope \([2\Delta ^\circ ]\) . If \(\tau (\Delta )\) is not reflexive, then it is almost reflexive and we can consider the larger lattice d-tope \(\tau ^2(\Delta ) := \tau (\tau (\Delta )) \subseteq [\Delta ^*]^*\). After at most five steps, \(\tau ^k(\Delta )\) is equal to the reflexive hull \([\Delta ^*]^*\) of \(\Delta \).

In dimension 4, the situation is comparable:

Example 20

Let \(\Delta \subseteq \mathbb {R}^4\) be the almost reflexive 4-tope defined by the inequalities \(x_i \ge -1\) \((1 \le i \le 4)\),  \(x_1 \le 2\), and \(x_1 + x_2 + x_3 + x_4 \le 1\). Then \(\Delta ^{FI} = \{0\}\) and the smallest reflexive 4-tope containing \(\Delta \) is the 4-simplex \( [\Delta ^*]^*\) defined by the inequalities \(x_i \ge -1\) \((1 \le i \le 4)\) and \(x_1 + x_2 + x_3 + x_4 \le 1\). It is easy to see that \(\tau (\Delta )\) is not the reflexive  4-tope \([\Delta ^*]^*\) because the vertex \((4,-1,-1,-1) \in \text {vert}([\Delta ^*]^*)\) is not in \(2\Delta ^\circ \). However, \(\tau ^2(\Delta ) = [\Delta ^*]^*\).

2.3 Canonical Fano 3-Topes with \(\Delta ^{{{\mathrm{FI}\,}}} = \{0\}\)

We note that the set of all reflexive 3-topes forms a rather small part of the set of all canonical Fano 3-topes. The majority of the canonical Fano 3-topes belong to the subset of almost reflexive 3-topes. The proof of the following statement is based on the result of Skarke [21] and the explanations in the previous section.

Proposition 21

A canonical Fano 3-tope \(\Delta \) is almost reflexive if one of the following equivalent conditions is satisfied:

  1. 1.

     \(\Delta ^{{{\mathrm{FI}\,}}} =\{0\};\)

  2. 2.

     \(0 \in N\) is an interior lattice point of \([\Delta ^* ]\);

  3. 3.

     \(\Delta \) is contained in some reflexive 3-tope;

  4. 4.

     \(\tau ^k(\Delta )\) is the reflexive 3-tope \([\Delta ^*]^*\) for some sufficiently large k \((1 \le k \le 5)\);

  5. 5.

    the lattice 3-tope \([2\Delta ^\circ ]\) has exactly one interior lattice point;

  6. 6.

    the non-degenerate affine hypersurface \(\mathcal {Z}_\Delta \) defined by a Laurent polynomial with Newton polytope \(\Delta \) is birational to a smooth K3-surface.

Computations show that there exist exactly \(665,\!599\) almost reflexive canonical Fano 3-topes. The set of almost reflexive 3-topes includes all \(4, \!319\) reflexive 3-topes. We have shown that for any almost reflexive 3-tope \(\Delta \), the reflexive polytope \(\Delta ^{{{\mathrm{ref}\,}}}:= [\Delta ^*]^*\) is the smallest reflexive 3-tope containing \(\Delta \). We call \(\Delta ^{{{\mathrm{ref}\,}}}\) the reflexive hull of \(\Delta \). Thus we obtain a natural surjective map \( \Delta \mapsto \Delta ^{{{\mathrm{ref}\,}}}\) from the set of almost reflexive 3-topes to the set of reflexive 3-topes, which is the identity on the set of reflexive 3-topes. The minimal surface \(\mathcal {S}_\Delta \) is a K3-surface if and only if  \(\Delta \) is an almost reflexive 3-tope. If \(\Delta \) is an almost reflexive 3-tope, but not reflexive, then the minimal surface \(\mathcal {S}_\Delta \) is a crepant desingularization of the Zariski closure of \(\mathcal {Z}_\Delta \) in the Gorenstein toric Fano threefold \(X_{\Delta ^{{{\mathrm{ref}\,}}}}\) defined by the reflexive hull of \(\Delta \).

A generalization of the reflexive hull of almost reflexive 3-topes for arbitrary lattice d-topes with non-empty Fine interior can be obtained using the notion of the support of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\).

Definition 22

Let \(\Delta \subseteq M_\mathbb {Q}\) be a lattice d-tope with \(\Delta ^{{{\mathrm{FI}\,}}} \ne \emptyset \). Then the set

$$ {{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) := \{ n \in N \, \vert \, \text { there exists }x \in \Delta ^{{{\mathrm{FI}\,}}} \; \mathrm{with }\; \langle x, n \rangle = {\text {ord}}_{\Delta }(n) +1 \} $$

is called support of the Fine interior of \(\Delta \).

Example 23

If \(\Delta \) is a reflexive d-tope, then the support of the Fine interior of \(\Delta \) is the set of all non-zero lattice points in \(\Delta ^* \cap N\).

Remark 24

It is easy to show that one always has

$$ \Delta ^{{{\mathrm{FI}\,}}} = \bigcap _{n \in {{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})} \{ x \in M_\mathbb {Q}\, \vert \, \langle x, n \rangle \ge {\text {ord}}_{\Delta }(n) +1 \}. $$

Definition 25

Let \(\Delta \subseteq M_\mathbb {Q}\) be a lattice d-tope with \(\Delta ^{{{\mathrm{FI}\,}}} \ne \emptyset \). Then the rational polytope

$$ \Delta ^{{{\mathrm{can}\,}}}:= \bigcap _{n \in {{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})} \{ x \in M_\mathbb {Q}\, \vert \, \langle x, n \rangle \ge {\text {ord}}_{\Delta }(n) \} $$

contains \(\Delta \) and is called the canonical hull of \(\Delta \).

Example 26

If \(\Delta \) is an almost reflexive 3-tope, then \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\) is the set \((\Delta ^* \cap N) \setminus \{0\}\) of boundary lattice points in the reflexive 3-tope \([ \Delta ^*]\) and the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) equals the reflexive hull \(\Delta ^{{{\mathrm{ref}\,}}}\) of the polytope \(\Delta \), i.e., \(\Delta ^{{{\mathrm{can}\,}}}=\Delta ^{{{\mathrm{ref}\,}}}=[\Delta ^*]^*\). In particular, in this case \(\Delta ^{{{\mathrm{can}\,}}}\) is always a lattice 3-tope.

There exists a smooth projective toric variety \(X_\Sigma \) defined by a fan \(\Sigma \) whose 1-dimensional cones are generated by all lattice vectors from the finite set \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\). Then the minimal surface \(\mathcal {S}_\Delta \) is a K3-surface which is the Zariski closure of \(\mathcal {Z}_\Delta \) in \( X_\Sigma \) [3].

Fig. 2.1
figure 1

Canonical Fano 3-topes \({\boldsymbol{\Delta }}\) with \({\boldsymbol{\Delta }}^{\mathbf {FI}}\boldsymbol{{=}}\mathbf {\{0\}}\). Shaded faces are occluded and the Fine interior \(\{0\}\) is shown in grey with a double border. The whole polytope is the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) as well as the reflexive hull \(\Delta ^{{{\mathrm{ref}\,}}}\) and the grey coloured polytope is \(\Delta \). a Reflexive polytope \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(1,0,0)\)\(v_2=(0,1,0)\)\(v_3=(0,0,1)\)\(v_4= (-1,-1,-1)\), and \(\Delta ^{{{\mathrm{ref}\,}}}=\Delta ^{{{\mathrm{can}\,}}}= \Delta \). All facets of \(\Delta \) have lattice distance 1 to the origin. b Almost reflexive polytope \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(1,0,0)\)\(v_2=(0,1,0)\)\(v_3=(0,0,1)\)\(v_4= (-1,-1,-2)\), and \(\Delta ^{{{\mathrm{ref}\,}}}=\Delta ^{{{\mathrm{can}\,}}}= {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4,v_5\}\) with \(v_5=(0,0,-1)\) reflexive. The dark grey coloured facet of \(\Delta \) has lattice distance 2 and all other facets have lattice distance 1 to the origin

Example 27

Let us consider the (almost) reflexive canonical Fano 3-tope \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\} \subseteq M_\mathbb {Q}\) (ID 547386, Fig. 2.1a) with vertices

$$ v_1 := (1,0,0), \, v_2 := (0,1,0), \, v_3 :=(0,0,1), \, \text {and } v_4 := (-1,-1,-1) $$

and \({\Delta }^{{{\mathrm{FI}\,}}}=\{0\}\). Moreover,

$$ \Delta ^{{{\mathrm{ref}\,}}}= {{\,\mathrm{conv}\,}}( 2\Delta ^\circ \cap M) = {{\,\mathrm{conv}\,}}(\Delta \cap M) = \Delta $$

and

$$ {\Delta }^{{{\mathrm{can}\,}}} =[{\Delta }^*]^* = ({\Delta }^*)^*={\Delta } $$

because \({\Delta }\) is reflexive, i.e., \(\Delta ^{{{\mathrm{ref}\,}}}=\Delta ^{{{\mathrm{can}\,}}}= \Delta \) reflexive (Fig. 2.1a).

Example 28

Consider the almost reflexive canonical Fano 3-tope \(\Delta \subseteq M_\mathbb {Q}\) (ID 547385, Fig. 2.1b) with vertices

$$ v_1 := (1,0,0), \, v_2 := (0,1,0), \, v_3 :=(0,0,1), \,\text {and } v_4 := (-1,-1,-2) $$

and \({\Delta }^{{{\mathrm{FI}\,}}}=\{0\}\). Moreover,

$$ \Delta ^{{{\mathrm{ref}\,}}}= {{\,\mathrm{conv}\,}}((\Delta \cap M) \cup \{v_5\}) = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4, v_5\} $$

and

$$ {\Delta }^{{{\mathrm{can}\,}}} =[{\Delta }^*]^* = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4, v_5\} $$

with \(v_5:= (0, 0, -1)\) because \({\Delta }\) is almost reflexive, i.e., \(\Delta ^{{{\mathrm{ref}\,}}}=\Delta ^{{{\mathrm{can}\,}}}= \Delta \) reflexive (Fig. 2.1b).

2.4 Asymmetric Fine Interior of Dimension 1

There exist exactly \(9,\!020\) canonical Fano 3-topes \(\Delta \) with 1-dimensional Fine interior such that \(0 \in N\) belongs to a facet \(\Theta \preceq [\Delta ^*]\) of the lattice 3-tope \([\Delta ^*]\). This class of canonical Fano 3-topes is characterized by the property that the lattice 3-tope \([2\Delta ^\circ ]\) has exactly 2 interior lattice points.

The corresponding minimal surfaces \(\mathcal {S}_\Delta \) are  simply connected (i.e., have trivial fundamental group \(\pi _1(\mathcal {S}_\Delta )\)) elliptic surfaces of Kodaira dimension \(\kappa =1\). We observed that the facet \(\Theta \preceq [\Delta ^*]\) is a reflexive 2-tope corresponding to one of the three types pictured in Fig. 2.2. All N-lattice points on the boundary of \(\Theta \) belong to \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\). It was checked that for all these 3-topes \(\Delta \) the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) is again a lattice 3-tope. Moreover, the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) is contained in the ray generated by the primitive lattice vector \(v_\Delta \in M\) which is the primitive inward-pointing facet normal of \(\Theta \), i.e., \(\langle x , y \rangle =0\) for all \(x \in \Delta ^{{{\mathrm{FI}\,}}}\)\(y \in \Theta \). The lattice point \(0 \in M\) is a vertex of \(\Delta ^{{{\mathrm{FI}\,}}}\). More precisely, one has

$$\begin{aligned} \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{0, \lambda v_\Delta \}, \end{aligned}$$

where \(\lambda \in \{ 1/2, 2/3\}\). The primitive lattice vector \(v_\Delta \) is the unique interior lattice point on a reflexive facet \(\theta _{+} \preceq \Delta \) of \(\Delta \) of one of the three possible types pictured in Fig. 2.2. These three reflexive polygons \(\theta _{+}\) are characterized by the condition that the dual reflexive polygons \(\theta ^*_{+}\) are obtained from \(\theta _{+}\) (Fig. 2.3) by enlarging the lattice \(\mathbb {Z}^2\) in the following ways: \(\mathbb {Z}^2 + \mathbb {Z}(1/3,2/3)\) (Fig. 2.3a), \(\mathbb {Z}^2 + \mathbb {Z}(1/2, 0)\) (Fig. 2.3b), and \(\mathbb {Z}^2 + \mathbb {Z}(1/2,1/2)\) (Fig. 2.3c). Moreover, the reflexive facet \(\theta _{+}\) of \(\Delta \) is isomorphic to the facet \(\Theta \) of \([\Delta ^*]\). The projection \(M \rightarrow M/\mathbb {Z}v_\Delta \) of \(\Delta \) or of \(\theta _{+}\) along \(v_\Delta \) is a reflexive polygon of one of the three types pictured in Fig. 2.3, which is dual to \(\theta _{+}\) and \(\Theta \). The lattice vector \(v_\Delta \) defines a character of the 3-dimensional torus \(\chi : \mathbb {T}^3 \rightarrow \mathbb {C}^\times \). For almost all \(\alpha \in \mathbb {C}^\times \), the fiber \(\chi ^{-1} (\alpha )\) is an affine elliptic curve defined by a Laurent polynomial with the reflexive Newton polytope \(\Theta ^* \cong \theta ^*_{+}\) of one of the three types pictured in Fig. 2.3 with the distribution shown in Table 2.1. So \(\chi \) defines birationally an elliptic fibration.

Fig. 2.2
figure 2

Reflexive Facets of \(\Delta \) Containing \(\pm v_\Delta \). Three types of reflexive facets \(\theta _{\pm } \preceq \Delta \) of \(\Delta \) containing \(\pm v_\Delta \) for all \(9,\!020+20\) canonical Fano 3-topes \(\Delta \) with \(\dim (\Delta ^{{{\mathrm{FI}\,}}})=1\). Vertices are coloured black, boundary points that are not vertices grey, and the origin light grey. a \( {{\,\mathrm{conv}\,}}\{(1,0),(0,1),(-1,-1)\}\). b \({{\,\mathrm{conv}\,}}\{(1,0),(-1,1),(-1,-1)\}\). c \({{\,\mathrm{conv}\,}}\{(\pm 1,0),(0,\pm 1)\}\)

Fig. 2.3
figure 3

Reflexive Projection Polytopes. Three types of reflexive polytopes obtained via a projection of \(\Delta \) along \(\pm v_\Delta \) for all \(9,\!020+20\) canonical Fano 3-topes \(\Delta \) with \(\dim (\Delta ^{{{\mathrm{FI}\,}}})=1\). Vertices are coloured black, boundary points that are not vertices grey, and the origin light grey. a \({{\,\mathrm{conv}\,}}\{(-1,2),(-1,-1),(2,-1)\}\). b \({{\,\mathrm{conv}\,}}\{(-2,-1),(0,1),\) \((2,-1)\}\). c \({{\,\mathrm{conv}\,}}\{(\pm 1,\pm 1)\}\)

Table 2.1 Distribution of the Reflexive Facets of \(\Delta \) Containing \({\boldsymbol{\pm }} {\mathbf {v}}_{\boldsymbol{\Delta }}\). Table contains: Type of the reflexive facet \(\theta _{\pm }\) containing \(\pm v_{\Delta }\), type of the dual reflexive facet \( \theta ^*_{\pm }\), the enlarged lattice used to obtain \( \theta ^*_{\pm }\) from \({\theta _{\pm }}\), the number of canonical Fano 3-topes \(\Delta _{\text {asym}} := \{\Delta \, \vert \,~\)1\(\text {-dim. asym. } \Delta ^{{{\mathrm{FI}\,}}}\}\), and the number of canonical Fano 3-topes \(\Delta _{\text {sym}} := \{\Delta \, \vert \,~\)1\(\text {-dim. sym. } \Delta ^{{{\mathrm{FI}\,}}}\}\) with respect to the facet type of \(\theta _{\pm }\) pictured in Fig. 2.2
Fig. 2.4
figure 4

Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1 Shaded faces are occluded. The Fine interior and the origin are shown in grey, with a double border around the origin. The facet \(\theta _{+}\) is grey dotted. a The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(2,3,8)\)\(v_2=(1,0,0)\)\(v_3=(0,1,0)\), and \(v_4= (-1,-1,-1)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}= {{\,\mathrm{conv}\,}}\{(0,0,0), (1/2,1/2,1)\}\)\(\theta _{+} = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3\}\), and \(\Delta ^{{{\mathrm{can}\,}}} = {{\,\mathrm{conv}\,}}\{v_1, v_2, v_3, v_4, v_5\}\) with \(v_5 = (0, 1,4)\). b The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(-1,1,-2)\)\(v_2=(1,-2,3)\)\(v_3=(1,0,0)\), and \(v_4= (-2,5,-3)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}={{\,\mathrm{conv}\,}}\{(0,0,0), (0,2/3,0)\}\) and \(\theta _{+}={{\,\mathrm{conv}\,}}\{v_2,v_3,v_4\}\), and \(\Delta ^{{{\mathrm{can}\,}}} = {{\,\mathrm{conv}\,}}\{v_1, v_2, v_3, v_4, v_5\}\) with \(v_5 = (-2, 4,-3)\)

Example 29

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano 3-tope given as the convex hull of

$$ v_1 := (2,3,8), \, v_2 := (1,0,0), \, v_3 := (0,1,0), \,\text {and } v_4 := (-1,-1,-1) $$

(ID 547324, Fig. 2.4a, Tables 2.2 and 2.4). Then

$$\begin{aligned} \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{(0,0,0), (1/2,1/2,1)\} = {{\,\mathrm{conv}\,}}\{0, 1/2 \cdot v_\Delta \}, \end{aligned}$$

where \(v_\Delta = (1,1,2)\). One has \(v_1 + 2v_2 + v_3 = 4 v_\Delta \). Therefore, \(v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{+}\) of \(\Delta \) with vertices \(v_1,v_2, v_3\) and the images \(\overline{v}_1, \overline{v}_2, \overline{v}_3\) of \(v_1,v_2,v_3\) in \(M/\mathbb {Z}v_\Delta \) are vertices of the dual reflexive triangle \(\theta ^*_{+}\) (Fig. 2.3b) satisfying the relation

$$\begin{aligned} \overline{v}_1 + 2 \overline{v}_2 + \overline{v}_3 =0. \end{aligned}$$

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 18 \}\) with \(s_1 := (-1, -1, 1)\), \(s_2 := (-1, -1, 2)\), \(s_3 := (-1, -1, 3)\), \(s_4 := (-1, 0, 1)\), \(s_5 := (-1, 0, 2)\), \(s_6 := (-1, 1, 0)\), \(s_7 := (-1, 1, 1)\), \(s_8 := (-1, 2, 0)\), \(s_9 := (-1, 3, -1)\), \(s_{10} := (0, -1, 1)\), \(\ldots \), \(s_{18} := (-2, -2, 1)\), which leads to

$$ \Delta ^{{{\mathrm{can}\,}}} ={{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4, v_5\} $$

with \(v_5:= (0, 1,4)\) (Fig. 2.4a).

Table 2.2 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table contains: vertices \(\text {vert}(\Delta )\) of \(\Delta \), vertices \(\text {vert}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\), unique primitive lattice point \(v_{\Delta } \in \theta _+\) in the reflexive facet \(\theta _+ \preceq \Delta \), and weights \((w_i)_{0 \le i \le 3}\) of the weighted projective 3-space \(\mathbb {P}(w_0,\ldots ,w_3)\) appearing in [11]
Table 2.3 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table contains: primitive inward-pointing facet normals \((n_{i})_{1 \le i \le 4}\) of \(\Delta \), vertices \(\text {vert}(\theta _{+})\) of the reflexive facet \(\theta _{+}\preceq \Delta \), and primitive inward-pointing facet normal \(n_{\theta _+}\) of the reflexive facet \(\theta _+ \preceq \Delta \)
Table 2.4 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table contains: vertices \(\text {vert}(\Theta )\) of the reflexive facet \(\Theta \preceq [\Delta ^*]\), support \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\), and vertices \(\text {vert}(\Delta ^{{{\mathrm{can}\,}}})\) of the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}~\)

Example 30

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano 3-tope given as the convex hull of

$$ v_1 := (-1,1,-2), \, v_2 := (1,-2,3), \, v_3 := (1,0,0), \,\text {and } v_4 := (-2,5,-3) $$

(ID 547323, Fig. 2.4b, Tables 2.2 and 2.4). Then (Table 2.3)

$$\begin{aligned} \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{(0,0,0), (0,2/3,0)\} = {{\,\mathrm{conv}\,}}\{0, 2/3 \cdot v_\Delta \}, \end{aligned}$$

where \(v_\Delta = (0,1,0)\). One has \(v_2 + v_3 + v_4 = 3 v_\Delta \). Therefore, \(v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{+}\) of \(\Delta \) with vertices \(v_2,v_3, v_4\) and the images \(\overline{v}_2, \overline{v}_3, \overline{v}_4\) of \(v_2,v_3,v_4\) in \(M/\mathbb {Z}v_\Delta \) are vertices of the dual reflexive triangle \(\theta ^*_{+}\) (Fig. 2.3a) satisfying the relation

$$\begin{aligned} \overline{v}_2 + \overline{v}_3 + \overline{v}_4 =0. \end{aligned}$$

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 20 \}\) with \(s_1 := (-3, -3, -2)\), \(s_2 := (-1, 0, 0)\), \(s_3 := (-1,0,1)\), \(s_4 := (-1,1,1)\), \(s_5 := (-1,2,2)\), \(s_6 := (-1,3,2)\), \(s_7 := (-1,4,3)\), \(s_8 := (-1,6,4)\), \(s_9 := (0,1,1)\), \(s_{10} := (0,2,1)\), \(\ldots \), \(s_{20} := (4,1,-1)\), which leads to

$$ \Delta ^{{{\mathrm{can}\,}}} ={{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4, v_5\} $$

with \(v_5:= (-2,4,-3)\) (Fig. 2.4b).

Remark 31

The detailed information about a small selection of the \(9,\!020\) canonical Fano 3-topes with \(\dim (\Delta ^{{{\mathrm{FI}\,}}})=1\) and \(0 \in \text {vert}(\Delta ^{{{\mathrm{FI}\,}}})\) can be found in Tables 2.22.3, and 2.4.

2.5 Symmetric Fine Interior of Dimension 1

There exist exactly 20 canonical Fano 3-topes \(\Delta \) such that 0 is the center of 1-dimensional Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\). In this case,  \(\mathcal {S}_\Delta \) is an elliptic surface of Kodaira dimension \(\kappa = 1\) with non-trivial fundamental group \(\pi _1(\mathcal {S}_\Delta )\) of order 2 or 3. Computations show that one always has  \(\Delta =\Delta ^{{{\mathrm{can}\,}}}\) and

$$\begin{aligned} \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{-\lambda v_\Delta , \lambda v_\Delta \} \end{aligned}$$

with \(\lambda = \frac{1}{2}~\) if and only if \(\left| \pi _1(\mathcal {S}_\Delta ) \right| =2\) and

$$\begin{aligned} \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{-\mu v_\Delta , \mu v_\Delta \} \end{aligned}$$

with \(\mu = \frac{2}{3}\) if and only if \(\left| \pi _1(\mathcal {S}_\Delta ) \right| =3\). The primitive lattice vectors \(\pm v_\Delta \) are the two unique interior lattice points in two reflexive facets \(\theta _{\pm } \preceq \Delta \) of one of the three possible types pictured in Fig. 2.2. The reflexive facets \(\theta _{\pm }\) of \(\Delta \) are isomorphic to the facet \(\Theta \) of \([\Delta ^*]\). The projections \(M \rightarrow M/\mathbb {Z}(\pm v_\Delta )\) of \(\Delta \) or of \(\theta _{\pm }\) along \(\pm v_\Delta \) reveal a reflexive polygon of one of the three types pictured in Fig. 2.3, which is dual to \(\theta _{\pm }\) and \(\Theta \). The lattice vector \(v_\Delta \) defines a character of the 3-dimensional torus \(\chi : \mathbb {T}^3 \rightarrow \mathbb {C}^\times \). For almost all \(\alpha \in \mathbb {C}^\times \), the fiber \(\chi ^{-1} (\alpha )\) is an affine elliptic curve defined by a Laurent polynomial with the reflexive Newton polytope \(\Theta ^* \cong \theta ^*_{\pm }\) of one of the three types pictured in Fig. 2.3 with the distribution shown in Table 2.1. So \(\chi \) defines birationally an elliptic fibration. The vertex sets of \(\Delta \) and these reflexive facets are related via \(\text {vert}(\Delta ) = \text {vert}(\theta _{+}) \cup \text {vert}(\theta _{-})\). Moreover, every edge of \(\Delta \) is either an edge of \(\theta _{+}\) or \(\theta _{-}\) of these two facets or it is parallel to \(v_\Delta \).

Fig. 2.5
figure 5

Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Shaded faces are occluded. The Fine interior and the origin are shown in grey with a double border around the origin. The facets \(\theta _{\pm }\) are grey dotted. a The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(1,0,0)\)\(v_2=(2,1,1)\)\(v_3=(-2,-3,-5)\), and \(v_4= (2,1,9)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}= {{\,\mathrm{conv}\,}}\{(0,0,-1/2), (0,0,1/2)\}\)\(\theta _{+} = {{\,\mathrm{conv}\,}}\{v_1,v_3,v_4\}\), \(\theta _{-} = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3\}\), and \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \). b The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1=(-4,2,9)\)\(v_2=(1,0,0)\)\(v_3=(0,1,0)\), and \(v_4= (7,-6,-18)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}= {{\,\mathrm{conv}\,}}\{(-2/3,2/3,2),(2/3,-2/3,-2)\}\)\(\theta _{+} = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3\}\), \(\theta _{-} = {{\,\mathrm{conv}\,}}\{v_1,v_3,v_4\}\), and \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \)

Example 32

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano 3-tope given as the convex hull

$$ v_1 := (0,1,0), \, v_2 := (2,1,1), \, v_3 := (-2,-3,-5), \,\text {and } v_4 := (2,1,9) $$

(ID 547393, Fig. 2.5b, Tables 2.5 and 2.6). Then

$$ \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{(0,0,-1/2), (0,0, 1/2)\} = {{\,\mathrm{conv}\,}}\{-\lambda v_\Delta , \lambda v_\Delta \} $$

with \(\lambda = \frac{1}{2},~\) where \(v_\Delta = (0,0,1)\). One has \(2v_1 + v_3 + v_4 = 4 v_\Delta \) and \(2v_1 + v_2 + v_3 = 4(- v_\Delta )\). Therefore, \(v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{+} = \theta _{134}\) of \(\Delta \) and \(-v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{-}= \theta _{123}\) of \(\Delta \) (Fig. 2.2b). The images \(\overline{v}_1, \overline{v}_3, \overline{v}_4\) of \(v_1,v_3,v_4\) in \(M/\mathbb {Z}v_\Delta \) and the images \(\overline{v}_1, \overline{v}_2, \overline{v}_3\) of \(v_1,v_2,v_3\) in \(M/\mathbb {Z}(-v_\Delta )\) are vertices of the dual reflexive triangle \(\theta ^*_{\pm }\) (Fig. 2.3b) satisfying the relation

$$\begin{aligned} 2 \overline{v}_1 + \overline{v}_3 + \overline{v}_4 =0 \end{aligned}$$

and

$$\begin{aligned} 2 \overline{v}_1 + \overline{v}_2 + \overline{v}_3 =0, \end{aligned}$$

respectively.

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 6 \}\) with \(s_1 := (-1, -2, 2)\), \(s_2 := (-1, 1, 0)\), \(s_3 := (0, -1, 0)\), \(s_4 := (1, -1, 0)\), \(s_5 := (2, -1, 0)\), and \(s_6 := (9, -2, -2)\), which leads to \(\Delta ^{{{\mathrm{can}\,}}} = \Delta .\)

Table 2.5 20 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Table contains: vertices \(\text {vert}(\Delta )\) of \(\Delta \)
Table 2.6 20 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Table contains: vertices \(\text {vert}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\), unique primitive lattice points \(\pm v_{\Delta } \in \theta _\pm \) in the reflexive facets \(\theta _\pm \preceq \Delta \), vertices \(\text {vert}(\theta _{{\pm }})\) of the reflexive facets \(\theta _{{\pm }} \preceq \Delta \), and support \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\) (here: \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \))

Example 33

Let \(\Delta \subseteq M_\mathbb {Q}\) be a canonical Fano 3-tope given as the convex hull

$$ v_1 := (-4,2,9), \, v_2 := (1,0,0), \, v_3 := (0,1,0), \,\text {and } v_4 := (7,-6,-18) $$

(ID 547409, Fig. 2.5b, Tables 2.5 and 2.6). Then

$$ \Delta ^{{{\mathrm{FI}\,}}} = {{\,\mathrm{conv}\,}}\{(-2/3, 2/3, 2),(2/3, -2/3, -2)\} = {{\,\mathrm{conv}\,}}\{ -\mu v_\Delta , \mu v_\Delta \} $$

with \(\mu = \frac{2}{3},~\) where \(v_\Delta = (1,-1,-3)\). One has \(v_1+ v_2 +v_3 = -3 v_\Delta \) and \(v_1 + v_3 + v_4 = -3(- v_\Delta )\). Therefore, \(v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{+} = \theta _{123}\) of \(\Delta \) and \(-v_\Delta \) is the interior lattice point of the reflexive facet \(\theta _{-}= \theta _{134}\) of \(\Delta \) (Fig. 2.2b). The images \(\overline{v}_1, \overline{v}_2, \overline{v}_3\) of \(v_1,v_2,v_3\) in \(M/\mathbb {Z}v_\Delta \) and the images \(\overline{v}_1, \overline{v}_3, \overline{v}_4\) of \(v_1,v_3,v_4\) in \(M/\mathbb {Z}(-v_\Delta )\) are vertices of the dual reflexive triangle \(\theta ^*_{\pm }\) (Fig. 2.3b) satisfying the relation

$$\begin{aligned} \overline{v}_1 + \overline{v}_2 + \overline{v}_3 =0, \end{aligned}$$

and

$$\begin{aligned} \overline{v}_1 + \overline{v}_3 + \overline{v}_4 =0, \end{aligned}$$

respectively.

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 5 \}\) with \(s_1 := (-3,-3,-1)\), \(s_2 := (-1, -1, 0)\), \(s_3 := (-1,2, -1)\), \(s_4 := (2, -1, 1)\), and \(s_5 := (15,-3,7)\), which leads to \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \).

Remark 34

Information about all 20 canonical Fano 3-topes with \(\dim (\Delta ^{{{\mathrm{FI}\,}}})=1\) and \(0 \in {(\Delta ^{{{\mathrm{FI}\,}}})}^{\circ }\) can be found in Tables 2.5 and 2.6.

2.6 Fine Interior of Dimension 3

There exist 49 canonical Fano 3-topes \(\Delta \) such that \(\dim (\Delta ^{{{\mathrm{FI}\,}}}) = 3\). Exactly 3 of these polytopes \(\Delta \) define minimal surface \(\mathcal {S}_\Delta \) with non-trivial fundamental group of order 2 and \(K^2 =2\). For these 3 polytopes one has \(\Delta = \Delta ^{{{\mathrm{can}\,}}}\). The surfaces \(\mathcal {S}_\Delta \) were investigated by Todorov [24] as well as Catanese and Debarre [10].

The remaining 46 canonical Fano 3-topes \(\Delta \) define simply connected minimal surfaces \(\mathcal {S}_\Delta \) with \(K^2 =1\). These surfaces were investigated by Kanev [19], Catanese [9], and Todorov [23]. Among these 46 canonical Fano 3-topes there exist exactly 26 polytopes \(\Delta \) such that \(\Delta = \Delta ^{{{\mathrm{can}\,}}}\).

Example 35

([19]) Let \(M \subseteq \mathbb {Q}^4\) be the 3-dimensional affine lattice defined by

$$ M := \{ ( m_1,m_2, m_3,m_4 ) \in \mathbb {Z}^4 \, \vert \, m_1 + m_2 + m_3 + 2 m_4 = 6, \; m_2 + 2 m_3 \equiv 0\ \left( \mathrm {mod}\ {3}\right) \} $$

and \(\Delta ' \subseteq M_\mathbb {Q}\) be the convex hull of 4 lattice points

$$\begin{aligned} (6,0,0,0),\, (0,6,0,0), \,(0,0,6,0), \,\text {and }(0,0,0,3) \in M. \end{aligned}$$

Then \((\Delta ')^{{{\mathrm{FI}\,}}}\) is the 3-dimensional rational simplex

$$\begin{aligned} {{\,\mathrm{conv}\,}}\{(2,1,1,1), (1,2,1,1), (1,1,2,1), (1,1,1,3/2)\} \end{aligned}$$

and \((\Delta ')^{{{\mathrm{FI}\,}}} \cap M = \{ (2,1,1,1) \}\).

The canonical Fano 3-tope \(\Delta '\) is the Newton polytope of the \(\mu _3\)-cyclic quotient \(\overline{Z}_{\Delta '}\) of the projective surface of degree 6 defined by the polynomial \(z_1^6 + z_2^6 + z_3^6 + z_4^3 =0\) in the weighted projective space \(\mathbb {P}(1,1,1,2)\), where the cyclic group \(\mu _3\) acts via \((z_1: z_2: z_3:z_4) \mapsto (z_1 : \varepsilon z_2: \varepsilon ^2 z_3: z_4)\). The single interior lattice point in \(\Delta '\) corresponds to the monomial \(z_1^2z_2z_3z_4\). The surface \(\overline{Z}_{\Delta '}\) has 3 cyclic quotient singularities of type \(A_2\). The minimal desingularization \(\mathcal {S}_{\Delta '}\) of \(\overline{Z}_{\Delta '}\) is a simply connected surface of general type with \(K^2 =1\).

One can identify \(\Delta '\) with the canonical Fano 3-simplex \(\Delta \) given as the convex hull of

$$ v_1 := (1,0,0), \, v_2 := (-2,-4,-5), \, v_3 := (1,2,4), \,\text {and } v_4 := (1,4,2) $$

(ID 547444, Fig. 2.6a, Tables 2.72.8, and 2.9). The primitive inward-pointing facet normals of the facets \(\theta _{124}\)\(\theta _{234}\)\(\theta _{123}\), and \(\theta _{134}\preceq \Delta \) of this simplex \(\Delta \) are

$$ n_1 := (-2,-1,2), \, n_2 := (5,-1,-1), \, n_3 := (-1,2,-1), \,\text {and } n_4 := (-1,0,0), $$

respectively. They satisfy the relation

$$\begin{aligned} n_1 + n_2 + n_3 + 2n_4 = 0. \end{aligned}$$

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 6 \}\) with \(s_1 := (-2,-1,2)\), \(s_2 := (-1, 0,0)\), \(s_3 := (-1,2,-1)\), \(s_4 := (1,1,-1)\), \(s_5 := (3,0,-1)\), and \(s_6 := (5,-1,-1)\), which leads to \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \).

Fig. 2.6
figure 6

Canonical Fano 3-topes with Fine Interior of Dimension 3. Shaded faces are occluded. The Fine interior and the origin are shown in grey with a double border around the origin. a The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1= (1,0,0)\)\(v_2 = (-2,-4,-5)\)\(v_3 = (1,2,4)\), and \(v_4 = (1,4,2)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}= {{\,\mathrm{conv}\,}}\{(0, 0, 0), (-1/2, -1, -3/2), (0, -1/3, -2/3), (0, 1/3, -1/3)\}\) and \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \). b The whole polytope is \(\Delta = {{\,\mathrm{conv}\,}}\{v_1,v_2,v_3,v_4\}\) with \(v_1 = (-3,-2,-2)\)\(v_2 = (1,0,0)\)\(v_3 = (1,3,1)\), and \(v_4 = (1,1,3)\). Moreover, \(\Delta ^{{{\mathrm{FI}\,}}}= {{\,\mathrm{conv}\,}}\{(0, 0, 0), (-1, -1/2, -1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)\}\) and \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \)

Table 2.7 49 Canonical Fano 3-topes with Fine Interior of Dimension 3 Table contains: vertices \(\text {vert}(\Delta )\) of \(\Delta \)
Table 2.8 49 Canonical Fano 3-topes with Fine Interior of Dimension 3. Table contains: vertices \(\text {vert}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\)
Table 2.9 49 Canonical Fano 3-topes with Fine Interior of Dimension 3. Table contains: support \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta ^{{{\mathrm{FI}\,}}}\), vertices \(\text {vert}(\Delta ^{{{\mathrm{can}\,}}})\) of the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\), and order of fundamental group \(\left| \pi _1(\mathcal {S}_\Delta ) \right| \) of the minimal model \(\mathcal {S}_{\Delta }\)

Example 36

([24]) Let \(M \subseteq \mathbb {Q}^4\) be the 3-dimensional affine lattice defined by

$$\begin{aligned} M:= \{ ( m_1,m_2,&m_3,m_4 ) \in \mathbb {Z}^4 \mid \\&m_1 + m_2 + 2m_3 + 2 m_4 = 8, \; 3m_2 + m_3 +3 m_4 \equiv 0\ \left( \mathrm {mod}\ {4}\right) \} \end{aligned}$$

and \({\Delta '} \subseteq M_\mathbb {Q}\) be the convex hull of 4 lattice points

$$\begin{aligned} (8,0,0,0), \, (0,8,0,0), \,(0,0,4,0), \,\text {and }(0,0,0,4) \in M. \end{aligned}$$

Then \(({\Delta '})^{{{\mathrm{FI}\,}}}\) is the 3-dimensional rational simplex

$$\begin{aligned} {{\,\mathrm{conv}\,}}\{(3,1,1,1), (1,3,1,1), (1,1,2,1), (1,1,1,2)\} \end{aligned}$$

and \(({\Delta '})^{{{\mathrm{FI}\,}}} \cap M = \{ (1,1,2,1) \}\).

The canonical Fano 3-tope \({\Delta '}\) is the Newton polytope of the \(\mu _4\)-cyclic quotient \(\overline{Z}_{\Delta '}\) of the projective surface of degree 8 defined by the polynomial \(z_1^8 + z_2^8 + z_3^4 + z_4^4 =0\) in the weighted projective space \(\mathbb {P}(1,1,2,2)\), where the cyclic group \(\mu _4\) acts via \((z_1: z_2: z_3:z_4) \mapsto (z_1 : i ^3z_2: i z_3: i ^3z_4)\). The single interior lattice point in this lattice simplex \({\Delta '}\) corresponds to the monomial \(z_1z_2z^2_3z_4\). The projective surface \(\overline{Z}_{\Delta '}\) has two Gorenstein cyclic quotient singularities of type \(A_3\). The minimal desingularization \(\mathcal {S}_{\Delta '}\) of \(\overline{Z}_{\Delta '}\) is a surface of general type with \(K^2=2\) and fundamental group \(\pi _1(\mathcal {S}_\Delta )\) of order 2.

One can identify \({\Delta '}\) with the canonical Fano 3-simplex \(\Delta \) given as the convex hull of

$$\begin{aligned} v_1 := (-3,-2,-2), \, v_2 := (1,0,0), \,v_3:=(1,3,1), \,\text {and } v_4:= (1,1,3) \end{aligned}$$

(ID 547465, Fig. 2.6b, Tables  2.72.8, and 2.9). The primitive inward-pointing facet normals of the facets \(\theta _{123}\)\(\theta _{124}\)\(\theta _{234}\)\(\theta _{134} \preceq \Delta \) of this simplex \(\Delta \) are

$$\begin{aligned} n_1 := (-1,-1, 3), \, n_2 := (-1,3,-1), \,n_3 := (-1,0,0 ), \,\text {and }n_4 := (2,-1,-1), \end{aligned}$$

respectively. They satisfy the relation

$$\begin{aligned} n_1 + n_2 + 2n_3 + 2n_4 = 0. \end{aligned}$$

To compute the canonical hull \(\Delta ^{{{\mathrm{can}\,}}}\) of \(\Delta \), we obtain \({{\,\mathrm{supp}\,}}(\Delta ^{{{\mathrm{FI}\,}}}) = \{s_i \, \vert \, 1 \le i \le 9 \}\) with \(s_1 := (-1, -1, 3)\), \(s_2 := (-1, 0,0)\), \(s_3 := (-1,0,1)\), \(s_4 := (-1,0,2)\), \(s_5 := (-1,1,0)\), \(s_6 :=(-1,1,1)\), \(s_7 :=(-1,2,0)\), \(s_8 :=(-1,3,-1)\), and \(s_9 :=(2,-1,-1)\), which leads to \(\Delta ^{{{\mathrm{can}\,}}} = \Delta \).

Remark 37

Information about all 49 canonical Fano 3-topes with \(\dim (\Delta ^{{{\mathrm{FI}\,}}})=3\) can be found in Tables 2.72.8, and 2.9.

2.7 Hollow 3-Topes with Non-empty Fine Interior

A lattice polytope \(\Delta \subseteq M_\mathbb {Q}\) is called hollow if it has no interior lattice points in its relative interior, i.e., \(\Delta ^\circ \cap M = \emptyset \). By [25, Theorem 1.3], any 3-dimensional hollow lattice polytope can be projected to the unimodular 1-simplex, to the double unimodular 2-simplex, or is an exceptional hollow 3-tope, whereas up to unimodular transformation there exist only a finite number of these. This theorem implies that a hollow 3-tope with non-empty Fine interior has to be exceptional because the unimodular 1-simplex and the double unimodular 2-simplex have empty Fine interior. Treutlein has found 9 maximal exceptional hollow polytopes, which was not an complete list. Averkov et al. [1, 2] have found the complete list consisting of 12 maximal exceptional hollow 3-topes \(\Delta _i\) \((1 \le i \le 12)\) (Table 2.10, Fig. 2.7). Computations show that exactly 9 of 12 maximal exceptional hollow 3-topes \(\Delta _i\) have non-empty Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}}\) (Table 2.10). Moreover, no one of these 9 polytopes contains a proper lattice 3-subpolytope with non-empty Fine interior. Thus, there exist exactly 9 hollow 3-topes \(\Delta _i\) with non-empty Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}}\).

Table 2.10 12 Maximal Hollow 3-topes. Table contains: index i of the maximal hollow 3-tope \(\Delta _i\), vertices \(\text {vert}(\Delta _i)\) of \(\Delta _i\), lattice width \(\text {w}(\Delta _i)\) of \(\Delta _i\), dimension \(\dim (\Delta _i^{{{\mathrm{FI}\,}}})\) of Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}}\), vertices \(\text {vert}(\Delta _i^{{{\mathrm{FI}\,}}})\) of \(\Delta _i^{{{\mathrm{FI}\,}}}\), and order of fundamental group \(\left| \pi _1(\mathcal {S}_\Delta ) \right| \) of the minimal model \(\mathcal {S}_{\Delta _{i}}\)
Fig. 2.7
figure 7

12 Maximal Hollow 3-topes. Shaded faces are occluded. The Fine interior is shown in grey with double borders around its vertices

It is remarkable that all minimal surfaces \(\mathcal {S}_{\Delta _i}\) corresponding to these 9 hollow 3-topes \(\Delta _i\) have non-trivial fundamental group \(\pi _1(\mathcal {S}_\Delta )\) of order 2, 3, or 5 (Table 2.10). There exist exactly 5 hollow 3-topes \(\Delta _i\) with 0-dimensional Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}} = \{R\}\), where \(R \in \frac{1}{2}M \setminus M\) is a rational point (Table 2.10). The normal fans \(\Sigma ^{\Delta _i}\) of these 5 hollow polytopes \(\Delta _i\) define 5 toric Fano threefolds \(X_{\Sigma ^{\Delta _i}}\) with at worst canonical singularities (Table 2.11). These Fano threefolds can be obtained as quotients of Gorenstein toric Fano threefolds \(X_{\Sigma _{\Delta ''}}\) in the following 5 ways:

Table 2.11 5 Hollow 3-topes with 0-dimensional Fine Interior. Table contains: index i of the maximal hollow 3-tope \(\Delta _i\), rays of the normal fan \(\Sigma ^{\Delta _i}\) corresponding to  \(\Delta _i\), ID of the canonical Fano 3-tope  \(\Delta '\) such that \(\Sigma ^{\Delta _i} \cong \Sigma _{\Delta '}\), rays of the spanning fan \(\Sigma _{\Delta '}\), ID of the reflexive canonical Fano 3-tope  \(\Delta ''\) used to construct the Gorenstein toric Fano threefold \(X_{\Sigma _{\Delta ''}}\) to obtain the toric Fano threefold \(X_{\Sigma _{\Delta '}}\) with at worst canonical singularities as a \(\mu _2\) quotient, and reference to the corresponding Gorenstein toric Fano threefold \(X_{\Sigma _{\Delta ''}}\) including the precise \(\mu _2\)-action on Sect. 2.7
  1. 1.

     \(\mathbb {P}(1,1,2,4)\) with a \(\mu _2\)-action given by

    $$ (x_0,x_1,x_2,x_3) \mapsto (x_0,-x_1,-x_2,-x_3); $$
  2. 2.

     \(\mathbb {P}^3\) with a \(\mu _4\)-action given by

    $$ (x_0,x_1,x_2,x_3) \mapsto (x_0,ix_1,-x_2,-ix_3); $$
  3. 3.

     \(\{ x_1x_2 - x_3x_4 =0 \} \subseteq \mathbb {P}(2,1,1,1,1)\) with a \(\mu _2\)-action given by

    $$ (x_0,x_1,x_2,x_3,x_4) \mapsto (-x_0,-x_1,-x_2,x_3,x_4); $$
  4. 4.

     \(\mathbb {P}^1 \times \mathbb {P}(1,1,2)\) with a \(\mu _2\)-action given by

    $$ (x_0,x_1,y_0,y_1,y_2) \mapsto (x_0,-x_1,y_0,-y_1,-y_2); $$
  5. 5.

     \(\mathbb {P}^1 \times \mathbb {P}^1 \times \mathbb {P}^1\) with a \(\mu _2\)-action given by

    $$ (x_0,x_1,y_0,y_1, z_0,z_1) \mapsto (x_0,-x_1, y_0,-y_1, z_0, -z_1). $$

In addition, Table 2.12 contains the support \({{\,\mathrm{supp}\,}}(\Delta _i^{{{\mathrm{FI}\,}}})\) of the Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}}\) and the vertices of the canonical hull \(\Delta _i^{{{\mathrm{can}\,}}}\) for all  9 hollow polytopes \(\Delta _i\) with non-empty Fine interior \(\Delta _i^{{{\mathrm{FI}\,}}}\).

Table 2.12 9 Hollow 3-topes with Non-empty Fine Interior. Table contains: index i of the maximal hollow 3-tope \(\Delta _i\), support \({{\,\mathrm{supp}\,}}(\Delta _i^{{{\mathrm{FI}\,}}})\) of \(\Delta _i^{{{\mathrm{FI}\,}}}\), and vertices \(\text {vert}(\Delta _i^{{{\mathrm{can}\,}}})\) of the canonical hull \(\Delta _i^{{{\mathrm{can}\,}}}\)