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Preface

This volume contains original research and survey articles highlighting interdisci-
plinary connections between a diverse range of topics. The common points of interest
are lattice polytopes. Lattice polytopes are fundamental combinatorial objects—
convex polytopes whose vertices have integer coordinates—with many beautiful and
deep connections across modern mathematics. Topics considered include: algebraic
geometry, mirror symmetry, symplectic geometry, discrete geometry, the geometry
of numbers, and algebraic combinatorics.

The study of lattice polytopes continues to open up fertile and unforeseen inter-
actions. In order to enhance this exchange of ideas, the workshop Interactions with
Lattice Polytopes took place 14–16 September, 2017, at the Otto-von-Guericke-
Universität Magdeburg, Germany. There were 15 talks given by world-leading
experts from several different backgrounds, elaborating upon the theme of appli-
cations of lattice polytopes. Many of the presented results can be found in this
volume.

Contributions to this volume contain original as well as expository research arti-
cles that illustrate some of the varied topical approaches and settings where lattice
polytopes play an important role. This volume should be particularly beneficial to
researchers and graduate students interested in learning more about the multifaceted
use of lattice polytopes across a broad range of active research areas.

This book relies deeply on the enthusiasm and engagement of the diverse and
collegial lattice polytope community. We are extremely grateful to the contribu-
tors for their high-quality articles, and to the anonymous referees for their careful
work. We would like to express our gratitude to everyone involved for their
patience and assistance. We are also thankful for logistical and financial support
from: the Otto-von-Guericke-Universität Magdeburg; the Research Training Group
Mathematical Complexity Reduction, funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation)—314838170, GRK 2297 MathCoRe;
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and the Engineering and Physical Sciences Research Council (EPSRC) Fellowship
EP/N022513/1.

Nottingham, UK
Magdeburg, Germany
October 2021

Alexander M. Kasprzyk
Benjamin Nill
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Chapter 1
Difference Between Families of Weakly
and Strongly Maximal Integral
Lattice-Free Polytopes

Gennadiy Averkov

Abstract A d-dimensional closed convex set K in R
d is said to be lattice-free if the

interior of K is disjointwithZ
d .We consider the following two families of lattice-free

polytopes: the familyLd of integral lattice-free polytopes in R
d that are not properly

contained in another integral lattice-free polytope and its subfamily Md consisting
of integral lattice-free polytopes in R

d which are not properly contained in another
lattice-free set. It is known thatMd = Ld holds for d ≤ 3 and, for each d ≥ 4,Md is
a proper subfamily ofLd . We derive a super-exponential lower bound on the number
of polytopes inLd\Md (with standard identification of integral polytopes up to affine
unimodular transformations).

Keywords Egyptian fraction · Hollow polytope · Lattice-free set · Lattice
polytope · Maximality

1.1 Introduction

By |X | we denote the cardinality of a finite set X . Let N be the set of all positive
integers and let d ∈ N be the dimension. Elements of Z

d are called integral points
or integral vectors. We call a polyhedron P ⊆ R

d integral if P is the convex hull
of P ∩ Z

d . Let Aff(Zd) be the group of affine transformations A : R
d → R

d satis-
fying A(Zd) = Z

d . We call elements of Aff(Zd) affine unimodular transformations.
For a family X of subsets of R

d , we consider the family of equivalence classes

X/Aff(Zd) := {{
A(X) : A ∈ Aff(Zd)

} : X ∈ X}

with respect to identification of the elements ofX up to affine unimodular transforma-
tions.A subset K ofRd is called lattice-free if K is closed, convex, d-dimensional and

G. Averkov (B)
Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät 1, Platz der Deutschen
Einheit 1, 03046 Cottbus, Germany
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2 G. Averkov

the interior of K contains no points from Z
d . A set K is called maximal lattice-free

if K is lattice-free and is not a proper subset of another lattice-free set.
Our objective is to study the relationship between the following two families of

integral lattice-free polytopes:

1. The family Ld of integral lattice-free polytopes P in R
d such that there exists

no integral lattice-free polytope properly containing P . We call elements of Ld

weakly maximal integral lattice-free polytopes.
2. The family Md of integral lattice-free polytopes P in R

d such that there exists
no lattice-free set properly containing P . We call the elements of Ld strongly
maximal integral lattice-free polytopes.

The family Ld has applications in mixed-integer optimization, algebra and alge-
braic geometry; see [1, 3, 4, 13], respectively. In [2, 11] it was shown that Ld is
finite up to affine unimodular transformations:

Theorem 1 ([2, Theorem 2.1], [11, Corollary 1.3]) Ld/Aff(Zd) is finite.

Several groups of researchers are interested in enumeration of Ld , up to affine
unimodular transformations, in fixed dimensions. This requires understanding geo-
metric properties of Ld . Currently, no explicit description of Ld is available for
dimensions d ≥ 4 and, moreover, it is even extremely hard to decide if a given
polytope belongs to Ld . A brute-force algorithm based on volume bounds for Ld

(provided in [11]) would have doubly exponential running time in d. In con-
trast to Ld , its subfamily Md is easier to deal with. Lovász’s characterization
[9, Proposition 3.3] of maximal lattice-free sets leads to a straightforward geomet-
ric description of polytopes belonging to Md . This characterization can be used to
decide whether a given polytope is an element ofMd in only exponential time in d.
Thus, while enumeration ofMd in fixed dimensions is a hard task, too, enumeration
of Ld is even more challenging.

For a given dimension d, it is a priori not clear whether or not Md is a proper
subset of Ld . Recently, it has been shown that the inequalityMd = Ld holds if and
only if d ≤ 3. The equality Md = Ld is rather obvious for d ∈ {1, 2}, as it is not
hard to enumerateLd in these very small dimensions and to check that every element
ofLd belongs toMd . Starting from dimension three, the problem gets very difficult.
Results in [1, 2] establish the equality M3 = L3 and enumerate L3, up to affine
unimodular transformations. As a complement, in [11, Theorem 1.4] it was shown
that for all d ≥ 4 there exists a polytope belonging to Ld but not toMd .

While Theorem 1.4 in [11] shows that Ld and Md are two different families, it
does not provide information on the number of polytopes in Ld that do not belong
to Md . Relying on a result of Konyagin [6], we will show that, asymptotically, the
gap between Ld and Md is very large.

For a1, . . . , ad > 0, we introduce

κ(a) := κ(a1, . . . , ad) = 1

a1
+ · · · + 1

ad
.
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Reciprocals of positive integers are sometimes calledEgyptian fractions. Thus, if a ∈
N

d , then κ(a) is a sum of d Egyptian fractions. We consider the set

Ad := {
(a1, . . . , ad) ∈ N

d : a1 ≤ · · · ≤ ad , κ(a1, . . . , ad) = 1
}

of all different solutions of the Diophantine equation

κ(x1, . . . , xd) = 1

in the unknowns x1, . . . , xd ∈ N. The set Ad represents possible ways to write 1 as
a sum of d Egyptian fractions. It is known that Ad is finite. Our main result allows
is a lower bound on the cardinality of (Ld\Md)/Aff(Zd):

Theorem 2
∣∣(Ld+5\Md+5)/Aff(Zd+5)

∣∣ ≥ ∣∣Ad

∣∣.

The proof of Theorem 2 is constructive. This means that, for every a ∈ Ad , we
generate an element in Pa ∈ Ld+5\Md+5 such that for two different elements a and b
of Ad , the respective polytopes Pa and Pb do not coincide up to affine unimodular
transformations. The proof of Theorem 2 is inspired by the construction in [11].
Using lower bounds on

∣∣Ad

∣∣ from [6], we obtain the following asymptotic estimate:

Corollary 3 ln ln
∣∣(Ld\Md

)
/Aff(Zd)

∣∣ = �
(

d
ln d

)
, as d → ∞.

Note 4 We view the elements of R
d as columns. By o we denote the zero vector

and by e1, . . . , ed the standard basis of R
d . If x ∈ R

d and i ∈ {1, . . . , d}, then xi
denotes the i-th component of x . The relation a ≤ b for a, b ∈ R

d means ai ≤ bi for
every i ∈ {1, . . . , d}. The relations ≥,> and < on R

d are introduced analogously.
The abbreviations aff, conv, int and relint stand for the affine hull, convex hull,
interior and relative interior, respectively.

1.2 An Approach to Construction of Polytopes in Ld\Md

We will present a systematic approach to construction of polytopes in Ld\Md , but
first we discuss general maximal lattice-free sets.

Definition 5 Let P be a lattice-free polyhedron in R
d . We say that a facet F of P

is blocked if the relative interior of F contains an integral point.

Maximal lattice-free sets can be characterized as follows:

Proposition 6 ([9, Proposition 3.3]) Let K be a d-dimensional closed convex subset
of R

d . Then the following conditions are equivalent:

1. K is maximal lattice-free;
2. K is a lattice-free polyhedron such that every facet of K is blocked.
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It can happen that some facets of a maximal lattice-free polyhedron are more than
just blocked. We introduce a respective notion. Recall that the integer hull KI of a
compact convex set K in R

d is defined by

KI := conv(K ∩ Z
d).

Definition 7 Let P be a d-dimensional lattice-free polyhedron in R
d . A facet F

of P is called strongly blocked if FI is (d − 1)-dimensional and Z
d ∩ relint FI 	= ∅.

The polyhedron P is called strongly blocked if all facets of P are strongly blocked.

The following proposition extracts the geometric principle behind the construction
from [11, Sect. 3]. (Note that arguments in [11, Sect. 3] use an algebraic language.)

Proposition 8 Let P be a strongly blocked lattice-free polytope in R
d . Then PI ∈

Ld . Furthermore, if P is not integral, then PI /∈ Md .

Proof In order to show PI ∈ Ld it suffices to verify that, for every z ∈ Z
d such

that conv(PI ∪ {z}) is lattice-free, one necessarily has z ∈ PI . If z /∈ PI , then z /∈ P
and so, for some facet F of P , the point z and the polytope P lie on different sides
of the hyperplane aff F . Then ∅ 	= Z

d ∩ relint FI ⊆ int(conv(P ∪ {z})), yielding a
contradiction to the choice of z. Thus, for every facet F of P , z and P lie on the
same side of aff F . It follows z ∈ P . Hence z ∈ P ∩ Z

d ⊆ PI .
If P is not integral, then PI /∈ Md since PI � P and P is lattice-free. �

1.3 Lattice-Free Axis-Aligned Simplices

For a ∈ R
d
>0, the d-dimensional simplex

T (a) := conv{o, a1e1, . . . , aded}.

is called axis-aligned. The proof of the following proposition is straightforward.

Proposition 9 For a ∈ R
d
>0, the following statements hold:

1. the simplex T (a) is a lattice-free set if and only if κ(a) ≥ 1;
2. the simplex T (a) is a maximal lattice-free set if and only if κ(a) = 1.

We introduce transformationswhich preserve the values of κ . The transformations
arise from the following trivial identities for t > 0:

1

t
= 1

t + 1
+ 1

t (t + 1)
, (1.1)

1

t
= 1

t + 2
+ 1

t (t + 2)
+ 1

t (t + 2)
, (1.2)

1

t
= 2

3t
+ 1

3t
. (1.3)
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Consider a vector a ∈ R
d
>0. By (1.1), if t is a component of a, we can replace this

component with two new components t + 1 and t (t + 1) to generate a vector b ∈
R

d+1
>0 satisfying κ(b) = κ(a). Identities (1.2) and (1.3) can be applied in a similar

fashion. For every d ∈ N, with the help of (1.1)–(1.3), we introduce the following
maps:

φd : R
d
>0 → R

d+1
>0 , φd(a) :=

⎛

⎜⎜⎜⎜⎜
⎝

a1
...

ad−1

ad + 1
ad(ad + 1)

⎞

⎟⎟⎟⎟⎟
⎠

, (1.4)

ψd : R
d
>0 → R

d+3
>0 , ψd(a) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
...

ad−1

ad + 3
ad(ad + 1)

(ad + 1)(ad + 3)
(ad + 1)(ad + 3)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

ξd : R
d
>0 → R

d+1
>0 ξd(a) :=

⎛

⎜⎜⎜⎜⎜
⎝

a1
...

ad−1
3
2ad
3ad

⎞

⎟⎟⎟⎟⎟
⎠

. (1.5)

The map φd replaces the component ad by two other components based on (1.1),
while ξd replaces ad based on (1.3). The map ψd acts by replacing the component ad
based on (1.1) and then replacing the component ad + 1 based on (1.2). Identities
(1.1)–(1.3) imply

κ(φd(a)) = κ(ψd(a)) = κ(ξd(a))) = κ(a). (1.6)

Lemma 10 Let P = T (ξd(a)), where a ∈ Ad and d ≥ 2. Then P is a strongly
blocked lattice-free (d + 1)-dimensional polytope. Furthermore, if ad is odd, P is
not integral.

Proof In this proof, we use the all-ones vector

1d :=
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ ∈ R

d .
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For the sake of brevity we introduce the notation t := ad . One has 1 = κ(a) =∑d
i=1

1
ai

≥ ∑d
i=1

1
t = d

t , which implies t ≥ d ≥ 2. By (1.6), one has κ(ξd(a)) = 1
and so, by Proposition 9, P is maximal lattice-free.

If t is even, the polytope P is integral and hence every facet of P is integral, too. In
view of Proposition 6, integral maximal lattice-free polytopes are strongly blocked,
and so we conclude that P is strongly blocked.

Assume that t is odd, then the polytope P has one non-integral vertex. In this case,
we need to look at facets of P more closely, to verify that P is strongly blocked. We
consider all facets of P .

1. The facet F = conv
{
o, a1e1, . . . , ad−1ed−1, 3ted+1

}
is a d-dimensional integral

integral axis-aligned simplex. Since

κ(a1, . . . , ad−1, 3t) < 1,

the integral point e1 + · · · + ed−1 + ed+1 is in the relative interior of F . Hence, F
is strongly blocked.

2. The facet F = conv
{
o, a1e1, . . . , ad−1ed−1,

3
2 ted

}
contains the d-dimensional

integral axis-aligned simplex

G := conv
{
o, a1e1, . . . , ad−1ed−1,

3t − 1

2
ed

}
,

as a subset. In view of t ≥ 2, we have

κ
(
a1, . . . , ad−1,

3t − 1

2

)
< 1,

which implies that the integral point e1 + · · · + ed is in the relative interior of G.
It follows that F is strongly blocked.

3. The facet F := conv
{
a1e1, . . . , ad−1ed−1,

3
2 ted , 3ted+1

}
contains the integral d-

dimensional simplex

G := conv
{
a1e1, . . . , ad−1ed−1,

3t − 1

2
ed + ed+1, 3ted+1

}
.

as a subset. It turns out that 1d+1 is the relative interior of G, because 1d+1 is a
convex combination of the vertices of relintG, with positive coefficients. Indeed,
the equality

1d+1 =
d−1∑

i=1

1

ai

(
aiei

) + λ
(3t − 1

2
ed + ed+1

)
+ μ

(
3ted+1

)

holds for λ = 2
3t−1 and μ = t−1

t (3t−1) , where
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d−1∑

i=1

1

ai
+ λ + μ = 1.

4. It remains to consider faces F with the vertex set
{
o, a1e1, . . . , aded ,

3

2
ted , 3ted+1

}
\{aiei },

where i ∈ {1, . . . , d + 1}. Without loss of generality, let i = 1 so that

F = conv

{
o, a2e2, . . . ,

3

2
ted , 3ted+1

}
.

This facet contains the integral d-dimensional simplex

G := conv
{
o, a2a2, . . . , ad−1ed−1,

3t − 1

2
ed + ed+1, 3ted+1

}
.

Similarly to the previous case, one can check that e2 + · · · + ed+1 is an integral
point in the relative interior of G. Consequently, F is strongly blocked. �

1.4 Proof of the Main Result

For d ≥ 4, Nill and Ziegler [7] construct one vector a ∈ R
d
>0 with T (a)I ∈ Ld\Md .

We generalize this construction and provide many further vectors a with the above
properties.Wewill also need to verify that for different choices ofa, we get essentially
different polytopes T (a)I .

Lemma 11 Let P and Q be d-dimensional strongly blocked lattice-free polytopes
such that for their integral hulls the equality QI = A(PI ) holds for some A ∈
Aff(Zd). Then Q = A(P).

Proof Since A is an affine transformation, we have

A(PI ) = A(conv(P ∩ Z
d)) = conv A(P ∩ Z

d).

Using A ∈ Aff(Zd), it is straightforward to check the equality A(P ∩ Z
d) = A(P) ∩

Z
d .We thus conclude that A(PI ) = A(P)I . The assumptionQI = A(PI )yieldsQI=

A(P)I . Since P is strongly blocked lattice-free, A(P) too is strongly blocked lattice-
free. We thus have the equality QI = A(P)I for strongly blocked lattice-free poly-
topes Q and A(P). To verify the assertion, it suffices to show that a strongly blocked
lattice-free polytope Q is uniquely determined by the knowledge of its integer
hull QI . This is quite easy to see. For every strongly blocked facet G of QI , the
affine hull of G contains a facet of Q. Conversely, if F is an arbitrary facet of Q,
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then G = FI is a strongly blocked facet of QI . Thus, the knowledge of QI allows
to determine affine hulls of all facets of Q. In other words, QI uniquely determines
a hyperplane description of Q. �

Lemma 12 Let a, b ∈ R
d
>0 be such that the equality T (b) = A(T (a)) holds for

some A ∈ Aff(Zd). Then a and b coincide up to permutation of components.

Proof We use induction on d. For d = 1, the assertion is trivial. Let d ≥ 2. One
of the d facets of T (a) containing o is mapped by A to a facet of T (b) that con-
tains o.Without loss of generalitywe can assume that the facet T (a1, . . . , ad−1) × {0}
of T (a) is mapped to the facet T (b1, . . . , bd−1) × {0} of T (b). By the inductive
assumption, (a1, . . . , ad−1) and (b1, . . . , bd−1) coincide up to permutation of com-
ponents. Since unimodular transformations preserve the volume, T (a) and T (b) have
the same volume. This means,

∏d
i=1 ai = ∏d

i=1 bi . Consequently, ad = bd and we
conclude that a and b coincide up to permutation of components.

Proof (Proof ofTheorem2)For everya ∈ Ad ,we introduce the (d + 5)-dimensional
integral lattice-free polytope

Pa := T (η(a))I ,

where
η(x) := ξd+4(ψd+1(φd(x)))

and the functions ξd+4, ψd+1 and φd are defined by (1.4)–(1.5).
By (1.6) for each a ∈ Ad , we have κ(η(a)) = 1. For a ∈ Ad the last component

of φd(a) is even. This implies that the last component of ψd+1(φd(a)) is odd. Thus,
by Lemma 10, T (η(a)) is strongly blocked lattice-free polytopewhich is not integral.

Let a, b ∈ Ad be such that the polytopes Pa and Pb coincide up to affine uni-
modular transformations. Then, by Lemma 11, T (η(a)) and T (η(b)) coincide up to
affine unimodular transformations. But then, by Lemma 12, η(a) and η(b) coincide
up to permutations. Since the components of a and b are sorted in the ascending
order, the components of η(a) and β(b) too are sorted in the ascending order. Thus,
we arrive at the equality η(a) = η(b), which implies a = b.

In view of Proposition 8, each Pa with a ∈ Ad belongs toLd but not toMd . Thus,
the equivalence classes of the polytopes Pa with a ∈ Ad with respect to identification
up to affine unimodular transformations form a subset of (Ld+5\Md+5)/Aff(Zd+5)

of cardinality |Ad |. This yields the desired assertion. �

Proof (Proof of Corollary 3) The assertion is a direct consequence of Theorem 2
and the asymptotic estimate

ln ln |Ad | = �

(
d

ln d

)

of Konyagin [6, Theorem 1] (see also [5, Corollary 1.2]). �
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Remark 13 In view of the asymptotic upper bound ln ln |Ad | = O(d), determined
with different degrees of precision in [8, 10] and [12, Theorem 2], the lower bound
of Konyagin is optimal up to the logarithmic factor in the denominator.

Since all known elements of Ld are of the form PI , for some strongly blocked
lattice-free polytope P , we ask the following:

Question 14 Do there exist polytopes L ∈ Ld which cannot be represented as L =
PI for any strongly blocked lattice-free polytope P?

If there is a gap between the families Ld and the family

{
PI : P ⊆ R

d strongly blocked lattice-free polytope
}
,

then it would be interesting to understand how irregular the polytopes from this gap
can be. For example, one can ask the following:

Question 15 Do there exist polytopes L ∈ Ld with the property that no facet of L
is blocked?

Acknowledgements I would like to thank Christian Wagner for valuable comments and Christian
Elsholtz for pointing to [5, 8, 10].
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Chapter 2
On the Fine Interior of
Three-Dimensional Canonical Fano
Polytopes

Victor Batyrev, Alexander Kasprzyk, and Karin Schaller

Abstract The Fine interior �FI of a d-dimensional lattice polytope � is a ratio-
nal subpolytope of � which is important for constructing minimal birational mod-
els of non-degenerate hypersurfaces defined by Laurent polynomials with Newton
polytope �. This paper presents some computational results on the Fine interior of
all 674,688 three-dimensional canonical Fano polytopes.

Keywords Lattice polytope · Fine interior · Hypersurface

2.1 Introduction

LetM ∼= Z
d be a free abelian group of rank d.We setMQ := M ⊗ Q and denote by N

the dual group Hom(M,Z) in the dual Q-linear vector space NQ := Hom(M,Q).
Let 〈·, ·〉 : MQ × NQ → Q be the natural pairing.

A convex compact d-dimensional polytope � ⊆ MQ is called lattice d-tope if all
vertices of � belong to the lattice M ⊆ MQ, i.e.,� equals the convex hull conv(� ∩
M) of all lattice points in �. The usual interior �◦ of � is the complement � \
∂�, where ∂� is the boundary of �. Another interior of a lattice polytope � was
introduced by Fine [3, 13, 15, 20]:

Definition 1 Let � ⊆ MQ be a lattice d-tope. Denote by ord� the piecewise linear
function NQ → Q with
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ord�(y) := min
x∈�

〈x, y〉 (y ∈ NQ).

Then the convex subset

�FI :=
⋂

n∈N\{0}
{x ∈ MQ | 〈x, n〉 ≥ ord�(n) + 1}

is called the Fine interior of �.

One can show that only finitely many linear inequalities 〈x, n〉 ≥ ord�(n) + 1
are necessary to define �FI. Therefore, �FI is a convex hull of finitely many rational
points p ∈ MQ. Moreover, any lattice point p ∈ �◦ ∩ M in the usual interior of �

is contained in �FI. Therefore, �FI contains the convex hull of � ∩ M , i.e., we get
the inclusion conv(�◦ ∩ M) ⊆ �FI. In particular, �FI is non-empty if �◦ ∩ M is
non-empty. Moreover, for any lattice polytope � of dimension d ≤ 2 one has the
equality conv(�◦ ∩ M) = �FI [3]. The Fine interior �FI of a lattice polytope � of
dimensiond ≥ 3mayhappen to be strictly larger than the convex hull conv(�◦ ∩ M).
The simplest famous example of such a situation is due to M. Reid. Other similar
examples based on hollow 3-topes can be found in Sect. 2.7:

Example 2 ([20, Example 4.15]) Let M ⊆ Q
4 be 3-dimensional affine lattice

defined by

M :=
{

(m1,m2,m3,m4) ∈ Z
4
∣∣∣

4∑

i=1

mi = 5,
4∑

i=1

imi ≡ 0 (mod 5)

}
.

Consider the M-lattice 3-tope � ⊆ MQ defined as the convex hull of 4 lattice points

(5, 0, 0, 0), (0, 5, 0, 0), (0, 0, 5, 0), and (0, 0, 0, 5) ∈ M.

Then conv(�◦ ∩ M) = ∅, but �FI is the 3-dimensional M-rational simplex

conv{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)}

and �FI ∩ M is empty.

In this paper, we are interested in lattice d-topes � ⊆ MQ obtained as Newton
polytopes of Laurent polynomials f� in d variables x1, . . . , xd , i.e.,

f�(x) =
∑

m∈�∩M

amxm,

where am ∈ C are sufficiently general complex numbers. The importance of the Fine
interior is explained by the following theorem [3, 15, 20]:
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Theorem 3 Let Z� ⊆ T
d be a non-degenerate affine hypersurface in the

d-dimensional algebraic torus Td defined by a Laurent polynomial f� with New-
ton d-tope �. Then the following conditions are equivalent:

1. a smooth projective compactification V� ofZ� has non-negative Kodaira dimen-
sion, i.e., κ ≥ 0;

2. Z� is birational to a minimal model S� with abundance;
3. the Fine interior �FI of � is non-empty.

Remark 4 By well known results of Khovanskii [14], one has vanishing of the
cohomology groups

hi (OV�
) = 0 (1 ≤ i ≤ d − 2)

and the equation hd−1(OV�
) = |�◦ ∩ M |. The numbers hi (OV�

) are birational
invariants of Z�; they do not depend on a smooth projective compactification V�

of Z�. In particular, the number |�◦ ∩ M | is the geometric genus pg of the affine
hypersurface Z� ⊆ T

d .

Smooth projective compactifications of non-degenerate hypersurfaces in T
d can

be obtained using the theory of toric varieties [14].
Let � ⊆ MQ be a lattice d-tope. We consider the normal fan �� of � in the dual

space NQ, i.e., �� := {σ θ | θ � �}, where σ θ is the cone generated by all inward-
pointing facet normals of facets containing the face θ � � of�. One has dim(σ θ ) +
dim(θ) = d for any face θ � �. We denote by X� the normal projective toric variety
constructed via the normal fan��. In particular, the above function ord� : NQ → Q

is a piecewise linear functionwith respect to this fan defining an ample Cartier divisor
on X�. In particular, the cones σ θ ∈ �� are defined as

σ θ =
{
y ∈ NQ

∣∣∣ ord�(y) = 〈x, y〉 for all x ∈ θ
}

.

Remark 5 Using the normal fan ��, one can compute the fundamental group
π1(V�) of a smooth projective birational model V� of a non-degenerate affine hyper-
surfaceZ� (given as in Theorem 3). The fundamental group π1(V�) does not depend
on the choice of the smooth birational model and it is isomorphic to the quotient of
the lattice N modulo the sublattice N ′ generated by all lattice points in (d − 1)-
dimensional cones σ θ of the normal fan �� [4].

Example 6 The minimal model S� of a non-degenerate affine surface Z� defined
by a Laurent polynomial with the Newton polytope� from Example 2 is a Godeaux
surface. It is a surface of general type with pg = q = 0, K 2 = 1, and π1(S�) ∼=
Z/5Z.

Definition 7 A lattice d-tope � is called canonical Fano d-tope if |�◦ ∩ M | = 1.
Up to a shift by a lattice vector, we will assume without loss of generality that 0 ∈ M
is the single lattice point in the interior �◦ of the canonical Fano d-tope �, i.e.,
�◦ ∩ M = {0}.
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All canonical Fano 3-topes have been classified [16]. There exists exactly 674,688
canonical Fano 3-topes �. The aim of this paper is to present computational results
of their Fine interiors �FI and some related combinatorial invariants. These data
are important for computing minimal smooth projective surfaces S� with pg = 1
and q = 0 which are birational to affine non-degenerate hypersurfaces Z� ⊆ T

3 ∼=
(C×)3.

The simplest description of the minimal surface S� has been obtained when � is
a reflexive 3-tope [5].

Definition 8 A lattice d-tope � ⊆ MQ containing the origin 0 ∈ M in its interior is
called reflexive if the dual polytope

�∗ := {y ∈ N | 〈x, y〉 ≥ −1 for all x ∈ �} ⊆ NQ

is a lattice polytope.

There exist 4,319 reflexive 3-topes, classified by Kreuzer and Skarke [17]. They
form a small subset in the list of all 674,688 canonical Fano 3-topes [16]. Reflex-
ive 4-topes are also classified by Kreuzer and Skarke [18]. There exist 473,800,776
reflexive 4-topes, but the complete list of all canonical Fano 4-topes is unknown and
expected to be much bigger.

If� is a reflexive d-tope, then X� is a Gorenstein toric Fano d-fold and the Zariski
closure Z� in X� is a Gorenstein Calabi-Yau (d − 1)-fold. If d = 3, then Z� is a
K3-surface with at worst finitely many Du Val singularities of type Ak . The mini-
mal surface S� is a smooth K3-surface which is obtained as the minimal (crepant)
desingularization of Z� [5].

One motivation for the present paper is due to Corti and Golyshev, who have
found 9 interesting examples of canonical Fano 3-simplices � such that the affine
surfaces Z� are birational to elliptic surfaces of Kodaira dimension κ = 1 [11].

The computation of the Fine interior �FI for all canonical Fano 3-topes � ⊆ MQ

has shown that the dimension of the Fine interior�FI has only three values: 0, 1, and 3.
It is rather surprising that there are no canonical Fano 3-topes � with dim(�FI) = 2.

The condition dim(�FI) = 0 holds if and only if �FI equals the lattice point 0 ∈
M . There exist exactly 665,599 canonical Fano 3-topes with �FI = {0}, where 0 ∈
M is the only interior lattice point of �. These polytopes are characterized in [3,
Proposition 3.4] by the condition that 0 ∈ N is an interior lattice point of the lattice 3-
tope

[�∗] := conv(�∗ ∩ N ).

Remark 9 If � is a canonical Fano 3-tope, then �FI = {0} if and only if the non-
degenerate affine surface Z� is birational to a K3-surface [3, Theorem 2.26].

The case dim(�FI) = 1 splits in two subcases. There exists exactly 20 canonical
Fano 3-topes � such that 0 ∈ M is the midpoint of the Fine interior �FI. Therefore,
we call this Fine interior symmetric. Canonical Fano 3-topeswith 1-dimensional sym-
metric Fine interior are characterized by the condition that [�∗] is a reflexive 2-tope.
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The Fine interior of the remaining 9,020 canonical Fano 3-topes with dim(�FI) = 1
contains 0 ∈ M as a vertex. Therefore, we call this Fine interior asymmetric. Canon-
ical Fano 3-topes with 1-dimensional asymmetric Fine interior are combinatorially
characterized by the condition that 0 ∈ N is contained in the relative interior of a
facet 	 � [�∗] of the lattice 3-tope [�∗]. The minimal surfaces S� corresponding
to canonical Fano 3-topes with 1-dimensional Fine interior (symmetric and asym-
metric) are elliptic surfaces of Kodaira dimension κ = 1.

There exist exactly 49 canonical Fano 3-topes with dim(�FI) = 3. These poly-
topes are characterized by the condition that 0 ∈ N is a vertex of the lattice 3-
tope [�∗]. The surfaces S� corresponding to canonical Fano 3-topes � with 3-
dimensional Fine interior �FI are of general type (i.e., S� has maximal Kodaira
dimension κ = dim(S�) = 2).

Remark 10 The Fine interior computations were done using

�FI =
⋂

θ��

⋂

n∈H(σ θ )

{
x ∈ MQ

∣∣∣ 〈x, n〉 ≥ ord�(n) + 1
}

,

where H(σ θ ) denotes the set of all irreducible elements in the monoid σ θ ∩ N .
It is the minimal generating set of the monoid σ θ ∩ N and is called Hilbert basis
of σ θ ∩ N .

In the next sections we consider examples and discuss additional properties of
canonical Fano 3-topes� in dependence of their Fine interiors�FI. All computations
were done using the Graded Ring Database [8], including the data of all 674,688
canonical Fano 3-topes, andMagma [7]. Therefore, all statements have been checked
by computer calculations. The canonical Fano 3-topes used as examples in this paper
appear with an ID that is the example’s ID in the Graded Ring Database.1

2.2 Almost Reflexive Polytopes of Dimension 3 and 4

Definition 11 A canonical Fano d-tope � ⊆ MQ is called almost reflexive if the
convex hull of all N -lattice points in the dual polytope �∗ is reflexive.

It is easy to show the following statement:

Proposition 12 If a canonical Fano d-tope � is almost reflexive, then

�F I = {0}.

Proof If [�∗] is reflexive, then � = (�∗)∗ is contained in the dual reflexive poly-
tope [�∗]∗. Therefore, the Fine interior of � is contained in the Fine interior of the
reflexive polytope [�∗]∗ and ([�∗]∗)FI = {0}. Thus, �FI = {0}. �

1 http://www.grdb.co.uk/forms/toricf3c.

http://www.grdb.co.uk/forms/toricf3c
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The converse statement is not true in general for d ≥ 5, but there exist many
equivalent characterizations of reflexive and almost reflexive d-topes among canon-
ical Fano d-topes if d = 3 or d = 4.

Let us recall some combinatorial invariants of arbitrary lattice d-topes.

Definition 13 The Ehrhart power series of an arbitrary lattice d-tope � ⊆ MQ is
defined as

P�(t) :=
∑

k≥0

|k� ∩ M | t k,

where |k� ∩ M | denotes the number of lattice points in the k-th dilate k� of �.

This Ehrhart series is a rational function of the form

P�(t) = ψd(�)td + · · · + ψ1(�)t + ψ0(�)

(1 − t)d+1
,

where ψi (�) are non-negative integers for all 0 ≤ i ≤ d [22] such that ψ0(�) = 1
and ψ1(�) = |� ∩ M | − d − 1. Moreover,

∑d
i=0 ψi (�) = v(�), where v(�) :=

d! · vol(�) denotes the normalized volume of �.
One has the following characterization of reflexive d-topes:

Proposition 14 ([6, Theorem 4.6]) A canonical Fano d-tope � is reflexive if and
only if

ψi (�) = ψd−i (�) (0 ≤ i ≤ d).

The Ehrhart reciprocity implies that the power series

Q�(t) :=
∑

k≥1

|(k�)◦ ∩ M | t k

is a rational function

Q�(t) = ϕd+1(�)td+1 + · · · + ϕ2(�)t + ϕ1(�)t + ϕ0(�)

(1 − t)d+1
,

where ϕ0(�) = 0 and ϕ1(�) = |�◦ ∩ M |. Using Serre duality, one obtains [12,
Sect. 4, 5.11]

ϕi (�) = ψd+1−i (�) (1 ≤ i ≤ d + 1),

i.e., in particular
ψd(�) = ϕ1(�) = |�◦ ∩ M |

and
ψd−1(�) = ϕ2(�) = |2�◦ ∩ M | − (d + 1)|�◦ ∩ M |.
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Therefore, the lattice d-tope � is a canonical Fano d-tope if and only if ψd(�) = 1.
Moreover,

ψd−1(�) = |(2�)◦ ∩ M | − (d + 1)

if � is a canonical Fano d-tope.
Applying the above equations, one immediately obtains the following criterion

for reflexivity of canonical Fano d-topes in the case d = 3, 4:

Proposition 15 Let � ⊆ MQ be a canonical Fano d-tope with d ∈ {3, 4}. Then
for d = 3, one has

P�(t) = t3 + (|(2�)◦ ∩ M | − 4)t2 + (|� ∩ M | − 4)t + 1

(1 − t)4

and for d = 4, one obtains

P�(t) = t4 + (|(2�)◦ ∩ M | − 5)t3 + ψ2(�)t2 + (|� ∩ M | − 5)t + 1

(1 − t)5
.

In particular, � is reflexive if and only if

|� ∩ M | = |(2�)◦ ∩ M | .

Proposition 16 Let � ⊆ MQ be a canonical Fano d-tope with d ∈ {3, 4} such
that 0 ∈ N is an interior lattice point of [�∗]. Then [�∗] is reflexive, i.e., � is
almost reflexive.

Proof Let n ∈ N be an interior lattice point of [�∗]. Then 〈x, n〉 ≥ 0 for all x ∈
� ∩ M because

�∗ = {y ∈ NQ | 〈x, y〉 ≥ −1 for all x ∈ �}

and 〈x, n〉 is an integer. Since 0 ∈ �◦ ∩ M , MQ is the set of all non-negativeQ-linear
combinations of all lattice points in � ∩ M . This implies 〈x ′, n〉 ≥ 0 for all x ′ ∈
MQ, i.e., n = 0. Therefore, [�∗] has only one interior lattice point 0 ∈ N , i.e., [�∗]
is a canonical Fano d-tope.

It is clear that [�∗] is contained in the interior of 2[�∗]. Therefore, we have [�∗] ∩
N ⊆ (2[�∗])◦ ∩ N . On the other hand, for any lattice point n ∈ (2[�∗])◦, 〈x, n〉 >

−2 for all x ∈ � ∩ M . Since 〈x, n〉 is an integer, n ∈ �∗ ∩ N , i.e.,

[�∗] ∩ N = (2[�∗])◦ ∩ N .

Using Proposition 15, [�∗] is reflexive. �
Corollary 17 Let� ⊆ MQ be a canonical Fano d-topewith d ∈ {3, 4} such that 0 ∈
N is an interior lattice point of [�∗]. Then [�∗]∗ is the smallest (referring to
inclusion) reflexive polytope containing �.
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Proof Let �′ ⊆ MQ be a reflexive d-tope such that � ⊆ �′. Then (�′)∗ ⊆ �∗.
Since (�′)∗ is a lattice polytope, it is contained in [�∗]. Thus, [�∗]∗ is contained
in ((�′)∗)∗ = �′. �

Remark 18 If � is a reflexive d-tope, then [2�◦] = �. If � is a canonical Fano d-
tope with d ∈ {3, 4} such that �FI = {0} and � is contained in a reflexive d-tope �′,
then [2�◦] is contained in [(2�′)◦] = �′. Therefore, [2�◦] is contained in the small-
est reflexive polytope [�∗]∗ containing �, i.e.,

[2�◦] ⊆ [�∗]∗.

Computations showed that among all 665,599 canonical Fano 3-topes�with�FI =
{0} there exist exactly 211,941 canonical Fano 3-tops such that [2�◦] is reflexive.
For the remaining canonical Fano 3-topes � the lattice 3-topes [2�◦] are larger
than �, but are not equal to the reflexive hull [�∗]∗.
Remark 19 Let � be an almost reflexive 3-tope. We denote by τ(�) the lattice d-
tope [2�◦] . If τ(�) is not reflexive, then it is almost reflexive and we can consider
the larger lattice d-tope τ 2(�) := τ(τ (�)) ⊆ [�∗]∗. After at most five steps, τ k(�)

is equal to the reflexive hull [�∗]∗ of �.

In dimension 4, the situation is comparable:

Example 20 Let � ⊆ R
4 be the almost reflexive 4-tope defined by the inequalities

xi ≥ −1 (1 ≤ i ≤ 4), x1 ≤ 2, and x1 + x2 + x3 + x4 ≤ 1. Then �F I = {0} and the
smallest reflexive 4-tope containing� is the 4-simplex [�∗]∗ defined by the inequal-
ities xi ≥ −1 (1 ≤ i ≤ 4) and x1 + x2 + x3 + x4 ≤ 1. It is easy to see that τ(�) is
not the reflexive 4-tope [�∗]∗ because the vertex (4,−1,−1,−1) ∈ vert([�∗]∗) is
not in 2�◦. However, τ 2(�) = [�∗]∗.

2.3 Canonical Fano 3-Topes with �FI = {0}

We note that the set of all reflexive 3-topes forms a rather small part of the set of all
canonical Fano 3-topes. The majority of the canonical Fano 3-topes belong to the
subset of almost reflexive 3-topes. The proof of the following statement is based on
the result of Skarke [21] and the explanations in the previous section.

Proposition 21 A canonical Fano 3-tope� is almost reflexive if one of the following
equivalent conditions is satisfied:
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1. �FI = {0};
2. 0 ∈ N is an interior lattice point of [�∗];
3. � is contained in some reflexive 3-tope;
4. τ k(�) is the reflexive 3-tope [�∗]∗ for some sufficiently large k (1 ≤ k ≤ 5);
5. the lattice 3-tope [2�◦] has exactly one interior lattice point;
6. the non-degenerate affine hypersurfaceZ� defined by a Laurent polynomial with

Newton polytope � is birational to a smooth K3-surface.

Computations show that there exist exactly 665,599 almost reflexive canonical
Fano 3-topes. The set of almost reflexive 3-topes includes all 4,319 reflexive 3-topes.
We have shown that for any almost reflexive 3-tope�, the reflexive polytope�ref :=
[�∗]∗ is the smallest reflexive 3-tope containing �. We call �ref the reflexive hull
of �. Thus we obtain a natural surjective map � �→ �ref from the set of almost
reflexive 3-topes to the set of reflexive 3-topes, which is the identity on the set of
reflexive 3-topes. The minimal surface S� is a K3-surface if and only if � is an
almost reflexive 3-tope. If � is an almost reflexive 3-tope, but not reflexive, then the
minimal surface S� is a crepant desingularization of the Zariski closure ofZ� in the
Gorenstein toric Fano threefold X�ref defined by the reflexive hull of �.

A generalization of the reflexive hull of almost reflexive 3-topes for arbitrary
lattice d-topes with non-empty Fine interior can be obtained using the notion of the
support of the Fine interior �FI.

Definition 22 Let � ⊆ MQ be a lattice d-tope with �FI �= ∅. Then the set

supp(�FI) := {n ∈ N | there exists x ∈ �FI with 〈x, n〉 = ord�(n) + 1}

is called support of the Fine interior of �.

Example 23 If � is a reflexive d-tope, then the support of the Fine interior of � is
the set of all non-zero lattice points in �∗ ∩ N .

Remark 24 It is easy to show that one always has

�FI =
⋂

n∈supp(�FI)

{x ∈ MQ | 〈x, n〉 ≥ ord�(n) + 1}.

Definition 25 Let � ⊆ MQ be a lattice d-tope with �FI �= ∅. Then the rational
polytope

�can :=
⋂

n∈supp(�FI)

{x ∈ MQ | 〈x, n〉 ≥ ord�(n)}

contains � and is called the canonical hull of �.

Example 26 If � is an almost reflexive 3-tope, then supp(�FI) is the set (�∗ ∩
N ) \ {0} of boundary lattice points in the reflexive 3-tope [�∗] and the canonical
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v4

v1

v2

v3

(a) ID 547386.

v4

v1

v2

v3

v5

(b) ID 547385.

Fig. 2.1 Canonical Fano 3-topes � with �FI={0}. Shaded faces are occluded and the Fine
interior {0} is shown in grey with a double border. The whole polytope is the canonical hull
�can as well as the reflexive hull �ref and the grey coloured polytope is �. a Reflexive polytope
� = conv{v1, v2, v3, v4}with v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (−1,−1,−1), and
�ref = �can = �. All facets of � have lattice distance 1 to the origin. b Almost reflexive polytope
� = conv{v1, v2, v3, v4}with v1 = (1, 0, 0), v2 = (0, 1, 0), v3 = (0, 0, 1), v4 = (−1,−1,−2), and
�ref = �can = conv{v1, v2, v3, v4, v5}with v5 = (0, 0,−1) reflexive. The dark grey coloured facet
of � has lattice distance 2 and all other facets have lattice distance 1 to the origin

hull �can equals the reflexive hull �ref of the polytope �, i.e., �can = �ref = [�∗]∗.
In particular, in this case �can is always a lattice 3-tope.

There exists a smooth projective toric variety X� defined by a fan � whose 1-
dimensional cones are generated by all lattice vectors from the finite set supp(�FI).
Then the minimal surface S� is a K3-surface which is the Zariski closure of Z�

in X� [3].

Example 27 Let us consider the (almost) reflexive canonical Fano 3-tope � =
conv{v1, v2, v3, v4} ⊆ MQ (ID 547386, Fig. 2.1a) with vertices

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), and v4 := (−1,−1,−1)

and �FI = {0}. Moreover,

�ref = conv(2�◦ ∩ M) = conv(� ∩ M) = �

and
�can = [�∗]∗ = (�∗)∗ = �

because � is reflexive, i.e., �ref = �can = � reflexive (Fig. 2.1a).
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Example 28 Consider the almost reflexive canonical Fano 3-tope � ⊆ MQ

(ID 547385, Fig. 2.1b) with vertices

v1 := (1, 0, 0), v2 := (0, 1, 0), v3 := (0, 0, 1), and v4 := (−1,−1,−2)

and �FI = {0}. Moreover,

�ref = conv((� ∩ M) ∪ {v5}) = conv{v1, v2, v3, v4, v5}

and
�can = [�∗]∗ = conv{v1, v2, v3, v4, v5}

with v5 := (0, 0,−1) because � is almost reflexive, i.e., �ref = �can = � reflex-
ive (Fig. 2.1b).

2.4 Asymmetric Fine Interior of Dimension 1

There exist exactly 9,020 canonical Fano 3-topes�with 1-dimensional Fine interior
such that 0 ∈ N belongs to a facet 	 � [�∗] of the lattice 3-tope [�∗]. This class of
canonical Fano 3-topes is characterized by the property that the lattice 3-tope [2�◦]
has exactly 2 interior lattice points.

The corresponding minimal surfaces S� are simply connected (i.e., have triv-
ial fundamental group π1(S�)) elliptic surfaces of Kodaira dimension κ = 1. We
observed that the facet 	 � [�∗] is a reflexive 2-tope corresponding to one of the
three types pictured in Fig. 2.2. All N -lattice points on the boundary of 	 belong
to supp(�FI). It was checked that for all these 3-topes � the canonical hull �can is
again a lattice 3-tope. Moreover, the Fine interior �FI is contained in the ray gener-
ated by the primitive lattice vector v� ∈ M which is the primitive inward-pointing
facet normal of 	, i.e., 〈x, y〉 = 0 for all x ∈ �FI, y ∈ 	. The lattice point 0 ∈ M is
a vertex of �FI. More precisely, one has

�FI = conv{0, λv�},

where λ ∈ {1/2, 2/3}. The primitive lattice vector v� is the unique interior lattice
point on a reflexive facet θ+ � � of � of one of the three possible types pictured in
Fig. 2.2. These three reflexive polygons θ+ are characterized by the condition that the
dual reflexive polygons θ∗+ are obtained from θ+ (Fig. 2.3) by enlarging the lattice Z2

in the following ways: Z2 + Z(1/3, 2/3) (Fig. 2.3a), Z2 + Z(1/2, 0) (Fig. 2.3b), and
Z
2 + Z(1/2, 1/2) (Fig. 2.3c). Moreover, the reflexive facet θ+ of � is isomorphic to

the facet	 of [�∗]. The projectionM → M/Zv� of� or of θ+ along v� is a reflexive
polygon of one of the three types pictured in Fig. 2.3, which is dual to θ+ and 	. The
lattice vector v� defines a character of the 3-dimensional torus χ : T3 → C

×. For
almost all α ∈ C

×, the fiber χ−1(α) is an affine elliptic curve defined by a Laurent
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(a) (b) (c)

Fig. 2.2 Reflexive Facets of � Containing ±v�. Three types of reflexive facets θ± � �

of � containing ±v� for all 9,020 + 20 canonical Fano 3-topes � with dim(�FI) = 1. Ver-
tices are coloured black, boundary points that are not vertices grey, and the origin light grey.
a conv{(1, 0), (0, 1), (−1,−1)}. b conv{(1, 0), (−1, 1), (−1,−1)}. c conv{(±1, 0), (0,±1)}

(a) (b) (c)

Fig. 2.3 Reflexive Projection Polytopes. Three types of reflexive polytopes obtained via a pro-
jection of � along ±v� for all 9,020 + 20 canonical Fano 3-topes � with dim(�FI) = 1. Ver-
tices are coloured black, boundary points that are not vertices grey, and the origin light grey.
a conv{(−1, 2), (−1,−1), (2,−1)}. b conv{(−2,−1), (0, 1), (2,−1)}. c conv{(±1,±1)}

polynomial with the reflexive Newton polytope 	∗ ∼= θ∗+ of one of the three types
pictured in Fig. 2.3 with the distribution shown in Table2.1. So χ defines birationally
an elliptic fibration.

Table 2.1 Distribution of the Reflexive Facets of � Containing ±v�. Table contains: Type of
the reflexive facet θ± containing ±v�, type of the dual reflexive facet θ∗±, the enlarged lattice used
to obtain θ∗± from θ±, the number of canonical Fano 3-topes�asym := {� | 1-dim. asym. �FI}, and
the number of canonical Fano 3-topes�sym := {� | 1-dim. sym. �FI}with respect to the facet type
of θ± pictured in Fig. 2.2

θ± θ∗± Enlarged lattice #�asym #�sym

Figure2.2a Figure2.3a Z
2 +

Z(1/3, 2/3)
3,038 7

Figure2.2b Figure2.3b Z
2 + Z(1/2, 0) 4,663 9

Figure2.2c Figure2.3c Z
2 +

Z(1/2, 1/2)
1,319 4
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v1

v2
v3 v4

v5

(a) ID 547324

v1

v2

v3

v4

v5

(b) ID 547323

Fig. 2.4 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1 Shaded
faces are occluded. The Fine interior and the origin are shown in grey, with a double border
around the origin. The facet θ+ is grey dotted. a The whole polytope is � = conv{v1, v2, v3, v4}
with v1 = (2, 3, 8), v2 = (1, 0, 0), v3 = (0, 1, 0), and v4 = (−1,−1,−1). Moreover, �FI =
conv{(0, 0, 0), (1/2, 1/2, 1)}, θ+ = conv{v1, v2, v3}, and�can = conv{v1, v2, v3, v4, v5}with v5 =
(0, 1, 4). b The whole polytope is � = conv{v1, v2, v3, v4} with v1 = (−1, 1,−2), v2 =
(1,−2, 3), v3 = (1, 0, 0), and v4 = (−2, 5,−3). Moreover, �FI = conv{(0, 0, 0), (0, 2/3, 0)}
and θ+ = conv{v2, v3, v4}, and �can = conv{v1, v2, v3, v4, v5} with v5 = (−2, 4,−3)

Example 29 Let � ⊆ MQ be a canonical Fano 3-tope given as the convex hull of

v1 := (2, 3, 8), v2 := (1, 0, 0), v3 := (0, 1, 0), and v4 := (−1,−1,−1)

(ID 547324, Fig. 2.4a, Tables2.2 and 2.4). Then

�FI = conv{(0, 0, 0), (1/2, 1/2, 1)} = conv{0, 1/2 · v�},

where v� = (1, 1, 2). One has v1 + 2v2 + v3 = 4v�. Therefore, v� is the interior lat-
tice point of the reflexive facet θ+ of�with vertices v1, v2, v3 and the images v1, v2, v3
of v1, v2, v3 in M/Zv� are vertices of the dual reflexive triangle θ∗+ (Fig. 2.3b) satis-
fying the relation

v1 + 2v2 + v3 = 0.

To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤ i ≤
18} with s1 := (−1,−1, 1), s2 := (−1,−1, 2), s3 := (−1,−1, 3), s4 := (−1, 0, 1),
s5 := (−1, 0, 2), s6 := (−1, 1, 0), s7 := (−1, 1, 1), s8 := (−1, 2, 0), s9 := (−1, 3,
−1), s10 := (0,−1, 1), . . ., s18 := (−2,−2, 1), which leads to

�can = conv{v1, v2, v3, v4, v5}

with v5 := (0, 1, 4) (Fig. 2.4a).
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Table 2.2 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table
contains: vertices vert(�) of �, vertices vert(�FI) of the Fine interior �FI, unique primitive lattice
point v� ∈ θ+ in the reflexive facet θ+ � �, and weights (wi )0≤i≤3 of the weighted projective 3-
space P(w0, . . . ,w3) appearing in [11]
ID vert(�) vert(�FI) v� (wi )0≤i≤3

547324 (2, 3, 8), (1, 0, 0), (0, 1, 0), (−1, −1, −1) 0, 1/2 · v� (1, 1, 2) (1, 5, 6, 8)

547323 (−1, 1, −2), (1,−2, 3), (1, 0, 0), (−2, 5, −3) 0, 2/3 · v� (0, 1, 0) (1, 4, 7, 9)

547311 (−1, 4, 2), (−1, −1, 0), (0, 0,−1), (2, 0, 1) 0, 2/3 · v� (0, 1, 1) (2, 5, 8, 9)

547490 (1, 2, 4), (1, 0, 0), (1, −2, 3), (−1, 1, −2) 0, 1/2 · v� (0, 1, 0) (1, 5, 8, 14)

547321 (1, −2, 3), (0, 1, 0), (1, 0, 0), (−6, 3, −8) 0, 1/2 · v� (−1, 1, −2) (3, 7, 8, 10)

547305 (0, 1, 0), (1, 0, 0), (1, 2, 4), (−4,−6, −7) 0, 2/3 · v� (−1, −1, −1) (4, 7, 9, 10)

547526 (1, 0, 0), (0, 1, 0), (−2, 1, 5), (2,−4, −9) 0, 2/3 · v� (1,−1, −3) (5, 9, 8, 11)

547454 (2, 1, 7), (1, 0, 0), (0, 1, 0), (−2, −3, −3) 0, 1/2 · v� (0, 0, 1) (3, 7, 8, 18)

547446 (0, 1, 1), (−6, 7, −15), (1, −2, 3), (1, 0, 0) 0, 1/2 · v� (−1, 1, −2) (5, 8, 9, 22)

Table 2.3 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table
contains: primitive inward-pointing facet normals (ni )1≤i≤4 of �, vertices vert(θ+) of the reflexive
facet θ+ � �, and primitive inward-pointing facet normal nθ+ of the reflexive facet θ+ � �

ID (ni )1≤i≤4 vert(θ+) nθ+

547324 (−2,−2, 1), (−1,−1, 3), (−1, 3,−1), (7,−3,−1) (2, 3, 8), (1, 0, 0), (0, 1, 0) (−2,−2, 1)

547323 (−3, −3, −2), (−1, 0, 1), (−1, 6, 4), (17, 3,−5) (1,−2, 3), (1, 0, 0), (−2, 5,−3) (−3,−3,−2)

547311 (−1, −1, 1), (−1, 2, 1), (1, 2,−5), (7,−2, 5) (−1, 4, 2), (−1,−1, 0), (2, 0, 1) (1, 2,−5)

547490 (−2,−2, 1), (−1, 0, 0), (−1, 6, 4), (23, 2,−8) (1, 2, 4), (1, 0, 0), (−1, 1,−2) (−2,−2, 1)

547321 (−3, −3, −2), (−2,−2, 1), (−1, 3, 2), (9,−5,−8) (0, 1, 0), (1, 0, 0), (−6, 3,−8) (−2,−2, 1)

547305 (−7, −7, 11), (−2,−2, 1), (−1, 2,−1), (7,−3,−1) (0, 1, 0), (1, 2, 4), (−4,−6,−7) (7,−3,−1)

547526 (−5, −5, −2), (−3,−3, 1), (−1, 2,−1), (25,−8, 10) (1, 0, 0), (0, 1, 0), (2,−4,−9) (−3,−3, 1)

547454 (−7, −7, 2), (−1,−1, 2), (−1, 1, 0), (7,−2,−2) (2, 1, 7), (0, 1, 0), (−2,−3,−3) (7,−2,−2)

547446 (−9, 21, 14), (−5,−3,−2), (−1,−1, 0), (9, 1,−3) (0, 1, 1), (−6, 7,−15), (1,−2, 3) (9, 1,−3)

Example 30 Let � ⊆ MQ be a canonical Fano 3-tope given as the convex hull of

v1 := (−1, 1,−2), v2 := (1,−2, 3), v3 := (1, 0, 0), and v4 := (−2, 5,−3)

(ID 547323, Fig. 2.4b, Tables2.2 and 2.4). Then (Table2.3)

�FI = conv{(0, 0, 0), (0, 2/3, 0)} = conv{0, 2/3 · v�},

where v� = (0, 1, 0). One has v2 + v3 + v4 = 3v�. Therefore, v� is the interior lat-
tice point of the reflexive facet θ+ of�with vertices v2, v3, v4 and the images v2, v3, v4
of v2, v3, v4 in M/Zv� are vertices of the dual reflexive triangle θ∗+ (Fig. 2.3a) satis-
fying the relation

v2 + v3 + v4 = 0.
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To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤ i ≤
20} with s1 := (−3,−3,−2), s2 := (−1, 0, 0), s3 := (−1, 0, 1), s4 := (−1, 1, 1),
s5 := (−1, 2, 2), s6 := (−1, 3, 2), s7 := (−1, 4, 3), s8 := (−1, 6, 4), s9 := (0, 1, 1),
s10 := (0, 2, 1), . . ., s20 := (4, 1,−1), which leads to

�can = conv{v1, v2, v3, v4, v5}

with v5 := (−2, 4,−3) (Fig. 2.4b).

Remark 31 The detailed information about a small selection of the 9,020 canonical
Fano 3-topes with dim(�FI) = 1 and 0 ∈ vert(�FI) can be found in Tables2.2, 2.3,
and 2.4.

2.5 Symmetric Fine Interior of Dimension 1

There exist exactly 20 canonical Fano 3-topes � such that 0 is the center of 1-
dimensional Fine interior �FI. In this case, S� is an elliptic surface of Kodaira
dimension κ = 1 with non-trivial fundamental group π1(S�) of order 2 or 3. Com-
putations show that one always has � = �can and

�FI = conv{−λv�, λv�}

with λ = 1
2 if and only if |π1(S�)| = 2 and

�FI = conv{−μv�,μv�}

with μ = 2
3 if and only if |π1(S�)| = 3. The primitive lattice vectors ±v� are the

two unique interior lattice points in two reflexive facets θ± � � of one of the three
possible types pictured in Fig. 2.2. The reflexive facets θ± of � are isomorphic to
the facet 	 of [�∗]. The projections M → M/Z(±v�) of � or of θ± along ±v�

reveal a reflexive polygon of one of the three types pictured in Fig. 2.3, which is
dual to θ± and 	. The lattice vector v� defines a character of the 3-dimensional
torus χ : T3 → C

×. For almost all α ∈ C
×, the fiber χ−1(α) is an affine elliptic

curve defined by a Laurent polynomial with the reflexive Newton polytope 	∗ ∼= θ∗±
of one of the three types pictured in Fig. 2.3 with the distribution shown in Table2.1.
So χ defines birationally an elliptic fibration. The vertex sets of� and these reflexive
facets are related via vert(�) = vert(θ+) ∪ vert(θ−). Moreover, every edge of � is
either an edge of θ+ or θ− of these two facets or it is parallel to v�.

Example 32 Let � ⊆ MQ be a canonical Fano 3-tope given as the convex hull

v1 := (0, 1, 0), v2 := (2, 1, 1), v3 := (−2,−3,−5), and v4 := (2, 1, 9)

(ID 547393, Fig. 2.5b, Tables2.5 and 2.6). Then



2 On the Fine Interior of Three-Dimensional … 27

v1

v2

v3

v4

(a) ID 547393

v1

v2
v3

v4

(b) ID 547409

Fig. 2.5 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Shaded faces
are occluded. The Fine interior and the origin are shown in grey with a double border around
the origin. The facets θ± are grey dotted. a The whole polytope is � = conv{v1, v2, v3, v4}
with v1 = (1, 0, 0), v2 = (2, 1, 1), v3 = (−2,−3,−5), and v4 = (2, 1, 9). Moreover, �FI =
conv{(0, 0,−1/2), (0, 0, 1/2)}, θ+ = conv{v1, v3, v4}, θ− = conv{v1, v2, v3}, and �can = �. b
The whole polytope is � = conv{v1, v2, v3, v4} with v1 = (−4, 2, 9), v2 = (1, 0, 0), v3 =
(0, 1, 0), and v4 = (7,−6,−18). Moreover, �FI = conv{(−2/3, 2/3, 2), (2/3,−2/3,−2)}, θ+ =
conv{v1, v2, v3}, θ− = conv{v1, v3, v4}, and �can = �

�FI = conv{(0, 0,−1/2), (0, 0, 1/2)} = conv{−λv�, λv�}

with λ = 1
2 , where v� = (0, 0, 1). One has 2v1 + v3 + v4 = 4v� and 2v1 + v2 +

v3 = 4(−v�). Therefore, v� is the interior lattice point of the reflexive facet θ+ = θ134
of � and −v� is the interior lattice point of the reflexive facet θ− = θ123 of �

(Fig. 2.2b). The images v1, v3, v4 of v1, v3, v4 in M/Zv� and the images v1, v2, v3
of v1, v2, v3 in M/Z(−v�) are vertices of the dual reflexive triangle θ∗± (Fig. 2.3b)
satisfying the relation

2v1 + v3 + v4 = 0

and
2v1 + v2 + v3 = 0,

respectively.
To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤ i ≤ 6}

with s1 := (−1,−2, 2), s2 := (−1, 1, 0), s3 := (0,−1, 0), s4 := (1,−1, 0), s5 :=
(2,−1, 0), and s6 := (9,−2,−2), which leads to �can = �.
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Table 2.5 20 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Table
contains: vertices vert(�) of �

ID vert(�)

547393 (0, 1, 0), (2, 1, 1), (−2,−3,−5), (2, 1, 9)

547409 (−4, 2, 9), (1, 0, 0), (0, 1, 0), (7,−6,−18)

547461 (0, 1, 0), (2, 1, 1), (−2,−3,−5), (0, 1, 4)

544442 (1, 0, 0), (0, 1, 0), (3,−6, 8), (1,−4, 4), (−5, 6,−12)

544443 (−1, −2, 0), (3,−6, 8), (0, 1, 0), (1, 0, 0), (−3, 4,−8)

544651 (−4, 1, −3), (4,−2, 3), (0, 1, 0), (1,−2, 3), (−1, 1,−3)

544696 (5, −4, −15), (1, 0, 0), (0, 1, 0), (−4, 2, 9), (−3, 1, 6)

544700 (−2,−3, −3), (0, 1, 0), (1, 0, 0), (−1,−4,−6), (2, 5, 9)

544749 (−6, −5, −8), (0, 1, 0), (1, 0, 0), (−2,−1, 0), (3, 2, 4)

520925 (0, 1, 0), (0, 0, 1), (−2,−1, 0), (−2, 0,−1), (8, 2, 3), (−2,−3,−2)

520935 (3, 4, 6), (2, 1, 2), (−3,−2,−2), (1, 0, 0), (0, 1, 0), (−6,−5,−8)

522056 (−1, −1, 0), (0, 1, 0), (1, 0, 0), (−1,−1,−3), (−5,−3,−6), (6, 4, 9)

522059 (2, 5, 6), (−2,−3,−3), (0, 1, 0), (1, 0, 0), (−1,−4,−6), (0, 1, 3)

522087 (1, 0,−3), (1, 0, 0), (0, 1, 0), (−4, 2, 9), (−3, 1, 6), (5,−4,−12)

522682 (2, 1, 4), (−3,−2,−4), (−2,−3,−4), (1, 2, 4), (1, 0, 0), (0, 1, 0)

522684 (−2,−1, −4), (3, 2, 4), (−2,−1, 0), (1, 0, 0), (0, 1, 0), (−4,−3,−4)

526886 (−3, 4, −6), (1, 0, 0), (0, 1, 0), (3,−6, 8), (0, 1,−2), (2,−5, 6)

439403 (1, 2, 2), (−1, 0, 0), (−1, 1,−1), (1, 0, 0), (−1,−2,−2), (1, 1, 3), (1,−3,−1)

275525 (4, 1, 2), (0, 1, 0), (−2,−1, 0), (1, 1, 2), (−3,−1,−2), (−2,−1,−2), (1, 1, 0), (1,−1, 0)

275528 (−1, 0,−1), (−3,−2, 1), (−2,−1, 2), (0,−1, 0), (0, 1, 0), (1, 0, 1), (2, 1,−2), (3, 2,−1)

Example 33 Let � ⊆ MQ be a canonical Fano 3-tope given as the convex hull

v1 := (−4, 2, 9), v2 := (1, 0, 0), v3 := (0, 1, 0), and v4 := (7,−6,−18)

(ID 547409, Fig. 2.5b, Tables2.5 and 2.6). Then

�FI = conv{(−2/3, 2/3, 2), (2/3,−2/3,−2)} = conv{−μv�,μv�}

withμ = 2
3 , where v� = (1,−1,−3). One has v1 + v2 + v3 = −3v� and v1 + v3 +

v4 = −3(−v�). Therefore, v� is the interior lattice point of the reflexive facet θ+ =
θ123 of � and −v� is the interior lattice point of the reflexive facet θ− = θ134 of �

(Fig. 2.2b). The images v1, v2, v3 of v1, v2, v3 in M/Zv� and the images v1, v3, v4
of v1, v3, v4 in M/Z(−v�) are vertices of the dual reflexive triangle θ∗± (Fig. 2.3b)
satisfying the relation

v1 + v2 + v3 = 0,

and
v1 + v3 + v4 = 0,

respectively.
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To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤ i ≤
5}with s1 := (−3,−3,−1), s2 := (−1,−1, 0), s3 := (−1, 2,−1), s4 := (2,−1, 1),
and s5 := (15,−3, 7), which leads to �can = �.

Remark 34 Information about all 20 canonical Fano 3-topes with dim(�FI) = 1
and 0 ∈ (�FI)

◦ can be found in Tables2.5 and 2.6.

2.6 Fine Interior of Dimension 3

There exist 49 canonical Fano 3-topes � such that dim(�FI) = 3. Exactly 3 of
these polytopes � define minimal surface S� with non-trivial fundamental group of
order 2 and K 2 = 2. For these 3 polytopes one has � = �can. The surfaces S� were
investigated by Todorov [24] as well as Catanese and Debarre [10].

The remaining 46 canonical Fano 3-topes� define simply connectedminimal sur-
facesS� with K 2 = 1. These surfaceswere investigated byKanev [19], Catanese [9],
and Todorov [23]. Among these 46 canonical Fano 3-topes there exist exactly 26
polytopes � such that � = �can.

Example 35 ([19]) Let M ⊆ Q
4 be the 3-dimensional affine lattice defined by

M := {(m1,m2,m3,m4) ∈ Z
4 |m1 + m2 + m3 + 2m4 = 6, m2 + 2m3 ≡ 0 (mod 3)}

and �′ ⊆ MQ be the convex hull of 4 lattice points

(6, 0, 0, 0), (0, 6, 0, 0), (0, 0, 6, 0), and (0, 0, 0, 3) ∈ M.

Then (�′)FI is the 3-dimensional rational simplex

conv{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 3/2)}

and (�′)FI ∩ M = {(2, 1, 1, 1)}.
The canonical Fano 3-tope�′ is theNewton polytope of theμ3-cyclic quotient Z�′

of the projective surface of degree 6 defined by the polynomial z61 + z62 + z63 + z34 = 0
in the weighted projective space P(1, 1, 1, 2), where the cyclic group μ3 acts
via (z1 : z2 : z3 : z4) �→ (z1 : εz2 : ε2z3 : z4). The single interior lattice point in �′
corresponds to the monomial z21z2z3z4. The surface Z�′ has 3 cyclic quotient singu-
larities of type A2. The minimal desingularization S�′ of Z�′ is a simply connected
surface of general type with K 2 = 1.

One can identify �′ with the canonical Fano 3-simplex � given as the convex
hull of

v1 := (1, 0, 0), v2 := (−2,−4,−5), v3 := (1, 2, 4), and v4 := (1, 4, 2)
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v1

v2

v3

v4

(a) ID 547444

v1

v2v3

v4

(b) ID 547465

Fig. 2.6 Canonical Fano 3-topes with Fine Interior of Dimension 3. Shaded
faces are occluded. The Fine interior and the origin are shown in grey with a
double border around the origin. a The whole polytope is � = conv{v1, v2, v3, v4}
with v1 = (1, 0, 0), v2 = (−2,−4,−5), v3 = (1, 2, 4), and v4 = (1, 4, 2). More-
over, �FI = conv{(0, 0, 0), (−1/2,−1,−3/2), (0,−1/3,−2/3), (0, 1/3,−1/3)}
and �can = �. b The whole polytope is � = conv{v1, v2, v3, v4} with v1 =
(−3,−2,−2), v2 = (1, 0, 0), v3 = (1, 3, 1), and v4 = (1, 1, 3). Moreover, �FI =
conv{(0, 0, 0), (−1,−1/2,−1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)} and �can = �

(ID 547444, Fig. 2.6a, Tables2.7, 2.8, and 2.9). The primitive inward-pointing facet
normals of the facets θ124, θ234, θ123, and θ134 � � of this simplex � are

n1 := (−2,−1, 2), n2 := (5,−1,−1), n3 := (−1, 2,−1), and n4 := (−1, 0, 0),

respectively. They satisfy the relation

n1 + n2 + n3 + 2n4 = 0.

To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤ i ≤ 6}
with s1 := (−2,−1, 2), s2 := (−1, 0, 0), s3 := (−1, 2,−1), s4 := (1, 1,−1), s5 :=
(3, 0,−1), and s6 := (5,−1,−1), which leads to �can = �.

Example 36 ([24]) Let M ⊆ Q
4 be the 3-dimensional affine lattice defined by

M := {(m1,m2,m3,m4) ∈ Z
4 |

m1 + m2 + 2m3 + 2m4 = 8, 3m2 + m3 + 3m4 ≡ 0 (mod 4)}

and �′ ⊆ MQ be the convex hull of 4 lattice points

(8, 0, 0, 0), (0, 8, 0, 0), (0, 0, 4, 0), and (0, 0, 0, 4) ∈ M.



2 On the Fine Interior of Three-Dimensional … 33

Table 2.7 49 Canonical Fano 3-topes with Fine Interior of Dimension 3 Table contains: ver-
tices vert(�) of �

ID vert(�)

547444 (1, 0, 0), (−2, −4, −5), (1, 2, 4), (1, 4, 2)

547465 (−3, −2, −2), (1, 0, 0), (1, 3, 1), (1, 1, 3)

547524 (0, 2, 1), (−2, −3, −5), (2, 1, 1), (0, 0, 1)

547525 (0, 0, 1), (0, 1, 0), (2, 1, 1), (−2, −5, −7)

545317 (−3, 4, −6), (0, 1, 0), (1, 0, 0), (1, −2, 4), (3, −5, 6)

545932 (0, −1, −1), (1, −1, −3), (−2, 1, 5), (1, 0, 0), (1, 2, −2)

546013 (3, −5, 6), (1, −2, 4), (1, 0, 0), (−1, 1, −2), (−1, 3, −2)

546062 (0, 1, 3), (−2, 1, −1), (0, 1, 0), (1, 0, 0), (−1, −2, −2)

546070 (0, −2, −3), (0, 2, 1), (−2, −3, −5), (2, 1, 1), (0, 0, 1)

546205 (1, 2, −2), (−1, 0, 2), (1, 0, 0), (−2, 1, 5), (1, −1, −3)

546219 (1, 1, 1), (−3, −2, −2), (1, 0, 0), (1, 3, 1), (−1, −1, 1)

546663 (2, −3, −1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−2, −3, −3)

546862 (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1, −1, −3), (1, 2, −2)

546863 (−1, −1, 1), (1, 3, 1), (0, 0, 1), (1, 0, 0), (−3, −2, −2)

547240 (−1, 1, −2), (0, 1, 0), (1, 0, 0), (1, −2, 4), (3, −5, 6)

547246 (0, −2, −3), (−2, −3, −5), (2, 1, 1), (0, 1, 0), (0, 0, 1)

532384 (1, −1, −3), (−2, 1, 5), (1, 0, 0), (1, −1, −2), (0, −1, −1), (1, 2, −2)

532606 (0, −1, 2), (−1, −1, 0), (0, 1, 0), (1, 0, 0), (2, 2, −3), (−2, 0, −3)

533513 (−1, 1, 2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (−1, −2, −4), (−2, −3, −4)

534667 (1, 0, 3), (−1, −1, −1), (0, 1, 0), (1, 0, 0), (−1, −1, 0), (5, 2, 3)

534669 (1, 3, 0), (5, 3, 2), (−1, −1, −1), (0, 0, 1), (1, 0, 0), (−1, −1, 0)

534866 (−1, −1, −3), (1, 0, 0), (0, 1, 0), (1, 1, 1), (−1, −1, 0), (−3, −5, −3)

535952 (3, −5, 6), (1, −2, 4), (1, 0, 0), (0, 1, 0), (−1, 1, −2), (−1, 2, −2)

536013 (0, 1, 1), (0, 0, 1), (0, 1, 0), (2, 1, 1), (−2, −3, −5), (0, −2, −3)

536498 (1, 2, −2), (1, −1, −2), (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1, −1, −3)

537834 (0, 0, 1), (1, 0, 0), (0, 1, 0), (−2, 1, 5), (1, −1, −3), (1, 2, −2)

538356 (−2, −3, −3), (−1, −3, −1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1, −1, −3)

539063 (−1, 1, −1), (1, 1, 3), (−3, −2, −2), (1, 0, 0), (0, 1, 0), (1, 1, 2)

539304 (1, 0, 1), (−3, −1, −2), (1, 1, 2), (−2, −1, 0), (1, 0, 0), (1, 2, 0)

539313 (1, −1, −2), (1, 1, −1), (−1, 2, 2), (1, −1, −3), (−2, 1, 5), (1, 0, 0)

540602 (0, 0, 1), (1, 0, 0), (−2, 1, 5), (1, −1, −3), (−1, 2, 2), (1, 1, −1)

540663 (1, 0, 0), (0, 1, 0), (1, 1, 2), (−3, −1, −2), (1, 1, 1), (−3, −2, 0)

474457 (−1, 2, −3), (1, 0, 2), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1, −1, 0), (−3, −2, −3)

481575 (3, 2, 4), (−1, −1, −2), (−3, −1, −2), (−2, −1, 0), (0, 1, 0), (1, 0, 0), (0, 0, −1)

483109 (3, 0, 2), (1, −2, −2), (0, 0, −1), (−1, −1, 0), (1, 1, 1), (0, 1, 0), (−1, 0, 0)

490478 (1, −1, −2), (1, 1, −1), (−1, 2, 2), (1, −1, −3), (−2, 1, 5), (1, 0, 0), (−1, 0, 2)

490481 (−3, −2, 0), (−5, −3, −2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (−1, −1, −1), (2, 1, 1)

490485 (−1, −1, 0), (1, 2, 0), (1, 0, 0), (−2, −1, 0), (1, 1, 2), (−3, −1, −2), (1, 0, 1)

490511 (1, 0, 0), (0, 1, 0), (−2, −1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (−5, −2, −4)

495687 (0, 0, −1), (1, 1, −1), (−1, 2, 2), (1, −1, −3), (−2, 1, 5), (1, 0, 0), (0, 0, 1)

499287 (1, 1, 1), (−1, −1, −3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, −3, −1), (−2, −3, −3)

499291 (−1, −1, −1), (−1, −1, −3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, −3, −1), (−2, −3, −3)

499470 (1, 0, 0), (0, 1, 0), (−2, −1, 0), (1, 1, 2), (0, 0, 1), (−5, −2, −4), (2, 1, 1)

501298 (3, −6, 8), (−1, 1, −2), (1, −2, 3), (0, 1, 0), (1, 0, 0), (0, 1, −1), (3, −5, 6)

501330 (1, 0, 0), (0, 1, 0), (−2, −1, 0), (1, 1, 2), (1, 1, 1), (0, 0, 1), (−5, −2, −4)

354912 (3, 1, 2), (1, 0, 0), (0, 1, 0), (−2, −1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (−5, −2, −4)

372528 (2, 1, 1), (−1, −1, −1), (1, 1, 2), (0, 1, 0), (1, 0, 0), (−5, −3, −2), (−3, −2, 0), (1, 1, 0)

372973 (−5, −2, −4), (1, 0, 1), (2, 1, 1), (1, 1, 2), (−2, −1, 0), (0, 1, 0), (1, 0, 0), (2, 1, 2)

388701 (1, 1, 1), (−2, −3, −3), (−1, −3, −1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (−1, −1, −3), (−1, −1, −1)
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Table 2.8 49 Canonical Fano 3-topes with Fine Interior of Dimension 3. Table contains: ver-
tices vert(�FI) of the Fine interior �FI

ID vert(�FI)

547444 0, (−1/2, −1, −3/2), (0, −1/3, −2/3), (0, 1/3, −1/3)

547465 0, (−1, −1/2, −1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)

547524 0, (0, 1/2, 0), (1/3, 1/3, 0), (−1/3, −1/3, −1)

547525 0, (0, 0, −1/2), (1/3, 0, −1/3), (−1/3, −1, −5/3)

545317 0, (1, −3/2, 2), (2/3, −2/3, 1), (1/2, −1/2, 1), (2/3, −1, 5/3)

545932 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546013 0, (1, −3/2, 2), (0, 1/2, 0), (1/2, −1/4, 1/2), (1/2, −3/4, 3/2)

546062 0, (−1/2, −1/2, −1/2), (−2/3, 0, −1/3), (−1/3, 0, 1/3)

546070 0, (0, 1/2, 0), (1/2, 1/4, 0), (0, −1/2, −1), (−1/2, −3/4, −3/2)

546205 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546219 0, (−1, −1/2, −1/2), (−1/3, 1/3, 0), (−2/3, −1/3, 0)

546663 0, (0, −1/2, 0), (1/3, −1, −1/3), (−1/3, −1, −2/3)

546862 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

546863 0, (−1, −1/2, −1/2), (−1/3, 1/3, 0), (−2/3, −1/3, 0)

547240 0, (1, −3/2, 2), (2/3, −2/3, 1), (1/2, −1/2, 1), (2/3, −1, 5/3)

547246 0, (0, 0, −1/2), (1/3, 0, −1/3), (0, −1/2, −1), (−1/3, −2/3, −4/3)

532384 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

532606 0, (0, 1/2, −1/2), (1/3, 2/3, −1), (−1/3, 1/3, −1)

533513 0, (−1/2, −1/2, −1), (−1/2, 0, 0), (−1/3, 0, −1/3), (−2/3, −2/3, −1)

534667 0, (1/2, 1/2, 1/2), (4/3, 2/3, 1), (2/3, 1/3, 1)

534669 0, (1/2, 1/2, 1/2), (4/3, 1, 2/3), (2/3, 1, 1/3)

534866 0, (0, −1/2, −1/2), (−1/3, −2/3, −1), (−2/3, −4/3, −1)

535952 0, (1, −3/2, 2), (2/3, −2/3, 1), (1/2, −1/2, 1), (2/3, −1, 5/3)

536013 0, (0, 0, −1/2), (1/3, 0, −1/3), (0, −1/2, −1), (−1/3, −2/3, −4/3)

536498 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

537834 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)

538356 0, (0, −1/2, −1/2), (−1/3, −2/3, −1), (−1/3, −1, −2/3), (−1/2, −1, −1)

539063 0, (−1, −1/2, −1/2), (−2/3, 0, −1/3), (−1/3, 0, 1/3)

539304 0, (0, 1/2, 0), (−1/2, 0, 0), (0, 1/3, 1/3), (−2/3, 0, −1/3)

539313 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

540602 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

540663 0, (−1/2, 0, 0), (−1, −1/2, 0), (−1/3, 0, 1/3), (−1, −1/3, −1/3)

474457 0, (0, 0, −1/2), (−1/3, 1/3, −1), (−2/3, −1/3, −1)

481575 0, (−1/2, 0, 0), (1/2, 1/2, 1), (0, 1/3, 1/3), (−1/3, 0, 1/3)

483109 0, (0, −1/2, 0), (2/3, −1/3, 1/3), (1/3, −2/3, −1/3)

490478 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

490481 0, (−1/2, 0, 0), (−1, −1/2, 0), (−1/3, 0, 1/3), (−4/3, −2/3, −1/3)

490485 0, (0, 1/2, 0), (−1/2, 0, 0), (0, 1/3, 1/3), (−2/3, 0, −1/3)

490511 0, (−3/2, −1/2, −1), (−1/2, 0, 0), (−2/3, 0, −1/3), (−1, −1/3, −1/3)

495687 0, (−1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (−1/3, 2/3, 1)

499287 0, (0, −1/2, −1/2), (−1/3, −2/3, −1), (−1/3, −1, −2/3), (−1/2, −1, −1)

499291 0, (0, −1/2, −1/2), (−1/3, −2/3, −1), (−1/3, −1, −2/3), (−1/2, −1, −1)

499470 0, (−3/2, −1/2, −1), (−1/2, 0, 0), (−2/3, 0, −1/3), (−1, −1/3, −1/3)

501298 0, (1/2, −1/2, 1), (2/3, −2/3, 1), (1, −3/2, 2), (1, −5/3, 7/3)

501330 0, (−3/2, −1/2, −1), (−1/2, 0, 0), (−2/3, 0, −1/3), (−1, −1/3, −1/3)

354912 0, (−3/2, −1/2, −1), (−1/2, 0, 0), (−2/3, 0, −1/3), (−1, −1/3, −1/3)

372528 0, (−1/2, 0, 0), (−1, −1/2, 0), (−1/3, 0, 1/3), (−4/3, −2/3, −1/3)

372973 0, (−3/2, −1/2, −1), (−1/2, 0, 0), (−2/3, 0, −1/3), (−1, −1/3, −1/3)

388701 0, (0, −1/2, −1/2), (−1/3, −2/3, −1), (−1/3, −1, −2/3), (−1/2, −1, −1)
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Then (�′)FI is the 3-dimensional rational simplex

conv{(3, 1, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)}

and (�′)FI ∩ M = {(1, 1, 2, 1)}.
The canonical Fano3-tope�′ is theNewtonpolytope of theμ4-cyclic quotient Z�′

of the projective surface of degree 8 defined by the polynomial z81 + z82 + z43 + z44 = 0
in the weighted projective space P(1, 1, 2, 2), where the cyclic group μ4 acts
via (z1 : z2 : z3 : z4) �→ (z1 : i3z2 : i z3 : i3z4). The single interior lattice point in this
lattice simplex�′ corresponds to the monomial z1z2z23z4. The projective surface Z�′

has two Gorenstein cyclic quotient singularities of type A3. The minimal desingu-
larization S�′ of Z�′ is a surface of general type with K 2 = 2 and fundamental
group π1(S�) of order 2.

One can identify �′ with the canonical Fano 3-simplex � given as the convex
hull of

v1 := (−3,−2,−2), v2 := (1, 0, 0), v3 := (1, 3, 1), and v4 := (1, 1, 3)

(ID 547465, Fig. 2.6b, Tables 2.7, 2.8, and 2.9). The primitive inward-pointing facet
normals of the facets θ123, θ124, θ234, θ134 � � of this simplex � are

n1 := (−1,−1, 3), n2 := (−1, 3,−1), n3 := (−1, 0, 0), and n4 := (2,−1,−1),

respectively. They satisfy the relation

n1 + n2 + 2n3 + 2n4 = 0.

To compute the canonical hull �can of �, we obtain supp(�FI) = {si | 1 ≤
i ≤ 9} with s1 := (−1,−1, 3), s2 := (−1, 0, 0), s3 := (−1, 0, 1), s4 := (−1, 0, 2),
s5 := (−1, 1, 0), s6 := (−1, 1, 1), s7 := (−1, 2, 0), s8 := (−1, 3,−1), and s9 :=
(2,−1,−1), which leads to �can = �.

Remark 37 Information about all 49 canonical Fano 3-topes with dim(�FI) = 3
can be found in Tables2.7, 2.8, and 2.9.

2.7 Hollow 3-Topes with Non-empty Fine Interior

A lattice polytope � ⊆ MQ is called hollow if it has no interior lattice points in its
relative interior, i.e., �◦ ∩ M = ∅. By [25, Theorem 1.3], any 3-dimensional hol-
low lattice polytope can be projected to the unimodular 1-simplex, to the double
unimodular 2-simplex, or is an exceptional hollow 3-tope, whereas up to unimod-
ular transformation there exist only a finite number of these. This theorem implies
that a hollow 3-tope with non-empty Fine interior has to be exceptional because the
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unimodular 1-simplex and the double unimodular 2-simplex have empty Fine inte-
rior. Treutlein has found 9 maximal exceptional hollow polytopes, which was not
an complete list. Averkov et al. [1, 2] have found the complete list consisting of 12
maximal exceptional hollow 3-topes �i (1 ≤ i ≤ 12) (Table2.10, Fig. 2.7). Com-
putations show that exactly 9 of 12 maximal exceptional hollow 3-topes �i have
non-empty Fine interior �FI

i (Table2.10). Moreover, no one of these 9 polytopes
contains a proper lattice 3-subpolytope with non-empty Fine interior. Thus, there
exist exactly 9 hollow 3-topes �i with non-empty Fine interior �FI

i .
It is remarkable that all minimal surfaces S�i corresponding to these 9 hollow 3-

topes �i have non-trivial fundamental group π1(S�) of order 2, 3, or 5 (Table2.10).
There exist exactly 5 hollow 3-topes�i with 0-dimensional Fine interior�FI

i = {R},
where R ∈ 1

2M \ M is a rational point (Table2.10). The normal fans ��i of these 5
hollow polytopes �i define 5 toric Fano threefolds X��i with at worst canonical
singularities (Table2.11). These Fano threefolds can be obtained as quotients of
Gorenstein toric Fano threefolds X��′′ in the following 5 ways:

1. P(1, 1, 2, 4) with a μ2-action given by

(x0, x1, x2, x3) �→ (x0,−x1,−x2,−x3);

2. P
3 with a μ4-action given by

(x0, x1, x2, x3) �→ (x0, i x1,−x2,−i x3);

3. {x1x2 − x3x4 = 0} ⊆ P(2, 1, 1, 1, 1) with a μ2-action given by

(x0, x1, x2, x3, x4) �→ (−x0,−x1,−x2, x3, x4);

4. P
1 × P(1, 1, 2) with a μ2-action given by

(x0, x1, y0, y1, y2) �→ (x0,−x1, y0,−y1,−y2);

5. P
1 × P

1 × P
1 with a μ2-action given by

(x0, x1, y0, y1, z0, z1) �→ (x0,−x1, y0,−y1, z0,−z1).

In addition, Table2.12 contains the support supp(�FI
i ) of the Fine interior�FI

i and
the vertices of the canonical hull �can

i for all 9 hollow polytopes �i with non-empty
Fine interior �FI

i .
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Fig. 2.7 12 Maximal Hollow 3-topes. Shaded faces are occluded. The Fine interior is shown in
grey with double borders around its vertices
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Table 2.12 9 Hollow 3-topes with Non-empty Fine Interior. Table contains: index i of the
maximal hollow 3-tope �i , support supp(�FI

i ) of �FI
i , and vertices vert(�can

i ) of the canonical
hull �can

i

i supp(�FI
i ) vert(�can

i )

4 (−2, −1, −1), (0,−1, −2), (2,−1, −3), (0, 0, 1), (0, 0,−1), (0, 1, 0) vert(�i )

5 (1, −1, 0), (1, 1, −1), (0, 0, 1), (0, 0,−1), (−1, −1, −1), (−1, 1, 2) vert(�i )

6 (1, 1, −2), (1, −1, −1), (−1, −1, 0), (−1, 1, −1), (0, 0, 1), (0, 0,−1) vert(�i )

7 (1, 1, 0), (1, −1, −1), (−1, −1, 0), (−1, 1, −1), (0, 0, 1), (0, 0,−1) vert(�i )

8 (1, 1, 0), (1, −1, −1), (−1, −1, 0), (0, 0, 1), (0, 0,−1), (−1, 1, 1) vert(�i )

9 (0,−1, −1), (0, 0, 1), (3, −1, −2), (0, 1, 0), (−3, −2, −1) vert(�i )

10 (−1, 2, −1), (1, 1, −1), (−1, −1, 0), (2, −1, −1), (0, 0, 1) vert(�i )

11 (1, −1, 0), (0, 0, 1), (−1, −2, 1), (−1, 1, 0), (1, 2, −2) vert(�i )

12 (1, 1, 1), (1,−1, 0), (−2,−1, 1), (0, 1, −2) vert(�i )
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Chapter 3
Lattice Distances in 3-Dimensional
Quantum Jumps

Mónica Blanco

Abstract For Q a lattice polytope and x /∈ Q a lattice point, we say that (Q, x) is
a quantum jump if conv(Q ∪ {x}) contains exactly one more lattice point than Q.
Usually this can only happen when the lattice distance between x and Q is somehow
bounded. In this paper I collect several results and information on the bound for
that distance in 3-dimensional quantum jumps, and the consequences on the distance
between the boundary of a polytope and its interior lattice points.

Keywords Lattice polytope · Lattice distance · Quantum jump · Interior points

3.1 Introduction

Throughout my research on classifying lattice 3-polytopes by their number of lattice
points [2–4] there has been a recurrent situation: suppose there is a lattice polytope Q,
and a lattice point x /∈ Q,what can I say about x with respect to Q so that conv(Q ∪
{x}) does not contain more lattice points other than those of Q and x? Usually the
answer had to do with the distance from x to Q being bounded.

In order to explain things more formally we need to introduce notation and some
basic definitions. A lattice point is an element of Z

d , and a lattice polytope is the
convex hull of finitely many lattice points.Wewrite lattice d-polytope if the polytope
isd-dimensional. Twopolytopes P andQ are equivalent, orunimodularly equivalent,
if there exists a unimodular transformation that maps one to the other. That is, if there
exists an affine map t : R

d → R
d such that t (Zd) = Z

d and t (P) = Q. The size of a
lattice polytope P ⊂ R

d is the number of lattice points in it. An affine functional f :
R

d → R is integer if f (Zd) ⊆ Z and it is primitive if f (Zd) = Z. The (lattice) width
of a lattice d-polytope P ⊂ R

d with respect to an integer functional f is the length
of f (P) ⊂ R, and the width of P is the minimum among those, for f non-constant.
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Finally, for S ⊂ R
d , we denote by conv(S) and aff(S) the convex and affine hulls

of S. In particular, an affine subspace S ⊂ R
d is lattice if aff(S ∩ Z

d) = S.
Let us now introduce the main two definitions in this paper:

Definition 1 The lattice distance between a lattice hyperplane H ⊂ R
d and a lat-

tice point x ∈ Z
d is dist(x, H) := | f (x)|, where f is a primitive functional with

f (H) = 0.

Definition 2 Let Q ⊂ R
d be a lattice polytope, not necessarily full-dimensional,

and let x ∈ Z
d \ Q. We say that the pair (Q, x) is a quantum jump if

conv
(
Q ∪ {x}) ∩ Z

d = (
Q ∩ Z

d
) ∪ {x}.

More generally, let Q, R ⊂ R
d be lattice polytopes, not necessarily full-

dimensional, with Q ∩ R = ∅. We say that the pair (Q, R) is a quantum union if

conv
(
Q ∪ R

) ∩ Z
d = (

Q ∩ Z
d
) ∪ (

R ∩ Z
d
)
.

That is, if the lattice points of conv(Q ∪ R) are either in Q or in R.

The name of quantum jumpwas first used by Bruns, Gubeladze, andMichałek [5].
Notice that they restrict the concept of quantum jump (Q, x) for when both Q
and conv(Q ∪ {x}) are full-dimensional and normal. Remember that a lattice d-
polytope Q is normal if, for all k ∈ N, every lattice point in kQ can be written as the
sum of k lattice points in Q.

Now, if we want to take a look at the distance of quantum jumps, we first need to
define the distance between a point and a polytope. Following Definition1, they are
well and naturally defined the following distances:

Definition 3 1. Let Q ⊂ R
d be a lattice (d − 1)-polytope, and let x ∈ Z

d \ aff(Q),
then

dist(x, Q) := dist(x, aff(Q)).

2. Let H1, H2 ⊂ R
d be parallel lattice hyperplanes (H1 ∩ H2 = ∅), then

dist(H1, H2) := dist(x, H2), for any x ∈ H1.

3. Let �1, �2 ⊂ R
3 be lattice lines such that aff(�1 ∪ �2) = R

3, then

dist(�1, �2) := dist(H1, H2),

where H1, H2 are the unique pair of parallel lattice hyperplanes such that �i ⊂ Hi .
4. Let s1, s2 ⊂ R

3 be lattice segments such that aff(s1 ∪ s2) = R
3, then

dist(s1, s2) := dist (aff(s1), aff(s2)) .
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x xx

Q Q Q

Fig. 3.1 The three figures show different facets of a lattice polygon Q, the hyperplane they are
contained in, and the lattice point x . Only the facet in the middle figure is visible from x

Notice that the width and the distance are heavily related. In broad terms, the dis-
tance between two lower-dimensional objects R1, R2 ⊂ R

d with aff(R1 ∪ R2) = R
d

is the width of conv(R1 ∪ R2)with respect to a specific functional that is determined
by the relative position between R1 and R2. In general, if R := conv(R1 ∪ R2) ⊂ R

d

is not full-dimensional, the distance between R1 and R2 is measured in the lat-
tice aff(R) ∩ Z

d ∼= Z
dim(R). In the case of lattice segments, we call (lattice) length of

a segment the distance between its two endpoints (vertices). Notice that a lattice seg-
ment of length k has exactly k + 1 lattice points. We say that a segment is primitive
if it has length one.

Now, the distance that is not necessarily well-defined is the distance from a point
to a full-dimensional polytope. This notion will be written in terms of the distance
to the visible facets (see Fig. 3.1):

Definition 4 Let Q ⊂ R
d be a lattice d-polytope, F ⊂ Q a facet of Q and x ∈

Z
d \ Q. F is visible from x if aff(F) strictly separates x from Q.

Definition 5 Let Q ⊂ R
d be a lattice d-polytope and let x ∈ Z

d \ Q.

1. The minimum distance between x and Q is

dx (Q) := min {dist(x, aff(F)) | F facet visible from x} .

2. The maximum distance between x and Q is

Dx(Q) := max {dist(x, aff(F)) | F facet visible from x} .

See Fig. 3.2 for a 2-dimensional example of themaximum andminimumdistances
between a point and a polygon. Notice that Dx(Q) is the height of x over Q as in [5,
Definition 4.1].

Let us see what we know about the distance of quantum jumps in each dimension.
For this, we can also think of a quantum jump as follows: any d-dimensional quantum
jump is of the form (Pv, v), for P ⊂ R

d a latticed-polytope, v ∈ vert(P) a vertex of P
and Pv := conv(P ∩ Z

d \ {v}). Notice that the dimension of Pv can be d or d − 1.
For example, the lattice distance in quantum jumps of dimension ≤ 2 is always

one:
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Fig. 3.2 A lattice
polygon Q, a lattice point x ,
and the two facets of Q
visible from x , F and G. In
this case, dist(x, F) = 2
and dist(x,G) = 1.
Hence dx (Q) = 1
and Dx (Q) = 2

G

F

x

Q

Lemma 6 Let P be a lattice polytope of dimension d ∈ {1, 2}, and let v be a vertex
of P.

If Pv is of dimension d − 1, then dist(v, Pv) = 1 and, if Pv is of dimension d, we
have dv(Pv) = Dv(Pv) = 1.

To understand the idea in general: let Pv be d-dimensional. For any (d − 1)-
dimensional face of Pv that is visible from v, chose S an empty (d − 1)-dimensional
simplex in it. Since (Pv, v) is a quantum jump, so is (S, v), which implies that the
convex hull of S and v is an empty d-simplex. Remember that an empty simplex of
dimension d is a lattice d-polytope with d + 1 vertices and such that those vertices
are its only lattice points.

In the cases of d = 1, 2, any empty simplex has to be unimodular, hence the vertex-
facet distance (lattice distance between a vertex and the only facet that does not
contain it) is always 1. In dimension 3 things get more complicated since we have
empty tetrahedra of arbitrarily high volume, and hence arbitrarily high vertex-facet
distance (e.g. Reeve tetrahedra [8]). That is, quantum jumps between a unimodular
triangle and a lattice point that is at arbitrarily high lattice distance from it.

In Sect. 3.2 of this paper I put together some information on the lattice dis-
tance of 3-dimensional quantum jumps (Q, x) that derives partially from previous
research [2–4]. We distinguish when Q is 2 or 3-dimensional:

1. If Q is 2-dimensional (Sect. 3.2.1) it so happens that the classifications of lattice 3-
polytopes of size 5 and 6 [2, 3], together with a suitable classification of lattice
polygons, give all the information there is to know about the distance from Q
to x . It can be summarized as follows:

Theorem 7 (see Corollary14) Let Q ⊂ R
3 be a lattice polygon, and let x ∈ Z

3 \
aff(Q) such that (Q, x) is a quantum jump. Then, the lattice distance from x to Q
is at most 3 unless Q is a lattice triangle of width one, in which case the distance is
unbounded.

2. As a direct consequence of the results of the previous section, in Sect. 3.2.2 we
have the following result on the distance of a quantum union of lattice segments:

Theorem 8 (see Corollary16) Let s, t ⊂ R
3 be lattice segments with aff(s ∪ t) =

R
3 such that (s, t) is a quantum union. Then, the lattice distance from s to t is one,

unless both s and t are primitive, in which case it is unbounded.
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3. For the case of Q being 3-dimensional (Sect. 3.2.3), Example18 shows that there
exist quantum jumps of this type at arbitrarily high distance. We also look at
all the lattice 3-polytopes P of size 11 and width > 1 (database of [4]), and for
each vertex v of P such that Pv is 3-dimensional we compute the minimum and
maximum distances from v to Pv. Looking at the numbers one can easily see that
there is no hope in trying to bound these distances, having very high numbers for
both the minimum and the maximum distances.

Finally, in Sect. 3.3 I use all the information gathered in the previous section to
study the distance between the boundary of a polytope and its interior.More precisely,
for P ⊂ R

3 a lattice 3-polytope we look at the distance between a lattice point or
segment in ∂P (the boundary of P) and the inner lattice polytope of P , which
is IP := conv{int(P) ∩ Z

3}. Notice that IP together with a point (or segment) of the
boundary is always a quantum jump (or union). The definition of inner polytope also
applies to rational polytopes.

We only look at inner polytopes IP of size ≥ 3 (see Remark20), and we separate
cases according to its dimension:

1. IP has dimension 1, that is, it is a lattice segment of length ≥ 2. In this case we
look at the distance between IP and a segment in the boundary. By Corollary16,
this distance must be one, leading to:

Theorem 9 (see Theorem21) The projection of P in the direction of the segment IP
is a reflexive polygon (polygon with a unique interior lattice point).

2. IP has dimension 2. In Sect. 3.3.2 we prove a specific property that a polygon
has to satisfy in order to appear as the inner polygon of a 3-dimensional lattice
polytope (see Theorem23). Together with the results of Corollary14 we obtain:

Corollary 10 (see Corollary24) For IP of dimension 2 and size ≥ 12, the distance
from any boundary point of P to IP is at most 1.

3. IP has dimension 3. Again we look at the classification of lattice 3-polytopes
of size ≤ 11 and width > 1 [4], take the polytopes with 3-dimensional inner
polytope, and look at the minimum and maximum distances from any vertex
to the inner polytope. In Sect. 3.3.3 we simply collect some information on the
numbers obtained, without exploring it further. This time the values look more
promising, since the largest value that appears is a maximum distance of 6, and
in very high proportion the maximum and minimum distances are 1.

For future work one could try and complete the results on distances between a
lattice point of the boundary of a polytope, and its 2 or 3-dimensional inner polytope.
For the inner polytope of dimension 2, it is left to explore the cases when IP has up
to 11 lattice points. This seems perfectly doable with the help of the classification
of polygons of Proposition11, together with the results of Sect. 3.2.1. On the other
hand, for IP of dimension 3, one would have to identify in the used database all the
polytopes that yield maximum and minimum distances equal to 1 and try to derive
the properties they have as opposed to those that yield larger distances. One would
have then to try and extend this to lattice 3-polytopes of size larger than 11.
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Δ2 T1 T2

F1(k) F2(k)

F3(k) F4(k′, k)

(k, 0) (k, 0)

(k, 0) (k − k′, 0)(−k′, 0)

Fig. 3.3 The complete classification of lattice polygons that do not contain a unit square

3.2 Distances in 3-Dimensional Quantum Jumps or Unions

Let Q ⊂ Z
3 be a lattice polytope and let x ∈ Z

3 \ Q.We study the distance between x
and Q, provided that (Q, x) is a quantum jump.

3.2.1 Quantum Jumps (Q, x) with Q of Dimension 2

We first see at what distance can a lattice point be from a lattice polygon, so that
they form a quantum jump. For this, we first classify lattice polygons in a way that
is suitable distance-wise. In the following lemma, we call unit square any lattice
polygon unimodularly equivalent to [0, 1]2.
Proposition 11 Let Q ⊂ R

2 be a lattice polygon. Then Q either contains a unit
square or is equivalent to one of the following configurations:

1. �2, the unimodular triangle;
2. T1 := conv{(1, 0), (0, 1), (−1,−1)}, the unique terminal triangle;
3. T2 := conv{(2, 0), (0, 1), (−1,−2)}, a clean triangle with three non-collinear

interior lattice points;
4. F1(k) := conv{(0, 0), (0, 1), (k, 0)}, for k ≥ 2;
5. F2(k) := conv{(0, 1), (0,−1), (k, 0)}, for k ≥ 2;
6. F3(k) := conv{(−1,−1), (0, 1), (k, 0)}, for k ≥ 2; or
7. F4(k ′, k) := conv{(0, 1), (0,−1), (−k ′, 0), (k − k ′, 0)}, for 0 < k ′ < k.

See Fig. 3.3 for a depiction of the polygons of Proposition11. For its proof, let us
first establish the following notation.
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Fig. 3.4 The situation in the
proof of Proposition11
when Q contains three
collinear lattice points in a
facet

xT

(1, 1)(−1, 1)

y

Remark 12 Let P ⊂ R
d be a polytope, and let R � P . If a point x ∈ R

d is not a
point of P , then P ∩ Cx (R) = ∅, where Cx (R) := x − R≥0

(
R − x

)
. This fact fol-

lows trivially from convexity of polytopes. We use it whenever we want to determine
a polytope P , and we know R a subset of P and x a point not in P .

Proof (Proof of Proposition11) For Q with 3 lattice points, we have Q ∼= �2. If Q
has 4 lattice points, then Q ∼= T1, Q ∼= F1(2) or Q is equivalent to the unit square.

So assume for the rest of the proof that Q has size at least 5. In particular we know
that Q has 3 collinear lattice points and we can assume, without loss of generality,
that these are (−1, 0), (0, 0) and (1, 0).

If Q contains a unit square, we have finished. Assume for the rest of the proof
that Q does not contain a unit square. That is, we have Q a lattice polygon of
size ≥ 5, containing the lattice points (−1, 0), (0, 0) and (1, 0), and not containing
a unit square. Since Q is 2-dimensional, it has some lattice point outside of the
line � := {y = 0} and, by Lemma6, we can choose one in either �+ := {y = 1}
or �− := {y = −1}. Without loss of generality, we assume that the point (0, 1) ∈ �+
is in Q. That is, the triangle T := conv{(−1, 0), (1, 0), (0, 1)} ⊂ Q.

Let us now distinguish the cases according to whether Q has three collinear lattice
points in a facet or not.

1. Suppose the three collinear points (−1, 0), (0, 0) and (1, 0) are in a facet of Q.
Then Q ⊂ {y ≥ 0}. Since Q does not contain a unit square, the points (−1, 1)
and (1, 1) cannot be in Q. Moreover, by Remark12 this implies that no point in
the affine cones C(−1,1)(T ) and C(1,1)(T ) is in Q. See Fig. 3.4. That means that
the only lattice points that can lie in Q \ T are in the following sets:

A := {
(i, 0), i ∈ Z \ [−1, 1]}, B := {

(0, j), j ∈ Z, j ≥ 2
}

Q can contain points of A or points of B, but in order for (1, 1) and (−1, 1) not
to be in Q, it cannot contain points of A and B at the same time. Adding points
of A to T gives rise to polygons of the type F1(k), and adding points of B gives
rise to F2(k).

2. If no facet of Q contains three collinear points, then the origin, which is in the
relative interior of the segment conv{(−1, 0), (1, 0)} ⊂ Q, must be an interior
point of Q. So Q must contain some lattice point in {y < 0} and, by Lemma6,
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Fig. 3.5 The situation in the
proof of Proposition11
when Q does not contains
three collinear lattice points
in a facet o

(−3,−1) (−2,−1) (0,−1)

T

y

x

it contains some point of �−. Let us denote this point by p−. We can assume
without loss of generality that (−2, 0), (2, 0) /∈ conv(T ∪ {p−}), or else we
can simply choose a different triple of collinear lattice points in {y = 0}. That
is, p− ∈ {±3,±2,±1, 0} × {−1}. By symmetry of the already established points
with respect to the line {x = 0}, we can assume that p− ∈ {x ≤ 0}. Also we know
that p− = (−1,−1) since Q does not contain a unit square. The three remain-
ing possibilities p− ∈ {(−3,−1), (−2,−1), (0,−1)} are depicted in Fig. 3.5.
Let T ′ := conv(T ∪ {p−}) ⊆ Q, and let us study the three options for p−.

a. p− = (−3,−1).We can apply the unimodular transformation (x, y) �→ (x −
y + 1, y) so that T ′ is mapped to F3(2) and assume now that F3(2) ⊆ Q. See
the left-most picture in Fig. 3.6. The lattice points (−1, 0), (0,−1) and (1, 1)
cannot lie in Q, or else it would contain a unit square. This already implies that
the conesC(−1,0)(F3(2)),C(0,−1)(F3(2)) andC(1,1)(F3(2)) do not intersect Q.
With that, the only lattice points that can be in Q are the points (r, 0), with r >

2. We can take as many as wanted and this gives rise to configurations F3(k).
b. p− = (−2,−1). Again we apply the same unimodular transformation so

that T ′ is, in this case, mapped to F2(2) ⊆ Q. In order for Q not to have unit
squares, no point in {−1, 1}2 can lie in Q which, after removing the corre-
sponding lattice cones, leaves the following possibilities for further points
of Q:

A := {(−1, 2)}, B := {(−1,−2)},

C := {(r, 0), r ∈ Z, r ≥ 3}, D := {(s, 0), s ∈ Z, s ≤ −1}

The points in A and B cannot be in Q at the same time, and each gives rise
to a configuration equivalent to T2. The points in C or D cannot be in Q at
the same time as the points in A or B. If Q has points of D, we have configu-
rations F4(k ′, k) and, if Q only has points of C we get configurations F2(k).

c. p− = (0,−1). In this case, T ′ = F4(1, 2). After excluding the points in the
cones with apex in {−1, 1}2, Q can have other lattice points in:

A := {(r, 0), r ∈ Z \ [−1, 1]}, B := {(0, s), s ∈ Z \ [−1, 1]}

Q cannot have points of A and B at the same time, and adding to T ′ points
of either A or B gives rise to configurations equivalent to F4(k ′, k). �
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(r, 0)

y

x

y

x(s, 0) (r, 0)

(−1, 2)

(−1,−2)

y

x(r, 0)

(0, s)

Fig. 3.6 The three possible polygons T ′ in the proof of Proposition11. In each figure, the dark
gray area is the polygon T ′ (or equivalent). The light gray area is the union of the cones that do not
intersect Q. Black dots are lattice points of T ′, crosses are lattice points that cannot be in Q, and
white dots are the possible lattice points of Q \ T ′

Let us now take that classification and see what are the conditions on the coordi-
nates of a lattice point x ∈ Z

3 so that a polygon Q and x /∈ aff(Q) form a quantum
jump.

Lemma 13 Let Q ⊂ R
2 × {0} be a lattice polygon and let x = (a, b, c) ∈ Z

3 be a
lattice point with c = 0 and such that (Q, x) is a quantum jump. Then:

1. if Q = �2, then at least one of the following happens:

i. a ≡ 1 (mod c) and gcd(b, c) = 1;
ii. b ≡ 1 (mod c) and gcd(a, c) = 1;
iii. a + b ≡ 0 (mod c) and gcd(a, c) = 1;

2. if Q contains a unit square, then c = ±1;
3. if Q = T1, then c = ±1, or c = ±3 and a ≡ −b ≡ ±1 mod 3;
4. if Q = F1(k), for k ≥ 2, then b ≡ 1 mod c and gcd(a, c) = 1;
5. if Q = F3(k), for k ≥ 2, then c = ±1; or
6. if Q = T2, F2(k), F4(k ′, k), for k > k ′ > 0, then c = ±1, or c = ±2 and a ≡

b ≡ 1 mod 2.

For the purpose of simplifying notation in Lemma13 and its proof, let us denote by
Q (resp. R) both the lattice polygon inR

2 and its embedding Q × {0} (resp. R × {0})
in R

3.

Proof Part 1 of the statement follows from the classification of empty tetrahedra [9],
which states that a lattice tetrahedron is empty if one of the three pairs of opposite
edges are at lattice distance one. It is also required that these opposite edges are
primitive segments (gcd condition in the statement).

In each of the cases 2–6, we choose a subpolygon R of Q of size 4 or 5:

2. R is the unit square in Q;
3. R := Q of size 4;
4. R := F1(2) ⊆ Q of size 4;
5. R := F3(2) ⊆ Q, of size 5;
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6. R := F2(2) ⊆ Q or R := F4(1, 2) ⊆ Q, of size 5.

Since (Q, x) is a quantum jump, and R ⊆ Q, so is (R, x). That is, the poly-
tope P := conv(R ∪ {x}) is of size 5 or 6. Let us find the possible equivalences of P
in the classification of lattice 3-polytopes of size 5 or 6 [2, 3]. Notice that in all the
cases, P is a pyramid over a known polygon with apex x , so it suffices to find these
in the mentioned classification:

2. P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1)} (the unique configu-
ration of signature (2, 2) in [2]);

3. P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1)} or
P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0), (1, 2, 3)} (the two configu-
rations of signature (3, 1) in [2]);

4. P ∼= conv{(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (p, q, 1)}, with gcd(p, q) =
1 (the configurations of signature (2, 1) in [2]);

5. P ∼= conv{(−1,−1, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)} (a pyra-
mid of width one in [3]);

6. P ∼= conv{(−1, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)},
P ∼= conv{(−1, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 1, 2)},
P ∼= conv{(−1, 1, 0), (1, 1, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)}, or
P ∼= conv{(−1, 1, 0), (1, 1, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 2)} (two pyra-
mids of width one, and configurations A.1 and A.2 in [3]).

It is left to the reader to see that adding all the lattice points in Q \ R does not
put any further restrictions on the coordinates of x . That is, for each value of x so
that (R, x) is a quantum jump, we also have that (Q, x) is a quantum jump. Notice
that the different possibilities for the values of a, b and c that appear in the statement
in each of the cases, appear by applying to P all the unimodular transformations
in R

3 that are automorphisms of Q. �

In terms of the distance from x to Q, which in Lemma13 is the value |c|, we have
the following result.

Corollary 14 Let Q ⊂ R
3 be a lattice polygon and let x ∈ Z

3 \ aff(Q) be a lattice
point such that (Q, x) is a quantum jump. Then exactly one of the following happens:

1. Q contains a unit square or Q ∼= F3(k), and dist(x, Q) = 1;
2. Q ∼= T2, F2(k) or F4(k ′, k), and dist(x, Q) = 1 or 2;
3. Q ∼= T1 and dist(x, Q) = 1 or 3; or
4. Q ∼= �2 or F1(k), and the distance from x to Q is unbounded.

The polygons �2, Ti and Fi (k) are as in Proposition11, for 0 < k ′ < k.

Notice that the only cases when the distance is unbounded are Q ∼= �2 or Q ∼=
F1(k), that is, when Q is a triangle of width one.
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3.2.2 Quantum Unions of Lattice Segments

The two cases where the distance is unbounded in the previous section also have in
common that all the lattice points are along two lattice segments. Let us think about
them as quantum unions of lattice segments.

Remark 15 1. In the case of Q = �2, we have that (Q, x) is a quantum jump
if P := conv(Q ∪ {x}) is an empty tetrahedron. We can also write it as P =
conv(s1 ∪ s2), with (s1, s2) a quantum union of primitive segments, where s1 is
an edge from x and one of the three vertices of �2, and s2 is the opposite edge.
Notice that in this case there are three possible choices for the pair of primitive
segments.

2. In the case Q = F1(k), we have that (Q, x) is a quantum jump if (s1(k), s2) is
a quantum union between the lattice segment s1(k) := conv{(0, 0, 0), (k, 0, 0)}
and the primitive segment s2 := conv{(0, 1, 0), x}.
Cases 1 and 4 of Lemma 13, reformulated in terms of the distance between seg-

ments that form a quantum union, are as follows:

Corollary 16 Let s, t ⊂ R
3 be lattice segments such that aff(s ∪ t) = R

3 and such
that (s, t) is a quantum union. Then:

1. if one of s or t is not primitive, then dist(s, t) = 1;
2. if both s and t are primitive, the distance dist(s, t) can be arbitrarily high, but

one of the following distances must be one:

dist(s, t), dist
(
conv{s1, t1}, conv{s2, t2}

)
, dist

(
conv{s1, t2}, conv{s2, t1}

)

where si , ti ∈ Z
3 are the end-points of s and t, respectively.

3.2.3 Quantum Jumps (Q, x) with Q of Dimension 3

For the case when Q ⊂ R
3 is a lattice 3-polytope, remember that we defined the

distance from a point x ∈ Z
3 \ Q to Q in terms of the distance to the facets of Q

that are visible from x (Definition5). In particular, one can study the distance from x
to Q, for (Q, x) a quantum jump, by combining the results of the previous section
on the facets of Q that are visible from x .

Remark 17 Let Q ⊂ R
3 be a lattice 3-polytope. For each facet F of Q, let H−

F be
the open halfspace from which the facet F is visible, and denote by H+

F = R
3 \ H−

F
the closed halfspace with Q ⊂ H+

F . Then subdivide R
3 \ Q into the regions

RI :=
⋂

F∈I
H−

F ∩
⋂

F /∈I
H+

F , I = ∅,



60 M. Blanco

Fig. 3.7 The subdivision of
the space of Remark17 for a
lattice polygon. The facets of
the polygon are labeled 1 to
4 and each semi-open region
of the space is labeled by the
facets that are visible from it.
Each region can see one, two
or three facets
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so that, for all x ∈ RI, the facets of Q that are visible from x are exactly those of I.
Notice that the closures of the regions RI are rational polytopes or polyhedra. See
Fig. 3.7 for a 2-dimensional example of this subdivision of the space.

Let RI be one of those regions and suppose that x ∈ RI ∩ Z
3 is such that (Q, x)

is a quantum jump. We can have three different types of situations.

1. If RI is bounded (or if RI ∩ Z
3 is finite), the distance of x to Q is automatically

bounded.
2. If RI ∩ Z

3 has infinitely many points (in particular RI is unbounded), and some
facet of I is not a triangle of width one, then the distance of x to Q is bounded
by the results of the previous section (Corollary14).

3. Finally, if RI ∩ Z
3 has infinitely many points and all the facets in I are triangles

of width one, the distance from x to Q may not be bounded. Notice that, even in
this last case the distance from x to Q could still be bounded by combining the
restrictions given for the coordinates of x as in parts 1 and 4 of Lemma 13 for all
the different facets of I.
For instance,we can find arbitrarily high distance in these types of quantum jumps.

Example 18 Let h ∈ Z, h > 0. Let:

1. x = (0, 0, 0);
2. F := conv{(1, 0, h), (0, 1, h), (1, 1, h)}, a unimodular triangle in {z = h};
3. Q ⊂ R

3 be a lattice 3-polytope such that Q ⊂ C , for C := R≥0(F) = {xh ≤
z} ∩ {yh ≤ z} ∩ {(x + y)h ≥ z} (the triangular cone of F with apex at the origin)
and such that x /∈ Q, F ⊂ Q.

Then F is a facet of Q, it is the only facet that is visible from x , and Q and x
are such that (Q, x) is a quantum jump with Dx (Q) = dx (Q) = dist(x, F) = h.
If moreover Q is contained in Cx := C ∩ {x ≤ 1} or Cy := C ∩ {y ≤ 1}, then Q
and conv(Q ∪ {x}) are polytopes of width one.
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Fig. 3.8 The regions C and Cy of Example18

We can also choose Q of size n, for any n ≥ 4, since the regionsC ,Cx orCy have
infinitely many lattice points. See Fig. 3.8 for a depiction of the polyhedral regionsC
and Cy .

Even though it is clear that arbitrarily bad examples can occur, how often does
this happen? Are they rare or does the general picture look bad? For this, we look at
our database of lattice 3-polytopes of size ≤ 11 and width > 1 [4]. For each of those
polytopes P ⊂ R

3 and for each v ∈ vert(P) such that Pv is full dimensional, we look
at the distance in the quantum jump (Pv, v). Notice that our database contains all the
information on the types of quantum jumps when Pv is of size ≤ 10 and extends to
a polytope P of width > 1. That is, of size ≤ 10, we do not have the information on
polytopes of width one that extend to polytopes of width one, which are infinitely
many for each size (and no enumeration exists).

For each quantum jump (Pv, v) we compute the values dv(Pv) and Dv(Pv) and
store the following vectors:

1. dP := (
dv(Pv)

)
v∈vert(P),Pv full-dimensional

2. DP := (
Dv(Pv)

)
v∈vert(P),Pv full-dimensional

We separate the 216, 453 polytopes of our database in three different groups. Notice
that the entries of each vector dP and DP are positive integers.

1. dP = (1, 1, . . . , 1) = DP . This is the best case scenario we can find, since every
vertex v of P , with Pv full-dimensional, is at distance one from all the facets
of Pv that are visible from v. However, only 5,796 polytopes (about 2.7%) fall
into this category.

2. dP = (1, 1, . . . , 1), DP = (1, 1, . . . , 1). In this case, things are not as nice, but
we still have that every vertex v of P , with Pv full-dimensional, is at distance one
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from at least one facet of Pv that is visible from v. In this category we have 77,443
polytopes (∼35.8%).

3. dP , DP = (1, 1, . . . , 1). This is the worst case we can have, in which some
vertex v of P , with Pv full-dimensional, is at distance larger than one from all
the facets of Pv that are visible form v. This is the case for most of the polytopes
in our database: 133,214 polytopes, or ∼61.5% of the total.

In terms of the magnitudes of the entries, we have that the largest entries in the
vectors dP and DP , for each n the size of P , are:

n 5 6 7 8 9 10 11
max dv(Pv) 5 7 13 19 25 31 37
max Dv(Pv) 7 13 19 25 31 37 43

Notice that themaximum values for dv(Pv) and Dv(Pv), for P of size n, are 6(n −
5) + 1 and 6(n − 4) + 1, respectively (for n = 5 in the first case). This has to do with
the fact that, as h grows (see Example18) we need more lattice points to construct a
polytope of width > 1 that yields a vertex at distance h.

The average values of the dv(IP) and Dv(IP) are, respectively, 1.42 and 3.35.

Remark 19 If we were to follow the lines of Sect. 3.2.1, we would want to have,
in this section, an irredundant list of lattice 3-polytopes Q, and the maximum and
minimum distances a point x can be from Q, for (Q, x) a quantum jump.

However, we need to consider that we have 216,453 polytopes and that, for each of
those polytopes P and each vertex v of P wehave a different polytope Pv. Organizing
the information on the distances with no redundancies among the Pv does not seem
to be worth undertaking, in light of the distances that appear and the arguments made.

3.3 Distance from the Boundary to the Inner Polytope

Let P ⊂ R
3 be a lattice 3-polytope with IP = ∅.

Remark 20 For IP of size 1 or 2, the classification of lattice 3-polytopes with 1
and 2 interior lattice points was completed, respectively, by Kasprzyk [7] and by
Balletti and Kasprzyk [1].

1. The 3-dimensional distances that can be measured in the case of IP consisting of
one lattice point are the distances between this point and the facets of P .

2. In the case of IP having two lattice points, we would have to look at the distance
between IP and a non-coplanar lattice segment in the boundary.

In these two situations the distance is a priori unbounded if we look at it locally:
we can have a quantum jump between a unimodular triangle and a point in the first
case, and a quantum union of primitive segments in the second, at arbitrarily high
distance (see Corollaries14 and 16). There will be a bound following from the fact
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Fig. 3.9 A polytope P
having inner polytope IP of
dimension 1

P

IP

that there are only finitelymany lattice 3-polytopeswith 1 and 2 interior lattice points,
but the author does not believe it is worth exploring the more than 23 million such
polytopes.

So let P be such that IP has size at least three. Let S ⊂ ∂P be a lattice point
or primitive segment in the boundary of P , we look at the distance between S
and IP , relying on the fact that (IP , S) is a quantum jump (or union). This hap-
pens because conv(IP ∪ S) \ S ⊂ int(P), and the only interior lattice points of P
are those of IP .

3.3.1 Inner Polytope of Dimension 1

If IP is a lattice segment (see Fig. 3.9), and since IP has size at least 3, by Corol-
lary16, the distance from IP to any lattice segment in the boundary must be one. A
consequence of this is the following result1:

Theorem 21 (Averkov–Balletti–Blanco–Nill–Soprunov) Let P ⊂ R
3 bea lattice3-

polytope with IP a lattice segment of lattice length k (k + 1 collinear lattice points),
for k ≥ 2. If π : R

3 → R
2 is the lattice projection that maps IP to the origin

then π(P) is a reflexive polygon.

Proof Since k > 0, the projection π is well defined and unique, up to unimodular
transformation. Because the k + 1 collinear lattice points are in the interior of P ,
their projection, i. e. the origin, is an interior point of π(P). Let e be an edge of π(P),
then there exists a lattice segment e′ in the boundary of P such that π(e′) = e. Take
the following polytope Re := conv(IP ∪ e′) ⊂ P . Since e′ ⊂ ∂P and IP ⊂ int(P),
then Re cannot contain any extra lattice points. That is, it is the quantum union
of two lattice segments. By Corollary16, and since IP is not primitive, the distance
between IP and e′ must be one. In the projection, this directly implies that the distance
from the edge e and the origin (the respective projections of the segments) is one.
Hence π(P) is reflexive. �

1 Discussed in the Oberwolfach mini-workshop Lattice polytopes: Methods, Advances and Appli-
cations, September 2017.
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This result can help, for example, in the full classification of lattice 3-polytopes P
with IP a lattice segment. The projection has 16 possibilities: the 16 reflexive poly-
gons. For one such Q fixed, all the lattice points in P must be in π−1(Q).

3.3.2 Inner Polytope of Dimension 2

For P having inner polytope IP of dimension 2 (see Fig. 3.10), ourmain result resides
in proving a specific property that a polygon must have so that it can actually appear
as the inner polytope of a lattice 3-polytope. For this, let us introduce the concept
of front:

Definition 22 Let Q ⊂ Z
2 be a lattice polygon and let v be a vertex of Q. A front

of Q from v is a facet of the polygon Qv := conv(Q \ {v} ∩ Z
2) that is visible from v.

See Fig. 3.11 for an example of the fronts of a polygon.

Theorem 23 If P is a lattice 3-polytope with IP of dimension 2, then the fronts of IP
have length ≤ 8.

Proof Let F ⊂ IP be the longest front of IP , of length � > 0. We can assume with-
out loss of generality that IP ⊂ {z = 0}, � ≥ 3, that v := (0, 1, 0) is a vertex of IP

Fig. 3.10 A polytope P
having inner polytope IP of
dimension 2

P

IP

Fig. 3.11 Four copies of a
polygon Q, each showing
the fronts of Q from a
specific vertex

Q Q

Q Q
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Fig. 3.12 The setting of the
proof of Theorem23

o (�, 0)

r2(�)v0
v

T

r1

y

x

and F := conv{(0, 0, 0), (�, 0, 0)} (that is, F is a front of IP from v). In particular, we
have that T := F1(�) × {0} = conv(F ∪ {v}) ⊆ IP (for F1(�) as in Proposition11)
and that the only lattice points of IP in {y ≥ 0} are those of F and v. We need to
prove that � ≤ 8.

The intersection of P with the plane {z = 0} is the rational polygon P0 := P ∩
{z = 0}. We have that IP = conv(relint(P0) ∩ Z

3). That is, the inner polytope of P
coincides with the relative inner polygon of P0. For now let us identify R

2 × {0}
and R

2 in the trivial way, so from now on we simply say interior of P0 for the
relative interior of it embedded in the space R

3.
The vertex v = (0, 1) of IP is an interior point of P0, so for any line passing

through v there must be a vertex of P0 in each of the open halfspaces determined by
this line. In particular, there must be a vertex of P0 in the open halfspace {y > 1}. Let
us denote this vertex by v0 and consider the rational polygon T ′ := conv(T ∪ {v0}).
Since T ⊆ IP ⊂ int(P0) and v0 ∈ ∂P0, then T ′ \ {v0} ⊂ int(P0). That is, the only
lattice points of T ′ \ {v0} are those of T . In particular, (−1, 1), (1, 1) /∈ T ′ \ {v0},
which implies that v0 /∈ C(−1,1)(T ) ∪ C(1,1)(T ) (see Remark12).

This in turn implies that v0 must lie in the open rational triangle R� determined
by the hyperplanes {y = 1}, r1 := aff{(0, 0), (−1, 1)} = {x + y = 0} and r2(�) :=
aff{(�, 0), (1, 1)} = {x + (� − 1)y = �} (see Fig. 3.12).

That is,

v0 ∈ R� = int

(
conv

{
(−1, 1), (1, 1),

( −�

� − 2
,

�

� − 2

)})
,

which is well defined for � ≥ 3.
Observe that R� ⊂ R3 for all � > 3, and that R3 ∩ Z

2 = ∅. That is, there is no
lattice point in R�. In particular, v0 /∈ Z

3, and the only possibility is that v0 is the
intersection of a primitive segment uw := conv{u,w} ⊂ P with the plane {z = 0},
with neither u norw in this plane (and one in each of the halfspaces). This segment uw
is contained in an edge of P , although it is not necessarily equal to it.

In order to find out more about the coordinates of v0, we need to know the dis-
tances du := dist(u, H) and dw := dist(w, H) in the full-dimensional polytope P ,
for H := aff{P0} = {z = 0}.

For this, let us look at a 3-dimensional proper subpolytope of P:
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K := conv{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0), u,w} ⊂ P

So far, the information we have is that K = conv(K0 ∪ {u,w}), for K0 := K ∩ {z =
0} = conv{o, (2, 0, 0), (0, 1, 0), v0} and u and w lying one in {z > 0} and the other
in {z < 0}, the edge uw being primitive and cutting the plane {z = 0} at the rational
point v0 ∈ R�. Let us prove the following properties of K :

1. K has size 6.Onone hand, K ∩ {z = 0} = K0 does not containmore lattice points
other than (0, 0, 0), (1, 0, 0), (2, 0, 0) and (0, 1, 0), since K0 ⊂ T ′ and T ′ ∩ Z

3 =
T ∩ Z

3. On the other hand, if K contains an extra lattice point other than those
four and u or w, this lattice point would have to lie outside of uw (which is a
primitive edge) and outside of {z = 0}. Since K \ uw ⊂ int(P), this would be an
interior lattice point of P outside of the plane {z = 0}, which is impossible by
hypothesis.

2. K has width > 1. Let f : R
3 → R be a linear primitive functional. If f is not

constant in the line {y = 0 = z}, then the width of K with respect to f is > 1
since f will take three different values in the points (0, 0, 0), (1, 0, 0), (2, 0, 0) ∈
K . Take now f to be constant in that line. Then the width of K with respect to f
is the width of π(K ) with respect to f ′, for π the lattice projection π : R

3 →
R

2, π(x, y, z) = (y, z), and f ′ the primitive functional f ′ : R
2 → R, f ′(y, z) =

f (π−1(y, z)). Notice that f ′ is well defined because f is constant in the fibers
of the projection. But under this projection, the point (0, 1) is an interior point
of π(K ), hence the width of π(K ) with respect to any functional is > 1. See the
picture on the right in Fig. 3.13.

That is, K is a lattice 3-polytope of size 6 and width > 1, and the classification
of such polytopes appears in [3]. However, not all of these polytopes are a possible
candidate for K . To narrow the possibilities, we can figure out the oriented matroid
of our configuration K , since the classification in [3] is also organized according to
this combinatorial information. Remember that the oriented matroid of a finite set of
points is the information recording the affine dependencies, in particular coplanarities
and collinearities between the points (see [6] for information on oriented matroids).

For this, one extra thing thatwe cannotice is that v cannot be avertexof K . Suppose
otherwise, then the polytope K ′ := K (0,1,0) = conv{o, (1, 0, 0), (2, 0, 0), u,w} is a
polytope of size 5 with three collinear lattice points. That is, K ′ is the convex hull

Fig. 3.13 The intersection K0 of K with the plane {z = 0}, and the projection of K under π
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of a lattice segment of length 2 and a primitive lattice segment uw. By Corollary16,
the lattice distance between these two lattice segments must be one. Taking again
projection π , this is equivalent to the segment π(uw) being at distance one from the
origin. Which is impossible since (0, 1) is a lattice point strictly in between π(uw)

and the origin (see the picture in the right of Fig. 3.13). In particular, v is not a vertex
of K0 and the picture on the left of Fig. 3.13 is not accurate.

That is, the oriented matroid of the six lattice points of K can be described as
follows:

1. four of them are vertices (o, (2, 0, 0), u and w);
2. one non-vertex point is in an edge ((1, 0, 0) = 1

2 ((0, 0, 0) + (2, 0, 0)));
3. the hyperplane containing the three collinear points and the other non-vertex point

({z = 0}) leaves the remaining two vertices (u and w) strictly in opposite sides of
it.

Notice that there are four different types (or orbits) of points: the endpoints of
the collinearity (o and (2, 0, 0)), the middle point of the collinearity ((1, 0, 0)),
the other two vertices (u and w), and the remaining non-vertex point (v). This
sixth point v has three different possibilities, in terms of the oriented matroid.
The three possibilities for v are: (I) it is in the relative interior of one of the
facets conv{o, u,w} or conv{(2, 0, 0), u,w}; (II) it is in the relative interior of the
triangle conv{(1, 0, 0), u,w}; or (III) it lies in the interior of one of the tetrahe-
dra conv{o, (1, 0, 0), u,w} or conv{(1, 0, 0), (2, 0, 0), u,w}. These three options
are shown in Fig. 3.14. For each of these three cases, the oriented matroid is fully
described.Without going into details of how theorientedmatroids are represented and
classified in [3], one can derive that the oriented matroid of the three options (I), (II)
and (III) are, respectively, oriented matroids 3.6, 3.8 and 4.11 as encoded in [3,
Fig. 1].

In [3, Tables 8 and 9] we can see that the only lattice 3-polytopes of size 6,
width > 1 and with one of the three specified oriented matroids are B.7 (oriented
matroid 3.8), C.1 (oriented matroid 3.6), and F.13 to F.17 (oriented matroid 4.11).
The following 3 × 6 matrices have, as columns, the six lattice points of each of those
seven polytopes:

Fig. 3.14 The three possibilities (I), (II), and (III) in the proof of Theorem23
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B.7

⎛

⎝
0 1 0 −1 0 0
0 0 1 −1 0 2
0 0 0 0 1 −1

⎞

⎠

C.1

⎛

⎝
0 1 0 −1 0 −1
0 0 1 −1 0 0
0 0 0 0 1 2

⎞

⎠

F.13

⎛

⎝
0 1 0 −2 1 4
0 1 0 −1 0 1
0 1 1 −2 0 2

⎞

⎠

F.14

⎛

⎝
0 0 −1 1 1 1
0 0 −1 2 0 −2
0 1 −1 1 0 −1

⎞

⎠

F.15

⎛

⎝
0 0 1 1 −1 −3
0 0 0 2 −1 −4
0 1 0 1 −1 −3

⎞

⎠

F.16

⎛

⎝
0 1 −1 0 1 2
0 0 −2 0 3 6
0 0 −1 1 1 1

⎞

⎠

F.17

⎛

⎝
0 1 1 0 −1 −2
0 0 3 0 −2 −4
0 0 1 1 −1 −3

⎞

⎠

That is, our polytope K must be equivalent to one of them, say K̃ , and let t :
R

3 → R
3 be any unimodular transformation that maps K to K̃ . Then t will send the

edge conv{(0, 0, 0), (2, 0, 0)} to the unique collinearity of three lattice points in K̃ ,
and v = (0, 1, 0) to the only non-vertex of the remaining lattice points.

Since unimodular transformations preserve distances, we have that {du, dw} =
{d ′

u, d
′
w}, for d ′

u := dist(t (u), t (H)) and d ′
w := dist(t (w), t (H)). Moreover, we can

assume without loss of generality that du ≤ dw. Then:

(du, dw) =

⎧
⎪⎨

⎪⎩

(1, 1) if K ∼= B.7, C.1, F.13, F.15

(1, 2) if K ∼= F.14, F.17

(1, 3) if K ∼= F.16

The distance in our original coordinates of K , since H = {z = 0}, is measured on
the z-coordinate of the points. That is, let zu and zw be the respective z-coordinates ofu
andw, we have that du = |zu | and dw = |zw|.Without loss of generality zu > 0 > zw:

(zu, zw) =

⎧
⎪⎨

⎪⎩

(1,−1) if K ∼= B.7, C.1, F.13, F.15

(1,−2) if K ∼= F.14, F.17

(1,−3) if K ∼= F.16

Let us now see that the denominator of the rational coordinates of v0 can only
be 2, 3 or 4:

v0 = (1 − λ)u + λw, for some λ ∈ [0, 1]

where λ is such that the z-coordinate of v0 is 0:

0 = (1 − λ)zu + λzw =⇒ λ = zu
zu − zw

= du
du + dw

That is, λ ∈ 1
2Z, 1

3Z or 1
4Z, hence

v0 = (a, b, 0), for (a, b) ∈
(
1

2
Z

)2

∪
(
1

3
Z

)2

∪
(
1

4
Z

)2

.
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R3

R4 R5

R6

R8 R9

R7

(−1, 1) (1, 1)

(−3, 3)

(−9
7 , 97

)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−2, 2) (−5
3 , 53

)

(−3
2 , 32

) (−7
5 , 75

)

(−4
3 , 43

)

Fig. 3.15 The regions R3 to R9, with the points of the lattices L2, L3 and L4 contained in them.
Large squares are points of L2 \ Z

2, medium squares are the points of L3 \ Z
2, and small squares

the points of L4 \ L2. Black dots and crosses represent points ofZ
2 in ∂R� andR

2 \ R�, respectively

Remember also that v0 must lie in the open triangle R�. To prove the statement of
the theorem it remains to see that the intersection of R� with any of the lattices L2, L3

or L4, for Li := (
1
i Z

)2 × {0} is empty for � ≥ 9. This is true since R9 does not contain
any point of those lattices, and since R� ⊆ R9 for � ≥ 9. To help the reader visualize
this we have drawn in Fig. 3.15 all the regions R3 to R9 with the possible positions
for the point v0. �
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As a consequence of the theorem, we find that polygons that do not contain a
unit square can only be inner polytopes of lattice 3-polytopes if they have few lattice
points:

Corollary 24 Let P ⊂ R
3 be a lattice 3-polytope with IP of dimension 2. Then

exactly one of the following happens:

1. IP contains a unit square and all its fronts are of length ≤ 8;
2. IP ∼= T1;
3. IP ∼= F3(k), for 2 ≤ k ≤ 8;
4. IP ∼= T2, F2(k) or F4(k ′, k), for 0 < k ′ < k ≤ 8; or
5. IP ∼= �2 or IP ∼= F1(k), for 2 ≤ k ≤ 8.

In particular, in cases 1–4 any lattice point in the boundary of P is at distance at
most 1, 3, 1 and 2, respectively, from IP .

Proof The first part of the statement follows from Proposition11 and Theorem23,
considering that the longest fronts in F1(k), F2(k), F3(k) and F4(k ′, k) have length k.
The second part follows from Corollary14. �

Remark 25 In case 5, the distance of any boundary lattice point of P to IP will also
be bounded since there are only finitelymany lattice 3-polytopeswith those particular
polygons as inner polytopes. However, this bound can only be found globally, and
not locally, since the distance from a single lattice point to IP is a priori unbounded
(see Corollary14).

3.3.3 Inner Polytope of Dimension 3

Now there is only left the case where IP is 3-dimensional. In particular, these are
quantum jumps of the type considered in Sect. 3.2.3, and we can apply the results
of Sect. 3.2.1 as explained in Remark17. However, notice that we cannot use the
results of Sect. 3.3.2, since they heavily rely on IP being 2-dimensional.

We do the same as we did in Sect. 3.2.3: we check our database of lattice 3-
polytopes of size ≤ 11, width > 1 and 3-dimensional inner polytope, of which
there are 15,763 polytopes [4]. In this case, since a polytope with interior lattice
points cannot have width one, we are not losing cases by having only polytopes
of width > 1, but we only have polytopes with at most 11 lattice points in total.
Since IP is 3-dimensional, it has at least size 4, and since vert(P) ⊂ P \ IP , then IP
has at most 7 lattice points. That is, our database contains the information on IP of
size k ∈ {4, 5, 6, 7}, with P of size n ∈ {k + 4, . . . , 11} and with n − k ≤ 7 lattice
points in the boundary. In particular, both P and IP are very clean (few points in the
boundary) among the polytopes being checked.
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We consider the following vectors:

1. dP := (
dv(IP)

)
v∈vert(P)

2. DP := (
Dv(IP)

)
v∈vert(P)

In this case, the results we get are much more hopeful, since most of the polytopes P
have the distance from vertices to IP all ones:

1. 8,786 polytopes (∼55.74%) have dP = (1, 1, . . . , 1) = DP . That is, every ver-
tex v of P is at distance one from all the facets of IP that are visible from v.

2. 5,804 polytopes (∼36.82%) have dP = (1, 1, . . . , 1), DP = (1, 1, . . . , 1). In this
case, every vertex v of P is at distance one from at least one facet of IP that is
visible from v.

3. 1,173 polytopes (∼7.44%) have dP , DP = (1, 1, . . . , 1). That is, there exists a
vertex v of P that is at distance larger than one from all the facets of IP that are
visible form v.

Moreover, the values of the distances are much smaller. Themaximum andminimum
values for each size n are as follows:

n 8 9 10 11
max Dv(IP ) 3 4 5 6
max dv(IP ) 3 3 3 4

and the average values of the Dv(IP) and dv(IP) are, respectively, 1.12 and 1.02.

Remark 26 Following the reasonings of Remark19, in this case we would want
to have a list of polytopes Q and the maximum distance we can have a point x
so that (Q, x) is a quantum jump and there exists a polytope P such that Q = IP
and x ∈ ∂P . From our database we are only considering 15,763 polytopes and, for
each of those polytopes P , we have exactly one polytope IP .

Putting together all the equivalent inner polytopes, we find out that there are
only 39 equivalence classes of inner polytopes. Moreover, around 9,000 polytopes in
the database (more than half) have the unimodular tetrahedron as its inner polytope.

The maximum and minimum distances for IP of size k are as follows:

k 4 5 6 7
max Dv(IP ) 4 4 5 6
max dv(IP ) 4 3 2 2

Altogether, it seems that we could find manageable bounds for the distance in
quantum jumps (IP , v), although further work is required.

Acknowledgements I would like to thank the referee for the useful comments and suggestions.
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Chapter 4
Flag Matroids: Algebra and Geometry

Amanda Cameron, Rodica Dinu, Mateusz Michałek, and Tim Seynnaeve

Abstract Matroids are ubiquitous in modern combinatorics. As discovered by
Gel’fand, Goresky, MacPherson and Serganova there is a beautiful connection
between matroid theory and the geometry of Grassmannians: representable matroids
correspond to torus orbits inGrassmannians. Further, as observed byFink andSpeyer,
generalmatroids correspond to classes in the K -theory ofGrassmannians. This yields
in particular a geometric description of the Tutte polynomial. In this review we
describe all these constructions in detail, and moreover we generalise some of them
to polymatroids. More precisely, we study the class of flag matroids and their rela-
tions to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for
flag matroids.
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4.1 Introduction

The aim of this article is to present beautiful interactions among matroids and alge-
braic varieties. Apart from discussing classical results, we focus on a special class
of polymatroids known as flag matroids. The ultimate result is a definition of a Tutte
polynomial for flag matroids. Our construction is geometric in nature and follows
the ideas of Fink and Speyer for ordinary matroids [16]. The audience we are aim-
ing at is the union of combinatorists, algebraists and algebraic geometers, not the
intersection.

Matroids are nowadays central objects in combinatorics. Just as groups abstract
the notion of symmetry, matroids abstract the notion of independence. The interplay
of matroids and geometry is in fact already a classical subject [21]. Just one of such
interactions (central for our article) is the following set of associations:

matroids/flag matroids/polymatroids → lattice polytopes → toric varieties.

We describe these constructions in detail. They allow to translate results in com-
binatorics to and from algebraic geometry. As an example we discuss two ideas due
to White:

1. combinatorics of basis covers translates to projective normality of (all maximal)
torus orbit closures in arbitrary Grassmannians—Theorem 40;

2. White’s conjecture about basis exchanges (Conjecture 38) is a statement about
quadratic generation of ideals of toric subvarieties of Grassmannians.

Although the idea to study a matroid through the associated lattice polytope is
certainly present already in the works of White and Edmonds, the importance of
this approach was only fully discovered by Gel’fand, Goresky, MacPherson and
Serganova [21]. The construction of associating a toric variety to a lattice polytope
can be found in many sources, we refer the reader e.g. to [9, 17, 49].

The object we focus on is one of the main invariants of a matroid: the Tutte
polynomial. It is an inhomogeneous polynomial in two variables. On the geometric
side it may be interpreted as a cohomology class (or a class in K -theory or in Chow
ring) in a product of two projective spaces.

The applications of algebro-geometric methods are currently flourishing. A
beautiful result of Huh confirming a conjecture by Read on unimodality of chro-
matic polynomials of graphs is based on Lefschetz theorems [28]. This led fur-
ther to a proof of the general Rota-Heron-Welsh conjecture [1]—which we state in
Theorem 93. Although the latter proof is combinatorial in nature, the authors were
inspired by geometry, in particular Lefschetz properties. We would like to stress that
the varieties and Chow rings studied by Adiprasito, Huh and Katz are not the same
as those we introduce in this article. Still, as the focus of both is related to the Tutte
polynomial it would be very interesting to know if their results can be viewed in the
setting discussed here.
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We finish the article with a few open questions. As the construction of the Tutte
polynomial we propose is quite involved it would be very nice to know more direct,
combinatorial properties and definitions.

Note 1 E will always denote a finite set of cardinality n.P(E) is the set of all subsets
of E , and

(E
k

)
is the set of all subsets of E of cardinality k. We use [n] as a shorthand

notation for the set {1, 2, . . . , n}. We will denote the difference of two sets X and Y
by X − Y . This does not imply that Y ⊆ X . If Y is a singleton {e}, we write X − e
instead of X − {e}.

4.2 Matroids: Combinatorics

For a comprehensive monograph on matroids we refer the reader to [43].

4.2.1 Introduction to Matroids

There exist many cryptomorphic definitions of a matroid—it can be defined in terms
of its independent sets, or its rank function, or its dependent sets, amongst others.
One of the most relevant definitions for us is that of the rank function:

Definition 2 A matroid M = (E, r) consists of a ground set E and a rank
function r : P(E) → Z≥0 such that, for X,Y ∈ P(E), the following conditions hold:

R1. r(X) ≤ |X |;
R2. (monotonicity) if Y ⊆ X , then r(Y ) ≤ r(X); and
R3. (submodularity) r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

We write r(M) for r(E). When r(X) = |X |, we say that X is independent,
and dependent otherwise. A minimal dependent set is called a circuit. A matroid
is connected if and only if any two elements are contained in a common circuit. It
can be shown that “being contained in a common circuit” is an equivalence relation
on E ; the equivalence classes are called connected components.

If |X | = r(X) = r(M) we call X a basis of M . We can use bases to provide an
alternative set of axioms with which to define a matroid. We present this as a lemma,
but it can just as well be given as the definition. The diligent reader can check that
each set of axioms implies the other.

Lemma 3 A matroid M = (E,B) can be described by a set E and a collection of
subsets B ⊆ P(E) such that:
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B1. B 	= ∅; and
B2. (basis exchange) if B1, B2 ∈ B and e ∈ B1 − B2, there exists f ∈ B2 − B1 such

that (B1 − e) ∪ f ∈ B.
A reader new to matroid theory should not be surprised by the borrowed termi-
nology from linear algebra: matroids were presented as a generalisation of linear
independence in vector spaces in the paper by Whitney [57] initiating matroid the-
ory. Matroids also have a lot in common with graphs, thus explaining even more
of the terminology used. For instance, very important matroid operations are that
of minors. These are analogous to the graph operations of the same names. As there,
deletion is very simple, while contraction requires a bit more work.

Definition 4 (Deletion and Contraction)

1. We can remove an element e of a matroid M = (E, rM) by deleting it. This yields
a matroid M\e = (E − e, rM\e), where rM\e(X) = rM(X) for all X ⊆ E − e.

2. We can also remove an element e of amatroidM = (E, rM) by contracting it. This
gives amatroidM/e = (E − e, rM/e)where rM/e(X) = rM(X ∪ e) − rM({e}) for
all X ⊆ E − e.

Remark 5 More generally, if M = (E, rM) is a matroid and S is a subset of E , we
can define the deletion M\S (resp. contraction M/S) by deleting (resp. contracting)
the elements of S one by one. We have that rM\S(X) = rM(X) for all X ⊆ E − S
and rM/S(X) = rM(X ∪ S) − rM(S) for all X ⊆ E − S.

We will now give two examples of classes of matroids which show exactly the
relationship matroids have with linear algebra and graph theory. The first one plays
a central role in our article.

Definition 6 Let V be a vector space, and φ : E → V a map that assigns to every
element in E a vector of V . For every subset X of E , define r(X) to be the dimen-
sion of the linear span of φ(X). We have that (E, r) is a matroid, which we say
is representable.

Remark 7 Our definition differs slightly from the one found in literature: typically
one identifies E with φ(E). Our definition does not require φ to be injective; we can
take the same vector several times. We also note that the matroid represented by φ :
E → V only depends on the underlying map φ : E → P(V ), assuming φ(E) ⊂
V \{0}.

If V is defined over a field F, we say that M is F-representable.We can describe
the bases of a representable matroid: X ⊆ E is a matroid basis if and only if φ(X)

is a vector space basis of the linear span of φ(E).

Example 8 (The non-Pappus matroid) Here is an example of a non-representable
matroid: consider the rank-3 matroid R on [9], whose bases are all 3-element subsets
of [9] except for the following (see also Fig. 4.1):
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Fig. 4.1 The non-Pappus
matroid

1 2 3

4 5 6

7
8

9

{1, 2, 3}, {4, 5, 6}, {1, 5, 7}, {1, 6, 8}, {2, 4, 7}, {2, 6, 9}, {3, 4, 8}, {3, 5, 9}.

If R were representable over a field F, there would be a map [9] → P
2
F

: i → pi
such that pi , p j , pk are collinear if and only if {i, j, k} is not a basis of R. Now, the
classical Pappus’ Theorem precisely says that this is impossible: if the non-bases are
all collinear, then so are p7, p8, p9.

Definition 9 Let G = (V, E) be a graph. The graphic (or cycle) matroid M of G is
formed by taking E(M) = E(G), and setting the rank of a set of edges equal to the
cardinality of the largest spanning forest contained within it.

It is easy to see that connectedness of the graph G is not equivalent to connectedness
of the matroid M(G). However, there is a correspondence with higher graph connec-
tivity. We say that a graph G is k-connected if we cannot disconnect G by removing
less than k vertices. Now, M(G) is connected if and only if G is 2-connected.

4.2.2 The Tutte Polynomial

Further matroid definitions will be given later, but we have covered enough to give
the major object of our interest in this paper, namely the Tutte polynomial. This
is the most famous matroid (and graph) invariant, and, like matroids themselves,
has multiple definitions. These will be mentioned where relevant. Here, we give
the corank-nullity formula, two terms which will be defined below.

Definition 10 Let M = (E, r) be a matroid with ground set E and rank function r :
P(E) → Z≥0. The Tutte polynomial of M is

TM(x, y) =
∑

S⊆E

(x − 1)r(M)−r(S)(y − 1)|S|−r(S).

The term r(M) − r(S) is called the corank, while the term |S| − r(S) is called
the nullity. Readers familiar with matroid theory should be careful not to confuse
a mention of corank with dual rank, given the usual naming convention of dual
objects. By identifying the rank function of a matroid with the connectivity function
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of a graph in an appropriate way, one can pass between this formula and the original
formulation of the Tutte polynomial which was given for graphs.

Example 11 For the (matroid of the) complete graph K4, there are four subsets with
three elements of rank 2 and all the other subsets with three elements have rank 3.
In this case, the Tutte polynomial is

TM(K4)(x, y) = x3 + 3x2 + 2x + 4xy + 2y + 3y2 + y3.

Readers interested in seeing what the Tutte polynomial looks like for a range of
different classes of matroids should consult [36].

The prevalence of the Tutte polynomial in the literature is due to the wide range
of applications it has. The simplest of these occurs when we evaluate the polynomial
at certain points, these being called Tutte invariants. For instance, T (1, 1) gives the
number of bases in the matroid (or the number of spanning trees in a graph). In this
way we can also count the number of independent sets in a matroid or graph, and
the number of acyclic orientations of a graph, as well as some other such quantities.
Beyond numerics, the Tutte invariants also include other well-known polynomials,
appearing in graph theory (the chromatic polynomial, concerned with graph colour-
ings; see also Theorem 93) and network theory (the flow and reliability polynomials).
Extending to further disciplines, one can find multivariate versions of the Tutte poly-
nomial which specialise to the Potts model [55] from statistical physics and the Jones
polynomial [52] from knot theory. In this paper, we will be looking at the classical
Tutte polynomial from an algebraic point of view.

We noted that there aremultiple definitions of the Tutte polynomial. One is both so
useful and attractive that we would be remiss to not include it. It states that, instead of
calculating the full sum above, we can instead simply form a recurrence over minors
of our matroid, which can lead to faster calculations. Note that a coloop is an element
of E which is in every basis of M , while a loop is an element which is in no basis.

Lemma 12 ([7]) Let TM(x, y) be the Tutte polynomial of a matroid M = (E, r).
Then the following statements hold:

1. TM(x, y) = xTM/e(x, y) if e is a coloop;
2. TM(x, y) = yTM\e(x, y) if e is a loop;
3. TM(x, y) = TM\e(x, y) + TM/e(x, y) if e is neither a loop nor a coloop.

The Tutte polynomial is in fact universal for such formulae: any formula for
matroids (or graphs) involving just deletions and contractions will be an evaluation
of the Tutte polynomial. There are numerous proofs of this in the literature, and also
extensions to related classes of objects. One such reference is [13, Sect. 4].
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4.2.3 The Base Polytope

We will now give two more axiom systems for matroids. The first one, via base
polytopes, will play a fundamental role in this paper.

We first define what the base polytope of a matroid is: letB be the set of bases of a
matroidM = (E, r).Wework in the vector spaceR

E = {(ri | i ∈ E)}, where ri ∈ R.
For a set U ⊆ E , eU ∈ R

E is the indicator vector of U , that is, eU is the sum of the
unit vectors ei , for all i ∈ U . Note that e{i} = ei .

Definition 13 The base polytope of M is

P(M) = conv{eB | B ∈ B}.

Note that this is always a lattice polytope. Its dimension is equal to |E | minus the
number of connected components of the matroid [15, Proposition 2.4]. We also note
that the vertices of P(M) correspond to the bases of M . In particular: given P(M) ⊂
R

E , we can recover M .
The following theorem gives a characterisation of which lattice polytopes appear

as the base polytope of a matroid. It can be used as an axiom system to define
matroids:

Theorem 14 ([12], see also [21, Theorem 4.1]) A polytope P ⊂ R
E is the base

polytope of matroid on E if and only if the following two conditions hold:

P1. every vertex of P is a 0, 1-vector; and
P2. every edge of P is parallel to ei − e j for some i, j ∈ E.

More generally the description of faces of matroid base polytopes is provided in [15,
30]. The base polytope is a face of the independent set polytope of M , which is the
convex hull of indicator vectors of the independent sets of M .

4.2.4 Definition via Gale Orderings

Wemove on to another axiom system: via Gale orderings. This definition is orginally
due to Gale [20]; our formulation is based on lecture notes by Reiner [45].

Definition 15 Let ω be a linear ordering on E , which we will denote by ≤. Then
the dominance ordering ≤ω on

(E
k

)
, also called Gale ordering, is defined as follows.

Let A, B ∈ (E
k

)
, where

A = {i1, . . . , ik}, i1 < · · · < ik

and
B = { j1, . . . , jk}, j1 < · · · < jk .
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Then we set
A ≤ω B if and only if i1 ≤ j1, . . . , ik ≤ jk .

Theorem 16 ([20]) Let B ⊆ (E
k

)
. We have that B is the set of bases of a matroid if

and only if for every linear ordering ω on E, the collectionB has a maximal element
under the Gale ordering≤ω (i.e. there is a unique member A ∈ B such that B ≤ω A,
for all B ∈ B).

In Sect. 4.6.1, we will introduce a generalisation of matroids, called flag matroids,
via Gale orderings. This will generalise the above characterisation of matroids. In
this paper, theywill arise quite naturally when generalising our geometric description
of matroids given in Sect. 4.5.

4.2.5 The Matroid Union Theorem

Next we present one of the central theorems in matroid theory.

Theorem 17 (Thematroid union theorem) Let M1, . . . , Mk bematroids on the same
ground set E with respective families of independent sets l1, . . . , lk and rank func-
tions r1, . . . , rk . Let

l := {I ⊂ E : I =
k⋃

i=1

Ii for Ii ∈ li }.

Then l is also a family of independent sets for a matroid, known as the union
of M1, . . . , Mk. Further, the rank of any set A ⊂ E for the union matroid is given
by:

r(A) = min
B⊂A

{|A\B| +
k∑

i=1

ri (B)}.

The proof can be found e.g. in [43, 12.3.1]. The following corollary is essentially
due to Edmonds.

Corollary 18 Let M1, . . . , Mk be matroids on a ground set E with rank functions
respectively r1, . . . , rk . E can be partitioned into independent sets, one for each
matroid, if and only if for all subsets A ⊂ E we have |A| ≤ ∑k

i=1 ri (A).

Proof The implication ⇒ is straightforward.
For the other implication let U be a matroid that is the union of M1, . . . , Mk . We

compute the rank of E in U , applying the matroid union Theorem 17:

rU (E) = min

{

|E | − |B| +
k∑

i=1

ri (B)

}

.
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By assumption, for any B ⊂ E we have |E | − |B| + ∑k
i=1 ri (B) ≥ |E |. Further,

equality holds for B = ∅. Hence, rU (E) = |E |. Thus, E is an independent set ofU .
By definition it is a union of k independent sets, one in each of the Mi ’s. �

4.3 Polymatroids: Combinatorics

Consider what happens if we drop one of the rank axioms, namely that which
states r(X) ≤ |X |.What object do we get, andwhat relation does it have tomatroids?
This object was originally studied by Edmonds [12] (although in a different guise,
see Definition 23), and dubbed a polymatroid. The class of polymatroids includes,
naturally, the class of matroids, and is greatly important in the field of combinatorial
optimisation.

Definition 19 A polymatroid M = (E, r) consists of a ground set E and a rank
function r : P(E) → Z≥0. The rank function r satisfies conditionsR2 (monotonicity)
and R3 (submodularity) of Definition 2, while condition R1 is relaxed to r(∅) = 0.

A polymatroid is called a k-polymatroid if all singletons have rank at most k. In
particular, a matroid is a 1-polymatroid.

Remark 20 Aswe assume that our rank function take only integral values, the object
we defined is sometimes referred to in the literature as a discrete polymatroid [27].

One vital difference between matroids and polymatroids is that polymatroids do
not have well-defined properties of deletion and contraction.

One problem behind this is the following. Take any element e in the ground set of
a given matroid. All the bases not containing e are bases in the deletion of e, while
all the bases containing e exactly correspond to bases in the contraction of e. There is
no such partition of bases among minors in a polymatroid. In consequence, the Tutte
polynomial is not directly applicable to polymatroids. In restricted cases, this can be
somewhat solved: this is done by Oxley and Whittle [44] for 2-polymatroids, where
the corank-nullity polynomial is still universal for a form of deletion-contraction
recurrence. In [11], the authors strengthen the notion of “deletion-contraction invari-
ant” to more general combinatorial objects via the use of coalgebras, and compare
their results to that of Oxley and Whittle. In their strengthening, the corank-nullity
polynomial is indeed still universal, and furthermore, out of the polynomials found
in [44], the corank-nullity one is optimal, under the norms used in [11].

Cameron and Fink [8] construct a version of the Tutte polynomial for all poly-
matroids which specialises to an evaluation of the classical Tutte polynomial when
applied to a matroid. This will be discussed below. In order to describe it, we first
have to explain bases and base polytopes for polymatroids.

Definition 21 LetM = (E, r) be a polymatroid. An integer vector x ∈ Z
E≥0 is called

an independent vector if x · eU ≤ r(U ) for all U ⊆ E . If in addition x · eE = r(E),
then x is called a basis.
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Analogously to the matroid case, we can give an axiom system for polymatroids in
terms of their bases.

Lemma 22 ([27, Theorem 2.3]) A nonempty finite set B ⊂ Z
E≥0 is the set of bases

of a polymatroid on E if and only if B satisfies

1. all u ∈ B have the same modulus (sum of entries); and
2. if u = (u1, . . . , un) and v = (v1, . . . , vn) belong to B with ui > vi then there

is j ∈ E with u j < v j such that u − ei + e j ∈ B.
Definition 23 LetM = (E, r) be a polymatroid. LetI ⊆ Z

E≥0 be the set of indepen-
dent vectors, andB ⊆ Z

E≥0 be the set of bases. We have the independent set polytope,
which is also referred to as the extended polymatroid of r :

EP(M) = convI = {x ∈ R
E
≥0 | x · eU ≤ r(U ) for all U ⊆ E}.

This is in fact what was originally defined to be a polymatroid, by Edmonds [12].
We also have the polymatroid base polytope:

P(M) = convB = EP(M) ∩ {x ∈ R
E | x · eE = r(E)}.

As before, the base polytope is a face of the extended polymatroid. When the
polymatroid considered is a matroid, these definitions coincide exactly with those
from Sect. 4.2.3.

Theorem 14 generalises to the case of polymatroids, giving us another equivalent
definition of polymatroids in terms of their base polytopes:

Theorem 24 ([27, Theorem 3.4]) A polytope P ⊂ R
n is the base polytope of a

polymatroid on [n] if and only if the following two conditions hold:

1. every vertex of P has coordinates in Z≥0; and
2. every edge of P is parallel to ei − e j , for some i, j ∈ [n].
IfM is a polymatroid, then the bases (resp. independent vectors) ofM are precisely
the lattice points of P(M) (resp. EP(M)). The following proposition describes
which bases of M correspond to vertices of P(M).

Proposition 25 ([12], see also [27, Proposition 1.3]) Let M = ([n], r) be a poly-
matroid and assign an ordering S to the ground set [n]. Let Si be the first i elements
according to this ordering. Every possible S corresponds (not necessarily uniquely)
to a vertex of P(M); x = xS, where x = (x1, . . . xn), and

xi = r(Si ) − r(Si−1).

In particular, a polymatroid base polytope has at most n! vertices.
We finish by slightly generalising the ideas of White [56]. As we will see later in

Theorem 40 the statement below has geometric consequences. It was proven in [46,
Corollary 46.2c] using different methods.
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Theorem 26 Let M1, . . . ,Mk be polymatroids on a ground set E with respec-
tive polytopes P(M1), . . . , P(Mk). Then every lattice point p ∈ P(M1) + · · · +
P(Mk) is a sum p = s1 + · · · + sk , where each si is a lattice point of P(Mi ).

Proof Proceeding by induction on k, it is enough to prove the theorem for k = 2.
Let us choose r large enough, so that M1 and M2 are r -polymatroids. We

define a matroid M̃1 (resp. M̃2) on E × [r ] as follows. Let π1 : E × [r ] → E be
the projection. A subset A ⊂ E × [r ] is independent in M̃1 (resp. M̃2) if and only
if for every subset B ⊂ π1(A) we have r1(B) ≥ |A ∩ (B × [r ])| (resp. r2(B) ≥
|A ∩ (B × [r ])|), where r1 (resp. r2) is the rank function of the polymatroid M1

(resp.M2). Intuitively, an independent set in M̃ j is an independent set I inM j where
we replace one point in E by as many points as the rank function dictates. We have
natural surjections, P(M̃ j ) → P(M j ) and P(M̃1) + P(M̃2) → P(M1) + P(M2),
coming from the projection π1. Thus, it is enough to prove the statement for two
matroids. From now on we assume that M1 and M2 are matroids.

Let p ∈ P(M1) + P(M2) be a lattice point.We know that p= ∑
i λi ti + ∑

j μ j q j

with
∑

λi = 1,
∑

μ j = 1, for λi , μ j ∈ Q≥0, and that ti (resp. q j ) are lattice points
of P(M1) (resp. P(M2)). After clearing the denominators we have

dp =
∑

i

λ′
i ti +

∑

j

μ′
j q j ,

where
∑

λ′
i = d,

∑
μ′

j = d and λ′
i , μ

′
j ∈ Z≥0.

By restricting the set E we may assume that all coordinates of p = (p1, . . . , pn)
are nonzero (i.e. pi ∈ {1, 2}), where we identify E with [n]. Dually, by contracting
the elements of E that belong to all bases corresponding to any ti and q j , we may
assume p = (1, . . . , 1).

We want to prove that the ground set E is covered by a basis of M1 and a basis
of M2. Hence, by Corollary 18 it is sufficient to prove the following:

For any A ⊂ E we have |A| ≤ rM1 (A) + rM2 (A).

We define a matroid N1 (resp. N2) on the ground set EN := {(i, j) : i ∈ E, 1 ≤
j ≤ d}. In other words we replace any point of E by d equivalent points. A sub-
set {(i1, j1), . . . , (is, js)} ⊂ EN is independent in N1 (resp. N2) if only if

1. all iq ’s are distinct, and
2. {i1, . . . , is} is an independent set in M1 (resp. M2).

We have a natural projectionπ : EN → E given by forgetting the second coordinate.
We note that rN j (π

−1(A)) = rMj (A) for j = 1, 2. As the point dp is decomposable
we know that the set EN can be covered by d bases of N1 and d bases of N2. Hence,
for any B ⊂ EN we have: |B| ≤ drN1(B) + drN2(B). Applying this to π−1(A) we
obtain:

d|A| = |π−1(A)| ≤ d · rN1(π
−1(A)) + d · rN2(π

−1(A)) = d · (
rM1(A) + rM2(A)

)
.

After dividing by d we obtain the statement we wanted to prove. �
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4.3.1 The Tutte Polynomial for Polymatroids

The Tutte polynomial for polymatroids is not nearly as well-studied as in the matroid
case. We gave two examples of where it was considered in certain classes of poly-
matroids. We will now go into detail about one suggestion how to construct Tutte
polynomial in full generality.

As mentioned, Cameron and Fink [8] form a polynomial having Tutte-like prop-
erties for polymatroids, which specialises to an evaluation of the Tutte polynomial
when applied only tomatroids. This is a construction which takes a polytopal, lattice-
point-counting, approach as opposed to a straight combinatorial one. It is motivated
by an alternative definition of the Tutte polynomial to those we have discussed so
far.

Definition 27 Take a matroid M = (E, r), and give E some ordering. Let B be a
basis of M .

1. We say that e ∈ E − B is externally active with respect to B if e is the smallest
element in the unique circuit contained in B ∪ e, with respect to the ordering
on E .

2. We say that e ∈ B is internally activewith respect to B if e is the smallest element
in the unique cocircuit in (E − B) ∪ e.

A cocircuit is a minimal set among sets intersecting every basis. We will not be
using this notion again in the article.

We will denote the number of internally active elements with respect to B
with I (B) and the number of externally active elements by E(B). Then we have
the following result.

Theorem 28 ([53])
TM(x, y) =

∑

B∈B
x I (B)yE(B).

Activity was generalised to hypergraphs by Kálmán in [29], where he proved
that a formula similar to the one above does not hold for hypergraphs. This is
due to the above sum not being independent of the edge ordering chosen, as is
the case for matroids. The one-variable specialisations are, however, consistent.
That is, T (x, 0), T (0, y) can be written in terms of activity generating functions
for hypergraphic polymatroids. In [8], the authors show that this behaviour extends
to all polymatroids given their own Tutte-like polynomial for polymatroids. Their
construction is as follows.

Let � be the standard simplex in R
E of dimension equal to |E | − 1, and ∇ be

its reflection through the origin. Construct the polytope given by the Minkowski
sum P(M) + u� + t∇ where M = (E, r) is any polymatroid and u, t ∈ Z≥0.
By [35, Theorem 7], the number of lattice points inside the polytope is a poly-
nomial in t and u, of degree dim(P(M) + u� + t∇) = |E | − 1. This polynomial is
written in the form
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QM(t, u) := #(P(M) + u� + t∇) =
∑

i, j

ci j

(
u

j

)(
t

i

)
.

Changing the basis of the vector space of rational polynomials gives the polynomial

Q′
M(x, y) =

∑

i j

ci j (x − 1)i (y − 1) j

As mentioned, this specialises to the Tutte polynomial:

Theorem 29 ([8, Theorem 3.2]) Let M = (E, r) be a matroid. Then we have

Q′
M(x, y) = x |E |−r(M)yr(M)

x + y − 1
· TM

(
x + y − 1

y
,
x + y − 1

x

)

as an identification of rational functions.

Formulae can be given for Q′
M under the polymatroid generalisation of many

standard matroid operations such as direct sum and duality, and in many cases the
results are versions of those true for the Tutte polynomial. Most importantly, this
polynomial also satisfies a form of deletion-contraction recurrence.

Theorem 30 ([8, Theorem 5.6]) Let M = (E, r) be a polymatroid and take a ∈
E(M). LetNk be the convex hull of {p ∈ P(M) | pa=k} for some k ∈ {0, . . . , r(M)},
and Q′

N the polynomial formed by replacing the M in the above definition by N .
Then

Q′
M(x, y) = (x − 1)Q′

M\a(x, y) + (y − 1)Q′
M/a(x, y) +

∑

k

Q′
Nk

(x, y).

Remark 31 We mention another approach of generalising the Tutte polynomial to
polymatroids. In the proof of Theorem 26, we explained how to associate to an r -
polymatroidM on E a matroid M on E × [r ]. We could define the Tutte polynomial
of M to be simply the usual Tutte polynomial of M . Of course, the result might
depend on the chosen r . Still, it is natural to ask if there is any relation between this
construction and the one described above.

One possible strategy for getting rid of this dependence on r is as follows: There is
an action of Sr permuting the second factor of E × [r ], and the sum inDefinition 10 is
constant on orbits, so the whole polynomial can be enriched to an Sr -representation.
Our hope is that as r increases, this representation stabilises in some way, removing
the dependency on r .



86 A. Cameron et al.

4.4 Flag Varieties: Geometry

In this section, we always work over the field of complex numbers.

4.4.1 Representations and Characters

We begin by fixing notation regarding the representation theory ofGLn . We refer the
reader to [50, Chap.4] for a brief introduction to the representation theory of GLn ,
or to [19] for a more detailed account.

The (polynomial) irreducible representations of GLn are in bijection with Young
diagrams λ with at most n rows. We write λ = (a1, . . . , ak) for the Young diagram
with rows of length a1 ≥ a2 ≥ . . . ≥ ak > 0. The associated GLn-representation is
called aWeyl module of highest weight λ, and will be denoted by S

λV (here V refers
to the natural representation of GLn , i.e. an n dimensional vector space with the
linear GLn = GL(V ) action). The usual construction of Weyl modules goes via
Young symmetrisers, which we will not recall here. For readers not familiar with
them, it suffices for now to know that S(a)V = SaV , the a-th symmetric power of the
natural representation, and that S

(1,...,1)V (where 1 appears a times) is the exterior
power

∧a V . We will give a full description later: see after Example 33.
In this article we will be interested in the action of a maximal torus T ⊂ GL(V )

on flag varieties. Such a torus T � (C∗)n may be identified with the diagonal non-
degenerate matrices, after fixing a basis of V . We recall that a torus T acting on any
vector space W induces a weight decomposition:

W =
⊕

c∈Zn

Wc,

where (t1 . . . , tn) ∈ T acts on v ∈ Wc by scaling as follows:

(t1, . . . , tn)v = t c11 · · · t cnn v.

In particular, an action of the torus T on a one-dimensional vector space C may be
identified with a lattice point in Z

n . We call Z
n = M the lattice of characters of T .

An element (a1, . . . , an) ∈ M is a character identified with the map:

T � (t1, . . . , tn) �→ ta11 · · · tann ∈ C
∗.

Any irreducible GL(V )-representation W = S
c1,...,cn V decomposes as above

under the action of T with a one-dimensional component Wc1,...,cn ; moreover all
other components have a lexicographically smaller weight. This explains the name
“Weyl module of highest weight (c1, . . . , cn).”
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4.4.2 Grassmannians

A basic example of a flag variety is a Grassmannian G(k, V ), which as a set param-
eterises k-dimensional subspaces of an n-dimensional space V . A point in G(k, n)

can be represented by a full-rank k × n matrix A, where our k-dimensional subspace
is the row span of A. Two matrices A and B represent the same point in G(k, n) if
and only if they are the same up to elementary row operations.

G(k, n) can be realised as an algebraic variety as follows:

G(k, n) = G(k, V ) = {[v1 ∧ . . . ∧ vk] ⊂ P(

k∧
V )}.

Here, v1, . . . , vk are the rows of the aforementioned matrix A, and thus a point
of G(k, n) is identified with the subspace 〈v1, . . . , vk〉. The embedding presented
above is known as the Plücker embedding and the Grassmannian is defined by
quadratic polynomials known as Plücker relations [34]. Explicitly, in coordinates,
the map associates to the matrix A the value of all k × k minors. We refer the readers
not familiar with algebraic geometry, and in particular Grassmannians, to a short
introduction in [39, Chap.5].

ThePlücker embeddingmaybe identifiedwith avery ample line bundle onG(k, n),
which we will denote byO(1). Other very ample line bundles on G(k, n) are the d-th
tensor powersO(d). They can be realised as a composition of the Plücker embedding
with the d-th Veronese map P(

∧k V ) → P(Symd ∧k V ).

Remark 32 A reader not familiar at all with very ample line bundles may think
about them as maps into projective spaces. Let us present this with the example
of the projective space P

n (which also equals G(1, n + 1)). We have an identity
map P

n → P
n , which corresponds to O(1). The r -th Veronese map embeds P

n in a
larger projective space P(n+r

n )−1 by evaluating on a point all degree r monomials. The
associated map is given by O(r). For n = 1 and r = 2 we get:

P
1 � [x : y] → [x2 : xy : y2] ∈ P

2.

It will follow from Proposition 34 that the embedding of G(k, n) by O(d) spans
a projectivisation of an irreducible representation Vλ0 of GLn . The Young dia-
gram λ0 = (d, . . . , d) consists of k rows of length d.

4.4.3 Flag Varieties

More generally, for any irreducible representation Vλ of GLn the projective space
P(Vλ) contains a unique closed orbit, known as a homogeneous variety or more
precisely a flag variety. To describe it, let us fix a sequence of s positive integers 0 <

k1 < · · · < ks < n. The flag variety is defined as follows:
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Fl(k1, . . . , ks; n) = {V1 ⊂ · · · ⊂ Vs ⊂ V : dim Vi = ki }
⊂ G(k1, V ) × · · · × G(ks, V ).

Hence, flag varieties are in bijection with (nonempty) subsets of {1, . . . , n − 1},
while Grassmannians correspond to singletons.

From now on we will abbreviate the tuple (k1, . . . , ks) to k, and the flag vari-
ety Fl(k1, . . . , ks; n) to Fl(k, n). A point in Fl(k, n) can be represented by a full-
rank n × n-matrix A: the row span of the first di rows is Vi . (Although note that
only the first ks rows of the matrix are relevant.) As with Grassmannians, different
matrices can represent the same point in Fl(k, n). More precisely, if we partition the
rows of A into blocks of size k1, k2 − k1, . . . , n − ks , then we are allowed to do row
operations on A, with the restriction that to a certain row we can only add a multiple
of a row in the same block or a block above. Another way to think about this is the
following: let Pk ⊂ GLn(C) be the parabolic subgroup of all invertible matrices A
with Ai j = 0 if i ≤ kr < j, for some r . Then two n × n matrices represent the same
flag if and only if they are the same up to left multiplication with an element of Pk.
Hence Fl(k, n) can also be described as the quotient Pk\GLn(C) (a homogeneous
variety).

Just as for Grassmannians we may study different embeddings of flag varieties.
The natural one is given by the containment

G(k1, V ) × · · · × G(ks , V ) ⊂ P(

k1∧
V ) × · · · × P(

ks∧
V ) ⊂ P(

k1∧
V ⊗ · · · ⊗

ks∧
V ),

where the last map is the Segre embedding. The representation
∧k1 V ⊗ · · · ⊗ ∧ks V

in general is reducible—a precise decomposition is known by Pieri’s rule (or more
generally by the Littlewood-Richardson rule), see for example [19, Proposition
15.25]. As we will prove below, the flag variety spans an irreducible representation
with the corresponding Young diagram with s columns of lengths ks, ks−1, . . . , k1
respectively.

Other embeddings can be obtained as follows. We replace the Segre map by the
Segre–Veronese, i.e. we first re-embed a Grassmannian with a Veronese map. Thus,
a flag variety with an embedding can be specified by a function:

f : {1, . . . , n − 1} → Z≥0.

To abstractly obtain a flag variety from f we first consider a subset {a ∈ [n − 1] :
f (a) > 0}. The Segre–Veronese map is specified by the values of the function f—
the case f (a) = 1 corresponds to the usual Segre. The irreducible representation
we obtain has an associated Young diagram with f (a) columns of length a. Before
proving all these statements we present an example.

Example 33 Let us fix n = 4 and a function f that on 1, 2, 3 takes values 2, 1, 0
respectively. The corresponding flag variety equals Fl(1, 2; 4), i.e. it parameterises
one-dimensional subspaces, l, inside two-dimensional subspaces, S, in a fixed four-
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dimensional space, V . The line l corresponds to a point in a projective space P(V ) =
G(1, V ) and the space S to a point in G(2, V ). If we suppose l = [v1], then we may
always find v2 ∈ V such that S = 〈v1, v2〉. Hence

Fl(1, 2) = {[v1] × [v1 ∧ v2] ∈ P(V ) × G(2, V )}.

Wenowpass to the embedding.As f (1) = 2wehave to consider the secondVeronese
map P(V ) → P(S2(V )) given by [v] → [v · v]. We obtain

Fl(1, 2) = {[v1 · v1] × [v1 ∧ v2] ∈ P(S2V ) × G(2, V )} ⊂ P(S2V ⊗
2∧

V ).

By Pieri’s rule, we have a decomposition of GL(V ) representations:

S2V ⊗
2∧

V = S
3,1V ⊕ S

2,1,1V .

Hence, S
3,1(V ) corresponds to the Young diagram with the first row of length three

and the second row of length one. We note that this diagram indeed has 2 columns
of length 1, 1 column of length 2, and 0 columns of length 3.

The flag variety is always contained in the lexicographically-first (highest weight)
irreducible component—cf. Proposition 34 below; in our example this is S

3,1(V ). In
particular, we may realise the representation S

3,1(V ) as a linear span of the affine
cone over the flag variety:

〈
F̂l(1, 2) = {(v1 · v1) ⊗ (v1 ∧ v2) : v1, v2 ∈ V }〉 ⊂ S2V ⊗

2∧
V .

For readers not familiar with the construction of S
λV , this can be taken as a def-

inition. For a proof that this definition is equivalent to the usual construction, see
Proposition 34 below.

The function f is often represented on a Dynkin diagram as shown in Fig. 4.2.
For Example 33 this would be as shown in Fig. 4.3.

We note that if f is positive we obtain a complete flag variety, i.e. the variety
parametrizing complete flags:

Fig. 4.2 The Dynkin
diagram for the function f f(n-2) f(n-1)f(2)f(1) ...

n-1

Fig. 4.3 The Dynkin
diagram for Example 33

2 1 0
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V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ C
n.

The complete flag variety maps to any other flag variety, simply by forgetting the
appropriate vector spaces. We note that all our constructions are explicit and only
use exterior (for Grassmannians), symmetric (for Veronese) and usual (for Segre)
tensor products, as in Example 33.

We are now ready to prove a special case of the Borel-Weil-Bott Theorem relating
representations and embeddings of flag varieties.

Proposition 34 (Borel-Weil) Any flag variety Fl(k1, . . . , ks; n) with an embedding
given by a function f spans the irreducible GL(V )-representation S

λV , where the
Young diagram λ has f ( j) columns of length j .

Proof Fix a basis e1, . . . , en of V . Let us consider the flag of subspaces

〈e1, . . . , ek1〉 ⊂ 〈e1, . . . , ek2〉 ⊂ · · · ⊂ 〈e1, . . . , eks 〉

and the corresponding point p ∈ Fl(k1, . . . , ks). Under the embedding specified by f
it is mapped to

(e1 ∧ · · · ∧ ek1)
◦ f (k1) ⊗ · · · ⊗ (e1∧ · · · ∧ eks )

◦ f (ks )

⊂ S f (k1)(

k1∧
V ) ⊗ · · · ⊗ S f (ks )(

ks∧
V ).

The GL(V )-decomposition of the ambient space is highly non-trivial. However,
looking directly at the T decomposition we see that, up to scaling, the image of p
is the unique lexicographically-highest vector. Hence, in particular, the image of p
belongs to S

λV , as all other GL(V )-representations appearing in the decomposition
have strictly smaller highest weights. Furthermore, the flag variety is an orbit under
the GL(V )-action—one can explicitly write a matrix mapping any flag to any other
given flag. Thus, if one point is contained in the irreducible representation, the whole
variety must be contained in it.

It remains to show that the span of the flag variety is indeed the whole irreducible
representation. This is true, as the flag variety is GL(V )-invariant, and thus its linear
span is a representation of GL(V ). As S

λV is irreducible, the linear span must
coincide with it. �

The above theorem may be regarded as a realisation of irreducible GL(V )-
representations as spaces of sections of a very ample line bundle on a flag variety.
A more general Borel-Weil-Bott theorem provides not only a description of global
sections—zeroth cohomology—but also higher, arbitrary cohomology.

Later on, we will denote a flag variety together with the embedding given by f
as Fl(k; n), where k = (k1, . . . , ks) satisfies 0 < k1 ≤ . . . ≤ ks < n and has f (a)

entries equal to a, for all a ∈ [n − 1]. For example, the embedding of Example 33
will be written as Fl(1, 1, 2; 4).
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4.5 Representable Matroids: Combinatorics and Geometry

Let us consider a representable matroid M given by n = |E | vectors spanning a k-
dimensional vector space V . By fixing a basis of V we may represent this matroid
as a k × n matrix A. On the other hand the matrix A may be regarded as defining
a k-dimensional subspace of an n-dimensional vector space, i.e. a point in G(k, n).
Since applying elementary rowoperations to A does not changewhich of themaximal
minors of A vanish, the matroid M only depends on the k-dimensional subspace,
and not on the specific matrix A representing our subspace. In this way we have
associated to any point p ∈ G(k, n) a representable rank-k matroid Mp on [n].
Remark 35 In the literature, the correspondence between points in G(k, n) and
vector arrangements in C

k is known as the Gel’fand-MacPherson correspondence.
The way we just constructed it is very explicit, but has the disadvantage of not being
canonical (it depends on a chosen basis of C

n). There are several ways to fix this.
One way of obtaining a more intrinsic construction is to replace the Grassman-

nian G(k, n) by the Grassmannian G(n − k, n). If A represents a surjective linear
map from C

n to V , then to A one can associate the (n − k)-dimensional kernel of
this map, i.e. a point in G(n − k, n). As this construction requires dual matroids we
decided to present the one above in coordinates.

A different (but closely related) intrinsic constructionwould be to defineG(k, C
n)

as the space of k-dimensional quotients of C
n (instead of k-dimensional subspaces).

Then A maps the standard basis of C
n to n vectors in a smaller space V ∈ G(k, C

n);
these n vectors represent a matroid.

A third solution would be to talk about hyperplane arrangements instead of vector
arrangements.

The vector space C
n comes with the action of a torus T = (C∗)n . We have associ-

ated a point p ∈ G(k, C
n) to a representation of amatroid. If we change the represen-

tation by rescaling the vectors we do not change the matroid and the associated point
belongs to the orbit T p. Hence, the intrinsic properties of the matroid Mp should be
related to the geometry of T p—a feature we will examine in detail throughout the
article. The closure T p is a projective toric variety. For more information about toric
geometry we refer to [9, 17, 38, 49].

Remark 36 Of course it can happen that different torus orbits give rise to the same
matroid: there are only finitely many matroids on [n], but if 1 < k < n − 1 there
are infinitely many torus orbits in G(k, n). In fact, the set of all points in G(k, n)

giving rise to the same matroid forms a so-called thin Schubert cell or matroid
stratum, which typically is a union of infinitely many torus orbits. Thin Schubert
cells were first introduced in [21]. Thin Schubert cells are badly behaved in general:
for fixed k ≥ 3 the thin Schubert cells of G(k, n) exhibit arbitrary singularities if n
is large enough. This is a consequence of Mnëv’s theorem [41]. See [31, Sect. 1.8]
for a more detailed discussion.

Theorem 37 ([21]) The lattice polytope representing the projective toric variety T p
described above is equal to P(Mp).
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Proof Let A be the matrix whose rows span the space corresponding to p. The
parameterisation of T p is given by:

φ : T → P(

k∧
C

n).

The coordinates of the ambient space are indexed by k-element subsets of the n
columns of the matrix A. The Plücker coordinate indexed by I of φ(t1, . . . , tn)
equals

∏
i∈I ti times the k × k minor of A determined by I , which we will denote

by det(AI ). In other words, the map φ in Plücker coordinates is given as follows:

φ(t1, . . . , tn) = (det(AI ) ·
∏

i∈I
ti )I∈([n]

k )
.

The I -th coordinate is nonzero if and only if I is a basis of Mp. Hence, the ambient
space of T p has coordinates indexed by basis elements of Mp. After restricting
to this ambient space and composing with the isomorphism inverting the nonzero
minors det(AI ), our map can be written as

φ(t1, . . . , tn) =
(

∏

i∈I
ti

)

I∈P(Mp)

.

This is exactly the construction of the toric variety represented by P(Mp). �

It is a major problem to provide the algebraic equations of T p. This is equivalent to
finding integral relations among the basis of a matroid. We point out that matroids
satisfy a ‘stronger’ property then one could expect from the basis exchange axiom
B2 of Lemma 3. Precisely, for any two bases B1, B2 ∈ B and a subset A ⊂ B1 − B2,
there exists A′ ⊂ B2 − B1 such that (B1 − A) ∪ A′ and (B2 − A′) ∪ A are inB [26].
This exactly translates to a binomial quadric (degree 2 polynomial) in the ideal of T p:
xB1xB2 − x(B1−A)∪A′x(B2−A′)∪A, where, as in the proof of Theorem 37, we label each
coordinate by a basis of the matroid. Further, if |A| = 1 we obtain special quadrics
corresponding to exchanging one element in a pair of bases. The following conjecture
due to White provides a full set of generators for any matroid M .

Conjecture 38 The ideal of the toric variety represented by P(M) is generated by
the special quadrics corresponding to exchanging one element in a pair of bases.

We note that it is unknown whether the ideal of this toric variety is generated by
quadrics, or that all quadrics are spanned by the special quadrics described above.
However, it is known that the special quadrics define the variety as a set (or more
precisely as a projective scheme) [32, 33].

The combinatorial methods can be used to prove geometric properties of torus
orbit closures in Grassmannians. Below we recall a definition of a normal lattice
polytope.
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Definition 39 A lattice polytope P , containing 0 and spanning (as a lattice) the
lattice N , is normal if and only if for any k ∈ Z≥0 and any p ∈ kP ∩ N we have p =
p1 + · · · + pk for some pi ∈ P ∩ N .

Normality of a polytope is a very important notion as it corresponds to projective
normality of the associated toric variety [9, Chap. 2], [49] (less formally, the associ-
ated toric variety is not very singular and is embedded in a particularly nice way in
the projective space).

Theorem 40 (White) For any matroid M the polytope P(M) is normal. In partic-
ular, any torus orbit closure in any Grassmannian is projectively normal.

Proof This is a special case of Theorem 26, where we take all Mi equal to M . �

4.6 Introduction to Flag Matroids

In Sect. 4.5 we explained a correspondence between torus orbits in a Grassman-
nian (geometric objects) and representable matroids (combinatorial objects). We
will generalise this correspondence in different ways. For instance, on the geometry
side, we can replace Grassmannians with flag varieties. On the combinatorics side,
this naturally leads to the notion of a (representable) flag matroid. Flag matroids first
arose as a special case of the so-called Coxeter matroids, introduced by Gel’fand
and Serganova [22, 23]. In this section we first give a combinatorial introduction
to flag matroids. Afterwards, we explain how they are related to flag varieties. The
exposition is largely based on [3, Chap. 1].

4.6.1 Flag Matroids: Definition

We start by defining flagmatroids in the way they are usually defined in the literature:
using Gale orderings.

Definition 41 Let 0 < k1 ≤ . . . ≤ ks < n be natural numbers. Let k = (k1, . . . , ks).
A flag F of rank k on E is an increasing sequence

F1 ⊆ F2 ⊂ · · · ⊆ Fs

of subsets of E such that |Fi | = ki for all i . The set of all such flags will be denoted
by F k

E .

Let ω be a linear ordering on E . We can extend the Gale ordering ≤ω to flags:

(F1, . . . , Fs) ≤ω (G1, . . . ,Gs) if and only if Fi ≤ω Gi for all i .
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Definition 42 A flag matroid of rank k on E is a collection F of flags in F k
E , which

we call bases, satisfying the following property: for every linear ordering ω on E ,
the collection F contains a unique element which is maximal in F with respect to
the Gale ordering ≤ω.

If F is a flag matroid, the collection {Fi | F ∈ F } is called the i -th constituent of F .
This is clearly a matroid (of rank ki ).

Remark 43 In the literature it is usually required that we have strict inequali-
ties 0 < k1 < · · · < ks < n. From a combinatorial point of view this does not make
a difference, but when we later consider flag matroid polytopes this restriction would
appear artificial. This is also the reason why in Sect. 4.4.3 we did not just consider
flag varieties, but also their Veronese re-embeddings.

Next, we want to describe which tuples of matroids can arise as the constituents of
a flag matroid. In order to give this characterisation, we first need to recall matroid
quotients.

4.6.2 Matroid Quotients

Definition 44 Let M and N be matroids on the same ground set E . We say that N
is a quotient of M if one of the following equivalent statements holds:

1. every circuit of M is a union of circuits of N ;
2. if X ⊆ Y ⊆ E , then rM(Y ) − rM(X) ≥ rN (Y ) − rN (X);
3. there exists a matroid R and a subset X of E(R) such that M = R\X and N =

R/X ;
4. for all bases B of M and all x /∈ B, there is a basis B ′ of N with B ′ ⊆ B and such

that {y : (B ′ − y) ∪ x ∈ B(N )} ⊆ {y : (B − y) ∪ x ∈ B(M)}.
For the equivalence of 1, 2 and 3, we refer to [43, Proposition 7.3.6]. Part 4 is left to
the reader.

Here are some basic properties of matroid quotients:

Proposition 45 Let N be a quotient of M.

1. Every basis of N is contained in a basis of M, and every basis of M contains a
basis of N .

2. rk(N ) ≤ rk(M) and in case of equality N = M.

Proof Both statements can be easily deduced by plugging in Y = E or X = ∅ in
Definition 44 2. �

The next result will be essential for defining representable flag matroids. It also
explains where the term “matroid quotient” comes from—below we think of W as a
vector space quotient of V .
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Proposition 46 ([6, Proposition 7.4.8 (2)]) Let V and W be vector spaces and ψ :
E → V be a map. Furthermore, let f : V → W be a linear map. Consider the
matroid M represented by ψ , and the matroid N represented by f ◦ ψ . Then N is a
matroid quotient of M.

Example 47 If R is a representable matroid on E and X is a subset of E ,
then M := R\X and N := R/X are representable matroids, and there is a linear
map as in Proposition 46. Indeed, if R is represented by ψ : E → V , then con-
sider the projection π : V → V/〈ψ(X)〉. It is not hard to see that M is represented
by ψ

∣
∣
E−X and that N is represented by π ◦ ψ

∣
∣
E−X .

Example 48 The converse of Proposition 46 is false: we nowgive an example (taken
from [3, Sect. 1.7.5]) of two representablematroidsM and N such that N is a quotient
of M , but there is no map as in Proposition 46.

Let M be the rank-3 matroid on [8] represented by the following matrix

⎛

⎝
1 0 1 0 1 1 0 1
0 1 1 0 2 2 2 1
0 0 0 1 1 2 1 1

⎞

⎠

and let N be the rank-2 matroid on [8] whose bases are all 2-element subsets except
for {2, 6} and {3, 5}. It is easy to see that N is a representable matroid: just pick
six pairwise independent vectors in the plane, and map 2 and 6, as well as 3 and 5,
to the same vector. Now N is a matroid quotient of M , since the matroid R from
Example 8 satisfies M = R\9 and N = R/9. However, it is not possible to find
representations V (resp. W ) of M (resp. N ) such that there is a map f : V → W as
in Proposition 46. Roughly speaking, the problem is that the “big” matroid R is not
representable. For a more precise argument, see [3, Sect. 1.7.5].

4.6.3 Representable Flag Matroids

We now come to the promised characterisation of constituents of flag matroids. In
fact, it will turn out we can use it as an alternative definition of flag matroids.

A collection (M1, . . . , Ms) of matroids is called concordant if, for every
pair (Mi , Mj ), either Mi is a quotient of Mj or vice versa. Note that this is equivalent
to the fact that they can be ordered in such a way that Mi is a quotient of Mi+1,
because “being a quotient of” is transitive.

Theorem 49 ([3, Theorem 1.7.1]) A collection F of flags in F k
E is a flag matroid if

and only if the following three conditions hold:

1. every constituent Mi := {Fi | F ∈ F } is a matroid;
2. the matroids M1, . . . , Ms are concordant;
3. every flag B1 ⊆ . . . ⊆ Bs, with Bi a basis of Mi , is in F .
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In other words, flag matroids on E are in one-to-one correspondence with tuples of
concordant matroids on E .

We can now define representable flag matroids: let 0 � V1 ⊆ · · · ⊆ Vs � C
n

be a flag of subspaces of C
n . Then, viewing Vi as a point in G(ki , n), it holds

that (MV1 , . . . , MVs ) is a concordant collection ofmatroids byProposition 46. Indeed:
if Vi ⊆ Vj , we can pick a k j × n matrix A j representing Vj such that the first ki rows
of A j span Vi . Then the columns of Ai are obtained from the columns of A j by
deleting the last k j − ki entries.

Definition 50 The representable flag matroid F (V1 ⊆ · · · ⊆ Vs) is the unique flag
matroid whose constituents are MV1 , . . . , MVs .

Remark 51 Example 48 shows that it can happen that all constituents of a flag
matroid are representable matroids, but still the flag matroid is not representable
(because the matroid representations are “not compatible”).

4.6.4 Flag Matroid Polytopes

Definition 52 Given a flag F on [n], we can identify each constituent with a 0, 1-
vector and then add them all up to a vector eF ∈ Z

n
≥0. In this way we have identified

the flags in [n] of rank k with integer vectors with k1 entries equal to m, k2 − k1
entries equal to m − 1, …, ki+1 − ki entries equal to m − i , …, ks − ks−1 entries
equal to 1, and n − ks entries equal to 0. We will refer to such vectors as rank-k
vectors. In other words, if we think of k as a partition of length s, we can consider
the conjugate partition k∗ of length ≤ n. Then a rank-k vector is a vector v ∈ Z

n
≥0

obtained from k∗ by adding 0’s and permuting the entries.

Definition 53 The base polytope of a flag matroid F on [n] is the convex hull of
the set {eF | F ∈ F } ⊂ R

n .

Example 54 Let F be the rank (1, 2) flag matroid on [3] whose bases are 1 ⊆
12, 1 ⊆ 13, 2 ⊆ 12 and 3 ⊆ 13. Then its base polytope is the convex hull of the
points (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2). Its constituents are the uniform rank 1
matroid on [3], and the rank 2matroid with bases 12 and 13. The base polytope of this
flag matroid is depicted in Fig. 4.4. F is a representable flag matroid: a representing
flag is for example 〈e1 + e2 + e3〉 ⊂ 〈e1, e2 + e3〉 ⊂ C

3.

Theorem 55 ([3, Theorem 1.11.1]) A lattice polytope P ⊂ R
n is the base polytope

of a rank-k flag matroid on [n] if and only if the following two conditions hold:

1. every vertex of P is a rank-k vector;
2. every edge of P parallel to ei − e j for some i, j ∈ [n].
Theorem 56 ([3, Corollary 1.13.5]) The polytope of a flag matroid is the Minkowski
sum of the matroid polytopes of its constituent matroids.
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Fig. 4.4 A flag matroid base
polytope

(2,1,0)

(2,0,1)

(1,0,2)

(1,2,0)

Thus, each flag matroid defines a polytope that is a base polytope of a polymatroid.

Remark 57 It follows from Theorem 26 and the previous theorem that the lat-
tice points of a flag matroid polytope correspond to tuples (not necessarily
flags) (B1, . . . , Bs), where Bi is a basis of Mi . For example point (1, 1, 1) in Fig. 4.4
corresponds to a basis of a polymatroid, but not to a flag, i.e. not to a basis of the flag
matroid.

4.6.5 Flag Matroids and Torus Orbits

Consider the flag variety Fl(k, n), as described in Sect. 4.4. The action of the
torus T = (C∗)n on C

n induces an action of T on Fl(k, n). A point p ∈ Fl(k, n)

gives rise to a representable flag matroid M on [n], as in Definition 50. All points
in the orbit T p give rise to the same flag matroid. This last statement follows easily
from the analogous fact for matroids and the fact that a flag matroid is determined
by its constituent matroids. The analogue of Theorem 37 holds:

Theorem 58 The lattice polytope representing the toric variety T p is equal to the
flag matroid polytope of M.

Proof The proof is a straightforward generalisation of the proof of Theorem 37, with
the parameterisation of T p given by:

φ : T → P(

k1∧
C

n) × · · · × P(

ks∧
C

n).

4.7 Representable Polymatroids

Representable polymatroids generalise representable matroids, replacing vectors
with subspaces. While they do not appear as frequently in pure mathematics as
matroids, one of the possible references for an interested reader is [4, Sect. 3].

We start by giving a precise definition.

Definition 59 Let V be a vector space and denote by S(V ) the set of all subspaces
of V . Suppose we have a map φ : E → S(V ) and assume, without loss of generality,
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that
∑

e∈E φ(e) = V . The representable polymatroid M(φ) is defined by the rank
function: for A ⊆ E , define r(A) as the dimension of φ(A) := ∑

a∈A φ(a).

Example 60 Consider the map φ : [3] → S(C3) defined by φ(1) = 〈e1, e2〉
and φ(2) = φ(3) = 〈e1, e3〉. Then M(φ) is a rank 3 polymatroid on [3] with 5
bases: (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (1, 1, 1). Its base polytope is given in
Fig. 4.4.

Now we want to define the polymatroid analogue of a matroid associated to a
subspace. For this, we fix a number r ∈ Z>0, and we consider the vector space C

rn ,
with a fixed basis indexed by [r ] × [n]. If we consider a full rank k × rn matrix A,
it represents a k-dimensional subspace of C

rn . Moreover, the r columns indexed
by (i, j) for some fixed j span a subspace Wj of C

k . Then the map [n] → S(Ck) :
j → Wj defines a representable polymatroid. Note that this is an r -polymatroid, and
that every representable r -polymatroid can be obtained in this way.

As before, applying elementary row operations to A does not change the poly-
matroid. Hence, we have described how to associate an r -polymatroid M(W ) to a
subspace W of C

rn .

Remark 61 If we defined Grassmannians via quotients instead of subspaces, we
could present this storymore invariantly, as follows: LetV be a vector space of dimen-
sion rn, with a fixed collection of n independent r -dimensional subspaces V1, . . . Vn .
Then any k-dimensional quotient φ : V → W gives rise to an r -polymatroid via the
map [n] → S(W ) : i �→ φ(Vi ).

We consider the action of T = (C∗)n on C
rn , where t = (t1, . . . , tn) acts by

multiplying the (i, j)-th coordinate by t j . If we consider the action of T = (C∗)n
on G(k, C

rn) induced by the action on C
rn , then every point in the orbit T p gives the

same polymatroid. This is very similar to the situation for representable matroids, so
it should be no surprise that we also have an analogue of Theorem 37 in this setting:

Theorem 62 The lattice polytope representing the projective toric variety T p
described above is equal to the base polytope of the polymatroid M.

Proof It is a straightforward generalisation of the proof of Theorem 37. �

4.7.1 Comparison Between Polymatroids and Flag Matroids

A flag matroid polytope is a special case of a polymatroid polytope, by Theorem 55.
It is tempting to think about flag matroids as a special case of polymatroids, but we
need to be careful when doing this: the notion of a basis of a flag matroid is not
compatible with the notion of a basis for a polymatroid. More precisely, the bases
of a polymatroid are all lattice points of its base polytope, while the bases of a flag
matroid are only the vertices of the associated polytope—cf. Remark 57 and Fig. 4.4.

For a flag matroid F , let M(F ) be the associated polymatroid.
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The definitions of representable flag matroid and representable polymatroid look
unrelated at first sight, but there is a connection.

Proposition 63 If F is a representable flag matroid, thenM(F ) is a representable
polymatroid.

Proof For this proof we will use the more intrinsic definition of representable
flag matroids and polymatroids using quotients. Let F be the flag matroid repre-
sented by the flag of quotients C

n → V1 → · · · → Vr . Then the quotient C
kn →

V1
⊕ · · ·⊕ Vr represents a polymatroidM on [n]. We need to argue that F andM

have the same base polytope.
Bases of F correspond to flags [n] � F1 ⊇ . . . ⊇ Fr such that Fi gives a basis

of Vi . On the other hand, choosing a basis ofM corresponds to choosing for every i
a subset Fi

� [n] such that Fi gives a basis of Vi . From this it follows that every
vertex of P(F ) is a lattice point of P(M), and (using Remark 57) that every lattice
point of P(M) is a lattice point of P(F ). So P(M) = P(F ) as desired. �

Remark 64 Thinking again about flag varieties in terms of subspaces, we have that
if F is represented by a flag V1 ⊆ . . . ⊆ Vr � C

n , then M(F ) is represented by a
subspace V1 ⊕ · · · ⊕ Vr � C

rn . Geometrically, this construction corresponds to an
algebraic map

Fl(k1, . . . , kr ; n) → G(
∑

i

ki , rn).

Remark 65 The converse of Proposition 63 is not true: given a representable poly-
matroid that is also a flag matroid, it is not always a representable flag matroid.
One way to construct a counterexample is as follows. If M1, M2 are representable
matroids with corresponding base polytopes P1, P2, then P1 + P2 corresponds to a
representable polymatroid, by the same argument as in the proof of Proposition 63.
However, Example 48 gives an example of two such (concordant) matroids such
that P1 + P2 corresponds to a flag matroid that is not representable.

4.8 Equivariant K -theory

Wehave presented a correspondence between representablematroids and torus orbits
in Grassmannians, and generalisations of this correspondence to representable flag
matroids and representable polymatroids. We would like to drop the word “repre-
sentable” from all of those. As we will see, one way to do this is by replacing “torus
orbits” with “classes in equivariant K -theory”. This was done for matroids by Fink
and Speyer [16]. In this section, we review their construction, and consider gen-
eralisations to flag matroids. We start with an introduction to non-equivariant and
equivariant K -theory.
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4.8.1 A Very Brief Introduction to K-theory

This section is based on [18, Sect. 15.1].
Let X be an algebraic variety. We define K 0(X) to be the free abelian group gen-

erated by vector bundles on X , subject to relations [E] = [E ′] + [E ′′] whenever E ′
is a subbundle of E , with quotient bundle E ′′ = E/E ′. The group K 0(X) inherits a
ring structure from the tensor product: [E] · [F] = [E ⊗ F].

Similarily, we can define K0(X) to be the free abelian group generated by iso-
morphism classes of coherent sheaves on X , subject to relations [A] + [C] = [B]
whenever there is a short exact sequence 0 → A → B → C → 0. There is an inclu-
sion K 0(X) ↪→ K0(X). From now on, we will always assume that X is a smooth
variety. In this case, the inclusion is an isomorphism, allowing us to identify K 0(X)

and K0(X).
Let f : X → Y be a map of (smooth) varieties. Then there is a pullback map f ∗ :

K 0(Y ) → K 0(X) defined by f ∗[E] = [ f ∗E] (where E is a vector bundle on Y ).
If f is a proper map, there is also a pushforward map f∗ : K0(X) → K0(Y ) given
by f∗[A] = ∑

(−1)i [Ri f∗A]. Here Ri f∗ are right derived functors of the push-
forward. An interested reader is advised to find the details in [18, Sect. 15]. In this
paper, wewill not be using the formal definitions of K 0(X), f ∗ or f∗. Instead, wewill
refer to explicit descriptions of those in the cases that we need, each time providing
a theorem we build upon.

Remark 66 In all the cases we study the ring K 0(X) is isomorphic to the cohomol-
ogy ring and to the Chow ring (after tensoring with Q). Note however that the map
from K 0(X) to the Chow ring is nontrivial and given by the Chern character.

Example 67 Consider the projective space P
n . The (rational) Chow ring is A(Pn) =

Q[H ]/(Hn+1). Here one should think about H as a hyperplane inP
n and Hk as a codi-

mension k projective subspace. The most important line bundle is O(1). The Chern
character ch : K 0(Pn) → A(Pn) sends [O(1)] to ∑n

i=0 H
i/ i !. Note that K 0(Pn) can

be written asZ[α]/(αn+1), where α = 1 − [O(−1)] is the class of the structure sheaf
of a hyperplane. As a special case, the K -theory of a point is Z.

If X is a smooth variety equipped with an action of a torus T , we can define
its equivariant K -theory K 0

T (X) ∼= KT
0 (X). The construction and properties are

exactly the same as in the previous paragraphs, if we replace “vector bundles” and
“coherent sheaves” by “T-equivariant vector bundles” and “T-equivariant coherent
sheaves”.

For later reference, we describe the equivariant K -theory of a point: K 0
T (pt) =

Z[Char(T )], where Char(T ) = Hom(T, C
∗) is the lattice of characters of T .

Here Z[Char(T )] is the group ring of Char(T ), i.e. as a module over Z it has a
basis given by Char(T ), and multiplication is induced from addition in Char(T ). It
is the ring of Laurent polynomials in dim T variables. Explicitly, a T -equivariant
sheaf on pt is just a vector space W with a T -action. We may decompose W =
⊕c∈Char(T )Wc as in Sect. 4.4.1. The corresponding element of Z[Char(T )] is the
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character (also called Hilbert series) Hilb(W ) := ∑
c∈Char(T )(dimWc)c. We point

out that even for infinite-dimensional T -modules, Hilb(W ) makes sense as a formal
power series, as long as Wc is finite-dimensional for all c.

We finish this section by describing the relation between ordinary and T -
equivariant K -theory:

Theorem 68 ([37, Theorem 4.3]) Let X be a smooth projective variety with an
action of a torus T . Let S ⊆ T be a subtorus. Then the natural map

K 0
T (X) ⊗Z[Char(T )] Z[Char(S)] → K 0

S(X)

is an isomorphism. In particular, taking S to be the trivial group, the natural map

K 0
T (X) ⊗Z[Char(T )] Z → K 0(X)

is an isomorphism.

We note that the map Z[Char(T )] → Z above is given in coordinates by sending
each generator ti of T to 1.

4.8.2 Explicit Construction via Equivariant Localisation

Let X be a smooth projective variety over C, and T a torus acting on it. If X has only
finitely many torus-fixed points, we can use the method of equivariant localisation
to give an explicit combinatorial description of classes in K 0

T (X). Our exposition
here is largely based on the one in [16]. The following theorem is central to our
discussion.

Theorem 69 ([42, Theorem 3.2], [16, Theorem 2.5] and references therein) If X is
a smooth projective variety with a torus action, then the restriction map K 0

T (X) →
K 0

T (XT ) is an injection.

From now onwewill always assume that X has only finitely many torus-fixed points.
In this case K 0

T (XT ) is simply the ring of functions from XT to Z[Char(T )]. In other
words, we can describe a class in K 0

T (X) just by giving a finite collection of Laurent
polynomials in Z[Char(T )].
Remark 70 In the literature, a variety X for which K 0

T (X) is a free Z[Char(T )]-
module, and has a Z[Char(T )]-basis that restricts to a Z-basis of K 0(X), is
called equivariantly formal. This notion was first introduced in [24]. In [2, Sect. 2.4],
it is noted that smooth projective varieties with finitely many T -fixed points are
equivariantly formal.

We now explicitly describe the class of a T -equivariant coherent sheaf on X . We will
do this under the following additional assumption (which is not essential but makes
notation easier and will hold for all varieties of interest):
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Definition 71 A finite-dimensional representation of T is called contracting if all
characters lie in an open halfspace, or equivalently if the characters generate a pointed
cone (see Sect. 4.8.3). The action of T on a variety X is contracting, if for every torus-
fixed point x ∈ X , there exists an open neighbourhood Ux isomorphic to A

N such
that the action of T on Ux is a contracting representation.

Let E be a T -equivariant coherent sheaf on X . We will construct a map [E]T :
XT → Z[Char(T )]. For every x ∈ XT , we have an open neighbourhood Ux as in
Definition 71. Let χ1, . . . , χN be the characters by which T acts on Ux (so O(Ux )

is a polynomial ring multigraded by T in the sense of [40, Definition 8.1], with
characters χ−1

1 , . . . , χ−1
N ). Our sheaf E , restricted to Ux , corresponds to a graded,

finitely generated O(Ux )-module E(Ux ).
Since E(Ux ) is a graded module over the polynomial ring O(Ux ), which is multi-

graded by T , it follows from [40, Theorem 8.20] that E(Ux ) is a T -module, and its
Hilbert series is of the form

K (E(Ux ), t)
∏N

i=1 (1 − χ−1
i )

, (4.1)

for some K (E(Ux ), t) ∈ Z[Char(T )].
Definition 72 For E a T -equivariant coherent sheaf on X , we define [E]T to be the
map that sends x ∈ XT to K (E(Ux), t) ∈ Z[Char(T )], the numerator in (4.1).

Theorem 73 ([16, Theorem 2.6]) The map [E]T defined above is the image of the
class of E under the injection K 0

T (X) ↪→ K 0
T (XT ) of Theorem 69.

Example 74 Let X = P
n , equipped with the natural torus action t · [a0 : . . . : an] =

[t−1
0 a0 : . . . : t−1

n an]. Then O(d) is a T -equivariant sheaf. The torus action on P
n

has n + 1 fixed points, namely pi = [0 : . . . : 1 : . . . : 0], where the 1 is at position i .
We use equivariant localisation to describe the class [O(d)]T .

Every pi has an open neighbourhood Ui = Spec Ai , where

Ai = C[x0, . . . , x̂i , . . . , xn]

is multigraded by T via deg(x j ) = t−1
i t j . The Ai -module O(d)(Ui ) is a copy of Ai

generated in degree tdi . So its Hilbert series is t
d
i /

∏
j (1 − t−1

i t j ). Hence [O(d)]T can
be represented by the map (Pn)T → Z[Char(T )] : pi �→ tdi .

We can describe the image of the map from Theorem 69 explicitly, if we impose
an additional condition on X .

Theorem 75 ([54, Corollary 5.12], [16, Theorem 2.9] and references therein) Sup-
pose X is a projective variety with an action of a torus T , such that X has finitely
many T -fixed points and finitely many 1-dimensional T -orbits, each of which has
closure isomorphic to P

1. Then a map f : XT → Z[Char(T )] is in the image of the
map K 0

T (X) → K 0
T (XT ) of Theorem 69 if and only if the following condition holds:

For every one-dimensional orbit, on which T acts by character χ and for which x
and y are the T -fixed points in the orbit closure, we have
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f (x) ≡ f (y) mod 1 − χ .

Example 76 (Example 74 continued) Note that P
n has only finitely many one-

dimensional torus orbits: for every pair pi , p j of T -fixed points, there is a unique T -
orbit whose closure contains pi and p j . Furthermore, T acts on this orbit with
character t−1

j ti . We see that tdi ≡ tdj mod 1 − t−1
j ti , so that the class [O(d)]T indeed

fulfills the condition of Theorem 75.

We also can describe pullback and pushforward in the language of equivariant
localisation. Let π : X → Y be a T -equivariant map of smooth projective varieties
with finitely many T -fixed points, then for [E]T ∈ K 0

T (Y ), its pullback can be com-
puted by

(π∗[E]T )(x) = [E]T (π(x)) (4.2)

for x ∈ XT .
Describing the pushforward of [F]T ∈ K 0

T (X) is a bit more complicated. Sup-
pose that X and Y are contracting. For every point x ∈ XT (resp. y ∈ Y T ), we
pick as before an open neighbourhood Ux (resp. Vy) on which T acts by charac-
ters χ1(x), . . . , χr (x) (resp. η1(y), . . . , ηs(y)). Then the pushforward of [F]T is
determined by the formula

(π∗[F]T )(y)
∏

(1 − η j (y)−1)
=

∑

x∈π−1(y)∩XT

[F]T (x)
∏

(1 − χi (x)−1)
. (4.3)

Remark 77 Wecan use Theorem68 to obtain a description of the ordinary K -theory
using equivariant localisation. However, one should be careful when using this for
computations in practice. Here is a toy example: let X = P

2 with the usual action
of (C∗)2. Then XT = {[1 : 0], [0 : 1]}, and we can write the elements of K 0

T (XT ) ∼=
Maps(XT , Z[t±0 , t±1 ]) � f as pairs ( f ([1 : 0]), f ([0 : 1])). Then (t0 − t1, 0) satisfies
the condition from Theorem 75, hence it gives a class in K 0

T (X). It is tempting to do
the following computation in K 0(X) ∼= K 0

T (X) ⊗Z[Char(T )] Z:

(t0 − t1, 0) ⊗ 1 = (1, 0) ⊗ (1 − 1) = 0

but this is wrong! Indeed, (1, 0) does not satisfy the condition from Theorem 75,
hence is not in K 0

T (X). In fact, one can check that (t0 − t1, 0) is the equivariant class
of the torus-fixed point [1 : 0] ∈ P

2.

4.8.3 A Short Review on Cones and Their Hilbert Series

For more details about the topic of this subsection we refer to [9, Sect. 1.2] and [48,
Sect. 4.5]. Recall that a convex polyhedral rational cone is a subset of R

n of the
formC = cone(S) := {∑u∈S λuu | λu ∈ R≥0}, where S ⊂ Z

n ⊂ R
n is finite. A cone
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is called pointed if it does not contain a line. If C is a pointed rational cone, then
every one-dimensional face ρ contains a unique lattice point uρ that is closest to the
origin. It is not hard to see that MG(C) := {uρ | ρa one-dimensional face ofC} is
a minimal generating set of C . If the minimal generators are linearly independent
over R, we call C simplicial. If they are part of a Z-basis of Z

n , we call C regular.
For a pointed cone C in R

n , we define its Hilbert series Hilb(C) by:

Hilb(C) :=
∑

a∈C∩Zn

ta.

This is always a rational function [48, Theorem 4.5.11] whose denominator is equal
to

∏
u∈MG(C) (1 − tu). If C is a regular cone, then its Hilbert series is easy to com-

pute: Hilb(C) = ∏
u∈MG(C) 1/(1 − tu). If C is a simplicial cone, we can compute

its Hilbert series as follows. First compute the finite set DC := {b ∈ C ∩ Z
n : b =∑

b∈MG(C) λuu | 0 ≤ λu < 1}. Then

Hilb(C) =
⎛

⎝
∑

b∈DC

tb

⎞

⎠
∏

u∈MG(C)

1

1 − tu
.

For a general rational polyhedral cone, we can compute its Hilbert series by
triangulating it.

4.8.4 Matroids and the K-theory of Grassmannians

In this subsectionwecompute the class in equivariant K -theoryof a torus orbit closure
in a Grassmannian. We then note that this class only depends on the underlying
matroid, and give a combinatorial algorithm to get the class in K -theory directly
from the matroid. This algorithm can then be used as a definition to associate a class
in K -theory to an arbitrary (not necessarily representable) matroid. This was first
done by Fink and Speyer [16].

Let us first fix the following sign conventions. The torus T = (C∗)n acts on C
n as

follows: t · (x1, . . . , xn) = (t−1
1 x1, . . . , t−1

n xn). The action of T onG(k, n) is induced
from this action. Explicitly, if p ∈ G(k, n) has Plücker coordinates [PI ]I∈([n]

k )
, then t ·

p has Plücker coordinates [(∏i∈I t
−1
i )PI ]I∈([n]

k )
.

We begin by describing the T -equivariant K -theory of the Grassmannian G(k, n)

using equivariant localisation.
The torus-fixed points of G(k, n) are easy to describe: for every size k sub-

set I ⊂ [n], we define the k-plane VI = span({ei | i ∈ I }) ⊂ C
n , and denote the

corresponding point in G(k, n) by pI . In Plücker coordinates, pI is given by PJ = 0
if J 	= I . It is easy to see that the

(n
k

)
points pI are precisely the torus-fixed points

of G(k, n).
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We can also describe the one-dimensional torus orbits: there is a (unique) one-
dimensional torus orbit between pI and pJ if and only if |I ∩ J | = k − 1. In this
case, we write I − J = {i}, J − I = { j}. If we identify the one-dimensional orbit
from pI to pJ with A

1\0 in such a way that the origin corresponds to the torus-fixed
point pI (and so pJ corresponds to the point at infinity), then T acts on the orbit with
character t−1

j ti .
Let us now check that the action of T is contracting. We fix a torus-fixed point pI ,

and consider the open neighbourhood UI given by PI = 1. Then UI
∼= A

k(n−k).
For p ∈ UI , we will denote its coordinates with (ui, j )i∈I, j /∈I , where ui, j = PI−i∪ j

PI
.

Then t · p has coordinates (t−1
j ti ui, j )i∈I, j /∈I . Thus, T acts on this space with char-

acters t−1
j ti , where i ∈ I, j /∈ I . Identifying ta11 · · · tann with (a1, . . . , an), all these

points lie in the open halfspace defined by
∑

i∈I ai > 0.

Example 78 We compute the class ofO(1). The sheafO(1) on G(k, n) was already
mentioned in Sect. 4.4.2: it is the pullback of O(1) on P(nk)−1 via the Plücker embed-
ding. We can also describe O(1) as

∧k S∨, where S is the tautological vector bundle
on G(k, n) whose fiber over a point is the corresponding k-plane.

We can apply Theorem 68 to the result from Example 74 to replace the torus
action there with a different torus action, induced from the action on the Plücker
coordinates. By applying pullback formula (4.2), we find that the class [O(1)]T in
equivariant K -theory is the map

[O(1)]T : Gr(k, n)T → Z[Char(T )] : pI �→ ti1 · · · tik ,

where we wrote I = {i1, . . . , ik}.
Let p be a point inGr(k, n) andM = Mp be the correspondingmatroid. Then T p

is a closed subvariety of Gr(k, n); in particular, it is given by a coherent sheaf.
We want to compute its class in T -equivariant K -theory, which is a map [T p]T :
Gr(k, n)T → Z[Char(T )]. As above, let pI ∈ Gr(k, n)T be the torus-invariant point
given by PJ = 0 for J 	= I , and let UI be the affine open neighbourhood UI of pI
defined by PI = 1.

If I is not a basis of M , then T p does not intersect UI , hence [T p]T (pI ) = 0.
Hence, we will assume that I is a basis of M , i.e. that p ∈ UI .

The coordinate ring of T p ∩UI is isomorphic to C[s−1
i s j ], where s−1

i s j is a gen-
erator if and only if (I − i) ∪ j is a basis ofM .Wewill denote this ring by RM,I . This
ring should be viewed as a T -module, with t · s−1

i s j = t−1
i t j s

−1
i s j . The Hilbert series

of RM,I is a rational function with denominator dividing
∏

i∈I
∏

j /∈I (1 − t−1
i t j ).

Thus, by (4.1),
[T p]T (pI ) = Hilb(RM,I )

∏

i∈I

∏

j /∈I
(1 − t−1

i t j ). (4.4)

Definition 79 For any lattice polytope P and v a vertex of P , we define conev(P)

to be the cone spanned by all vectors of the form u − v with u ∈ P . For I ∈ ([n]
k

)
,
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we write coneI (M) := coneeI (P(M)) if I is a basis of M , and coneI (M) := ∅

otherwise.

Since coneI (M) is the positive real span of all vectors eJ − eI , where J ∈ B(M),
we find that Hilb(RM,I ) = Hilb(coneI (M)). So (4.4) can also be written as

[T p]T (pI ) = Hilb(coneI (M))
∏

i∈I

∏

j /∈I
(1 − t−1

i t j ). (4.5)

We note that (4.5) only depends on the matroid M and not on the chosen point p
or even the torus orbit T p. Moreover, the formulas make sense even for non-
representablematroids. Thuswe can use them as a definition for the class in K -theory
for a matroid:

Definition 80 ([16]) For any rank k matroid M on [n], we define y(M) :
Gr(k, n)T → Z[Char(T )] by

y(M)(pI ) = Hilb(coneI (M))
∏

i∈I

∏

j /∈I
(1 − t−1

i t j ).

Theorem 81 ([16, Proposition 3.3]) The class y(M) ∈ K 0
T (Gr(k, n)T ) satisfies the

condition of Theorem 75, and hence defines a class in K 0
T (Gr(k, n)).

4.8.5 Flag Matroids and the K-theory of Flag Varieties

In this section, we generalize the results from the previous section replacing
“matroids” by “flag matroids” and “Grassmannians” by “flag varieties”.

We first describe the equivariant K -theory of a flag variety Fl(k, n). The torus-
fixed points are given as follows: for every (set-theoretic) flag F = (F1 ⊆ . . . ⊆ Fs)

of rankk on [n], we define a (vector space) flag V1 ⊆ . . . ⊆ Vs by Vi = span({e j | j ∈
Fi }). We will denote the corresponding point in Fl(k, n) by pF . The Plücker coor-
dinates of pF are given by PS = 1 if S is a constituent of F and PS = 0 otherwise.
Here, the Plücker coordinates of a point in Fl(k, n) are the ones induced from the
embedding Fl(k, n) ↪→ ∏

G(ki , n).
We can also describe the one-dimensional torus orbits: let pF be a torus-fixed

point. We define S(F) to be the set of all pairs (i, j) ∈ [n] × [n] for which there
exists an  such that i ∈ F and j /∈ F. For every (i, j) ∈ S(F), we define a new
flag F ′ = Fi→ j by switching the roles of i and j .More precisely: if i ∈ Fr but j /∈ Fr ,
then F ′

r := (Fr − i) ∪ j ; in any other case F ′
r := Fr . Then there is a unique one-

dimensional torus orbit between pF and pF ′ , and all one-dimensional torus orbits
arise in this way. The torus T acts on this orbit with character t−1

j ti .

Lemma 82 The action of T on Fl(k, n) is contracting.
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Proof For every torus-fixed point pF , we consider the open neighbourhood UF

given by PFr 	= 0 for all r . Then UF
∼= A

N , where N = dim(Fl(k, n)) =∑s
i=1 ki (ki+1 − ki ) (here ks+1 := n). We will denote the coordinates of a point q

in UF by (ui, j )(i, j)∈S(F), where ui, j = PFr−i∪ j

PFr
for any r which satisfies i ∈ Fr

and j /∈ Fr . Then t · q has coordinates (t−1
j ti ui, j )(i, j)∈S(F). So T acts on UF with

characters t−1
j ti , (i, j) ∈ S(F). As before, identifying ta11 · · · tann with (a1, . . . , an),

all these characters lie on the open halfspace
∑s

r=1

∑
i∈Fr ai > 0. �

Let p be a point in Fl(k, n), and let F be the corresponding flag matroid. We
want to compute the T -equivariant class of T p, which is amap [T p]T : Fl(k, n)T →
Z[Char(T )]. We fix a point pF ∈ Fl(k, n)T , and consider the affine neighbour-
hood UF described above.

If F is not a basis of F , then T p does not intersect UF , hence [T p]T (pF ) = 0.
Thus, we will assume that F is a basis of F , i.e. that p ∈ UF .

The coordinate ring of T p ∩UF is isomorphic to k[s−1
i s j ], where s−1

i s j is a
generator if and only if Fi→ j ∈ F .Wewill denote this ring by RF ,F . This ring should
be viewed as a T -module, with t · s−1

i s j = t−1
i t j s

−1
i s j . The Hilbert series of this T -

module is a rational functionwith denominator dividing
∏

(i, j)∈S(F)(1 − t−1
i t j ). Thus,

by (4.1),
[T p]T (pF ) = Hilb(RF ,F )

∏

(i, j)∈S(F)

(1 − t−1
i t j ). (4.6)

Definition 83 Wedefine coneF (F ) to be the cone coneeF (P(F )), as inDefinition79.

As before, we find that Hilb(RF ,F ) = Hilb(coneF (F )). Hence, (4.6) can also be
written as

[T p]T (pF ) = Hilb(coneF (F ))
∏

(i, j)∈S(F)

(1 − t−1
i t j ). (4.7)

As before, (4.7) only depends on the flag matroid F and not on the chosen point p
or even the torus orbit T p. Moreover the formulas make sense even for non-
representable flag matroids. Thus we can use them as a definition for the class
in K -theory for a flag matroid:

Definition 84 For any rank k flag matroidF on [n], we define y(F ) : Fl(k, n)T →
Z[Char(T )] by

y(F )(pF ) = Hilb(coneF (F ))
∏

(i, j)∈S(F)

(1 − t−1
i t j ).

Proposition 85 The class y(F ) ∈ K 0
T (Fl(k, n)T ) satisfies the condition of

Theorem 75, and hence defines a class in K 0
T (Fl(k, n)).

Proof The proof is a straightforward generalisation of the proof of [16, Proposition
3.3]. �
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Fig. 4.5 The class
in K -theory of a flag matroid

Example 86 Let F be the flag matroid of Example 54. We first com-
pute y(F )(pF ), where F is the flag 2 ⊆ 12 (so eF = (1, 2, 0)). From Fig. 4.4,
it is clear that coneF (F ) = cone((1,−1, 0), (0,−1, 1)), which has Hilbert
series 1

(1−t−1
2 t1)(1−t−1

2 t3)
. Furthermore, we have S(F) = {(2, 1), (2, 3), (1, 3)}. We find

that y(F )(pF ) = 1 − t−1
1 t3. We can do the same for the other torus-fixed points. The

result is summarised in Fig. 4.5.

4.8.6 The Tutte Polynomial via K-theory

In [16], a geometric description of the Tutte polynomial of a matroid is given. Con-
sider the following diagram, where all the maps are natural projections or inclusions:

Fl(1, k, n − 1; n)

G(k, n) Fl(1, n − 1; n)

P
n−1 × P

n−1 � G(1, n) × G(n − 1, n)

πk

π1(n−1)

Generalising Example 67, one can show that K 0(Pn−1 × P
n−1) ∼= Z[α, β]/(αn, βn),

where α and β are the structure sheaves of hyperplanes.

Theorem 87 ([16, Theorem 7.1]) The following equality holds:

(π1(n−1))∗π∗
d (Y (M) · [O(1)]) = TM(α, β),

where Y (M) is the class associated to thematroid M in the non-equivariant K-theory
of the Grassmannian.

In other words, the Tutte polynomial of a matroid can be viewed as a Fourier-Mukai
transform of its associated class in K -theory.

We can now generalize this construction to get a definition of the Tutte polynomial
of a flag matroid.

Definition 88 Consider the following diagram.



4 Flag Matroids: Algebra and Geometry 109

Fl(1, k, n − 1; n)

Fl(k; n) Fl(1, n − 1; n)

P
n−1 × P

n−1

πk

π1(n−1)

Let F be a flag matroid on [n] of rank k, and let Y (F ) ∈ K 0(Fl(k; n)) be its class in
non-equivariant K -theory, as inDefinition 84. Then the K-theoretic Tutte polynomial
of F is defined to be

TF (α, β) := (π1(n−1))∗π∗
d (Y (F ) · [O(1)]).

We computed the Tutte polynomial for some small examples using Sage [51],
Macaulay2 [25], and Normaliz [5]. Our code is available at [47]. The program first
computes the equivariant class (π1(n−1))∗π∗

d (y(M) · [O(1)]) ∈ K 0
T (Pn−1 × P

n−1)

using equivariant localisation, and then computes the underlying non-equivariant
class.

Remark 89 Afterwefinished the articleChristopherEur implemented the algorithm
in Macaulay2 [14].

Example 90 We consider again the flag matroid of Examples 54 and 86. We
first compute y(F ) · [O(1)], which is displayed in Fig. 4.6. The two projec-
tions from Fl(1, k, 2; 3) = Fl(1, 1, 2, 2; 3) to Fl(1, 2; 3) are isomorphisms, hence
pulling back and pushing forward along them does nothing. Next we need to push our
class X = y(F ) · [O(1)] ∈ K 0

T (Fl(1, 2; 3)) to a class Y ∈ K 0
T (Pn−1 × P

n−1), using
formula (4.3).

The T -fixed points of P
n−1 × P

n−1 are given by pairs p = (, H), where  ∈
G(1, 3)T = {〈e1〉, 〈e2〉, 〈e3〉} and H ∈ G(2, 3)T = {〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉}.
If  	⊂ H , then Y (p) = 0. If  ⊂ H , then p ∈ Fl(1, 2; 3) ⊂ P

2 × P
2. Since we

are pushing forward along an embedding, the formula (4.3) has a simple form: we
can find characters χ1, χ2, χ3, η and open neighbourhoods p � U1 ⊂ Fl(1, 2; 3)
and p � U2 ⊂ P

2 × P
2, such that T acts onU1 with characters χ1, χ2, χ3, and onU2

with characters χ1, χ2, χ3, η. Then (4.3) becomes:

Y (p) = (1 − η−1)X (p).

Fig. 4.6 y(F ) · [O(1)]
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Consider for example p = (〈e1〉, 〈e1, e2〉). Then p ∈ Fl(1, 2; 3) has an open
neighbourhood where T acts by characters t2t

−1
3 , t1t

−1
3 , t1t

−1
2 , while p ∈ P

2 × P
2

has an open neighbourhood where T acts by characters t2t
−1
3 , t1t

−1
3 , t1t

−1
3 , t1t

−1
2 . We

compute that

Y ((〈e1〉, 〈e1, e2〉)) = t21 t2(1 − t−1
1 t3)(1 − t−1

1 t3) = t2(t1 − t3)
2.

Similarily, we find that

Y ((〈e1〉, 〈e1, e3〉)) = t3(t1 − t2)
2

Y ((〈e3〉, 〈e1, e3〉)) = t3(t1 − t2)(t3 − t2)

Y ((〈e2〉, 〈e1, e2〉)) = t2(t1 − t3)(t2 − t3)

and Y (p) = 0 in all other cases.
Finally, we need to find the underlying class in non-equivariant K -theory. This

is quite tedious to do by hand, so we just refer to the algorithm provided at [47] for
this. In the end, we find that

TF (x, y) = x2y2 + x2y + xy2 + x2 + xy.

Example 91 As another example, consider the uniform flag matroid U(2,3);5
of rank (2, 3) on [5] (that is, the constituents of U(2,3);5 are the uniform
matroidsU2,5 andU3,5). Using our program, we find that its K -theoretic Tutte poly-
nomial TU(2,3):5(x, y) equals

x3y3 + 2x3y2 + 2x2y3 + 3x3y + 8x2y2 + 3xy3 + 4x3+
8x2y + 8xy2 + 4y3 + 2x2 + 4xy + 2y2.

After the preprint of the article appeared Christopher Eur found an example of
a K -theoretic Tutte polynomial TU(1,3):5(x, y) with a strictly negative coefficient.

4.9 Open Problems

Our definition of the Tutte polynomial of a flag matroid is admittedly quite involved.
It is natural to wonder whether there is an easier definition, avoiding geometry:

Problem 92 Is there a purely combinatorial description of the K -theoretic Tutte
polynomial of a flag matroid? In particular, can one obtain the K -theoretic Tutte
polynomial from the Tutte polynomials of the constituents?

For matroids, one can define the characteristic polynomial (also called chromatic
polynomial, as it generalises the chromatic polynomial of a graph) by



4 Flag Matroids: Algebra and Geometry 111

χM(λ) = (−1)r(M)TM(1 − λ, 0).

In 2015, Adiprasito, Huh and Katz proved the following conjecture by Rota-Heron-
Welsh:

Theorem 93 ([1]) Let wi (M) be the absolute value of the coefficient of λr(M)−i in
the characteristic polynomial of M. Then the sequence wi (M) is log-concave:

wi−1(M)wi+1(M) ≤ wi (M)2 for all 1 ≤ i < r(M).

Since we now have a definition for the Tutte polynomial of a flag matroid, we can
define the characteristic polynomial of a rank k flag matroid F by

χF (λ) = (−1)r(F )TF (1 − λ, 0),

where r(F ) := |k| := ∑
ki .

Conjecture 94 Theorem 93 holds for the characteristic polynomial of an arbitrary
flag matroid.

In Examples 90 and 91, the characteristic polynomials are −λ2 + 2λ − 1 and 4λ3 −
14λ2 + 16λ − 6, respectively. Thus, we see that Conjecture 94 holds for these exam-
ples.

Flag matroids are a special class of Coxeter matroids. Hence, another possible
direction of research would be:

Problem 95 Explore how our constructions and results could be generalised to arbi-
trary Coxeter matroids.

Flag matroids can also be viewed as a special class of polymatroids. In particular,
we can apply the construction of Sect. 4.3.1 to them.

Problem 96 Is there a connection between the Tutte polynomial of a polymatroid,
as defined by Cameron and Fink, and our construction of the Tutte polynomial of
flag matroid? How about the construction from Remark 31?

Next, we note that by Sect. 4.7 we know how to associate to a rank k representable
r -polymatroid on [n] a class in K 0

T (G(k, rn)).

Problem 97 Can we associate a class in K 0
T (G(k, rn)) to a non-representable

r -polymatroid? Can this be used to define a K -theoretic Tutte polynomial for
r -polymatroids?

Another possible generalisation, brought to our attention by Alastair Craw after we
wrote the article, would be the class of quiver flag varieties [10]. We have not yet
pursued this direction.

Finally, we could apply the construction of Sect. 4.8.6 to any subvariety of a
Grassmannian (or even a flag variety), not just to torus orbits. It could be interesting
to study the properties of this invariant.
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Chapter 5
Classification of Minimal Polygons with
Specified Singularity Content

Daniel Cavey and Edwin Kutas

Abstract It is known that there are only finitely many mutation-equivalence classes
with a given singularity content, and each of these equivalence classes contains
only finitely many minimal polygons. We describe an efficient algorithm to clas-
sify these minimal polygons. To illustrate this algorithm we compute all mutation-
equivalence classes of Fano polygons with basket of singularities given by (i) B =
{m1 × 1

3 (1, 1), m2 × 1
6 (1, 1)} and (ii) B = {m × 1

5 (1, 1)}.

Keywords Fano variety · qG-deformation · Mutation · Singularity content

5.1 Introduction

Let N be a lattice. A polytope P in NR = N ⊗ R is a set of the form

P =
{ ∑

u∈S

λuu : λu ≥ 0 and
∑
u∈S

λu = 1

}
,

where S ⊂ NR is a finite set of points. A Fano polytope is a full-dimensional convex
polytope such that the vertices vert(P) ⊂ N are all primitive, and that the origin
lies in the strict interior of P . Polytopes are considered up to GL(N )-equivalence.
When N is a rank-two lattice, P is known as a Fano polygon.

The span of each face E of a Fano polygon P , that isR≥0E , defines a cone. Equiv-
alently this is the polyhedral cone whose primitive generating vertices are given by
the endpoints of E . This describes a fan in NR corresponding to P , which in turn
determines a toric del Pezzo surface X P . Many properties of X P have combinato-
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rial analogues in the Fano polygon P; examples include the singularities and the
anticanonical degree (−K X P )

2. Toric geometry can be further studied in [6, 8].
The dual lattice of N is M = Hom(N , Z) with the pairing 〈·, ·〉 : N × M → Z.

The lattice length of a line segment E ⊂ NR is given by the value |E ∩ N | − 1.
The lattice height of a line segment is given by the lattice distance from the origin:
that is, given the unique primitive inward pointing normal nE of E belonging to M ,
the height is given by |〈v, nE 〉|, for any v ∈ E .

Themotivation for the paper comes fromanattempt to classifyFanovarieties using
mirror symmetry. An understanding of mirror symmetry can be gained from Coates–
Corti–Galkin–Golyshev–Kasprzyk [4]. Mirror symmetry suggests that classifying
Fano polytopes could help to classify Fano varieties.

More specifically we study Fano polytopes up to mutation-equivalence. A muta-
tion is a combinatorial operation on a Fano polygon P ⊂ NR introduced by Akhtar–
Coates–Galkin–Kasprzyk [2], and is described in Sect. 5.2. An important mutation
invariant of Fano polygons known as singularity content was introduced in [3] by
Akhtar–Kasprzyk. This is a combinatorial property of P that describes the singu-
larities of the corresponding Fano toric variety X P . In this setting Fano varieties
are considered up to qG-deformation, see Coates–Corti–Kasprzyk et al. and Kollár–
Shepherd-Barron [1, 12].

Definition 1 ([1]) A del Pezzo surface with cyclic quotient singularities that admits
a qG-deformation to a normal toric del Pezzo surface is said to be of class TG.

The reason we consider Fano polytopes and Fano varieties up to their respective
equivalence classes lies in the following conjecture.

Conjecture 2 ([1, Conjecture A]) There exists a bijective correspondence between
the set of mutation-equivalence classes of Fano polygons and the set of qG-
deformation equivalence classes of locally qG-rigid class TG del Pezzo surfaces
with cyclic quotient singularities.

Recent results from Corti–Heuberger [5] and Kasprzyk–Nill–Prince [11] support
this conjecture.

Theorem 3 ([11, Theorem 1.2]) There are precisely ten mutation-equivalence
classes of Fano polygons such that the toric del Pezzo surface X P has only T-
singularities. They are in bijective correspondence with the ten families of smooth
del Pezzo surfaces.

Theorem 4 ([5, 11]) There are precisely 29 qG-deformation families of del Pezzo
surfaces with m ≥ 1 singular points of type 1

3 (1, 1). Precisely 26 of these are of class
TG, and furthermore are in bijective correspondence with 26 mutation-equivalence
classes of Fano polygons with singularity content (n, {m × 1

3 (1, 1)}), where m ≥ 1.

Within this context, the aim is to classify Fano polygons with a given singu-
larity content. Assuming Conjecture2 holds, this is equivalent to a classification
of del Pezzo surfaces admitting a toric degeneration which have the singularities
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described by the specified singularity content. We will use our work to provide more
examples for understanding Conjecture2. The main result of this paper is an efficient
algorithm (described in Sect. 5.4) to produce representations (called minimal poly-
gons) for the mutation-equivalence classes in a classification of Fano polygons with
a specified singularity content in the case where the maximal height of the edges of
each Fano polygon is given by an edge representing a non qG-smoothable singular-
ity. As a corollary to the algorithm the following classifications (derived in Sects. 5.5
and 5.6 respectively) have been completed:

Theorem 5 There are precisely 14 mutation-equivalence classes of Fano polygons
with singularity content (n, {m1 × 1

3 (1, 1), m2 × 1
6 (1, 1)}) with m1 ≥ 0, m2 > 0.

Theorem 6 There are precisely 12 mutation-equivalence classes of Fano polygons
with singularity content (n, {m × 1

5 (1, 1)}) with m > 0.

The reason for computing these classifications is that they are both in some sense
the simplest cases after the 1

3 (1, 1) classification of Theorem4. A 1
6 (1, 1) singularity,

like a 1
3 (1, 1), is represented by an edge of a Fano polygon P of height 3. This

is the smallest possible height for an edge representing any singularity that is not
smoothable by a qG-deformation. Whereas 5 is the smallest value for r after 3 for
which a 1

r (1, 1) singularity is not smoothable by a qG-deformation.
If one of the Fano polygons appearing in the classifications is (via mutation if

necessary) a triangle, then the corresponding toric variety will be the quotient of a
weighted projective space as described in [9]. In particular let ρ0, ρ1, ρ2 ∈ N be the
primitive generators of the rays for the fan of a Fano polygon P . Suppose that ρi

satisfy the equation
λ0ρ0 + λ1ρ1 + λ2ρ2 = 0,

and span the lattice N . Then X P = P(λ0, λ1, λ2).

5.2 Mutations of Fano Polygons and Singularity Content

5.2.1 Mutations

Recall the definition of the Minkowski sum of lattice polygons.

Definition 7 Let P, Q ⊂ NR be two lattice polytopes. Define the Minkowski sum
of P and Q by

P + Q = {p + q : p ∈ P, q ∈ Q}.

By convention P + ∅ = ∅.

Let P ⊂ NR be a Fano polygon, and E be an edge of P . Consider the primitive
inward pointing normal nE ∈ M of this edge. This vector acts as a grading function
on P . For h ∈ Z, define
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ωh(P) = conv{v ∈ N ∩ P : nE (v) = h}.

Note that ωh(P) may be empty (indeed it will be for infinitely many values of h)
and that ω−rE (P) = E , where rE is the height of E . Choose vE to be a primitive
vector of N such that nE (vE ) = 0. Note this is uniquely defined up to sign in the two
dimensional case. Set F = conv{0, vE }; a line of lattice length 1 and height 0, that
is parallel to E .

Definition 8 For all h < 0, suppose that there exists Gh ⊂ NR such that

{v ∈ vert(P) : nE (v) = h} ⊆ Gh + |h|F ⊆ ωh(P).

In the caseωh(P) = ∅ the inclusion holds taking Gh = ∅. Then define the mutation
of P with respect to nE , F and Gh to be

mut(nE ,F)(P) = conv
(⋃

h<0

Gh ∪
⋃
h≥0

(ωh(P) + hF)
)

⊂ NR.

Example 9 Consider the Fano polygon P = conv{(1, 0), (0, 1), (−5,−1)} corre-
sponding to the weighted projective space P(1, 1, 5). This polygon will be used
as a running example throughout the paper. Mutate P with respect to the edge
E = conv

{
(1, 0), (0, 1)

}
. The primitive inner pointing normal is given by

nE = (−1,−1) ∈ M . This describes a gradingon thepoints of N as shown inFig. 5.1.
Set F = conv

{
0, (1,−1)

}
, a primitive slice at height 0. Choose G−1 = {(0, 1)}

which satisfies the required inclusion:

{
(0, 1), (1, 0)

} ⊆ G−1 + F ⊆ conv
{
(0, 1), (1, 0)

}
.

For h < −1,ωh(P) = ∅, so trivially choose Gh = ∅. Calculating the mutation of P
with respect to the primitive inner point normal nE , the factor F and the polygon G−1

obtain:

E

-1

0123456

Fig. 5.1 The grading induced by nE = (−1,−1) ∈ M
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Fig. 5.2 The polygon Q
associated with P(1, 5, 36)

Q = mut(nE ,F)(P)

= conv
{(

G−1
) ∪ (

ω0(P)
) ∪ (

ω1(P) + F
) ∪ (

ω2(P) + 2F
) ∪ · · · ∪ (

ω6(P) + 6F
)}

= conv
{
(0, 1), (−5,−1), (1,−7)

}
.

Q corresponds to the toric variety P(1, 5, 36). Informally the mutation subtracts
one copy of F from P along the edge E , and adds six copies of F at the opposite
vertex of P which is at (−5,−1). This is illustrated in Fig. 5.2.

Note mut(nE ,F)(P) is independent of the choice for Gh . If there is no possible
choice of Gh , then the mutation with respect to nE does not exist.

Lemma 10 ([11, Lemma 2.3]) Let E be an edge of a Fano polygon P with primitive
inner normal vector nE ∈ M. Then P admits a mutation with respect to nE if and
only if

|E ∩ N | − 1 ≥ rE .

ApplyingLemma10 to thepolygon P inExample9gives that the edge conv{(0, 1),
(−5,−1)} does not admit a mutation: it has lattice length 1 and height 5.

There are a number of additional properties of mutations.

1. The choice of vE is not important: mut(nE ,F)(P) is isomorphic to mut(nE ,−F)(P)

via a GL(N )-equivalence.
2. Mutation is invertible: If Q = mut(nE ,F)(P), then P = mut(−nE ,F)(Q).
3. P is a Fano polytope if and only if mut(nE ,F)(P) is a Fano polytope

[2, Proposition 2].

Definition 11 Let P, Q ⊂ NR be two Fano polygons. Then P and Q are mutation-
equivalent if there exists a finite sequence of polygons P0, P1, . . . , Pn such that
P0

∼= P , Pn
∼= Q and, Pi+1 = mut(ni ,Fi )(Pi ) for some ni and Fi , for all

i ∈ {0, . . . , n − 1}.
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Mutation-equivalence defines an equivalence relation.

5.2.2 Singularity Content

Recall the definition of singularity content introduced in [3].
Consider the action of μR , the cyclic group of order R, on C

2 by
(x, y) → (εa x, εb y)where ε is an Rth root of unity. Recall that a quotient singularity
1
R (a, b) is given by the germ of the origin of Z = Spec(C[x, y]μR ).

A cyclic quotient singularity is a quotient singularity 1
R (a, b) such that

gcd(R, a) = 1 and gcd(R, b) = 1. In this situation, set k = gcd(a + b, R) so that
a + b = kc̃ and R = kr , and let c = c̃a−1. The cyclic quotient singularity can be
written as 1

kr (1, kc − 1).

Definition 12 A cyclic quotient singularity 1
kr (1, kc − 1) is a T-singularity if r | k.

For an arbitrary T-singularity, let k = nr , so the singularity can be written in the
form 1

nr2 (1, nrc − 1). If n = 1, the singularity is known as a primitive T-singularity.
Kollár–Shepherd-Barron [12] show a cyclic quotient singularity is a T-singularity if
and only if it admits a qG-smoothing.

Definition 13 A cyclic quotient singularity 1
kr (1, kc − 1) is an R-singularity if

k < r .

A singularity is an R-singularity if and only if it is rigid under qG-deformation.
Consider an arbitrary cyclic quotient singularity 1

kr (1, kc − 1). By the Euclidean
algorithm there exists unique non-negative integers n and
k0 such that k = nr + k0. If k0 = 0, then the singularity is a T-singularity and
is qG-smoothable. If k0 > 0, then the singularity is qG-deformation equivalent to
a 1

k0r (1, k0c − 1) cyclic quotient singularity.

Definition 14 ([3]) Let σ = 1
kr (1, kc − 1) be a cyclic quotient singularity, and

k = nr + k0. The residue of σ is given by

res(σ ) =
{

∅, if k0 = 0,
1

k0r (1, k0c − 1), otherwise.

The singularity content of σ is the pair

SC(σ ) = (
n, res(σ )

)
.

This discussion of T-singularities and R-singularities has a natural description in
the language of cones. Each cone of a Fano polygon corresponds to a singularity of the
corresponding toric variety. Specifically a coneC defines an edge E = conv

{
u1, u2

}
,
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where u1 and u2 are primitive generators for the rays of C . Choose a point v in the
interior of conv

{
0, u1, u2

}
such that

conv
{
0, ui , v

} ∩ N = {0, ui , v}, for some i ∈ {1, 2}.

Expressing v in terms of u1 and u2, obtain v = pu1 + qu2 where p = a/R and
q = b/R. The cone corresponds to the singularity σC = 1

R (a, b) on X P .
Let C ⊂ NR be a cone with generating rays described by the primitive lattice

points p0 and p1. Consider E = conv{p0, p1}. Let r be the height of E and k be
the lattice length. By the Euclidean algorithm k = nr + k0. Divide C into separate
sub-cones C0, . . . , Cn where C1, . . . , Cn (known as T-cones) have lattice length r ,
and C0 has lattice length k0 and is known as an R-cone. Importantly T-cones cor-
respond to T-singularities on X P and R-cones to R-singularities. The decomposi-
tion of C into sub-cones is analogous to the fact that the cyclic quotient singu-
larity σC = 1

kr (1, kc − 1) can be qG-smoothed to the cyclic quotient singularity
1

k0r (1, k0c − 1) which is described by the sub-cone C0. This discussion is indepen-
dent of the choice of decomposition of C .

Definition 15 Let P ⊂ NR be a Fano polygon. Label the edges of P in clock-
wise order E1, . . . Ek . Each edge Ei describes a cone which corresponds to a
cyclic quotient singularity σi . Define the singularity content of an edge to be
SC(Ei ) = SC(σi ) = (

ni , res(σi )
)
. Set n = ∑k

i=1 ni andB = {res(σ1), . . . , res(σk)},
whereB is an ordered set known as the basket of R-singularities. Then the singularity
content of P is defined to be

SC(P) = (
n,B)

.

Example 16 Consider P = conv
{
(0, 1), (1, 0), (−5,−1)

}
from Example9. The

edges conv
{
(1, 0), (0, 1)

}
and conv

{
(1, 0), (−5,−1)

}
are both of length 1 and

height 1 and so contribute a single T-cone each. The final edge conv
{
(1, 0), (0, 1)

}
is of height 5 and length 1 and so is a single R-cone. It remains to calcu-
late the singularity corresponding to this edge. Using the earlier notation, the
only choice for v is (−1, 0), and finding the unique solution to the equation
(−1, 0) = p(0, 1) + q(−5,−1) as p = q = 1

5 shows that the edge represents a
1
5 (1, 1)

R-singularity. Therefore SC(P) = (2, { 15 (1, 1)}).
Proposition 17 ([3, Proposition 3.6]) The singularity content is an invariant of Fano
polygons under mutation.

Indeed in Example9, it is routine to check that SC(Q) = (
2, { 15 (1, 1)}

)
which is

the same as the singularity content for P .
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5.2.3 Hirzebruch–Jung Continued Fractions and
Applications to Algebraic Geometry

There is information about the del Pezzo surface X P corresponding to a polygon P
written into the singularity content; X P is qG-deformation equivalent to a del Pezzo
surface X such that the topological Euler number χ

(
X\Sing(X)

) = n and the sin-
gular points are given by Sing(X) = B. The anticanonical degree and Hilbert series
of X P are totally determined by the singularity content. See [1, 3].

Definition 18 Let p, q ∈ Z0 be coprime. Then theHirzebruch–Jung continued frac-
tion of p/q is given by the continued fraction of the form:

p

q
= a1 − 1

a2 − 1
a3− 1

...

= [a1, . . . , ak].

Given a cyclic quotient singularity σ = 1
R (1, a − 1), construct the variety

Z = Spec(C[x, y]μR ) as in the definition of quotient singularity. Information about
a minimal resolution of Z can be calculated from the Hirzebruch–Jung continued
fraction of R/(a − 1). Consider the minimal resolution π : Y → Z with

KY = π∗K Z +
k∑

i=1

di Ei .

Let [a1, . . . , akσ
] be the Hirzebruch–Jung continued fraction of R/(a − 1). Then

the values−ai are the self-intersection numbers of the exceptional divisors Ei . Addi-
tionally define αi , βi for i ∈ {1, . . . , kσ } by:

α1 = βkσ
= 1,

αi

αi−1
= [ai−1, . . . , a1], for i ∈ {2, . . . , kσ },

βi

βi+1
= [ai+1, . . . , akσ

], for i ∈ {1, . . . , kσ − 1}.

Note that the αi are in increasing order, and the βi are in decreasing order. The
discrepancyof Ei is givenbydi = −1 + (αi + βi )/R. For further readingonminimal
resolutions, see Reid [15].

Proposition 19 ([3, Proposition 3.3, Corollary 3.5]) Let P be a Fano polygon and
let X P be the corresponding toric surface. Suppose P has singularity content (n,B).
Then
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(−K X P )
2 = 12 − n −

∑
σ∈B

Aσ ,

where Aσ = kσ + 1 − ∑kσ

i=1 d2
i ai + 2

∑kσ −1
i=1 di di+1. Furthermore the anticanonical

Hilbert series of X P admits a decomposition

Hilb(X P ,−K X P ) = 1 + (
(−K X P )

2 − 2
)
t + t2

(1 − t)3
+

∑
σ∈B

Qσ (t),

where Q 1
R (1,a−1)(t) = 1

1−t R

∑R−1
i=1 (δai − δ0)t i−1 is the Riemann–Roch contribution

coming from the singularity 1
R (1, a − 1) and δ j = 1

R

∑
ε∈μR ,ε �=1

ε j

(1−ε)(1−εa−1)
are the

Dedekind sums.

Example 20 Recall from Example16 that P = conv
{
(0, 1), (1, 0), (−5,−1)

}
has

singularity content
(
2, { 15 (1, 1)}

)
. The Hirzebruch–Jung continued fraction of the

cyclic quotient singularity 1
5 (1, 1) is simply [5], so d1 = − 3

5 and A 1
5 (1,1) = 1

5 .

Also Q 1
5 (1,1) = t−2t2+t3

5(1−t5) . Therefore the anticanonical degree and Hilbert series of
X = P(1, 1, 5) are given by

(−K X )2 = 49

5
,

Hilb
(
X,−K X

) = 1 + 8t + 2t3 − 2t4 − 8t6 − t7

(1 − t5)(1 − t)3
.

More generally for a polygon P with n primitive T-singularities and basket of
singularities B = {m × 1

5 (1, 1)}:

(−K X P )
2 = 12 − n − 1

5
m,

Hilb(X P ,−K X P ) =
−t7 + (n − 10)t6 + (m − 1)t5 − 2mt4 + 2mt3 + (1 − m)t2 + (10 − n)t + 1

(1 − t)3(1 − t5)
.

Hirzebruch–Jung fractions can be further studied in [8, 14].

5.3 Minimal Fano Polygons

Mutation-equivalence classes raise the issue about our choice of representative of
a mutation-equivalence class of Fano polygons. This leads to the definition of a
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minimal polygon from [11]. For a polygon P , the notation ∂ P denotes the boundary
of P .

Definition 21 Let P ⊂ NR be a Fano polygon. The polygon P is minimal if

|∂ P ∩ N | ≤ |∂ Q ∩ N |, for all Q = mut(n,F)(P).

For an edge E of P , let nE ∈ M be the primitive inner pointing normal of E .
Define hE

min = min{nE (v) : v ∈ P} and hE
max = max{nE (v) : v ∈ P}. Then [11] tells

us P is minimal if and only if |E ∩ N | − 1 ≥ |hE
min| implies |hE

min| ≤ hE
max for all

edges E of P .
Given aFanopolygon P , find aminimal representative of themutation-equivalence

class by calculating all possiblemutations of P . If none of the Fano polygons obtained
via thesemutations have fewer boundary points, then P isminimal.Otherwise choose
one of the mutations of P that have fewer boundary points as our new representa-
tive. Repeat this inductively, to obtain a minimal representative. The process must
terminate since the number of boundary points of P is finite and non-negative.

A minimal representative of a mutation-equivalence class is not necessarily
unique. We will always choose the representative of any equivalence class of Fano
polygons to be minimal.

Example 22 In Example9, |∂ P ∩ N | = 3 and |∂ Q ∩ N | = 8. We know there is
only one other existing mutation of P . It is routine to check that this remaining
mutation does not have fewer boundary points than P . It follows that P is minimal.

5.4 Algorithm to Calculate Minimal Polygons with Given
Basket

5.4.1 Special Facets

We require the notion of a special facet introduced by Øbro [13].

Definition 23 Let P ⊂ NR be a Fano polygon. An edge E of P is a special facet if

∑
v∈vert(P)

v ∈ R≥0E .

Example 24 Considering P = conv{(0, 1), (1, 0), (−5,−1)}, calculate that:
∑

v∈vert(P)

v = (0, 1) + (1, 0) + (−5,−1) = (−4, 0).

So P has a unique special facet given by F = conv{(0, 1), (−5,−1)}.
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By the definition of Fano polygon, 0 ∈ int(P). Therefore the union of all cones
obtained from a Fano polygon P is equal to NR, so P has at least one special facet.
We use a result from [10] which is derived from a proof in [7].

Lemma 25 Let P be a Fano polygon. Let F be a special facet of P of height h and
with inward pointing normal nF ∈ M. Then

vert(P) ⊂ {
(a, b) ∈ NR : −h(h + 1) ≤ 〈nF , (a, b)〉 ≤ h

}
.

5.4.2 Description of Algorithm

Define the maximal local index of a Fano polygon P by

m P = max (height(E) : E ∈ F (P)) ,

where F (P) is the set of edges of P . Similarly define mB to be the maximum height
among the cones representing the R-singularities of P .

The classification of Fano polygons with a given basket of singularities B up to
mutation-equivalence is split into two cases:

1. m P = mB
2. m P > mB

The proof of [11, Theorem 6.3] efficiently tackles Case 2. Note the polygons
this proof outputs are not necessarily minimal. It remains to deal with Case 1. An
algorithm to compute this classification has been completed in [10]. However tack-
ling classifications beyond the case of polygons with only 1

3 (1, 1) R-singularities is
inefficient.

The main result of this paper is an efficient algorithm to tackle Case 1. The
algorithm is as follows: start with only a single vertex (a, lF ) = v ∈ F where F is
the special facet.We can assume that the other endpoint of F is (b, lF ), where b < a.
SincemB = m P wehave aboundon the heights on all edges.Given apoint v1 consider
the set of points

S = {v2 : v2 − v1 is primitive and height(E(v1,v2)) = h}

where E(v1,v2) is the line segment from v1 to v2. Note S is a subset of a line Lh . Given
vertices v1, v2, . . . vk consider the lines L1, . . . LmB then pick all the valid points u
on these lines that give us an edge E(vk ,u) that respects convexity and defines either
a T-singularity or a residual singularity of B. Lemma25 gives a bound on how low
these lines can go. This often suffices as bound, however it is possible that either

1. there exists h such that Lh is horizontal, or
2. there exists u ∈ Lh such that the E(vk ,u) is horizontal.
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In Case 1 Lh never touches the lower bound. In a similar fashion in Case 2 we
are uncertain how far we can extend the edge E(v,u) by adding T-cones resulting in
infinitely many points of the form vk+1 = u + n(u − vk) where n is chosen suitably
from Z≥0.

We start by showing how to deal with Case 2. Suppose
vk+1 = u + n(u − vk) ∈ vert(P). Once the construction of P is complete then
there must be another vertex vk+2 ∈ vert(P), where subscripts are considered mod-
ulo # vert(P), defining an edge E(vk+1,vk+2). Consider replacing n by n + h, which has
the same effect as a shear transformation parallel to the line Lh . Having done this,
all new choices of vk+2 equal the image of the old vk+2 under the same shearing.
In particular as n → ∞, the lines Lh tend towards lines going through the origin.
This means that at suitably large values of n, since lF > 0, the choices of vk+2 will
end up violating convexity. Hence there is only a finite choice along each Lh . Note
that while this is quite computationally intensive, this happens at most once per a
polygon.

The method to deal with Case 1 is similar. Similarly to the previous case we
fix Lh and consider points vk+1 on it. From the point vk+1 we construct the lines L ′

h
we then pick the next vertex vk+2. At this point we exclude the cases where vk+1

and vk+2 lie on a horizontal line as this puts us in Case 2. As before we see that that
as the x-coordinate of vk+1 tends towards −∞, then the x-coordinate of vk+2 tends
towards ∞. Hence once this cutoff occurs there are a finite set of possible points
for vk+1.

Theorem 26 The algorithm gives a complete classification for Fano polygons with
a specific basket of singularities B.

Proof It suffices to show that at each stage there are only finitely many choices of
vertices, this is clear from the above description. There are also only finitely many
choices for inputs as up to a linear transformation 0 < a ≤ l f and l f ≤ mB, so there
are only finitely many choices of a. �

We check our output up to GL(N )-equivalence and mutation-equivalence. Two
polygons can be shown to bemutation-equivalent by explicitly calculating a sequence
of mutations between the two. Conversely a polygon P has corresponding to it
a maximally mutable Laurent polynomial f ∈ C[x±1

1 , . . . , x±1
n ] as defined in [1].

The classical period of f given by

π f (t) =
(

1

2π i

)n ∫
|x1|=···=|xn |=1

1

1 − t f (x1, . . . , xn)

dx1
x1

. . .
dxn

xn

=
∑
k≥0

coeff1( f k)t k,

is an invariant under mutation. Hence two polygons with different periods cannot
be mutation-equivalent. We have computer code in Sage [16] that efficiently imple-
ments the algorithm.
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It is important to compare the LDP-algorithm [10] used to calculate the 1
3 (1, 1)

classification of Fano polygons in Theorem4 with this new algorithm. The LDP-
algorithm takes as input a value for the index lP = lcm

{
height(E) : E ∈ F (P)

}
,

and returns all Fano polygons P with this index. Hence when used to calculate the
case m P = mB in the 1

3 (1, 1) classification, edges of height 1, 2 and 3 are permitted,
and so the LDP-algorithm needs to be run for lP ∈ {3, 6}. In the 1

5 (1, 1) classification
of Theorem6, the value of lF can be up to 60. All polygons P satisfying lP ≤ 16
have been classified using the LDP-algorithm but this took approximately three days
to obtain and the run time will increase at least quadratically with lP . A classification
of Fano polygons with singularity content

(
n, {m × 1

r (1, 1)}), where r ≥ 7 would
be impossible to calculate using the LDP-algorithm (lP would be bounded above
by 420 if r = 7).

In comparison we had the following run times to calculate the classifications of
Theorems5 and 6 using our algorithm:

Basket in classification Run time
(n, {m × 1

3 (1, 1)}) 40s
(n, {m × 1

5 (1, 1)}) 8min

Furthermore a classification of Fano polygons whose basket of singularities only
contains 1

7 (1, 1) R-singularities has been informally completed. The main reasons
for the difference in speed between the LDP-algorithm and our algorithm are as
follows.

1. We only look for minimal representatives for each mutation equivalence class.
This is not the case in the LDP-algorithm.

2. The LDP-algorithm is not designed to look for polygons based on the sin-
gularity content. For example in the 1

3 (1, 1) classification running the LDP-
algorithm for lP ∈ {3, 6}will output polygons that do not have singularity content
(n, {m × 1

3 (1, 1)}).

5.5 Minimal Fano Polygons
with B = {m1 × 1

3(1, 1),m2 × 1
6(1, 1)}

We apply our algorithm to classify all Fano polygons whose only R-singularities
are the cyclic quotient singularities 1

3 (1, 1) and 1
6 (1, 1). Set

B = {m1 × 1
3 (1, 1), m2 × 1

6 (1, 1)}, where m1 ∈ Z≥0 and m2 ∈ Z>0. Here m2 is
non-zero since a classification for Fano polygons with only 1

3 (1, 1) R-singularities
has been completed in [11].

In the 1
3 (1, 1) classification of [11], a bound on the number of R-singularities

is found by substituting the degree contribution A 1
3 (1,1) > 0 into an expression for

the anticanonical degree of the corresponding toric Fano variety from Proposition19
since we know this value to be positive. However the degree contribution A 1

6 (1,1) is
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negative and a similar method does not yield a bound. We show that this can be done
by a purely combinatorial argument instead.

Lemma 27 There exist no minimal Fano polygons P ⊂ NR, with m P = 3 and resid-
ual basket given by B = {m × 1

6 (1, 1)}, where m ≥ 3.

Proof The result for m > 3 follows from the base case m = 3.
Let P be a polygon withB = {3 × 1

6 (1, 1)}. By a GL(N )-translation, assume that
one of the R-singularities is given by E1 = conv{(−1, 3), (1, 3)}. By mutating with
respect to any T-singularity lying between E1 and a second R-singularity, assume
this second R-singulary is adjacent to E1, given by an edge E2 with endpoints (1, 3)
and (a, b). The primitive inner pointing normal of E2 is given by

nE2 =
(b − 3

g
,
1 − a

g

)
∈ M

where g = gcd(b − 3, 1 − a). The height of E2 is

h = −nE2 · (1, 3) = 3a − b

g
.

Since E2 represents a 1
6 (1, 1) singularity, set h = 3:

3a − b

g
= 3, b = 3a − 3 gcd(b − 3, 1 − a).

By convexity b < 3. The only remaining integer solution with a ≥ 0, is given
by (0,−3). However this point is not primitive so it can not be chosen as a ver-
tex of a Fano polygon. Hence a < 0.

Suppose the second edge from (−1, 3), denoted E3, is vertical. By convexity
a = −1 and (a, b) is a vertex of E3. But then E3 is of height 1 so cannot represent
a 1

6 (1, 1) singularity andm < 3. Suppose E3 is not vertical. Again convexity demands
that the second endpoint of E3 has first coordinate less than−1. Then height(E3) > 3
which contradicts m P = 3.

Therefore there can be no minimal Fano polygon with residual basket given by
B = {3 × 1

6 (1, 1)} with m P = 3. �

A similar argument shows that for a basket B = {m1 × 1
3 (1, 1), m2 × 1

6 (1, 1)} as
above, then m1 + m2 < 3.

Examples in this particular classification demonstrate a notion known as shattering
introduced byWormleighton [17]. Let C1 = 〈u, v〉, C2 = 〈v, w〉 be two cones in NR.
Suppose the vectors v − u, w − v are parallel. Then define the hyperplane sum of C1

and C2 to be given by C1 ∗ C2 = 〈u, w〉.
Corollary 28 ([17, Corollary 2.2]) Let σ1 ∗ σ2 ∗ · · · ∗ σn = τ be a T-singularity.
Then the Riemann–Roch contributions Qσi and the degree contributions Aσi satisfy
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Table 5.1 The polygons with singularity content of the form (n, {m1 × 1
3 (1, 1), m2 × 1

6 (1, 1)})
with m2 �= 0

# vert(P) n m1 m2 (−K X )2

1.1 (−1, 3), (1, 3), (0,−1) 2 0 1 32/3

1.2 (−1, 3), (1, 3), (1, 2), (0,−1) 3 0 1 29/3

1.3 (−1, 3), (1, 3), (1, 1), (0,−1) 4 0 1 26/3

1.4 (−1, 3), (1, 3), (1, 0), (0,−1) 5 0 1 23/3

1.5 (−1, 3), (1, 3), (1, 2), (0,−1), (−1, 0) 6 0 1 20/3

1.6 (−1, 3), (1, 3), (1, 2), (0,−1), (−1,−1) 7 0 1 17/3

1.7 (−1, 3), (1, 3), (1, 0), (0,−1), (−1, 0) 8 0 1 14/3

1.8 (−1, 3), (1, 3), (1, 0), (−1,−1) 8 0 1 14/3

1.9 (−1, 3), (1, 3), (1, 0), (0,−1), (−1,−1) 9 0 1 11/3

1.10 (−1, 3), (1, 3), (1, 2), (−1,−4) 10 0 1 8/3

1.11 (−1, 3), (1, 3), (1,−1), (−1,−3) 11 0 1 5/3

1.12 (−1, 3), (1, 3), (5,−1), (−5,−1) 12 0 1 2/3

1.13 (−1, 1), (1, 1), (5,−1), (−5,−1) 12 0 2 4/3

1.14 (−1, 3), (1, 3), (1,−1), (−1,−2) 9 1 1 2

Qσ1 + · · · + Qσn = 0,

Aσ1 + · · · + Aσn = Aτ = lattice length(τ )

lattice height(τ )
.

Consider a T-coneC = cone
{
(−2, 3), (1, 3)

}
of height 3. By adding an additional

ray given by primitive generating vector (−1, 3) decomposeC into two sub-conesC1

andC2 representing a 1
3 (1, 1) and a

1
6 (1, 1)R-singularity respectively.ByCorollary28

Q 1
3 (1,1) + Q 1

6 (1,1) = 0, and A 1
3 (1,1) + A 1

6 (1,1) = 1.

Knowing A 1
3 (1,1) = 5

3 and Q 1
3 (1,1) = − t

3(1−t3) , derive:

A 1
6 (1,1) = −2

3
, and Q 1

6 (1,1) = t

3(1 − t3)
.

By Proposition19 and Lemma27, calculate (−K X P )
2 = 12 − n − 5

3m1 + 2
3m2.

Since we are interested in Fano polygons, (−K X P )
2 > 0, so n ≤ 13. The algorithm

can be run a finite number of times to get the desired classification.
The results for the classification of polygons with singularity content of the

form (n, {m1 × 1
3 (1, 1), m2 × 1

6 (1, 1)}) with m2 �= 0, up to mutation-equivalence
is given in Table5.1. All the polygons listed arose in Case 1 with the exception of
polygon 1.12. These polygons are illustrated in Fig. 5.3.
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1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

1.10 1.11 1.12 1.13 1.14

Fig. 5.3 Minimal representatives ofmutation-equivalence classes ofFanopolygonswith singularity
content (n, {m1 × 1

3 (1, 1), m2 × 1
6 (1, 1)}), where m1 ≥ 0, m2 > 0

Recall that the maximally mutable Laurent polynomial of a polygon P is a poly-
nomial f such that Newt( f ) = P , and that the mutations of f remain Laurent poly-
nomials. The periods ofmaximallymutable Laurent polynomials aremutation invari-
ants by [2, Lemma 1]. The maximally mutable Laurent polynomials of 1.7 and 1.8
are given respectively by:

f = xy3 + 3xy2 + ay3 + 3xy + by2 + y3

x
+ x + cy + 3

y2

x
+ 3

y

x
+ 1

y
+ 1

x
,

g = xy3 + 3xy2 + dy3 + 3xy + ey2 + y3

x
+ x + f y + 4

y2

x
+ 6

y

x
+ 4

1

x
+ 1

xy
.

Calculating the corresponding periods of f and g obtain:

π f = 1 + (2a + 2)x2 + (3b + 36)x3 + (6a2 + 24a + 4c + 186)x4+
(20ab + 360a + 60b + 760)x5 + · · · ,

πg = 1 + 14x2 + 6ax3 + 546x4 + (420a + 30b)x5 + · · · .

It is easy to see that these periods are not equal and hence the polygons cannot be
mutation-equivalent. All other Fano polygons in this classification have pairwise
distinct singularity content, hence are not mutation equivalent.
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5.6 Minimal Fano Polygons with B = {m × 1
5(1, 1)}

We find all Fano polygons with singularity content of the form (n, {m × 1
5 (1, 1)})

with m > 0. Similarly to Sect. 5.5, bounds on n and m are required to ensure the
complete classification.

Lemma 29 There exist no minimal Fano polygons P ⊂ NR, with m P = 5 and resid-
ual basket given by B = {m × 1

5 (1, 1)}, where m ≥ 3.

Proof Similarly to the proof of Lemma27, assume the existence of a Fano poly-
gon P with three 1

5 (1, 1) singularities, and perform a combination of GL(N )-
translations and mutations so that one of the R-singularities is represented by
the edge E1 = conv{(−3, 5), (−2, 5)}, and another by E2 = conv{(−2, 5), (a, b)},
where (a, b) �= (−3, 5). We show you can always mutate P so that the third R-
singularity is represented by E3 = conv{(−3, 5), (c, d)}, where (c, d) �= (−3, 5),
without disrupting the original two 1

5 (1, 1) singularities sitting adjacently.
Study the possible T-cones that when mutated with respect to would separate the

adjacent R-singularities. Calculate the line of points from (−2, 5) that give an edge
at height 5, since (a, b) must lie on this line in order for E2 to define a 1

5 (1, 1) R-
singularity. Unlike Lemma27, since we are only interested in 1

5 (1, 1) singularities,
assume that the inner pointing normal nE2 = (b − 5,−2 − a) is primitive. This line
of points on which (a, b) lies, provides a bound on where (c, d) can lie by convexity.
Convexity also determines that d ≤ 5. Furthermore since P is Fano, the origin (0, 0)
must lie in the interior which further bounds the region (c, d) lies in. Finally since
we are only interested in the case where the prospective T-singularity would disrupt
the adjacent R-cones when mutated with respect to we obtain a final bound on the

Table 5.2 The polygons with singuarity content of the form (n, {m × 1
5 (1, 1)}) with m > 0

# vert(P) n m (−K X )2

2.1 (−3, 5), (−2, 5), (1,−2) 2 1 49/5

2.2 (−3, 5), (−2, 5), (−1, 3), (1,−2) 3 1 44/5

2.3 (−3, 5), (−2, 5), (−1, 3), (1,−2), (−2, 3) 4 1 39/5

2.4 (−3, 5), (−2, 5), (−1, 3), (1,−2), (−1, 1) 5 1 34/5

2.5 (−3, 5), (−2, 5), (0, 1), (1,−2), (−1, 1) 6 1 29/5

2.6 (−3, 5), (−2, 5), (0, 1), (1,−2), (0,−1) 7 1 24/5

2.7 (−3, 5), (−2, 5), (1,−1), (0,−1) 7 1 24/5

2.8 (−3, 5), (−2, 5), (1,−1), (1,−2), (0,−1) 8 1 19/5

2.9 (−3, 5), (−2, 5), (1,−1), (1,−3) 9 1 14/5

2.10 (−3, 5), (−2, 5), (2,−3), (2,−5) 10 1 9/5

2.11 (−3, 5), (−2, 5), (4,−1), (−3,−1) 11 1 4/5

2.12 (−3, 5), (−2, 5), (3,−5), (2,−5) 10 2 8/5
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region in which (c, d) can lie. It is then possible to exhaustively check that none of
the primitive lattice points in this region give the second vertex of a T-cone.

Hence assume that the three R-cones lie adjacently. Calculating the points (c, d)

so that E3 is height 5 and comparing with the possible choices of (a, b), note that
there are no choices of (a, b) and (c, d) that maintain convexity.

Therefore there can be no minimal Fano polygon with residual basket given
by B = {

3 × 1
5 (1, 1)

}
with m P = 5. �

The above method extends very nicely to a combinatorial proof that

Lemma 30 There exist no Fano polygons P ⊂ NR with m P = p and residual basket
given by B = {m × 1

p (1, 1)}, where m ≥ 3, p is odd and p ≥ 3.

2.1 2.2 2.3 2.4 2.5 2.6

2.7 2.8 2.9 2.10 2.11

2.12

Fig. 5.4 Minimal representatives ofmutation-equivalence classes ofFanopolygonswith singularity
content (n, {m × 1

5 (1, 1)}) where m > 0
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By Example20, the anticanonical degree of the toric variety corresponding
to a Fano polygon with only R-singularities of type 1

5 (1, 1) is given by
(−K X P )

2 = 12 − n − 1
5m > 0. Therefore n < 12. We apply the algorithm to com-

plete the classification.
The results for the classification of polygons with singuarity content of the

form (n, {m × 1
5 (1, 1)}) with m > 0 is given in Table5.2. All the polygons were

found in Case 1. None arose in Case 2. These polygons are illustrated in Fig. 5.4.
Similarly to Sect. 5.5 note that polygons 2.6 and 2.7 are not mutation equivalent

by looking at the periods π f , πg of their respective maximally mutable Laurent
polynomials f and g:

π f = 1 + 12x2 + 6ax3 + 396x4 + (360a + 30b)x5 + · · · ,

πg = 1 + (2c + 12)x2 + (6c + 3d + 90)x3 + (6c2 + 24d + 144c + 636)x4+
(20cd + 60c2 + 390d + 1260c + 6900)x5 + · · · .

All other Fano polygons in the classification have pairwise distinct singularity content
and therefore belong to different mutation equivalence classes.
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Chapter 6
On the Topology of Fano Smoothings

Tom Coates, Alessio Corti, and Genival da Silva Jr.

Abstract Suppose that X is a Fano manifold that corresponds under Mirror Sym-
metry to a Laurent polynomial f , and that P is the Newton polytope of f . In this
setting it is expected that there is a family of algebraic varieties over the unit disc
with general fiber X and special fiber the toric variety defined by the spanning fan
of P . Building on recent work and conjectures by Corti–Hacking–Petracci, who con-
struct such families of varieties, we determine the topology of the general fiber from
combinatorial data on P . This provides evidence for the Corti–Hacking–Petracci
conjectures, and verifies that their construction is compatible with expectations from
Mirror Symmetry.

Keywords Fano manifolds · Mirror symmetry · Betti numbers · Vanishing cycles

6.1 Introduction

There has been recent interest in the classification of Fano manifolds via Mirror
Symmetry [1, 7, 8]. For us, an n-dimensional Fano manifold X corresponds under
Mirror Symmetry to a Laurent polynomial f ∈ C[x±1

1 , . . . , x±1
n ] if the regularized

quantum period of X , which is a generating function for certain genus-zero Gromov–
Witten invariants of X , coincides with classical period π f of f :

π f (t) = 1

(2π i)n

∫
S1×···×S1

1

1 − t f

dx1
x1

· · · dxn
xn

.
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If a Fanomanifold X corresponds underMirror Symmetry to a Laurent polynomial f
then it is expected that there is a degeneration X → �, where � ⊂ C is a disc, such
that the general fiber is X and the special fiber is the toric variety X f defined by
the spanning fan of the Newton polytope of f . In general, X f will be singular. It is
natural to ask whether one can determine the Betti numbers of the Fano manifold X
from its mirror partner f . We will show that, in dimension 3, the answer to this
question is ‘yes’.

The key new ingredient presented here is work by Corti–Hacking–Petracci [10],
in preparation and still partly conjectural, which goes a long way towards establish-
ing the expected picture described above in dimension 3. Corti–Hacking–Petracci
construct, given a 3-dimensional reflexive polytope P decorated (as described below)
with ‘decomposition data’, a smoothing X → � of the toric variety XP defined by
the spanning fan of P . The general fiber of this smoothing is a three-dimensional
Fano manifold X . The decomposition data also determine a Laurent polynomial f
with Newton polytope P , so that X f = XP . In this paper we show that the Betti
numbers of X depend on the decomposition data only via f . That is, for each of
the (many) choices of decomposition data that give rise to the same Laurent polyno-
mial f , the Betti numbers of the corresponding smoothing are the same. Furthermore,
these coincide with the Betti numbers of the Fano manifold that corresponds to f
under Mirror Symmetry.

We proceed as follows. Corti–Hacking–Petracci construct, given a choice of
decomposition data for a reflexive polytope P , a toric partial resolution π : Y → XP

and a family Y → � with special fiber Y and fiber over a general point t ∈ � a
weak Fano manifold Yt . Contracting finitely many (−1,−1) curves in Yt gives a
resolution πt : Yt → Xt , where Xt is a Fano variety with ordinary double points, and
this fits into a diagram

Yt

πt

Y

π

Xη Xt XP

(6.1)

where the arrow A B means that A is the general fiber in a family over �

with special fiber B. Here Xη Xt is Namikawa’s smoothing of Fano vari-
eties with ordinary double points. The Fano variety Xη is our desired smoothing
of XP , and the diagram above allows us to compute its Betti numbers. The central
fiber Y is a toric variety, so we know its cohomology groups explicitly; we can com-
pute the Betti numbers of Yt by analysing the vanishing cycles of the degeneration
Yt Y and, since the left-hand part of the diagram is a conifold transition
from Yt to Xη, this determines the Betti numbers of Xη.

We begin by reviewing the cohomology of toric varieties and the vanishing cycle
exact sequence.We then explain in Sect. 6.3 how to compute the Betti numbers of the
smoothing X from the decomposition data, and give examples in Sect. 6.4. In Sect. 6.5
we prove that the Betti numbers of X depend on the decomposition data only via
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the Laurent polynomial f determined by those data, and in Sect. 6.6 we verify that
these Betti numbers of X coincide with the Betti numbers of the Fano manifold that
corresponds to f under Mirror Symmetry.

6.2 Cohomology and Vanishing Cycles

6.2.1 The Cohomology of Toric Varieties

We will compute the Betti numbers of the fiber Y in diagram (6.1) using the fact that
it is a toric variety.1

Theorem 1 (cf. [16, Proposition 3.5.3]) Let � be a complete fan in a three-
dimensional lattice and let X� be the toric threefold defined by �. Let di denote
the number of i-dimensional cones in �, and let bi denote the i th Betti number
of X� . Then:

d1 − d2 + d3 = 2 b2 = rk Pic(X�)

b0 = b6 = 1 b3 = rk Pic(X�) − d2 + 2d1 − 3

b1 = b5 = 0 b4 = d1 − 3

and the Euler characteristic of X is d3.

6.2.2 The Vanishing Cycle Exact Sequence

We will compute the Betti numbers of the fiber Yt in diagram (6.1) by analysing the
vanishing cycles for the degeneration Yt Y . Consider a complex variety Y,
a disc � ⊂ C, and a projective morphism f : Y → �. Let �∗ = � \ {0} be the
punctured disc, and

{0} i0−→ �
j0←− �∗

be the natural inclusions. Denote the fiber over t ∈ �∗ by Yt , and the fiber over 0 ∈ �

by Y . Choose a universal covering map p0 : �̃∗ → �∗, and consider the diagram

Y
i Y

f

Y \ Y
j Ỹ \ Y

p

{0} i0
� �∗j0

�̃∗.
p0

1 We learned the statement of Theorem 1 from Andrea Petracci.
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Let S be a stratification for Y and suppose that F• ∈ Db
S(Y). The nearby sheaf is

defined [14, Exposé I] to be the complex

ψ f F• = i∗R( j ◦ p)∗( j ◦ p)∗F•.

By adjunction, there is a natural map

i∗F• → ψ f F•.

The sheaf of vanishing cycles φ f F• is the cone on this map (ibid.), and there is a
distinguished triangle:

i∗F• → ψ f F• → φ f F• +1−→ (6.2)

Consider now the cohomology sheavesHi (ψ f F•) andHi (φ f F•)—these are com-
plexes of sheaves on Y0—and their stalks at y ∈ Y0. EmbedY into an affine space and
let B(y, ε) be the open ball of radius ε around y. Then for sufficiently small ε > 0
and for all t ∈ �∗ such that |t | < ε, we have

Hi (ψ f F•)y ∼= H
i (Ff,y,F•)

where Ff,y is the Milnor fiber of f at y, Ff,y := B(y, ε) ∩ Y ∩ f −1(t). Similarly,

Hi (φ f F•)y ∼= H
i+1(B(y, ε) ∩ Y, Ff,y;F•).

Now consider the constant sheaf QY as a complex concentrated in degree 0. Taking
stalks of the hypercohomology of the distinguished triangle in (6.2), we get

· · · → Hi (Y, Q) → Hi (Yt , Q) → Hi
v(Yt , Q) → Hi+2(Y, Q) → · · · (6.3)

where Hi
v(Yt , Q) is the subspace in Hi (Yt , Q) generated by vanishing cycles, that

is, cycles in the kernel of the natural map Hi (Yt , Q) → Hi (Y0, Q).

6.3 Smoothing Toric Fano Threefolds

Every three-dimensional Gorenstein toric Fano variety is the toric variety XP defined
by the spanning fan of a three-dimensional reflexive polytope P . This gives a one-to-
one correspondence between three-dimensional Gorenstein toric Fano varieties up to
isomorphism and three-dimensional reflexive polytopes up to GL(3, Z)-equivalence.
In general such a toric variety XP is singular.Asmentioned in the Introduction,Corti–
Hacking–Petracci construct, starting from a three-dimensional reflexive polytope P
decorated with some additional data, a smoothing X → � of XP . In this section we
describe their construction and the additional data required.
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Definition 2 Letn be an integer such thatn ≥ −1.An An triangle is a lattice polygon
that is Z

2
� GL(Z2)-equivalent to the polygon in Q

2 with vertices (0, 0), (0, 1),
and (n + 1, 0)

Example 3 The standard two-dimensional simplex is an A0-triangle.

Example 4 An A−1-triangle is a line segment of unit length.

Definition 5 Let F be a lattice polygon. An admissible Minkowski decomposition
of F is a Minkowski decomposition F = F1 + · · · + Fk of F as a sum of lattice
polygons Fj such that each Fj is an An-triangle for some n ≥ −1. (Here n can
depend on j .) We consider admissible Minkowski decompositions of F that differ
by reordering and translation of the summands to be equivalent.

We now introduce certain polyhedral decompositions of lattice polygons. Suppose
that F = F1 + · · · + Fk is an admissible Minkowski decomposition of the lattice
polygon F . Recall that the Cayley polytope CF1,...,Fk is the convex hull of

F1 + e1, F2 + e2, . . . , Fk + ek

in L ⊕ Ze1 ⊕ · · · ⊕ Zek , where L is the lattice containing F . The map

F −→ CF1,...,Fk ∩ (
LR × {(

1
k , · · · , 1

k

)})
v �−→ 1

k (v + e1 + · · · + ek)
(6.4)

is bijective, and this allows us to obtain polyhedral decompositions of F from poly-
hedral decompositions of the Cayley polytope CF1,...,Fk .

Definition 6 Let F = F1 + · · · + Fk be an admissible lattice Minkowski decom-
position as above. A regular fine mixed subdivision of F is a subdivision of F
induced, via (6.4), by a regular unimodular triangulation of the Cayley poly-
topeCF1,...,Fk . We say that such a subdivision is subordinate to theMinkowski decom-
position F = F1 + · · · + Fk .

There is a whole body of theory here, which we will not discuss, concerning
polyhedral subdivisions which may be neither fine nor mixed: an introduction to
these topics can be found in the extremely beautiful book by De Loera et al. [11].
We will only consider regular fine mixed subdivisions.

For the rest of this section, fix a three-dimensional reflexive polytope P . Corti–
Hacking–Petracci consider the polytope P together with decomposition data. This
is, for each facet F of P:

A. a choice of admissible Minkowski decomposition F = F1 + · · · + Fk ;
B. a choice of regular fine mixed subdivision of F subordinate to (A);

satisfying a condition thatwe nowdescribe.Note that by taking cones over the regular
fine mixed subdivisions of each facet, we obtain a complete fan � that refines the
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Fig. 6.1 The normalisation
of a 4-valent vertex in the
toric 1-skeleton

spanning fan of P , and thus a toric crepant partial resolution Y → XP . Recall first
that irreducible toric curves in XP (respectively in Y ) correspond to two-dimensional
cones in the spanning fan of P (respectively in the fan �). Thus irreducible toric
curves in XP correspond to edges of P , and irreducible toric curves in Y correspond
to edges in the polyhedral subdivision of the boundary of P determined by the
decomposition data.

Theorem 7 (Corti–Hacking–Petracci) The singularities of the toric partial resolu-
tion Y of XP are at worst quasi-ordinary double points (qODPs).

This amounts to the statement that each polygon in the regular fine mixed subdi-
vision (B) above is either a standard 2-simplex or a quadrilateral with sides of unit
length. The curves in the toric 1-skeleton of Y , therefore, either meet at 3-valent
vertices—which are the torus-fixed points on Y corresponding to the cones over
the 2-simplices—or at 4-valent vertices, which are the torus-fixed points on Y cor-
responding to the cones over the quadrilaterals. The 3-valent vertices are smooth
points on Y , and the 4-valent vertices are the qODPs.

Let 	e denote the irreducible toric curve in XP determined by the edge e of P ,
and let 	̃e denote the set of irreducible toric curves in Y that map dominantly to 	e

under the partial resolution Y → XP . The fact that each polygon in the subdivision
(B) above is either a standard 2-simplex or a quadrilateral with sides of unit length
implies that |	̃e| = 
(e), the lattice length of the edge e.

Let� denote the toric 1-skeleton ofY . Consider the partial normalisation�′ → �

constructed by normalising each 4-valent vertex as shown in Fig. 6.1.
The partial normalisation�′ consists of rational curves that meet at either bivalent

or trivalent vertices. Let e denote an edge of P , and	e denote the corresponding toric
curve in XP . We define two partitions of the set 	̃e, as follows. Let p ∈ XP be one of
the endpoints of 	e, and F ⊂ P the corresponding face of P . Consider the part �′

p
of the partially-normalised toric 1-skeleton �′ that lies over p; this consists of the
dual graph to the polyhedral subdivision (B) of F , partially normalised as described
in Fig. 6.1. The components of the partially-normalised dual graph define a partition
of 	̃e. There is one such partition for each of the two endpoints p of 	e: let us denote
them by �e and �′

e (the order will not matter). The condition that Corti–Hacking–
Petracci impose on their decomposition data is: for each edge e of P such that the
dual edge e� has lattice length 
(e�) equal to 1 and for each pair T ∈ �, T ′ ∈ �′, we
have |T ∩ T ′| ≤ 1.
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6.3.1 Computing the Betti Numbers of the Smoothing

Corti–Hacking–Petracci prove:

Theorem 8 Let P be a 3-dimensional reflexive polytope and let XP be the toric
Fano threefold associated to the spanning fan of P. Fix decomposition data for P as
above, and let π : Y → XP be the associated crepant toric partial resolution. Then:

1. Y is unobstructed and smoothable;
2. if Yt is a general smoothing of Y , then Yt is a weak Fano threefold and the

anticanonical morphism πt : Yt → Xt , where Xt = Proj R(Yt ,−KYt ), contracts
a finite number of disjoint nonsingular rational curves, each with normal bun-
dle O(−1) ⊕ O(−1);

3. Xt is a Fano threefold with ordinary nodes as singularities and it is a deformation
of XP .

A theorem of Namikawa [18, Theorem 11] now implies that Xt is smoothable. It
follows that XP is smoothable. Let Xη denote a generic smoothing of Xt . Our goal
is to compute the Betti numbers of Xη.

We begin by analysing the topology of Yt . The vanishing cycles for the degen-
eration Yt � Y are three-dimensional spheres. The sheaf of vanishing cycles φ f

from (6.2), which is concentrated at the nodes of Y , therefore has stalk at each node
equal toQ concentrated in degree three, and the vanishing cycle exact sequence (6.3)
gives

b0(Yt ) = b0(Y ) b4(Yt ) = b2(Y )

b1(Yt ) = b1(Y ) b5(Yt ) = b1(Y )

b2(Yt ) = b2(Y ) b6(Yt ) = b0(Y )

b3(Yt ) = b3(Y ) − b4(Y ) + b2(Y ) + k

(6.5)

where k is the number of nodes on Y . Note that H2(Yt ) is canonically identified
with H2(Y ); also b5(Yt ) = b1(Yt ) = 0 by Poincaré duality and Kodaira vanishing.
Passing from Yt to Xη is an example of a conifold transition [5], and therefore

b0(Xη) = b0(Yt ) = 1 b4(Xη) = b2(Yt ) − l

b1(Xη) = b1(Yt ) = 0 b5(Xη) = b1(Yt ) = 0

b2(Xη) = b2(Yt ) − l b6(Xη) = b0(Yt ) = 1

b3(Xη) = b3(Yt ) + 2m − 2l

(6.6)

where l is the dimension of the subspace L of H2(Yt ) spanned by the classes of
curves that are contracted by πt : Yt → Xt , and m is the number of nodes on Xt .

In view of Theorem 1, computing the Betti numbers of the smoothing Xη comes
down to computing the integers k, l, and m. We have seen that k is the number of
quadrilaterals in the polyhedral decomposition of the boundary of P determined by
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the decomposition data. Corti–Hacking–Petracci conjecture the values of l and m,
as follows. Let us identify L ⊂ H2(Yt ) as a subspace of H2(Y ) via the canonical
isomorphism H2(Yt ) ∼= H2(Y ) just discussed. Recall that an edge e of P determines
a toric rational curve 	e in XP : this is the toric subvariety of XP defined by the cone
over e. The set 	̃e of toric curves thatmap dominantly to	e under themapY → XP is
indexed by the 
(e) line segments that subdivide e. If 
(e) ≥ 2 then e contains interior
lattice points: such a lattice point v then corresponds to a toric surface Sv ⊂ Y that
projects to 	e. Let us denote the homology class2 of a fiber of Sv → 	e by Fv . For
a pair of toric curves C , C ′ ∈ 	̃e, let c, c′ denote the corresponding line segments
and (c, c′) ⊂ P denote the relative interior of the convex hull of c and c′. Recall
the two partitions of 	̃e defined in the discussion around Fig. 6.1, and define nc,c′

by starting with 
(e) and subtracting one for each partition that has c and c′ in the
same part. The set of exceptional curves forπt : Yt → Xt is conjecturally indexed by
edges e of P such that 
(e) ≥ 2 and pairs of distinct elements c, c′ ∈ 	̃e: it contains
precisely nc,c′ curves in the homology class

∑
v∈(c,c′)

Fv

and no others. Note that nc,c′ here is non-negative; it can be zero. This conjecture
determines the subspace L ⊂ H2(Yt ) spanned by exceptional curves, and thus deter-
mines l = dim L . For m, suppose that the elements of the two partitions of 	̃e have
sizes a1, a2, . . . and b1, b2, . . . respectively. Set

Ne = 
(e�)

(

(e)

2

)
−

∑
i

(
ai
2

)
−

∑
i

(
bi
2

)
. (6.7)

Then
m =

∑
e : 
(e)≥2

Ne. (6.8)

6.3.2 Minkowski Polynomials and Smoothings

An admissible Minkowski decomposition of a three-dimensional reflexive poly-
tope P determines a Minkowski polynomial [2]. This is a Laurent polynomial with
Newton polytope P . In the notation of the discussion in Sect. 6.3, it depends on the
choices (A) of admissible Minkowski decomposition of each facet of P , but not on
the choices (B) of regular fine mixed subdivision.

2 The fiber Fv is homologous in Y to the sum of toric curves corresponding to 2-dimensional cones
in � that contain the ray spanned by v and that lie entirely on one side of the hyperplane defined
by the edge e. The choice of side does not matter here, as the resulting sums are homologous.
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It is known that Minkowski polynomials provide mirrors for three-dimensional
Fano manifolds [8]. As mentioned in the Introduction, if a Fano manifold X is mirror
to a Laurent polynomial f with Newton polytope P , it is expected that there is a
degenerationX → � with general fiber X and special fiber XP . For this expectation
to be compatible with the results and conjectures of Corti–Hacking–Petracci, there-
fore, the Betti numbers of the Corti–Hacking–Petracci smoothings Xη must depend
only on the Minkowski polynomial. That is, the Betti numbers must depend only on
decomposition data only through the choices (A) of admissible Minkowski decom-
positions of facets: they must be independent of the choices (B) of regular fine mixed
subdivision. This is not obvious from the construction; we prove it in Sect. 6.5.

6.4 Examples

6.4.1 Cube

Consider the cube P centered at the origin with vertices (±1,±1,±1). This has six
non-simplicial facets and twelve edges of length two; thus the toric variety XP defined
by the spanning fan of P has six singular points and twelve curves of transverse A1

singularities. These are arranged as on the right-hand side of Fig. 6.2,with the singular
points at the vertices of the octahedron and the singular curves as the edges.

Each facet F of P is a square with side-length two; this has a unique admissible
Minkowski decomposition, as a Minkowski sum of four line segments, which in turn
leads to the unique fine mixed subdivision of F shown in Fig. 6.3.

The fan� that defines the partial resolutionY of XP is therefore obtained by taking
cones over the polyhedral decomposition of the boundary of P shown in Fig. 6.4.
The variety Y contains 24 ordinary double points and 48 toric curves, arranged as on
the right-hand side of Fig. 6.4, with the singular points at the vertices and the toric

Fig. 6.2 The cube P and a
schematic picture of the toric
variety XP

Fig. 6.3 The unique fine
mixed subdivision of the
facet F
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Fig. 6.4 The polyhedral
subdivision and a schematic
picture of Y

curves (along which Y is non-singular) as the edges. Furthermore each edge in the
dual polygon P� has length 1, and each partition �e of 	̃e is into singleton sets, so
the polyhedral decomposition satisfies the condition to be decomposition data.

Applying Theorem 1 gives

b0(Y ) = 1 b4(Y ) = 23

b1(Y ) = 0 b5(Y ) = 0

b2(Y ) = 4 b6(Y ) = 1

b3(Y ) = 5

There are k = 24 quadrilaterals in the polyhedral subdivision of the boundary of P ,
and the discussion in Sect. 6.3.2 yields

b0(Yt ) = 1 b4(Yt ) = 4

b1(Yt ) = 0 b5(Yt ) = 0

b2(Yt ) = 4 b6(Yt ) = 1.

b3(Yt ) = 10

From the description of the homology classes Fv in footnote 2 and
[12, Proposition 2.1], we see that l = 3, with generators for the subspace L ⊂
H2(Yt ) ∼= H2(Y ) of classes of exceptional curves as shown in Fig. 6.5.

Equation (6.8) gives m = 12, and we find:

Fig. 6.5 Toric curves that
generate the subspace of
exceptional curves
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b0(Xη) = 1 b4(Xη) = 1

b1(Xη) = 0 b5(Xη) = 0

b2(Xη) = 1 b6(Xη) = 1

b3(Xη) = 28

The only smooth Fano 3-fold with these Betti numbers is V8. Thus Xη is isomorphic
to V8, which is consistent with the fact that the Minkowski polynomial

f = (1 + x)2(1 + y)2(1 + z)2

xyz
− 8

defined by our decomposition data for P is a mirror to V8.

6.4.2 A Singular Toric Variety with Two Different Smoothings

Consider the three-dimensional polytope, pictured in Fig. 6.6, with vertices

(0, 0, 1), (0, 1, −1), (1, 1, −1), (1, 0, −1), (0, −1, −1), (−1, −1, −1), (−1, 0, −1).

This polytope P is reflexive. It has six facets that are standard simplices, one non-
simplicial facet (a hexagon), and 12 edges of length 1. Thus the toric variety XP

defined by the spanning fan of P contains six non-singular toric points, a unique
singular point (at which the singularity is a cone over the del Pezzo surface of
degree 6), and 12 non-singular toric curves. These are arranged as on the right-hand
side of Fig. 6.6, with the non-singular toric points at the 3-valent vertices, the singular
point at the 6-valent vertex, and the toric curves as the edges.

The hexagonal facet F of P admits twoMinkowski decompositions: as the sum of
three line segments, and as the sum of two triangles. Up to automorphism, these each
give rise to a unique fine mixed subdivision of F , as shown in Fig. 6.7. Consider first
the left-most fine mixed subdivision in Fig. 6.7. This leads to the polyhedral subdi-
vision of the boundary of P shown in Fig. 6.8. The fan � given by taking cones over

Fig. 6.6 The polytope P and a schematic picture of the toric variety XP
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Fig. 6.7 Two fine mixed subdivisions of the facet F

Fig. 6.8 The first polyhedral subdivision and a schematic picture of Y

this polyhedral subdivision defines a toric partial resolution Y of XP . This variety Y
has three ordinary double points, six non-singular toric points, and 15 non-singular
toric curves, arranged as on the right-hand side of Fig. 6.8: the ordinary double points
are the 4-valent vertices, the non-singular points are the 3-valent vertices, and the
toric curves are the edges. The polyhedral decomposition satisfies the condition to
be decomposition data.

Applying Theorem 1 gives

b0(Y ) = 1 b4(Y ) = 5

b1(Y ) = 0 b5(Y ) = 0

b2(Y ) = 2 b6(Y ) = 1

b3(Y ) = 0

and since there are k = 3 quadrilaterals in the polyhedral subdivision of the boundary
of P , we have

b0(Yt ) = 1 b4(Yt ) = 2

b1(Yt ) = 0 b5(Yt ) = 0

b2(Yt ) = 2 b6(Yt ) = 1.

b3(Yt ) = 0

The discussion in Sect. 6.3.1 implies that, assuming the conjectures of Corti–
Hacking–Petracci, there are no exceptional curves in Yt and so the smoothings Xη

of XP and Yt of Y are isomorphic. Thus
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Fig. 6.9 The second polyhedral subdivision and a schematic picture of Y

b0(Xη) = 1 b4(Xη) = 2

b1(Xη) = 0 b5(Xη) = 0

b2(Xη) = 2 b6(Xη) = 1.

b3(Xη) = 0

These are the Betti numbers of the hypersurface W1,1 of bidegree (1, 1) in P
2 × P

2,
which is consistent with the fact that the Minkowski polynomial

f = (1 + x)(1 + y)(1 + xy)

xyz
+ z

defined by our decomposition data for P is a mirror to W1,1.
One could instead consider the right-most fine mixed subdivision in Fig. 6.7.

This leads to the polyhedral subdivision of the boundary of P shown in Fig. 6.9;
again this satisfies the condition to be decomposition data. This time the toric partial
resolution Y has two ordinary double points, eight non-singular toric points, and 16
non-singular toric curves. These are arranged as on the right-hand side of Fig. 6.8,
with the ordinary double points as the 4-valent vertices, the non-singular points as
the 3-valent vertices, and the toric curves as the edges.

Theorem 1 yields

b0(Y ) = 1 b4(Y ) = 5

b1(Y ) = 0 b5(Y ) = 0

b2(Y ) = 3 b6(Y ) = 1

b3(Y ) = 0

and since there are k = 2 quadrilaterals in the polyhedral subdivision of the boundary
of P , we have
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b0(Yt ) = 1 b4(Yt ) = 3

b1(Yt ) = 0 b5(Yt ) = 0

b2(Yt ) = 3 b6(Yt ) = 1.

b3(Yt ) = 0

Once again, there are (conjecturally) no exceptional curves in Yt and so the smooth-
ings Xη of XP and Yt of Y are isomorphic. Thus

b0(Xη) = 1 b4(Xη) = 3

b1(Xη) = 0 b5(Xη) = 0

b2(Xη) = 3 b6(Xη) = 1

b3(Xη) = 0

These are the Betti numbers of P
1 × P

1 × P
1, which is consistent with the fact that

the Minkowski polynomial

f = (1 + x + xy)(1 + y + xy)

xyz
+ z

defined by our decomposition data for P is a mirror to P
1 × P

1 × P
1.

6.4.3 An Example with Transverse A2 Singularities

Consider the three-dimensional reflexive polytope P , pictured in Fig. 6.10, with ver-
tices

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−1), (−1,−1, 2).

This polytope has four facets that are standard simplices, two non-standard simplicial
facets, eight edges of length 1, and one edge of length 3. Thus the toric variety XP

Fig. 6.10 The polytope P and a schematic picture of the toric variety XP
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Fig. 6.11 The polyhedral subdivision and a schematic picture of Y

defined by the spanning fan of P contains four non-singular toric points, two orb-
ifold points, eight non-singular toric curves, and one toric curve with transverse A2

singularities. These are arranged as on the right-hand side of Fig. 6.10, with the toric
points at the vertices, the orbifold points indicated in red, and the toric curves as the
edges. The curve of A2 singularities is the edge between the two orbifold points.

Figure6.11 shows the unique fine mixed subdivision of the boundary of P . This
defines decomposition data for P . Taking cones over the polyhedra in this decom-
position gives a fan � that defines a toric resolution Y of XP . The variety Y is
smooth, with ten toric points and fifteen toric curves arranged as on the right-hand
side of Fig. 6.11: the toric points are the vertices and the toric curves are the edges.
Note the two toric surfaces in Y that map to the curve of singularities under the
resolution Y → XP .

Applying Theorem 1 gives

b0(Y ) = 1 b4(Y ) = 4

b1(Y ) = 0 b5(Y ) = 0

b2(Y ) = 4 b6(Y ) = 1

b3(Y ) = 0

and since there are no quadrilaterals in the polyhedral subdivision, we find that the
Betti numbers ofYt coincidewith those ofY . Computing the subspace L ⊂ H2(Yt ) ∼=
H2(Y ) of classes of exceptional curves, as in the cube example, we find that l = 2
and that generators for L are as shown in Fig. 6.12. These generators are the fibers
of the toric surfaces in Y that resolve the curve of transverse A2 singularities.

From (6.7) and (6.8) we find that (conjecturally) there are m = 3 exceptional
curves in total, and therefore:

b0(Xη) = 1 b4(Xη) = 2

b1(Xη) = 0 b5(Xη) = 0

b2(Xη) = 2 b6(Xη) = 1.

b3(Xη) = 2
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Fig. 6.12 Toric curves that generate the subspace of exceptional curves

These are the Betti numbers of the blow-up X of P
3 in a plane cubic, which is

consistent with the fact that the Minkowski polynomial

f = (1 + z)3

xyz
+ x + y + z

defined by our decomposition data for P is a mirror to X .

6.5 Betti Numbers Depend Only on the Mirror Laurent
Polynomial

We have seen that decomposition data for a three-dimensional reflexive polytope P
are, for each facet F of P:

A. a choice of admissible Minkowski decomposition F = F1 + · · · + Fk ;
B. a choice of regular fine mixed subdivision of F subordinate to (A);

and that decomposition data determine a Minkowski polynomial f . In this section
we will show that the Betti numbers of the smoothing X of XP determined by the
decomposition data are independent of the choice (B). This implies, in view of the
discussion in Sect. 6.3.2, that the Betti numbers of X depend on the decomposition
data only via f . We will prove:

Theorem 9 Let P be a three-dimensional reflexive polytope. Consider two sets of
decomposition data for P, where the choices (A) are the same in each case but the
choices (B) are different. Let X denote the Corti–Hacking–Petracci smoothing of XP

determined by the first set of decomposition data, with Y → XP the toric partial res-
olution and Yt the smoothing of Y ; let X ′ denote the smoothing of XP determined
by the second set of decomposition data, with Y ′ → XP the toric partial resolu-
tion and Y ′

t the smoothing of Y ′. Assume the Corti–Hacking–Petracci conjectures
described on Sect.6.3.2 hold. Then:
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Fig. 6.13 A move of Type I

Fig. 6.14 A move of Type II

a. b2(Y ) = b2(Y ′);
b. the Betti numbers of Yt and Y ′

t coincide;
c. the Betti numbers of X and X ′ coincide.

The key point is that the polyhedral decompositions of the boundary of P
that define Y and Y ′ differ by a sequence of the two types of moves depicted in
Figs. 6.13 and 6.14, or their inverses. The vertices of the outer pentagon in Fig. 6.13
are (0, 0), (1, 0), (α + 1, β), (β, α + 1), (0, 1), where α and β are positive coprime
integers, and the interior lattice point pictured is at (α, β); unless α = β = 1 then
there are other interior lattice points which are not pictured. The precise values of α

and β will not affect the analysis. The vertices of the outer quadrilateral in Fig. 6.14
are at (0, 0), (2, 0), (1, 1), and (0, 1).

6.5.1 Type I Moves

Let us analyse how b2 changes under a Type I move. Suppose first that Y1, Z , and Y2
are three-dimensional toric varieties defined by polyhedral decompositions of the
boundary of P that differ only as shown in Fig. 6.15.3 Then Y1 and Y2 are toric
partial resolutions of XP which differ by a Type I move, and there is a diagram

Y1

f1

Y2

f2

Z

Let z ∈ Z be the torus-fixed point corresponding to the pentagon pictured, and
write Z0 = Z \ {z}. The maps f1 and f2 induce isomorphisms f −1

1 (Z0) → Z0

3 The co-ordinates of the vertices and interior lattice point pictured in Fig. 6.15 are as in Fig. 6.13.
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1 2

Fig. 6.15 The fans for Y1, Z , and Y2 differ only at the cones over these polygons

Fig. 6.16 The values of a
piecewise-linear function on
the fan for Z0

1

2

3

4 5

and f −1
2 (Z0) → Z0, and the resulting inclusions j1 : Z0 → Y1 and j2 : Z0 → Y2

define a diagram
Pic(Y1)

j∗1

Pic(Y2)

j∗2

Pic(Z0)

We will identify Pic(Y1) and Pic(Y2) as subspaces of Pic(Z0). To give a line bundle
on Z0 is to give a piecewise-linear function on each maximal cone in the fan for Z0,
subject to the constraint that these piecewise-linear functions agree along faces. Let
us write the values of such a piecewise linear function at the vertices of the polyhedral
decomposition that we are considering as in Fig. 6.16.

Since the fan for Z0 does not include the cone over the pentagon pictured in
Fig. 6.16, that cone does not impose any relation between the values a1, . . . , a5.
(There may be other relations from the part of the fan not pictured, but these will
be the same for Z , Y1, and Y2.) This piecewise-linear function defines a line bundle
on Y1 if and only if it is piecewise-linear on the two cones pictured on the left-hand
side of Fig. 6.15, that is, if and only if a1 + a3 = a2 + a5. So

Pic(Y1) = {
a1 + a3 = a2 + a5} ⊂ Pic(Z0).

Similarly, the piecewise-linear function on Z0 defines a line bundle on Y2 if and only
if it is piecewise-linear on the two cones pictured on the right-hand side of Fig. 6.15,
that is, if and only if a1 + a4 − a5 = a2 + a4 − a3. So

Pic(Y2) = {
a1 + a4 − a5 = a2 + a4 − a3} ⊂ Pic(Z0).
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These are the same subspace ofPic(Z0); thereforePic(Y1) andPic(Y2) are canonically
isomorphic. Since all maximal cones in the fan for Y1 are full-dimensional, the Picard
group of Y1 is isomorphic to H 2(Y1); the same statement is true for Z and for Y2.
Thus b2 is invariant under Type I moves.

A result of Fulton andSturmfels [12, Proposition 1.1] implies thatb4(Yi ) is equal to
three less than the number of vertices in the polyhedral decomposition that defines Yi ,
and so b4(Y2) = b4(Y1) + 1. Furthermore χ(Y2) = χ(Y1) + 1—here we used The-
orem 1—and so b3(Y1) = b3(Y2). In summary:

b0(Y2) = b0(Y1) = 1 b4(Y2) = b4(Y1) + 1

b1(Y2) = b1(Y1) = 0 b5(Y2) = b5(Y1) = 0

b2(Y2) = b2(Y1) b6(Y2) = b6(Y1) = 1

b3(Y2) = b3(Y1)

6.5.2 Type II Moves

An essentially identical argument shows that the Betti numbers of Y are invariant
under Type II moves. We are now in a position to prove Theorem 9.

6.5.3 Proof of Theorem 9

Since Y and Y ′ differ by a sequence of moves of Type I and II, and their inverses,
we have that b2(Y ′) = b2(Y ). This is part (a) of the Theorem. Furthermore b3(Y ′) =
b3(Y ), and if the sequence of moves connecting Y to Y ′ contains M moves of Type I
and N moves of (Type I)−1 then b4(Y ′) = b4(Y ) + M − N , and the numbers k and k ′
of quadrilaterals in the polyhedral decompositions defining Y and Y ′ satisfy k ′ =
k + M − N . The vanishing cycle analysis (6.5) now implies (b).

To prove (c), it suffices to show that the quantities l and m occurring in Eq. (6.6)
are the same for Y and Y ′. This is obvious for the number of nodesm: the conjectural
formula (6.8) for m depends only on the sizes of the partitions of 	̃e, which in turn
depends on the choices of Minkowski decomposition (A) but not on the fine mixed
subdivisions (B). It remains to show that the dimension l of the subspace L of H2(Y )

spanned by the classes of exceptional curves in the smoothing Yt is the same as the
dimension l ′ of the subspace L ′ of H2(Y ′) spanned by the classes of exceptional
curves in the smoothing Y ′

t . Let us return to the situation considered in Sect. 6.5.1,
where Y1 and Y2 are three-dimensional toric varieties that differ by a Type I move.
We showed there that H 2(Y1) and H 2(Y2) are isomorphic, via the inclusions
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H 2(Y1)

j∗1

H 2(Y2)

j∗2

H 2(Z0).

Dualising gives
H2(Y1) H2(Y2)

H2(Z0).

j1∗ j2∗

and since the subspace of H2(Yi ) spanned by exceptional curves is pushed forward
from H2(Z0) via ji ∗ it follows that the dimension l of this subspace is also invariant
under Type I moves. Repeating this analysis for Type II moves shows that l = l ′, and
proves Theorem 9.

6.6 Systematic Analysis

The computation of Betti numbers described in Sect. 6.3 can be automated. The key
ingredients are as follows.

1. Algorithms for computing with lattice polyhedra and their duals. There are sev-
eral robust and well-tested implementations here, including those in Magma [4],
Sage [20], and polymake [13].

2. The Kreuzer–Skarke classification [17] of three-dimensional reflexive polytopes.
3. Altmann’s determination [3] of all Minkowski summands of a given polytope.
4. The computation of fine mixed subdivisions (Definition 6), that is, the determi-

nation of all regular triangulations of a Cayley polytope. For this we use Jörg
Rambau’s TOPCOM package [19].

5. An HPC cluster. Some of the computations involved are quite challenging.

Full source code for these computations, written in Magma, can be found at [6].
This relies in an essential way on code from the Fanosearch project [9].

There are 4319 three-dimensional reflexive polytopes, which in total admit more
than a billion decomposition data. These decomposition data give rise to 3857 distinct
Minkowski polynomials,4 which together give mirrors to the 98 three-dimensional

4 The number of Minkowski polynomials here differs slightly from the count in [2], because there
the authors required Minkowski decompositions of facets to satisfy an additional lattice condition
(ibid., Definition 7) and here we do not regard GL(3, Z)-equivalent Minkowski polynomials as the
same.
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Fano manifolds with very ample5 anticanonical bundle. We analysed several mil-
lion decomposition data, including at least one decomposition for each of the 3857
Minkowski polynomials. In each case we found that

the Betti numbers of the smoothing Xη determined by the decomposition
data depend only on the mirror Fano manifold X , and coincide with those
of X.

(∗)

This provides evidence for the conjectural picture described in the introduction6:
that if a Fano manifold X corresponds under Mirror Symmetry to a Laurent poly-
nomial f then there is a degeneration X → � with general fiber X and special
fiber the toric variety defined by the spanning fan of the Newton polytope of f . It
also provides evidence for the conjectures of Corti–Hacking–Petracci described in
Sect. 6.3, on the number and homology class of the exceptional curves in their res-
olution πt : Yy → Xt . If these conjectures are correct then, in view of Theorem 9,
3857 of these calculations give a computer-assisted rigorous proof of (∗).
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Chapter 7
Computing Seshadri Constants on
Smooth Toric Surfaces

Sandra Di Rocco and Anders Lundman

Abstract In this paper we consider the problem of computing Seshadri constants
at a general point on a smooth polarized toric surface. We consider the case when
the degree of jet separation is small or the core of the associated polygon is a line
segment. Our main result is that under these hypothesis the Seshadri constant at the
general point can often be determined in terms of easily computable invariants of
the surfaces at hand. When the core of the associated polygon is a point we show
that the surface can be constructed via consecutive equivariant blow-ups of either P2

or P1 × P
1.

Keywords Toric geometry · Polytopes · Surface classification · Seshadri constants

7.1 Introduction

Let X be a complex projective variety and L be a nef line bundle on X .

Definition 1 For a point x ∈ X the Seshadri constant at x is defined as the number

ε(X,L; x) = inf
C

L · C
multx (C)

,

where the infimum is taken over all irreducible curves C passing through x .

The motivation for studying Seshadri constants is that they measure the local positiv-
ity ofL at x . This can be seen from the Seshadri criterion which says thatL is ample
if and only if ε(X,L; x) > 0 for all points x ∈ X [11, Theorem 1.4.13]. These con-
stants were first introduced by Demailly in relation to the Nagata conjecture [1, 4].
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In most cases the interest lies on the value of the Seshadri constant at a general point,
which is harder to compute with respect to specific points, like torus invariant points
for toric varieties. By semi-continuity the value of these constants at special points
can drop below that of general points. As a consequence the known results are often
either bounds or only valid for certain special points of certain classes of varieties,
see for example [1, 10, 15]. In this paper we approach the problem of computing
Seshadri constants at the general point on smooth polarized toric surfaces. We do so
by relating these constants to other invariants from local positivity and adjunction
theory that are easy to compute on smooth toric surfaces.

Themethods used in this paper rely on the fact that a polarized toric variety (X,L)

corresponds to a convex lattice polytope PL. Under this correspondence the fixpoints
of the torus action on X correspond to the vertices of P . The Seshadri constant at these
fixpoints is equal to the lattice length of the shortest edge through the corresponding
vertex of PL, [1, 9], and it is thus easy to compute. It is known that the values
of the Seshadri constant at the general point and at the general point of all torus-
invariant subvarieties of X determine the Seshadri constant at every point of X [9,
Proposition 3.2]. For a general point there is however no exact description, even
though lately some very useful bound has been proven [9, 14].

In this notewe related theSeshadri constant to the degree of jet separation, s(L, 1),
and the unnormalized spectral value, μ(L). This allows us to compute the Seshardi
constant at the general point for a large class of smooth toric surfaces. Unfortunately
not for all. For high values of either the degree of jet separation or unnormalized
spectral value the combinatorics quickly becomes intractable, see Example40. We
will therefore concentrate on low values of these constants.

Definition 2 Let x be a point of a projective variety X with maximal ideal mx . The
degree of jet separation s(L, x) of a line bundle L at the point x ∈ X is the largest
integer k forwhich the naturalmap j kx : H 0(X,L) → H 0(X,L ⊗ OX/mk+1

x ) is onto.

Like Seshadri constants the degree of jet separation is a semi-continuous invariant.
In fact for smooth toric varieties s(L, x) obtains its minimum at some torus fixpoint
and its maximum at the general point [14]. We will use the notation s(L, 1) to denote
the degree of jet separation at a general point. Our first main result says that if s(L, 1)
is small on a smooth polarized toric surface, then it equals the Seshadri constant.

Theorem 3 Let (X,L) be smooth polarized toric surface with s(L, 1) ≤ 2, then

ε(X,L; 1) = s(L, 1).

We remark that we do not know if the bound s(L, 1) ≤ 2 in Theorem3 is sharp.
Unfortunately the combinatorics involved in the proof gets out of hand already in the
case s(L, 1) = 3. On the one hand it was shown in [12] that if s(L, x) is constant
at all points of a smooth polarized toric variety (X,L), then ε(X,L; x) = s(L, x)
for all points x ∈ X . Moreover the results in [12] suggest that there might be an
integer k > 2 such that if s(L, 1) ≤ k then ε(XP ,LP ; 1) = s(L, 1).

Example40, due toAtsushi Ito [8], provides a smooth toric surfaceswith s(L, 1) =
7 and ε(X,L; 1) �= 7. Thus the constant k has to be lower than 7.
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Let KX denote the canonical divisor on X . A linear system of the form |KX +
sL| is called an adjoint linear system. Such systems play a prominent role in the
classification of varieties and define important invariants, see [2] for more details.
One such invariant is the unnormalized spectral value.

Definition 4

μ(L) = sup

{
s ∈ Q

∣∣∣∣∣ dim(H 0(X,m(KX + sL)) = 0 for all integers m > 0

such that m(KX + sL) is an integral Cartier divisor

}
.

Observe that since any ample line bundle is big it holds that μ(L) < ∞. Rationality
of the nef and ample cone implies that μ(L) ∈ Q for toric varieties. By the toric
dictionary any bigQ-Weil divisorL on a toric variety X of dimension n corresponds
to a n-dimensional polytope PL ⊂ R

n , whose vertices have rational coordinates. Any
such polytope has a unique minimal description as

PL = {x ∈ R
n : Ax ≥ b}

where b ∈ Q
n and A is a matrix with integer coefficient with the entries in every row

being relatively prime. If PL is as above, then tKX + L corresponds to the polytope

PtKX+L = {x ∈ R
n : Ax ≥ b + t1},

where 1 = (1, . . . , 1)T . Here the polytope Pa
bKX+L is the polytope obtained by first

dilating the polytope PL by the factor b and thenmoving all supporting hyperplanes a
steps inwards. It follows that μ(L) is the maximum over all t such that PtKX+L is
non-empty. Following [5] we will call the polytope Pμ(L)−1KX+L the core of PL and
denote it by core(PL). Observe that, unless P is a point, the dimension of PL is
strictly larger than the dimension of its core. Thus if X is a toric surface, PL is a
polygon and core(PL) is either a line segment or a point. Our second main result is
the following

Theorem 5 Let (X,L) be a smooth polarized toric surface associated to the poly-
tope PL. If core(PL) is a line segment andμ(L)−1 < 3, then ε(X,L; 1) = 2μ(L)−1.

We remark that, unlike the Seshadri constant at the general point, μ(L) is eas-
ily computable in the toric setting, see [5, Proposition 1.14]. It is worth pointing
out that for (P2,OP2(1)) it holds that core(PO(1)) is a point, μ(O(1))−1 = 1/3,
while ε(P2,OP2(1); 1) = 1. Thus the assumption that core(P) is a line segment is
necessary in Theorem5. We do not however have an example of a smooth polar-
ized toric surface (X,L) such that core(PL) is a line segment, while ε(X,L; 1) �=
2μ(L)−1. Unfortunately it is apparent from the proof of Theorem5 that the combina-
torics involved quickly grows, with increasing values ofμ(L)−1. This is further sup-
ported by Example34 which shows that further complications will appear for higher
values ofμ(L)−1. Moreover Example33 indicates that already the caseμ(L)−1 = 3
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will be more involved than the cases we consider. We leave it as an open question to
find an optimal bound on μ(L)−1 in Theorem5.

Our next result makes use of Lemma31, which says that if PL is a polygon
and core(P) is a line segment, then there exist two edges e and e′ of PL which
are parallel to core(P). To state our next theorem we let K (P) be the linear space
parallel to the affine hull of core(P). Moreover we will let π : R2 → R

2/K (P)

and π⊥ : R2 → R
2/K (P)⊥ be the natural projections, where K (P)⊥ is the orthog-

onal complement of K (P).

Theorem 6 Let (X,L) be a smooth polarized toric surface associated to the poly-
tope PL and assume that core(P) is a line segment. If π has a fiber of lattice length
at least 2μ(L)−1 that is a rational polytope or if there is a fiber of π⊥ intersecting
both e and e′, then ε(X,L; 1) = 2μ(L)−1.

For our purposes Theorem6 serves as an important tool in proving Theorem5.
However as the assumptions of Theorem6 are easily checked it provides a quick
method to compute the Seshadri constant in many cases, even when μ(L)−1 ≥ 3.
Therefore we believe that it can be of independent interest.

In the final part of the paper we focus, in contrast to Theorems5 and 6, on the
case when core(P) is a point. We show the following characterization.

Theorem 7 Let (X,L) be a smooth polarized toric surface such that core(P) is
a point, then X is given by a sequence of consecutive equivariant blow-ups of P2

or P1 × P
1.

7.1.1 Open Questions and Future Directions

This paper offers encouraging results for a class of smooth toric embeddings. Results
that open a series of future directions and related questions.

One natural question to ask is if the bounds appearing in Theorems3 and 5 are
sharp. In the case of Theorem3 this means asking for a minimal integer k such that
if s(LP , 1) ≤ k, then ε(XP ,LP ; 1) = s(LP , 1). ByExample40we know that k < 7,
but it would be interesting to find a sharp bound.

In relation to Theorem5, we do not believe that the equality ε(XP ,LP ; 1) =
2μ(LP)−1 will hold inmore generality,whenever core(P) is a line segment.However
we are not aware of any counter example. Finding such an example would be enlight-
ening and give further insight into the relation between ε(XP ,LP ; 1) and μ(LP),
for such varieties.

Regarding Theorem7, notice that as P2 and P1 × P
1 are projective bundles Theo-

rem3 implies that s(L, 1) = ε(X,L; 1) for these surfaces. However when consider-
ing equivariant blow-ups of these surfaces it is not clear how the relationship between
the Seshadri constant and degree of jet separationwill change. It is worth pointing out
that, as shown in Example40, it can happen that s(L, 1), ε(X,L; 1) and 2μ(L)−1

are all distinct if core(P) is a point. The surface appearing in Example40 can be
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described both via six consecutive equivariant blow-ups of P2 and via five consec-
utive equivariant blow-ups of P1 × P

1. If instead X is obtained by a small number
of blow-ups of either P2 or P1 × P

1 it seems reasonable to believe that ε(X,L; 1)
could be computed in terms of s(L, 1) or μ(L)−1. For example the blow-up of P2 at
one fixpoint is the projective bundle F1 so s(L, 1) = ε(F1,L; 1) for any ample line
bundle L on F1. The main difficulty in proving such statements lies in the number
of different varieties achieved through consecutive equivariant blow-ups grows very
fast in the number of blow-ups performed. We leave the computation of the Seshadri
constant at the general point for these varieties as an open problem.

Another possible direction for future research is trying to achieve similar results
for higher dimensional smooth polarized toric varieties.

7.2 Background

We start with a basic example on Seshadri constants.

Example 8 It holds that ε(Pn,OPn (d); x) = d for all x ∈ P
n . This follows from

the fact that for any irreducible curve C and point x ∈ X , we have that O(d) · C ≥
d multx (C) with equality when C is a line.

Another measure of local positivity is given by considering osculating spaces.

Definition 9 Let X be a projective variety and let L be a line bundle on X . For a
non-negative integer k and a smooth point x ∈ X consider the natural map

j kx : H 0(X,L) → H 0(X,L ⊗ OX/mk+1
X )

The projectivization of the image P(Im( j kx )) is called the kth osculating space,
T
k
x (X,L) of (X,L) at x . Moreover we will say that L is k-jet spanned at x if j kx is

onto and call L k-jet spanned if j kx is onto for all points x ∈ X .

We remark that the map j kx is given by sending a section s to its Taylor expan-
sion around x . Thus if H 0(X,L) = ⊕m

i=1 Csi , then dim(Tk
x (X,L)) = rk(J k

x ) − 1,
where J k

x is the matrix whose rows are given by the partial derivatives of (s0, . . . , sm)

of order at most k evaluated at x . We will call J k
x the matrix of k-jets at x . Thus

given sufficient knowledge about the global sections of a line bundle L, it is straight
forward to check if L is k-jet spanned at a given point x . As in the introduction we
will let s(L, x) denote the degree of jet separation of L at x , which is defined as
the maximal k such that L is k-jet spanned at x . By counting the number of partial
derivatives of order at most k it follows from the above that s(L, x) satisfies the
relation (

n + s(L, x)

s(L, x)

)
≤ dim(H 0(X,L)) < ∞. (7.1)

Thus the the degree of jet separation, s(L, x) can be computed in finite time.
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As s(L, 1) is considerably easier to compute than ε(X,L; 1) it is of interest to
relate the two. An important theorem in this direction is the following

Theorem 10 ([4]) Let X be a projective variety and L be a nef line bundle on X.
For any point x ∈ X it holds that

ε(X,L; x) = lim
n→∞

s(nL, x)

n

We have the following well-known corollary of Theorem10, which we will use
repeatedly in this paper.

Corollary 11 Let X be a projective variety and L be a nef line bundle on X. For
any point x ∈ X it holds that

s(L, x) ≤ ε(X,L; x).

Proof IfL is k-jet spanned line bundle, then nL is nk-jet spanned. Therefore it holds
that s(nL, x) ≥ ns(L; x) and the corollary follows by taking the limit in Theorem10.

�

7.2.1 Toric Geometry

In this paper we assume that the reader is familiar with the basic properties of toric
varieties. We recommend [3] as a good general introduction. A key fact in toric
geometry is that any normal toric variety X� corresponds to a polyhedral fan �.
Moreover every torus invariant subvariety of codimension d on a toric variety X�

corresponds to a d-dimensional cone in the fan �. In particular any torus invariant
prime divisor Dρ corresponds to a 1-dimensional cone ρ, which is typically called
a ray of �, and fixed points mσ correspond to the cones σ.

This interplay between toric and convex geometry is stronger when considering
polarized toric varieties (X,L). In fact any such variety (X,L) corresponds to a
convex lattice polytope PL. To see how this correspondence is defined let D be
a divisor having the property that O(D) = L. As the class group of a projective
toric variety X is generated by the torus invariant prime divisors of X , it holds
that D = ∑

ρ∈�(1) aρDρ , where �(1) denotes the set of rays of � and aρ ∈ Z. We
then define the polytope PL associated to (X,L) as

PL = {x ∈ R
n : 〈x, ρ〉 ≥ −aρ,∀ρ ∈ �(1)}.

Via this connection many concepts in algebraic geometry can be understood in con-
vex geometric terms and vice versa. One example is the following theorem. After
choosing a basis of the lattice Zn and hence choosing an affine patchUσ correspond-
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ing to the vertex vσ placed at 0, then one has a convenient monomial basis for the
global sections:

Theorem 12 ([3, Theorem 4.3.3]) Let X be a projective toric variety and L a line
bundle on X, then

H 0(X,L) ∼=
⊕

(m1,...,mn)∈PL∩Zn

C < tm1
1 · · · tmn

n > .

where the monomial basis is express in terms of torus coordinates (t1, · · · , tn) in the
corresponding affine patch Uσ .

In particular every entry in the matrix of k-jets, J k
x is the evaluation of a monomial.

This leads to the following proposition.

Proposition 13 ([14]) Let X be a smooth polarized toric variety. Then s(L, 1) = k
if and only if there exist a polynomial of degree k + 1 vanishing on the lattice points
of PL and any other polynomial with the same property has at least degree k + 1.

We recall that a polarized toric variety (X,L) of dimension n is smooth if and only
if for every vertex v of PL the shortest lattice vectors along the edges through v form
a basis for Zn . We will call these vectors the edge-directions at v.

Next we introduce maps of fans which are the combinatorial equivalent of equiv-
ariant maps of toric varieties.

Definition 14 Let� and�′ be fans inRn . A linearmapφ : Rn → R
n is called amap

of fans if for every σ ′ ∈ �′ there exist a σ ∈ � such that φ(σ ′ ∩ Z
n) ⊂ σ ∩ Z

n . If φ

is a map of fans, then we often write φ : �′ → � in place of φ : Rn → R
n .

We remark that a map of fans �′ → � induces an equivariant morphism X�′ →
X� of toric varieties [6, Theorem VI.6.1]. The most important examples of maps of
fans are obtained by letting �′ be a refinement of � and φ be the identity. Recall
that �′ is a refinement of � if for every σ ′ ∈ � it holds that σ ′ ⊂ σ for some
cone σ ∈ �. When �′ is a refinement of �, we will call � a coarsening of �′.

Example 15 Let X� be a smooth toric surface, then blowing up a torus fixpoint
of X� can be realised as a map of fans. To see this recall that the fixpoints of X�

correspond to the maximal dimensional cones in �. Choosing a fixpoint xσ to blow
up corresponds to a choice of such a cone σ = cone(e1, e2), where the ei :s can be
taken to be a basis of Z2 since X� is smooth. The fan �′ given by replacing σ with
the cones cone(e1, e1 + e2) and cone(e1 + e2, e2)while keeping all other cones in�,
defines a new fan �′. The identity map id : Rn → R

n is a map of fans id : �′ → �

which induces a toric morphism π : X�′ → X� . By [6, TheoremVI.7.2], π : X�′ →
X� is exactly the blow-up of X� at xσ . A corresponding construction works when
blowing-up any torus invariant subvariety of a smooth toric variety of any dimension
(Fig. 7.1).

Smooth toric surfaces are characterized by the following theorem.
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Fig. 7.1 The fan of P2 and
the blow-up of P2 in a torus
fixpoint

Theorem 16 ([6, Theorem VI.7.5]) Let X be a smooth toric surface. Then there
exist a chain of equivariant blow-downs of X to either a Hirzebruch surface or P2.

We next focus on Seshadri constants on toric varieties.

Definition 17 Let P be a full-dimensional polytope. Then P is called a Cayley
polytope if the vertices of P are contained in two parallel hyperplanes H0 and H1.
Moreover if the lattice distance between H0 and H1 is k, then P is said to be of
type [P0 ∗ P1]k , where P0 = P ∩ H0 and P1 = P ∩ H1. Lastly if P is a Cayley
polytope, thenwe call the projection onto the linear space perpendicular to H0 and H1

the defining projection of P .

In particular P is a Cayley polytope of type [P0 ∗ P1]1 if and only if P has lattice
width 1. In this case the defining projection projects P onto a line segment of lattice
length 1.

The two following theorems relate Seshadri constants and Cayley polytopes.

Theorem 18 ([10, Theorem 1.3]) Let P be a lattice polytope associated to the
polarized toric variety (XP ,LP), then the following are equivalent:

1. ε(XP ,LP ; 1) = 1;
2. P = [P0 ∗ P1]1;
3. for every point p ∈ XP there exist a curve C containing p, having the property

that (C,L|C) ∼= (P1,OP1(1)).

Theorem 19 ([12]) Let P be a smooth lattice polytope associated to the polar-
ized toric variety (XP ,LP) and let k be a positive integer. Then the following are
equivalent:

1. ε(XP ,LP ; x) = k for all points x ∈ XP;
2. s(LP , x) = k for all points x ∈ XP;
3. P = [P0 ∗ P1]k and every edge of P has lattice length at least k.

The following theorem gives bounds on the Seshadri constant at a general point
and is the most important result in establishing the new results of this paper.

Theorem 20 ([9, Theorem 3.6]) Let M be a lattice and MR = M ⊗R R. Let fur-
ther P ⊂ MR be a smooth polygon and π : M → Z be a lattice projection. Then

min{|πR(P)|π(M), |F |M} ≤ ε(XP ,LP ; 1) ≤ |πR(P)|π(M)

where πR is the map πR : MR → R induced by π , F is any fiber which is also a
rational polytope, and | · |M is the lattice distance with respect to the lattice M.
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7.2.2 Adjunction Theory for Toric Varieties

Given a linear system |L| on projective variety X , a linear system of the form |KX +
sL| is called an adjoint system toL. In this paper we are interested in two invariants
associated to |KX + sL|, namely the nef value and the unnormalized spectral value.

Definition 21 Let (X,L) be a polarized variety we call

τ(L) = inf {s ∈ R : KX + sL is nef } .

the nef value of L.
We remark that τ(L) equals the largest s such that K + sL is nef but not ample [2].
The second invariant of interest to us is the unnormalized spectral value and we recall
its definition from the introduction.

Definition 22 Let (X,L) be a polarized variety, then the unnormalized spectral
value of L is

μ(L) = sup

{
s ∈ Q

∣∣∣∣∣ dim(H 0(X,m(KX + sL)) = 0 for all integers m > 0

such that m(KX + sL) is an integral Cartier divisor

}
.

Both the nef value and the unnormalized spectral value have convex geometric
interpretations for toric varieties. We briefly recall these interpretations.

Remark 23 Let P be a lattice polytope associated to the polarized toric vari-
ety (XP ,LP). For any s ∈ Q the polytope PsKXP +LP is denoted by P (s). The nef
value is the minimum over all s such that the inner-normal fan of P is a refinement of
the inner-normal fan of P (1/s). The unnormalized spectral value μ(LP) of (XP ,LP)

is the minimum over all s such that P (1/s) is non-empty. The polytope P (1/μ(LP )),
called the core of P , is a polytope of strictly smaller dimension than P and is denoted
by core(P).We remark that the core of a polytope andμ(LP )−1 are easily computable
using [5, Proposition 1.14]. These definitions are illustrated in Fig. 7.2, for further
details on these correspondences we refer to [5].

Definition 24 Let P ⊂ R
n be a polytope and let K (P) be the linear space parallel

to the affine span of the core of P . The projection π : Rn → R
n/K (P) is called

the natural projection associated to P .

Remark 25 If one restricts the attention to polarized toric surfaces, then there are
two possibilities, either core(P) is a point or a line segment. When the core of P is
a point the natural projection is the identity and when it is a line segment the natural
projection is the projection onto a line.
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Fig. 7.2 A polytope P , P(1/τ(LP )), core(P) = P(1/μ(LP )) and the natural projection

7.3 Seshadri Constants and Jet Separation

In the following sectionwe prove Theorem3. Tomake the expositionmore accessible
we first prove Lemmas27 and 28 which are key-steps in the proof of the theorem.
We further make the following notational definition.

Definition 26 Let P be a smooth polytope, then we say that P is canonically posi-
tioned if P has a vertex at the origin and an edge along each coordinate axis in the
positive direction.

Lemma 27 Let P be a smooth Cayley polygon associated to the smooth polarized
toric surface (XP ,LP), then s(LP , 1) = ε(XP ,LP ; 1).
Proof Since P has dimension 2 the assumption that P is a Cayley polytope means
that either P ∼= k	2 = conv((0, 0), (k, 0), (0, k)) or P is the convex hull of two line
segments. If P ∼= k	2 then s(LP , 1) = ε(XP ,LP ; 1) = k. If instead P = [l0, l1]k ,
where l0 and l1 are line segments, then there are two cases: either k = s(LP , 1)
or k �= s(LP , 1). If k = s(LP , 1), then projecting onto the defining projection of P
shows that ε(XP ,LP ; 1) ≤ s(LP , 1) which by Corollary11 implies s(LP , 1) =
ε(XP ,LP ; 1). If instead k �= s(LP , 1), we first observe that it must hold that k >

s(LP , 1), otherwise the defining projection of P would give that ε(XP ,LP ; 1) <

s(LP , 1) by Theorem20, which contradicts Corollary11. Thus without loss of gen-
erality we can assume that k > s(LP , 1) and that P is canonically positioned with
the longest defining line segment along the x-axis. The assumption k > s(LP , 1)
implies that (0, s(LP , 1) + 1) ∈ P . There are now two cases:

1. (s(LP , 1) + 1, 0) /∈ P , in which case the projection onto the first coordinate axis
shows that ε(XP ,LP ; 1) = s(LP , 1) by Theorem20 and Corollary11.

2. (s(LP , 1) + 1, 0) ∈ P , in which case (s(LP , 1) + 1)	2 ⊆ P by convexity. This
implies that P is (s(LP , 1) + 1)-jet spanned at the general point contradicting
the definition of s(LP , 1).

From the above we conclude that s(LP , 1) = ε(XP ,LP ; 1). �
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Fig. 7.3 Five lattice points
in P , a configuration of four
lines and open regions

Lemma 28 Let P be a smooth polygon associated to the smooth toric surface
(XP ,LP). If s(LP , 1) = 2, then ε(XP ,LP ; 1) = 2.

Proof By Lemma27 we can without loss of generality assume that P is not a Cayley
polytope. Assume that P is canonically positioned, then (0, 0), (1, 0), (0, 1) ∈ P by
the smoothness assumption. Furthermore we claim that the points (2, 1) and (1, 2)
must lie in P . To see why this is the case note that if either of these points fail to be
in P , then by smoothness and convexity either P = 2	2 or all lattice points of P
lie on two parallel lines at lattice distance 1 apart. In the former case s(LP , 1) =
ε(XP ,LP ; 1) = 2 and the latter is a contradiction to s(LP , 1) = 2. From convexity
it now follows that (1, 1) ∈ P . Thus the indicated lattice points in Fig. 7.3 lie in P .
In Fig. 7.3 we also introduce four lines and enumerate some open regions delimited
by these lines.

We now observe that if either the horizontal, vertical or both diagonal lines are
supporting lines of P , then there exists a projection showing that ε(XP ,LP ; 1) ≤ 2
by Theorem20. Thus without loss of generality we can assume that P contains at
least one point on the other side of the horizontal and vertical line and one point
outside the diagonal strip. Those constrains can be satisfied in a few different ways
and we will end the proof by considering all possibilities.

(1) If P contains a lattice point in region 4, then convexity implies that the
points (2, 2) and (3, 2) lie in P . Furthermore if there is a point in region 4, then
the line L2 cannot be a supporting line of P . By the smoothness assumption at the
vertex of P on the x-axis, different from the origin, it then follows that (3, 1) ∈ P .
The matrix of 3-jets evaluated at 1, for the 9 lattice points we now know lie in P ,
consists of 9 independent rows and a row of zeros corresponding to the derivative ∂3

∂y3 .
However any monomial corresponding to a point in region 4 will yield a non-zero
result when taking the derivative ∂3

∂y3 and evaluating at 1. Thus we can conclude
that LP is 3-jet spanned at the general point if it contains a point in region 4, which
is a contradiction. We remark that this argument also takes care of the case when
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there is a point of P on the line L1 to the right of (3, 2). Since in that case either L1

is a supporting line of P or P contains a point whose y-coordinate is at least 3. In
the former case ε(XP ,LP ; 1) ≤ 2 and there is nothing to prove while in the latter
case LP is generically 3-jet spanned. Moreover by symmetry P cannot have a point
in region 2 and can be assumed not to have a point on L2 above (2, 3).

(2) Assume that P contains a lattice point in region 5. We claim first that without
loss of generality we can assume that (3, 1) ∈ P . To see this note simply that other-
wise (3, 0) ∈ P but (3, 1) /∈ P , which implies that P must be a Cayley polytope. By
smoothness and convexity it then follows that (3, 0) ∈ P or (3, 2) ∈ P . If (3, 2) ∈ P
we can apply the same argument as in the case when P contains a point in region 4.
Thus we can without loss of generality assume that (3, 0) ∈ P but that (3, 2) /∈ P .
Next we note that we can assume that (2, 2) ∈ P . To see this note that otherwise one
readily checks that, (1, 2) has to be a vertex of P . Thus L1 is a supporting line of P
and the projection onto the y-axis shows that ε(XP ,LP ; 1) = 2. Thuswe can assume
that (2, 2) ∈ P . Let J 3

1 be the matrix of 3-jets at the general point for the convex hull
of the points we now can assume lie in P . Then J 3

1 has nine linearly independent
rows and one row of zeros corresponding to the derivative ∂3

∂y3 . Thus there are two
possibilities: either P contains a point above L1 andLP is 3-jet spanned at the general
point or the projection onto the y-axis shows that ε(XP ,LP ; 1) = 2. In conclusion
if P contains a point in region 5 and s(LP , 1) = 2, then ε(XP ,LP ; 1) = 2. The case
when P contains a point in region 1, follows by symmetry.

By the above we can assume that all lattice points of P lie in the convex hull of L2

and L3, except possibly the points (2, 0) and (0, 2). Thus if ε(XP ,LP ; 1) �= 2, then P
must contain a point in the region 3 or on one of the lines L2 and L3 further away from
the origin than (2, 1) or (2, 1) respectively. However convexity and smoothness then
show that neither (2, 0) nor (0, 2) can be a point in P , since if for example (2, 0) ∈ P
then (3, 1) ∈ P , which is a contradiction. Thus P is contained in the convex hull of L2

and L3 and the diagonal projection shows that ε(XP ,LP ; 1) = 2. �

We are now ready to prove Theorem3.

Proof (Proof of Theorem3) We can assume s(LP , 1) ≥ 1, since LP is very ample.
Thus there are two cases either s(LP , 1) = 1 or s(LP , 1) = 2. In the first case we
have that s(LP , x) = 1 al all points in X and thus Theorem19 gives the conclusion.
In the latter case Lemma28 gives ε(XP ,LP ; 1) = s(LP , 1). �

Corollary 29 Let P be a smooth polygon such that |P ∩ Z
n| ≤ 20, then it holds

that ε(XP ,LP ; 1) = s(LP , 1).

Proof If |P ∩ Z
n| < 20, then s(LP , 1) ≤ 2, by the bound (7.1) and Theorem3

implies the claim. If instead |P ∩ Z
n| = 20, then either s(LP , 1) ≤ 2or s(LP , 1) = 3

and P = 3	2 by the main theorem in [7]. However 3	2 corresponds to (P2,O(3)),
so the corollary follows since s(O(3), 1) = ε(P2,O(3); 1) = 3. �

The following example shows that if one considers non-complete embeddings,
then it may happen that s(LP , 1P) < ε(XP ,LP , 1P).
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Example 30 Let P be the following smooth polygon corresponding to a non-
complete embedding. (The white point is not included.)

We claim that s(LP , 1) = 1 while ε(XP ,LP , 1) = 2. To prove the claim note first
that s(LP , 1) = 1 since f (x, y) = x(x − 1) + y(y − 1) − xy is a degree 2 polyno-
mial vanishing at the black points. To show that ε(XP ,LP , 1) ≥ 2 it is by Theo-
rem10 enough to show that s(2LP , 1) = s(2LP ′ , 1) = 4, where P ′ is the complete
embedding corresponding to the polytope conv(P ∩ M). This follows from the fact
that 2P ′ ∩ M = 2P ∩ M . Which in turn follows from the following set of inclusions
of sets.

2P ∩ M ⊇ P ∩ M + P ∩ M = P ′ ∩ M + P ′ ∩ M = 2P ′ ∩ M ⊇ 2P ∩ M

Here the first and last inclusion follows by definition, while the second equality
follows by the projective normality of P ′. Checking the first equality can be done
directly since a priori a lattice point p = (x, y) + (z,w) ∈ P ′ ∩ M + P ′ ∩ M can
fail to be in P ∩ M + P ∩ M if and only if (x, y) = (1, 1) or (z,w) = (1, 1). By
symmetry assume (x, y) = (1, 1). If (z,w) ∈ {(0, 0), (1, 1), (2, 1)}, then (x, y) −
(0, 1) ∈ P ∩ M and (z,w) + (0, 1) ∈ P ∩ M hence

p = (x, y) − (0, 1) + (z,w) + (0, 1) ∈ P ∩ M + P ∩ M.

If (z,w) ∈ {(0, 1), (1, 0)}, then (x, y) − (1, 1) ∈ P ∩ M and (z,w) + (1, 1) ∈ P ∩
M . If instead (z,w) = (1, 2), then (x, y) − (1, 0) ∈ P ∩ M and (z,w) + (1, 0) ∈
P ∩ M . Finally if (z,w) = (2, 2), then (x, y) + (1, 0) ∈ P ∩ M and (z,w) − (1, 0)
∈ P ∩ M . We conclude on the one hand that 2P ∩ M = 2P ′ ∩ M , i.e. that ε(XP ,

LP , 1) ≥ 2.On the other hand it is clear that s(nLP , 1) ≤ s(nLP ′ , 1), since the global
sections of LP is a subspace of the global sections of LP ′ . Thus ε(XP ,LP , 1) =
ε(XP , LP ′ , 1) = 2 by Theorem10.

7.4 Seshadri Constants and Unnormalized Spectral Values

In the current section we prove Theorems5 and 6. We start by showing the following
lemma.

Lemma 31 Let P be a polygon. If core(P) is a line segment, then

ε(XP ,LP ; 1) ≤ 2μ(LP)−1
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and there exist two edges e and e′ which are parallel to core(P).

Proof Let aff(core(P)) be the affine hull of core(P) and K (P) be the parallel linear
space. Furthermore we let dn(aff(core(P))) denote the distance from the support-
ing hyperplane of P with normal n to aff(core(P)). By [5, Lemma 2.2] the nor-
mals of the supporting hyperplanes with dn(aff(core(P))) = μ(LP)−1 positively
span K (P)⊥. Since aff(core(P)) is one dimensional and P is convex it then fol-
lows that on either side of aff(core(P)) there is an edge which is parallel and at
lattice distance μ(LP)−1 from aff(core(P)). Denote these edges by e and e′. Theo-
rem20 implies that ε(XP ,LP ; 1) ≤ |π(P)| for any projection π induced by a lattice
projection. Thus projecting onto K (P)⊥ shows that ε(XP ,LP ; 1) ≤ 2μ(LP)−1. �

Remark 32 We remark that the assumption that the core of P is a line segment
is a necessary condition even in the smooth setting. To see this it is enough to
consider (P2,O(1)). It is well-known that s(O(1), 1) = ε(P2,O(1); 1) = 1, which
can also be seen from Theorem19. However it is straight forward to check that P (1/3)

is a point, so that core(P) is a point and 2μ(LP)−1 = 2/3.

We will prove Theorem6 before proving Theorem5.

Proof (Proof of Theorem 6) By Lemma31 it is sufficient to show that

ε(XP ,LP ; 1) ≥ 2μ(LP)−1.

Assume that P is canonically positioned with the edge e of Lemma31 along the x-
axis. By Theorem20 it is enough to show the existence of a projection π such
that |π(P)| ≥ 2μ(LP)−1 and a fiber F of π that satisfies |F | ≥ 2μ(LP)−1 and
corresponds to a rational polytope. Choosing π to be the natural projection proves
the first part of the theorem since e and e′ are at distance 2μ(P)−1 apart.

It remains to consider the case when there is a fiber of the projection onto the x-
axis containing both a point in e and a point in e′. Let π be the projection onto
the x-axis. The assumption is equivalent to requiring that there exists a fiber of π

with length exactly 2μ(P)−1. Since e and e′ are lattice line segments, the fiber can
be taken to be a lattice polytope. It remains to show that |π(P)| ≥ 2μ(P)−1.

Define now e = (e1, e2, . . . , ep) to be the sequence of distinct edges of maximal
length such that:

1. e1 is the edge sharing a vertex with e different from the origin;
2. ei shares a vertex with ei−1;
3. ep �= e′.

Let furthermore K be the sequence defined by letting ki be the slope of the edge ei
and ki = ∞ if ei is a vertical edge. From convexity we first observe that the
sequence K can be:

1. positive and strictly monotonically increasing, not including ∞;
2. positive and strictly monotonically increasing and then negative and strictly

monotonically increasing.
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Fig. 7.4 Illustration of e when K has one and two phases

In the former case we will say that K has one phase and in the latter that K has two
phases (see Fig. 7.4). We will call the subsequence of K that is strictly positive and
monotonically increasing the first phase ofK and the subsequence which is negative
and strictly monotonically increasing the second phase of K .

Consider first the case when K has one phase and let ep be the last edge in e.
By the smoothness assumption ep must pass through a lattice point on the line y =
2μ(LP)−1 − 1 and end at a vertex of the edge e′. As e′ lies on the line y = μ(LP)−1

we can therefore conclude that ep has slope atmost 1. BecauseK is strictly increasing
the same holds for all edges in e. Thus |π(e)| is larger or equal to the distance between
the x-axis and the line y = 2μ(LP)−1, i.e. |π(P)| ≥ 2μ(LP)−1.

We now turn to the case whenK has two phases.We claim that by the smoothness
of P these two phases of the sequence K are separated by ∞, corresponding to the
slope of a vertical line. To see this let (−a,−b) and (x, y) be the edge-direction
of two adjacent edges in e, where a, b, y > 0 while x ≤ 0. Thus (−a,−b) is the
direction vector of an edge of the first phase of K and (x, y) is a connecting edge
which does not belong to this phase. Then the smoothness condition at the vertex of
intersection between these edges says that

∣∣∣∣ −a x
−b y

∣∣∣∣ = bx − ay = ±1.

Asa, b, y > 0while x ≤ 0 it follows that x = 0 and y = a = 1.Thus the edge having
direction (x, y) is vertical. Furthermore there is a vertical edge of P along the y-
axis. Let these edges lie on the lines x = 0 and x = c. Then the lines x = μ(LP)−1

and x = c − μ(LP)−1 give halfspaces containing core(P). As core(P) is a line
segment it then follows that c > 2μ(LP)−1. As a consequence |π(P)| > 2μ(LP)−1

and ε(XP ,LP ; 1) = 2μ(LP)−1. �

Example 33 Consider the smooth polygon P depicted in Fig. 7.5, which has the
property that core(P) is a line segment and μ(LP)−1 = 3.

Here the natural projection is the projection on the y-axis. The longest fibers of
that projection are the fibers between the two dashed lines. The length of any such
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Fig. 7.5 A polytope P and
its core

core( )

fiber is 11/2. However the point 3 under the projection onto the x-axis has a fiber
containing a point in e and a point in e′. Thus Theorem6 shows that ε(XP ,LP ; 1) =
2μ(LP)−1 = 6.

We now prove Theorem5.

Proof (Proof of Theorem 5)Wewill proceed as in the proof of Theorem6. Therefore
we assume without loss of generality that P is canonically positioned with the edge e
of Lemma31 along the x-axis. As P is a lattice polytope μ(LP)−1 ∈ 1

2Z, since e
and e′ must contain lattice points. We will proceed by considering all possible values
of μ(LP)−1 less than three.

If μ(LP)−1 = 1/2, then ε(XP ,LP ; 1) = 2μ(LP)−1 = 1 by Theorem6, since
both e and e′ are fibers of the projection onto the y-axis.

Consider next the case μ(LP)−1 = 1. In this case the edge of P along the y-
axis either contains a vertex of both e and e′ or ends at (0, 1). In the latter case the
smoothness assumption at (0, 1) implies that (1, 2) ∈ P . In either case there is a
fiber of the projection onto the x-axis with lattice length 2μ(LP)−1, which shows
that ε(XP ,LP ; 1) = 2μ(LP)−1 = 2.

Consider next the caseμ(LP)−1 = 3/2. If either (3, 0) or (3, 1) lies in P , then by
projecting onto the y-axis it follows that ε(XP ,LP ; 1) = 2μ(LP)−1 by Theorem6.
Thus the vertex v of e different from the origin lies at a point (a, 1) with a < 3.
Consider now the edge f sharing the vertex v with e. By smoothness f must have
an edge-direction of the form (b, 1), with b ∈ Z. Assume now that v is at (2, 0).
If f passes through the point (0, 1) or (1, 1), then the projection onto the y-axis has
length less than 3, which is a contradiction. Hence without loss of generality we can
assume that f passes through the point (2, 1). Thus in this case x = 2 is a supporting
line of P , but then P (3/2) is empty which is a contradiction. Therefore we can assume
that f has a vertex at (1, 0) and that a = 1, but then again P (3/2) is again empty.

Consider the case μ(LP)−1 = 2. Arguing in the same way as for μ(LP)−1 =
3/2 we see that the edge f , defined as above, can be assumed to have a vertex
at either (1, 0) or (2, 0). If f has a vertex at (2, 0), then we can assume that f
passes through the point (3, 1). This is because otherwise either the fiber of 1 under
the projection onto the y-axis has length at least 2μ(LP)−1 or core(P) is empty.
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However it then follows that f has slope one and that core(P) is a point (or empty)
which is a contradiction.

Thus we can assume that f has a vertex at (1, 0). Then f can be assumed to
pass through the point (3, 1) since otherwise either the fiber of 1 has length at
least 2μ(LP)−1 or we get a contradiction to that core(P) is a line segment. In this
case let g be the edge sharing a vertex with f , other than e. By convexity the slope
of g is greater than that of f . However there must be an edge passing through a
lattice point on the line y = 2μ(LP)−1 − 1 that also shares a vertex with e′. Thus
by smoothness the only possibilities are g = e′ or that g has slope 1 or 2/3. As a
consequence either f has length at least 2 of g has slope 2/3, since otherwise core(P)

would be a point (or empty). If f has length 2 the point (5, 2) lies in P . Therefore
the fiber of 2 under the projection onto the y-axis has length at least 2μ(LP)−1,
since (1, 2) ∈ P . If instead g has slope 2/3, then (6, 3) ∈ P . However by con-
vexity and smoothness either (2, 3) ∈ P or there is an edge h of slope 1 passing
through the lattice points (0, 1) and (1, 2). In the former case the fiber of 3 under
the projection onto the y-axis has length at least 4. In the latter case by moving the
edges e, e′, f and h we see that P (2) is a point which is a contradiction. This shows
that ε(XP ,LP ; 1) = 2μ(LP)−1 = 4 in this case.

It remains to consider the caseμ(LP)−1 = 5/2. Arguing in the sameway as above
we see that we can assume that f has a vertex at either (1, 0) or (2, 0) or (3, 0). If f
has a vertex at (3, 0), then we can assume that f pass through the point (4, 1).
Since otherwise the fiber of 1 under the projection onto the y-axis has length at
least 2μ(LP)−1 or P (5/2) would be empty. Thus f can be assumed to have slope 1.
Furthermore f can be assumed to have length 1, since otherwise either (0, 2) ∈ P and
the fiber of 2 under the projection onto the y-axis has length 2μ(L)−1 or (0, 2) /∈ P
and Pμ(LP )−1

is empty. Let g be the edge different than e sharing an edge with f .
By smoothness and convexity the edge-direction of g is (0, 1), (1, 2) or (2, 3), since
there must be an edge through a lattice point on the line y = 2μ(LP)−1 − 1 sharing
a vertex with e′. If g has edge-direction (1, 2), then the edge sharing a vertex with g
different from f must be vertical. Therefore if g has edge-direction (0, 1) or (1, 2),
we get that P (5/2) is a point or empty bymoving e, e′ and the vertical edges, yielding a
contradiction. Assume instead that g has edge-direction (2, 3). Then the edge sharing
the vertex (6, 4)with g must have slope 1 by smoothness and convexity, i.e. the same
slope as f which is a contradiction.

If instead f has a vertex at (2, 0), then f can be assume to pass through the
point (4, 1). Again because otherwise P (5/2) would be empty or the fiber of 1 would
have length at least 2μ(LP)−1. If f has length at least 2, then (6, 2) ∈ P and the
fiber of 2 under the projection on the y-axis has length at least 2μ(LP)−1. Thus we
can assume that f ends at (4, 1). Let g be the edge sharing an edge with f at (4, 1)
and let (a, b) be the edge-direction of g. Note first that b = 1, 2 since there must be
an edge of P passing through a lattice point on the line y = 2μ(LP)−1 that shares a
vertex with e′ having a different slope than f .

If b = 1 then g has slope 1. In this case (1, 3) ∈ P , since otherwise P (5/2) is a
point or empty. Now either g has length at least 2 or g ends at (5, 2). In the former
case the fiber of 3 under the projection onto the y-axis has length 2μ(LP)−1. In
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the latter case let h be the edges sharing a vertex with g different from f . As there
must be an edge i passing through a lattice point on the line y = 2μ(LP)−1 − 1
sharing a vertex with e′, it follows from the smoothness assumption that h has edge-
direction (1, 2) and i is vertical. In this case the point (1, 4) ∈ P , since otherwise
there is an edge of P passing through the lattice points (1, 3) and (2, 4) and P (5/2)

is empty. But as (6, 4) ∈ P the fiber of 4 under the projection onto the y-axis has a
length 2μ(LP)−1 proving that ε(XP ,LP ; 1) = 2μ(LP)−1.

If instead b = 2, then smoothness and convexity implies that a = 3, i.e. (7, 3) ∈
P . Consider now the edge h different than f which shares a vertex with g. As there
must be an edge i through a lattice point on the line y = 2μ(LP)−1 − 1 sharing
a vertex with e′, the edge-directions of h are on the form (a, 1), with a ∈ Z. By
convexity and smoothness it then follows that a = 1 so that h has slope 1. We now
claim that (2, 3) ∈ P which proves that the fiber of 3 under the projection onto
the y-axis has length at least 2μ(LP)−1. To see that (2, 3) ∈ P note first that by
smoothness the edge j different from e sharing a vertex with the edge along the y-
axis must contain a point on the line x = 1. If (2, 3) /∈ P , then j must have slope 1
and end at (1, 2). However that leads to a contradiction since then P (5/2) is a point
(or empty), as can be seen by moving the edges e, e′, h and j .

Lastly we consider the case when (1, 0) is a vertex of P . In this final case we can
assume that the edge f must pass through either (3, 1) or (4, 1). Like before this is
because otherwise we either get a contradiction to that core(P) is a line segment or
the fiber of 1 under the projection onto the y-axis has length at least 2μ(LP)−1. If f
passes through (4, 1), then either f has length at least 2 or f ends at (4, 1). By the
same argument as above the next edge g has edge-direction (2, 1), (5, 2) or (8, 3).
Thus regardless if f ends at (4, 1) or not it holds that (6, 2) ∈ P . Since (1, 2) ∈ P
it then follows that the fiber of 2 under the projection onto the y-axis has length at
least 2μ(LP)−1.

It remains to check the case when f passes through (3, 1). In this case the
point (1, 3) ∈ P , since otherwise P (μ(LP )−1) is empty. There are then two possi-
bilities either f has length at least 2 or it ends at (3, 1). It is easy to check that, like
before, the edge-directions of the next edge g is (5, 3), (3, 2) or (1, 1) by smoothness
and convexity. If f has length 1 and g has direction (1, 1) then one gets a contradic-
tion to that core(P) is a line segment. In all other cases (6, 3) ∈ P so the fiber of 3
under the projection onto the y-axis has length at least 2μ(LP)−1. This concludes
the case μ(LP)−1 = 5/2 (Figs. 7.6, 7.7, 7.8 and 7.9). �

Example 34 Let P be the smooth polygon depicted in Fig. 7.10. It can readily be
checked that core(P) is a line segment and thatμ(LP)−1 = 4. By direct computation
one can also show that s(L, 1) = 8, which implies that ε(XP ,LP ; 1) = 8. However
the lattice length of a fiber is bounded from above by the maximal lattice length of a
line segment contained in P . It is tedious but straight forward to check that the lattice
length of any line segment in P is strictly less than 8. Thus there exists no projection
of P such that the lower bound in Theorem20 suffices to compute ε(XP ,LP ; 1).
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Fig. 7.6 Illustration of the
case μ(LP )−1 = 2
when (1, 0) is a vertex of P

Fig. 7.7 Illustration for the
case μ(P)−1 = 5/2
when (3, 0) is a vertex of P

Fig. 7.8 Illustration for a
special case
when μ(P)−1 = 5/2
and (2, 0) is a vertex of P

Fig. 7.9 Illustration for the
case when μ(P)−1 = 5/2
and (1, 0) is a vertex of P
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Fig. 7.10 The smooth
polygon from Example34

core( )

Remark 35 We are not aware of any smooth polygon P such that the core of P is
a line segment but 2μ(P)−1 �= ε(XP ,LP ; 1). However Example34 illustrates that
if μ(LP)−1 ≥ 4, then the methods used to prove Theorem5 will not suffice to show
that ε(XP ,LP ; 1) = 2μ(LP)−1.

7.5 Characterizing Polygons Whose Core is a Point

In the current section we characterize smooth polygons P such that core(P) is a
point.

Proposition 36 Assume P is a polytope such that core(P) is a point. If μ(LP) =
τ(LP), then XP is a Fano variety.

Proof Theassumption that core(P) is a point is equivalent toH 0(XP , μ(LP)−1KX+
LP) = C. Recall that for toric varietiesμ(LP)−1KXP + LP being nef is equivalent to
being globally generated, see [3, Theorem 6.3.12]. Thus we can assume that at every
point x ∈ X there exists a nowhere vanishing global section of μ(LP)−1KXP + LP .
But as all such sections are linearly dependent it follows that μ(LP)−1KXP + LP

has a global section s such that s(x) �= 0 for all x ∈ XP . Thus μ(LP)−1KXP + LP

is free of rank 1, i.e.

μ(LP)−1KXP + LP = OXP ⇐⇒ −KXP = μ(LP)LP .

Thus XP is a Fano variety since LP was assumed to be ample and μ(LP) > 0. �
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Corollary 37 Assume that P is a smooth polygon such that core(P) is a point
and μ(LP) = τ(LP). Then XP is a Del Pezzo surface.

Proposition 38 Assume P is a polygon such that core(P) is a point. If μ(LP) �=
τ(LP) then XP is constructed by a sequence of toric morphisms onto a Fano variety.
Moreover this sequence of morphisms can be taken to only correspond to refinements
of the associated fans.

Proof By definition τ(LP)−1KX + LP is a line bundle which is nef but not ample.
It follows that (XP , τ (LP)−1KXP + LP) corresponds to a polytope P1 whose inner-
normal fan is a coarsening of the inner-normal fan of X , since every normal of an
edge in P1 also is a normal of an edge in P . Let (X1,L1) be the polarized toric variety
and ample line bundle associated to P1. Because the fan of X1 is a coarsening of the
fan of X we get a toric morphism φ : XP → X1 which contracts some torus invariant
curves on XP . Observe now that if a < τ(LP), then (X, a−1KXP + LP) will yield
the same polygon as (X1, (a−1 − τ(LP)−1)KX1 + L1). To see this let E be a torus
invariant divisor contracted by φ, then (τ (LP)−1KXP + LP) · E = 0 andKXP · E <

0. Thus(
1

a
KXP + LP

)
· E =

(
1

a
− 1

τ(LP)

)
KXP · E +

(
1

τ(LP)
KXP + LP

)
· E < 0.

Therefore for any a < τ(LP), there is no edge of the rational polygon P ′ associated
to the linear system (XP , a−1KXP + LP)which corresponds to E . Thus by the main
theorem of polytopes P ′ can be defined without the inequality corresponding to E .
We can apply the same procedure to P1 using the nef value of (X1,L1). Continuing
in this fashion, we obtain a sequence of toric morphisms:

XP X1 . . . Xr (7.2)

Here Xr has the property that μ(Lr ) = τ(Lr ). The argument for replacing KXP

withKX1 shows that once the edge corresponding to a prime divisor has disappeared
it will not reappear later in the sequence. Thus all maps corresponds to refinements
of the associated fans. Furthermore the sequence is finite since its length is bounded
from above by the Picard number of X minus one. By the argument in the proof of
Proposition36 it now follows that Xr is a Fano variety. �

Corollary 39 Assume that P is a smooth polygon such that core(P) is a point,
then XP can be constructed by taking consecutive blow-ups of P2 or P1 × P

1.

Proof We start by showing that if XP is smooth, then the variety Xr of Proposition38
is smooth. Assume that this is not the case, then the sequence (7.2) is a resolution
of the singularities of Xr , since all maps are birational and proper. Let f be the
composition of these maps, then KXP = f ∗KXr + ∑

Ei where the Ei are the torus
invariant curves contracted by the chain of maps. Thus Xr is a Fano variety with at
worse terminal singularities. Furthermore by [13, Lemma 1.17] a toric Fano variety
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Fig. 7.11 The smooth
polygon from Example40

of dimension d ≤ 3 with terminal singularities is smooth. Hence Xr is a Del Pezzo
surface, i.e. it can be further blown-down toP2 orP1 × P

1. Furthermore as XP and Xr

are both smooth, all maps in (7.2) must be blow-ups, by [6, Theorem V.6.2]. �

The following example due to Atsushi Ito shows that ε(XP ,LP ; 1) may fail to be
an integer for smooth polarized toric surfaces. When this happens no combination
of Corollary11 and Theorem20 can be used to compute it.

Example 40 Let P be the smooth polygon depicted in Fig. 7.11. It is straight forward
to check that the core of P is a point, s(LP , 1) = 7 and μ(LP)−1 = 4. However
as shown by Ito [8], ε(XP ,LP ; 1) = 15/2. Moreover this example is part of an
infinite family of smooth polarized toric surfaces having the property that the Seshadri
constant is an odd multiple of 1/2. Furthermore for any n Ito has constructed an
infinite family of smooth polarized toric n-folds such that ε(XP ,LP ; 1) is an odd
multiple of 1/2.
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Chapter 8
The Characterisation Problem of
Ehrhart Polynomials of Lattice Polytopes

Akihiro Higashitani

Abstract One of the most important invariants of a lattice polytope is the Ehrhart
polynomial. The problem ofwhich polynomials can be Ehrhart polynomials of lattice
polytopes is now well-studied. In this survey paper, after recalling the fundamental
properties of the Ehrhart polynomials of lattice polytopes, we survey the results
on this problem including recent developments. We discuss the characterisation of
Ehrhart polynomials in several particular cases: small dimensions; small volumes;
palindromic; small degrees. We also suggest some possible further questions.

Keywords Lattice polytopes · Ehrhart polynomials · h∗-vector · h∗-polynomial

8.1 Introduction

We say that a convex polytope P ⊂ R
d is a lattice polytope if all of its vertices belong

to the standard lattice Z
d . Given a lattice polytope P ⊂ R

d of dimension d, we can
associate the enumerative function n �→ �(nP ∩ Z

d), which counts the number of
lattice points contained in the nth dilation of P . Ehrhart [11] showed that there
exists a polynomial EP(n) in n of degree d, where d is the dimension of P , such
that EP(n) = �(nP ∩ Z

d) for any positive integer n. We call the polynomial EP(n)

the Ehrhart polynomial of P . The Ehrhart polynomial EP(n) has the following
properties:

1. the constant term of the polynomial EP(n) is always equal to 1;
2. the leading term of the polynomial is equal to the Euclidean volume of P .

Moreover, EP(n) also satisfies the Ehrhart-Macdonald reciprocity [27]:

�(nP◦ ∩ Z
d) = (−1)d EP(−n) for n ∈ Z>0, (8.1)
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where P◦ denotes the relative interior of P . Namely, the number of lattice points
contained in the nth dilation of the interior of P can be expressed by using the Ehrhart
polynomial of P .

When formally expressed as a rational function, the generating function of EP(n)

is known to be ∞∑

n=0

EP(n)tn =
∑

i≥0 h
∗
i t

i

(1 − t)d+1
,

and it is known that h∗
i = 0 for i ≥ d + 1 and that each h∗

i is an integer [30]. We call
the integer sequence

h∗(P) = (h∗
0, h

∗
1, . . . , h

∗
d)

the h∗-vector of P , denoted by h∗(P), and the polynomial

h∗
P(t) =

d∑

i=0

h∗
i t

i

the h∗-polynomial of P , denoted by h∗
P(t). In some literature, the h∗-vector or

the h∗-polynomial is called the δ-vector or the δ-polynomial (see, e.g., [13, 16, 17,
19]).

For the study of Ehrhart polynomials of lattice polytopes, it is often preferable to
use h∗-vectors (h∗-polynomials) instead of Ehrhart polynomials since the h∗-vectors
behave better than the coefficients of Ehrhart polynomials. For example, it is known
that h∗-vectors are always nonnegative integers [30], while the coefficients of Ehrhart
polynomials are not necessarily integers (just rational numbers) and not necessarily
nonnegative except for the leading, the second and the constant terms (see, e.g., [18]).
Given a lattice polytope, knowing its h∗-vector is equivalent to knowing its Ehrhart
polynomial. In fact, when h∗(P) = (h∗

0, h
∗
1, . . . , h

∗
d), we see that

EP(n) =
d∑

i=0

h∗
i

(
n + d − i

d

)
. (8.2)

We refer the reader to [7, 13] for an introduction to Ehrhart theory.
It follows from (8.1) that for a lattice polytope P with its h∗-vector (h∗

0, h
∗
1, . . . ,

h∗
d), we have

∞∑

n=1

�(nP◦ ∩ Z
d)tn =

∑d
i=0 h

∗
d−i t

i+1

(1 − t)d+1
. (8.3)

The h∗-vectors of lattice polytopes have the following properties:

1. h∗
0 = 1, h∗

1 = �(P ∩ Z
d) − (d + 1) and h∗

d = �(P◦ ∩ Z
d);
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2. if P◦ ∩ Z
d is non-empty, i.e., h∗

d > 0, then h∗
i ≥ h∗

1 holds for i = 1, . . . , d −
1 [15];

3. the leading coefficient of EP(n) is equal to (
∑d

i=0 h
∗
i )/d! by (8.2).

We call
∑d

i=0 h
∗
i the normalized volume of P , denoted by vol(P).

Note that h∗
1 ≥ h∗

d holds. In fact, since P is of dimension d, we have �(∂P ∩ Z
d) ≥

d + 1, which implies that

h∗
1 = �(P◦ ∩ Z

d) + �(∂P ∩ Z
d) − d + 1 ≥ �(P◦ ∩ Z

d) = h∗
d .

Hence, we see that h∗
1 = h∗

d if and only if �(∂P ∩ Z
d) = d + 1, which implies that P

is a simplex. In particular,when h∗
1 = h∗

d = 0, P is a simplexwhich contains no lattice
point except for its vertices, called an empty simplex.

Let deg(P) denote the degree of the polynomial h∗
P(t), i.e., deg(P) = max{i :

h∗
i �= 0}. The invariant deg(P) is called the degree of P . It is follows from (8.3) that

deg(P) = d + 1 − min{m : mP◦ ∩ Z
d �= ∅}. (8.4)

In particular, deg(P) ≤ d.
The following is one of the most important unsolved problems in Ehrhart theory:

Problem 1 Characterise the sequences (or polynomials) that are the h∗-vectors
(or h∗-polynomials) of lattice polytopes.

This problem has two steps: to prove the necessity and the sufficiency. More pre-
cisely, one step is to show some conditions for an integer sequence (h∗

0, h
∗
1, . . . , h

∗
d)

to be the h∗-vector of some lattice polytope (e.g., h∗
i ≥ h∗

1 for each 1 ≤ i ≤ d − 1
if h∗

d > 0, h∗
1 ≥ h∗

d and so on), and the other step is to construct a concrete lattice
polytope whose h∗-vector coincides with a desired integer sequence.

We see that it is quite difficult to solve this problem in general. Furthermore, it
might be believed that there exists no nice solution to this problem. Thus, in this
survey paper, we will restrict to some particular cases. More concretely, we discuss
the following cases:

1. small dimensions, i.e., d is small—see Sect. 8.3;
2. small volumes, i.e.,

∑d
i=0 h

∗
i is small—see Sect. 8.4;

3. palindromic, i.e., h∗
i = h∗

deg(P)−i for any i—see Sect. 8.5;
4. small degrees, i.e., deg(P) is small—see Sect. 8.6.

8.2 Preliminaries

In this section, we present the basic concepts that we will use in this paper.

1. For two lattice polytopes P, P ′ ⊂ R
d , we say that P and P ′ are unimodularly

equivalent if there exist f ∈ GLd(Z) and u ∈ Z
d such that P ′ = f (P) + u.
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2. For a lattice polytope P ⊂ R
d of dimension d, let

Pyr(P) = conv({(α, 0) ∈ R
d+1 : α ∈ P} ∪ {(0, . . . , 0, 1)}) ⊂ R

d+1.

This new lattice polytope is said to be a lattice pyramid over P . It is not so hard
to see that for a lattice polytope P , we have [7, Theorem 2.4]

∞∑

n=0

EPyr(P)(n)tn = h∗
P(t)

(1 − t)d+2
.

In particular, we have

h∗
P(t) = h∗

Pyr(P)(t) and deg(P) = deg(Pyr(P)).

We recall the finite abelian group associated with a lattice simplex and discuss
some properties on a lattice simplex in terms of this group. Let � ⊂ R

d be a lattice
simplex of dimension d with its vertices v1, v2, . . . , vd+1 ∈ Z

d . Let

�� =
{

(x1, x2, . . . , xd+1) ∈ [0, 1)d+1 :
d+1∑

i=1

xivi ∈ Z
d ,

d+1∑

i=1

xi ∈ Z

}

equipped with its addition defined by x + y = ({x1 + y1}, . . . , {xd+1 + yd+1}) ∈
[0, 1)d+1 for x = (x1, . . . , xd+1) ∈ [0, 1)d+1 and y = (y1, . . . , yd+1) ∈ [0, 1)d+1,
where {r} = r − �r� denotes the fractional part of r ∈ R. We see that �� is a
finite abelian group. In fact, one can see that 0 = (0, . . . , 0) ∈ �� and −x :=
({1 − x1}, . . . , {1 − xd+1}) ∈ �� for any x ∈ ��.

Let F (d) denote the set of unimodular equivalence classes of lattice simplices of
dimension d with a fixed vertex order, and let A(d) denote the set of finite abelian
subgroups � of [0, 1)d+1 satisfying that the sum of all entries of each element in �

is an integer. Actually, [6, Theorem 2.3] says that the correspondence

F (d) → A(d); � �→ ��

is a bijection. In particular, a unimodular equivalence class of lattice simplices � is
uniquely determined by the finite abelian group�� up to permutation of coordinates.

We can discuss h∗
�(t), deg(�), vol(�) and whether� is a lattice pyramid in terms

of ��. We fix some notation. For x = (x1, . . . , xd+1) ∈ ��

1. let ht(x) = ∑d+1
i=1 xi ∈ Z≥0;

2. let supp(x) = {i ∈ [d + 1] : xi �= 0}, where [n] = {1, . . . , n} for n ∈ Z>0;
3. let wt(x) = �(supp(x)).

Then we have [7, Corollary 3.11]
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h∗
�(t) =

∑

x∈��

tht(x).

In particular,

deg(�) = max{ht(x) : x ∈ ��} and vol(�) = |��|.

We see that a lattice simplex � of dimension d is not a lattice pyramid if and only if
for each i ∈ [d + 1], there is (x1, . . . , xd+1) ∈ �� such that xi �= 0.

Furthermore, we have

wt(α) = ht(α) + ht(−α) (8.5)

for any α ∈ �� since

wt(α) =
∑

i∈supp(α)

1 =
∑

i∈supp(α)

(αi + 1 − αi ) = ht(α) + ht(−α).

8.3 Small Dimensions

We first consider the classification of h∗-polynomials of lattice polytopes in low
dimensions. Namely, we discuss whether a given integer sequence (h∗

0, h
∗
1, . . . , h

∗
d)

is a possible h∗-vector of some lattice polytope of dimension d for the case d is small.
In the case d = 1, the following is easy to prove.

Proposition 2 For any nonnegative integer a, the integer sequence (1, a) is the h∗-
vector of some lattice polytope of dimension 1.

Proof Take the lattice segment {x ∈ R : 0 ≤ x ≤ a + 1} of length a + 1. �

The case d = 2 is highly non-trivial.

Theorem 3 ([29])Given nonnegative integers a and b, the integer sequence (1, a, b)
is the h∗-vector of a lattice polytope of dimension 2 if and only if (a, b) satisfies one
of the following conditions:

1. b = 0;
2. 0 < b ≤ a ≤ 3b + 3;
3. (a, b) = (7, 1).

The “only if” part is due to [29]. The “if” part is easy to see. In fact, we can construct
lattice polygons for any (a, b) satisfying 1, 2 or 3: see Fig. 8.1. Note that lattice
polygons in theCase 1 can be given byProposition2 and lattice pyramid construction.

For the case d = 3, the characterisation of h∗-vectors is wide open, with the
exception of a few partial results: the result in the case of palindromic h∗-polynomials
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Fig. 8.1 Construction of lattice polygons whose h∗-vectors are one of 1, 2 or 3 in Theorem3

will appear in Sect. 8.5 and the result in the case h∗
3 = 0 will appear in Sect. 8.6. The

characterisation in the case h∗
3 = 1 can be essentially obtained from [23] and the

case h∗
3 = 2 is from [3].

Moreover, by the series of the papers [8–10] by Blanco–Santos, an algorithm
whichprovides a complete list of all lattice polytopes of dimension3up to unimodular
equivalence has been given. This enables us to get the complete list of h∗-vectors
of lattice polytopes of dimension 3 containing only a few lattice points. In [10],
the list of lattice polytopes P ⊂ R

3 of dimension 3 with �(P ∩ Z
3) ≤ 11 is given

up to unimodular equivalence. As a by-product, we also know the characterisation
of h∗-vectors (h∗

0, h
∗
1, h

∗
2, h

∗
3) with h∗

1 ≤ 7.
The contribution of the papers [8–10] naturally suggests the following problem:

Problem 4 Characterise the possible h∗-vectors of lattice polytopes of dimension 3.

In fact, Balletti [1, Conjecture 8.7] predicts some necessary inequalities for h∗-
vectors (h∗

0, h
∗
1, h

∗
2, h

∗
3) of lattice polytopes of dimension 3.

8.4 Small Volumes

Next,we consider the case of small normalized volumes.Namely,we discusswhether
a given integer sequence (h∗

0, h
∗
1, . . . , h

∗
d) is a possible h∗-vector of some lattice

polytope of dimension d for the case
∑d

i=0 h
∗
i is small.
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In the case
∑d

i=0 h
∗
i = 1, since each h∗

i is nonnegative and h∗
0 = 1, we conclude

that h∗
0 = 1 and h∗

1 = · · · = h∗
d = 0. This is the h∗-vector of a unit simplex of dimen-

sion d, where a unit simplex of dimension d is the convex hull of the origin of R
d

and the unit vectors of R
d .

For the case
∑d

i=0 h
∗
i ≥ 2, we recall two well-known inequalities on h∗-vectors.

Let P ⊂ R
d be a lattice polytope of dimension d with degree s. One inequality is

h∗
0 + h∗

1 + · · · + h∗
i ≤ h∗

s + h∗
s−1 + · · · + h∗

s−i for i = 0, 1, . . . , s. (8.6)

This is proved by Stanley [31]. Another one is

h∗
d + h∗

d−1 + · · · + h∗
d−i ≤ h∗

1 + h∗
2 + · · · + h∗

i+1 for i = 0, 1, . . . , d − 1. (8.7)

This appears in the work of Hibi [15]. Note that these inequalities (8.6) and (8.7) are
vastly generalized by Stapledon [32, 33]. All inequalities in (8.6) hold with equality
for any i if and only if h∗

i = h∗
s−i for i = 0, 1, . . . , s. This is equivalent to the lattice

polytope being Gorenstein. See Sect. 8.5. All inequalities in (8.7) hold with equality
for any i if and only if h∗

i+1 = h∗
d−i for i = 0, 1, . . . , d − 1. This is called shifted

symmetric, introduced in [19]. A lattice polytope P has a shifted symmetric h∗-vector
if and only if P is a lattice simplex all of whose facets have normalized volume 1
(see [19, Theorem 2.1]).

A characterisation in the cases of
∑d

i=0 h
∗
i = 2 and 3 is given as follows:

Theorem 5 ([17, Theorem 0.1]) Given a sequence (h∗
0, h

∗
1, . . . , h

∗
d) of nonnegative

integers, where h∗
0 = 1 and

∑d
i=0 h

∗
i ≤ 3, there exists a lattice polytope of dimen-

sion d whose h∗-vector coincides with (h∗
0, h

∗
1, . . . , h

∗
d) if and only if (h

∗
0, h

∗
1, . . . , h

∗
d)

satisfies the inequalities (8.6) and (8.7).

The “only if” part directly follows from the works by Stanley and Hibi. The
essential part of this theorem is the “if” part.

The following example shows that Theorem5 is no longer true for the case∑d
i=0 h

∗
i = 4.

Example 6 ([17, Example 1.2]) We consider the sequence (1, 0, 1, 0, 1, 1, 0, 0).
Then we see that this cannot be the h∗-vector of any lattice polytope of dimen-
sion 7. Suppose, on the contrary, that there exists a lattice polytope P with its h∗-
vector (1, 0, 1, 0, 1, 1, 0, 0). Since h∗

1 = 0, we know that P should be a simplex.
Let�P = {0, α, β, γ } be as in Sect. 8.2, where ht(α) = 2, ht(β) = 4 and ht(γ ) = 5.
Since −γ ∈ �P and wt(γ ) ≤ 8 together with ht(−γ ) = wt(γ ) − 5 ∈ {2, 4, 5} by
(8.5), we see that wt(γ ) = 7 and −γ = α. Thus, we also see that −β = β. This
implies that wt(β) = 8 by (8.5). Hence, supp(γ ) = supp(α) = [8] \ {i} for some i ∈
[8] and supp(β) = [8]. Then one has i ∈ supp(α + β). This means that α + β = β,
which means that α = 0, a contradiction.

Before considering the statement in the case
∑d

i=0 h
∗
i = 4, we introduce the fol-

lowing notation. For a sequence (h∗
0, h

∗
1, . . . , h

∗
d) of nonnegative integerswith h

∗
0 = 1

and
∑d

i=0 h
∗
i = m, let i1, . . . , im−1 be the positive integers such that
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d∑

i=0

h∗
i t

i = 1 + t i1 + · · · + t im−1,

where 1 ≤ i1 ≤ · · · ≤ im−1 ≤ d. For example, for a sequence (1, 0, 2, 3, 0, 1, 0), we
have i1 = i2 = 2, i3 = i4 = i5 = 3 and i6 = 5. Notice that the sequence (h∗

0, h
∗
1, . . . ,

h∗
d) and the positive integers i1, . . . , im−1 have the same information. Actually, we

can rephrase the inequalities (8.6) and (8.7) as follows:

Proposition 7 ([20, Proposition 2.2]) With notation as above:

1. the inequalities i j + im− j−1 ≥ im−1, where 1 ≤ j ≤ m − 2, are equivalent to the
inequalities (8.6);

2. the inequalities i j + im− j ≤ d + 1, where 1 ≤ j ≤ m − 1, are equivalent to the
inequalities (8.7).

A characterisation in the case of
∑d

i=0 h
∗
i = 4 is given as follows:

Theorem 8 ([16, Theorem 5.1]) Let 1 + t i1 + t i2 + t i3 be a polynomial with 1 ≤
i1 ≤ i2 ≤ i3 ≤ d. Then there exists a lattice polytope of dimension d whose h∗-
polynomial equals 1 + t i1 + t i2 + t i3 if and only if the triple (i1, i2, i3) satisfies:

1. i1 + i2 ≥ i3, i1 + i3 ≤ d + 1 and 2i2 ≤ d + 1 hold;
2. either 2i2 ≤ i1 + i3 or i2 + i3 ≤ d + 1 holds.

We remark that as mentioned in Proposition7, the first inequality in Condition 1
is equivalent to (8.6) and the second and third inequalities are equivalent to (8.7).
Condition 2 is the special one for the case

∑d
i=0 h

∗
i = 4.

Example 9 (Example6 continued) Consider the sequence (1, 0, 1, 0, 1, 1, 0, 0)
again. For the above notation, we have i1 = 2, i2 = 4, i3 = 5 and d + 1 = 8. Then
Condition 1 in Theorem8 are satisfied, while both 2i2 > i1 + i3 and i2 + i3 > d + 1
hold. Hence Condition 2 is not satisfied.

Remark 10 ([16, Remark 5.3]) For the case of
∑d

i=0 h
∗
i ≤ 4, we see from the proofs

of Theorems5 and 8 that all the possible h∗-vectors can be obtained by lattice sim-
plices. However, when

∑d
i=0 h

∗
i = 5, the h∗-vector (1, 3, 1) cannot be obtained from

any simplex, while it is a possible h∗-vector of a lattice polygon (see Theorem3).

This remark implies that for the complete characterisationswith larger normalized
volumes, we have to see the h∗-vectors of not only lattice simplices but also non-
simplices. Hence, for the further investigation, it is natural to think of the h∗-vectors
of lattice simplices as a first step.

Theorem 11 ([20, Theorem 1.1]) Let P be a lattice simplex of dimension d and
let h∗(P) = (h∗

0, h
∗
1, . . . , h

∗
d) be its h

∗-vector. Suppose that
∑d

i=0 h
∗
i = p is an odd

prime. Let i1, . . . , i p−1 be the positive integers such that
∑d

i=0 h
∗
i t

i = 1 + t i1 + · · · +
t i p−1 , where 1 ≤ i1 ≤ · · · ≤ i p−1 ≤ d.Then:
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1. i1 + i p−1 = i2 + i p−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d + 1; and
2. ik + i
 ≥ ik+
 for k, 
 ≥ 1 with k + 
 ≤ p − 1.

By using these necessary conditions for integer sequences to be the h∗-vector of
lattice simplices, we can prove the following:

Theorem 12 ([20, Theorem 1.2]) Let 1 + t i1 + t i2 + t i3 + t i4 be a polynomial with 1
≤ i1 ≤ · · · ≤ i4 ≤ d. Then there exists a lattice simplex of dimension d whose h∗-
polynomial equals 1 + t i1 + t i2 + t i3 + t i4 if and only if (i1, i2, i3, i4) satisfies i1 +
i4 = i2 + i3 ≤ d + 1 and ik + i
 ≥ ik+
 for k, 
 ≥ 1 with k + 
 ≤ 4.

Theorem 13 ([20, Theorem 1.3]) Let 1 + t i1 + t i2 + t i3 + t i4 + t i5 + t i6 be a poly-
nomial with 1 ≤ i1 ≤ · · · ≤ i6 ≤ d. Then there exists a lattice simplex of dimen-
sion d whose h∗-polynomial equals 1 + t i1 + t i2 + t i3 + t i4 + t i5 + t i6 if and only
if (i1, i2, i3, i4, i5, i6) satisfies i1 + i6 = i2 + i5 = i3 + i4 ≤ d + 1 and ik + i
 ≥ ik+


for k, 
 ≥ 1 with k + 
 ≤ 6.

Remark 14 (see [20, Sect. 5.1]) Theorems12 and 13 say that when
∑d

i=0 h
∗
i is 5

or 7, the necessary conditions in Theorem11 are also sufficient for lattice sim-
plices. However, this is not true for all prime numbers. In fact, since the volume
of a lattice polytope containing a unique lattice point in its interior has an upper
bound (see, e.g., [26]), if p is a sufficiently large prime number, then the integer
sequence (1, 1, p − 3, 1) cannot be the h∗-vector of any lattice simplex of dimen-
sion 3, although (1, 1, p − 3, 1) satisfies all the conditions in Theorem11.

Recently, a complete characterisation of the possible h∗-vectors (h∗
0, h

∗
1, . . . , h

∗
d)

of lattice polytopes with
∑d

i=0 h
∗
i = 5 has been given.

Theorem 15 ([35, Theorem 0.4]) Let 1 + t i1 + t i2 + t i3 + t i4 be a polynomial with 1
≤ i1 ≤ · · · ≤ i4 ≤ d. Then there exists a lattice polytope of dimension d whose h∗-
polynomial equals 1 + t i1 + t i2 + t i3 + t i4 if and only if

1. (i1, i2, i3, i4) satisfies the conditions in Theorem12; or
2. 1 + t i1 + t i2 + t i3 + t i4 = 1 + 3t + t2 or 1 + t + 3t2 or 1 + t + t2 + 2t3.

Note that the polynomials 1 + 3t + t2 and 1 + t + 3t2 and 1 + t + t2 + 2t3 are
the h∗-polynomials of some lattice polytopes respectively (see [35, Example 2.4] for
a more detailed construction of those lattice polytopes), but these are never the h∗-
polynomials of lattice simplices.

The proof of Theorem15 relies on the following theorem, which is a recent, major
contribution to Ehrhart theory:

Theorem 16 ([22, Theorem 1.3]) If a lattice polytope P is spanning then the h∗-
vector of P has no gap, i.e., h∗

i > 0 for any i = 0, 1, . . . , deg(P).

Here, we say that a lattice polytope P ⊂ R
d is spanning if the affine lattice generated

by P ∩ Z
d , denoted by�P , is equal toZ

d , Note that the converse of Theorem16 is not
true in general. In fact, the lattice simplex P = conv({e1, e2,±(e1 + e2 + 2e3)}) ⊂
R

3 has the h∗-vector (1, 1, 2, 0), while this simplex is not spanning since e3 ∈ Z
3 is

not contained in �P .
The key lemma for the proof of Theorem15 is the following:
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Lemma 17 ([35, Theorem 1.1]) Let P be a lattice polytope which is not a simplex.
Suppose that vol(P) is prime. Then P is spanning.

Note that this lemma is not true for non-prime case. For example, let

P = conv({0, e1, e2, e1 + e2, e3, e1 + e2 + e3 + 2e4}) ⊂ R
4.

Then P is a lattice polytope with vol(P) = 4. Moreover, P has 6 vertices, i.e., P is
not a simplex, and P ∩ Z

4 equals the set of vertices. Hence, we observe that e4 /∈ �P .

Proof (Sketch of proof of Theorem15)For the “if” part, wemay construct the lattice
polytopes whose h∗-polynomials are 1 + 3t + t2, 1 + t + 3t2 and 1 + t + t2 + 2t3,
respectively.

For the “only if” part, we consider the h∗-polynomial 1 + t i1 + · · · + t i4 of the
lattice polytope P which is not a simplex. Then it follows from Theorem16 and
Lemma17 that the h∗-polynomial has no gap. Thus, the possible h∗-polynomials are
the following polynomials:

1 + 4t, 1 + 3t + t2, 1 + t + 3t2, 1 + 2t + 2t2, 1 + t + 2t2 + t3, 1 + t + t2 + 2t3, 1 + t + t2 + t3 + t4.

Note that 1 + 2t + t2 + t3 violates the inequality (8.6). Since 1 + 4t , 1 + 2t +
2t2, 1 + t + 2t2 + t3 and 1 + t + t2 + t3 + t4 are the possible h∗-polynomials of
lattice simplices by Theorem12, we conclude the desired assertion. �

As a future problem, we suggest the following:

Problem 18 Characterise the h∗-polynomials of lattice polytopes with vol(P) = 7.

Towards this characterisation, the similar idea to the proof of Theorem15 enables us
to deduce that we must consider the following polynomials:

1 + 2t + 3t2 + t3, 1 + t + 3t2 + 2t3, 1 + t + 2t2 + 3t3, 1 + t + t2 + 4t3,

1 + t + t2 + 3t3 + t4, 1 + t + 3t2 + t3 + t4, 1 + t + t2 + t3 + 2t4 + t5.

More precisely, wemay determine the existence or non-existence of a lattice polytope
whose h∗-polynomial is one of them.

The following is also a natural problem to try as a next step:

Problem 19 Characterise the h∗-polynomials of lattice simplices with vol(P) = 6.

8.5 Palindromic

We say that a polynomial
∑s

i=0 ai t
i of degree s is palindromic if ai = as−i for i =

0, 1, . . . , s. Next, we consider the case of palindromic h∗-polynomials. Namely,
we discuss whether a given palindromic polynomial

∑s
i=0 h

∗
i t

i of degree s is a
possible h∗-polynomial of some lattice polytope with degree s.
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Recall that a lattice polytope P ⊂ R
d is reflexive if the origin of R

d is contained
in the interior of P and the polar polytope

P∨ = {x ∈ R
d : 〈x, y〉 ≤ 1 for any y ∈ P}

is also a lattice polytope,where 〈·, ·〉denotes the usual inner product ofRd . Reflexivity
of lattice polytopes is characterised as follows:

Proposition 20 (cf. [5, 14]) Let P be a lattice polytope of dimension d, let
(h∗

0, h
∗
1, . . . , h

∗
d) be its h∗-vector and let EP(n) = adnd + ad−1nd−1 + · · · + 1 be

its Ehrhart polynomial. Then the following four conditions are equivalent:

1. P is a reflexive polytope;
2. deg(P) = d and h∗

P(t) is palindromic, i.e., h∗
i = h∗

d−i for i = 0, 1, . . . , d;
3. the functional equation EP(n) = (−1)d EP(−n − 1) holds;
4. we have dad = 2ad−1.

We also recall that a lattice polytope P ⊂ R
d is called Gorenstein of index 


if 
P is unimodularly equivalent to a reflexive polytope. Since �(
P ∩ Z
d) = 1,

we see that deg(P) = dim P + 1 − 
 by (8.4). The following easily follows from
Proposition20.

Proposition 21 Let P be a lattice polytope of dimension d with its h∗-vector
(h∗

0, h
∗
1, . . . , h

∗
d). Then the following three conditions are equivalent:

1. P is a Gorenstein polytope of index 
;
2. deg(P) = s and h∗

P(t) is palindromic, i.e., h∗
i = h∗

s−i for i = 0, 1, . . . , s, where
s = d + 1 − 
;

3. the functional equation EP(n) = (−1)d EP(−n − 
) holds.

Reflexive polytopes together with Gorenstein polytopes are particularly impor-
tant in many areas, e.g., commutative algebra, toric geometry and mirror symmetry
(e.g., [4, 5, 31] and so on). Hence, many researchers are quite interested in reflexive
polytopes and they have been intensively studied. On the characterisation of palin-
dromic h∗-polynomials, i.e., the h∗-polynomials of Gorenstein polytopes, the case
of 2-dimensional reflexive polytopes is well known:

Proposition 22 (See e.g. [28]) Given an integer a, the sequence (1, a, 1) is the h∗-
vector of a reflexive polytope of dimension 2 if and only if a ∈ {1, 2, . . . , 7}.

The case of Gorenstein polytopes of degree 2 is also known, which is highly
non-trivial:

Theorem 23 ([4, Theorem 2.10])Given an integer a, the polynomial 1 + at + t2 is
the h∗-polynomial of aGorenstein polytopeof degree2 if andonly if a ∈ {0, 1, . . . , 7}.

The following is one natural analogue of Theorem23.

Theorem 24 ([21, Corollary 1.1])Given an integer a, the polynomial 1 + atk + t2k

is the h∗-polynomial of a Gorenstein polytope of degree 2k with k ≥ 2 if and only if
one of the following conditions holds:
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1. a ∈ {0, 1, 2, 4, 6};
2. there exist 
 ≥ 4 and m ≥ 1 such that a = 2
 − 2 and k = 2
−3m;
3. there exist 
 ≥ 3 and m ≥ 1 such that a = 3
 − 2 and k = 3
−2m.

The case of 3-dimensional reflexive polytopes is also known:

Proposition 25 ([24])Given an integer a, the integer sequence (1, a, a, 1) is the h∗-
vector of a reflexive polytope of dimension 3 if and only if a ∈ {1, 2, . . . , 35} \
{33, 34}.

Similar to this theorem, the necessary and sufficient condition for the integer
sequence (1, a, b, a, 1) to be the h∗-vector of a reflexive polytope of dimension 4 is
also known by [25]. (There are 14, 373 possible h∗-vectors.)

Since we already know the possible h∗-vectors of reflexive polytopes of dimen-
sion 3, the following is a natural problem to try as a next step:

Problem 26 Characterise the h∗-polynomials of Gorenstein polytopes of degree 3.

8.6 Small Degrees

Next,we consider the case of small degrees.Namely,wediscusswhether a givenpoly-
nomial

∑s
i=0 h

∗
i t

i is a possible h∗-polynomial of some lattice polytope of degree s
when s is small.

In general, we see the following:

Proposition 27 If a given polynomial
∑d

i=0 h
∗
i t

i is the h∗-polynomial of some lattice
polytope of dimension d, then it is also the h∗-polynomial of some lattice polytope
of dimension d + m for any m ∈ Z≥0.

Proof Take the m times iterated lattice pyramids. �

Thus, we have the inclusion

{h∗-polynomials of lattice polytopes of dimension d}
⊂ {h∗-polynomials of lattice polytopes of degree at most d}.

In the case degree at most 2, we see that there is a difference between these two
sets. More precisely, the following is known. It looks quite similar to Theorem3 but
slightly different.

Theorem 28 ([34, Theorem 2]) Let P be a lattice polytope of degree at most 2. Then
its h∗-polynomial 1 + h∗

1t + h∗
2t

2 satisfies one of the following conditions:

1. h∗
2 = 0;

2. h∗
1 ≤ 3h∗

2 + 3 and h∗
2 > 0; or

3. (h∗
1, h

∗
2) = (7, 1).
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Note that the conditions in Theorem28 are also sufficient. Namely, it is proved
in [12, Proposition 1.10] that given nonnegative integers (h∗

1, h
∗
2) satisfying one of

the conditions in Theorem28, there exists a lattice polytope P such that h∗
P(t) = 1 +

h∗
1t + h∗

2t
2. Those polytopes can be constructed by lattice polytopes of dimension

at most 3. Hence, the possible h∗-polynomials of degree at most 2 are completely
characterised.

In Theorem28, the condition “h∗
2 ≤ h∗

1” is missing, while b ≤ a appears in
Theorem3. The inequality b ≤ a comes from h∗

1 ≥ h∗
d (see Introduction) and b ≤ a

is a particular condition for d = 2. Hence, Theorem3 essentially characterises the
possible h∗-polynomials of lattice polytopes of not only dimension 2 but also degree
at most 2.

The following is natural to try as a further problem in addition to Problem4.

Problem 29 Characterise the h∗-polynomials of lattice polytopes of degree ≤ 3.

8.7 Universal Inequalities

Finally, we introduce a new kind of condition on h∗-vectors of lattice polytopes.
Recently, the following theorem has been proved:

Theorem 30 ([2, Theorem 1.4]) Let P be a lattice polytope and let h∗
P(t) =∑

i≥0 h
∗
i t

i . Assume that h∗
3 = 0. Then (h∗

1, h
∗
2) satisfies one of the following con-

ditions:

1. h∗
2 = 0;

2. h∗
1 ≤ 3h∗

2 + 3 and h∗
2 > 0; or

3. (h∗
1, h

∗
2) = (7, 1).

Theorem30 is a generalization of Theorem28 since deg(P) ≤ 2 is equivalent
to h∗

3 = h∗
4 = · · · = 0. Theorem30 says that the conditions in Theorem28 is valid

independently of both the dimension and the degree of lattice polytopes. An inequal-
ity is therefore called universal if it does not depend on the dimension or the degree
of the lattice polytopes. (This terminology is suggested in [2].)

Example 31 ([2, Examples 1.5, 1.6])

1. Theorem 30 is no longer true if h∗
3 �= 0. In fact, there is a lattice polytope of

dimension 5 whose h∗-polynomial equals 1 + 8t + t2 + 8t3, while Theorem 28
says that there is no lattice polytope of degree 2 whose h∗-polynomial equals 1 +
8t + t2.

2. Theorem 30 cannot be generalized into the case h∗
3 < h∗

1. In fact, there is a lattice
polytope of dimension 9 whose h∗-polynomial equals 1 + 17t + 4t2 + 14t3 +
8t4 + 10t5 + 12t6 + 6t7, while Theorem 28 says that there is no lattice polytope
of degree 2 whose h∗-polynomial equals 1 + 17t + 4t2.

As a further investigation for this direction, we suggest the following:
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Problem 32 Find other universal inequalities for h∗-vectors.
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Chapter 9
The Ring of Conditions
for Horospherical Homogeneous Spaces

Johannes Hofscheier

Abstract These are notes of a five talks lecture series during the “Graduate Summer
School in Algebraic Group Actions”, at McMaster University, June 11th–15th, 2018.
The aimof this lecture series is to introduce the ring of conditions of a spherical homo-
geneous space with a special emphasis on the horospherical case, i.e., homogeneous
spaces with respect to a connected complex reductive group which are torus bundles
over a flag variety. In these notes, we start with an example from enumerative geom-
etry which naturally yields first instances of spherical varieties. We continue with
a recollection of the necessary background on reductive groups needed throughout
the rest of the manuscript. After that we introduce spherical varieties: we discuss the
Luna–Vust theory of spherical embeddings and explain the complete combinatorial
description of horospherical varieties (an important subfamily of spherical varieties).
We conclude with the definition of the ring of conditions of spherical homogeneous
spaces and give an explicit description for the horospherical case.

Keywords Spherical variety · Linear algebraic group · Enumerative geometry ·
Ring of conditions

9.1 Motivation

In the following, some elementary knowledge of algebraic geometry is expected
from the reader. Introductory texts which cover the required topics are, e.g., [9, 23,
24, 27]. Parts of this manuscript follow the lecture notes [11] by Kiritchenko.

First examples of spherical varieties emerged from enumerative geometry such as
Grassmannians. It turns out that many enumerative problems reduce to intersection
theoretic questions on algebraic varieties equippedwith a “good” transitive (or almost
transitive) action of an algebraic group. Here is a classical example:
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Problem 1 Howmany lines in 3-spaceC
3 intersect 4 given lines in general position?

Recall the general trick how to rephrase an affine geometric question into a linear
one: Suppose X is an affine geometric object in C

n . Introduce one further dimension
and consider the linear span of X regarded as a subset of the affine hyperplane {xn+1 =
1} where xn+1 denotes the additional coordinate.

Hence, the above question reduces to a problem in the Grassmannian Gr(2, 4) (2-
planes inC

4). This algebraic variety admits a transitive action byGL4 (the general lin-
ear group of invertible 4 × 4-matriceswith complex entries). Indeed, let e1, . . . , e4 be
the standard basis inC

4 and consider the natural action ofGL4 onC
4.ClearlyGL4 acts

transitively on planes in C
4 and the stabilizer P of the coordinate plane span{e1, e2}

is given by

P =
{(

A C
0 B

)
: A, B ∈ GL2,C ∈ Mat(2 × 2)

}
.

Hence Gr(2, 4) ∼= GL4 /P is a homogeneous space under GL4 and P is an example
of a parabolic subgroup (see definition below).

Note that by the transition to Gr(2, 4), we implicitly consider the lines as sitting in
the projective 3-space P

3 and intersections are taken in the projective sense. Indeed,
two parallel lines do not intersect in the affine 3-space, but their corresponding 2-
planes do. This corresponds to the fact that two parallel lines intersect at infinity
in P

3.
Let us recall the crucial ideas of Schubert’s solution to Problem 1. To solve it, he

developed the calculus of “conditions” (see [22]), which has since become known
as Schubert Calculus. Examples of conditions are:

1. for a given point a, denote by σa the condition that a line contains a;
2. for a given line �, denote by σ� the condition that a line intersects �; or
3. for a plane �, denote by σ� the condition that a line is contained in �.

Schubert’s brilliant idea was that conditions can be added and multiplied and this
corresponds to logical “or” and “and” operations on the conditions, e.g., σ�1 + σ�2 is
the condition that a line intersects line �1 or line �2 while σ�1 · σ�2 is the condition that
a line intersects both lines �1 and �2. So, for instance, Problem 1 can be reformulated
to: What is σ�1 · · · σ�4 where �i are four lines in general position? In particular, we
can reformulate the problem in an algebraic equation and obtain

σ�1 · σ�2 · σ�3 · σ�4 = (σ�1 · σ�2) · (σ�3 · σ�4) =?.

So we have to understand the conditions σ�1 · σ�2 and σ�3 · σ�4 . By using some
heuristics, Schubert came to the conclusion that “perturbations” of the condi-
tion σ�1 · · · σ�4 do not change the answer (the conservation of number principle),
i.e., we are allowed to move the lines �i . In particular, we may assume that �1, �2
lie on a plane, and so do �3 and �4 (see Fig. 9.1). From that it straightforwardly fol-
lows that a line intersects both �1 and �2 if and only if it is either contained in the
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Fig. 9.1 The conservation of number principle implies that we are allowed to move the lines �i

plane � spanned by �1 and �2 (recall that we take intersections in P
3) or it contains

the intersection point of �1 and �2. Using Schubert calculus this means

σ�1 · σ�2 = σa + σ� and σ�3 · σ�4 = σa′ + σ�′

where a is the intersection point of �1 and �2 and� is the plane spanned by �1 and �2
and similarly for �3, �4.

Thus, we get

σ�1 · σ�2 · σ�3 · σ�4 = (σa + σ�) · (σa′ + σ�′ ) = σa · σa′ + σa · σ�′ + σa′ · σ� + σ� · σ�′ .

Clearly there is exactly one line passing through both a and a′ and there is exactly
one line contained in both � and �′. On the other hand, as a is not contained in �′,
the condition σa · σ�′ is not satisfied by any line, and similarly for σa′ · σ�.

We obtain

σ�1 · σ�2 · σ�3 · σ�4 = σa · σa′︸ ︷︷ ︸
=1

+ σa · σ�′︸ ︷︷ ︸
=0

+ σa′ · σ�︸ ︷︷ ︸
=0

+ σ� · σ�′︸ ︷︷ ︸
=1

= 2.

Of course, we haven’t given a precise explanation yet and in his fifteenth problem
Hilbert asked for a rigorous foundation of Schubert Calculus. Our goal will be to
understand De Concini’s and Procesi’s solution to Hilbert’s problem. For that, we
also need to understand spherical geometry, a topic which is exciting in its own right.
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9.2 Linear Algebraic Groups: A Crash Course

The classical books byBorel, Humphreys and Springer [2, 10, 25] are excellent refer-
ences for what follows. Amoremodern and accessible book is [18]. For convenience,
we work over the field of complex numbers C.

An algebraic variety G is called an algebraic group if G is a group and the
mapsG × G → G, (g, h) �→ gh andG → G, g �→ g−1 aremorphisms of algebraic
varieties. The Lie algebra of G, usually denoted by g, is the tangent space TeG at
the identity element e ∈ G equipped with a binary operation [·, ·] called the Lie
bracket. Important examples of algebraic groups are GLn (=the general linear
group of invertible n × n-matrices with complex entries), SLn (=the special linear
group of n × n-matrices with complex entries and determinant 1), abelian varieties
(=complete connected algebraic groups) or elliptic curves (=1-dimensional abelian
varieties). We will work with linear algebraic groups, i.e., Zariski closed subgroups
of GLn . If G ⊆ GLn is a linear algebraic group, then TeG = g ⊆ gln = Te GLn =
{(n × n) − matrices}, and the Lie bracket can be defined as the commutator of matri-
ces

[A, B] := AB − BA.

Remark 2 If one replaces “algebraic varieties” and “morphisms of algebraic vari-
eties” by “smooth manifolds” and “smooth maps”, one obtains the definition of a
Lie group.

Exercise 3 Let G be an algebraic group.

1. Show that only one irreducible component of G can pass through e. This com-
ponent is called the identity component of G, usually denoted by G◦.

2. Show that G◦ is a normal subgroup of finite index in G, whose cosets are the
connected as well as irreducible components of G.

Exercise 4 Which of the following algebraic groups are linear?

1. (Cn,+),
2. An elliptic curve,
3. PGLn .

Fromnowon all algebraic groups are assumed to be linear, unless stated otherwise.

Definition 5 An element g ∈ G ⊆ GLn is called semisimple if the matrix g is diag-
onalizable. It is called unipotent if all eigenvalues of g are equal to 1. (This definition
is independent of the choice of the embedding G ⊆ GLn .)

Exercise 6 Letπ : G → GLn be a (rational) representation of an algebraic groupG,
i.e., π is a morphism of algebraic groups. Show that:

1. If G = (C∗)n , then any matrix in π(G) is diagonalizable.
2. If G = C

n , then any matrix in π(G) is unipotent.
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Exercise 7 (Jordan decomposition) Show that every element g ∈ G has a unique
decomposition g = gsgu , where gs ∈ G is semisimple, gu ∈ G is unipotent, and gs
and gu commute.

The radical, denoted by R(G), of an algebraic group G is the identity component
of its maximal normal solvable subgroup. The unipotent radical, denoted by Ru(G),
is the set of unipotent elements in the radical of G.

Definition 8 An algebraic group G is reductive if Ru(G) = {e}. It is semisimple
if R(G) = {e}.
Theorem 9 (Characterization of reductive groups) Let G be an algebraic group.
The following conditions are equivalent:

1. G is reductive;
2. R(G) is a torus;
3. G◦ = T · S, where T is a torus and S is a connected semisimple subgroup;
4. any finite-dimensional rational representation of G is completely reducible

(recall: a rational representation of G in a vector space V is a homomor-
phism G → GL(V ) of algebraic groups);

5. G admits a faithful finite-dimensional completely reducible rational representa-
tion;

6. the Lie algebra of G admits a direct sum decomposition g = h ⊕ ih where h is
the Lie algebra of a maximal compact real Lie subgroup of G.

Exercise 10 Which of the following groups are reductive?

1. C
n ,

2. GLn ,
3. An elliptic curve.

Exercise 11 Show that an algebraic group G is reductive if and only if G does not
contain a normal subgroup isomorphic to C

n .

A character of an algebraic group G is a homomorphism of algebraic groups
χ : G → C

∗ and the set of all characters gives the character group ofG, i.e.,X(G) :=
{χ : G → C

∗ character}.
An algebraic torus is an algebraic group T that is isomorphic to

(C∗)n = {(z1, . . . , zn) ∈ C
n : zi �= 0}.

If G is an algebraic group, then a maximal element of the set

{H ⊆ G closed subgroup, H an algebraic torus}

(which is ordered by inclusion) is called a maximal torus of G.

Theorem 12 In an algebraic group, any two maximal tori are conjugated.

The dimension of T is called the rank of G. The character lattice X(T ) of T is also
called the weight lattice of G, and its elements are called weights of G.
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Exercise 13 Find a maximal torus of the following groups:

1. GLn ,
2. SLn ,
3. SOn .

The set {H ⊆ G closed connected solvable subgroup} is partially ordered by
inclusion. A maximal element of this set is called a Borel subgroup.

Exercise 14 Show that the upper-triangular invertible matrices form a Borel sub-
group in GLn and that any two Borel subgroups are conjugated. (Hint: Use the
Lie–Kolchin theorem [10, Theorem 17.6].)

Theorem 15 In an algebraic group, any two Borel subgroups are conjugated.

Definition 16 A (Zariski) closed subgroup P ⊆ G is called parabolic if P contains
a Borel subgroup of G.

Exercise 17 LetG be a linear algebraic group, B ⊆ G a Borel subgroup and T ⊆ G
a maximal torus.

1. Show that up to conjugation T ⊆ B.
2. Show that restricting characters from B to T induces an isomorphism of character

lattices X(B) ∼= X(T ).

The Weyl group W of G is defined as NG(T )/CG(T ), where NG(T ) and CG(T )

denote the normalizer and centralizer, respectively, of a maximal torus T ⊆ G. The
Weyl group acts on T by conjugation: if w = nCG(T ) for n ∈ NG(T ), then w(t) :=
(ntn−1) for t ∈ T .

Theorem 18 If G is a connected reductive group, then CG(T ) = T for any maximal
torus T ⊆ G. In particular, the Weyl group is given by W = NG(T )/T .

Exercise 19 If G is a connected reductive group, T ⊆ G a maximal torus, and
B ⊆ G a Borel subgroup with T ⊆ B, show that for any w ∈ W the double
coset BẇB is independent of the choice of a representative ẇ ∈ NG(T ). Thus, by
abuse of notation, we will denote this double coset by BwB.

Theorem 20 (Bruhat decomposition) If G is a connected reductive group, T ⊆ G
a maximal torus, and B ⊆ G a Borel subgroup with T ⊆ B, then there is a disjoint
union, i.e., BwB = Bw′B if and only if w = w′ in W,

G =
⊔
w∈W

BwB

In particular,
G/B =

⊔
w∈W

BwB/B.
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Exercise 21 You may want to start with n = 3 or n = 4 in the following problems.

1. Explicitly compute the Bruhat decomposition of GLn (take T to be the maximal
torus of diagonalmatrices and B theBorel subgroup of upper triangularmatrices).

2. Classify all parabolic subgroups in GLn (up to conjugation). (Hint: There is a
relationship between parabolic subgroups inGLn andflags inC

n . Recall that a flag
is an increasing sequence of subspaces of C

n , i.e., {0} = V0 � V1 � . . . � Vk =
C

n . The dimensions di := dim Vi yield an increasing sequence of integers 0 =
d0 < d1 < · · · < dk = n, called the signature of the flag.)

Exercise 22 LetG be a connected reductive group, T ⊆ G a maximal torus, B ⊆ G
a Borel subgroup with T ⊆ B and P ⊆ G a parabolic subgroup with B ⊆ P . Show
that

G/P =
⊔

w∈W/WP

BwP/P

where WP = NP(T )/T is the Weyl group of P .

The closure of B-orbits in G/P are the Schubert varieties (denoted by X (w)).
They play an important role in the study of G/P . The dimension of X (w) equals
the length l(w) of w (i.e., the minimal number of factors needed to write w as a
product of simple reflections). In particular, there exists a unique element w0 of
maximal length in W/WP .

Example 23 Let G = SLn and T be the maximal torus of diagonal matrices con-
tained in the Borel subgroup B of upper-triangular matrices. The Lie algebra g = sln
(i.e., the tangent space Te SLn equipped with the Lie bracket [·, ·]) is the set of
traceless matrices in Mat(n × n) equipped with the commutator bracket [A, B] =
AB − BA. Furthermore, the Lie algebra t of T coincides with the subspace of
diagonal matrices in sln . Observe that the Lie bracket induces a map ad : t →
End(g); A �→ [A, ·] which is a representation of Lie algebras, i.e., ad([A, B]) =
ad(A) ad(B) − ad(B) ad(A) for any A, B ∈ t (check this!). Let ε1, . . . , εn be the
linear forms in t∗ induced by the diagonal entries, i.e., εi (diag(t1, . . . , tn)) = ti and
set εi j = εi − ε j . It is straightforward to show that the Lie algebra decomposes into
eigenspaces as follows

and R = {εi j : 1 ≤ i, j ≤ n, i �= j}. If b is the Lie algebra of B, then

b = t ⊕
⊕
α∈R+

gα
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Fig. 9.2 Illustration of the
root system A2. We identify
the hyperplane {x + y + z =
0} ⊆ R

3 with R
2 via the

basis obtained by applying
the Gram–Schmidt algorithm
to the basis (α1, α2)

where R
3 and R

2 are
equipped with the usual
euclidian scalar products

2

1

1

2

where R+ = {εi j : i < j} and this set is called the set of positive roots. The set
of simple roots S = {αi := εi,i+1 : i = 1, . . . , n − 1} (cf. Fig. 9.2) forms a basis of t∗
(check this!) and induces an isomorphism t∗ ∼= {(x1, . . . , xn) ∈ R

n : x1 + . . . + xn =
0} ⊆ R

n . To any simple root αi one associates a reflection si , namely the linear
transformation on R

n which swaps the coordinates with index i and (i + 1). We
identify si with an element in W = NG(T )/T :

⎛
⎜⎜⎝
Ii−1

0 1
−1 0

In−i−1

⎞
⎟⎟⎠ T ∈ W .

Then W is generated by the si , i.e., W = 〈si : i = 1, . . . , n − 1〉 (check this!). It
straightforwardly follows that W is isomorphic to the group Sn of permutations on
the coordinates of R

n via si �→ (i, i + 1) (transposition swapping i with i + 1).

In general, the Lie bracket induces a natural representation ad : t → End(g); x �→
[x, ·]. There is a set of linear forms, called roots, R ⊆ t∗ such that

g = t ⊕
⊕
α∈R

gα

where gα denotes the linear subspace of eigenvectors of weight α, i.e., the set of
vectors x ∈ g such that [h, x] = α(h)x for all h ∈ t. The Lie algebra b of B can be
written as

b = t ⊕
⊕
α∈R+

gα
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for some subset R+ ⊆ R, called the set of positive roots. There exists a unique basis S
contained in R+ such that all positive roots are linear combinations of elements in S
with nonnegative integer coefficients. The elements of S are called simple roots.

The following fundamental theorem on parabolic subgroups can be found in any
introductory text on algebraic groups. Recall the definition of the Weyl group: W =
NG(T )/T . Let R be the set of roots and let S be the set of simple roots induced by
the choice of the Borel subgroup B.

Theorem 24 The assignment I �→ PI =⊔w∈WI
BwB induces a bijection between

subsets of the set of simple roots S and parabolic subgroups of G which contain B
(here WI denotes the group generated by the simple reflections sα for α ∈ I ).

9.3 Spherical Varieties

Recall the definition of a toric variety:

Definition 25 Let T be an algebraic torus. A normal irreducible T -variety is
called toric variety if it contains an open dense T -orbit.

Spherical varieties can be thought of as a generalization of toric varieties where
one allows also non-abelian group actions. Unfortunately, the straightforward gen-
eralization does not work:

Definition 26 (Incorrect definition) Let G be a connected linear algebraic group. A
normal irreducible G-variety is called spherical if it contains an open dense G-orbit.

Exercise 27 Show that the “incorrect definition” of spherical varieties does not
imply finiteness of the number of orbits, a property one would expect from a gener-
alization of toric varieties. (Hint: Consider the action of GLn on the space of (n × n)-
matrices by left multiplication. Show that the GLn-orbits are classified by matrices
in reduced row echelon form. If n ≥ 2, deduce that, although there is an open GLn

orbit, the number of GLn-orbits is infinite.)

So the definition of spherical varieties is more subtle: Let G be a connected
reductive complex linear algebraic group (this assumption has several implications
which make this choice important: finite generation properties, good representation
theory, cf. Theorem 9).

Definition 28 A normal irreducible G-variety is said to be spherical if it contains
an open orbit under the action of a Borel subgroup of G. (In particular, it contains
an open G-orbit.)

Example 29 Examples of spherical varieties are toric varieties (a Borel subgroup
of (C∗)n is (C∗)n itself).

Another point of view on spherical varieties, important to the theory, is as fol-
lows: First consider the open G-orbit which is a homogeneous space G/H for some
subgroup H of G. Then consider the embedding of G/H in X . So we make the
following definitions:
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Definition 30 A closed subgroup H ⊆ G is called spherical if G/H has a dense
open orbit for a Borel subgroup of G. In this case, G/H is called a spherical homo-
geneous space.

Recall that in Exercise 27, we have seen that an open G-orbit does not guarantee
the finiteness of G-orbits, a property one would expect from a generalization of
toric varieties. It is interesting that one can use this property as a characterization of
spherical homogeneous spaces:

Theorem 31 ([1]) A homogeneous G-space O is spherical if and only if any G-
variety X with an open orbit equivariantly isomorphic to O has finitely many G-
orbits.

Amorphismϕ : X → Y ofG-varieties is called equivariant ifϕ(g · x) = g · ϕ(x)
for any g ∈ G and all x ∈ X .

Definition 32 Suppose G/H is a spherical homogeneous space. An equivariant
open embedding of G/H into a normal irreducible G-variety X is called a spherical
embedding, and X is called a spherical variety.

In particular, the description of spherical varieties splits into two parts:

1. Classify all spherical homogeneous spaces G/H .
2. For a fixed spherical homogeneous space, classify all G-equivariant open embed-

dings G/H ↪→ X into normal irreducible G-varieties.

Historically, the second problem has been answered first by the work of Luna and
Vust [17]. Only recently, the first problem has been answered by work of several
researchers (see [3, 6, 15, 16]).

Exercise 33 Show the following statements:

1. A closed subgroup H ⊆ SL2 is spherical if and only if dim H > 0.
2. Table9.1 shows a list of all spherical subgroups of SL2 (up to conjugation).

(Although spherical varieties with an SL2-action seem to be special, they actually
play a crucial role in the development of spherical varieties. See, for example, [17]
or [8, 14].) Hints: If this is too hard, then verify explicitly that the subgroups given
in Table9.1 are spherical:

a. SL2 /B ∼= P
1 where SL2 naturally acts on P

1,
b. it is enough to show that U1 is spherical (why?) and to do that consider the

natural action of SL2 on A
2,

c. consider the natural action of SL2 on P
1 × P

1 to show that T is a spherical
subgroup of SL2,

d. consider the natural action of SL2 on the symmetric (2 × 2)-matrices to show
that N is a spherical subgroup of SL2.

Exercise 34 A closed subgroup H ⊆ G is called horospherical if it contains a max-
imal unipotent subgroup U of G. Show that horospherical subgroups are spherical.
In particular, flag varieties are spherical. (Hint: Use the Bruhat decomposition.)
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Table 9.1 Classification of spherical subgroups of SL2 (up to conjugation)

H Details

SL2

B Borel subgroup

Uk =
{(

ξ ∗
0 ξ−1

)
: ξ ∈ μk

}
k ∈ N, μk group of kth roots of unity

T Maximal torus

N Normalizer of a maximal torus

9.3.1 The Luna–Vust Theory of Spherical Embeddings

Recall that for a fixed algebraic torus T , all toric embeddings T ↪→ X into a normal
irreducible T -variety can be combinatorially described by polyhedral fans in the
vector space Hom(X(T ), Q). A similar description exists for spherical embeddings
which we now explain. This is called the Luna–Vust theory of spherical embeddings.
Good references for this theory are [13, 17]:

Let G be a connected reductive complex algebraic group and fix a spherical
subgroup H ⊆ G. Let B be a Borel subgroup of G and T a maximal torus of G
contained in B. We now explain how all spherical embeddings G/H ↪→ X can be
described combinatorially.

Definition 35 The combinatorial objects needed in the Luna–Vust theory are listed
in Table9.2. The rank of M is also called the rank of the spherical homogeneous
space G/H , i.e., rk(G/H) = rk(M). Let N := Hom(M, Z) be the dual lattice
of M and note that we have a dual pairing 〈·, ·〉 : N × M → Z. Furthermore,
set MQ := M ⊗ Q and NQ = Hom(M, Q). Recall, that in our context a valuation
is a map ν : C(G/H)∗ = C(G/H) \ {0} → Q which satisfies:

1. ν( f1 + f2) ≥ min{ν( f1), ν( f2)} whenever f1, f2, f1 + f2 ∈ C(G/H)∗;
2. ν( f1 f2) = ν( f1) + ν( f2) for all f1, f2 ∈ C(G/H)∗; and
3. ν(C∗) = 0.

A valuation ν is called G-invariant if ν(g · f ) = ν( f ) for all g ∈ G and f ∈
C(G/H)∗.

As the set of B-semi-invariant rational functions on G/H will appear frequently
below, we introduce the notation C(G/H)(B) for it.

Lemma 36 As G/H has an open B-orbit, a B-semi-invariant rational function f
is determined by its weight χ f up to a scalar multiple. Said in other words: For
any χ ∈ M, there is fχ ∈ C(G/H)(B) (unique up to a scalar multiple) such that b ·
fχ = χ(b) fχ .
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Table 9.2 The Luna–Vust data

Object Definition

Weight lattice M = {χ ∈ X(B) :
∃ f ∈ C(G/H)∗, B-semi-invariant
with b · f = χ(b) f for b ∈ B}

Colors D = {B-invariant prime divisors in G/H}
Valuation cone V = {ν : C(G/H)∗ → Q, G-invariant

valuation}

Table 9.3 The “Luna–Vust data” for the toric case

Object Toric case

Weight lattice M = X(T )

Colors D = ∅

Valuation cone V = NQ

The following interpretation of a valuation ν : C(G/H) → Q (invariant or not)
will be useful:

ρ : {ν : C(G/H) → Q valuation} → NQ; ν �→ [χ �→ ν( fχ )].

Theorem 37 ([4])Themapρ|V : V ↪→ NQ is injective and its image is a polyhedral
cone whose dual cone is simplicial and not necessarily full-dimensional.

Any color D ∈ D induces a valuation νD and by abuse of notation, we will
write ρ(D) := ρ(νD). In general, the map ρ|D : D → NQ is not that well-behaved
(see Exercise 38).

Exercise 38 Find the “Luna–Vust data” for the spherical homogeneous spaces from
Exercise 33. In particular, you should see the following phenomena:

1. SL2 /T : the map ρ : D → N might not be injective;
2. SL2 /N : the image of a color ρ(D) might not be primitive in N ;
3. SL2 /B: the image of a color might even be zero, i.e., ρ(D) = 0.

Example 39 The “Luna–Vust data” of the toric case is listed in Table9.3.

Example 40 Consider the natural action of SL2 on C
2. Let B be the Borel subgroup

of upper triangular matrices, T the maximal torus of diagonal matrices and U the
unipotent radical of B. Denote the standard basis of C

2 by e1, e2. Then SL2 /U ∼=
SL2 ·e1 = C

2 \ {0} and B · e2 = C × C
∗ is the open B-orbit. The rational functions

on SL2 /U are given by C(x, y) = C(A2). It is straightforward to verify that

C(SL2 /U )(B) ∼= {cyk : c ∈ C, k ∈ Z}.
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Fig. 9.3 Illustrating the “Luna–Vust data” of SL2 /U

Hence,M = Zω where ω is the fundamental weight of SL2 induced by the diagonal
elements of T . Clearly D = div(y) is the only B-stable prime divisor in SL2 /U ,
i.e., we only have one colorD = {D} and ρ(D) = α̌|M where α̌ denotes the coroot
associated to the simple root α of SL2 (with respect to our choice of Borel). If we
consider the blowup of A

2 at the origin, we obtain an exceptional SL2-invariant
divisor E which induces an SL2-invariant valuation νE such that ρ(νE ) = α̌|M. In
particular, the ray Q≥0α̌ is contained in the valuation cone V. If we consider the
spherical embedding SL2 /U ↪→ P

2, we see that the line at infinity induces a G-
invariant valuation ν with ρ(ν) = −α̌|M, and thus V = NQ.

One usually illustrates the combinatorial data in a picture (see Fig. 9.3).

Definition 41 We introduce the following “colored” extensions of the notions of
polyhedral cone, face and fan from the toric case.

1. A colored cone is a pair (C,F ) with

a. F ⊆ D,
b. C ⊆ NQ convex cone generated by ρ(F ) and finitely many elements ofV ∩

N ,
c. the relative interior of C intersectsV,
d. C contains no lines and 0 /∈ ρ(F ).

Such colored cones are usually called strictly convex colored cones, but as we are
only interested in strictly convex cones, we will omit the specifier and just speak
of colored cones.

2. A colored face of a colored cone (C,F ) is a pair (C′,F ′) such that

a. C′ is a face of C (in the usual sense),
b. the relative interior of C′ intersects V,
c. F ′ = {D ∈ F : ρ(D) ∈ C′}.

3. A colored fan is a finite set � of colored cones with the following properties:

a. every colored face of a colored cone of � is in �,
b. for all ν ∈ V, there exists at most one colored cone (C,F ) ∈ � such that ν

is in the relative interior of C.
4. The support of a color fan � is the set

⋃
(C,F )(C ∩ V) ⊆ V where (C,F ) runs

through all elements in �.

Let us explain how to associate a colored fan �X to a spherical embedding
G/H ↪→ X .
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Fig. 9.4 The colored fans of SL2 /U ↪→ A
2 and SL2 /U ↪→ P

2

Theorem 42 X is covered by finitely many G-invariant open subvarieties of X
containing a unique closed G-orbit (such varieties are called simple embeddings).

Let X ′ ⊆ X be an open G-invariant subvariety which is a simple embedding
and denote the G-invariant divisors of X ′ by X1, . . . , Xm ′ . Let F ′ be the set of
colors D ∈ Dwhose closure in X contain the closed orbit of X ′.We defineC′ to be the
cone inNQ generated by ρ(D) for D ∈ F ′ and ρ(Xi ) := ρ(νXi ) for i = 1, . . . ,m ′.
Then (C′,F ′) is a colored cone inNQ. Moreover the set of colored cones constructed
this way (together with their colored faces) forms a colored fan, which we denote
by �X .

Theorem 43 (Luna–Vust) The map X �→ �X is a bijection from the isomorphism
classes of spherical G/H-embeddings and the set of colored fans.

Example 44 (Example 40 continued) Clearly SL2 /U ↪→ A
2 is a simple spherical

embedding (the origin is the only closed SL2-orbit). On the other hand the spheri-
cal embedding SL2 /U ↪→ P

2 is not simple (indeed we can cover it with an affine
chart A2 and the complement of the unique SL2 fixed point). The corresponding col-
ored fans are illustrated in Fig. 9.4 (understand how to get them and which colored
fan corresponds to which spherical embedding). Note that the circle means that the
cone Q≥0 is “colored” by the unique color of SL2 /U , i.e., (Q≥0, {D}).

Exercise 45 Use the Luna–Vust theory to classify all spherical embeddings of
SL2 /T and SL2 /N . Draw the corresponding colored fans. Hint: You should find 2
in both cases.

Many results about spherical varieties are known. Unfortunately, due to lack of
time, we won’t be able to dig any deeper.

Theorem 46 A list of selected results:

1. The number of B-orbits is finite;
2. X is complete if and only if any ν ∈ V is contained in some colored cone of �X ;
3. there is a bijective correspondence between G-orbits in X and colored cones

in �X ;
4. a combinatorial smoothness criterion;
5. combinatorial descriptions of the Picard group and the divisor class group;
6. ampleness criterion for divisors;

and many more . . .

To learn more about the features of spherical varieties, the interested reader is
encouraged to consult [26] for further reading.
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9.3.2 The Classification of Spherical Homogeneous Spaces

The classification of spherical homogeneous spaces G/H turns out to be quite hard.
Luna’s brilliant insight in spherical varietiesmade it possible tofind such adescription
from Wasserman’s list of certain spherical varieties of rank 2 [28]. Inspired by it,
Luna [16] formulated a conjectural description and proved it for spherical varieties
of typeA. Only recently Luna’s Conjecture was proven in general with the combined
efforts of several researchers [3, 6, 15]. Unfortunately, time does not permit to give
more details on this exciting topic, instead we will see a complete answer for an
interesting special case.

9.3.3 The Complete Picture in the Horospherical Case

Recall from Exercise 34 that a closed subgroup H ⊆ G is called horospherical
if it contains a maximal unipotent subgroup of G. An exceedingly well written
introduction to horospherical varieties can be found in [19, 20] by Pasquier.

Fix a maximal unipotent subgroup U ⊆ G, a Borel subgroup U ⊆ B of G and a
maximal torus T ⊆ B.

Let us list some fundamental properties of horospherical subgroups. We refer
to [19] for further details and references.

Proposition 47 For a horospherical subgroup H ⊆ G with U ⊆ H, the following
statements hold:

1. the normalizer P := NG(H) is a parabolic subgroup containing B. Let I ⊆ S
be the unique set of simple roots such that P = PI (see Theorem 24);

2. M = {χ ∈ X(P) : χ |H = 1} ⊆ {χ ∈ X(T ) : 〈α̌, χ〉 = 0 for all α ∈ I };
3. H =⋂χ∈M ker(χ);

4. D = {Dα := Bw0sαP/H : α ∈ S \ I } where w0 ∈ W is the longest element in
the Weyl group W = NG(T )/T and sα denotes the simple reflection associated
to the simple root α;

5. P−w0(I ) coincides with the stabilizer of the open B-orbit in G/H;
6. V = NQ.

Theorem 48 ([13,Theorem6.1]) If H ⊆ G isa spherical subgroup, then NG(H)/H
is diagonalizable. In particular, if H contains U, then P/H is a torus where
P := NG(H).

Now, we come to an important geometric characterization of horospherical homo-
geneous spaces.

Recall that a continuous surjective map p : E → X of topological spaces is called
a fiber bundlewith fiber F (another topological space) if X can be covered with open
subsetsU such that there are homeomorphisms ϕ : p−1(U ) → U × F in such a way
that p agrees with the projection onto the first factor (see Fig. 9.5). It is said to be
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Fig. 9.5 Local trivialization
of fiber bundles

Fig. 9.6 Quotient by free
torus action is locally trivial
in Zariski topology

a principal �-bundle, for � a topological group, if in addition E is equipped with a
continuous �-action � × E → E preserving the fibers of p, i.e., if y ∈ p−1(x) for
some x ∈ X , then γ · y ∈ p−1(x) for any γ ∈ �, and acts freely and transitively on
them.

Here is a crucial observation on principal torus bundles in algebraic geometry.

Lemma 49 Let the torus S act freely on the normal irreducible variety E with good
geometric quotient p : E → E/S. Then for each y ∈ E/S there exists an affine open
neighbourhood U ⊆ E/S of x such that the diagram in Fig.9.6 commutes and the
upper left isomorphism is S-equivariant.

Exercise 50 Show that if an algebraic torus S acts freely on a normal irreducible
variety E with good geometric quotient p : E → E/S, then p admits Zariski open
trivializations (i.e., prove Lemma 49). What if we replace S by a connected reduc-
tive G? Hint: For the second part of the question, you may want to consider the
morphism φ : X → Y ; (A, B) �→ (det(A), tr(AB), det(B)) where X = {(A, B) ∈
Mat(2 × 2, C)2 : det(AB − BA) �= 0, tr(A) = tr(B) = 0} and Y = {y ∈ C

3 :
4y1y3 − y22 �= 0}.

Let p : E → X be a �-principal bundle. Suppose that E and X are G-spaces for
another topological group G. Then p : E → X is an equivariant principal �-bundle
if p is equivariant (i.e., p(g · y) = g · p(y) for any g ∈ G and y ∈ E) and the two
actions by� andG commute (usually one assumes that� acts from the right whileG
acts from the left).

Proposition 51 If H ⊆ G is a closed subgroup, then the following statements are
equivalent:

1. H is horospherical, i.e., contains the unipotent radical of a Borel subgroup;
2. G/H is an (algebraic) equivariant principal torus bundle over a flag variety G/P

where G naturally acts on G/H resp. G/P by left translations (the dimension of
the torus fiber coincides with the rank of G/H);

3. H =⋂χ∈M ker χ for some parabolic subgroup P of G and some sublattice M ⊆
X(P).
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Furthermore, P = NG(H) and P = T H = BH for all maximal tori T of B con-
tained in P and all Borel subgroups B of G contained in P.

Proof (1) ⇒ (2): By Theorem 48, S := P/H = NG(H)/H is an algebraic torus. It
acts on G/H by right-translations, i.e.,

S × G/H → G/H ; (pH, xH) �→ xp−1H .

It is straightforward to check that S acts freely on G/H , and thus the result follows
by Lemma 49.

(2) ⇒ (1): Suppose that the fibers of the torus bundle p : G/H → G/P are
isomorphic to the algebraic torus T . As the two actions by G and T commute, the
morphisms ϕt : G/H → G/H ; xH �→ t · xH for t ∈ T areG-equivariant automor-
phisms. It follows by [26, Proposition 1.8] that we may consider T as a subgroup
of NG(H)/H . Set N := NG(H). Let T̃ be the preimage of T under the natural pro-
jection map N → N/H . Note that N → N/H is a morphism of algebraic groups
and that T̃ is a closed subgroup ofG. Since p−1(x P) ∼= T for any x P ∈ G/P , it fol-
lows that a conjugate of P is contained in T̃ , and thus it contains a maximal unipotent
subgroup U . As the natural projection morphism of algebraic groups T̃ → T maps
unipotent elements on unipotent elements, it follows that U is in its kernel which
implies that U ⊆ H .

(1) ⇔ (3) straightforwardly follows from Proposition 47 (3). �
Exercise 52 Show that SL2 /Uk is indeed a torus bundle over SL2 /B.

Exercise 53 Use the Luna–Vust theory to classify all spherical embeddings of
SL2 /U where U ⊆ SL2 is a maximal unipotent subgroup. Draw the correspond-
ing colored fans. Hint: You should find 6.

Proposition 54 ([20, Proposition 1.6]) The assignment which associates to a
horospherical subgroup H ⊆ G the pair (M, I ) (see Proposition 47) induces a
bijection between horospherical subgroups of G and pairs (M, J ) where J ⊆ S
and M ⊆ X(T ) is a sublattice such that 〈α̌, χ〉 = 0 for any α ∈ J and all χ ∈ M.

The horospherical subgroup associated to a pair (M, J ) as in Proposition 54 is
given by H =⋂χ∈M ker χ where M ⊆ X(PJ ).

Exercise 55 Use the combinatorial description of horospherical subgroups to clas-
sify those contained in SL2.

A colored fan � is called toroidal if F = ∅ for any (C,F ) ∈ �. Observe that
in the horospherical case toroidal fans coincide with fans in the toric sense. In this
special case, we have the following explicit construction of horospherical toroidal
varieties:

Proposition 56 ([20, Examples 1.13 (2)]) If H ⊆ G is a horospherical subgroup
containing U and � is a toroidal fan, then the corresponding spherical embed-
ding is G-equivariantly isomorphic to G ×P X� where X� denotes the toric variety
corresponding to the fan � (with acting torus P/H where P = NG(H)).
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In the situation of Proposition 56, recall that P acts on G × X� by p · (g, x) :=
(gp−1, pH · x) with good geometric quotient G ×P X� = (G × X�) /P .

9.4 The Ring of Conditions of a Horospherical Variety

A good reference for the ring of conditions is the classical paper by De Concini and
Procesi [7].

Let G be a connected complex algebraic group and H ⊆ G a closed subgroup
(not necessarily spherical). Consider the homogeneous space G/H .

Recall that two subvarieties X,Y ⊆ G/H are said to intersect properly if either
X ∩ Y = ∅ or each irreducible component of the intersection X ∩ Y has dimen-
sion dim(X) + dim(Y ) − dim(G/H). They are said to intersect transversally if
the intersection X ∩ Y is smooth and has pure dimension dim(X) + dim(Y ) −
dim(G/H).

Theorem 57 (Kleiman’s transversality theorem [12,Corollary 4]) Let X,Y ⊆ G/H
be two irreducible subvarieties. The left translate of X by g ∈ G we denote by gX.

1. There exists a dense open subset U ⊆ G such that gX and Y intersect properly
for each g ∈ U.

2. If X,Y are smooth, then there exists a dense open subset U ⊆ G such that gX
and Y intersect transversally for any g ∈ U.

In particular, if X and Y have complementary dimensions (but are not necessarily
smooth), the intersection gX ∩ Y consists of finitely many points and this number is
constant for generic g ∈ G.

Remark 58 There is a slight strengthening of Kleiman’s transversality theorem
in [7, Sect. 6.1].

Recall that the free abelian groupZk(G/H) = ⊕
X⊆G/H

ZX , where the sum is over

closed irreducible subvarieties of codimension k, is said to be the group of algebraic
cycles of codimension k. Theorem 57 makes it possible to introduce an intersection
pairing between groups of algebraic cycles of complementary codimensions

Zk(G/H) and Zdim(G/H)−k(G/H).

It is enough to define it for irreducible cycles and then extend bilinearly:

Zk(G/H) × Zdim(G/H)−k(G/H) → Z;
(X,Y ) �→ (X · Y ) := #(gX ∩ Y ) (for generic g ∈ G).

Here X,Y ⊆ G/H are assumed to be irreducible subvarieties.
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Definition 59 Two algebraic cycles X,Y ∈ Zk(G/H) are said to be equivalent,
i.e., X ∼ Y , if for any algebraic cycle of complementary codimension
Z ∈ Zdim(G/H)−k(G/H) the intersection products are the same (X · Z) = (Y · Z).
We denote the group of equivalence classes by Ck(G/H) := Zk(G/H)/ ∼ and
consider it as the “group of conditions of dimension dim(G/H) − k”.

Clearly the intersection pairing factors through the equivalence relation, so
that we obtain an intersection pairing on the groups of conditions: Ck(G/H) ×
Cdim(G/H)−k(G/H) → Z. So farC∗(G/H) :=⊕dim(G/H)

k=0 Ck(G/H) is only a group,
but we want to introduce a product on it, so that it becomes a ring. Again, it is
enough to define a product structure for classes of irreducible cycles X ∈ Zk(G/H)

and Y ∈ Zl(G/H) and then extend bilinearly. Here is a naive approach:

Definition 60 Define the intersection product of [X ] and [Y ] where X,Y ⊆ G/H
are two irreducible subvarieties by [X ] · [Y ] := [gX ∩ Y ] for generic g ∈ G.

Unfortunately this definition of an intersection product may not be well-defined
in general (see Exercise 61).

Exercise 61 Show that the naive definition of an intersection product of two
irreducible subvarieties X,Y ⊆ G/H is not well-defined in general. (Hint: Con-
sider G = (C3,+) acting on A

3 by translations. Let H = {0} and compute the inter-
section product of X = {y = 0},Y = {x = yz} ⊆ C

3.)

Proposition 62 ([7]) For a flag variety G/P, the intersection product in
Definition 60 is well-defined and the ring C∗(G/P) can be identified with the Chow
ring A∗(G/P) or with the cohomology ring H∗(G/P, Z).

Led by this observation, De Concini and Procesi showed the remarkable fact that
the intersection product of Definition 60 is well-defined on spherical homogeneous
spaces. Let C be the set of smooth (or complete) spherical embeddings G/H ↪→
X . This set C admits the partial ordering defined such that a spherical embed-
ding G/H ↪→ X1 is greater than G/H ↪→ X2 if there exists an equivariant mor-
phism X1 → X2. De Concini’s and Procesi’s idea is to show that for any X ∈ C
and any algebraic cycle Y ⊆ G/H , there is an X ′ ∈ C with X ≤ X ′ such that the
closure Y of Y in X ′ intersects the boundary of the open G-orbit in X ′ properly.
The existence of such a “good compactification” ensures that if one considers the
embedding X ′ then we may always assume (up to generic translations by G) that the
intersection with Y takes place in the open G-orbit G/H . To get an isomorphism of
rings, we have to consider “good compactifications” of all algebraic cycles at once.

Theorem 63 ([7, Sect. 6.3]) The intersection product from Definition 60 is well-
defined on a spherical homogeneous space G/H and there is a canonical isomor-
phism of graded rings

C∗(G/H) = lim−→
X ′

A∗(X ′) = lim−→
X ′

H∗(X ′, Z)



216 J. Hofscheier

where the limit is taken over complete (or equivalently smooth) spherical embed-
dings G/H ↪→ X ′.

Remark 64 Anycomplete spherical embedding is dominatedby a smoothprojective
toroidal one, and thus they form a cofinal set.

Exercise 65 Explicitly compute the ring of conditions for some spherical homoge-
neous spaces SL2 /H where H ⊆ SL2 is a spherical subgroup. (Hint: In this case,
the rank of the spherical homogeneous space is bounded by 1, and thus there are
only finitely many spherical embeddings, so that we can straightforwardly compute
the direct limit of cohomology rings.)

Exercise 66 Use the ring of conditions of Gr(2, 4) to solve the “4-lines problem”.

9.4.1 The Horospherical Case

From now on let H ⊆ G be a horospherical subgroup containing the unipotent rad-
ical U of a Borel subgroup B. Set P := NG(H) which is a parabolic subgroup
containing B.

Any character α ∈ X(P) induces an action of P on the affine line Cα by p · x =
α(p)x .We obtain an action of P onG × Cα by p · (g, x) = (gp−1, α(p)x). The geo-
metric quotient by this action exists and is denoted by G ×P Cα , i.e., G ×P Cα =
(G × Cα)/P . For the equivalence classes in G ×P Cα we write g � x . The projec-
tion map G ×P Cα → G/P; g � x �→ gP yields an equivariant line bundle on G/P
where G acts on the left, i.e., g′ · (g � x) = (g′g) � x . We write δ(α) := G ×P Cα

and note that these bundles are usually called homogeneous fiber bundles (see [26,
Section2.1]). If we compose the map X(P) → Pic(G/P) with the inclusion M ⊆
X(P), we obtain a map δ : M → Pic(G/P).

The following statement combinatorially describes the cohomology ring of
smooth projective toroidal horospherical varieties. It is a special case of a more
general result.

Theorem 67 ([21, Theorem1.2]) Let X� be a smooth projective toroidal horospher-
ical variety defined by an (uncolored) fan� with rays ρ1, . . . , ρn. Let v1, . . . , vn ∈ N
be the primitive vectors along the rays ρi . Then the cohomology ring H∗(X�, Q) is
isomorphic as an H∗(G/P, Q)-algebra to the quotient of H∗(G/P, Q)[x1, . . . , xn]
by the sum of ideals

〈
x j1 · · · x jk : ρ j1 , . . . , ρ jk do not span a cone of �

〉+〈
c1 (δ(m)) −

n∑
i=1

〈vi ,m〉xi : m ∈ M
〉
,

where c1(δ(m)) ∈ H 2(G/P, Z) denotes the first Chern class of the line bundle δ(m).
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Note that the first ideal in the sum of ideals in Theorem 67 corresponds to the Stanley-
Reisner ideal of the toric variety. The challenge is to find a good description of the
ring in Theorem 67 as we want to take the direct limit over all smooth projective
toroidal fans �.

The following approach is inspired by [5]. To keep notation simple, set MQ =
M ⊗ Q andNQ = HomZ(M, Q). Let � be a smooth projective toroidal fan inNQ.
Amap f : NQ → Q is piecewise polynomial if for any σ ∈ �, themap f |σ : σ → Q

extends to a polynomial function on the linear space spanQ{σ }, i.e., a piece-
wise polynomial function f on � is a collection of compatible polynomial func-
tions fσ : σ → Q. In particular, such a function is continuous. We denote by R�

the set of all piecewise polynomial functions on � which is a ring under pointwise
addition and multiplication. Let S∗(MQ) be the symmetric algebra of the Q-vector
space MQ. Recall that S∗(MQ) can be naturally identified with the polynomial
functions on NQ. Note that R� is a positively graded Q-algebra with graded subal-
gebra S∗(MQ). Indeed, any piecewise polynomial function f = ( fσ )σ∈� uniquely
decomposes into a sum of homogeneous piecewise polynomial functions.

Exercise 68 Let � be a smooth projective toroidal fan in NQ. Show that for any
ray ρ there is a piecewise linear function ϕρ on� which vanishes on all the other rays
and satisfies ϕ(uρ) = 1 where uρ is the primitive ray generator in N of the ray ρ.

Let us write �(1) for the set of rays of a fan � and uρ for the primitive generator
in N of the ray ρ ∈ �(1).

Lemma 69 If� is a smooth projective toroidal fan, then {ϕρ : ρ ∈ �(1)} (where ϕρ

is defined in Exercise 68) forms a basis of R1
� the space of piecewise linear functions

on �.

Exercise 70 Let � be a smooth projective toroidal fan. Show that R� is isomorphic
to the Stanley-Reisner algebra R� , i.e., the quotient ring of Q[Tρ : ρ ∈ �(1)] by the
relations

∏k
i=1 Tρi = 0 whenever ρ1, . . . , ρk are distinct rays which do not generate a

cone of �. (Hint: Clearly
∏k

i=1 ϕρi = 0 whenever ρ1, . . . , ρk do not generate a cone
of �. Therefore, there is a unique algebra homomorphism from R� to R� , which
sends Tρ to ϕρ . Show that this map is an isomorphism.)

We can now reformulate Theorem 67:

Proposition 71 Let X� be a smooth projective toroidal horospherical variety
defined by an (uncolored) fan �. Then the cohomology ring H∗(X�, Q) is iso-
morphic as an H∗(G/P, Q)-algebra to the quotient of H∗(G/P, Q) ⊗ R� by the
ideal

〈
c1 (δ(m)) ⊗ 1 −

∑
ρ∈�(1)

〈uρ,m〉1 ⊗ ϕρ : m ∈ M
〉

=
〈
c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉,

where 〈·,m〉 ∈ S∗(MQ) is a (piecewise) linear function on �.
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Proof The statement is a reformulation of Theorem 67 except the equality of the two
ideals which remains to be shown. Recall from Lemma 69 that the set of piecewise
linear functions {ϕρ : ρ ∈ �(1)} (where ϕρ are defined in Exercise 68) forms a basis
of R1

� . Then the (piecewise) linear function 〈·,m〉 for m ∈ M can be expressed as a
linear combination in this basis, namely 〈·,m〉 =∑ρ∈�(1)〈uρ,m〉ϕρ . �

Wedenote byR the set of all piecewise polynomial functions on smooth projective
toroidal fans in NQ, i.e., R =⋃� R� where the union is taken over all smooth
projective toroidal fans �.

Theorem 72 We have that

C∗(G/H) ⊗ Q ∼= (H∗(G/P, Q) ⊗ R) / 〈c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉 ,

where 〈·,m〉 ∈ S∗(MQ) is a piecewise linear function on any smooth projective
toroidal fan.

Proof For convenience, let us write A := H∗(G/P, Q).
By Theorem 63, we have

C∗(G/H) ⊗ Q =
(
lim−→
X ′

H∗(X ′, Z)

)
⊗ Q = lim−→

X ′
H∗(X ′, Q)

where the limit is taken over all smooth projective toroidal embeddings of G/H
which is a directed set. Indeed, for any two smooth projective toroidal embeddings
with corresponding fans�1, �2, we can find a third smooth projective toroidal fan�

which refines both fans �1 and �2. We introduce the relation � � �′ whenever �′
refines �. Suppose � � �′, so that we obtain an equivariant map X�′ → X� .
Our goal is to understand how the representation of cohomology rings given in
Proposition 71 behaves under this map. By Proposition 71, the cohomology rings
(as A-algebras) are generated by classes of divisors, so that the map corresponding
to X�′ → X� is givenbypullingbackdivisorswhich in turn induces the natural inclu-
sion R� ⊆ R�′ . Let I� := 〈c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉 ⊆ A ⊗ R� . Simi-
larly define I�′ in A ⊗ R�′ . As I� ⊆ I�′ , we obtain the natural map μ�,�′ : (A ⊗
R�)/I� → (A ⊗ R�′)/I�′ . Then ((A ⊗ R�)/I�,μ�,�′) is the direct system yield-
ing the direct limit lim−→ H∗(X ′, Q). Moreover, we obtain two more direct systems,
namely (I�, I� ⊆ I�′) and (A ⊗ R�, A ⊗ R� ⊆ A ⊗ R�′) (for � � �′). Indeed,
we obtain a direct system of exact sequences:

0 → I� → A ⊗ R� → (A ⊗ R�)/I� → 0.

The statement follows by the fact that taking direct limits in the category of modules
is an exact functor, lim−→ A ⊗ R� = A ⊗ R, and lim−→ I� = I , where I denotes the ideal
in the statement. �
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Chapter 10
Linear Recursions for Integer Point
Transforms

Katharina Jochemko

Abstract We consider the integer point transform

σP(x) =
∑

m∈P∩Zn

xm ∈ C[x±1
1 , . . . , x±1

n ]

of a polytope P ⊂ R
n .We show that if P is a lattice polytope then for any polytope Q

the sequence {σkP+Q(x)}k≥0 satisfies amultivariate linear recursion that only depends
on the vertices of P . We recover Brion’s Theorem and by applying our results to
Schur polynomials we disprove a conjecture of Alexandersson (2014).

Keywords Lattice Polytops · Integer point transforms · Valuations · Brison’s
Theorem · Schur polynomials

10.1 Introduction

A polytope is the convex hull of finitely many points in R
n . A polytope is a lattice

polytope if all its vertices lie in the integer lattice Z
n . The integer point transform

of a polytope P is defined by

σP(x) =
∑

m∈P∩Zn

xm ∈ C[x±1
1 , . . . , x±1

n ] ,

where xm denotes xm1
1 · · · xmn

n for all m ∈ Z
n . In this note we study sequences

{σkP(x)}k≥0 of integer point transforms of integer dilates of polytopes P and rel-
atives. We prove the following linear recursion.

Theorem 1 Let Q be a polytope in R
n and let P be a lattice polytope with vertex

set vert(P) = {v1, . . . , vr }. Then the sequence {σkP+Q(x)}k≥0 satisfies the linear
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recursion

σ(k+r)P+Q(x) =
∑

∅�=I⊆[r ]
(−1)1+|I |x

∑
i∈I vi σ(k+r−|I |)P+Q(x)

with characteristic polynomial

χP;Q(X) :=
∏

v∈vert(P)

(X − xv) .

If Q is a lattice polytope, then χP;Q is minimal.

In particular, the recursion only depends on the vertices of P . This improves results
by Alexandersson [2] where it was assumed that P has the integer decomposition
property and Q = {0}.

Employing classical results from valuation theory, in Sect. 10.2 we first prove a
recursion for indicator functions of dilated polytopes. Then, in Sect. 10.3, we apply
these results to integer point transforms and prove Theorem1. We recover Brion’s
Theorem in Sect. 10.4 and by applying our results to Schur polynomials we disprove
a conjecture of Alexandersson [1] in Sect. 10.5.

10.2 Characteristic Functions and Valuations

In this section we prove a linear recursion for indicator functions of integer dilates of
a polytope P . Let P denote the set of polytopes in R

n and let G be an abelian group.
A valuation is a map ϕ : P → G such that ϕ(∅) = 0 and

ϕ(P ∪ Q) = ϕ(P) + ϕ(Q) − ϕ(P ∩ Q) ,

for all P, Q ∈ P such that also P ∪ Q ∈ P. The volume, the number of lattice points
inside a polytope and the integer point transform are examples of valuations. It was
shown byVolland [19] that every valuation satisfies the inclusion-exclusion property.
That is, for polytopes P, P1, . . . , Pr such that P = P1 ∪ · · · ∪ Pr

ϕ(P) =
∑

∅�=I⊆[r ]
(−1)|I |+1ϕ(PI ) ,

where PI := ⋂
i∈I Pi . Stronger even, it follows from a result of Groemer [9], that

if
∑

αi1Pi = 0 for polytopes P1, . . . , Pm and some α1, . . . , αm ∈ Z then
∑

i αiϕ(Pi )
= 0 where 1P denotes the indicator function for every polytope P . A function of
the form

∑
αi1Pi is called a polytopal simple function. By Groemer’s result, every

valuation uniquely defines a homomorphism from the abelian group of polytopal
simple functions to G, that is, every polytope can be identified with its indicator



10 Linear Recursions for Integer Point Transforms 223

function. For valuations on lattice polytopes this was proved by McMullen [12]. It
is well-known that for every affine linear map T : R

n → R
m

1P �→ 1T (P) (10.1)

defines a valuation (see, e.g., [4, Chap. 8]). Using this push forward map we obtain
the following recursion on indicator functions.

Theorem 2 Let P be a polytope in R
n with vertex set vert(P) = {v1, . . . , vr }. Then

1(k+r)P =
∑

∅�=I⊆[r ]
(−1)1+|I |1Qk,r

I

for all k ≥ 0 where Qk,r
I = (k + r − |I |)P + ∑

i∈I vi .

Proof We first assume that P is the (d − 1)-dimensional standard simplex �d−1 =
{x ∈ R

d : x1 + · · · + xd = 1, x1, . . . , xd ≥ 0}. Its (k + d)th dilate is given by

(k + d)�d−1 = {x ∈ R
d : x1 + · · · + xd = d + k, x1, . . . , xd ≥ 0}

For all I ⊆ [d], let

PI = (k + d)�d−1 ∩ {x ∈ R
d : xi ≥ 1 for all i ∈ I } .

Then PI = ⋂
i∈I P{i} for all ∅ �= I ⊆ [r ]. As in [15] we observe that (k + d)�d−1 =

P∅ = ⋃
i∈[d] P{i} for all k ≥ 0. Therefore, by inclusion-exclusion,

1(k+d)�d−1 =
∑

∅�=I⊆[d]
(−1)1+|I |1PI

and we finish the proof of this case by observing that PI = (k + d − |I |)�d−1 +∑
i∈I ei .
For the general case, we recall that every polytope is an affine linear projection

of a standard simplex and, thus, the claim follows by applying the push forward
map (10.1). �

For fixed Q ∈ P, 1P �→ 1P+Q defines a valuation (see, e.g., [16]) where
P + Q = {p + q : p ∈ P, q ∈ Q} is the Minkowski sum. The family of all poly-
topal simple functions forms an algebra where the multiplicative structure is given
by the Minkowski sum of polytopes: 1P � 1Q := 1P+Q for all polytopes P and Q.
Another proof of Theorem2 can be obtained from the following result which was
proved in [11]. See also [14] for related material.

Theorem 3 ([11, Lemma 5]) Let P be a polytope with vertex set vert(P) =
{v1, . . . , vr }. Then (

1P − 1v1
)
� · · · �

(
1P − 1vr

) = 0 . (10.2)
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Proof (2nd proof of Theorem2) The proof follows from Theorem3 by expanding
Eq. (10.2) and multiplying both sides with 1kP . �

By the discussion above, Theorem2 is equivalent to the following.

Theorem 4 Let P be a polytope in R
n with vertex set vert(P) = {v1, . . . , vr }, and

let ϕ : P → G be a valuation. Then

ϕ((k + r)P) =
∑

∅�=I⊆[r ]
(−1)1+|I |ϕ(Qk,r

I )

for all k ≥ 0 where Qk,r
I = (k + r − |I |)P + ∑

i∈I vi .

10.3 A Multivariate Recursion

A sequence a = {ak}k≥0 of elements in C(x1, . . . , xn) satisfies a linear recursion of
order d ≥ 1 if there are c1, . . . , cd ∈ C(x1, . . . , xn), cd �= 0, such that

ak =
d∑

j=1

c jak− j

for all k ≥ d. The corresponding characteristic polynomial χc is defined as Xd −∑d
j=1 c j X

d− j ∈ C(x1, . . . , xn)[X ]. The polynomialχc is called minimal if for every
vector c′ = (c′

1, . . . , c
′
d ′) corresponding to a linear recursion of a we have χc|χc′ .

Since C(x1, . . . , xn)[X ] is a principal ideal domain a uniquely determined minimal
polynomial exists.

We are now ready to proof Theorem1.

Proof (Proof of Theorem1) Let r = |vert(P)| be the number of vertices of P . Since
the maps P �→ P + Q and also P �→ σP(x) define valuations, by Theorem4

σ(k+r)P+Q(x) =
∑

∅�=I⊆[r ]
(−1)1+|I |σ(k+r−|I |)P+∑

i∈I vi+Q(x)

=
∑

∅�=I⊆[r ]
(−1)1+|I |x

∑
i∈I vi σ(k+r−|I |)P+Q(x) ,

where the last equation follows by observing that σP+v(x) = xvσP(x) for all v ∈ Z
n .

We observe that χP;Q is the characteristic polynomial of this linear recursion.
Now let Q be a lattice polytope and suppose that χP;Q is not minimal. Then, for

some vertex u of P , {σkP+Q(x)}k≥0 satisfies a linear recursion with characteristic
polynomial

∏
v∈vert(P)\{u}(X − xv). That is
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σ(k+r)P+Q(x) +
|vert(P)|−1∑

j=1

(−1) j e j ({xv : v ∈ vert(P) \ {u}})σ(k+r− j)P+Q(x) = 0

where e j denotes the j th elementary symmetric polynomial in |vert(P)| − 1 vari-
ables. Now let v be a vertex of Q such that u + v is a vertex of P + Q. Then (k +
r)u + v is a vertex of (k + r)P + Q and thus x (k+r)u+v appears as a summand
in σ(k+r)P+Q(x). However, it does not appear in
e j ({xv : v ∈ vert(P) \ {u}})σ(k+r− j)P+Q(x) for any 1 ≤ j ≤ |vert(P)| − 1. To see
that, it suffices to argue that (k + r)u + v is not contained in (k + r − j)P + Q +∑ j

l=1 vl for any choice of v1, . . . , v j ∈ vert(P) \ {u}. For that, let � : R
n → R be

a linear functional such that �(u) > �(p) for all p �= u in P and �(v) > �(q) for
all q �= v in Q. Then �((k + r − j)p + q + ∑ j

l=1 vl)=(k + r − j)�(p) + �(q) +∑ j
l=1 �(vl) < (k + r − j)�(u)

+ �(v) + j�(u) = �((k + r)u + v) for all p ∈ P and q ∈ Q and the conclusion fol-
lows. �

Every linear map f : R
n → R

l with the property that f (Zn) ⊆ Z
l induces an

algebra homomorphism

f̄ : C
[
x±1
1 , . . . , x±1

n

] → C
[
x±1
1 , . . . , x±1

l

]

xm �→ x f (m)

As a consequence of Theorem1 we therefore obtain the following.

Proposition 5 Let Q be a polytope in R
n and P be a lattice polytope with

vertex set vert(P), and let f : R
n → R

l a linear map such that f (Zn) ⊆ Z
l .

Then { f̄ (σkP+Q(x))}k≥0 satisfies a linear recursion with characteristic polynomial

χ
f
P;Q(X) :=

∏

v∈vert(P)

(X − x f (v)).

The following two examples show that the minimality of a characteristic polyno-
mial is not necessarily preserved under affine transformations or taking Minkowski
sums.

Example 6 If Q in Theorem1 is not a lattice polytope then χP;Q is not necessar-
ily minimal. A counterexample is given by the lattice segment P = [0, 1] and the
point Q = {(0.5, 0.5)} in R

2. In that case σkP+Q ≡ 0 is constant.

Example 7 (Ehrhart polynomials) For f : R
n → R

0 and f ≡ 0 we obtain
f̄ (σkP(x)) = |kP ∩ Z

n| and thus recover the Ehrhart function counting lattice points
in integer dilates of P . If P is a lattice polytope then this function is known to agree
with a polynomial of degree dim P [7]. Therefore the order of the minimal polyno-
mial of the sequence is dim P as was demonstrated in [15] and is thus in general
smaller than |vert(P)|.
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These examples motivate the following question.

Question 8 What are necessary and sufficient conditions on Q and on f that guar-
antee that χ f

P;Q is minimal?

10.4 Brion’s Theorem

In this section we provide a proof of Brion’s Theorem using the recursion given
in Theorem1. For a polytope P ⊆ R

n and a vertex v of P the tangent cone Kv is
defined as {v + w : v + εw ∈ P for 0 < ε � 1}. If the polytope P has rational edge
directions, in particular, if it is a lattice polytope, then the integer point transform
of Kv is a rational function.

Theorem 9 (Brion’s Theorem [6]) Let P be a lattice polytope with vertex set
vert(P). Then

σP(x) =
∑

v∈vert(P)

σKv(x)

as rational functions.

The following is an immediate consequence of [5, Lemma 13.5.]

Lemma 10 ([5]) Let u1, . . . , uk ∈ Z
n such that the cone K := cone(u1, . . . , uk)

generated by u1, . . . , uk is pointed. Then

σK (x) =
∑

m∈K∩Zn

xm

is a rational function and converges absolutely for all x
in {x ∈ C

n : |xui | < 1 for i = 1, . . . , k}.
A further ingredient for our proof of Brion’s Theorem is the followingwell-known

result (see, e.g., [17, Chap. 5]).

Lemma 11 Let {an}n∈N be a sequence of elements of a field K that satisfy a linear
recursion of order d with characteristic polynomial

d∏

i=1

(X − ri ).

If all roots r1, . . . , rd are distinct then there are α1, . . . , αd ∈ K such that

an =
d∑

i=1

αi r
n
i , for all n ∈ N.
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Proof (Proof of Theorem9) By Theorem1 and Lemma11 there exist
cv ∈ C(x1, . . . , xn) for all v ∈ vert(P) such

σkP(x) =
∑

v∈vert(P)

cvxkv (10.3)

for all k ≥ 0. Our goal is to show that cw · xw = σKw(x) as rational functions for
all w ∈ vert(P), or, equivalently, that cw equals the integer point transform of the
tangent cone K̃0 of the vertex 0 of the translated polytope P − w. Equation (10.3) is
equivalent toσk(P−w)(x) = ∑

v∈vert(P) cvxk(v−w). As k goes to infinityσk(P−w)(x) con-
verges absolutely to σK̃0

(x) on WK̃0
= {x ∈ C

n : |xv−w| < 1 for all
v ∈ vert(P) \ {w}} by Lemma10. On the other hand,

∑
v∈vert(P) cvxk(v−w) converges

to cw. Thus σK̃0
(x) and cw coincide on WK̃0

and are therefore the same as rational
functions. �

10.5 Schur Polynomials

In this section we apply our results to Schur polynomials.
A partition is a vector λλλ = (λ1 ≥ λ2 ≥ · · · ≥ λn) of weakly decreasing nonneg-

ative integers. The number of strictly positive entries λi is called the length of λλλ. A
partitionμμμ is smaller than a partitionλλλwith respect to the inclusion order ifμi ≤ λi

for all i . The partitionμμμ is smaller than a partition λλλ with respect to the domination
order, denoted λλλ � μμμ, if

∑n
i=1 λi = ∑n

i=1 μi and
∑k

i=1 λi ≥ ∑k
i=1 μi for all k. A

skew Young diagram of shapeλλλ/μμμ is an axes-parallel arrangement of unit squares in
the plane centered at the coordinates

{
(i, j) ∈ Z

2 : μi < j ≤ λi
}
. A semi-standard

Young tableau is a Young diagram together with a filling of the boxes with natural
numbers such that the numbers are strictly increasing in each column and weakly
increasing in every row. Let T

n
λλλ/μμμ denote the set of semi-standard Young tableaux

filled with numbers in [n] = {1, 2, . . . , n}. For every T in T
n
λλλ/μμμ let w(T ) be the vec-

tor t = (t1, . . . , tn) where ti is the number of boxes filled with i . The vector w(T )

is called the weight of T . The Kostka coefficient Kλλλ/μμμ,w equals the number of
tableaux of shape λλλ/μμμ with weight w. In particular, Kλλλ/μμμ,w > 0 if and only if there
is T ∈ T

n
λλλ/μμμ with w(T ) = w. The skew Schur polynomial of shape λλλ/μμμ is defined

as
sλλλ/μμμ(x) =

∑

T∈Tn
λλλ/μμμ

xw(T ) ∈ C[x±1
1 , . . . , x±1

n ] .

In [1] Alexandersson proved the following recursion for Schur polynomials.

Theorem 12 ([1, Theorem 1]) Let n be a natural number and let κκκ,λλλ,μμμ,ννν be
partitions of length atmost n such thatλλλ ⊇ μμμ andκκκ + kλλλ ⊇ ννν + kμμμ for some positive
integer k. Then there is a natural number r such that the sequence {sκκκ+lλλλ/ννν+lμμμ(x)}∞l=r
satisfies a linear recursion with characteristic polynomial
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Fig. 10.1 Gelfand–Tsetlin patterns

χ(X) =
∏

T∈Tn
λλλ/μμμ

(
X − xw(T )

)
.

Furthermore, in [1] the following conjecture concerning the minimal polynomial
was stated. For every vectorw letw denote the vector obtained fromw by rearranging
its coordinates in non-increasing order.

Conjecture 13 ([1, Conjecture 25]) Let κκκ,λλλ,μμμ,ννν be as in Theorem12 and let

W = {w ∈ N
n : Kλλλ/μμμ,w > 0 and w � λλλ − μμμ} .

Then, for sufficiently large r , {sκ+lμ/λ+lν(x)}∞l=r satisfies a linear recursion with min-
imal polynomial

χ(X) =
∏

w∈W

(
X − xw)

.

We use Theorem1 and a well-known correspondence between elements in T
n
λλλ/μμμ

and lattice points in the Gelfand–Tsetlin-Polytope GLλλλ/μμμ to improve Theorem12
and to given an example in which the polynomial in Conjecture13 is not minimal
thus refuting the conjecture.

There is a one-to-one correspondence between semi-standard Young tableaux
and Gelfand–Tsetlin patterns. A Gelfand–Tsetlin pattern is a rectangular array of
nonnegative real numbers {xi, j } i=1,...,n+1

j=1,...,n
arranged as in Fig. 10.1 such that the entries

are weakly increasing in north-east and south-east direction, that is xi, j ≤ xi+1, j+1

for all i, j and xi, j ≤ xl, j for all i > l. For fixed top and bottom rows the family of
Gelfand–Tsetlin patterns forms a polytope, the Gelfand–Tsetlin polytope, which
belongs to the class of marked order polytopes introduced by Ardila, Bliem and
Salazar [3]. There is a well-known one-to-one correspondence between elements
of T

n
λλλ/μμμ and integer valued Gelfand–Tsetlin patterns with top row λλλ and bottom

row μμμ, that is, lattice points in the corresponding Gelfand–Tsetlin polytope GLλλλ/μμμ.
Via this correspondence, the weight function can be represented as a linear function
on GLλλλ/μμμ, namely for every Gelfand–Tsetlin pattern x = {xi, j } the i th coordinate of
the weight w(x) equals

∑n
k=1(xi,k − xi+1,k) for all 1 ≤ i ≤ n. Further details may

be found in [18]. It follows that

sλλλ/μμμ(x) =
∑

p

xw(p) ,

where p is over all lattice points in GLλλλ/μμμ.
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As a corollary of Theorem1 we obtain the following.

Corollary 14 Let n be a natural number and let κκκ,λλλ,μμμ,ννν be partitions of length at
most n such thatλλλ ⊇ μμμandκκκ + kλλλ ⊇ ννν + kμμμ for somepositive integer k. Let V be the
set of vertices of GLλλλ/μμμ. Then there is an integer r � 0 such that {sκκκ+lλλλ/ννν+lμμμ(x)}∞l=r
satisfies a linear recursion with characteristic polynomial

χ(X) =
∏

v∈V

(
X − xw(v)

)
.

Proof Let f = (λλλ,μμμ) and g = (κκκ,ννν). Then there is an r � 0 such that if fi < f j
then r fi + gi < r f j + g j for all i �= j . In particular, one can find a permutation σ ∈
S2n such that

fσ(1) ≤ fσ(2) ≤ · · · ≤ fσ(2n) and r fσ(1) + gσ(1) ≤ · · · ≤ r fσ(2n) + gσ(2n) .

Then, by Theorem [8, Theorem 2.10],

GLκκκ+lλλλ/ννν+lμμμ = GLκκκ+rλλλ/ννν+rμμμ + (l − r)GLλλλ/μμμ

for all l ≥ r . The claim now follows from Proposition5 since the weight function w
is linear. �

Since typically there are more lattice points in GLλλλ/μμμ than vertices, Corollary14
shows that the characteristic polynomial given in Theorem12 is in general not mini-
mal. The next example shows that also the polynomial given in Conjecture13 is not
minimal in general, thus refuting it.

Example 15 Let n = 3, λλλ = (5, 3, 1) and μμμ = (3, 0, 0). Consider the skew Young
tableau T and its corresponding Gelfand–Tsetlin pattern p depicted in Fig. 10.2.
Then

w(T ) = w(p) = (4, 2, 0) � (3, 2, 1) = λλλ − μμμ .

3

3 3

3

2

2 1 3 5

0 1 4

0 0 3

0 0 3

Fig. 10.2 The skew Young tableau T in Example15 and its corresponding Gelfand–Tsetlin pat-
tern p
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From the face structure studied in [10, 13] it follows that the coordinates of any
vertex of GLλλλ/μμμ are in the set {0, 1, 3, 5}. Let x = {xi, j } be a Gelfand–Tsetlin pattern
that is a vertex of GLλλλ/μμμ. Then x4,1, x4,2 and x3,1 are 0. Furthermore, x2,1 ∈ {0, 1}.
If x2,1 = 0, then the sum of entries of the first row of x is odd and the sum of entries
of the second is even, thereforew(x)1 is odd andw(x) �= (4, 2, 0). On the other hand,
if x2,1 = 1, then x3,2 ∈ {1, 3} and in that casew(x)2 is odd and againw(x) �= (4, 2, 0).
In summary, (4, 2, 0) ∈ W is not the weight of a vertex of GLλλλ/μμμ and therefore

∏

w∈W

(
X − xw)

�

∏

v∈V

(
X − xw(v)

)
.

Therefore, by Corollary14,
∏

w∈W (X − xw) cannot be the minimal polynomial.

Remark 16 To verify the counterexample given in Example15, one can also use [2,
Proposition 6].
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Chapter 11
Schubert Calculus on Newton–Okounkov
Polytopes

Valentina Kiritchenko and Maria Padalko

Abstract A Newton–Okounkov polytope of a complete flag variety can be turned
into a convex geometric model for Schubert calculus. Namely, we can represent
Schubert cycles by linear combinations of faces of the polytope so that the intersection
product of cycles corresponds to the set-theoretic intersection of faces (whenever
the latter are transverse). We explain the general framework and survey particular
realizations of this approach in types A, B and C .

Keywords Schubert calculus · Mitosis · Gelfand-Zetlin polytopes

11.1 Introduction

Theory of Newton–Okounkov convex bodies [12, 19] allows us to apply ideas of
toric geometry in the non-toric setting. In this paper, we explore non-toric applica-
tions of polytope rings (see Sect. 11.2 for a definition) introduced by Khovanskii and
Pukhlikov [25]. With a convex polytope P ⊂ R

d , they associated a graded commu-
tative ring (the polytope ring):

RP =
d⊕

i=0

Ri
P

that has Poincaré duality. The polytope ringswere originally used to give a convenient
functorial description of the cohomology rings of smooth toric varieties. In this
case, P is always a simple lattice polytope, that is, all vertices of P belong toZd ⊂ R

d ,
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and only d edges meet at every vertex of P . In [10], Kaveh noted that polytope
rings can also be used for a partial description of the cohomology rings of spherical
varieties. In this case, P is still a lattice polytope but not necessarily simple.

For simple polytopes, every face � ⊂ P can be naturally identified with an ele-
ment x� ∈ RP so that

x�x�′ = x�∩�′

for any two transverse faces� and�′. This is no longer true for non-simple polytopes,
that is, individual faces of P do not have natural counterparts in RP . However, it is
still possible to identify every element of RP with a linear combination of faces
of P so that the product in the polytope ring corresponds to the intersection of faces.
In [14], the first author, Smirnov and Timorin developed a general framework for
such calculus on polytopes, and studied its applications to Schubert calculus on
Gelfand–Zetlin polytopes in type A. In this paper, we mainly consider applications
to Schubert calculus in types B and C .

Representation theory of classical groups is a source of several interesting fami-
lies of lattice convex polytopes. For SLn(C) (type A), there is a well-known family
of Gelfand–Zetlin (GZ) polytopes GZλ. Here λ := (λ1, . . . , λn) ∈ Z

n runs through
dominant weights of SLn(C), that is, λ1 ≥ λ2 ≥ · · · ≥ λn . Originally, GZ polytopes
were constructed using representation theory, namely, lattice points in the polytope
GZλ parameterize the vectors in a special basis in the irreducible representation Vλ

of SLn(C) with the highest weight λ (see [21] for a survey on GZ bases). In con-
vex geometric terms, the GZ polytope GZλ ⊂ R

d , where d := n(n−1)
2 , is defined as

the set of all points (z11, z
1
2, . . . , z

1
n−1; z21, . . . , z2n−2; . . . ; zn−1

1 ) ∈ R
d that satisfy the

following interlacing inequalities:

λ1 λ2 λ3 . . . λn

z11 z12 . . . z1n−1
z21 . . . z2n−2

. . .
. . .

zn−2
1 zn−2

2
zn−1
1

(GZA)

where the notation
a b
c

means a ≥ c ≥ b (the table encodes 2d inequalities). Figure11.1 shows the 3-
dimensional GZ polytope for n = 3 and λ = (3, 0,−3). Note that GZ polytopes
are not simple.

GZ polytopes in types B, C and D were defined in [1] (see Sect. 11.2.2 for defini-
tions in types B and C) and are related to representation theory of SO2n+1(C), Sp2n
and SO2n(C), respectively. They are special cases of string polytopes introduced
by Berenstein–Zelevinsky and Littelmann [20]. There are other families of poly-
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Fig. 11.1 GZ polytope in
type A for n = 3
and λ = (3, 0,−3)

topes in representation theory such as Nakashima–Zelevinsky polyhedral realiza-
tions of crystal bases and Feigin–Fourier–Littelmann–Vinberg polytopes. They have
representation-theoretic meaning similar to that of string polytopes but are not com-
binatorially equivalent to the latter. All these polytopes were exhibited as Newton–
Okounkov polytopes of complete flag varieties for certain geometric valuations [3,
4, 6, 11, 17] (see Sect. 11.2.3 for more details).

For G = SLn(C), the complete flag variety G/B (here B ⊂ G denotes the sub-
group of upper-triangular matrices) can be thought of as a variety of complete flags
of subspaces ({0} ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V n−1 ⊂ C

n) where dim V i = i , and there
are no gaps. There are similar descriptions of complete flag varieties G/B for other
classical groups G (see Sect. 11.2.3). Recall that globally generated line bundles Lλ

on G/B are in bijective correspondence with irreducible representations Vλ of G so
that H 0(Lλ,G/B) � V ∗

λ [2, Proposition 1.4.5]. Here λ runs through the dominant
weights of G. We denote by degλ(G/B) the degree of the image of G/B under the
map G/B → P(Vλ) = P(H 0(Lλ,G/B)∗).

In [10], polytope rings of string polytopes were identified with the cohomology
rings of complete flag varieties. More generally, string polytope in this description
can be replaced with any linear family (in the sense of [13]) of convex polytopes Pλ

parameterized by the dominant weights λ whenever the following identity holds:

Vol(Pλ) = d! degλ(G/B) (11.1)

where d := dimG/B. We regard both sides of this identity as polynomials in λ. In
particular, polytopes Pλ yield an analog of Kushnirenko’s theorem for G/B.

Since Newton–Okounkov polytopes of line bundles on G/B by construction sat-
isfy identity (11.1) they can be used tomodel Schubert calculus. Recall that the coho-
mology ring H∗(G/B,Z) has a special basis of Schubert cycles [Xw] with striking
positivity properties. Namely, the structure constants (i.e., the coefficients cuvw in the
decomposition [Xw][Xv] = ∑

u c
u
vw[Xu]) are always non-negative. However, no enu-

merative meaning (in the spirit of Littlewood–Richardson rule for Grassmannians)
of these coefficients is known. Polytope rings provide a new framework for combina-
torial interpretation of structure constants. An important task is to find presentations
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of Schubert cycles in polytope rings by linear combinations of faces with positive
coefficients. Another task is to find Newton–Okounkov polytopes for which these
presentations have especially simple combinatorics. It is tempting to use Grossberg–
Karshon cubes [7, 8] since they are combinatorial cubes. However, there are might
be issues with positivity, that is, some Schubert cycles will be represented by linear
combinations of faces with negative coefficients (see Example10).

There is an algorithm (geometric mitosis) for finding positive presentations of
Schubert cycles by faces using convexgeometric analogs ofDemazure operators from
representation theory [15, 16]. In the present paper, we describe geometric mitosis in
more combinatorial terms, outline its applications and formulate conjectures. For GZ
polytopes in type A, this algorithm reduces toKnutson–Millermitosis on pipe dreams
and was used in [14]. In types B and C , geometric mitosis reduces to a different
combinatorial rule that conjecturally yields presentations of Schubert cycles by faces
of GZ polytopes in respective types. In particular, 4-dimensional GZ polytope in
type C2 can be used to model Schubert calculus on the variety of isotropic flags
inC4 [24].Another convex geometricmodel for the sameflag varietywas constructed
in [9] using a different string polytope in type C2.

11.2 Preliminaries

In this section, we recall the definitions of polytope rings, GZ polytopes and flag
varieties in types B and C . We discuss the relationship between the polytope rings
of GZ polytopes and cohomology rings of flag varieties. We also define Newton–
Okounkov polytopes of flag varieties.

11.2.1 Polytope Ring

Let L ⊂ R
d be a lattice, and P ⊂ R

d a convex polytope whose vertices lie in L .
We say that P is a lattice polytope with respect to L . By the standard lattice Z

d

wemean the lattice {(x1, . . . , xd) ∈ R
d | xi ∈ Z for all i = 1, . . . , d}. We choose the

translation invariant volume form on R
d so that the covolume of L is 1.

Recall that two convex polytopes P and Q are called analogous if they have the
same normal fan, i.e. there is a one-to-one correspondence between the faces of P
and the faces of Q such that any linear functional, whose restriction to P attains its
maximal value at a given face F ⊆ P has the property that its restriction to Q attains
its maximal value at the corresponding face of Q.

Denote by SP the set of all polytopes analogous to P . This set can be endowed
with the structure of a commutative semigroup using Minkowski sum

P1 + P2 = {x1 + x2 ∈ R
d | x1 ∈ P1, x2 ∈ P2}
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It is not hard to check that this semigroup has cancelation property. We can also
multiply polytopes in SP by positive real numbers using dilation:

λP = {λx | x ∈ P}, λ ≥ 0.

Hence, we can embed the semigroup of convex polytopes into its Grothendieck
groupVP , which is a real vector space. The elements ofVP are called virtual polytopes
analogous to P .

On the vector space VP , there is a homogeneous polynomial volP of degree d,
called the volume polynomial. It is uniquely characterized by the property that its
value volP(Q) on any convex polytope Q ∈ SP is equal to the volume of Q.

Let �P be a lattice in VP generated by some lattice polytopes (with respect to L)
analogous to P (we do not assume that �P contains all lattice polytopes analogous
to P). The symmetric algebra Sym(�P) of�P can be thought of as the ring of differ-
ential operators with constant integer coefficients acting on R[VP ], the space of all
polynomials on VP . If D ∈ Sym(�P) andϕ ∈ R[VP ], thenwewrite Dϕ ∈ R[VP ] for
the result of this action. Define AP as the homogeneous ideal in Sym(�P) consisting
of all differential operators D such that D volP = 0. Set RP = Sym(�P)/AP . This
ring is called the polytope ring associated with the polytope P and the lattice �P .

Example 1 Let L = Z
d be the standard lattice, and P an integrally simple lattice

polytope (that is, only d edges meet at every vertex of P , and primitive vectors on
these edges span L over Z). Let �P be the lattice in VP generated by all lattice
polytopes (with respect to L) analogous to P . Then the ring RP is isomorphic to the
Chow (or cohomology) ring H∗(XP ,Z) of the smooth toric variety XP associated
with the normal fan of P [25].

When P is simple, every facet � ⊂ P defines a differential operator ∂� ∈ RP

(see [14, Sect. 2.3] for the details). Recall that the closures of torus orbits in XP are
in bijective correspondence with faces of P . They also give a generating set in the
cohomology ring H∗(XP ,Z). Every face F = �1 ∩ · · · ∩ �k can be identified with
the operator [F] = ∂�1 · · · ∂�k ∈ RP . Using linear relations between ∂� in RP we can
compute products in H∗(XP ,Z) by intersecting faces of P .

For instance, if P ⊂ R
2 is the trapezoid with vertices (0, 0), (1, 0), (0, 1), (1, 2),

then the corresponding toric variety XP is the blow-up of CP2 at one point. The
edge �1 = {x = 0} corresponds to the exceptional divisor E ⊂ XP . The other edges
are �2 = {y − x = 1}, �3 = {x = 1} and �4 = {y = 0}. There are two linear rela-
tions between ∂�i . Namely, the parallel translations along x and y axes do not
change the area of P , hence, ∂�1 + ∂�2 = ∂�3 and ∂�2 = ∂�4 . In particular, the iden-
tity [E]2 = −[pt] in H∗(XP ,Z) can be obtained as follows:

[�1]2 = [�1]([�3] − [�2]) = [�1 ∩ �3] − [�1 ∩ �2] = −[pt].

Example 2 Let L = Z
d , and P theGZ polytope in type A corresponding to a strictly

dominant λ = (λ1, . . . , λn) (that is, λ1 > λ1 > · · · > λn). Let�P be the lattice in VP

generated by all GZ polytopes Pλ for all dominant λ. Then the ring RGZ := RP is
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isomorphic to the cohomology ring H∗(GLn(C)/B,Z) of the complete flag variety
in type A [10].

Since the GZ polytope is not simple, there is no correspondence between individ-
ual faces of P and elements of H∗(GLn(C)/B,Z). However, it is possible to identify
every element of H∗(GLn(C)/B,Z)with a linear combination of faces of P (see [14,
Sect. 2] for more details). Again, we can compute all products in H∗(GLn(C)/B,Z)

by intersecting faces of P (see [14, Sect. 2.4] for an example of such computations).

Inwhat follows, L will be a sublattice of 1
2Z

d := {(x1, . . . , xd) |2xi ∈ Z for all i =
1, . . . , d}. We always compute volumes of faces of P with respect to the lattice L .
More precisely, if F ⊂ P is a face, and RF is its affine span then the volume of the
face is computed using the volume form on RF normalized so that the covolume
of L ∩ RF is 1.

11.2.2 GZ Polytopes in Types B and C

Letλ = (λ1, . . . , λn)be a non-increasing collection of non-negative integers. Putd =
n2. Denote coordinates in R

d by (x11 , . . . , x
1
n ; y11 , . . . , y1n−1; . . . ; xn−1

1 , xn−1
2 , yn−1

1 ;
xn1 ). For every λ, define the symplectic GZ polytope SGZλ ⊂ R

d for Sp2n(C) by the
following interlacing inequalities:

λ1 λ2 λ3 . . . λn 0
x11 x12 . . . x1n

y11 y12 . . . y1n−1 0
x21 . . . x2n−1

y21 . . . y2n−2 0
. . .

...
...

xn−1
1 xn−1

2
yn−1
1 0

xn1

GZC

Again, every coordinate in this table is bounded from above by its upper left neighbor
and bounded from below by its upper right neighbor (the table encodes 2d inequal-
ities). We regard SGZλ as a lattice polytope with respect to the standard lattice Zd .
Roughly speaking, SGZλ is the polytope defined using half of the GZ pattern (GZA)

for SL2n(C).

Example 3 The polytope SGZλ ⊂ R
4 for Sp4(C) is given by 8 inequalities:

λ1 ≥ x11 ≥ λ2; λ2 ≥ x12 ≥ 0; x11 ≥ y11 ≥ x12 ; y11 ≥ x21 ≥ 0.

It is not hard to compute the volume polynomial of SGZλ:
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volSGZ (λ1, λ2) = 1

6
λ1λ2(λ1 − λ2)(λ1 + λ2).

This volume times 4! is equal to the degree degλ(Sp4(C)/B) of the isotropic flag
variety.

The polytope ring RSGZ defined by the family of symplectic GZ polytopes is
isomorphic to the cohomology ring H∗(Sp2n(C)/B,Z). Indeed, by [10] it is iso-
morphic to the subring of H∗(Sp2n(C)/B,Z) generated by the first Chern classes
of line bundles Lλ corresponding to the weights of Sp2n(C). Since the torsion index
of Sp2n(C) is 1, this subring coincides with the whole ring (see [26] for the details
on torsion indices of classical groups).

The odd orthogonal GZ polytope OGZλ ⊂ R
d for SO2n+1(C) is defined using

the same pattern (GZC) but a different lattice LB ⊂ R
d . Namely, LB consists

of all points (x11 , . . . , x
1
n ; y11 , . . . , y1n−1; . . . ; xn−1

1 , xn−1
2 , yn−1

1 ; xn1 ) ∈ 1
2Z

d such that
all coordinates except for x1n , x

2
n−1,…, xn1 are integer. Lattice points SGZλ ∩ Z

d

and SGZλ ∩ LB parameterize basis vectors in irreducible representations of Sp2n(C)

and SO2n+1(C), respectively (see [20, Sect. 6] for more details).

Remark 4 Family of odd orthogonal GZ polytopes (as defined in [1, 20]) consists of
two subfamilies parameterized by integer and half-integer λ. The group SO2n+1(C)

is not simply connected, and half-integer weights correspond to the characters of
the maximal torus in the universal cover Spin(2n + 1). If we define the polytope
ring RSGZ using the first subfamily we get a subring of H∗(SO2n+1/B,Z) generated
by the first Chern classes of line bundles Lλ corresponding to the characters λ of the
maximal torus in SO2n+1(C).

Example 5 The polytope OGZλ ⊂ R
4 for Sp4(C) is given by the same 8 inequali-

ties as in Example3. However, its volume polynomial is computed using a different
volume form chosen so that the covolume of LB is 1. Since Z4 ⊂ LB has index 4,
we get volOGZ = 4 volSGZ .

There is an exceptional isomorphism Sp4(C)/±1 � SO5(C). In particular, flag
varieties in types B2 and C2 are the same. This isomorphism takes the dominant
weight λ = (λ1, λ2) of Sp4(C) to the dominant weight λ̃ = (λ1 + λ2)/2, (λ1 −
λ2)/2) of SO5(C). This agrees with the identity vol(SGZλ) = vol(OGZ λ̃).

11.2.3 Newton–Okounkov Polytopes of Flag Varieties

We recall a definition of Newton–Okounkov convex bodies in the case of flag vari-
eties. We refer the reader to [12, 19] for definitions in the more general setting.

Recall that the complete flag variety SLn(C)/B is defined as the variety of com-
plete flags of subspaces M• = ({0} ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V n−1 ⊂ C

n). We define
SOn(C)/B and Sp2n/B as subvarieties oforthogonal and isotropicflags in SLn(C)/B
and SL2n/B, respectively. A complete flagM• inCn is orthogonal if V i is orthogonal
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to toV n−i with respect to a non-degenerate symmetric bilinear formfixed by SOn(C).
Let ω be a non-degenerate skew-symmetric bilinear form fixed by Sp2n(C). A
complete flag M• in C

2n is called isotropic if the restriction of ω to V n is zero,
and V 2n−i = {v ∈ C

2n | ω(v, u) = 0 for all u ∈ V i }.
Every flag variety X of dimension d has an open dense subset C (open Schubert

cell) isomorphic to the affine space Cd . It can be constructed as follows. Fix a com-
plete flag F• := (F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ C

n) such that F• ∈ X (this amounts to
fixing a Borel subgroup B ⊂ G). Also fix a basis e1,…, en inCn compatible with F•
(or a maximal torus in B), that is, Fi = 〈e1, . . . , ei 〉. The open Schubert cell C with
respect to F• is defined as the set of all flags M• that are in general position with
the standard flag F•, i.e., all intersections Mi ∩ F j are transverse. Let x1, …, xd be
coordinates on the open Schubert cell C .

Example 6 In type A, we can identify the open Schubert cell C with an affine
spaceCd (for d = n(n − 1)/2) by choosing for every flag M• a basis v1,…, vn inCn

of the form:
v1 = en + xn−1

1 en−1 + · · · + x11e1,

v2 = en−1 + xn−2
2 en−2 + · · · + x12e1, . . . , vn−1 = e2 + x1n−1e1, vn = en,

so that Mi = 〈v1, . . . , vi 〉. Such a basis is unique, hence, the coefficients (xij )i+ j<n

are coordinates on the open cell. In other words, every flag M• ∈ C gets identified
with a triangular matrix: ⎛

⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1n−1 1
x21 x22 . . . 1 0
...

... 0
xn−1
1 1 . . . 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(FFLV ).

Similar coordinates can be introduced on flag varieties in other types.

LetV ⊂ C(X) = C(x1, . . . , xd)be afinite-dimensional subspaceof rational func-
tions on X . Ourmain examples are spaces of global sections H 0(Lλ, X) � V ∗

λ of line
bundles on X .We fix a section s0 ∈ H 0(Lλ, X), and identify sections s ∈ H 0(Lλ, X)

with rational functions f = s
s0

∈ C(X).

Example 7 (Example6 continued) If

λ = (1, . . . , 1︸ ︷︷ ︸
k

, 0 . . . , 0︸ ︷︷ ︸
n−k

),

then V ∗
λ can be identified with the subspace of C(xij )i+ j<n spanned by the minors of

the n × k matrix formed by the first k columns of the matrix (FFLV ). These minors
are exactly the Plücker coordinates of the Grassmannian G(k, n) in the Plücker
embedding. The map X → H 0(Lλ, X)∗ is the composition of the projection X →
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G(k, n) (obtained by forgetting all subspaces in the flag M• except for the V k) and
the Plücker embedding of G(k, n).

To assign the Newton–Okounkov convex body to V we need an extra ingredient.
Choose a translation-invariant total order on the lattice Z

d (e.g., we can take the
lexicographic order). Consider a map

v : C(x1, . . . , xd) \ {0} → Z
d ,

that behaves like the lowest order term of a polynomial, namely: v( f + g) ≥
min{v( f ), v(g)} and v( f g) = v( f ) + v(g) for all nonzero f, g. Recall that maps
with such properties are called valuations.

Definition 8 The Newton–Okounkov convex body �v(X, V ) is the closure of the
convex hull of the set ∞⋃

k=1

{
v( f )

k
| f ∈ V k

}
⊂ R

d .

By V k we denote the subspace spanned by the kth powers of the functions from V .

Example 9 Using coordinates of Example6 we can define the valuation v as fol-
lows. Order the coefficients (xij )i+ j<n of the matrix (FFLV ) by starting from col-
umn (n − 1) and going from top to bottom in every column and from right to left
along columns. Then �v(X, V ∗

λ ) coincides with the Feigin–Fourier–Littelmann–
Vinberg polytope FFLV (λ) [17]. Moreover, the inclusion FFLV (λ) ⊂ �v(X, V ∗

λ )

follows from a straightforward computation of the valuation v on the minors of the
matrix (FFLV ) (see [17, Example 2.9] for more details).

Different valuations might yield different Newton–Okounkov convex bodies. In
particular, GZ polytopes can also be obtained as Newton–Okounkov polytopes of
flag varieties [6, 11]. Okounkov made the first explicit computation of this kind,
namely, he exhibited symplectic GZ polytopes as Newton–Okounkov polytopes of
the isotropic flag varieties [22].

11.3 Geometric Mitosis

In [15], convex geometric analogs of Demazure (or divided difference) operators
are defined on convex polytopes and used to construct DDO polytopes that have the
same properties as Newton–Okounkov polytopes of flag varieties. In [16], operations
on faces of a DDO polytope (geometric mitosis) are defined that yield positive pre-
sentations of Schubert cycles by faces. Here we define the same operations in more
combinatorial terms using a vertex cone instead of a DDO polytope. We refer the
reader to [15, Theorem 3.6], [16, Proposition 2.5] for connectionswith representation
theory and convex geometry.



242 V. Kiritchenko and M. Padalko

Fig. 11.2 Mitosis as explained in Example10

Example 10 Figure11.2 illustrates the idea of mitosis in the simplest example. The
trapezoid and rectangle on the left picture have the same number of lattice points
with given sum of coordinates. The same is true for the right picture. However, the
trapezoid on the right picture becomes a virtual polytope (in particular, lattice points
marked with circles have to be counted with the zero coefficient) while the rectangle
remains a true polytope. There is a price to pay: the left vertical edge of the trapezoid
corresponds to two edges of the rectangle (that is, a single edge of the trapezoid has
the same number of lattice points as two edges of the rectangle). In short, mitosis
preserves positivity at the cost of more involved combinatorics.

Consider a vector space with the direct sum decomposition

R
d = R

d1 ⊕ · · · ⊕ R
dr ,

and choose coordinates x = (x11 , . . . , x
1
d1

; . . . ; xr1, . . . , xrdr ) with respect to this
decomposition. Let C ⊂ R

d be a convex polyhedral cone with the vertex at the ori-
gin 0. Assume that C is given by inequalities either of type xij ≤ axi

′
j ′ where a > 0

and i �= i ′ or of type 0 ≤ xij . In what follows, we use the bijective correspondence

between facets of C and inequalities, namely, every inequality xij ≤ axi
′
j ′ defines the

facet H(i, j; i ′, j ′) given by the equation xij = axi
′
j ′ , and every inequality 0 ≤ xij

defines the facet H(0, 0; i, j) given by the equation xij = 0.
In addition, assume that C does not contain any rays parallel to the xij -axis

unless j = 1. Then the geometric mitosis of [15, Sect. 5.1] can be defined on faces
of C . Below we describe the resulting mitosis operations M1,…, Mr from a combi-
natorial viewpoint.

Let � be a face of the cone C of codimension 	. The i th mitosis operation Mi

applied to � will produce a collection Mi (�) (possibly empty) of faces of C . Choose
a minimal subset of facets H1,…, H	 of C such that � = H1 ∩ · · · ∩ H	. If none
of these facets coincides with H(p, q; i, di ) for some p and q, then Mi (�) = ∅.
Otherwise, let s be the smallest number such that the subset {H1, . . . , H	} contains
facets of type H(·, ·; i, j) for all j = s, s + 1, …, di . For brevity, we label these
facets by H+(i, s), H+(i, s + 1), …, H+(i, di ). For every j = s + 1, s + 2,…, di ,
we now label by H+(i, j) the facet of type H(i, j; ·, ·). If there are two such
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facets H(i, j; p, q) and H(i, j; p′, q ′), and x p
q ≤ x p′

q ′ everywhere on � then we
put H+(i, j) := H(i, j; p, q).

Let Ji (�) ⊂ {s, s + 1, . . . , di } consist of indices j such that H+(i, j) /∈ {H1, . . . ,

H	}. For every j ∈ Ji (�), we define an offspring � j ∈ Mi (�) as the intersection of
facets

� j = H1( j) ∩ H2( j) ∩ · · · ∩ H	−1( j),

where the set {H1( j), . . . , H	−1( j)} is obtained from the set {H1, . . . , H	} by the
following rule. First, remove the facet H+(i, j). Second, for every k ∈ Ji (�) such
that k > j replace the facet H+(i, k) by the facet H+(i, k). Note that dim� j =
dim � + 1.

Definition 11 The i th mitosis operation Mi sends � to

Mi (�) = {� j | j ∈ Ji (�)}.

11.3.1 Type A: GZ Polytopes

Let C be the vertex cone of the GZ polytope in type A for the vertex a =
(λ2, . . . , λn; λ3, . . . , λn; . . . ; λn) (see table (GZA)). After an affine change of coor-
dinates x = z − a the inequalities that define C can be written as follows:

0 ≤ x11 ; 0 ≤ x12 ≤ x21 ; . . . ; 0 ≤ x1n−1 ≤ x2n−2 ≤ · · · ≤ xn−1
1 .

The cone C has d = n(n−1)
2 facets: H(0, 0; 1, i) for 1 ≤ i ≤ (n − 1) and H(i −

1, j + 1; i, j) for 2 ≤ i ≤ (n − 1), 1 ≤ j ≤ n − i . In particular, we have the follow-
ing identifications of facets:

H(0, 0; 1, i) = H+(1, i), H(i − 1, j + 1; i, j) = H+(i, j) = H+(i − 1, j + 1).

It is convenient to encode a face� ofC by an n × n table (pipe dream) filledwith+ as
follows.The table contains+ in cell (i, i + j) iff� ⊂ H(i − 1, j + 1; i, j) and i ≥ 2
or � ⊂ H(0, 0; i, j) and i = 1. In particular, only cells above the main diagonal
might have +. In this notation, mitosis operations M1, M2 applied to the vertex 0
produce the following faces (only cells (1, 2), (1, 3) and (2, 3) of 3 × 3 tables are
shown since the other cells never contain +):

{0} = + +
+

M1−→ +
+

M2−→ + M1−→ = C
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{0} M2−→ + + M1−→
⎧
⎨

⎩
+ ,

+

⎫
⎬

⎭
M2−→ C

For arbitrary n, the mitosis operations M1,…, Mn−1 encoded by tables coincide
with Knutson–Miller mitosis on pipe dreams [18] after reflecting tables in a vertical
line. Instead of the vertex cone C we could take the GZ polytope in type A and
consider mitosis operations on faces that contain the vertex a (so called Kogan
faces). Geometric meaning of the resulting collections of faces is described in [14,
Theorem 5.1, Corollary 5.3]. In particular, the following analog of Kushnirenko’s
theorem holds.

Recall that Schubert subvarieties Xw are labeled by the elements of the Weyl
group of G, namely, Xw is the closure of the B-orbit BwB/B, where w is an element
of the Weyl group of G. The Weyl group of G = SLn(C) is the symmetric group Sn .
By s1,…, sn−1 we denote the elementary transpositions.

Theorem 12 ([14, Theorem 5.4]) Let Xw ⊂ SLn(C)/B be the Schubert subvariety
corresponding to a permutation w ∈ Sn. Let w = s j1 . . . s j	 be a reduced decompo-
sition of a permutation w ∈ Sn such that ( j1, . . . , j	) is a subword of (1; 2, 1; 3, 2,
1; . . . ; n − 1, . . . , 1). Let Sw ⊂ GZλ be the set of all faces produced from the ver-
tex a ∈ GZλ by applying successively the operations Mn− j	 ,…, Mn− j1 :

Sw = Mn− j1 · · · Mn− j	 (a).

Then
degλ(Xw) = 	!

∑

�∈Sw

Vol(�).

This implies that the Schubert cycle [Xw] (that is, the cohomology class of Xw

in H∗(SLn(C)/B,Z)) in the polytope ring RGZ � H∗(SLn(C)/B,Z) is represented
by the sum of faces in Sw.

Example 13 Forn = 3,wehave [Xs1s2 ] = M2M1(a) and [Xs2s1 ] = M1M2(a). Since
the faces in these two presentations are transverse and their intersection consists of
two edgesM1(a) andM2(a)we get the identity: [Xs1s2 ] · [Xs2s1 ] = [Xs1] + [Xs2 ] (see
Fig. 11.3).

11.3.2 Type C2−3: DDO Polytopes

In [16, Example 2.9], the following family of DDO polytopes in R
4 = R

2 ⊕ R
2 is

considered:
0 ≤ x11 ≤ λ1, x21 ≤ x11 + λ2, x12 ≤ 2x21 ,
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Fig. 11.3 Faces M1(a), M2(a), M2M1(a), M1M2(a), M1M2M1(a) of the GZ polytope in
type A, n = 3

x12 ≤ x21 + λ2, 0 ≤ x22 ≤ λ2, x22 ≤ x12
2

(these polytopes can also be realized asNewton–Okounkov polytopes of the isotropic
flag variety Sp4/B [16, Proposition 4.1]). The vertex coneC of the vertex 0 is given by
4 homogeneous inequalities: 0 ≤ x11 , 0 ≤ 2x22 ≤ x12 ≤ 2x21 . It is convenient to encode
a face � of C by a (2n − 1) × n table (skew pipe dream) for n = 2 filled with +
as follows (see Sect. 11.3.3 for the general definition of skew pipe dreams). The
table contains + in cell (3 − i, i) (for i = 1, 2) iff � ⊂ H(0, 0; i, i), + in cell (2, 2)
iff� ⊂ H(2, 2; 1, 2) and+ in cell (3, 2) iff� ⊂ H(1, 2; 2, 1). There are twomitosis
operations M1 and M2.

{0} = +
+
+
+

M1−→
+
+
+

M2−→
+
+ M1−→

+
M2−→ = C

{0} M2−→ +
+
+ M1−→

⎧
⎨

⎩

+

+
, +

+ ⎫
⎬

⎭
M2−→

M2−→
⎧
⎨

⎩ + ,

+
, +

⎫
⎬

⎭
M1−→ C

The Weyl group of G = Sp4(C) is the dihedral group D4. By s1, s2 we denote
simple reflections that generate D4 so that s2 corresponds to the longer root. By [16,
Corollary 3.6] we have

Proposition 14 Let Xw ⊂ Sp4(C)/B be the Schubert subvariety corresponding to
a permutation w ∈ D4. Let w = s j1 . . . s j	 be a reduced decomposition of a permu-
tation w ∈ D4 such that ( j1, . . . , j	) is a subword of (1, 2; 1, 2). Let Sw ⊂ GZλ be
the set of all faces produced from the vertex a ∈ GZλ by applying successively the
operations Mj	 ,…, Mj1 :
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Sw = Mj1 · · · Mj	 (0).

Then
degλ(Xw) = 	!

∑

�∈Sw

Vol(�).

This example can be extended to DDO polytopes for Sp2n . For n = 3 and the
DDO polytope for (s3s2s1)3 (where s3 is the simple reflection with respect to the
longer root) this was done in [23]. The corresponding family of DDO polytopes
in R9 = R

3 ⊕ R
3 ⊕ R

3 is given by inequalities:

0 ≤ x11 ≤ λ1; x21 ≤ λ2 + x11 ; x31 ≤ λ3 + x21 ;

0 ≤ x12 ≤ min{x21 , λ2}; x22 ≤ min{λ3 + x12 + x31 , 2x
3
1};

x32 ≤ min

{
x12 + λ3,

1

2
x22

}
; x13 ≤ min{x22 , x31 + λ3, λ3 + x22 − x32};

x23 ≤ min{x13 , x32 + λ3, 2x
3
2 }; 0 ≤ x33 ≤ min

{
1

2
x23 , λ3

}
.

In particular, the vertex cone at 0 is not simplicial. It is defined by 10 inequalities:

0 ≤ x11 ; 0 ≤ x12 ≤ x21 ; 0 ≤ x33 ≤ 1

2
x23 ≤ 1

2
x13 ≤ 1

2
x22 ≤ x31 ;

1

2
x23 ≤ x32 ≤ 1

2
x22 .

An analog of Proposition14 follows easily from [16, Corollary 3.6]. However, com-
binatorics of mitosis becomes more involved as analogs of pipe dreams in this case
have a loop.

Recently, Fujita identified DDO polytopes with certain Nakashima–Zelevinsky
polyhedral realizations of crystal bases [5, Theorem 4.1]. In particular, there are
explicit inequalities for these polytopes in types A, B,C , D andG2 [5, Example 4.3].
In type A, they coincide with the GZ polytope and in type C2−3 with the polytopes
described in this section. It would be interesting to apply geometric mitosis to these
polytopes in the other cases.

11.3.3 Type C: GZ Polytopes

The combinatorics of C2 example from Sect. 11.3.2 can be extended to Cn in a
different way by using the string cone C for the reduced decomposition w0 =
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(snsn−1 . . . s2s1s2 . . . sn−1sn) . . . (s2s1s2)(s1) of the longest element in theWeyl group
(here s1 corresponds to the longer root). The corresponding string polytope coincides
with the symplectic GZ polytope after a unimodular change of coordinates [20, Sect.
6]. The cone C is simplicial and is given by d = n2 inequalities:

0 ≤ xi2 ≤ xi−1
4 ≤ xi−2

6 ≤ · · · ≤ x22i−2 ≤ x1i ≤ x22i−3 ≤ · · · ≤ xi−2
5 ≤ xi−1

3 ≤ xi1

for all i = 1,…, n. We define symplectic mitosis as the geometric mitosis associ-
ated with the cone C . Combinatorics of the symplectic mitosis is quite simple and
described in detail in [16, Sect. 5.2] using skew pipe dreams. However, arguments
of [16, Corollary 3.6] do not directly yield presentations for Schubert cycles since
the symplectic GZ polytope does not satisfy the necessary conditions. Still computa-
tions for n = 2, 3 suggest that the collections of faces of the symplectic GZ polytope
obtained using symplectic mitosis do represent the corresponding Schubert cycles
in the polytope ring RSGZ . Below we describe a bijection between faces of C and
faces of SGZλ that we used.

Let v be the vertex of SGZλ given by equations λs = xij = ykl for all triples λs , xij
and ykl such that s = i + j − 1 = k + l. We now define a bijection between those
facets of Pλ that contain v and skew pipe dreams of size n with exactly one +. Recall
that a skew pipe dream of size n is a (2n − 1) × n tablewhose cells are either empty or
filledwith+. Only cells (i, j)withn − j < i < n + j are allowed to have+ (see [16,
Sect. 5.2] for more details on skew pipe dreams). Put y0i := λi for i = 1,…, n. The
facet given by equation xij = yi−1

j corresponds to the skew pipe dream with + in
cell (i + j − 1, n − i + 1). The facet given by equation yij = xij+1 corresponds to
the skew pipe dream with + in cell (2n − i − j + 1, n − i + 1). In what follows,
we denote by H(k,l) the facet whose skew pipe dream under this correspondence
contains + in cell (k, l).

This correspondence between facets and skewpipe dreamswith a single+ extends
to all faces of the symplectic GZ polytope that contain the vertex v. Namely, the
face Hk1,l1 ∩ · · · ∩ Hks ,ls obtained as the intersection of s facets corresponds to the
skew pipe dream that has + precisely in cells (k1, l1),…, (ks, ls). In particular, the
vertex v corresponds to the skew pipe dream D0 that has + in all (fillable) cells. In
what follows, we denote by FD the face corresponding to a skew pipe dream D.

We now formulate a conjecture. Let w be an element of the Weyl group
of G = Sp2n . Choose a reduced decomposition w = s j1 . . . s j	 such that it is a sub-
word of (snsn−1 . . . s2s1s2 . . . sn−1sn) . . . (s2s1s2)(s1).

Conjecture 15 Define the setSw of faces of the symplectic GZ polytope as follows:

Sw = {FD | D ∈ Mn+1− j	 · · · Mn+1− j1(D0)}

where Mi denotes the i th symplectic mitosis operation. Then

degλ(Xw) = 	!
∑

F∈Sw

Vol(F).
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This conjecture is verified in the casen = 2 and for certainw in the casen = 3 [24].
Note that the bijection between faces of SGZλ that contain the vertex v and faces
of the string cone C does not come from the unimodular change of coordinates that
identifies the string polytope and the symplectic GZ polytope. There are might be
piecewise linear transformations (such as the ones used in [17, Sect. 5.2]) that yield
scissor congruence of unions of faces of SGZλ and faces of another polytope for
which geometric meaning of symplectic mitosis is more transparent.

11.3.4 Type B: GZ Polytopes

Note that the Weyl groups of Sp2n(C) and SO2n+1(C) are the same. Since the GZ
polytopes for both groups differ only by lattices symplectic mitosis is also a natu-
ral tool for finding presentations of Schubert cycles by faces of OGZλ in type B.
However, coefficients will be rational rather than integer (with powers of 2 in denom-
inator) because the torsion index of SO2n+1(C) is a power of 2. Note also that the
volumes of faces of both SGZλ and OGZλ should be computed with respect to their
lattices. The difference is already visible in the case n = 2 (see Example5).

Acknowledgements The study has been partially funded by the Russian Academic Excellence
Project ‘5–100’.
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Chapter 12
An Eisenbud–Goto-Type Upper Bound
for the Castelnuovo–Mumford Regularity
of Fake Weighted Projective Spaces

Bach Le Tran

Abstract We will give an upper bound for the k-normality of very ample lattice
simplices, and then give an Eisenbud–Goto-type bound for some special classes of
projective toric varieties.

Keywords k-normality · Toric variety · Very ample lattice simplex ·
Einsenbud-Goto conjecture · Castelnuovo-Mumford regularity

12.1 Introduction

The study of the Castelnuovo–Mumford regularity for projective varieties has been
greatlymotivated by theEisenbud–Goto conjecture [7]which asks for any irreducible
and reduced variety X , is it always the case that

reg(X) ≤ deg(X) − codim(X) + 1?

The Eisenbud–Goto conjecture is known to be true for some particular cases. For
example, it holds for smooth surfaces in characteristic zero [13], connected reduced
curves [8], etc. Inspired by the conjecture, there are also many attempts to give an
upper bound for the Castelnuovo–Mumford regularity for various types of algebraic
and geometric structures [5, 12, 15, 20].

For toric geometry, suppose that (X, L) is a polarizedprojective toric varieties such
that L is very ample. Then there is a corresponding very ample lattice polytope P :=
PL associated to L such that �(X, L) = ⊕

m∈P∩M C · χm [4, Sect. 5.4]. Therefore,
by studying the k-normality of P (cf. Definition2), we can obtain the k-normality
and also the regularity of the original variety (X, L). For the purpose of this article,
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we will focus on the case that X is a fake weighted projective d-space and PL a d-
simplex.

For any fake weighted projective d-space X embedded in Pr via a very ample line
bundle, Ogata [17] gives an upper bound for its k-normality:

kX ≤ dim X +
⌊
dim X

2

⌋

− 1.

In this article, we will improve Ogata’s bound by giving a new upper bound for
the k-normality of very ample lattice simplices and show that

reg(X) ≤ deg(X) − codim(X) +
⌊
dim X

2

⌋

. (12.1)

Recently,McCullough andPeeva showed some counterexamples to theEisenbud–
Goto conjecture and that the difference reg(X) − deg(X) + codim(X) can be arbi-
trary large [14, Counterexample 1.8]. However, for any fake weighted projective
space X embedded in P

r via a very ample line bundle, it follows from (12.1)
that reg(X) − deg(X) + codim(X) is bounded above by dim(X)/2. Furthermore,
we will show that the Eisenbud–Goto conjecture holds for any projective toric vari-
ety corresponding to a very ample Fano simplex.

12.2 Background Material

12.2.1 Toric Varieties and Lattice Simplices

We begin this section by recalling the definition of the Castelnuovo–Mumford reg-
ularity:

Definition 1 Let X ⊆ P
r be an irreducible projective variety andF a coherent sheaf

over X . We say that F is k-regular if

Hi (X,F (k − i)) = 0

for all i > 0. The regularity ofF , denoted by reg(F ), is the minimum number k such
that F is k-regular. We say that X is k-regular if the ideal sheaf IX of X is k-regular
and use reg(X) to denote the regularity of X (or of IX ).

As the main object of the article is to find an upper bound for k-normality of very
ample lattice simplices, it is important for us to revisit the definition of k-normality
of lattice polytopes.

Definition 2 A lattice polytope P is k-normal if the map
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P ∩ M + · · · + P ∩ M︸ ︷︷ ︸
k times

→ kP ∩ M

is surjective. The k-normality of P , denoted by kP , is the smallest positive integer kP
such that P is k-normal for all k ≥ kP .

Suppose now that X is a fake weighted projective d-space embedded in P
r via

a very ample line bundle. Then the polytope P corresponding to the embedding
is a very ample lattice d-simplex. Furthermore, codim(X) = |P ∩ M | − (d + 1),
where M is the ambient lattice, and deg(X) = Vol(P), the normalized volume of P .

We have a combinatorial interpretation of reg(X) in terms of kP and deg(P) [21,
Proposition 4.1.5] as follows:

reg(X) = max{kP , deg(P)} + 1. (12.2)

From this, we obtain a combinatorial form of the Eisenbud–Goto conjecture: for very
ample lattice polytope P ⊂ MR, is it always true that

max{deg(P), kP} ≤ Vol(P) − |P ∩ M | + d + 1?

The first inequality was confirmed to be true recently [11, Proposition 2.2]; namely,

deg(P) ≤ Vol(P) − |P ∩ M | + d + 1. (12.3)

Therefore, in order to verify the Eisenbud–Goto conjecture for the polarized toric
variety (X, L), it suffices to check if

kP ≤ Vol(P) − |P ∩ M | + d + 1. (12.4)

12.2.2 Ehrhart Theory

We now recall some basic facts about Ehrhart theory of polytopes and the definition
of their degree.

Let P be a lattice polytope of dimension d. We define ehrP(k) = |kP ∩ M |, the
number of lattice points in kP . Then from Ehrhart’s theory [6, 19],

EhrP(t) =
∞∑

k=0

ehrP(k)t k = h∗
P(t)

(1 − t)d+1

for some polynomial h∗
P ∈ Z≥0[t] of degree less than or equal to d. Let h∗

P(t) =
∑d

i=0 h
∗
i t

i . We have
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h∗
0 = 1, h∗

1 = |P ∩ M | − d − 1, h∗
d = |P0 ∩ M |, and

d∑

i=0

h∗
i = Vol(P).

Definition 3 ([1, Remark 2.6]) Let P be a lattice polytope of dimension d.We define
the degree of P , denoted by deg(P), to be the degree of h∗

P(t). Equivalently,

deg(P) =
{
d if |P0 ∩ M | �= 0,

min
{
i ∈ Z≥0|(kP)0 ∩ M = ∅ for all 1 ≤ k ≤ d − i

}
otherwise.

12.3 k-Normality of Very Ample Simplices

The following lemma by Ogata is crucial to the main result of this article:

Lemma 4 ([17, Lemma 2.1]) Let P = conv(v0, . . . , vd) be a very ample lattice n-
simplex. Suppose that k ≥ 1 is an integer and x ∈ kP ∩ M. For any i = 0, . . . , d,
we have

x + (k − 1)vi =
2k−1∑

j=1

u j

for some u j ∈ P ∩ M.

Using the ideas in [17, Lemma 2.5], we generalize the above lemma as follows.

Lemma 5 Suppose that P = conv(v0, . . . , vd) is a very ample d-simplex. Let k ∈
N≥1. Then for any x ∈ kP ∩ M, a0, . . . , ad ∈ Z≥0 such that

∑d
i=0 ai = k − 1, we

have
d∑

i=0

aivi + x =
2k−1∑

i=1

ui

for some ui ∈ P ∩ M.

Proof We will use induction in this proof. The case k = 1 is trivial. Suppose that
the lemma holds for k = s − 1. We will now show that it holds for k = s; i.e., for
any x ∈ sP ∩ M , a1, . . . , ad ∈ Z≥0 such that

∑d
i=0 ai = s − 1, we have

d∑

i=0

aivi + x =
2s−1∑

i=1

ui (12.5)

for some ui ∈ P ∩ M . Without loss of generality, we can take a0 to be positive and
move v0 to the origin. By Lemma4,

(s − 1)v0 + x =
2s−1∑

i=1

wi
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for some wi ∈ P ∩ M . Since v0 = 0, we can write x = ∑2s−1
i=1 wi . If wi + wj ∈ P ∩

M for any i �= j , then we can let ti = w2i−1 + w2i for i = 1, . . . , s − 1 and have x =
t1 + · · · + ts−1 + w2s−1, which lies in

∑s
i=1 P ∩ M . Therefore,

d∑

i=0

aivi + x =
d∑

i=0

aivi +
s−1∑

i=1

ti + w2s−1,

which satisfies (12.5). Conversely, without loss of generality, suppose thatw1 + w2 /∈
P ∩ M . Then since x = w1 + w2 + (w3 + · · · + w2s−1) ∈ sP ∩ M , we have y :=
w3 + · · · + w2s−1 ∈ (s − 1)P ∩ M and v0 + x = w1 + w2 + y. Using the induction
hypothesis,

(a0 − 1)v0 +
d∑

i=1

aivi

︸ ︷︷ ︸
a0−1+∑d

i=1 ai=s−2

+y =
2(s−1)−1∑

i=1

w′
i

for some w′
i ∈ P ∩ M . It follows that

d∑

i=0

aivi + x = v0 + x + (a0 − 1)v0 +
d∑

i=1

aivi

= w1 + w2 + y + (a0 − 1)v0 +
d∑

i=1

aivi

= w1 + w2 +
2(s−1)−1∑

i=0

w′
i .

The conclusion follows. �

Now define the invariants dP and νP as in [21, Definition 2.2.8]:

Definition 6 Let P be a lattice polytope with the set of verticesV = {v0, . . . , vn−1}.
We define dP to be the smallest positive integer such that for every k ≥ dP ,

(k + 1)P ∩ M = P ∩ M + kP ∩ M.

We also define νP to be the smallest positive integer such that for any k ≥ νP ,

(k + 1)P ∩ M = V + kP ∩ M.

Notice that for P an n-simplex, dP ≤ νP ≤ n − 1.

Proposition 7 Let P = conv(v0, . . . , vd) be a very ample d-simplex. Then

kP ≤ νP + dP − 1.
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Proof For any k ≥ dP + νP − 1 and p ∈ kP ∩ M , by the definition of dP and νP ,
we have

p = x +
νP−dP∑

i=1

ui +
d∑

i=0

aivi (12.6)

for some x ∈ dP P ∩ M , ui ∈ P ∩ M ,
∑d

i=0 ai = k − νP . By assumption, k − νP ≥
dP − 1, so it follows from Lemma5 that

x +
d∑

i=0

aivi =
dP+k−νP∑

i=1

u′
i (12.7)

for some u′
i ∈ P ∩ M . Substitute (12.7) into (12.6), we have

p =
νP−dP∑

i=1

ui +
dP+k−νP∑

i=1

u′
i .

The conclusion follows. �

Remark 8 This bound is stronger than [17, Proposition 2.4] since νP ≤ d [21,
Proposition 2.2] and dP ≤ d/2 [17, Proposition 2.2].

12.4 Eisenbud–Goto-Type Upper Bound for Very Ample
Simplices

Suppose that P is a very ample simplex. If P is unimodularly equivalent to the stan-
dard simplex �d = conv(0, e1, . . . , ed) then (12.4) holds. Now consider the case P
is not unimodularly equivalent to �d .

The following lemma is a rewording of [9, Proposition IV.10] to fit our purpose.
We provide a proof for the sake of completeness.

Lemma 9 LetV = {v0, . . . , vd} and suppose that P = conv(V) is a lattice simplex
not unimodularly equivalent to �d . Then deg(P) ≥ νP .

Proof Since νP ≤ d, it suffices to show that for any d ≥ k ≥ deg(P),

V + kP ∩ M � (k + 1)P ∩ M.

Indeed, any x ∈ (k + 1)P ∩ M can be written as x = ∑d
i=0 aivi such that ai ≥ 0

and
∑d

i=0 ai = k + 1. If ai < 1 for all i , then d > k and the point
∑d

i=0(1 − ai )vi
is an interior lattice point of (d − k)P , a contradiction since d − k ≤ d − deg(P).
Hence, ai ≥ 1 for some i , say a0 ≥ 1. Then
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x = v0 + (a0 − 1)v0 +
d∑

i=1

aivi = v0 +
(

(a0 − 1)v0 +
d∑

i=1

aivi

)

∈ V + kP ∩ M.

Hence, k ≥ νP . The conclusion follows. �

Proposition 10 Let P = conv(v0, . . . , vd) be a very ample simplex. Then

kP ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

.

Proof From Proposition7, (12.3), and Lemma9,

kP ≤ dP + νP − 1 ≤ dP + deg(P) − 1

≤ dP + Vol(P) − |P ∩ M | + d.

By [17, Proposition 2.2], dP ≤ d
2 . Therefore, since kP , Vol(P), and |P ∩ M | are all

integers,

kP ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

.

�

Remark 11 We show some cases that the result of Proposition10 is stronger
than [17, Proposition 2.4]:

1. Vol(P) ≤ |P ∩ M | + 2. In this case,

Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

≤ d +
⌊
d

2

⌋

− 2.

Example 12 Let �d be the standard d-simplex. Then

Vol(�d) − |�d ∩ M | + d +
⌊
d

2

⌋

= 1 − (d + 1) + d +
⌊
d

2

⌋

=
⌊
d

2

⌋

.

This is clearly a better bound compared to d + ⌊
d
2

⌋ − 1.

2. P0 ∩ M = ∅ or equivalently deg(P) ≤ d − 1. Indeed, in this case,

kP ≤ dP + deg(P) − 1 ≤
⌊
d

2

⌋

+ d − 2.

Wewill show in next section that this is the only case that we still need to consider
in order to verify the Eisenbud–Goto conjecture for very ample simplices.

Example 13 Consider P = 2�d for d ≥ 4, where �d is the standard d-simplex.
Then deg(P) = 2 and by Proposition7,
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kP ≤ dP + 1 ≤
⌊
d

2

⌋

+ 1 <

⌊
d

2

⌋

+ d − 1.

Theorem 14 Suppose that X is a fake weighted projective space embedded in P
r

via a very ample line bundle. Then

reg(X) ≤ deg(X) − codim(X) +
⌊
dim(X)

2

⌋

.

Proof Let P be the corresponding polytope of the embedding. From (12.2), (12.3),
and Proposition10, it follows that

reg(X) ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

+ 1 = deg(X) − codim(X) +
⌊
d

2

⌋

.

12.5 Eisenbud–Goto Conjecture for Non-hollow Very
Ample Simplices

In this section, we will improve the bound of k-normality for non-hollow very ample
simplices.

Definition 15 A lattice polytope is hollow if it has no interior lattice points.

We now show that the inequality (12.4) holds for non-hollow very ample simplices.

Proposition 16 Let P ⊆ MR be a non-hollow very ample lattice d-simplex. Then

kP ≤ Vol(P) − |P ∩ M | + d + 1.

Proof Wewill consider two cases, namely |P ∩ M | = d + 2 and |P ∩ M | ≥ d + 3.
For the first case, we have the following lemma:

Lemma 17 Suppose that P = conv(v0, . . . , vd) is a very ample lattice d-simplex
with u is the only lattice point beside the vertices. Then P is normal. �

Proof Assume that dP ≥ 2. Then there exists a point p ∈ dP P ∩ M such that p
cannot be written as p = x + w for some x ∈ (dP − 1)P ∩ M and w ∈ P ∩ M .
Since P is a simplex, u and p can be uniquely written as

p =
d∑

i=0

λi vi ,
d∑

i=0

λi = dP

and
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u =
d∑

i=0

λ∗
i vi ,

d∑

i=0

λ∗
i = 1,

respectively. It follows from the condition of p that λi < 1 for all 0 ≤ i ≤ d and
there exists 0 ≤ i ≤ d such that λi < λ∗

i , say i = 0. By Lemma4,

p + (dP − 1)v1 =
d∑

i=0

aivi + bu

for some ai , b ∈ Z≥0 such that b + ∑d
i=0 ai = 2dP − 1. Replacing p by

∑d
i=0 λi vi

and u by
∑d

i=0 λ∗
i vi yields

λ0 = a0 + bλ∗
0

λ1 + dP − 1 = a1 + bλ∗
1

λ2 = a2 + bλ∗
2

...

λd = ad + bλ∗
d .

Since λ0 < λ∗
0 and λi < 1 for all 0 ≤ i ≤ d, it follows that a0 = a2 = · · · = ad = 0

and b = 0. Then p = dPv1, a contradiction to the choice of p. Therefore, P is normal.
�

As a consequence, 1 = kP ≤ Vol(P) − |P ∩ M | + d + 1 = Vol(P) − 1. Now we
consider the case |P ∩ M | ≥ d + 3. By the hypothesis, |P ∩ M | − (d + 1) ≥ 2.
Consider the Ehrhart vector h∗ = (h∗

0, · · · , h∗
d) of P . We have

h∗
0 = 1

h∗
1 = |P ∩ M | − d − 1 ≥ 2

h∗
d = |P0 ∩ M | ≥ 2.

By [10, Theorem 1.1], 2 ≤ h∗
1 ≤ h∗

i for all 1 ≤ i < d. Therefore,

Vol(P) − |P ∩ M | + d + 1 = h∗
0 + h∗

2 + · · · + h∗
d ≥ 1 + 2(d − 1) = 2d − 1.

By [17, Proposition 2.4],

kP ≤
⌊
d

2

⌋

+ d − 1 ≤ 2d − 1 ≤ Vol(P) − |P ∩ M | + d + 1

for all d ≥ 3. The conclusion follows. �
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Let us now recall the definition of Fano polytopes:

Definition 18 A Fano polytope is a convex lattice polytope P ⊆ MR such that P0 ∩
M = {0} and each vertex v of P is a primitive point of M .

From Proposition16, we obtain the following corollary:

Corollary 19 The Eisenbud–Goto conjecture holds for any projective toric variety
corresponding to a very ample Fano simplex.

12.6 Final Remarks

We start with a remark that Proposition7 fails in general.

Example 20 ([3]) Consider the polytope P which is the convex hull of the vertices
given by the columns of the following matrix

M =
⎛

⎝
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 s s + 1

⎞

⎠

with s ≥ 4. Then dP = νP = 2, and by [2, Theorem 3.3], kP = s − 1. It is clear
that kP > dP + νP − 1 for all s ≥ 6.

Furthermore, it can be shown that P cannot be covered by very ample simpli-
cies [21, Proposition 4.3.3]; hence, it is very unlikely that we can apply Proposition7
to find a bound of the k-normality of generic very ample polytopes.

12.6.1 Hollow Very Ample Simplices

Finally, we would love to see a classification of hollow very ample lattice simplices.
For dimension 2, Rabinotwiz [18, Theorem 1] showed that any such simplex is
unimodularly equivalent to either Tp,1 := conv(0, (p, 0), (0, 1)) for some p ∈ N

or T2,2 = conv(0, (2, 0), (0, 2)). Now we will show a way to obtain some hollow
very ample simplices in any dimension with arbitrary volume.

We recall the definition of lattice pyramids as in [16]:

Definition 21 Let B ⊆ R
k be a lattice polytopewith respect toZk . Then conv(0, B ×

{1}) ⊆ R
k+1 is a lattice polytope with respect to Z

k+1, called the (1-fold) standard
pyramid over B. Recursively, we define for l ∈ N≥1 in this way the l-fold standard
pyramid over B. As a convention, the 0-fold standard pyramid over B is B itself.

Proposition 22 Let P be a lattice polytope. Then the 1-fold pyramid over P is very
ample if and only if P is normal.
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Proof Let Q = conv(0, P × {1}) be the 1-fold pyramid over P . Then it is easy to
see that if P is normal then so is Q. Now suppose that Q is very ample.We have kQ ≥
kP [21, Lemma 4.2.2] and each lattice point of kQQ ∩ M sits in (t P ∩ M) × {t} for
some 0 ≤ t ≤ kQ . In particular, suppose that (x, t) ∈ (t P ∩ M) × {t} ⊆ kQQ ∩ M .
Then

(x, t) =
t∑

i=1

(ui , 1) + (kQ − t)0

for some ui ∈ P ∩ M . It follows that x = ∑t
i=1 ui . Hence, P is t-normal for all kQ ≥

t ≥ 1. Since kQ ≥ kP , it follows that P is normal. The conclusion follows. �

FromProposition22, ifwe take any (d − 2)-fold pyramid over either Tp,1 with p ∈
Z≥1 or T2,2, which are all normal, then we obtain a hollow normal (hence very
ample) d-simplex with normalized volume p. The Eisenbud–Goto conjecture holds
for these.

Example 23 We give here an example to demonstrate the case that if Q is very
ample but not normal then the 1-fold pyramid over Q is not very ample. Let Q be
the convex polytope given by taking s = 4 in Example20. Then Q is very ample;
however, the 1-fold pyramid of Q, which is given by the convex hull of

⎛

⎜
⎜
⎝

0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 1 1
0 0 0 0 1 1 1 4 5
0 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠ ,

is not very ample.
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Chapter 13
Toric Degenerations in Symplectic
Geometry

Milena Pabiniak

Abstract Toric degeneration in algebraic geometry is a process of degenerating a
given projective variety into a toric one. Then one can obtain information about
the original variety via analyzing the toric one, which is a much easier object to
study. Harada and Kaveh described how one incorporates a symplectic structure into
this process, providing a very useful tool for solving certain problems in symplectic
geometry. Below we present two applications of this method: questions about the
Gromov width, and cohomological rigidity problems.

Keywords Symplectic toric manifold · Bott manifold · Toric degeneration ·
Gromov width

13.1 Introduction

Manifolds and algebraic varieties equipped with a group action are usually better
understood as a presence of an action is a sign of certain symmetries. In particular,
toric varieties formaverywell understood class of varieties. These are varietieswhich
contain an algebraic torus T n

C
:= (C∗)n as a dense open subset and are equipped with

an action of T n
C
which extends the usual action of T n

C
on itself. For more about toric

varieties see, for example, [5, 12]. To understand a given projective variety X one
can try to “degenerate” it to a toric one, i.e., form a family of varieties with generic
member X and one special member some toric variety X0. The varieties X and X0

are closely related and thus one can obtain information about X by studying X0.
Moreover, such a degeneration gives a map from X to X0 which, in certain situations,
preserves some special structures X and X0 might be equipped with (for example: a
symplectic structure).

One can use the method of toric degenerations to solve problems in symplectic
geometry. In this work we discuss the following two applications:
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1. calculating lower bounds for the Gromov width, i.e. trying to find the largest ball
which can be symplectically embedded into a given symplectic manifold;

2. constructing symplectomorphisms needed for a cohomological rigidity problem
for symplectic toric manifolds. This problem is about checking whether any two
symplectic toric manifolds with isomorphic integral cohomology rings (via an
isomorphism preserving the class of symplectic form) are symplectomorphic.

Recall that an 2n-dimensional symplectic manifold (M, ω) equipped with an
effectiveHamiltonian actionof ann-dimensional torusT = (S1)n is called a symplec-
tic toric manifold. The action being Hamiltonian means that there exists a moment
map1μ : M → R

n . Such a manifold can be given a complex structure interacting
well with the symplectic one so that one calls ω a Kähler form and (M, ω) a Kähler
manifold. In particular, symplectic toric manifolds are toric varieties in the sense of
algebraic geometry. A theorem of Delzant states that we have a bijection2

{2n-dim compact symplectic
toric manifolds}

up to equivariant
symplectomorphisms

⇐⇒
{rational and smooth polytopes in R

n}
up to translations and

GL(n, Z) transformations.

In this bijection, a manifold corresponds to an image of its moment map, therefore
the associated polytope is often called a moment polytope or a moment image. Not
much is known about a classification of symplectic toric manifolds up to symplec-
tomorphism. The cohomological rigidity mentioned in the second bullet above asks
if such classification might be given by the integral cohomology rings.

In Sects. 13.3 and 13.4 respectively we describe the above problems in detail
and explain how one can use toric degenerations to solve problems of this type. In
particular we prove (rather, outline the proofs of) the following two results, obtained
in projects joint with I. Halacheva, X. Fang, P. Littelmann, and S. Tolman. As to
apply a toric degeneration to (M, ω) one needs ω to be an integral symplectic form,
in both theorems we demand that the symplectic form is integral up to scaling, i.e.
that a[ω] ∈ H∗(M; Z) for some a ∈ R. To simplify the exposition we slightly abuse
the notation and given a map F defined on H∗(M; Z) we use F to also denote the
map induced by F on H∗(M; Z) ⊗Z R.

Theorem 1 ([11, 14]) Let K be a compact connected simple Lie group. The Gromov
width of a coadjoint orbit Oλ through a point λ, integral up to scaling, equipped with
the Kostant–Kirillov–Souriau symplectic form, is at least

min{ ∣
∣
〈

λ, α∨〉∣
∣ ; α∨ a coroot and

〈

λ, α∨〉 	= 0}. (13.1)

1 A moment map is a T -invariant map μ : M → Lie(T )∗ ∼= R
n such that for every X ∈ Lie(T ) it

holds that ιX�ω = dμX where X � denotes the vector field on M induced by X and μX : M → R is
defined by μX (p) = 〈μ(p), X〉..
2 Recall that a polytope in R

n is called rational if the directions of its edges are in Z
n . It is called

smooth if for every vertex the primitive vectors in the directions of edges meeting at that vertex
form a Z-basis for Z

n .
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Theorem 2 ([27]) Let (M, ωM) and (N , ωN ) be Bott manifolds with symplectic
forms integral up to scaling. Moreover, assume thatH∗(M; Q) andH∗(N ; Q) are iso-
morphic to Q[x1, . . . , xn]/〈x2

1 , . . . , x2
n 〉. For any ring isomorphism F : H∗(M; Z) →

H∗(N ; Z) with F([ωM ]) = [ωN ], there exists a symplectomorphism f : (N , ωN ) →
(M, ωM) such that the map H∗( f ) : H∗(M; Z) → H∗(N ; Z) induced by f on inte-
gral cohomology rings is exactly F.

There are other applications of toric degenerations in symplectic geometry. For
example, one can obtain information aboutGinzburg–Landau potential function on X
from that of X0 and thus detect some non-displaceable Lagrangians of X , see [25].

13.2 Toric Degenerations

A toric degeneration of a projective variety X is a flat family π : X → C with
generic fiber X and one special fiber X0 = π−1(0), a (not necessarily normal) toric
variety.A construction of such a degeneration of a projective variety X , equippedwith
a very ample line bundle satisfying certain conditions, can be found in Anderson [1,
Theorem 2].

Example 3 Using the Plücker embedding,3 view X = Gr(2, C
4), the Grassman-

nian of 2-planes in C
4, as a subset of CP

5 with coordinates {xi j ; 1 ≤ i < j ≤ 4},
consisting of points satisfying

x12x34 − x13x24 + x14x23 = 0.

Consider the subset X ⊂ CP
5 × C consisting of points satisfying

x12x34 − x13x24 + t x14x23 = 0,

where t denotes the coordinate in C. Let π : X → C be the restriction to X of
the projection onto the second factor. This family constitutes a toric degeneration
of Gr(2, C

4). In fact, {xi j } form a SAGBI basis of the homogeneous coordinate ring
of X and this ensures the flatness [8, Theorem 15.17]. Clearly π−1(1) is Gr(2, C

4).
Moreover, performing a change of coordinates, one can show that π−1(t) for t 	= 0
is also bihomolomorhpic to Gr(2, C

4). The central fiber, π−1(0), is described by the
binomial ideal 〈x12x34 − x13x24〉 and thus is a toric variety.

Harada and Kaveh [16] enriched the construction of Anderson by incorporating a
symplectic structure. They start with a smooth projective variety X , of complex

3 Recall that the Plücker embedding sends a Grassmannian spanned by vectors v, w ∈ C
4 to a

point [x12 : . . . : x34] ∈ CP
5 with xi j equal to the determinant of the 2 × 2 minor of [vT , wT ]

spanned by rows i and j .
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dimension n, equipped with a very ample line bundle L, with some fixed Her-
mitian structure. Let L := H0(X,L) denote the vector space of holomorphic sec-
tions, �L : X → P(L∗) the Kodaira embedding and ω = �∗

L(ωF S) the pull back of
the Fubini–Study form, i.e., of the standard symplectic structure on complex projec-
tive spaces. Then (X, ω) is a Kähler manifold. With this data they construct (under
certain assumptions) not only a flat family π : X → C but also a Kähler structure ω̃

on (the smooth part of) X so that (π−1(1), ω̃|π−1(1)) is symplectomorphic to (X, ω).
Moreover, the special fiber X0 = π−1(0) obtains a Kähler form, the restriction of ω̃,
defined on its smooth partU0 := (X0)smooth, and thus it also obtains a divisor. If X0 is
normal, then the polytope associated to X0 and this divisor by the usual procedure of
toric algebraic geometry (see, for example, [5, Chap. 4]) is the closure of the moment
image of the (non-compact) symplectic toricmanifold (U0, ω̃|U0).Aswewill see, this
polytope can be computed by analyzing the behaviour of the holomorphic sections
of L. Here are more details of this procedure.

Denote by Lm the image of span 〈 f1 · . . . · fm ; fi ∈ L〉 in H0(X,L⊗m) and by
R = C[X ] = ⊕m≥0 Lm the homogeneous coordinate ring of X with respect to the
embedding �L. An important ingredient of the construction is a choice of a val-
uation with one dimensional leaves, ν : C(X) \ {0} → Z

n , from the ring C(X) of
rational functions on X . A precise definition of a general valuation can be found, for
example, in [16, Definition 3.1]. In this paper we only use valuations induced by a
flag of subvarieties and a special case of these, called lowest/highest term valuations
associated to a coordinate system.

Example 4 (Lowest/highest term valuations [16, Example 3.2]) Fix a smooth
point p ∈ X and let (u1, . . . , un) be a system of coordinates in a neighborhood
of p, meaning that u1, . . . , un are regular functions at p, vanishing at p, and such
that their differentials du1, . . . , dun are linearly independent at p. Then any reg-
ular function at p can be represented as a power series

∑

α∈Zn
≥0

cαuα . Here by uα ,

with α = (α1, . . . , αn) ∈ Z
n
≥0, we mean uα1

1 · . . . · uαn
n . Choose and fix a total order>

on Z
n respecting the addition, for example the lexicographic order. Define a map ν

from the set of functions regular at p to Z
n by

ν
( ∑

α∈Zn
≥0

cαuα
) = min{α; cα 	= 0},

and extend it to C(X) \ {0} by setting ν( f/g) = ν( f ) − ν(g). Then ν is a valuation
with one dimensional leaves, called a lowest term valuation. If one uses max instead
of min in the definition of ν, one obtains a highest term valuation.

Example 5 (Valuations induced by a flag of subvarieties [16, Example 3.3]) Take a
flag of normal subvarieties (called a Parshin point) of X

{p} = Yn ⊂ . . . ⊂ Y0 = X,

with dimC(Yk) = n − k and Yk non-singular along Yk+1. By the non-singularity
assumption there exists a collection of rational functions u1, . . . , un on X such
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that uk|Yk−1 is a rational function on Yk−1 which is not identically zero and which
has a zero of first order on Yk . Then the lowest term valuation with respect to
the lexicographic order can alternatively be described in the following way: for
any f ∈ C(X), f 	= 0, the valuation v( f ) = (k1, . . . , kn) where k1 is the order of
vanishing of f on Y1, k2 is the order of vanishing of f1 := (u−k1

1 f )|Y1 on Y2, etc.

Given such X ,L, and ν we form a semigroup S = S(ν,L), in the following way.
Fix a non-zero element h ∈ L and use it to identify L with a subspace of C(X) by
mapping f ∈ L to f/h ∈ C(X). Similarly identify Lm with a subspace of C(X) by
sending f ∈ Lm to f/hm ∈ C(X). As any valuation satisfies that ν( f g) = ν( f ) +
ν(g), the set

S = S(ν,L) =
⋃

m≥0

{(m, ν( f/hm)) | f ∈ Lm \ {0} }

is a semigroup with identity (i.e. a monoid). If S is finitely generated, one can con-
struct a toric degeneration whose special fiber is a toric variety ProjC[S] (which is
normal if S is saturated). Moreover we obtain an Okounkov body


 = 
(S) = conv
( ⋃

m>0

{x/m | (m, x) ∈ S}) ⊂ R
n.

Note that if S is finitely generated, then 
 is a rational convex polytope. The toric
variety corresponding to 
 is the normalization of ProjC[S].4

In the following theorem we rephrase several results from [16].

Theorem 6 ([16]) Let L be a very ample Hermitian line bundle on a smooth n-
dimensional projective variety X and ω = �∗

L(ωF S) the induced symplectic form.
Let ν : C(X) \ {0} → Z

n be a valuation with one dimensional leaves, and such that
the associated semigroup S is finitely generated. Then

• There exists a toric degeneration π : X → C with generic fiber X and special
fiber X0 := ProjC[S], and a Kähler structure ω̃ on (the smooth part of)X such that
(π−1(1), ω̃|π−1(1)) is symplectomorphic to (X, ω) and the closure of the moment
image of symplectic toric manifold (U0, ω̃|U0), where U0 := (X0)smooth, is the
Okounkov body 
(S). The set U0 contains the preimage of the interior of 
(S).

• Moreover, there exists a surjective continuous map φ : X → X0 that restricts to a
symplectomorphism from (φ−1(U0), ω) to (U0, ω̃|U0).

In particular, if X0 = ProjC[S] built from S is smooth (thus also normal), then φ−1

(U0) = X and therefore φ provides a symplectomorphism between (X, ω) and the
symplectic toric manifold (X
(S), ω
(S)) associated to 
(S) via Delzant’s construc-
tion.

4 Recall that for a graded algebra A = ⊕∞
j=0 A j the set Proj A is the set of homogeneous prime ideals

in A that do not contain all of A+ := ⊕∞
j=1 A j . The topology on Proj A is defined by setting the

closed sets to be V (I ) := {J ; J ⊂ I is a homogeneous prime ideal of A not containing all ofA+},
for some homogeneous ideal I of A. For more details see, for example [17, II.2], [9, III.2], and [5,
Chap.7].
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Checking whether S is finitely generated is a very difficult problem. However, it
was observed by Kaveh [20] that even if S is not finitely generated one can still form
a (not flat) family with generic fiber X and special fiber (C∗)n . Even though such a
construction provides much less information about X , it still suffices for the purpose
of finding lower bounds on the Gromov width. We describe this idea in Sect. 13.3.

13.3 Gromov Width

TheGromov width of a 2n-dimensional symplectic manifold (X, ω) is the supremum
of the set of the positive real numbers a such that the ball of capacity a (radius

√ a
π
),

B2n
a = B2n

(
√

a

π

)

= {

(x1, y1, . . . , xn, yn) ∈ R
2n

∣
∣
∣ π

n
∑

i=1

(x2i + y2i ) < a
} ⊂ (R2n, ωst ),

can be symplectically embedded in (X, ω). Here ωst = ∑

j dx j ∧ dy j denotes the
standard symplectic form on R

2n . This question was motivated by the Gromov non-
squeezing theorem which states that a ball B2n(r) ⊂ (R2n, ωst ) cannot be symplec-
tically embedded into B2(R) × R

2n−2 ⊂ (R2n, ωst ) unless r ≤ R.
J -holomorphic curves give obstructions to ball embeddings, while Hamiltonian

torus actions can lead to constructions of such embeddings (by extending a Darboux
chart using the flow of the vector field induced by the action).

This is why toric degenerations provide a useful tool for finding lower bounds on
the Gromov width. Given a toric degeneration of (X, ω), as described in Theorem 6,
one can use the toric action on X0 to construct embeddings of balls into a smooth
symplectic toric manifold (U0, ω̃|U0), where U0 = (X0)smooth. Postcomposing such
embedding with the symplectomorphism φ−1 produces a symplectic embedding
into (X, ω).

Moreover, many embeddings of balls into symplectic toric manifolds can be read
off from the associated (by the Delzant classification theorem) polytope. Identify
the dual of the Lie algebra of the compact torus T with Euclidean space using the
convention that S1 = R/Z, i.e. the lattice of t∗ is mapped to Z

dim T ⊂ R
dim T . With

this convention, themomentmap for the standard (S1)n action on (R2n, ωst )maps B2n
a

onto an n-dimensional simplex of size a, closed on n sides

Sn(a) :=
⎧

⎨

⎩
(x1, . . . , xn) ∈ R

n| 0 ≤ x j < a,

n
∑

j=1

x j < a

⎫

⎬

⎭
.

Moreover, if themoment image contains an open simplex of size a, then for any ε > 0
a ball of capacity a − ε can be embedded into the given symplectic toric manifold:
see [28, Lemma 5.3.1] and, independently, [26, Propositions 2.1 and 2.4].
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Proposition 7 ([24, Proposition 1.3] and [26, Proposition 2.5]) For any connected,
proper (not necessarily compact) symplectic toric manifold U of dimension 2n, with
a momentum map μ, the Gromov width of U is at least

sup{a > 0 | ∃  ∈ GL(n, Z), x ∈ R
n, such that (intSn(a)) + x ⊂ μ(U )}.

The appearance of  and x comes from the facts that the identification t∗ ∼= R
dim T

depends on a splitting of T into (dim T ) circles, and that a translation of a moment
map also provides a moment map.

The above results lead to the following method for finding lower bounds on the
Gromov width.

Corollary 8 Let X be a smooth projective variety of complex dimension n, L an
ample line bundle on X, and ω = �∗

L(ωF S) ∈ H2(X, Z) an integral Kähler form
obtained using the Kodaira embedding �L : X → P(L∗). Suppose that there exists
a valuation ν giving a finitely generated and saturated semigroup S = S(ν,L). Let 

be the associated Okounkov body. The Gromov width of (X, ω) is at least

sup{a > 0 | ∃  ∈ GL(n, Z), x ∈ R
n, such that (intSn(a)) + x ⊂ 
}.

Proof By the result of [16] cited here as Theorem 6, there exists a toric degenera-
tion of (X, ω) to a normal toric variety X0 = ProjC[S], and a surjective continuous
map φ : X → X0 whose appropriate restriction is a symplectomorphism. The sub-
set U := φ−1(U0) of X inherits a toric action whose moment image contains int 
,
the interior of 
 (recall that a moment map sends singular points of a toric variety to
the boundary of the moment polytope). The corollary follows from Proposition 7. �

In fact one does not need S to be saturated. The same corollary holds even if X0

is not a normal toric variety. This is because a normalization map for X0 induces a
biholomorphism between (X0)smooth and an appropriate subset of the normalization
of X0.

It is, however, necessary that S is finitely generated for a toric degeneration to
exist. Otherwise one can still form a family of manifolds, but one cannot guarantee
that this family is flat, and thus X and X0 are no longer so strongly related. As we
already mentioned, Kaveh in [20] observed that such a (not necessarily flat) family,
with X0 = (C∗)n , still provides information about the Gromov width of (X, ω).
To state this result we need additional notation. In the notation of Sect. 13.2, for
any m ∈ Z>0 let

Am := {ν( f/hm) | f ∈ Lm \ {0} } ⊂ Z
n, 
m = 1

m
conv(Am).

Note that 
 = ∪m>0
m . Fix m and let r = rm denote the number of elements
in Am = {β1, . . . , βr }. From these data we form a symplectic form, ωm , on (C∗)n

using a standard procedure:ωm is the pull backof theFubini–Study formonCP
r−1 via

the map m : (C∗)n → CP
r−1, u �→ (uβ1c1, . . . , uβr cr ), where c = [(c1, . . . , cr )] is
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some element in CP
r−1 with all ci 	= 0. (In [20] the elements ci come from coeffi-

cients of leading terms of elements in appropriately chosen basis of Lm . One also
needs that the differences of elements in Am span Z

n , which, by [20, Remark 5.6],
is always true for lowest term valuations.)

Kaveh proved that:

1. for every m > 0 there exists an open subset U ⊂ X such that (U, ω) is symplec-
tomorphic to ((C∗)n, 1

m ωm) [20, Theorem 10.5];
2. the Gromov width of ((C∗)n, 1

m ωm) is at least Rm , where Rm is the size of the
largest open simplex that fits in the interior of 
m = 1

m conv (Am) [20, Corollary
12.3].

This leads to the following corollary.

Corollary 9 ([20, Corollary 12.4]) Let X be a smooth projective variety of dimen-
sion n, L an ample line bundle on X, and ω = �∗

L(ωF S) ∈ H 2(X, Z) an integral
Kähler form. Let ν be a lowest term valuation on C(X), with values in Z

n, and 


the associated Okounkov body. The Gromov width of (X, ω) is at least R, where R
is the size of the largest open simplex that fits in the interior of 
.

13.3.1 Results About Coadjoint Orbits

The methods for finding the Gromov width described in Corollaries 8 and 9 have
been used in [11, 14] for coadjoint orbits of compact Lie groups.

Recall that given a compact Lie group K each orbit O ⊂ k∗ := (Lie K )∗ of the
coadjoint action of K on k∗ is naturally a symplectic manifold. Namely it can be
equipped with the Kostant–Kirillov–Souriau symplectic form ωK K S defined by:

ωK K S
ξ (X#, Y #) = 〈ξ, [X, Y ]〉, ξ ∈ O ⊂ k∗, X, Y ∈ k,

where X#, Y # are the vector fields on k∗ induced by X, Y ∈ k via the coadjoint
action of K . For more details see, for example, [7, Sect. 21.5, Homeworks 16 and
17]. Coadjoint orbits are in bijection with points in a positive Weyl chamber as
every coadjoint orbit intersects such a chamber in a single point. An orbit is called
generic (resp. degenerate) if this intersection point is an interior point of the chamber
(resp. a boundary point). For example, when K = U(n, C) is the unitary group, a
coadjoint orbit can be identified with the set of Hermitian matrices with a fixed set
of eigenvalues. The orbit is generic if all eigenvalues are different, and in this case it
is diffeomorphic to the manifold of complete flags in C

n .
It has been unofficially conjectured5 that the Gromov width of (Oλ, ω

K K S) of K ,
through a point λ in a positive Weyl chamber should be given by the following neat

5 During the work on the project [18], about complex Grassmannians, Karshon and Tolman looked
at various examples of other coadjoint orbits and got the impression that the above value might be
the Gromov width of all coadjoint orbits. They never formulated this expectation formally as their
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formula, expressed entirely in the Lie-theoretical language

min{ ∣
∣
〈

λ, α∨〉∣
∣ ; α∨ a coroot and

〈

λ, α∨〉 	= 0}.

For example, as {eii − e j j ; i 	= j} forms a root system for the unitary groupU(n, C),
the Gromov width of its coadjoint orbit Oλ passing through a point

λ = diag(λ1, . . . , λn) ∈ u(n)∗,

integral up to scaling, is equal to min{|λi − λ j |; i, j ∈ {1, . . . , n}, λi 	= λ j }. Here
we identified u(n) and u(n)∗ with the set of n × n Hermitian matrices.

This conjecture was motivated by the computation of the Gromov width of com-
plex Grassmannians, i.e. degenerate coadjoint orbits of U(n, C), done by Karshon
and Tolman [18], and independently by Lu [23]. Later, using holomorphic tech-
niques, Zoghi [29] showed that the above formula provides an upper bound for
the Gromov width for generic indecomposable6 orbits of U(n, C). This result was
generalized to all coadjoint orbits by Caviedes [2]. The fact that this formula also pro-
vides a lower bound was proved using explicit Hamiltonian torus actions by several
authors: [29] gives a proof for generic indecomposable orbits of U(n, C) using the
standard action of the maximal torus, Lane [21] proves this lower bound for generic
orbits of the exceptional group G2, and [26] settled the case of U(n, C), SO(2n, C)

and SO(2n + 1, C) orbits7 using the Gelfand–Tsetlin torus action.

13.3.2 A Sketch of the Proof of Theorem 1

The first usage of toric degenerations in Gromov width problems appeared in [14],
where the generic orbits of the symplectic group Sp(n) = U(n, H) are considered.
Then it was used in [11] to prove that the formula (13.1) is a lower bound for the
Gromov width of any coadjoint orbit of any compact connected simple Lie group K ,
passing through a point in the Weyl chamber, integral up to scaling, i.e. to prove
Theorem 1.

The rationality assumption comes from the fact that the toric degenerationmethod
can be applied only to the orbits passing through an integral point λ of a positiveWeyl

conjecture, but they shared this idea with other mathematicians in private communications. This is
how this value became to be known as the expected Gromov width for coadjoint orbits.
6 A coadjoint orbit through a point λ in the interior of a chosen positive Weyl chamber is called
indecomposable in [29] if there exists a simple positive root α such that for any positive root α′
there exists a positive integer k such that 〈λ, α′〉 = k〈λ, α〉.
7 The result about SO(2n + 1, C) holds only for orbits satisfying a mild technical condition: the
point λ of intersection of the orbit and a chosen positive Weyl chamber should not belong to a
certain subset of one wall of the chamber; see [26] for more details. In particular, all generic orbits
satisfy this condition.
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chamber, i.e., in the language of representation theory language, through a dominant
weight.

Let G be a simply connected simple complex algebraic group and K ⊂ G be
its maximal compact subgroup. With a dominant weight λ one can associate an
irreducible representation V (λ) of G of highest weight λ. Let Cvλ

be the highest
weight line and P = Pλ be the normalizer in G of this line. Then the coadjoint
orbit Oλ of K is diffeomorphic to G/P (and to K/K ∩ P) and there exists a very
ample line bundleLλ on G/P such that the pull back of the Fubini–Study form on the
projective space P(H0(G/P,Lλ)

∗) = P(V (λ)) via the Kodaira embedding G/P →
P(H0(G/P,Lλ)

∗) is exactly the Kostant–Kirillov–Souriau symplectic form ωK K S

onOλ (see for example [2, Remark 5.5]). Thus for integral λ’s one can try to construct
toric degenerations of projective variety G/P with line bundle Lλ and obtain some
lower bounds for the Gromov width of the orbit Oλ. Rescaling of symplectic forms
allows to extend such a result to orbits Oaλ, for any a ∈ R>0.

It remains to discuss how one can construct desired toric degenerations.
Agreat advantage ofworkingwith coadjoint orbits of a complex algebraic groupG

is that a lot of information can be obtained from studying representations of G. This
leads to a beautiful interplay between symplectic geometry and representation theory.
A reduced decomposition of the longest word in theWeyl group, w0 = siα1

· . . . · siαN

provides the following items (defined below) related in an interesting way:

1. a valuation νw0
;

2. a string parameterization of a crystal basis of V ∗
λ .

We continue to denote byλ a dominantweight (i.e. an integral element in a positive
Weyl chamber of g∗) and by Vλ the finite dimensional irreducible representation of G
with highest weight λ. Let V ∗

λ denote the dual representation. One often seeks for a
basis of V ∗

λ consisting of elementswhich behave nicely under the action ofKashiwara
operators.A crystal basis is a basiswhose elements are permuted under theKashiwara
operators. Given a crystal basis one can form a crystal graph of a given representation:
vertices are elements of the crystal basis and {0}, and edges are labelled by simple
roots and correspond to the action of Kashiwara operators. There are (not canonical)
ways of embedding such graph into R

N , N = dimC G/P . A reduced decomposition
of the longest word in the Weyl group (into a composition of reflections with respect
to simple roots), w0 = sα1 · . . . · sαN , provides a way of assigning to each vertex of
the crystal graph a string of N integers (string parametrization), and thus gives such
an embedding. A convex hull of the image of string parametrization is called a string
polytope. It depends on λ and also on the chosen decomposition w0. String polytopes
have been extensively studied in representation theory.

Moreover, a reduced decomposition w0 = siα1
· . . . · siαN

defines a sequence of
Schubert subvarieties

[P] = YN ⊂ . . . ⊂ Y0 = G/P,

where Y j denotes the Schubert variety corresponding to element siα j+1
· . . . · siαN

of
the Weyl group. We denote by νw0

the highest term valuation associated with this
flag of subvarieties.
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A theorem of Kaveh relates these two objects.

Theorem 10 ([19]) The string parametrization for V ∗
λ = H0(G/P,Lλ) obtained

using the reduced decomposition w0 is the restriction of the valuation νw0
and thus

the corresponding string polytope is the Okounkov body 
(νw0
).

Detailed computations for the case of G = SL(3, C) and w0 = s1s2s2 are presented
in [19, Sect. 5].

Explicit descriptions of string polytopes for classical Lie groups and some well-
chosen reduced decompositions of the longest words were presented in the work of
Littelmann [22]. With a bit of work one can show that the string polytope for V ∗

λ

with G = Sp(2n, C) the symplectic group (with maximal compact subgroup K =
Sp(n) = U(n, H)), described in [22], contains a simplex of size prescribed by (13.1).
Then, the result of Kaveh, [19], quoted above together with Corollary 8 prove that
the Gromov width of Sp(n) coadjoint orbit (Oλ, ω

K K S) is at least equal to the value
prescribed by (13.1), i.e. proves Theorem 1 for the case of the symplectic group.
This is exactly the argument used in [14].

Similar methods could be applied for other classical Lie groups. However, one
would need to consider each type separately, as the descriptions of string polytopes
contained in [22] depend on reduced decompositions which are different for different
group types.

To obtain a unified proof which works for all group types, in [11] we use lowest
term valuations ν arising from a system of parameters induced by an enumera-
tion {β1, . . . , βN } of certain positive roots, also in the cases where this enumeration
does not come from a reduced decomposition of the longest word. In these cases
it might be very difficult to show that the associated semigroup S(ν) is finitely
generated (if it is) and to find an explicit description of the associated Okounkov
body. Moreover, on the representation theory side, we do not have a natural way of
obtaining a string parametrization of a crystal basis of V ∗

λ from such enumerations.
However, in [10] the authors managed to give a representation-theoretic description
of the associated semigroup S(ν) in the case when the enumeration is a good ordering
in the sense of [10]. Here is the main idea. Given such enumeration one can define
for each α ∈ Z

N
≥0 subspaces V (λ)≤α and V (λ)<α of V (λ). An element α ∈ Z

N
≥0 is

called essential for λ if dim V (λ)≤α/V (λ)<α = 1. It was proved in [10] that the
set {(l, α); l ∈ Z≥0, α essential for lλ} is a semigroup which coincides with S(ν).
Moreover, building on other results from [10] concerning essential elements, one
can show that the Okounkov body associated to S(ν) contains a simplex of size
prescribed by (13.1). Then, using the result of [20] cited here as Corollary 9 (which
does not require the semigroup to be finitely generated), one proves Theorem 1. The
details of this argument are presented in [11].

13.4 Cohomological Rigidity

The following section is based on a project joint with Sue Tolman [27].
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Cohomological rigidity problems are problems where one tries to determine
whether the integral cohomology ring can distinguish between manifolds of cer-
tain family, and whether all isomorphisms between integral cohomology rings are
induced by maps (homeomorphisms or diffeomorphisms, depending on the setting)
between manifolds. The integral cohomology ring is too weak to distinguish a home-
omorphism type of a manifold. However, by a result of Freedman, it classifies (up to
a homeomorphism) all closed, smooth, simply connected 4-manifolds. Masuda and
Suh posed a question of whether the cohomological rigidity holds for the family
of symplectic toric manifolds. The question was studied by its authors, Choi, and
Panov. No counterexample was found and partial positive results were proved. (Inter-
ested reader is encouraged to consult a nice survey [4] and references therein.) Due
to the presence of symplectic structure, it seems natural to consider the following
symplectic variant of the above question.

Question 11 (Symplectic cohomological rigidity for symplectic toric manifolds)

1. (weak) Are two symplectic toric manifolds (M, ωM) and (N , ωN ) necessar-
ily symplectomorphic whenever there exists an isomorphism F : H∗(M; Z) →
H∗(N ; Z) sending the class [ωM ] to the class [ωN ]?

2. (strong) Is any such isomorphism F : H∗(M; Z) → H∗(N ; Z) induced by a sym-
plectomorphism?

In [27] it is shown that weak and strong symplectic cohomological rigidity hold
for the family of Bott manifolds with rational cohomology ring isomorphic to that of
a product of copies ofCP

1. Bott manifolds can be viewed as higher dimensional gen-
eralizations of Hirzebruch surfaces discussed in the example below. For the definition
see Sect. 13.4.2.

Remark 12 Strong (not symplecic) cohomological rigidity, with diffeomorphisms,
was already proved for this family by Choi and Masuda [3]. Their diffeomorphisms
usually do not preserve the complex structure. If they had, then our result would be
an immediate consequence of theirs. Indeed, if f : N → M is a biholomorphism
inducing F , then ωN and f ∗(ωM) are both Kähler forms on N , defining the same
cohomology class in H∗(N ; Z), and thus in this case (N , ωN ) and (N , f ∗(ωM)) are
symplectomorphic by the Moser’s trick.

Example 13 (Hirzebruch surfaces) Hirzebruch surfaces areCP
1 bundles over CP

1.
As complex manifolds they are classified by integers (encoding the twisting of
the bundle): for each A ∈ Z we denote by H−A the bundle P(O(A) ⊕ O(0)) →
CP

1. In particular, H0 = CP
1 × CP

1. They can be equipped with a symplectic
(even Kähler) structure and a toric action. A polytope corresponding to H−A in
Delzant classification is (up to GL(2, Z) action) a trapezoid with outward nor-
mals (−1, 0), (0,−1), (1, 0), (A, 1). The lengths of the edges of this trapezoid
depend on the chosen symplectic structure and can be encoded in λ = (λ1, λ2) ∈
(R>0)

2. We denote by (H−A, ωλ) the symplectic toric manifold corresponding to
the trapezoid 
(A, λ) := conv((0, 0), (λ1, 0), (λ1, λ2 − Aλ1), (0, λ2)). For exam-
ple, Fig. 13.1 presents (H0, ω(1,3)) and (H−2, ω(1,5)).



13 Toric Degenerations in Symplectic Geometry 275

Fig. 13.1 Hirzebruch
surfaces (H0, ω(1,3))

and (H−2, ω(1,5))

1 1

3

5

It was observed by Hirzebruch thatH−A andH− Ã are diffeomorphic if and only
if A ∼= Ã mod 2. Moreover, the symplectic toric manifolds (H−A, ωλ) and (H− Ã,

ωλ̃) are (not equivariantly) symplectomorphic if and only if A ∼= Ã mod 2 and the
widths and the areas of the associated polytopes agree, i.e. λ1 = λ̃1 and λ2 − 1

2 Aλ1 =
λ̃2 − 1

2 Ã̃λ1. For example, the manifolds presented on Fig. 13.1 are symplectomor-
phic. The cohomology ring can be presented as

H∗(H−A; Z) = Z[x1, x2]/〈x2
2 , x2

1 + Ax1x2〉,

with [ωλ] = λ1x1 + λ2x2. If A ∼= Ã mod 2, then the isomorphism Z[x1, x2] →
Z[̃x1, x̃2] defined by x1 �→ x̃1 + 1

2 ( Ã − A)̃x2, x2 �→ x̃2 descends to an isomorphism
between H∗(H−A; Z) and H∗(H− Ã; Z). Note that this isomorphism sends [ωλ] =
λ1x1 + λ2x2 to λ1 x̃1 + (λ2 + Ã−A

2 λ1) x̃2 which is equal to [ωλ̃] if and only if λ1 = λ̃1

and λ2 − A
2 λ1 = λ̃2 − Ã

2 λ̃1. Therefore, for Hirzebruch surfaces (weak) symplectic
cohomological rigidity holds.

To approach symplectic cohomological rigidity problem one needs a goodmethod
of constructing symplectomorphisms. Here is where toric degenerations come into
play. By Theorem 6 a toric degeneration whose central fiber Proj C[S] is smooth
produces a symplectomorphism between the symplectic manifold one started with
and the central fiber. The main difficulty in this method of constructing symplecto-
morphisms lies in finding toric degenerations with smooth central fibers.

A great advantage of working with toric manifolds is that the sections of their line
bundles are well understood and one can form very concrete constructions of toric
degenerations.

13.4.1 Toric Degenerations for Symplectic Toric Manifolds

Let (X P , ωP) be a symplectic toric manifold with ωP ∈ H2(M, Z), corresponding
to a polytope P ⊂ R

n via Delzant construction. Then P is an integral polytope (i.e.
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with vertices inZ
n) and there exists a very ample line bundleL over X P inducingωP .

In this situation a basis of the space of holomorphic sections of L can be identified
with the integral points of P , ([6], see also [15]). Without loss of generality we can
assume that P in a neighborhood of some vertex looks like (R≥0)

n in a neighborhood
of the origin in R

n . Then we can identify L = H0(X P ,L)with a subset of the ring of
rational functions,C(X P), as described onSect. 13.2, using the section corresponding
to the origin as the fixed element h:

f �→ f

section corresponding to the origin
.

Note 14 For simplicity of notation, given a valuation ν we will write ν(L) to denote

ν(L) := {ν( f/h); f ∈ L \ {0}}.

Similarly, let ν(Lm) := {ν( f/hm); f ∈ Lm \ {0}} for any m > 1.

We denote by f j ∈ C(X P) the rational function coming from the section corre-
sponding to the j-th basis vector, j = 1, . . . , n. Note that f1, . . . , fn form a coordi-
nate system around the fixed point of X P corresponding to the origin via the moment
map. To see this, one can, for example, use the description of X P and f j ’s from [15].

Choose and fix a non-negative integer c and two elements k < l ∈ {1, . . . , n}.
Then

{u1 = f1, . . . , uk−1 = fk−1, uk = fk − f c
l , uk+1 = fk+1, . . . , un = fn}

also gives a coordinate system. Let ν be the associated lowest term valuation (as in
Example 4). The image ν(L) can be obtain by using a “sliding” operator F−ek+cel ,
defined as follows. For each affine line � inR

n in the direction of−ek + cel , with P ∩
� ∩ Z

n 	= ∅, translate the set {P ∩ � ∩ Z
n} by a(−ek + cel)with a ≥ 0maximal non-

negative number for which a(−ek + cel) + {P ∩ � ∩ Z
n} ⊂ (R≥0)

n .

Lemma 15 One obtains ν(L) by sliding the integral points of P in the direc-
tion −ek + cel , inside (R≥0)

n, i.e.

ν(L) = F−ek+cel (P ∩ Z
n).

Instead of the proof, which can be found in [27], we give the following example
which ilustrates the main idea behind the proof.

Example 16 Let (X P , ωP) be the symplectic toric manifold corresponding to the
polytope P = conv {(0, 0), (1, 0), (1, 3), (0, 3)} ⊂ R

2. That is, X P is diffeomorphic
to CP

1 × CP
1 with product symplectic structure (with different rescaling of the

Fubini–Study symplectic form on each factor). Let ν be the lowest term valuation
associated to the coordinate system

u1 = f1 − f 22 , u2 = f2.
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Line {(0, 2) + t (1,−2); t ∈ R} intersects P in two integral points: (1, 0) and (0, 2).
The corresponding functions are f1 and f 22 , and one can easily calculate that

ν( f1) = ν( f 22 ) = (0, 2) and ν( f1 − f 22 ) = (1, 0).

Similarly, using the integral points on the line {(0, 3) + t (1,−2); t ∈ R} we obtain

ν( f1 f2) = ν( f 32 ) = (0, 3) and ν( f1 f2 − f 32 ) = ν(( f1 − f 22 ) f2) = (1, 1).

Moregenerally, if the integral points (a, b), (a, b) + (1,−2), . . . , (a, b) + m(1,−2)
are in P (implying that b − 2m > 0), then one can use the corresponding functions to
construct functions with valuations (0, b + 2a), (0, b + 2a) + (1,−2), . . . , (0, b +
2a) + m(1,−2) = (m, 2a + b − 2m). Precisely, for any l = 0, . . . , m

f a
1 f b−2l

2 ( f1 − f 22 )l =
l

∑

j=0

(−1)l− j f a+ j
1 f b−2 j

2 and

ν( f a
1 f b−2l

2 ( f1 − f 22 )l) = (l, 2a + b − 2l).

This proves that ν(L) ⊃ F(−1,2)(P ∩ Z
2). By [16, Proposition 3.4] the cardinality

of ν(L) is the dimension of L , that is, the number of integral points in P . Therefore

ν(L) = F(−1,2)(P ∩ Z
2).

The polytopes P and conv(ν(L)) are presented in Fig. 13.1.

Understanding ν(L) is not enough for constructing and understanding a toric
degeneration. First of all, to construct a flat family with toric fiber π−1(0) one
needs the associated semigroup S = S(ν) to be finitely generated. Additionally,
this toric fiber π−1(0) = ProjC[S] is the toric variety associated to the Okounkov
body 
 if ProjC[S] is normal, that is, if S is saturated. Moreover, to describe the
Okounkov body one also needs to find ν(Lm) for m > 1. Note that in general Lm

differs from H0(X,L⊗m). The following proposition describes an especially nice
situation where all these conditions simplify.

Proposition 17 Let (X, ω = �∗
L(ωF S)) be a 2n dimensional projective symplectic

toric manifold associated to a smooth polytope P, with the projective embedding
induced by a very ample line bundle L. Let ν be a lowest term valuation associated
to a coordinate system of the type presented on Sect.13.4.1, and S the induced
semigroup. Assume that there exists a smooth integral polytope 
 ⊂ R

n such that

S = (cone ({1} × 
)) ∩ (Z × Z
n).

Then (X, ω) is symplectomorphic to the symplectic toric manifold (X
, ω
) associ-
ated to 
 via Delzant construction.
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Here cone ({1} × 
) denotes the set {(t, t x); x ∈ 
, t ∈ R+} ⊂ R
n+1.

Proof (sketch) The assumptions imply that the semigroup S is saturated and (by
Gordan’s Lemma) finitely generated. Therefore there is a toric degeneration (X, ω̃)

with generic fiber (X, ω) and the special fiber π−1(0) = ProjC[S]which is a normal
toric variety. Moreover, the Okounkov body associated to the semigroup S is pre-
cisely
 and therefore ProjC[S] equipped with the restriction of ω̃, is the symplectic
toric manifold (X
, ω
) associated to 
 via Delzant construction. �

Note that S=(cone 
) ∩ (Z × Z
n) imply, in particular, thatν(Lm) contains “enough”

of integral points, namely that

∀ m ≥ 1 ν(Lm) = m 
 ∩ Z
n = conv(ν(Lm)) ∩ Z

n.

To understand better the requirement conv (ν(Lm)) ∩ Z
n = ν(Lm), consider the

following example.

Example 18 (“Enough” of integral points and saturation) Let (X P , ωP) be the
symplectic toric manifold corresponding to the polytope

P = conv {(0, 0), (2, 0), (2, 2), (0, 2)} ⊂ R
2,

that is, X P is diffeomorphic to CP
1 × CP

1 as in the previous example, but the
symplectic form is different. As before, let ν be the lowest term valuation associated
to the coordinate system

u1 = f1 − f 22 , u2 = f2.

Then

ν(L) = F(−1,2)(P ∩ Z
2)

= {(0, j); j = 0, . . . , 6} ∪ {(1, 0), (1, 2)} � conv (ν(L)) ∩ Z
2.

In fact conv (ν(L)) is exactly the associated Okounkov body 
(S(ν)). Indeed,

(S(ν)) must contain conv (ν(L)). Moreover, 2! vol2(
(S(ν))) is the degree of
the Kodaira embedding �L : X P → P(L∗) induced by the line bundle L corre-
sponding to ωP [16, Theorem 3.9]. Thus the area of 
(S(ν)) must be equal to
the area of P , which in this case is also the area of conv (ν(L)). Therefore, in
our example, ν(L) is “missing” the point (1, 1) in a sense that ν(L) = 
(S(ν)) ∩
Z
2 \ {(1, 1)}, and thus (1, 1, 1) /∈ S(ν). However, the line {t (1, 1, 1); t ∈ R+}

intersects S(ν): (2, 2, 2) = (

2, ν( f1( f1 − f 22 ) · ( f1 − f 22 ))
) ∈ {2} × ν(L2). There-

fore the semigroup S(ν) is not saturated.

Let us analyse why in the above example the point (1, 1) is missing. Observe that
the parallel lines �1 := {(0, 2) + t (−1, 2); t ∈ R}, �2 := {(0, 3) + t (−1, 2); t ∈ R}
and �3 := {(0, 4) + t (−1, 2); t ∈ R} intersect P at intervals of the same length but
with, respectively, 2, 1 and 2 integral points. Therefore the intersections of �1, �2
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Fig. 13.2 Illustration of
Example 18

Integral points of P ν(L)

and �3 with ν(L) = F(−1,2)(P ∩ Z
2) also contain, respectively, 2, 1 and 2 integral

points. As a result, the points (1, 0) and (1, 2) are in ν(L), but (1, 1) is not. The
following condition is sufficient, though not necessary, to guarantee that we do not
encounter that problem and have enough of integral points (Fig. 13.2).

Lemma 19 Let λ1, λ2, c ∈ Z>0 and


 = {

p ∈ R
2
∣
∣ 0 ≤ 〈p, e1〉 ≤ λ1, 0 ≤ 〈p, e2〉 and

〈

p, e2 + Ae1
〉 ≤ λ2

}

.

Assume that
λ2 − cλ1 > 0.

Then the polytope conv F(−1,c)(
 ∩ Z
2) is a trapezoid of the same area as 
 and

(conv F(−1,c)(
 ∩ Z
2)) ∩ Z

2 = F(−1,c)(
 ∩ Z
2).

If c ≤ A then conv F(−1,c)(
 ∩ Z
2) is simply 
, and if c > A then it is

{

p ∈ R
2
∣
∣ 0 ≤ 〈p, e1〉 ≤λ1, 0 ≤ 〈p, e2〉 and

〈

p, e2 + (2c − A)e1
〉 ≤ λ2 + (c − A)λ1)

}

.

An example is illustrated in Fig. 13.3.

13.4.2 Cohomological Rigidity for Bott Manifolds

A Bott manifold is a manifold obtained as a total space of a tower of iterated bundles
with fiber CP

1 and the first base space CP
1. Such a manifold naturally carry an

algebraic torus action, and can be viewed as a toricmanifold. Note that 4-dimensional
Bott manifolds are exactly the Hirzebruch surfaces discussed in Example 13. For
more information about Bott manifolds see, for example, [13].
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Fig. 13.3 Toric degeneration of a Hirzebruch surface

The simplest example of an 2n-dimensional Bott manifold is the product of n
copies of CP

1’s. Equipped with a product symplectic structure ω = π∗
1 (a1ωF S) +

. . . + π∗
n (anωF S), for some a j ∈ R>0, and the standard toric action8 it becomes a

symplectic toric manifold, whose Delzant polytope is a product of intervals, with
lengths depending on a j ’s. Here π j : CP

1 × . . . × CP
1 → CP

1 denotes the projec-
tion onto the j-th factor, and ωF S stands for the Fubini–Study symplectic form. In
particular, if all a j ’s are equal, then the moment image is a hypercube.

A moment image for a general 2n-dimensional Bott manifold is combinatorially
an n-dimensional hypercube. By applying a translation and a GL(n, Z) transforma-
tion one can always arrange that the moment image is a polytope of the form


 = 
(A, λ) =
{

p ∈ R
n
∣
∣ 〈p, e j 〉 ≥ 0 and

〈

p, e j +
∑

i

Ai
j ei

〉 ≤ λ j ∀ 1 ≤ j ≤ n
}

,

where A ∈ Mn(Z) is an n × n strictly upper-triangular integral matrix, that is Ai
j = 0

unless i < j , and λ ∈ (R>0)
n . Certain relation between A and λ must be satis-

fied in order for 
(A, λ) to have 2n facets and be combinatorially equivalent to
a hypercube (see [27].) In that case we say that (A, λ) defines a symplectic toric Bott
manifold (MA, ωλ) corresponding to the Delzant polytope 
(A, λ). The matrix A
encodes the twisting of consecutive CP

1 bundles, and thus determines a diffeomor-
phism type of MA, while λ determines the symplectic structure. By a classical result
of Danilov [6]

H∗(MA; Z) = Z[x1, . . . , xn]/
(

x2
i +

∑

j

Ai
j x j xi

)

, (13.2)

with [ωλ] = ∑

i λi xi ∈ H∗(MA; Z) ⊗Z R. If all coefficients λi are integral then [ωλ]
is an integral symplectic. Note that this particular presentation ofH∗(MA; Z) depends

8 In the standard action of (S1)n on (CP
1)n each S1 in (S1)n acts on the respective copy of CP

1

by eit · [(z0, z1)] = [(z0, eit z1)].
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on A. (The element x j is the Poincaré dual to the preimage of facet 
(A, λ) ∩
{〈p, e j + ∑

i Ai
j ei

〉 = λ j }.)
We say that a Bott manifold is Q-trivial if H∗(M; Q) � H∗((CP

1)n; Q). For
example, observe that all Hirzebruch surfaces are Q-trivial Bott manifolds.

Recall that we want to prove Theorem 2 which says that for Q-trivial Bott mani-
folds (N , ωN ) and (M, ωM ), and any ring isomorphism F : H∗(M; Z) → H∗(N ; Z),
with F([ωM ]) = [ωN ], there exists a symplectomorphism f : (N , ωN ) → (M, ωM)

inducing F . The key ingredient of the proof of Theorem 2 is the following construc-
tion of symplectomorphisms, which uses toric degenerations.

Proposition 20 ([27]) Let (M, ω) and (M̃, ω̃) be symplectic Bott manifolds asso-
ciated to strictly upper triangular A and Ã in Mn(Z) and λ and λ̃ in Z

n, respec-
tively. Assume that there exist integers 1 ≤ k < � ≤ n so that Ak

� and Ãk
� are of the

same parity and the isomorphism from Z[x1, . . . , xn] to Z[̃x1, . . . , x̃n] that sends xk

to x̃k + Ãk
�−Ak

�

2 x̃� and xi to x̃i for all i 	= k descends to an isomorphism fromH∗(M; Z)

to H∗(M̃; Z) and takes
∑

λi xi to
∑

λ̃i x̃i . If Ak
� + Ãk

� ≥ 0, then M and M̃ are sym-
plectomorphic.

Proof (sketch) Without loss of generality we can assume that the polytope 
(A, λ)

associated to (A, λ) is normal, that is, any integral point of m 
(A, λ) can be
expressed as a sum ofm integral points of
(A, λ). Indeed, if
(A, λ) is not a normal
polytope, replace (M, ω) and (M̃, ω̃) by (M, (n − 1) ω) and (M̃, (n − 1) ω̃). This
dilates the corresponding polytopes by (n − 1). For any integral polytope P ⊂ R

n

its dialate m P with m ≥ n − 1 is normal (see, for example, [5, Theorem 2.2.12]).
Obviously if (M, (n − 1) ω) and (M̃, (n − 1) ω̃) are symplectomorphic, then so
are (M, ω) and (M̃, ω̃). As usually, let L denote the very ample line bundle over M
corresponding to ω and L the space of its holomorphic sections. Note that normality
implies that Lm can be identified with H 0(M,L⊗m) because a basis for both of these
vector spaces is given by the integral points m 
(A, λ) ∩ Z

n .
Also without loss of generality we can assume that Ãk

� ≥ Ak
� . Let c = 1

2 (Ak
� +

Ãk
�) ≥ 0. We will work with a lowest term valuation ν associated to the following

coordinate system

{u1 = f1, . . . , uk−1 = fk−1, uk = fk − f c
l , uk+1 = fk+1, . . . , un = fn.}

From Lemma 15 and the normality assumption, for all m ≥ 1 we have that

ν(Lm) = F−ek+cel (m 
(A, λ) ∩ Z
n).

To understand F−ek+cel (m 
(A, λ) ∩ Z
n) consider the action of F−ek+cel on 2-

dimensional “slices”, that is, the intersections of m 
(A, λ) with affine subspaces
which are translations of (ek, el)-planes. Such slices are either empty or are trapezoids
like in Example 16 and Corollary 19, possibly with a cut. A bit tedious computation
shows that

F−ek+cel (m 
(A, λ) ∩ Z
n) = m 
( Ã, λ̃) ∩ Z

n.
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For that computation one uses relations between A, λ, Ã and λ̃ which are implied
by the facts that 
(A, λ) and 
( Ã, λ̃) are combinatorially hypercubes, and by the
existence of the isomorphism described in the statement of the proposition. In partic-
ular, these relations also allow to generalize Corollary 19 (precisely: to show that the
equivalent of condition λ2 − cλ1 > 0 holds). Therefore the semigroup S associated
to the valuation ν of (M, ω) is exactly S = (cone 
( Ã, λ̃)) ∩ (Z × Z

n). Then the
claim follows from Proposition 17. �

Using Proposition 20we showbelow (Corollary 23) that eachQ-trivial Bottmanifold
is associated to a matrix A of a particularly easy form. To explain this idea we need
few more definitions. Recall the presentation of the cohomology of symplectic Bott
manifold MA given in (13.2). We define the following special elements

αk = −
∑

j

Ak
j x j ∈ H∗(MA; Z), yk = xk − 1

2
αk ∈ H∗(MA; Q)

for all k.We say xk is of even (odd) exceptional type if αk = cyl for some l, where c is
an even (respectively, odd) integer. In “coordinates”, thismeans that Ak

j = 0 for j < l

and Ak
j = 1

2 Ak
l Al

j for j > l. Note that if xk is even (resp. odd) exceptional, say αk =
myl , then one can construct an isomorphism of Proposition 20 from H∗(MA; Z)

to H∗(MÃ; Z) for some Ã with Ãk
l equal to 0 (resp. −1). For example if xk is of

even exceptional type, i.e. αk = 2myl for some m and l, implying that Ak
l = −2m

and Ak
j = −m Al

j for j 	= l, then one should put Ãk
l = 0, Ãi

j = Ai
j for all i and

all j 	= l, and Ãi
l = Ai

l + m Ai
k for all i 	= k. Therefore, consecutive applications of

the above proposition lead to simplifying the description of a given Bott manifold.

Corollary 21 Any symplectic toric Bott manifold, with integral symplectic form is
symplectomorphic to one for which Ak

l = 0 (resp. Ak
l = −1) whenever xk has even

(resp. odd) exceptional type and αk = myl .

In the case ofQ-trivial Bott manifolds all xi have exceptional type, [3, Proposition
3.1]. Therefore, anyQ-trivial symplectic toric Bott manifoldwith integral symplectic
formmust be a product of the following standard models ofQ-trivial Bott manifolds.

Example 22 (Q-trivial Bott manifold) Take n ∈ Z>0. Let Ai
n = −1 for all 1 ≤

i < n, and Ai
j = 0 otherwise. For such upper triangular matrix A = [Ai

j ] and
any λ ∈ (R>0)

n , the polytope
(A, λ) is combinatorially a hypercube, thus it defines
a symplectic toric Bott manifold, which we will denote by H = H(λ1, . . . , λn).
Observe that

H∗(H; Z) = Z[x1, . . . , xn]/
(

x2
1 − x1xn, . . . , x2

n−1 − xn−1xn, x2
n

)

.

Consider elements yi = xi − 1
2 xn ∈ H∗(H; Q) for all i < n, and yn = xn , and

note that they form a basis for H∗(H; Q). Moreover, as y2i = 0 for all i , we get
that H∗(H; Q) � Q[y1, . . . , yn]/

(

y21 , . . . , y2n ), that is,H is Q-trivial.
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More generally, any partition of n,
∑m

i=1 li = n together with λ ∈ (R>0)
n , define

a Q-trivial Bott manifold

H(λ1, . . . , λl1) × . . . × H(λn−lm+1, . . . , λn).

Corollary 23 Each 2n-dimensional Q-trivial Bott manifold M with integral sym-
plectic form is symplectomorphic to

H(λ1, . . . , λl1) × · · · × H(λn−lm+1, . . . , λn),

for some partition n = ∑m
i=1 li of n and some λ1, . . . , λn ∈ Z>0.

The above standard model is easy enough, so that one can understand all possible
ring isomorphisms between cohomology rings and prove that they are induced by
maps on manifolds.

Lemma 24 Fix n ∈ Z>0. Let
∑m

i=1 li = ∑m̃
i=1 l̃i = n be partitions of n, and letλ, λ̃ ∈

(R>0)
n. Consider symplectic Bott manifolds

(M, ω) = H(λ1, . . . , λl1) × · · · × H(λn−lm+1, . . . , λn),

(M̃, ω̃) = H (̃λ1, . . . , λ̃̃l1) × · · · × H (̃λn−̃lm̃+1, . . . , λ̃n).

Given a ring isomorphism F : H∗(M; Z) → H∗(M̃; Z) such that F[ω] = [ω̃], there
exists a symplectomorphism f from (M̃, ω̃) to (M, ω) so that H∗( f ) = F.

Proof (sketch) First consider the situation when

(M, ω) = H(λ1, . . . , λn) and (M̃, ω̃) = H (̃λ1, . . . , λ̃n).

The Q-triviality assumption implies that there are exactly 2n primitive classes
in H2(M; Z) which square to 0. A short computation shows that these are ±z1, . . . ,
±zn , where zn = xn and zi = 2xi − xn for all i < n. Similarly for M̃ . As the coho-
mology of a symplectic toricmanifold is generated in degree 2, any ring isomorphism
between H∗(M; Z) and H∗(M̃; Z) restricts to a bijection on the set of such elements,
that is, there exists ε = (ε1, . . . , εn) ∈ {−1, 1}n and a permutation σ ∈ Sn such
that F(z j ) = ε j z̃σ( j). Moreover, presenting [ω] (resp. [ω̃]) in R-basis {z1, . . . , zn}
of H∗(M; Z) ⊗Z R (resp. {̃z1, . . . , z̃n}) and recalling that the isomorphism F is to
map [ω] to [ω̃], one can deduce that F acts by a permutation: F(z j ) = z̃σ( j) for some
permutation σ ∈ Sn with σ(n) = n, and that λ j = λ̃σ ( j). Moreover F takes xi to xσ(i)

and it holds that Ai
j = Ãσ(i)

σ ( j) for all i, j. If � ∈ GL(n, Z) denotes the unimodular

matrix taking ei to eσ(i), then �T (
( Ã, λ̃)) = 
(A, λ); Therefore, by the Delzant
theorem, the manifolds (M, ω) and (M̃, ω̃) are (equivariantly) symplectomorphic,
by some symplectomorphism f . Moreover, as �T maps the facet {〈p, eσ( j)〉 =
0} ∩ 
( Ã, λ̃) to the facet {〈p, e j 〉 = 0} ∩ 
(A, λ), and {〈p, eσ( j) + ∑

i Ãi
σ( j)ei 〉 =

λ̃σ ( j)} ∩ 
( Ã, λ̃) to {〈p, e j + ∑

i Ai
j ei 〉 = λ j } ∩ 
(A, λ), the map H∗( f ) induced
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by f on cohomology must map the Poincaré duals of preimages of these facets
accordingly. That is, H∗( f ) = F .

In a general case, denote byλls the ls-tuple of numbers (λl1+···+ls−1+1, . . . , λl1+···+ls ),

and define λ̃l̃s similarly. Again, we look at primitive elements with trivial squares.
In H∗(M; Z) these are precisely

±xls and ± (2xi − xls ) for s = 1, . . . , m and is−1 < i < is .

Note that each such element is contained in some subring H∗(H(λls ); Z) ⊆ H∗
(M; Z), and that all primitive square zero elements in H∗(H(λls ); Z) are equal
modulo 2. Therefore F must restrict to an isomorphism from H∗(H(λls ); Z) to
some H∗(H (̃λl̃r ); Z) with ls = l̃r . This implies that both partitions of n are equal,
up to permutation of factors. Repeating the arguments of the previous paragraph one
can construct a symplectomorphism inducing the ring isomorphism F . �

Proof (Proof of Theorem 2) Let (M, ω), (M̃, ω̃) be two Q-trivial Bott manifolds
with symplectic forms integral up to scaling and let F : H∗(M; Z) → H∗(M̃; Z)

be a ring isomorphism such that F[ω] = [ω̃]. Rescaling the symplectic forms if
necessary we can assume that both ω and ω̃ are integral. As the cohomology of a
symplectic toric manifold is generated in degree 2, the isomorphism F must map
H2(M; Z) to H2(M̃; Z). Using (13.2) we see that dim H2(M; Z) = 1

2 dim M , and
similarly dimH2(M̃; Z) = 1

2 dim M̃ . Therefore dim M = dim M̃ . We will denote
this dimension by 2n. By Corollary 23 and the assumption that the symplectic forms
are integral we have that

(M, ω) = H(λ1, . . . , λl1) × · · · × H(λn−lm+1, . . . , λn),

(M̃, ω̃) = H (̃λ1, . . . , λ̃̃l1) × · · · × H (̃λn−̃lm̃+1, . . . , λ̃n).

for some
∑m

i=1 li = ∑m̃
i=1 l̃i = n partitions of n, and some λ, λ̃ ∈ (Z>0)

n . Now
Lemma 24 gives that there exist a symplectomorphism f from (M̃, ω̃) to (M, ω) so
that H∗( f ) = F . �
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Chapter 14
On Deformations of Toric Fano Varieties

Andrea Petracci

Abstract In this note we collect some results on the deformation theory of toric
Fano varieties.

Keywords Deformations · Fano varieties · Toric varieties · Reflexive polytopes

14.1 Introduction

A Fano variety is a normal projective variety X over C such that its anticanonical
divisor −KX is Q-Cartier and ample. Fano varieties constitute the basic building
blocks of algebraic varieties, according to theMinimalModelProgram.Thegeometry
of Fano varieties is a well studied area. In particular, moduli (and consequently
deformations) of Fano varieties constitute a very interesting and important topic in
algebraic geometry, e.g. [21, 62, 69].

Here we will concentrate on deformations and smoothings of toric Fano varieties.
These varieties occupy a prominent role in Mirror Symmetry, a large part of which
is based on the phenomenon of toric degeneration as in [17, 18, 30, 43].

Toric Fano varieties correspond to certain polytopes which are called Fano poly-
topes. The goal of this note is to present some combinatorial criteria on Fano poly-
topes which can detect whether the corresponding toric Fano variety is smoothable,
i.e. can be deformed to a smooth (Fano) variety.

Special attention is given to toric Fano threefolds with Gorenstein singularities.
These varieties correspond to the 4319 reflexive polytopes of dimension 3, which
were classified by Kreuzer and Skarke [66]. In this case, thanks to the use of the soft-
wareMagma [22], we were able to produce a lot of examples for the combinatorial
criteria discussed in this note.
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14.1.1 Outline

In Sect. 14.2.1 the very classical theory of infinitesimal deformations of algebraic
varieties is recalled. In Sect. 14.2.2 we survey some properties of smoothings of
algebraic varieties. In Sect. 14.2.3 two well-studied deformation invariants for Fano
varieties are introduced.

In Sect. 14.3.1 we recall some results on the deformation theory of affine toric
varieties. We provide an example in Sect. 14.3.2.

The core of this note is Sect. 14.4. We recall the definition of Fano polytopes
in Sect. 14.4.1. In Sect. 14.4.2 we present a couple of sufficient conditions that ensure
that a toric Fano variety is non-smoothable. The rigidity of toric Fano varieties is
examined in Sect. 14.4.3. In Sects. 14.4.4 and 14.4.5 we study the smoothability of
toric Fano surfaces and toric Fano threefolds with isolated singularities; an example
is presented in Sect. 14.4.6. In Sect. 14.4.7 we present another sufficient condition
that ensures that a toric Fano threefold is non-smoothable. In Sect. 14.4.8 we include
more results on deformations of toric Fano varieties.

In Sect. 14.5 we write down the lists of the reflexive polytopes of dimension 3
which satisfy the several combinatorial conditions considered in Sect. 14.4.

14.1.2 Notation and Conventions

We work over C, but everything will hold over a field of characteristic zero with
appropriate modifications.

In Sects. 14.3 and 14.4 we assume that the reader is familiar with the basic notions
of toric geometry, which can be found in [34, 41]. All toric varieties considered here
are normal. A lattice is a finitely generated free abelian group. The letters N , N , Ñ
stand for lattices and M, M, M̃ for their duals, e.g. M = HomZ(N , Z); the duality
pairing M × N → Z and its extension MR × NR → R are denoted by 〈·, ·〉.

In a real vector space of finite dimension a polytope is the convex hull of finitely
many points, or equivalently a compact subset which is the intersection of finitely
many closed halfspaces. We refer the reader to the book [99] for the geometry of
polytopes.

14.2 Deformations

14.2.1 Infinitesimal Deformations

Let (Comp) be the category of noetherian complete local C-algebras with residue
field C. For every R ∈ (Comp) we denote by mR the maximal ideal of R. Let (Art)
be the subcategory of (Comp) whose objects are artinian, i.e. local finite C-algebras.
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A functor of Artin rings is a functor F from the category (Art) to the category of
sets such that F(C) is the set with one element. We will only consider functor of
Artin rings which satisfy some additional properties: Schlessinger’s axioms (H1)
and (H2) [91] and Fantechi–Manetti condition (L) [37, (2.9)]. We will not specify
these conditions here, but we refer the reader to [37, Sect. 2] for a quick introduction.
Precise formulations and additional details about the notions we introduce below
can be found in any reference about deformation theory, e.g. [13, 36, 50, 70, 91, 92,
95, 97].

A natural transformation (or briefly map) of functors φ : F → G is called smooth
if the lifting property in Grothendieck’s definition of formally smooth morphisms
holds, i.e. for every local surjection A′ � A in (Art) the natural map F(A′) →
F(A) ×G(A) G(A′) is surjective; in particular, if φ is smooth then φ(A) : F(A) →
G(A) is surjective for all A ∈ (Art). A functor F is called smooth if the map from F
to the trivial functor is smooth.

For a functor F , the set F(C[t]/(t2)) has a natural structure of a C-vector space,
denoted by TF and called the tangent space of F . One can prove that F is the trivial
functor if and only if TF = 0. If φ : F → G is a map, then the function φ(C[t]/(t2))
is linear and denoted by Tφ : TF → TG.

If R ∈ (Comp) one can consider the functor hR = Hom(·, R) prorepresented
by R. A map hR → F is equivalent to a pro-object of F on R = lim←− R/mn+1

R , i.e.

an element of the set lim←− F(R/mn+1
R ). A hull for a functor F is a ring R ∈ (Comp)

together with a smooth morphism φ : hR → F such that Tφ is bijective. A hull exists
if and only if TF has finite dimension. If a hull exists, it is unique. Provided that TF
has finite dimension r , then F is smooth if and only if the hull of F is isomorphic
to C[[t1, . . . , tr ]].

For a functor F , consider the set E made up of pairs (π, ξ), where π : A′ →
A is a surjection in (Art) such that mA′ · (ker π) = 0 and ξ ∈ F(A). A C-vector
space V is called an obstruction space for F if there exists a function ω : E →∐

(π,ξ)∈E ker π ⊗C V such that the two following conditions are satisfied:

1. for every (π, ξ) ∈ E, ω(π, ξ) ∈ ker π ⊗C V ;
2. for every (π, ξ) ∈ E, we have that ω(π, ξ) = 0 if and only if there exists ξ ′ ∈

F(A′) which maps to ξ .

There are infinitelymany obstruction spaces for a functor F because any vector space
containing an obstruction space is an obstruction space. A functor F is smooth if and
only if 0 is an obstruction space for F ; in this case we also say that F is unobstructed.
There is a notion of compatible obstruction spaces for a map φ : F → G: this will
be a linear map oφ from an obstruction space of F to an obstruction space of G with
some compatibility properties with respect to φ.

The following is an important smoothness criterion. Assume that φ : F → G is
a map with compatible obstruction map oφ from an obstruction space of F to an
obstruction space of G. If Tφ is surjective and oφ is injective, then φ is smooth.

Let X be a scheme of finite type over C. We denote by Def X the functor of
(infinitesimal) deformations of X . If R ∈ (Comp), a pro-object of Def X on R is
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called a formal deformation of X over R. If R is a hull for Def X , then the cor-
responding formal deformation of X over R is called the miniversal deformation
of X . We say that X is rigid if all deformations of X are trivial. If X is reduced,
then the tangent space of Def X is Ext1(�X ,OX ); in this case X is rigid if and only
if Ext1(�X ,OX ) = 0. If X is either normal or reduced and local complete intersec-
tion (l.c.i. for short), then Ext2(�X ,OX ) is an obstruction space for Def X . If X is
smooth, then Hi (X, TX ) = Exti (�X ,OX ) for all i ≥ 0. In particular, if X is smooth
and affine then it is rigid.

Proposition 1 If X is a smooth Fano variety, thenHi (X, TX ) = 0 for each i ≥ 2. In
particular, the infinitesimal deformations of X are unobstructed, i.e. Def X is smooth.

Proof Let n be the dimension of X . Since the anticanonical line bundle ω∨
X is ample,

by Kodaira–Nakano vanishing we have Hi (X,�n−1
X ⊗ ω∨

X ) = 0 whenever i + n −
1 > n, i.e. i ≥ 2.We conclude because the tangent sheaf TX is isomorphic to�n−1

X ⊗
ω∨

X . �

Let X be a scheme of finite type over C and let Def ltX be the subfunctor of Def X
made up of the locally trivial deformations of X . The tangent space of Def ltX
is H1(X, TX ) and H2(X, TX ) is an obstruction space for Def ltX .

Proposition 2 Let X be a reduced scheme of finite type over C such that X is either
l.c.i. or normal. IfH0(X,Ext1(�X ,OX )) = 0, then all deformations of X are locally
trivial, i.e. Def ltX = Def X .

Proof The local-to-global spectral sequence for Ext gives the following exact
sequence.

0 → H1(TX ) → Ext1(�X ,OX ) → H0(Ext1(�X ,OX ))

→ H2(TX ) → Ext2(�X ,OX )

The vanishing of H0(Ext1(�X ,OX )) implies that the inclusion φ : Def ltX ↪→ Def X
induces an isomorphism on tangent spaces and an injection on obstruction spaces.
Therefore φ is smooth, and consequently surjective. �

In particular, all deformations of a smooth scheme are locally trivial.
Let X be a reduced scheme of finite type over C with isolated singularities.

For each singular point x ∈ X , let Ux be an affine open neighbourhood of x such
that Ux \ {x} is smooth. Then define

Def locX :=
∏

x∈Sing(X)

Def Ux
.

The tangent space of Def locX is H0(X,Ext1(�X ,OX )). If X is either l.c.i. or normal,
then H0(X,Ext2(�X ,OX )) is an obstruction space for Def locX . There is an obvious
map Def X → Def locX which restricts a deformation of X to a deformation of Ux for
each x .
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Proposition 3 Let X be a reduced scheme of finite type over C with isolated sin-
gularities. Assume that X is either l.c.i. or normal. If H2(X, TX ) = 0 then there
are no local-to-global obstructions for the infinitesimal deformations of X, i.e. the
map Def X → Def locX is smooth.

Proof We consider the local-to-global spectral sequence for Ext•(�X ,OX ). The sec-
ond page is given by E p,q

2 = Hp(Extq(�X ,OX )). Since X has isolated singularities,
the sheaves Extq(�X ,OX ) are supported on isolated points for q ≥ 1; in particu-
lar they do not have higher cohomology. This means that E p,q

2 is supported on the
lines p = 0 and q = 0. Therefore, in E2 the only non-zero differential is

d2 : H0(Ext1(�X ,OX )) −→ H2(TX ).

We obtain that the bottom left corner of the third page E3 is the following.

H3(TX ) 0 0 0
cokerd2 0 0 0
H1(TX ) 0 0 0
H0(TX ) ker d2 H0(Ext2(�X ,OX )) H0(Ext3(�X ,OX ))

In E3 the only non-zero differential is

d3 : H0(Ext2(�X ,OX )) −→ H3(TX ).

The bottom left corner of the fourth page E4 is the following.

cokerd3 0 0 0
cokerd2 0 0 0
H1(TX ) 0 0 0
H0(TX ) ker d2 ker d3 H0(Ext3(�X ,OX ))

From the fourth page on, the pieces of total degree ≤ 3 do not change any more.
Therefore we have two short exact sequences:

0 −→ H1(TX ) −→ Ext1(�X ,OX ) −→ ker d2 −→ 0,

0 −→ cokerd2 −→ Ext2(�X ,OX ) −→ ker d3 −→ 0.

These can be joined to construct the following long exact sequence.

0 −→ H1(TX ) −→ Ext1(�X ,OX ) −→ H0(Ext1(�X ,OX ))
d2−→

d2−→ H2(TX ) −→ Ext2(�X ,OX ) −→ H0(Ext2(�X ,OX ))
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So farwedid not use the assumptionH2(TX ) = 0. From this vanishing, via the long
exact sequence above we deduce that the map Def X → Def locX induces a surjection
on tangent spaces and an injection on obstruction spaces. �

14.2.2 Smoothings

Here we discuss smoothability conditions for schemes of finite type over C. We will
only consider the case of equidimensional schemes andwewill refer the reader to [50,
Sect. 29] for a more general treatment, which uses the Lichtenbaum–Schlessinger
functors.

If X is a proper scheme overC, a smoothing of X is a proper flatmorphismX → B
such that B is an integral scheme of finite type over C of positive dimension and
there exists a closed point b0 ∈ B such that the fibre over b0 is X and all the other
fibres are smooth. By restricting to a curve in B and normalising it, we may require
that the base B is a smooth affine curve and that the maximal ideal corresponding
to b0 is principal. We say that X is smoothable if it admits a smoothing.

For every n ≥ 0, set Sn := SpecC[t]/(tn+1). If X is a scheme of finite type overC

with pure dimension d, then a formal smoothing of X is a formal deformation {Xn →
Sn}n of X over C[[t]] such that there exists m such that tm is in the dth Fitting ideal
of�Xm/Sm . We refer the reader to [35, Sect. 20.2] for the definition and the properties
of Fitting ideals.We say that X is formally smoothable if it admits a formal smoothing.
It is clear that if X is formally smoothable, then every open subscheme of X is
formally smoothable.

Remark 4 If {Xn → Sn}n is a formal deformation of X over C[[t]] and tm is in
the dth Fitting ideal of�Xm/Sm , then for all n ≥ m we have that tn is in the dth Fitting
ideal of �Xn/Sn .

The proof of this fact is as follows. We have OXn = OXn+1/t
n+1OXn+1 . Since the

formation of Fitting ideals commutes with base change, we have the equality

Fittd(�Xn/Sn ) = (Fittd(�Xn+1/Sn+1) + tn+1OXn+1)/t
n+1OXn+1 .

Therefore if tn ∈ Fittd(�Xn/Sn ) then t
n ∈ Fittd(�Xn+1/Sn+1) + tn+1OXn+1 , hence t

n+1 ∈
tFittd(�Xn+1/Sn+1) ⊆ Fittd(�Xn+1/Sn+1) as t

n+2 = 0 in OXn+1 .

Lemma 5 Let X be a Cohen–Macaulay proper scheme over C of pure dimension d.
Let B be a smooth curve over C, b0 ∈ B be a closed point, and π : X → B be
a proper flat morphism such that the fibre over b0 is X. Let ξ be the formal mb0 -
adic completion of π at b0, i.e. ξ = {X ×B SpecOB,b0/m

n+1
b0

→ SpecOB,b0/m
n+1
b0

}n.
Then:

1. if π is a smoothing of X, then ξ is a formal smoothing of X;
2. if ξ is a formal smoothing of X, then there exists an open neighbourhood B ′ of b0

in B such that X ×B B ′ → B ′ is a smoothing of X.
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Proof This proof comes from [14, Sect. 0E7S].
Notice that ξ does not change if we restrict π to an open neighbourhood of b0

in B. Therefore, in order to prove the statements (1) and (2) we can arbitrarily restrict
to an open neighbourhood of b0 in B. Hence we may assume that B is affine and the
maximal ideal corresponding to the point b0 is principal, generated by t ∈ OB .

We consider the set W ⊆ X made up of the points x ∈ X such that the local ring
of the fibre Xπ(x) at x is Cohen–Macaulay. By [44, 12.1.7], W is open in X. As π

is closed, B \ π(X \ W ) is an open neighbourhood of b0 in B. Therefore, if we
restrict B to an open neighbourhood of b0 in B, we may assume that all fibres of π

are Cohen–Macaulay. By [14, Lemma 02NM], we may assume that π has relative
dimension d.

Let I ⊆ OX be the dth Fitting ideal of �X/B . For each n, set

Sn = SpecOB,b0/m
n+1
b0

= SpecOB/tn+1OB

and Xn = X ×B Sn; let In ⊆ OXn be the dth Fitting ideal of �Xn/Sn . Since Fitting
ideals commute with base change, we have OXn = OX/tn+1OX and In = IOXn =
(I + tn+1OX)/tn+1OX.

Since π is flat of relative dimension d, the zero locus of I is the singular locus
of π . Moreover, the fibre over b0 is the closed subset V(t). Therefore, the fibre of b0
is the unique singular fibre if and only if t ∈ √

I .
(1) If π is a smoothing, then there exists m such that tm ∈ I . Since Im = (I +

tm+1OX)/tm+1OX, this implies that tm ∈ Im . So ξ is a formal smoothing.
(2) If ξ is a formal smoothing, then tm ∈ Im = (I + tm+1OX)/tm+1OX for somem.

So in OX we have the equality tm = p + tm+1q, for some p ∈ I and q ∈ OX. Writ-
ing tm(1 − tq) = p and noticing that the function 1 − tq does not vanish at the points
of X = V(t), we deduce that tm belongs to the stalk Ix of I at all points x ∈ X . This
implies that tm lies in I in an open neighbourhood U of X in X. Since π is closed,
by restricting B to B \ π(X \U ) we have tm ∈ I . Therefore π is a smoothing. �

Proposition 6 Let X be a Cohen–Macaulay scheme proper over C.

1. If X is smoothable, then every open subscheme of X is formally smoothable.
2. Assume that X is projective and H2(X,OX ) = 0; if X is formally smoothable,

then X is smoothable.

Proof Wemay assume that X is connected. Therefore X has pure dimension, say d.
(1) This follows immediately fromLemma5 and from the fact that if X is formally

smoothable then every open subscheme of X is formally smoothable.
(2) Set d := dim X . Let ξ = {Xn → Sn}n be a formal smoothing of X , where Sn

is SpecC[t]/(tn+1) as usual. Letm be such that tm is in the dth Fitting ideal of�Xm/Sm .
As X is proper over C, the tangent space of Def X has finite dimension, there-

fore Def X has a hull R ∈ (Comp). Let η = {ηn : Yn → Spec R/mn+1
R }n be the

miniversal deformation of X . By [95, Proposition 6.51] or [92, Theorem 2.5.13],
from H2(OX ) = 0 we deduce that η is effective, i.e. there exists a projective flat
morphismX → Spec R whose mR-adic completion is η.

https://stacks.math.columbia.edu/tag/0E7S
https://stacks.math.columbia.edu/tag/02NM
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By a theorem of Artin [11, Theorem 1.6] (see also [50, Theorem 21.3]), the mor-
phismX → Spec R is algebraizable in the following sense: there exist a scheme Z
of finite type over C, a closed point z0 ∈ Z , and a proper flat morphism X → Z ,
with fibre X over z0, such that R is the completion ÔZ ,z0 of the local ring of Z at z0
and X is isomorphic, as R-schemes, to X ×Z Spec R. In particular, the miniversal
deformation η is the collection {X ×Z SpecOZ ,z0/m

n+1
z0 → SpecOZ ,z0/m

n+1
z0 }n . The

situation is summarised in the following cartesian squares, for all n.

Yn X X

Spec R/mn+1
R Spec R = Spec ÔZ ,z0 Z

ηn

As η is miniversal, there exists a local C-algebra homomorphism

ϕ : ÔZ ,z0 = R −→ C[[t]]

such that ξ is induced by η via ϕ, i.e. Xn is isomorphic to Yn ×Spec R/mn+1
R

Sn as Sn-
schemes for every n. By another theorem of Artin [10, Corollary 2.5], the map ϕ has
an algebraic approximation up to orderm in the following sense: there exist a smooth
affine curve B overCwith a closed point b0 ∈ B and aC-morphism f : B → Z such
that f (b0) = z0 and the completion

ϕ′ : ÔZ ,z0 = R −→ ÔB,b0 = C[[t]]

of f #b0 : OZ ,z0 → OB,b0 satisfies the following property:

ϕ ≡ ϕ′ modulo tm+1. (14.1)

Let π be the base changeX ×Z B → B along f : B → Z . Let ξ ′ be the formalmb0 -
adic completion of π , i.e. ξ ′ = {X ×Z SpecOB,b0/m

n+1
b0

→ SpecOB,b0/m
n+1
b0

}n . The
two formal deformations ξ and ξ ′ of X over C[[t]] are in general different, but they
coincide up to orderm because of (14.1). This implies that tm is in the dth Fitting ideal
of the sheaf of Kähler differentials ofX ×Z SpecOB,b0/m

m+1
b0

→ SpecOB,b0/m
m+1
b0

.
Therefore, ξ ′ is a formal smoothing. By Lemma5, up to restrict B to an open neigh-
bourhood of b0 in B, we have that π : X ×Z B → B is a smoothing. �

The following theorem ensures that a projective schemewith formally smoothable
isolated singularities is smoothable, provided that some local and cohomological
conditions hold.

Theorem 7 Let X be a projective scheme over C such that:

1. X is reduced and Cohen–Macaulay;
2. X is either l.c.i. or normal;
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3. H2(X, TX ) = 0 and H2(X,OX ) = 0;
4. X has isolated singularities and for each singular point x ∈ X there exists an

open affine neighbourhood of x which is formally smoothable.

Then X is smoothable.

Proof Set d = dim X . Let x1, . . . , xr be the singular points of X . Let Ui be an
affine open neighbourhood of xi in X which is formally smoothable and such
thatUi \ {xi } is smooth.Let ξi = {Ui,n → Sn}n be a formal smoothingofUi ,where Sn
is SpecC[t]/(tn+1) as usual.

By Proposition3, from H2(TX ) = 0 we deduce that the map Def X → Def locX =∏r
i=1 Def Ui

is smooth. Therefore there exists a formal deformation ξ = {Xn → Sn}n
of X over C[[t]] such that for each i the restriction of ξ to Ui is ξi , i.e. for all n the
restriction of Xn to Ui is Ui,n . By Remark4 we have that ξ is a formal smoothing
of X . We conclude by Proposition6. �

We now see some conditions that imply that a scheme is not smoothable.

Proposition 8 Let X be a singular scheme of finite type over C of pure dimension.
Assume that at least one of the following conditions holds:

1. every infinitesimal deformation of X is locally trivial;
2. the functor Def X has an artinian hull.

Then X is not formally smoothable.

Proof Set d = dim X .
(1) Let U be a singular affine open subscheme of X . Let {Xn → Sn}n be a for-

mal deformation of X over C[[t]]. Let Un be the restriction of Xn to U . By (1) we
get that Un is isomorphic, as Sn-scheme, to the trivial deformation U ×SpecC Sn .
Therefore Fittd(�Un/Sn ) = Fittd(�U/C)OUn . As U is singular, Fittd(�U/C) � OU .
This implies that tn /∈ Fittd(�Un/Sn ).

(2) Let R be the hull of Def X . Every formal deformation of X over C[[t]] is
induced by the miniversal one via a local C-algebra homomorphism f : R → C[[t]].
As every element in mR is nilpotent and C[[t]] is a domain, the homomorphism f
factors as R � R/mR = C ↪→ C[[t]]. This implies that every formal deformation
of X over C[[t]] is trivial. Using a similar argument as in (1), we can prove that X
cannot have a formal smoothing. �

The following corollary, which is a direct consequence of Propositions2, 6 and 8,
gives some obstructions to the smoothability of a Cohen–Macaulay proper scheme.

Corollary 9 Let X be a Cohen–Macaulay scheme proper over C. Let U ⊆ X be an
open subscheme of X such that U is singular, reduced, and either l.c.i. or normal.
If H0(U,Ext1(�U ,OU )) = 0 or Def U has an artinian hull (e.g. if Ext1(�U ,OU ) =
0), then X is not smoothable.
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14.2.3 Invariants

Here we introduce a couple of invariants for Fano varieties.
The Hilbert series of a Fano variety X is the power series defined by its anti-

plurigenera:
Hilb(X,−KX ) :=

∑

m≥0

h0(X,−mKX )tm ∈ Z[[t]].

The (anticanonical) degree of a Fano variety X is the positive rational num-
ber (−KX )n , where n = dim X . If X is Gorenstein, i.e. KX is Cartier, then the degree
is an integer. The degree can be recovered from the Hilbert series because, up to a
constant which depends on the dimension of X , it is the leading term of the Hilbert
polynomial of −KX .

The following proposition shows that the Hilbert series and the anticanonical
degree are deformation invariants for Fano varieties with Gorenstein log terminal
singularities.

Proposition 10 Let S be a noetherian scheme overQ and letπ : X → S be a proper
flatmorphismwhose geometric fibres are Fano varieties withGorenstein log terminal
singularities. Then the Hilbert series and the degree of the fibres are locally constant
on S.

Proof Themorphismπ is a relativelyGorenstein. Therefore, by [47,V.9.7], the dual-
ising sheaf ωπ is a line bundle on X and its restriction to each fibre Xs is OXs (KXs ).

By Serre duality and Kawamata–Viehweg vanishing [63, Theorem 2.70], we
get H1(Xs,OXs (−mKXs )) = 0 for all m ≥ 0 and s ∈ S. By cohomology and base
change [48, Theorem III.12.11], for all m ≥ 0, we get that the sheaf π∗ω⊗−m

π is
locally free and has rank h0(Xs,OXs (−mKXs )) at the point s ∈ S. This implies that
the Hilbert series of the fibres is locally constant on S. �

14.3 Deformations of Affine Toric Varieties

14.3.1 Toric Singularities

In this section we will consider deformations of toric singularities, that is affine toric
varieties. We refer the reader to [34, 41] for an introduction to toric geometry.

If X is an affine toric variety of dimension 2, then X is a cyclic quotient surface
singularity. There is extensive literature about deformations of this kind of singular-
ities, e.g. [19, 27, 64, 88, 93, 94]. In particular, it is known that every affine toric
variety of dimension 2 is smoothable [12].

The study of the deformation theory of affine toric varieties of dimension at least 3
has been initiated by Altmann [4–8]. For example, he computed the tangent space of
the deformation functor of an affine toric variety. We will not write down the explicit
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description of Ext1(�X ,OX ) when X is an affine toric variety, but we will mention
a consequence.

Proposition 11 (Altmann [5, Corollary 6.5.1]) If X is a Q-Gorenstein affine toric
variety which is smooth in codimension 2 and Q-factorial in codimension 3, then X
is rigid.

Corollary 12 Every isolated Q-Gorenstein toric singularity of dimension ≥ 4 is
rigid.

Now we need to do a brief detour on Minkowski sums. If F0, F1, . . . , Fr are
polytopes in a real vector space, theirMinkowski sum is the polytope

F0 + F1 + · · · + Fr := {v0 + v1 + · · · + vr | v0 ∈ F0, v1 ∈ F1, . . . , vr ∈ Fr }.

Whenwe have F = F0 + F1 + · · · + Fr , we say that we have aMinkowski decompo-
sition of the polytope F . We consider Minkowski decompositions up to translation:
for instance, we consider theMinkowski decomposition F = (v + F0) + (−v + F1)

to be equivalent to F = F0 + F1 for every vector v. Moreover, in what follows we
require that the summands Fj are lattice polytopes, i.e. their vertices belong to a
fixed lattice.

Altmann [5] has noticed that certain Minkowski decompositions induce deforma-
tions of affine toric varieties. In Sect. 14.3.2 we will see an example of this fact. For
the proof we refer the reader to the original reference [5] and to [71, 81].

Now let us concentrate on Gorenstein toric singularities. They are associated to
lattice polytopes of dimension one less than the dimension of the singularity. More
precisely, let F be a lattice polytope of dimension n − 1 in a lattice N of rank n − 1
and let UF be the affine toric variety associated to the cone σF = R≥0(F × {1})
in the lattice N := N ⊕ Z, i.e. UF = SpecC[σ∨

F ∩ M], where M = M ⊕ Z is the
dual of N and σ∨

F is the dual cone of σF . We have that UF has dimension n and is
Gorenstein. All Gorenstein affine toric varieties without torus factors arise in this
way from a lattice polytope. The isomorphism class of UF does not change if we
change F via an affine transformation in N � GL(N , Z).

As usual in toric geometry, the geometric properties of UF can be deduced from
the combinatorial properties of F . For instance:

1. UF is smooth in codimension k if and only if all faces of F with dimension < k
are standard simplices;

2. UF isQ-factorial in codimension k if and only if all faces of F with dimension< k
are simplices.

It is always the case thatUF is smooth in codimension 1 and Q-factorial in codimen-
sion 2.

If F is a segment of lattice length m + 1, then UF is the Am surface singular-
ity SpecC[x, y, z]/(xy − zm+1). This is an isolated hypersurface singularity, there-
fore it is very easy towrite down theminiversal deformation: xy = zm+1 + tmzm−1 +
· · · + t1 over C[[t1, . . . , tm]]. It is clear that this singularity is smoothable.
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Fig. 14.1 A standard square, a standard triangle, an A1-triangle and an A2-triangle

If F is a lattice polygon, then the affine toric threefold UF has the following
properties:

1. UF has, at most, an isolated singularity if and only if the edges of F are unitary,
i.e. have lattice length 1;

2. UF is Q-factorial if and only if F is a triangle.

Now we provide some examples of lattice polygons and their corresponding toric
Gorenstein affine threefolds.

Example 13 A lattice polygon F is called a standard square (Fig. 14.1) if it is a
quadrilateral such that all its lattice points are vertices, or equivalently if it is Z

2
�

GL2(Z)-equivalent to conv{(0, 0), (1, 0), (1, 1), (0, 1)} ⊆ R
2. If F is a standard

square, then UF is the ordinary double point (i.e. node) SpecC[x, y, z, w]/(xy −
zw). This singularity is clearly smoothable as it is a hypersurface singularity. Its
miniversal deformation is given by xy − zw = t over C[[t]].

A lattice polygon F is called a standard triangle if it is a triangle such that
all its lattice points are vertices, or equivalently if it is Z

2
� GL2(Z)-equivalent

to conv{(0, 0), (1, 0), (0, 1)} ⊆ R
2. F is a standard triangle if and only if UF is

isomorphic to A
3.

If m ≥ 1, then a lattice polygon F is called an Am-triangle if it is a triangle such
that there are no interior lattice points and the edges have lattice lengths 1, 1,m + 1,
respectively. Equivalently, a polygon is an Am-triangle if and only if it is Z

2
�

GL2(Z)-equivalent to conv{(0, 0), (m + 1, 0), (0, 1)} ⊆ R
2. If F is an Am-triangle,

then UF is the cAm-singularity SpecC[x, y, z, w]/(xy − zm+1). This singularity is
clearly smoothable as it is a hypersurface singularity.

Altmann [7] explicitly constructed the miniversal deformation of an isolated
Gorenstein toric singularity of dimension 3. (By Corollary12 it is trivial to construct
the miniversal deformation of an isolated Gorenstein toric singularity of dimen-
sion ≥ 4.) A consequence of his construction is the following description of the
irreducible components of the base of the miniversal deformation.

Theorem 14 (Altmann [7]) Let F be a lattice polygon with unitary edges and let UF

be the corresponding isolated Gorenstein toric singularity of dimension 3. Let R be
the hull of Def UF

. Then there exists a one-to-one correspondence between minimal
primes of R and maximal Minkowski decompositions of F. Moreover, if a minimal
prime p ⊂ R corresponds to the maximal Minkowski decomposition F = F0 + F1 +
· · · + Fr , then r = dim R/p.
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Corollary 15 Let F be a lattice polygon with unitary edges and let UF be the
associated isolated Gorenstein toric singularity of dimension 3. Then Def UF

has an
artinian hull if and only if F is Minkowski indecomposable.

14.3.2 The Affine Cone over the Del Pezzo Surface
of Degree 7

Here we study an explicit example of what has been considered in Sect. 14.3.1. In
the lattice N = Z

2 consider the pentagon

F = conv

{(
1
0

)

,

(
1
1

)

,

(
0
1

)

,

(−1
0

)

,

(
0

−1

)}

⊆ NR, (14.2)

which is depicted on the left of Fig. 14.2. The toric variety associated to the face
fan of F is the smooth del Pezzo surface of degree 7, which is denoted by dP7 and
is the blow up of P

2 in 2 distinct points. The anticanonical map of dP7 is a closed
embedding into P

7.
Nowwe put the pentagon F at height 1 in the lattice N = N ⊕ Z and we consider

the cone over it:

σF = cone

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
−1
0
1

⎞

⎠ ,

⎛

⎝
0

−1
1

⎞

⎠

⎫
⎬

⎭
⊆ NR ⊕ R.

The affine toric varietyUF = SpecC[σ∨
F ∩ (M ⊕ Z)] is the affine cone over the anti-

canonical embedding of dP7 and has an isolated Gorenstein canonical non-terminal
singularity at the vertex of the cone.

Altmann [7, (9.1)] shows that the hull of Def UF
is C[[t1, t2]]/(t21 , t1t2), which is a

line with an embedded point. The reduction of the miniversal deformation, i.e. the
base change to the reduction of the hull, is induced by the uniquemaximalMinkowski
decomposition of the pentagon F in the following way.

Fig. 14.2 The Minkowski decomposition (14.3) of the pentagon F in (14.2)
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In the lattice N we have the Minkowski decomposition

F = conv

{(
0
0

)

,

(−1
0

)

,

(
0

−1

)}

+ conv

{(
0
0

)

,

(
1
1

)}

, (14.3)

which is illustrated in Fig. 14.2. Following [5, (3.4)], in the lattice Ñ = N ⊕ Ze1 ⊕
Ze2 we construct the cone

σ̃ = cone

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−1
0
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
−1
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
1
0
1

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

⊆ ÑR.

Notice that the the first three rays of σ̃ come from the vertices of the first summand
of F in (14.3), whereas the last two rays of σ̃ come from the vertices of the second
summand of F in (14.3). Let Ũ = SpecC[σ̃∨ ∩ M̃] be the affine toric variety asso-
ciated to the cone σ̃ , where M̃ denotes the dual of Ñ . One can prove that Ũ has only
an isolated terminal Gorenstein singularity. Let f1 and f2 be the regular functions
on Ũ associated to the characters (0, 0, 1, 0) ∈ M̃ and (0, 0, 0, 1) ∈ M̃ , respectively.
The variety UF is the zero locus of the function f1 − f2, i.e. we have a cartesian
diagram

UF Ũ

π

SpecC A
1
C

(14.4)

where π is given by the function f1 − f2 and the bottom morphism is given by
the origin of A

1
C
. Since f1 − f2 is not constant and A

1
C
is regular of dimension

1, the morphism π is flat. The reduction of the miniversal deformation of UF is the
formal deformation ofUF overC[[t]] obtained from the square (14.4) by base change
via SpecC[t]/(tn+1) ↪→ SpecC[t] = A

1
C
for all n. The following proposition shows

that this is a formal smoothing.

Proposition 16 Let F be the pentagon defined in (14.2) and let UF be the cor-
responding Gorenstein toric threefold singularity. Then the collection of the base
change of π in (14.4) via SpecC[t]/(tn+1) → SpecC[t] = A

1
C
for all n is a formal

smoothing of UF . In particular, UF is formally smoothable.

Proof We want to study the closed fibres of π . The fibre over the origin of A
1
C

is UF . Let us fix λ ∈ C \ {0} and we consider the fibre π−1(λ) of π over the closed
point (t − λ) of A

1
C
corresponding to λ. We consider the subcone τ1 (resp. τ2) of σ̃

that is generated by the first three (resp. last two) rays of σ̃ . We consider the affine
toric varietyWj = SpecC[τ∨

j ∩ M̃], for j = 1, 2. We have thatW1 andW2 are open

subschemes of Ũ .
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We have that W1 is the open subset of Ũ where the function f2 does not vanish,
i.e.W1 = { f2 �= 0} ⊆ Ũ , and analogouslyW2 = { f1 �= 0} ⊆ Ũ . It is clear that there
is an isomorphismW1 � A

3 × Gm with respect to which the function f1|W1 becomes
a projection onto aA

1-factor inA
3 and the function f2|W1 becomes the projection onto

the Gm-factor. There is also an isomorphism W2 � A
2 × G

2
m with respect to which

the function f1|W2 becomes a projection onto a Gm-factor and the function f2|W2

becomes a projection onto an A
1-factor.

Now π−1(λ) ∩ W1 = { f1 = f2 + λ} ∩ W1 is isomorphic toA
2 × Gm and π−1(λ)

∩ W2 = { f2 = f1 − λ} ∩ W2 is isomorphic to A
1 × G

2
m. Since λ �= 0, it is clear

that π−1(λ) ⊆ W1 ∪ W2. Therefore we have proved that π−1(λ) is smooth.
One can also show that the generic fibre of π is smooth over the generic point

of A
1
C
. In order to prove this, it is enough to base change to the spectrum of the

field C(t) of rational function of A
1
C
and pursue a similar argument, which deals

with toric varieties over the field C(t).
In particular, π is flat of relative dimension 3 and has Cohen–Macaulay fibres. As

in the proof of Lemma5, from the fact that all non-special fibres of π are smooth we
can deduce that π induces a formal smoothing of UF . �

14.4 Deformations of Toric Fano Varieties

14.4.1 Fano Polytopes

Fano polytopes are the combinatorial-polyhedral avatars of toric Fano varieties.

Definition 17 A polytope P in a lattice N of rank n is called Fano if:

1. P has dimension n;
2. the origin 0 lies in the interior of P;
3. the vertices of P are primitive lattice elements of N .

If P is a Fano polytope, we denote by XP the complete toric variety associated to
the spanning fan (also called the face fan) of P .

If P is a Fano polytope, then XP is a Fano variety. All toric Fano varieties arise
in this way from a Fano polytope [34, Sect. 8.3]. The variety XP is Gorenstein,
i.e. its (anti)canonical divisor is Cartier, if and only if P is reflexive, i.e. the facets
of P lie on hyperplanes with height 1 with respect to the origin. The maximal toric
affine charts of XP (or equivalently the torus-fixed points of XP ) are in one-to-one
correspondence with the facets of P . If n is the dimension of P , for every 0 ≤ k ≤ n
there is a one-to-one correspondence between the k-dimensional torus-orbits of XP

and the (n − k − 1)-dimensional faces of P .
Fano polytopes of small dimension with specific properties have been classi-

fied [15, 16, 57–59, 65–67, 77, 78, 89, 90, 98]. We refer the reader to [60] for a
survey on the classification of Fano polytopes.
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14.4.2 Two Sufficient Conditions for Non-smoothability

It is an open problem to understand whether an arbitrary toric Fano variety is smooth-
able. Here we state a couple of conditions that forbid the smoothability. Both condi-
tions on a toric Fano variety X are based on the existence of an open affine singular
subscheme U such that U is not formally smoothable.

Theorem 18 Let N be a lattice, let P be a Fano polytope in N, and let X be the
toric Fano variety associated to the spanning fan of P. Assume that there exists a
face F of P which satisfies the following conditions:

1. for each 1-face F ′ of F, there exists a basis of N which contains the two vertices
of F ′;

2. each 2-face of F is a triangle;
3. there exists no basis of N which contains all the vertices of F.

Then X is not smoothable.

Proof Let U be the affine toric open subscheme of X associated to the cone
spanned by the face F . The condition (1) means that U is smooth in codimension
2. The condition (2) means that U is Q-factorial in codimension 3. Therefore U is
rigid by Proposition11. The condition (3) implies that U is singular. Therefore, by
Corollary9, X is not smoothable. �

If P is a reflexive polytope of dimension 3, then the theorem above applies if
there exists a triangular facet F with unitary edges and such that it is not a standard
triangle. Below we see that we can relax the condition of F being triangular to F
being Minkowski-indecomposable.

Proposition 19 Let P be a reflexive polytope of dimension 3 and let X be the toric
Fano threefold associated to the spanning fan of P. Assume that there exists a facet F
of P such that:

1. F has unitary edges;
2. F is Minkowski-indecomposable;
3. F is not a standard triangle (i.e. the vertices of F do not form a basis of the

lattice).

Then X is not smoothable.

Proof The proof is very similar to the proof of Theorem18. Let U be the affine
toric open subscheme of X associated to the cone spanned by F . The conditions (1)
and (3)means thatU has an isolated singularity. Since P is reflexive,U is Gorenstein.
By Corollary15, from (2) we deduce that Def U has an artinian hull. Therefore, by
Proposition8, U is not formally smoothable. By Corollary9, X is not smoothable.

�
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14.4.3 Rigidity

Here we will see that if a toric Fano variety has very mild singularities then it is rigid.

Lemma 20 Let X be a toric Fano variety. Then Hi (X, TX ) = 0 for each i ≥ 1. In
particular, all locally trivial deformations of X are trivial.

Proof Set n = dim X . Consider the smooth locus j : U ↪→ X . Let D be the toric
boundary of X . The sheaves TX and ( j∗�n−1

U ⊗ OX (D))∨∨ are reflexive on X
and their restrictions to U coincide, because U is smooth and TU is isomorphic
to �n−1

U ⊗ ω∨
U . Therefore, since the complement ofU has codimension at least 2, by

[49, Proposition 1.6]wehave that TX is isomorphic to ( j∗�n−1
U ⊗ OX (D))∨∨. Since D

is ample, we conclude by Bott–Steenbrink–Danilov vanishing [34, Theorem 9.3.1]
(see also [24, 40, 75]). �

An immediate consequence of the lemma above is the following result.

Proposition 21 Every smooth toric Fano variety is rigid.

This result was originally proved by Bien and Brion [20]. Later de Fernex and
Hacon [38] proved the rigidity of Q-factorial terminal toric Fano varieties. The
following theorem, due to Totaro, is the most general rigidity theorem for toric
Fano varieties of which we are aware.

Theorem 22 (Totaro [96, Theorem 5.1]) A Fano toric variety which is smooth in
codimension 2 and Q-factorial in codimension 3 is rigid.

Proof By Lemma20, H1(TX ) = 0. By Proposition11, the sheaf Ext1(�X ,OX ) is
zero. From the five term exact sequence of Ext, which is written in the proof of
Proposition2, we deduce that Ext1(�X ,OX ) is zero. �

If P is a Fano polytope, then XP satisfies the hypotheses of this theorem if and
only if all 2-faces of P are triangles and each edge, i.e. 1-face, of P has lattice length 1
and is contained in some hyperplane which has height 1 with respect to the origin.

Corollary 23 Let X be a toric Fano variety of dimension ≥ 4. If X has isolated
singularities, then X is rigid.

In Sects. 14.4.4 and 14.4.5 we will study deformations of toric Fanos with isolated
singularities and of dimension 2 or 3.

14.4.4 Toric del Pezzo Surfaces

A del Pezzo surface is a Fano variety of dimension 2. A toric del Pezzo surface is
associated to a Fano polygon, which is a Fano polytope of dimension 2.
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Theorem 24 Every toric del Pezzo surface is smoothable.

Proof Let X be an arbitrary toric del Pezzo surface. It is well known that X
is a normal Cohen–Macaulay projective variety. By Demazure vanishing
[34, Theorem 2.9.3], H2(OX ) = 0. By Lemma20, H2(TX ) = 0. Since X is normal
and of dimension 2, X has isolated singularities. By Theorem7 it is enough to check
that the singularities of X are formally smoothable.

The singularities of X are cyclic quotient surface singularities. This kind of sin-
gularities is always smoothable; indeed, it is enough to pick the Artin component of
the base of the miniversal deformation [12]. �

Remark 25 When the canonical divisor of a normal variety X is not Cartier, flat
deformations of X are too wild for hoping to study moduli of varieties. For a
normal Q-Gorenstein non-Gorenstein variety X one should consider a subfunctor
of Def X which is made up of the deformations of X in which the canonical divi-
sor deforms well. This is the theory of Q-Gorenstein deformations, developed by
Kollár–Shepherd-Barron [64] (see also [1, 9, 45, 68]).

In the context of Q-Gorenstein deformations the analogous statement of
Theorem24 is false: there exist non-Gorenstein toric del Pezzo surfaces which can-
not be deformed via Q-Gorenstein deformations to a smooth del Pezzo surface, e.g.
the weighted projective space P(1, 1, 3). Nonetheless, it is true that forQ-Gorenstein
deformations of del Pezzo surfaces there are no local-to-global obstructions [2,
Lemma 6]. Therefore, a del Pezzo surface is Q-Gorenstein smoothable if and only
if its singularities are Q-Gorenstein smoothable.

Since the main focus of this note is the study of deformations of Gorenstein toric
Fano threefolds, we will omit to discuss the theory of Q-Gorenstein deformations.
We refer the reader to [46, 82] for the study of toric del Pezzo surfaces which haveQ-
Gorenstein smoothings.

14.4.5 Toric Fano Threefolds with Isolated Singularities

Theorem 26 Let X be a toric Fano variety of dimension 3with isolated singularities.
Then X is smoothable if and only if its singularities are formally smoothable.

Proof ByProposition6, if X is smoothable then its singularities are formally smooth-
able. Conversely, suppose that the singularities of X are formally smoothable. Then
we argue as in the proof of Theorem24: X is a normal Cohen–Macaulay projective
variety with H2(OX ) = 0, by [34, Theorem 2.9.3], and H2(TX ) = 0, by Lemma20.
By Theorem7, X is smoothable. �

Corollary 27 Let P be a reflexive polytope of dimension 3 and let X be the toric
Fano threefold associated to the spanning fan of P. If each facet of P is either a
standard triangle or a standard square (see the definition in Example13), then X is
smoothable.
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Proof By Example13 we have that the singularities of X are at most ordinary double
points (i.e. nodes). These singularities are formally smoothable. By Theorem26 we
conclude. �

The proof of this corollary is essentially a specific case of [39, Sect. 4.a]. The
corollary could have been deduced also from a more general result by Namikawa
according to which every Fano threefold with Gorenstein terminal singularities is
smoothable [76]. The smooth Fano threefolds which are the smoothings of the toric
Fano threefold appearing in Corollary27 have been studied by Galkin [42].

For d ∈ {6, 7}, let dPd be the smooth del Pezzo surface of degree d; it is toric. The
complete anticanonical linear systemon dPd induces a closed embedding dPd ↪→ P

d .
We consider the projective cone C(dPd) ⊆ P

d+1 over this embedding; we have
that C(dPd) is a toric Fano threefold with a Gorenstein canonical non-terminal iso-
lated singularity. In Sect. 14.4.6 we will see that C(dP7) is smoothable. In [80] it is
shown that C(dP6) has two smoothings (see also [56, Example 3.3]).

14.4.6 The Projective Cone over the Del Pezzo Surface of
Degree 7

Here we study the deformations of an explicit toric Fano threefold with an isolated
Gorenstein non-terminal singularity.

Fix the lattice N = Z
2. Consider the pentagon F ⊆ NR defined in (14.2), imagine

to put it into the plane NR × {1} in NR ⊕ R � R
3, and create the pyramid over it

with apex at the point (0, 0,−1): this is the polytope

P = conv

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
−1
0
1

⎞

⎠ ,

⎛

⎝
0

−1
1

⎞

⎠ ,

⎛

⎝
0
0

−1

⎞

⎠

⎫
⎬

⎭
(14.5)

in the lattice N ⊕ Z and is depicted in Fig. 14.3. It is clear that P is a Fano polytope.

Fig. 14.3 The
3-dimensional lattice
polytope P defined in (14.5)
and associated to the
projective cone over the
del Pezzo surface of degree 7
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Let X be the toric variety associated to the spanning fan of P . Then X is the
projective cone over the anticanonical embedding of the smooth del Pezzo surface
of degree 7. The affine toric variety UF considered in Sect. 14.3.2 is the affine open
toric subscheme of X associated to the pentagonal facet F of P . We have that X is a
Fano threefold with an isolated non-terminal canonical Gorenstein singularity at the
vertex of the cone.

Proposition 28 Let X be the toric Fano threefold associated to the polytope P in
(14.5), i.e. X is the projective cone over the anticanonical embedding of the smooth
del Pezzo surface of degree 7. Then X is smoothable and can be deformed to the
smooth Fano threefold P(OP2 ⊕ OP2(1)).

Proof ByProposition16, X has an isolated singularitywhich is formally smoothable.
By Theorem26 we know that X is smoothable. We need to know to which smooth
Fano threefold X can be deformed.

From toric geometry [34, Theorem 13.4.3], we have that the anticanonical
degree (−KX )3 is the normalised volume of the polar polytope of P , which is 56 in
this case. Since X has Gorenstein canonical singularities, by Proposition10 we have
that the anticanonical degree is preserved in the smoothing. By inspecting the list
of smooth Fano threefolds (see [53, 54, 72–74] or [55, Sect. 12]), there is a unique
smooth Fano threefold of anticanonical degree 56, namely P(OP2 ⊕ OP2(1)). �

14.4.7 Another Sufficient Condition for Non-smoothability

In addition to the result of Proposition19, here we present another obstruction for
the smoothability of a toric Fano threefold with Gorenstein singularities.

Theorem 29 ([79]) Let N be a lattice of rank 3, let M = HomZ(N , Z), let 〈·, ·〉 : M
× N → Z be the duality pairing, let P be a reflexive polytope in N, and let X be the
toric Fano threefold associated to the spanning fan of P. Assume that there are two
adjacent facets F0 and F1 of P such that:

1. both F0 and F1 are An-triangles for some integer n ≥ 1 (see the definition in
Example13);

2. F0 ∩ F1 is a segment with n + 2 lattice points;
3. 〈w1, v0〉 = 0, wherew1 ∈ M is such that F1 ⊆ {v ∈ NR | 〈w1, v〉 = 1} and v0 ∈

N is the vertex of F0 which does not lie on the segment F0 ∩ F1.

Then X is not smoothable.

With the terminology of [79], the two triangles F0 and F1 are called “two adjacent
almost-flat An-triangles”.

Proof (Sketch of the proof of Theorem 29) We refer the reader to [79] for all the
details missing here. Let Ui be the toric open affine subscheme of X associated to
the facet Fi , for each i = 0, 1. Set U = U0 ∪U1.
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One can show thatU admits an An-bundle structure over P
1. More precisely, one

can construct a toric morphism π : U → P
1 such that, for each i = 0, 1, if Vi denotes

the i th standard affine chart of P
1 then π−1(Vi ) = Ui and the restriction π |Ui : Ui →

Vi is the projection SpecC[x, y, z, w]/(xy − zn+1) → SpecC[w]. This An-bundle
may be non trivial, depending on the relative position of the two triangles F0 and F1.
Set d = 〈w1, v0〉. By [79, Proposition 3.5] there exists an isomorphism of coherent
sheaves on P

1:
π∗Ext1OU

(�U ,OU ) �
⊕

2≤ j≤n+1

OP1(− jd − j).

Since d = 0, the sheaf on the right is a direct sum of negative line bundles on P
1,

hence we have H0(U,Ext1OU
(�U ,OU )) = 0. By Corollary9, X is not smoothable.

�

With the same technique of the theorem above one can also construct some rigid
toric Fano threefoldswith only cA1-singularities (see [79, Theorem1.2]). This refutes
a conjecture of Prokhorov [85] according to which every Fano threefold with com-
pound Du Val singularities is smoothable.

14.4.8 Other Methods

Here we briefly collect some other results on deformations and smoothings of toric
Fano varieties. Most of these results have been motivated by Mirror Symmetry for
Fano varieties (see [2, 3, 26, 30, 31, 61, 86, 87]).

Byanalysing cluster transformations of tori,Akhtar–Coates–Galkin–Kasprzyk [3]
have introduced the notion of mutation of Fano polytopes. A mutation is a combi-
natorial procedure that, under certain conditions, transforms a Fano polytope P into
another Fano polytope P ′. Ilten [51] has proved that mutations of Fano polytopes
induce deformations of the corresponding toric Fano varieties; more precisely, if P
and P ′ are related via a mutation, then he has constructed a flat family over P

1 such
that the fibre over 0 is XP and the fibre over ∞ is XP ′ .

Ilten, Lewis and Przyjalkowski [52] have constructed toric degenerations of
smooth Fano threefolds with Picard rank 1.

Christophersen and Ilten [29] have constructed degenerations of smooth Fano
threefolds of low degree to certain unobstructed Fano Stanley–Reisner schemes.
Since these unobstructed Fano Stanley–Reisner schemes are also degenerations of
singular toric Fano varieties, this implies the following result.

Theorem 30 (Christophersen–Ilten [28, Proposition 4.2, Theorems 5.1, 7.1]) Let X
be a toric Fano threefoldwithGorenstein singularities. If (−KX )3 ∈ {4, 6, 8, 10, 12},
then X is smoothable.

Coates–Kasprzyk–Prince [32] have introduced a combinatorial gadget, called scaf-
folding, on a Fano polytope P which induces a closed embedding of the toric Fano
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variety XP into a bigger toric varietyY . Often XP is a complete intersection in theCox
coordinates of Y , therefore it is easy to construct embedded deformations of XP in Y .
In many cases this produces smoothings of XP . For instance, Cavey and Prince [25]
have successfully applied the scaffolding method to construct deformations of toric
del Pezzo surfaces to del Pezzo surfaces with a single 1

k (1, 1) singularity.
Moreover, Prince [83] has found necessary and sufficient conditions in order to

have that the ambient toric variety Y is smooth: this is the notion of cracked polytope.
He has also found a sufficient condition for a smoothing of XP to exist inside Y . Via
the scaffolding method and cracked polytopes, in [84] he constructs a degeneration
of each smooth Fano threefold with very ample anticanonical bundle and Picard
rank ≥ 2 to a Gorenstein toric Fano threefold.

14.5 Lists of Reflexive Polytopes of Dimension 3

Below we write lists of reflexive polytopes of dimension 3 which satisfy specific
properties. There are exactly 4319 reflexive polytopes of dimension 3: the classifi-
cation is due to Kreuzer and Skarke [66]. The IDs we use are numbers between 1
and 4319 and come from the Graded Ring Database [23]. All polytopes we consider
below are reflexive of dimension 3. They correspond to toric Fano threefolds with
Gorenstein singularities. We denote by XP the toric Fano threefold associated to the
spanning fan of P .

Let Ssmoothable be the set of polytopes P such that the corresponding toric Fano
threefold XP is smoothable. It is an open question to explicitly compute Ssmoothable.

Let Ssmooth be the set of polytopes which have only standard triangles as facets.
These 18 polytopes correspond to the smooth toric Fano threefolds.

Let Sisol be the set of polytopes with unitary edges such that at least one facet is
not a standard triangle. These 137 polytopes correspond to the singular toric Fano
threefolds with isolated Gorenstein singularities.

Let Snodes be the set of polytopes such that all facets are either standard triangles
or standard squares and there is at least a square facet. These 82 polytopes correspond
to the singular toric Fano threefolds with at most ordinary double points, or equiv-
alently to the singular toric Fano threefolds with Gorenstein terminal singularities.
By Corollary27 these varieties are smoothable.

LetSlow be the set of polytopes P such that the normalised volume of the polar P∗
of P belongs to {4, 6, 8, 10, 12}. These 220 polytopes correspond to the toric Goren-
stein Fano threefolds X such that (−KX )3 ∈ {4, 6, 8, 10, 12}.

LetSindec be the set of polytopes which contain a facet F which has unitary edges,
is Minkowski indecomposable and is not a standard triangle. By Proposition19 the
corresponding toric Fano threefolds are not smoothable.

Let Saft be the set of polytopes which contain a pair of adjacent almost-flat An-
triangles, for some n ≥ 1. In other words, the setSaft contains exactly all polytopes P
to which Theorem29 applies. Therefore, the corresponding toric Fano threefolds are
not smoothable.
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LetS denote the set of all reflexive polytopes of dimension 3, i.e. the set of positive
integers not greater than 4319. We have:

Snodes ⊆ Sisol ⊆ S \ Ssmooth,

Ssmooth ∪ Snodes ∪ Slow ⊆ Ssmoothable,

Sindec ∪ Saft ⊆ S \ Ssmoothable.

Below we write down the elements of most of the sets mentioned above.
Ssmooth = {1, 5, 6, 7, 8, 25, 26, 27, 28, 29, 30, 31, 82, 83, 84, 85, 219, 220}
Sisol = {3, 4, 11, 12, 17, 21, 22, 23, 24, 42, 48, 49, 50, 51, 54, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81, 155, 156, 158, 159, 160, 167, 168, 170, 177, 187,
188, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 360, 363, 364, 365, 366, 376, 377, 378, 380, 385, 403, 410,
411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
686, 688, 689, 692, 693, 694, 695, 696, 707, 710, 725, 729, 730, 731, 732, 733, 734,
735, 736, 737, 738, 739, 740, 741, 1085, 1086, 1087, 1091, 1092, 1093, 1109, 1110,
1111, 1112, 1113, 1114, 1517, 1518, 1519, 1524, 1528, 1529, 1530, 1941, 1943,
2355, 2356}

Snodes = {4, 21, 22, 23, 24, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422,
423, 424, 425, 426, 427, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,
741, 1109, 1110, 1111, 1112, 1113, 1114, 1528, 1529, 1530, 1943, 2356}

Slow = {1946, 2711, 2756, 2817, 3043, 3051, 3053, 3079, 3314, 3319, 3329,
3331, 3349, 3350, 3390, 3393, 3406, 3416, 3447, 3452, 3453, 3505, 3573, 3620,
3625, 3626, 3667, 3683, 3702, 3727, 3728, 3731, 3733, 3735, 3736, 3738, 3739,
3740, 3756, 3760, 3762, 3777, 3790, 3791, 3792, 3795, 3796, 3844, 3845, 3846,
3848, 3853, 3857, 3868, 3869, 3874, 3875, 3879, 3901, 3903, 3922, 3923, 3927,
3928, 3933, 3936, 3937, 3938, 3946, 3962, 3964, 3965, 3966, 3967, 3981, 3983,
3984, 3985, 3991, 3995, 4003, 4004, 4005, 4006, 4007, 4022, 4023, 4024, 4027,
4031, 4032, 4041, 4042, 4043, 4044, 4056, 4058, 4059, 4060, 4070, 4074, 4075,
4076, 4080, 4088, 4092, 4094, 4095, 4102, 4104, 4117, 4118, 4119, 4122, 4124,
4131, 4132, 4133, 4134, 4135, 4143, 4144, 4145, 4149, 4159, 4160, 4161, 4167,
4168, 4169, 4170, 4179, 4180, 4181, 4182, 4183, 4184, 4186, 4190, 4191, 4194,
4200, 4202, 4203, 4205, 4206, 4214, 4215, 4216, 4217, 4218, 4219, 4220, 4225,
4228, 4229, 4231, 4232, 4233, 4235, 4236, 4238, 4239, 4241, 4244, 4245, 4246,
4247, 4249, 4250, 4251, 4252, 4254, 4255, 4256, 4258, 4260, 4261, 4263, 4267,
4268, 4269, 4270, 4272, 4273, 4275, 4278, 4280, 4281, 4282, 4284, 4285, 4286,
4287, 4288, 4290, 4291, 4292, 4293, 4294, 4295, 4297, 4298, 4299, 4300, 4301,
4303, 4304, 4307, 4308, 4309, 4310, 4311, 4312, 4313, 4314, 4315, 4317, 4318,
4319}

Sindec = {3, 12, 17, 32, 38, 48, 49, 51, 54, 88, 91, 94, 98, 99, 100, 101, 102, 103,
105, 115, 119, 121, 134, 137, 138, 141, 142, 155, 158, 159, 170, 188, 228, 235, 239,
242, 243, 247, 248, 252, 254, 256, 260, 262, 265, 271, 278, 293, 294, 298, 299, 301,
317, 318, 330, 351, 353, 360, 378, 380, 438, 439, 440, 443, 445, 455, 468, 480, 491,
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492, 493, 497, 501, 502, 515, 525, 526, 529, 530, 532, 539, 541, 543, 546, 550, 553,
562, 570, 575, 604, 608, 609, 614, 620, 645, 650, 660, 663, 688, 744, 752, 753, 754,
756, 760, 774, 775, 776, 780, 784, 790, 791, 792, 800, 834, 841, 844, 845, 852, 856,
859, 864, 866, 887, 900, 908, 912, 914, 923, 935, 963, 979, 990, 991, 1012, 1019,
1020, 1130, 1151, 1154, 1183, 1199, 1204, 1205, 1208, 1215, 1218, 1220, 1261,
1275, 1277, 1283, 1299, 1302, 1309, 1311, 1352, 1370, 1384, 1397, 1547, 1585,
1598, 1631, 1636, 1638, 1679, 1683, 1687, 1693, 1728, 1750, 1751, 1777, 1791,
1992, 2014, 2046, 2047, 2050, 2051, 2080, 2081, 2084, 2096, 2124, 2129, 2379,
2404, 2425, 2427, 2455, 2456, 2716, 2750, 2751, 2755}

Saft = {15, 16, 36, 41, 45, 53, 58, 59, 61, 65, 66, 102, 105, 110, 111, 112, 113,
116, 117, 124, 125, 128, 135, 141, 142, 144, 146, 147, 148, 149, 152, 162, 172, 179,
183, 189, 192, 193, 197, 230, 236, 244, 248, 261, 268, 271, 272, 277, 278, 279, 280,
281, 282, 286, 288, 290, 292, 302, 310, 324, 325, 327, 331, 332, 333, 334, 335, 337,
340, 343, 347, 349, 351, 355, 356, 358, 361, 362, 386, 399, 400, 407, 443, 445, 448,
452, 453, 456, 457, 463, 467, 487, 490, 496, 497, 499, 501, 502, 505, 507, 508, 509,
511, 512, 516, 523, 540, 545, 550, 563, 569, 577, 579, 581, 582, 583, 594, 599, 600,
601, 605, 606, 617, 629, 633, 658, 670, 671, 672, 674, 679, 682, 687, 705, 760, 764,
770, 771, 780, 781, 786, 787, 792, 797, 799, 809, 811, 812, 815, 816, 824, 859, 865,
868, 873, 875, 878, 883, 884, 889, 891, 892, 893, 894, 895, 902, 905, 929, 956, 960,
965, 987, 1003, 1004, 1006, 1011, 1021, 1038, 1045, 1051, 1156, 1160, 1168, 1175,
1177, 1199, 1203, 1209, 1216, 1217, 1225, 1232, 1234, 1251, 1252, 1253, 1255,
1256, 1260, 1262, 1265, 1275, 1286, 1287, 1293, 1300, 1305, 1308, 1324, 1327,
1351, 1371, 1383, 1398, 1533, 1545, 1550, 1551, 1554, 1561, 1579, 1589, 1613,
1614, 1615, 1620, 1637, 1638, 1656, 1665, 1666, 1671, 1686, 1690, 1693, 1697,
1711, 1747, 1748, 1760, 1763, 1989, 2000, 2001, 2027, 2045, 2051, 2052, 2068,
2071, 2072, 2076, 2084, 2096, 2098, 2102, 2379, 2380, 2385, 2403, 2405, 2423,
2424, 2425, 2427, 2738, 2777, 2778, 2792, 3047, 3057, 3063, 3064}

We have |Sindec ∪ Saft| = 442. Therefore there exist at least 442 non-smoothable
toric Fano threefolds with Gorenstein singularities.
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Chapter 15
Polygons of Finite Mutation Type

Thomas Prince

Abstract We classify Fano polygons with finite mutation class. This classification
exploits a correspondence between Fano polygons and cluster algebras, refining the
notionof singularity content due toAkhtar andKasprzyk.Wealso introduce examples
of cluster algebras associated to Fano polytopes in dimensions greater than two.

Keywords Polytopes · Toric Varieties · Mirror Symmetry

15.1 Introduction

The notion of combinatorial, or polytope, mutation was introduced by Akhtar–
Coates–Galkin–Kasprzyk [3] to describe mirror partners to Fano manifolds. Fol-
lowing Givental [17–19], Kontsevich [28], and Hori–Vafa [25], the mirror partner
to a Fano manifold consists of a complex manifold together with a holomorphic
function, the superpotential. If this mirror manifold contains a complex torus we
can write down a collection of volume preserving birational maps of this complex
torus which preserve the regularity of the superpotential. We call these rational maps
(algebraic) mutations, following [3] and work of Galkin–Usnich [16]. Combinatorial
mutation is the operation induced on the Newton polyhedra of the restriction of the
superpotential to such tori.

All the polytopes we consider areFano, that is, polytopes which contain the origin
in the interior and such that its vertices are primitive lattice vectors. In joint work [27]
with Kasprzyk and Nill we showed that, in dimension two, the notion of polytope
mutation is compatible with the construction of a quiver and cluster algebras one can
associate to each Fano polygon.

The idea of associating a polygon with a quiver—or toric diagram—has a reason-
ably long history, particularly in the physics literature. In that setting the polygon
describes a toric Calabi–Yau singularity and the quiver is used to describe the matter
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content of a gauge theory arising on a stack of D3-branes probing the toric Calabi–
Yau singularity, (see for example [1, 5, 10, 15, 21, 22, 29] for a selection of the
literature on this subject). The construction of a quiver (and cluster algebra) from a
polygon has also been used by Gross–Hacking–Keel [20] in the study of associated
log Calabi–Yau varieties, and to study the derived category of the toric variety, or the
associated local toric Calabi–Yau as pursued, for example, in [7, 23, 24, 31, 32]. In
each setting the basic construction is the same, and we recall the version relevant to
our applications in Sect. 15.3.

Ourmain result, Theorem30, is a classification of themutation classes of polygons
which contain only finitely many polygons. This parallels a finite type result of
Mandel [30], for rank two cluster varieties. In particular we see that finite mutation
classes of polygons fall into four types An

1, for n ∈ Z≥0, A2, A3, and D4.
There is a close connection between mutation classes of Fano polygons and Q-

Gorenstein deformations of the corresponding toric varieties which is described in
detail in [2]. Following these ideas we predict the existence of a finite type param-
eter space for these deformations, together with a boundary stratification such that
each 0-stratum corresponds to a polygon in the given mutation class, and the 1-strata
corresponds to the mutation families constructed by Ilten [26].

While our main result applies in dimension two, we note that polytope mutation
is defined in all dimensions, and the construction of a quiver and cluster algebra
we provide applies to ‘compatible collection’ of mutations in any dimension, see
Definition 16. This definition is, unfortunately, less well behaved in dimensions
greater than two, but we provide an example indicating that polytope mutation can
detect known examples of cluster structures appearing on linear sections of Grass-
mannians of planes. We expect this to extend to a wide variety of other cluster
structures found in Fano manifolds and their mirror manifolds.

15.2 Quivers and Cluster Algebras

We devote this section to fixing the various conventions and notation, as well as
recalling the basic definitions. We recall the definition of cluster algebra, and in
order to address both geometric and combinatorial applications we shall adapt our
treatment from theworkof Fomin–Zelevinsky [13], and theworkof Fock–Goncharov
[11] and Gross–Hacking–Keel [20]. We first fix the following data:

1. N , a fixed lattice with skew-symmetric form {−,−}: N × N → Z;
2. a saturated sublattice Nu f ⊆ N , the unfrozen sublattice;
3. an index set I , |I | = rk(N ) together with a subset Iu f ⊆ I such that |Iu f | =

rk(Nu f ). For later convenience we set n := |Iu f |.
Remark 1 The requirement that the form is integral is not necessary, but is suffi-
ciently general for our applications and simplifies the exposition considerably.

Definition 2 A (labelled) seed is a pair s = (E,C), where:

1. E is a basis of N indexed by I , such that the subset indexed by Iu f is a basis
of Nu f ;
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2. C is a transcendence basis of F , the field of rational functions in n independent
variables over Q(xi : i ∈ I\Iu f ), referred to as a cluster. Elements of C are also
referred to as cluster variables.

Remark 3 The basis E is referred to as seed data in [11, 20]. Since we have fixed
the lattice N and skew-symmetric form {−,−} the elements of C can be identified
with coordinate functions on the seed torus TN .

Definition 4 Fix a seed s = (E,C), where E = {ei : i ∈ I } and C = {xi : i ∈ Iu f }.
Fixing an element j ∈ Iu f , the j th mutation of (E,C) is the seed (E′,C ′),
where E′ = {e′

i : i ∈ I } is defined by setting

e′
k =

{
−e j if k = j,

ek + max
(
bkj , 0

)
e j otherwise,

where bkl = {ek, el}. While the cluster C ′ = {x ′
i : i ∈ Iu f } is defined by setting,

x ′
k = xk, if k �= j, and x j x

′
j =

∏
k such that
b jk>0

x
b jk

k +
∏

l such that
b jl<0

x
bl j
l . (15.1)

Recall that the matrix B := (bkl)k,l∈Iu f is typically referred to as the exchange
matrix of the seed.

Definition 5 A cluster algebra is the subalgebra of F generated by the union of all
clusters obtained by mutation from a given seed.

Any skew-symmetric n × n matrix B determines a skew-symmetric form on a
(based) lattice Z

n . Set N = Z
n , I = Iu f = {1, . . . , n}, E to be the standard basis

on Z
n , and let C = {x1, . . . , xn}. We letA(B) denote the cluster algebra associated

to the seed (E,C).
Definition 5 is really a special case of the definition of a cluster algebra, a class

referred to as the skew-symmetric cluster algebras of geometric type. In the general
case the form {−,−} need only be skew-symmetrizable. One consequence of the
skew-symmetry of the form {−,−} is the identification of each exchange matrix
with an (unfrozen) quiver. One may assign this quiver in the obvious way, assigning
a vertex vi to each element i ∈ Iu f , and bi j arrows vi → v j , oriented according to
the sign of bi j . We may also add ‘frozen’ vertices vi for each element of i ∈ I\Iu f ,
with arrows introduced between frozen and unfrozen vertices similarly. Equivalently
we may consider the quiver associated to the extended exchange matrix, but we do
not make further use of this terminology. There is a well-known notion of quiver
mutation, going back to Fomin–Zelevinsky [13], generalising the reflection functors
of Bernstein–Gelfand–Ponomarev [6]. Mutating a seed in a skew-symmetric cluster
algebra induces a corresponding mutation of the associated quiver.

Definition 6 Given a quiver Q and an element i ∈ Iu f , the mutation of Q at vi is
the quiver mut(Q, v) obtained from Q by:
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1. adding, for each subquiver v1 → v → v2, an arrow from v1 to v2;
2. deleting a maximal set of disjoint two-cycles;
3. reversing all arrows incident to v.

The resulting quiver is well-defined up to isomorphism, regardless of the choice of
two-cycles in (2).

Sincewe shall refer to quivers frequentlywe shallmake the following conventions.
Given a quiver Q, we define:

1. Q0 to be the set of vertices of Q;
2. Arr(vi , v j ) to be the set of arrows from vi ∈ Q0 to v j ∈ Q0;
3. bi j to be the cardinality of Arr(vi , v j ), with sign indicating orientation.

We shall always assume Q has no vertex-loops or 2-cycles.
Given a seed swe shall also fix notation for the dual basis E� of M := hom(N , Z)

and for each i ∈ I , set vi := {ei ,−} ∈ M .Wenowdefine theA andX cluster varieties
defined by Fock–Goncharov [11]. Toward this, observe to a seed s we can associate
a pair of tori:

Xs = TM As = TN .

The dual pair of bases for the respective lattices define identifications of these tori
with split tori,

Xs −→ G
|I |
m , As −→ G

|I |
m .

Letting s′ denote the kth mutation of s, we associate birational maps μk : Xs ��� Xs′

and μk : As ��� As′ to each seed, defined by setting

μ�
k z

n = zn(1 + zek )−{n,ek } μ�
k z

m = zm(1 + zvk )〈ek ,m〉,

where n ∈ N , m ∈ M , zm (resp. zn) denotes the function on TN := Spec(C[M])
corresponding tom (resp. the function on TM corresponding to n), and 〈−,−〉 denotes
the canonical pairing between M and N . Note that the toriXs andXs′ are canonically
identified with TN , but the maps μk between them are not isomorphisms.

Pulling these birational maps back along the identifications with the split torus
given by the seed, the birational map μk : As ��� As′ is given by the exchange
relation (15.1). That is, this birational map is the coordinate-free expression of the
exchange relation once we identify the standard coordinates on TN with the cluster
variables xi ∈ C (including the frozen variables xn+1 . . . , xm). We obtain schemesX
and A by gluing the seed tori As and Xs along the birational maps defined by the
mutations μk . For more details and related results we refer to [11, 20].

We conclude this section by recalling the classifications of cluster algebras of finite
type and finite mutation type.

Definition 7 A cluster algebra is said to be of finite type if it contains finitely many
clusters.
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Given an undirected graphG we say that a quiver Q is an orientation ofG if it has
the same set of vertices and for each edge of G there is precisely one arrow between
the respective vertices. Given a simply-laced Dynkin diagram D we say that Q is
of type D if it is an orientation of the underlying graph of D.

Theorem 8 ([14]) There is a canonical bijection between the Cartan matrices of
finite type and cluster algebras (without frozen variables) of finite type. Under this
bijection, a Cartan matrix A of finite type corresponds to the cluster algebraA(B),
where B is an arbitrary skew-symmetrizable matrix with Cartan companion equal
to A.

Theorem 8 describes skew-symmetric cluster algebras with finitelymany clusters.
We can ask instead for the weaker condition that only finitely many quivers appear
associated to seeds of the cluster algebra. This is the notion of finite mutation type
cluster algebra, for which a classification is also known.

Theorem 9 ([9, Theorem 6.1]) Given a quiver Q with finite mutation class, its
adjacency matrix bi j is the adjacency matrix of a triangulation of a bordered surface
or is mutation equivalent to one of eleven exceptional types.

The class of quivers coming from triangulations of surfaces is well-studied and
we make use of a combinatorial characterisation of this class of quivers via block
decomposition. A quiver Q is said to admit a block decomposition if it may be
assembled from the six blocks shown inFig. 15.5 by identifying the vertices of quivers
shown with unfilled circles, the outlets. More precisely, we choose an injection from
a subset of the combined set of outlets O into O such that no outlet is mapped
to a vertex of the same block, including itself. We form Q by gluing the quiver
along these vertices and cancelling any two cycles formed by this process. See [12,
Definition 13.1] for further discussion and examples of this definition.

Theorem 10 ([12, Theorem 13.3]) A quiver Q given by the adjacency matrix of a
triangulation of a surface is mutation equivalent to a quiver which admits a block
decomposition.

15.3 Mutations of Polytopes

In two dimensions all combinatorial mutations are ‘tropicalisations’ of cluster muta-
tions. While this ceases to be true in higher dimensions there is a natural class of
combinatorial mutations, the edge mutations which do appear in this way. In terms
of the definition of combinatorial mutation given in [3], edge mutations are those
which have one-dimensional factor. In particular each edge mutation is obtained by
studying the effect of the following birational maps—an algebraic mutation [3]—on
the Newton polyhedra of certain Laurent polynomials. Throughout this section N
denotes an n-dimensional lattice (not necessarily related to the definition of a cluster
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algebra). We recall that, working over C, if M is the lattice dual to N , the torus TM

is defined to be Spec(C[N ]).
Definition 11 Given an elementw ∈ M , theweight vector, and f ∈ Ann(w), the fac-
tor, define a birational map φw, f : TM ��� TM sending

zn 
→ zn(1 + z f )〈w,n〉.

Given a Laurent polynomial W ∈ C[N ] such that φ�
w, f (W ) ∈ C[N ] say that W is

mutable with weight vector w and factor f .

Definition 12 (Cf. [3, pg. 12]) Fix a Fano polytope P ⊂ NQ and its dual P� ⊂
MQ, a weight vector w ∈ M , and factor f ∈ Ann(w). Define a piecewise linear
map Tw, f : MQ → MQ by setting

Tw, f : m 
→ m + max(0, 〈m, f 〉)w.

If Tw, f (P�) is a convex polytope then we say P admits the mutation (w, f ) and
that P mutates to (Tw, f (P�))�.

Remark 13 This definition of mutation is really a ‘dual characterisation’ of [3,
Definition 5], which encodes how the Newton polytope of a Laurent polynomial
changes under algebraic mutation.

Remark 14 In [3] the authors show that the result of applying a mutation to a Fano
polytope produces another Fano polytope, so the last dualization in Definition 12 is
well-defined.

Proposition 15 Givenw ∈ M, f ∈ Ann(w) andamutable Laurent polynomialW ∈
C[N ] we have the following identity;

Newt
(
φ�
w, f W

)� = Tw, f
(
Newt(W )�

)
.

Proof The notion of combinatorial mutation is compatible with the mutation W by
construction. The interpretation of a combinatorial mutation as a piecewise linear
map is made in the proof of Proposition 4 in [3]. �

Definition 16 We definemutation data to be elements (w, f ) ∈ M ⊕ N such thatw
and f are primitive, and f ∈ Ann(w). A set of mutation data {(wi , fi ) ∈ M ⊕ N :
i ∈ I }, for a finite index set I , is called compatible if

〈wi , f j 〉 = −〈wj , fi 〉 for all i, j ∈ I.

Remark 17 If dim N = 2 mutation data is automatically compatible; indeed 〈wi ,

f j 〉 can be identified with wi ∧ wj for a suitable orientation of M .

Definition 18 To a compatible collection of mutation data E we define a quiver QE
as follows:
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1. the vertex set of QE is E;
2. between two vertices (wi , fi ) and (wj , f j ) there are 〈wi , f j 〉 arrows, with sign

indicating orientation.

Observe that, as 〈wi , f j 〉 is skew-symmetric, the quiver QE contains no loops
or two cycles. Note that we can use this definition to assign a cluster algebra to a
compatible collection of mutation data. We define a rule governing how compatible
collections of mutations themselves mutate.

Definition 19 Given a compatible collection of mutation data E, let L be the sublat-
tice ofM ⊕ N generated by the elements ofE, and let {(wi , fi ), (wj , f j )} := 〈wi , f j 〉
define a skew-symmetric form on L . Fixing a pair Ek = (wk, fk) ∈ E we mutate E
to a new collection Ek as follows:

1. Ek 
→ −Ek ;
2. Ei 
→ Ei − max({Ei , Ek}, 0)Ek , if i �= k.

This formula is identical to the mutation of seed data given in [11]; a connection
we now make precise. Fix a compatible collection of mutations E and define a
skew-symmetric form [−,−] on Z

|E| defined by setting [ei , e j ] := {θ(ei ), θ(e j )},
where θ : Z

|E| → M ⊕ N is defined by sending ei 
→ (wi , fi ). The followingLemma
follows immediately by comparison of the formulae formutating seed data in a cluster
algebra with Definition 19.

Lemma 20 The operations of mutation given in Definition 19, and of mutation of
the seeds defined above, are intertwined by θ .

Example 21 In dimensions higher than two a compatible collection ofmutation data
which defines a set of combinatorial mutations of a given polytope can transform
by mutation to a compatible collection of mutation data which does not define a set
of combinatorial mutations of the transformed polytope. In particular the piecewise
linear maps may fail to preserve convexity. This appears to be a important obstruc-
tion to generalising the two-dimensional theory of mutations to higher dimensional
polytopes. For example, consider the polytope

P := conv

⎛
⎝

⎛
⎝1
0
0

⎞
⎠ ,

⎛
⎝0
1
0

⎞
⎠ ,

⎛
⎝0
0
1

⎞
⎠ ,

⎛
⎝ 0

0
−1

⎞
⎠ ,

⎛
⎝−1

−1
0

⎞
⎠ ,

⎛
⎝−1

−1
−1

⎞
⎠

⎞
⎠.

Consider mutation data (w1, f1) := (e�
1, e3) and (w2, f2) = (e�

2, e3). Since f1 = f2,
we have that 〈wi , f j 〉 = 0 for all i, j ∈ {1, 2}; hence these mutations are compatible.
However, while P admits both these mutations, the composition of these two (in
either order) is the mutation corresponding to the pair (w, f ) := (e�

1 + e�
2, e3), which

does not define a mutation of P .

Proposition 22 Given seed data E such that QE is a directed simply-laced Dynkin
diagram the number of polytopes obtained by successive edge mutation is bounded
by the numbers of seeds in the cluster algebra determined by QE. If QE is of type An

this bound is the Catalan number Cn+1.
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In fact, compatible collections of mutations appear whenever we have a cluster
algebra with skew-symmetric exchange matrix.

Proposition 23 Every compatible collection of mutations determines and is deter-
mined by a skew-symmetric cluster algebra without frozen variables, together with a
subspace V of the kernel of the skew-symmetric form {−,−} defined by the exchange
matrix.

Proof Fix a skew-symmetric cluster algebra without frozen variables and a nom-
inated subspace V ⊂ ker{−,−}. Recall that a seed defines a basis ei of a lattice,
which we denote Ñ . Define M := Ñ/V and let p : Ñ → M be the canonical projec-
tion. The map θ : Ñ → M ⊕ hom(M, Z) defined by θ : n 
→ (p(n), {n,−}) defines
a compatible collection of mutation data with weight vectors in the lattice M . �

Note that N and M play dual roles to those in [11], and we insist throughout
that P ⊂ NQ. This exchange of roles explains the odd definition of M in the proof
of Proposition 23. To compare the birational maps associated to the two notions of
mutations let s be a seed of the cluster algebra determined by a compatible collection
of mutation data, and let E be the compatible collection corresponding to s. Fix an
element Ek = (wk, fk) ∈ E and consider the following diagram,

As
μk

p

Aμk (s)

p

TM
φ(wk , fk )

TM ,

(15.2)

Proposition 24 The diagram shown in (15.2) commutes.

Proof This is an exercise in writing out the definitions of the respective mutations:
see [27, Sect. 3]. �
Example 25 The del Pezzo surface of degree 5 admits a toric degeneration to a toric
surface Z with a pair of A1 singularities. Given a three-dimensional linear section X
of the Grassmannian Gr(2, 5) X admits a toric degeneration to the projective cone
over Z . The fan determined by this toric threefold is formed by taking the cones over
the faces of the reflexive polytope with PALP id 245.

In Fig. 15.1 we show a pentagon of polytopes obtained by successively mutating
the polytope shown in the top-right with respect to the mutation data

E := {(w1, f1), (w2, f2)}

where,

w1 := (−1, 0, 0), f1 := (0, 1, 1)T ,

w2 := (0, 0,−1), f2 := (−1, 0, 0)T .
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Fig. 15.1 Pentagon of edge
mutations among toric
degenerations of B5

We recall that there is an A2 cluster structure on the co-ordinate ring of the Grass-
mannian, and a toric degeneration of Gr(2, 5) for each cluster chart in the dual
Grassmannian [33]. We expect that cluster structures in the mirror to a Fano variety
to be detected by such compatible collections of mutations.

Note that the polytopes we show in Fig. 15.1 are not dual to Fano polytopes.
However, recalling that B5 has Fano index 2, we can obtain a reflexive polytope by
dilating each of the polytopes shown in Fig. 15.1 by a factor of two, and translating.

In the two dimensional case, we can canonically define a maximal set of compat-
ible mutations, making use of the notion of singularity content [4].

Definition 26 (Cf. [27, Sect. 1.2]) Given a Fano polygon P ⊂ NQ with singularity
content (n,B) and m := |B| + n, we define:

1. an index set I of size m containing a subset Iu f of size n, together with functions

φu f : Iu f → {edges of P} φ f : I\Iu f → B

such that fibres φ−1
u f (E) contain mE := ��(E)/rE� elements, where �(E) is the

lattice length of the edge E , and rE is the Gorenstein (or local) index of the cone
over E , while the map φ f is a bijection;

2. a lattice map ρ : Z
m → M sending each basis element to the primitive, inward-

pointing normal to the edge of P defined by the cone given by the specified
functions φu f and φ;

3. a form {ei , e j } := ρ(ei ) ∧ ρ(e j ). Note that this is an integral skew-symmetric
form.
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Fig. 15.2 The Fano polygon
for P

2

The value mE appears in the definition of the singularity content of a two dimen-
sional cone; and is equal to the maximal number of T -cones of Gorenstein index rE
which fit inside the cone on E .

By [27, Proposition 3.17] the construction of a quiver frommutation data provided
by Definition 26 intertwines polygon and quiver mutations. We let (EP ,CP) denote
the seed associated to a Fano polygon,whereEP is the standard basis ei ofZm , andCP

is the standard transcendence basis of the field of rational functions in n variables
overQ(xi : i ∈ I\Iu f ).We let QP denote the unfrozen quiver associated to (EP ,CP).
We say a Fano polygon is of finite mutation type if it is mutation equivalent to only
finitely many Fano polygons.

Conjecture 27 The cluster algebra CP associated to a Fano polygon P , together
with a bijection between the set of frozen variables and B, is a complete mutation
invariant of the Fano polygon P .

Example 28 Consider the Fano polygon P for P
2 (this is depicted in Fig. 15.2).

Computing the determinant of the inward-pointing normals we obtain the quiver QP

•
3

•
3

•
3

The mutations of this quiver are well-known, and the triple (3a, 3b, 3c) of non-zero
entries of the exchange matrix satisfy the Markov equation a2 + b2 + c2 = 3abc.
Indeed, as the polygon P ismutated the corresponding toric surfaces areP(a2, b2, c2)
for the same triples (a, b, c). We see that in this case the mutations of the quivers
exactly capture the mutations of the polygon.

Example 29 Consider the toric surface (using the notation for these surfaces appear-
ing in [8]), X5,5/3 associated with the Fano polygon shown in Fig. 15.3. The unfrozen
quiver associated to this surface is simply the A2 quiver:

• •

This example is important, both in this section, because it is an example of a finite
type polygon, and since a smoothing of this surface is given by 5 Pfaffian equations,
see [8, Sect. 3.3], a fact closely connected to the A2 quiver we construct here.
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Fig. 15.3 The Fano polygon
for X5,5/3

15.4 Finite Type Classification

We now make use of the classification of finite type and finite mutation type cluster
algebras to establish the following result.

Theorem 30 P is of finite mutation type if and only if QP is mutation equivalent to
a quiver of type (A1)

n, A2, A3, or D4.

Remark 31 The types referred to in Theorem 30 may also be referred to as
type In , I I , I I I , and I V respectively; in analogy with Kodaira’s monodromy matri-
ces. The relationship between these matrices, log Calabi–Yau manifolds, and mon-
odromy in certain integral affine manifolds is explored by Mandel in [30].

Remark 32 We remark that all the cases which appear in Theorem 30 do occur as
(unfrozen) quivers associated to polygons. Several examples can be found in [8, p.
42] and are tabulated below.

Quiver QP Polygon Surface
∅ = A0

1 9 X6,2

A3
1 11 X4,7/3

A6
1 12 B2,8/3

A2 7 X5,5/3
A3 17 X3,4
D4 5 X4,4/3

Examples of polygons P with QP = A2k+2
1 and A2k+1

1 for k ≥ 5 are given by the
quadrilaterals

conv

((−1
−3

)
,

(
1

−3

)
,

( −1
k − 2

)
,

(
1

k − 2

))
, and

conv

((−1
−3

)
,

(
1

−2

)
,

( −1
k − 2

)
,

(
1

k − 2

))
.

We first make two straightforward observations. First we note that the cluster
algebra CP induces a sequence of surjections:
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{Clusters of CP}

{Polygons mutation equivalent to P}

{Quivers mutation equivalent to QP}.

(15.3)

The first vertical arrow follows from the fact that algebraic mutations determine
combinatorial mutations, the second from Lemma 20. For example, using this tower
of surjections in the case of a type A2 cluster algebra, we can immediately state the
following result.

Proposition 33 If a Fano polygon P has singularity content (2,B) and the primitive
inward-pointing normal vectors of the two edges corresponding to the unfrozen
variables of CP form a basis of the lattice M, then the mutation-equivalence class
of P has at most five members.

Proof The quiver associated to P is precisely an orientation of the A2 quiver. The
cluster algebra CP is well-known and its cluster exchange graph forms a pentagon.
Note however that the quiver mutation graph is trivial, as the A2 quiver mutates only
to itself. �

Proposition 24 implies that themutation class of P has at most five elements. Note
that we do not have a non-trivial lower bound: there is only one polygon in mutation
equivalent to the polygon described in Example 29 up to GL(2, Z) equivalence. Next
observe that the sequence of surjections shown in (15.3) immediately implies that

CP finite type ⇒ P finite mutation type ⇒ CP finite mutation type.

Lemma 34 Given a Fano polygon P of finite mutation type, QP does not contain a
Kronecker subquiver

Qk := { v1 k
v2 },

where k > 1 is the number of arrows from v1 to v2.

Remark 35 This result is expected from results on the corresponding cluster alge-
bra. The Kronecker quiver defines a rank 2 cluster algebra which is known not to be
of finite type when k > 1. Given that P is the Newton polygon of a superpotential
which is itself a combination of cluster monomials, we expect the polygon P to grow
as we mutate.

Proof (Proof of Lemma 34) Assume there is a Qk subquiver of QP , with ver-
tices v1, v2 corresponding to edges E1 E2 of P . We define ρ : Z

2 → M by mapping
the standard basis to the primitive inward normal vectors wi to Ei for i ∈ {1, 2}.



15 Polygons of Finite Mutation Type 327

Fig. 15.4 Schematic
diagram of a polygon in
standard form

Let P ′ ⊂ Q
2 be the image of P under ρ�. The resulting polygon in Q

2 is shown
schematically in Fig. 15.4.

The local index of each cone in P is the integral height of the edge from the origin.
Let hi denote the local indices of Ei for i ∈ {1, 2}. Note that, as hi = 〈ei , ρ�u〉 for
any u ∈ Ei , hi is also the local index of ρ�(Ei ) in P ′. Mutating at v1 and v2 we denote
the new local indices,

(h1, h′
2) (h1, h2) (h′

1, h2).

We first show that ρ� increases the lattice lengths of Ei by a factor of k :=
|w1 ∧ w2| for each i ∈ {1, 2}. Let ui1 and ui2 denote the vertices of Ei , and fi :=
(ui1 − ui2)/�(Ei ); where �(Ei ) denotes the lattice length of Ei . Note that 〈w1, f2〉 =
〈w2, f1〉 = w1 ∧ w2 for a suitable choice of orientation of M . Moreover, since – for
each i ∈ {1, 2} – 〈ρ�(u), ei 〉 = hi is constant as u varies in Ei , the edge ρ�(Ei ) has
direction vector e�

3−i ; where {e�
1, e

�
2} is the dual basis to {e1, e2}. In other words,

ρ�(ui1) − ρ�(ui2) = �(ρ�(Ei ))e
�
3−i ,

and hence we have that

�(ρ�(Ei )) = 〈�(ρ�(Ei ))e
�
3−i , e3−i 〉

= 〈ρ�(ui1) − ρ�(ui2), e3−i 〉
= 〈ui1 − ui2, ρ(e3−i )〉
= �(Ei )〈 fi ,w3−i 〉
= ±�(Ei )(w1 ∧ w2),

where signs and orientations are chosen such that �(E) is always positive. Study-
ing Fig. 15.4 note that h1 + h′

1 ≥ �(ρ�(E2)), however—by the calculation above—
�(ρ�(E2)) = k�(E2). Moreover, we have that �(E2) ≥ h2, since the Fano polygon P
admits a mutation along this edge. Hence we observe that

h′
1 ≥ kh2 − h1 h′

2 ≥ kh1 − h2.
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Consider the case k ≥ 3, and assumewithout loss of generality that h2 ≥ h1.We have
that h′

1 ≥ 3h2 − h1 ≥ 2h2 ≥ 2h1. Thus in this case the values in the pair (h1, h2)
grow (at least) exponentially with mutation, and in particular take infinitely many
values.

Next consider the case k = 2. The inequalities above become,

h′
1 ≥ 2h2 − h1 h′

2 ≥ 2h1 − h2,

and we are again free to assume that h2 ≥ h1. Thus h′
1 ≥ 2h2 − h1 ≥ h1, and

if h2 > h1, h′
1 ≥ 2h2 − h1 > h2. Thus, assuming h1 �= h2, one can generate an

infinite increasing sequence of local indices. The only remaining case is if h :=
h1 = h2 = h′

1 = h′
2. To eliminate this possibility observe that, since k = 2, the

edges ρ�(E1), ρ�(E2) must meet in a vertex with coordinates (−h,−h) (indeed,
assuming this does not hold, a mutation returns us to the previous case and one of
the above inequalities is strict). Note that the sublattice ρ�(N ) is determined by the
fact that ρ� doubles the edge lengths of E1 and E2. The lattice vectors (a, a) are in
this sublattice for all a ∈ Z. Thus, by primitivity of the vertices in P , h = 1. Since
the origin is in the interior of P , mutating in one of v1 or v2 returns us to the previous
case. �

Remark 36 Proposition 34 implies all the quivers that we consider from now on
are directed graphs. Hence we refer to vertices as adjacent if they are adjacent in the
underlying graph.

As well as the non-existence of Kronecker quivers in QP for finite mutation type
polygons P , we use heavy use of a connectedness result for quivers QP which follows
immediately from the definition of QP via determinants in the plane; or equivalently
from the fact the exchange matrix has rank 2 (Fig. 15.5).

Lemma 37 Given a Fano polygon P and vertices v1, v2, v3 of QP such that vi
and vi+1 are not adjacent for i = 1, 2, then v1 and v3 are not adjacent.

Proof (Proof of Theorem 30) By Lemma 37, if QP is not connected, QP
∼= An

1 for
some n. Similarly, if QP is of type A or D, then it must be one of A2, A3 or D4.
Thus we only need to show that there is no Fano polygon P of finite mutation type
such that CP is not of finite-type. However CP is of finite mutation type, and we
use the classification described in Theorems 9 and 10, following [9, 12]. In fact,
using Lemma 37, none of the eleven exceptional types can occur as QP for a Fano
polygon P . Hence we can restrict to quivers which admit a block decomposition and
work case-by-case.

We claim that every quiver QP associated to a Fano polygon P which admits a
block decomposition is either mutation equivalent to an orientation of a simply-laced
Dynkin diagram or to a quiver which contains a subquiver Qk for k > 1. We assume
for contradiction that QP is the quiver associated to a Fano polygon P of finite-type
which is not mutation equivalent to a simply laced Dynkin diagram.
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Fig. 15.5 The blocks of a block decomposition

Fig. 15.6 Mutations of block V

Fig. 15.7 Quiver V′

Block V: First observe that, since only one vertex of the block V is an outlet, the V
block quiver is a subquiver of any quiver which contains the V block in its decom-
position. However this quiver mutates to a quiver with a Q2 subquiver as shown in
Fig. 15.6. Therefore block V never appears in a decomposition of a quiver QP . For
later use we shall fix the following intermediate quiver, V′, shown in Fig. 15.7.
Blocks IIIa and IIIb: Assume there is a type III block (a or b) connected to a quiver Q′
at a vertex v. If there is a vertex v′ of Q′ such that v and v′ are not adjacent, the quiver
violates Lemma 37. In particular the vertex set of Q′ must be the vertex set of a single
block. In particular, using the previous part, Q′ has at most four vertices. Case by
case study shows that only the A3 and D4 types appear.
Block IV: Consider the case of a decomposition only using type IV blocks. Note that
the type IV block is itself of type D4. Consider attaching two type IV blocks. If the
blocks are attached at a single outlet the resulting quiver contradicts Lemma 37. In
fact it is easy to see that it is impossible to add additional type IV blocks to meet
this condition. If both pairs of outlets are matched there are two possible quivers
depending on the relative orientations of the arrow between the outlets, one orienta-
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(a) Attaching I blocks to a IV block (b) Attaching II blocks to a IV block

Fig. 15.8 A type IV block

tion produces a Q2 subquiver automatically, the other produces a quiver containing
the quiver V′ as a subquiver. Thus, for a type IV block to appear in a decomposition
of QP it must include a type I or II block.

Now consider decompositions using type I and II blocks as well as type IV blocks.
First note there must be exactly one IV block (assuming there is at least one). Indeed,
if type IV blocks are not connected using both vertices, a non-outlet vertex of a IV
block is not adjacent to some outlet, and some non-outlet vertex of a (different)
IV block. However outlets and non-outlets of a type IV block are always adjacent,
violating Lemma 37.

Thus we must attach I and II blocks to a single type IV block. By Lemma 37 the
vertex set of the final quiver must be equal to the vertex set obtained by attaching
a single block to each outlet of the IV block. Considering these cases in turn, we
note first that attaching a type I block to cancel the arrow between the two outlets
produces a quiver mutation equivalent to D4 and therefore eliminated. For chains
type I blocks of length two, if a 3-cycle is produced, a mutation in the vertex between
the type I blocks produces the V′ quiver. If not, the same mutation produces a Q2

subquiver.
Attaching a type II block along two outlets of the type IV block recovers the V′

or Q2 subquiver cases we have already seen. Attaching type II blocks to a single
outlet each we observe that every new vertex must be adjacent to both outlets of
the IV block. Hence the only case without a Q2 subquiver is shown on the right of
Fig. 15.8, however this quiver mutates to one with a Q2 subquiver. Attaching further
type II blocks any quiver we obtain must contradict Lemma 37.
Blocks I and II: From what we have shown above, the block decomposition of QP

consists only of type I and type II blocks. Any connected quiver with a block decom-
position into type I blocks is a path (with possibly changing orientations), which
possibly closes up into a cycle. The only cases not violating Lemma 37 are mutation
equivalent to orientations of simply laced Dynkin diagrams.
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For decompositions of QP with type I and II blocks we divide the proof into cases
indexed by the number of type II blocks. For a single type II block, we can attach a
type I block to two outlets and in this way reduce to the type III case. Attaching each
type I block to a type II block in at most one outlet, we use the fact that every new
vertex must be adjacent to at least two of the vertices of the type II block. Thus we
can obtain only two undirected graphs—the underlying graph of a type IV block or
an orientation of a tetrahedron, these cases can easily be eliminated. For example,
there is no orientation of the tetrahedron making every cycle oriented; hence after a
single mutation we obtain a quiver violating Lemma 34.

Consider the case of a pair of type II blocks. If these have disjoint vertex sets, each
outlet of a type II block cannot be adjacent to two of the outlets of the other type II
block. Thus we must cancel the arrow between these two outlets with a type I block.
However this creates a pair of 1-valent non-outlet vertices which can be eliminated
similarly to the type III case. At the other extreme, if we attach along all three outlets,
we produce two easy cases. Attaching along a pair of outlets we generate either a Q2

subquiver or a 4-cycle. Considering the 4-cycle with two outlets v1 and v2 (on non-
adjacent corners) to meet the conditions of Lemma 37 any vertex adjacent to one
of v1 or v2 must be adjacent to the other. Moreover, if the resulting quiver contains
an arrow between v1 and v2, a mutation at one of the non-outlet vertices gives a Q2

subquiver. Given a vertex v adjacent to v1 and v2, if this defines a path between them,
mutating at this node and a non-outlet in the four cycle produces a Q2 subquiver. If v
does not lie on a path between v1 and v2 then mutating at both outlets produces a Q2

subquiver.
Attaching the type II blocks at a single outlet, the four arrows incident to this

vertex are now fixed, so any new vertex must be adjacent to each of the remaining
four outlets by Lemma 37. However this cannot be achieved with type I blocks.

Attaching more than two type II blocks together, we can eliminate the case where
two are connected to form a 4-cycle as above. Since we can easily eliminate the case
that two type II blocks meet in three outlets, we assume that each type II block meets
every other in at most one outlet. Some pair of type II blocks must be attached in
an outlet (otherwise we can argue as in the case of type II block separated by type I
blocks). Thus, since every new vertex must be adjacent to all four outlets formed by
attaching two type II blocks, all possible quivers can be represented as an octahedron
with some orientation, see Fig. 15.9.

Considering an orientation of the octahedron; if any triangular face does not form
a cycle we can mutate to form a Q2 subquiver. Assuming every triangle is a cycle,
and possibly mutating, the vertices adjacent to the ‘top’ of the octahedron form a
type V block subquiver. Following the same reasoning as for the type V block case
(although note that the type V block is not part of a block decomposition here) these
cases can be eliminated. �
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Fig. 15.9 Octahedron of
type II blocks
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Chapter 16
Orbit Spaces of Maximal Torus Actions
on Oriented Grassmannians of Planes

Hendrik Süß

Abstract Motivated by Buchstaber’s and Terzić’s work on the complex Grassman-
nians GC(2, 4) and GC(2, 5) we describe the moment map and the orbit space of
the oriented Grassmannians G+

R
(2, n) under the action of a maximal compact torus.

Our main tool is the realisation of these oriented Grassmannians as smooth complex
quadric hypersurfaces and the relatively simple Geometric Invariant Theory of the
corresponding algebraic torus action.

Keywords Oriented Grassmannian · Complexity-one T-variety · GIT quotients

16.1 Introduction

We denote an algebraic torus (C∗)k by TC and the corresponding compact torus
(S1)k ⊂ TC by T . A complex algebraic variety with a TC-action is called a TC-
variety. The complexity of a TC-variety is the minimal (complex) codimension of an
orbit. In this paper we study the T -orbit spaces of projective TC-varieties and apply
our findings to the case of oriented Grassmannians of planes and that of smooth TC-
varieties of complexity 1. Our main goal is to determine the corresponding T -orbit
spaces up to homeomorphism.

We consider the GrassmannianG+
R
(2, n) parametrising oriented planes inR

2 with
the natural action of a maximal torus in SOn . Our main result determines the orbit
space of this action.

Theorem 1 The orbit space G+
R
(2, n)/T is homeomorphic to the join

S�n/2�−1 ∗ P
�n/2�−2
C

.
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For smooth varieties with a torus action of complexity 1 we derive the following
general results on the structure of their orbit spaces.

Theorem 2 Consider a smooth projective TC-variety X of complexity 1. Then the
corresponding orbit space X/T is a topological manifold with boundary.

Theorem 3 Consider a smooth projective TC-variety X of complexity 1 with only
finitely many lower dimensional TC-orbits. Then the orbit space X/T is homeomor-
phic to a sphere.

Note that results comparable to Theorem2 have been proved by Ayzenberg [3]
and Cherepanov [8], Theorem3 has been proved independently, but using similar
methods, by Karshon and Tolman [15]. Their work covers the more general setting
of symplectic manifolds with Hamiltonian torus actions. In their paper they also
prove Theorem1 for the cases of complexity 1, i.e. for n = 5, 6.

Our main tool is Geometric Invariant Theory (GIT) and its symplectic coun-
terpart in combination with the Kempf–Ness Theorem. This approach suggest to
stratify the manifold and eventually the orbit space via a polyhedral subdivision of
the momentum polytope, which encodes the variation of GIT quotients. In general
these stratifications can become arbitrarily complicated. However, in the cases con-
sidered in this paper they turn out to be almost trivial allowing us to derive concrete
results about the orbits spaces.

In Sect. 16.2 we fix our setting for compact torus actions induced by algebraic
torus actions on complex varieties and recall crucial results fromGeometric Invariant
Theory. Moreover, we derive first results on the structure of orbits spaces in suitable
situations. We then apply these to the special cases of oriented Grassmannians of
planes in Sect. 16.3 and TC-varieties of complexity 1 in Sect. 16.4.

In order to distinguish between the algebraic and the topological category, we are
going to denote isomorphism of algebraic varieties by ∼= and homeomorphisms of
topological spaces by ≈.

16.2 TC-Varieties and Their T -Orbit Spaces

Fix a linearised action of an algebraic torus TC = (C∗)k on P
N
C

with weights
u0, . . . , uN ∈ Z

k , i.e. for t = (t1, . . . , tk) ∈ TC we have

t.(z0 : . . . : zN ) = (tu0 z1 : . . . : tuN zN ),

where tu j := t
(u j )1
1 · · · t (u j )k

k . Then a moment map of this action is given by

ν : P
N
C

→ R
k; (z0 : . . . zN ) �→

∑
j |z j |2u j

∑
j |z j |2

.
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For an embedded projective variety X ⊂ P
N
C
, which is invariant under under this torus

action, a moment map of the induced torus action on X is given by the restrictionμ =
ν|X . The moment image P = μ(X) is known to be a convex polytope [2, 11]. We
start with some notions known as variation ofGIT quotients with [9, 12, 16] being the
most relevant references. For a point x ∈ X themoment image�(x) = μ(TC.x) ⊂ P
of its orbit closure is again a polytope and the orbit TC.x is mapped to the relative
interior �◦(x) ⊂ �(x).

For a point u ∈ P we define

X ss(u) = {x ∈ X | u ∈ �(x)}, Xps(u) = {x ∈ X | u ∈ �◦(x)}.

Hence, X ss(u) consists of those points in X whose orbit closures intersect μ−1(u)

and Xps(u) consists of those pointswhose orbits intersectμ−1(u). Equivalenty Xps(u)

is the union of closed TC-orbits in X ss(u).
Now for every u ∈ P we may consider

λ(u) =
⋂

x,u∈�(x)

�(x); λ◦(u) =
⋂

x,u∈�◦(x)

�◦(x)

Since only finitely many polytopes occur as moment images of orbit closures their
intersections are again polytopes. We denote the set of all these polytopes λ(u) by�.
This set is partially ordered by the face relation ≺. The polytopes λ ∈ � form a
polyhedral subdivision of P and one obtains a stratification of P via their relative
interiors.

P =
⊔

λ∈�

λ◦.

For u ∈ P let us denote by λ(u) the unique element of λ ∈ � such that u ∈ λ◦.
From the definitions above it follows that X ss(u) = X ss(v) if and only if λ(u) =

λ(v), i.e. u and v are contained in the relative interior of the same element of�. In this
case also Xps(u) = Xps(v) holds. Hence, we may define X ss

λ = X ss(u) and Xps
λ =

Xps(u) for u ∈ λ◦.

Example 4 We consider the linear T = C
∗-action on P

2
C
given by t.(x : y : z) =

(t x : t−1y : z). Then the moment map is given by μ(x : y : z) = |x |2−|y|2
|x |2+|y|2+|z|2 . We

get P = μ(P2) = [−1, 1] ⊂ R. The orbits can be described as follows. We have the
fixed points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) with moment images 1, −1 and 0,
respectively. The moment images of the other TC-orbits are

μ(T .(1 : 0 : 1)) = (0, 1) ⊂ R,

μ(T .(0 : 1 : 1)) = (−1, 0) ⊂ R,

μ(T .(1 : 1 : 0)) = (−1, 1) ⊂ R,

μ(T .(α : 1 : 1)) = (−1, 1) ⊂ R, α ∈ C
∗.
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Hence, in this case � is obtained by subdividing the interval [−1, 1] at the point 0,
or more formally � = {[−1, 0], [0, 1], {−1}, {0}, {1}}.

By the Kempf–Ness Theorem for rational values of u the definition of X ss(u)

coincides with the semi-stable locus of Mumford’s Geometric Invariant Theory.
Hence, there exists a categorical quotient morphism qλ : X ss

λ → Yλ = X ss
λ //TC where

Yλ is an orbit space for the TC-action on Xps
λ and the corresponding quotient map is

given by the restriction of qλ to Xps
λ . The occurring quotients Yu have the expected

dimension for u ∈ P◦, but can be lower-dimensional for elements u ∈ ∂P . By [17,
Lemma7.2] for u ∈ λ◦ every TC-orbit in X

ps
λ intersectsμ−1(u) in exactly one T -orbit.

Hence, the restriction of qλ to μ−1(u) induces a homeomorphisms between Yλ =
X ss

λ //TC and the topological orbit spaceμ−1(u)/T . Moreover the inclusion Xλ ⊂ Xγ

for γ ≺ λ induces contraction morphisms on the level of quotients pγ λ : Yλ → Yγ

forming an inverse system.

Example 5 When dim X = dim TC, i.e. if the variety is toric, then the moment
image P completely determines the variety. The moment images �(x) of TC-orbit
closures are just the faces of the polytope P and the stratification of P is the decom-
position of P into the relative interiors of its faces. The preimage μ−1(u) consists
of exactly on T -orbit with dimension equal to dimension of the face containing u
in its interior. Consequently X/T ≈ P with μ coinciding with the quotient map.
Alternatively, we may apply Proposition12 below and obtain X/T ≈ Sk−1 ∗ {pt} ≈
Dk ≈ P .

Example 6 Consider a projective toric variety X corresponding to a polytope Q ⊂
R

d . Then the inclusion of a k-dimensional subtorus TC′ ⊂ TC induces a surjec-
tion F : R

d → R
k .Given amomentmapμ for theTC-action a correspondingmoment

map μ′ : X → R
k is given by μ′ = F ◦ μ. Hence, the moment image for the TC′-

action is P := F(Q) and the stratification of P is induced by the images of the
faces of Q. More precisely, the stratification consists of the relative interiors of the
polytopes

λ(u) =
⋂

τ≺Q, u∈F(τ )

F(τ ).

Moreover, the GIT quotients X ss(u)//TC
′ are again toric varieties corresponding

to the polytope F−1(u) ∩ Q, see [13, Proposition 3.5].

Already in [10] it has been observed that orbit space of the T -action on X can be
constructed out of the inverse system of GIT quotients.

Theorem 7 ([10, Sect. 5]) We have

X/T ≈
(

⊔

λ∈�

λ × Yλ

)

/∼,

where (u, y) ∼ (u, y′) if (u, y) ∈ γ × Yγ , (u, y′) ∈ λ × Yλ with γ ≺ λ and pγ λ(y′)
= y.
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We easily derive the following result, which turns out to be a little bit handier in
some situations.

Corollary 8 Assume that we have a compact topological space Y and with proper
surjective maps rλ : Y → Yλ being compatible with the inverse system above. Then
we have the following homeomorphism.

X/T ≈ (P × Y )/∼r .

Here, the equivalence relation is generated by

(u, y) ∼r (u, y′) ⇔ rλ(u)(y) = rλ(u)(y
′)

for u ∈ λ◦.

Proof There is a canonical map

P × Y →
(

⊔

λ∈�

λ × Yλ

)

/∼; (u, y) �→ [(u, rλ(u)(y)]

This map is surjective and continuous and identifies exactly those pairs which are
equivalent under ∼r . The quotient (P × Y )/∼r is compact as (P × Y ) is and by
Theorem7 the codomain of the map is homeomorphic to X/T , which is a Hausdorff
space. Hence, the induced continuous bijection (P × Y )/∼r → X/T is a homeo-
morphism. �

Remark 9 In [6, 7] such a Y is called a universal parameter space for the TC-obits.
In algebraic geometry a natural choice for such a dominating algebraic object Y
would be the inverse limit of the Yλ or the Chow quotient of X by TC, which can be
identified with a distinguished irreducible component of this inverse limit.

If the structure of the inverse system {Yλ}λ∈� of GIT quotients is complicated
Corollary8 might not give much concrete information about the orbit space X/T .
However, in certain situations this structure turns out to be almost trivial allowing us
to effectively calculate the orbit space.

Definition 10 We say the TC-action on X ⊂ P
N
C
has an almost trivial variation of

GIT if for λ �⊂ ∂P the quotients Yλ are all isomorphic to some Y .

Example 11 If the torus action has complexity one than the quotients Yλ are smooth
algebraic curves or just a point, where the latter happens at most over the boundary
of P . The only contraction morphisms here are isomorphisms or the contraction of
a curve to a point. Hence, the definition is automatically fulfilled.

Proposition 12 Consider a TC-action on X with almost trivial variation of GIT and
only finitely many lower-dimensional TC-orbits. Then X/T is homeomorphic to the
topological join Sk−1 ∗ Y .
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Proof Having an almost trivial variation of GIT means that Yλ
∼= Y for λ �⊂ ∂P .

On the other hand, having only finitely many lower-dimensional TC-orbits implies
that the moment fibre of a boundary point u ∈ ∂P consists of exactly one (lower-
dimensional) orbit and therefore Yλ(u) is just a point. Hence, by Corollary8 we have

X/T ≈ (P × Y )/∼∂ ,

where the equivalence relation∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂P . Now,
the claim follows from Lemma13 below. �

Lemma 13 Consider the closed unit disc Dk and the unit sphere Sk−1. Then for any
compact topological manifold Y we have

Sk−1 ∗ Y ≈ (Dk × Y )/∼∂ ,

where the equivalence relation ∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂Dk.

Proof Recall that the join Sk−1 ∗ Y is defined as (Sk−1 × Y × [0, 1])/∼, with
the equivalence relation being generated by (s, y, 0) ∼ (s ′, y, 0) and (s, y, 1) ∼
(s, y′, 1). Now the homeomorphism is given by

(Sk−1 × Y × [0, 1])/∼ −→ (Dk × Y )/∼∂ , [(u, y, t)] �→ [(tu, y)].

As a special case of Lemma13wemay consider the situation when Y ≈ Sm . Then
Lemma13 implies (Dk × Sm)/∼∂ ≈ Sk−1 ∗ Sm , which is known to be homeomor-
phic to Sm+k . The lemma below gives a slightly more general statement.

Lemma 14 For any closed H ⊂ R
k we have

((Dk ∩ H) × Sm)/∼∂ ≈ Sk+m ∩ (H × R
m)

where the equivalence relation ∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂Dk.

Proof We can state the homeomorphism explicitly

((Dk ∩ H) × Sm)/∼∂ → Sk+m ∩ H × R
m, [(u, y)] �→ (u,

√
1 − |u|2 · y).

For every (u, y) ∈ (∂Dk ∩ H) × Sm we have (u,
√
1 − |u|2 · y) = (u, 0). Hence,

the map is a well-defined continuous bijection from a compact space to a Hausdorff
space and, therefore a homeomorphism. �
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16.3 Oriented Grassmanians of Planes as TC-Varieties

We consider the smooth manifold G+
R
(2, n) parametrising oriented planes in R

n .
An oriented plane is given by an orthonormal basis (v1, v2). Another orthonormal
pair (v′

1, v
′
2) gives rise to the same oriented plane if and only if (v′

1, v
′
2) = (v1, v2)Qφ

with

Qφ =
(
cosφ − sin φ

sin φ cosφ

)

∈ SO2 .

Hence,
G+

R
(2, n) = {(v1, v2) ∈ R

n×2 | 〈vi , v j 〉 = δi j }/SO2 .

A (compact) torus action on G+
R
(2, n) is induced by the choice of a maximal torus

in SOn via its action on the pair (v1, v2). Amaximal torus T is given by block diagonal
matrices of the formdiag(Qφ1 , . . . , Qφk ) in the casen = 2k or diag(Qφ1 , . . . , Qφk , 1)
in the case n = 2k + 1. In the even-dimensional case the induced action on the
oriented planes is not effective as −I acts trivially. To obtain an effective action one
has to pass to the quotient T/〈±I 〉. However, this does not effect the orbit structure
of the action.

It is well-known that the oriented Grassmannian of planes can be identified with
the underlying smooth manifold of the complex smooth quadric Qn−2 in P

n−1
C

, see
e.g. [18, p. 280]. Indeed, the map

� : R
n×2 → C

n; (v1, v2) �→ w = v1 + i · v2

induces an embedding �̄ : G+
R
(2, n) ↪→ P

n
C
. This iswell-defined as�((v1, v2)Qφ) =

eiφ · �(v1, v2). Moreover the condition 〈v1, v2〉 = 0 is equivalent to �(
∑

j w
2
j ) = 0

and |v1|2/|v2|2 = 1 is equivalent to �(
∑

j w
2
j ) = 0. Hence, the image of the embed-

ding in P
n
C
is cut out by the equation

∑
j w

2
j = 0. A change of coordinates

z2 j−1 = w2 j−1 + i · w2 j ; z2 j = w2 j−1 − i · w2 j for j = 1, . . . , k

in the case n = 2k and additionally zn = wn in the case n = 2k + 1 leads to the
equivalent equation

k∑

j=1

z2 j−1z2 j = 0 (16.1)

or

z2n +
k∑

j=1

z2 j−1z2 j = 0, (16.2)

respectively. Now in these coordinates one easily checks that for an oriented
plane E ∈ G+

R
(2, n) with
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�̄(E) = (z1 : . . . : zn)

we have

�̄(diag(Qφ1 , . . . , Qφk )E) = (
eiφ1 z1 : e−iφ1 z2 : . . . : eiφk z2k−1 : e−iφ1 z2k

)

in the case n = 2k and similarly

�̄(diag(Qφ1 , . . . , Qφk , 1)E) = (
eiφ1 z1 : e−iφ1 z2 : . . . : eiφk z2k−1 : e−iφ1 z2k : z2k+1

)

in the case n = 2k + 1. Let e j denote the j th canonical basis vector of Z
k . Then the

action of T = (S1)k above is induced by an algebraic torus action of TC = (C∗)k
with weights

deg(z2 j−1) = e j , deg(z2 j ) = −e j ; j = 1, . . . , k.

and deg(z2k+1) = 0 in the case n = 2k + 1.
We are now going to describe the GIT quotients in order to eventually construct

the orbit space using Corollary8. We only describe the case of even n = 2k in detail.
The situation for n odd is very similar.

The moment map is given by

μ(z1 : . . . : zn) = 1
∑n

i=1 |zi |2
k∑

j=1

(|z2 j−1|2 − |z2 j |2)e j . (16.3)

The moment image of X is the cross-polytope given as the convex hull of the
weights P = βk = conv(±e1, . . . ,±ek). The fixed point (1 : 0 : . . . : 0) is mapped
to e1, (0 : 1 : . . . : 0) to −e1 and similarly for the other coordinates.

Remark 15 The proper faces of the cross-polytope P are exactly the convex hulls of
subsets of {±e1, . . . ,±ek} where for every j at most one of e j and −e j is contained.

Lemma 16 The moment preimage of a boundary point u ∈ ∂P consists of exactly
one T -orbit. Hence, the quotient Yλ(u) is just a single point.

Proof It follows from Remark15 that a point (z1 : . . . : zn) ∈ X is mapped to the
boundary of P if and only if all the products z2 j−1z2 j vanish. Indeed, assume μ(z)
lies in the convex hull conv(σ1e1, . . . , σnen), where σi ∈ {−1, 1} for i = 1, . . . , n.
Then the coefficients of μ(z) in the corresponding barycentric coordinates are up to
sign the same coefficients as in (16.3). Hence, we must have that

∑k
j=1

∣
∣|z2 j−1|2 − |z2 j |2

∣
∣

∑n
i=1 |zi |2 = 1

or equivalently
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k∑

j=1

∣
∣|z2 j−1|2 − |z2 j |2

∣
∣ =

k∑

j=1

(|z2 j−1|2 + |z2 j |2
)
.

This implies that for every j = 1, . . . , k either z2 j−1 = 0 or z2 j = 0.
Now, assume z = (z1 : . . . : zn) and z′ = (z′

1 : . . . : z′
n) have the same moment

image and that z2 j−1z2 j = z′
2 j−1z

′
2 j = 0, for j = 1, . . . k. By choosing a suitable

representative of the homogeneous coordinates we may assume that
∑

j |z j |2 =
∑

j |z′
j |2 = 1. With these choice of homogenous coordinates |z2 j−1|2 − |z2 j |2 =

|z2 j−1|2 − |z2 j |2 holds for j = 1, . . . k, sinceμ(z) = μ(z′). For sign reasons we have
either z2 j−1 = z′

2 j−1 = 0 or z2 j = z′
2 j = 0. This implies |z2 j | = |z′

2 j | or |z2 j−1| =
|z′

2 j−1|, respectively. In either case we have (z′
2 j−1, z

′
2 j ) = (s j · z2 j−1, s

−1
j · z2 j ) for

some element s j ∈ S1 ⊂ C
∗. Hence, z and z′ lie in the same T -orbit. �

We consider the rational map

q : P
n−1
C

��� P
k−2
C

, (z1 : . . . : zn) �→ (z3z4 : . . . : zn−1zn).

This map is easily seen to be invariant under the TC-action. It is well-defined on the
locus of points where at least one of the products z2 j−1z2 j for j = 2, . . . , k does not
vanish. For a point z ∈ X this is equivalent to the fact that μ(z) ∈ P◦.

Lemma 17 For u ∈ P◦ the map q|μ−1(u) : μ−1(u) → P
k−2
C

is a quotient map to
the T -orbit space of the fibre.

Proof Consider z, z′ ∈ X with μ(z) = μ(z′) ∈ P◦ and q(z) = q(z′). By choosing a
suitable representative of the homogeneous coordinates for z and z′ we may assume
that z2 j−1z2 j = z′

2 j−1z
′
2 j for j = 2, . . . , k − 1. Then the defining equation of X ⊂

P
n−1
C

implies
∑

j z2 j−1z2 j = ∑
j z

′
2 j−1z

′
2 j = 0. Hence, also z1z2 = z′

1z
′
2 must hold.

Let us set N = ∑
i |zi |2 and N ′ = ∑

i |z′
i |2. Assume z2 j−1z2 j = 0 thenμ(z) = μ(z′)

implies
|z2 j−1|2 − |z2 j |2

N
= |z2 j−1|2 − |z2 j |2

N ′ .

Hence, for sign reasons we have z2 j−1 = z′
2 j−1 = 0 or z2 j = z′

2 j = 0 in this case.
Now, for each j = 1, . . . k we set s j = z′

2 j−1/z2 j−1 or s j = z2 j/z′
2 j whichever is

defined. If they are both defined they have to coincide, since z2 j−1z2 j = z′
2 j−1z

′
2 j .

If z2 j−1 = z′
2 j−1 = z2 j = z′

2 j = 0, thenwe set s j = 1.By these choiceswehave s.z =
z′ with s = (s1, . . . , sk) ∈ TC. It remains to show, that s ∈ T ⊂ TC.

W.l.o.g we may assume that

|s1| = max{|s1|, |s−1
1 |, . . . , |sk |, |s−1

k |}. (16.4)

The condition μ(z) = μ(z′) implies
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|z1| − |z2|
N

= |z′
1| − |z′

2|
N ′ ,

Note, that by (16.4) we have |s1|−2 ≤ N ′
N ≤ |s1|2. Now, from (z′

1, z
′
2) = (s1z1, s

−1
1 z2)

we obtain |z1|2 − |z2|2
N

= |s1|2|z1|2 − |s1|−2|z2|2
N ′ ,

which implies (N ′/N − |s1|2)|z1|2 = (N ′/N − |s1|−2)|z2|2. For sign reasons this is
only possible if |s1|2 = N ′/N = 1. Now, it follows from (16.4) that |s1| = · · · =
|sk | = 1 and s ∈ T . �

Since X ss(u) consists exactly of the orbits whose closures intersect μ−1(u) it
follows also that q|X ss(u) is a good quotient in the sense of Geometric Invariant
Theory. Hence, it coincides with the GIT quotient.

Proof (Proof of Theorem1)WeuseCorollary8.Here,Y is just given asY = P
�n/2�−2

and byLemma16we have rλ(u) : Y → {pt} for u ∈ ∂P and byLemma17 rλ(u) = idY .
In particular, the equivalent relation on P × Y is just given by (u, y) ∼r (u, y′)
for u ∈ ∂P . Now, the claim follows from Lemma13. �

We conclude this section by studying the moment images �(x) of TC-orbit clo-
sures and the induced subdivision of P from Sect. 16.2. For n = 2k + 1 the convex
hull of every subset of vertices of P occurs as a moment image. For n = 2k such con-
vex hulls are moment images if an only if they are faces of P or contain at least two
pairs of opposite vertices {ei ,−ei }, {e j ,−e j }. Indeed, for every such polytope � a
corresponding TC-orbit is given by TC · (z1 : z2 : . . . : zn)with z2 j−1 �= 0 ⇔ e j ∈ �

and z2 j �= 0 ⇔ −ei ∈ � for j = 1, . . . , k. Note, that for n = 2k + 1 such (z1 : z2 :
. . . : zn) fulfilling (16.2) always exist, but for n = 2k there is obviously no non-trivial
solution of (16.1) where all but one monomial vanish. In both cases, with the excep-
tion of k = 2, the induced subdivision of P is the same and coincides with the stellar
subdivision of P obtained by starring in the origin.

Remark 18 In [7] Buchstaber and Terzić introduced the notion of (2n, k)-manifold.
It’s relatively straightforward to check that for n = 2k, the axioms of this notion are
indeed fulfilled for the associated effective torus action by TC/〈±1〉. However, in
the odd case on a generic point of the hyperplane section [zn = 0] we have finite
stabilisers of order 2, which violates the conditions for a (2n, k)-manifold.

Remark 19 Note thatG+
R
(2, 6) can be identified withGC(2, 4) as both are given by

the smooth quadric hypersurface in P
5
C
. Hence, for this case we just rediscover the

results of [5]. Combinatorially this fact is reflected by coincidence of the moment
polytopes, i.e. the cross-polytope β3 and the hypersimplex �4,2.
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16.4 Complexity-One TC-Varieties

If the complexity of the torus action is 1 the possibleGIT quotientsYλ are either single
points or isomorphic to a fixed algebraic curve Y . Hence, when applying Corollary8
to this situation the maps pλ : Y → Yλ are either isomorphisms or contractions to a
point. Our main aim in this section is to prove that in this situation the resulting orbits
spaces are topological manifolds with boundary and even spheres if the number of
lower dimensional TC-orbits is finite.

Remark 20 In the toric case the orbit space can be identified with the moment poly-
tope. In particular, it is also a topological manifold with boundary. Hence, Theorem2
can be seen as generalisation of this fact. On the other hand, this phenomenon is very
special to complexity 0 and 1. In higher dimensions this will almost never be the
case. For example for a smooth projective variety Y the join Sn ∗ Y , which occurs
as an orbit space in the situation of Proposition12, is a topological manifold if and
only if Y ∼= P

1
C
.

Proposition 21 Consider the projective d-space with a (d − 1)-torus TC acting
effectively byweights u0 = 0, u1, . . . , ud ∈ Z

d−1 on the coordinates z0, . . . , zd . Then
the orbit space P

d
C
/T is homeormorphic to either a disc or a sphere. In particular,

it is a topological manifold with boundary.

Proof Themoment imageofPd
C
is givenby the convexhull of theweightsu0, . . . , ud .

Theweights u0, . . . , ud are necessarily affinely dependent inR
d−1. On the other hand

they span R
d−1 as an affine space due to the effectiveness of the torus action. Hence,

there is a non-trivial choice of α j ∈ Z, such that 0 = ∑d
i=0 αi ui and 0 = ∑d

i=0 αi

and the coefficients are unique up to simultaneous scaling.
Set K = {i ∈ {0, . . . , d} | αi �= 0}. Then P is obtained as the join Q ∗ � of

the lower-dimensional polytopes Q = conv{ui }i∈K and � = conv{ui }i /∈K of dimen-
sions m := (#K − 2) and n := (d − #K ), respectively. Here, we allow that � = ∅

and use the non-standard convention Q ∗ ∅ := Q. Note, that � is a simplex (or
empty). Hence, a u ∈ � has a unique representation as u = ∑

j∈K λ j u j with λ j ≥ 0
and

∑
j λ j = 1. For u ∈ Q such a representation u = ∑

j /∈K λ j u j is unique if and
only if u ∈ ∂Q. It follows that u ∈ P = Q ∗ � has a unique such representation if
and only if u ∈ ∂Q ∗ �.

Now, Yλ(u) = μ−1(u)/T is a point whenever u ∈ P has a unique representation
as u = ∑

j λ j u j andμ−1(u)/T ≈ P
1
C
otherwise. This is just a special case of Exam-

ple6, when F : R
d → R

k is given by F(ei ) = ui for i = 1, . . . , d. Then the intersec-
tion of F−1(u) and the standard simplex consists of all linear combinations

∑n
i=1 λi ei

with non-negative coefficients, such that u = ∑n
i=1 λi ui and

∑
λi = 1. The result is

a point if the linear combination is unique or a line segment if not. The correspond-
ing toric varieties are a single point and P

1
C
, respectively. Alternatively, it not hard to

show that the non-trivial quotient morphisms X ss
λ → Yλ = P

1 are all restrictions of
the rational map
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P
d ��� P

1, (z0 : . . . : zd) �→
(

z
∑

i αi

0 :
∏

i

zαi
i

)

.

From Corollary8 we obtain that

P
d
C
/T ≈ (

P × P
1
C

)
/ ∼,

where the equivalence relation ∼ is generated by (u, y) ∼ (u, y′) with y, y′ ∈ P
1
C

and u ∈ ∂Q ∗ � ⊂ ∂P . Topologically ∂Q can be identifiedwith a sphere Sm−1 and Q
with the cone Sm−1 ∗ {pt}. Similarly we have a homeomorphism � ≈ Sn−1 ∗ {pt}
for � �= ∅. For the pair (P, ∂Q ∗ �) we obtain

(P, ∂Q ∗ �) ≈ (Sm−1 ∗ pt ∗Sn−1 ∗ {pt}, Sm−1 ∗ (Sn−1 ∗ {pt}))
≈ (Sm+n−1 ∗ {pt} ∗ {pt}, Sm+n−1 ∗ {pt})
≈ (Dm+n ∗ {pt}, Dm+n).

Note, that the disc Dm+n can be identified with the hemisphere via projection
and Dm+n ∗ {pt} with the corresponding halfdisc. Now, by choosing H to be an
arbitrary halfspace it follows from Lemma14 that the orbit space is a hemisphere.

For� = ∅ and P = Q we see directly (P, ∂Q ∗ �) = (Q, ∂Q) ≈ (Dd−1, Sd−2)

and we obtain P
d
C
/T ≈ Sd+1 from invoking Lemma14 again, this time with H =

R
d−1. �

Proof (Proof of Theorem2) We first consider the situation of a complexity-one
torus action on the affine space C

d . Such an action is linearisable by [4]. We may
equivariantly compactify the TC-action onC

d to a TC-action on P
d
C
. ThenC

d/T is an
open subset ofPd

C
/T . Hence, the claim follows from the observation inProposition21

that the orbit space P
d
C
/T is a manifold with boundary.

To deduce the general case we consider the two situations from Lemma23. If
contractions to a point do not occur the equivalence relation ∼r is trivial and by
Corollary8 we have X/T ≈ P × Y which is a product of topological manifolds
with boundary.

In the second situation, we have Y ∼= P
1. Then by [1, Theorem 5] we have an

equivariant open cover of X by copies of C
n and the result follows directly from the

consideration above. �

Remark 22 To deduce the general case from the case X = C
d in the proof of

Theorem2 wemay alternatively consider the induced TC-action on the tangent space
at a fixed point and reduce everything to this situation by applying Luna’s Slice
Theorem.

Lemma 23 ([14, Lemma 5.7]) In the situation of a complexity-one TC-action on a
smooth projective variety either

1. the GIT quotients are all isomorphic to Y , or
2. Y ∼= P

1
C
.
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Consider the following definition.

Definition 24 A k-holed n-sphere is defined as the intersection of Sn ⊂ R
n+1 with k

affine closed halfspaces, such that Sn is contained in none of them and their boundary
hyperplanes intersect only outside the sphere.

In other words, we remove the interiors of k disjoint closed discs from Sn .

Proposition 25 Consider a smooth TC-variety X of complexity 1 with moment
polytope P and stratification �. Let �′ be the set of λ ∈ �, such that λ ⊂ ∂P
and Yλ �= {pt}. Assume that �′ consists of k disjoint polytopes. Then X/T is a k-
holed sphere.

Proof In our situation the equivalence relation ∼r from Corollary8 is generated
by (u, y) ∼r (u, y′) for u ∈ ∂P \ ⋃

λ∈�′ λ◦. Note that by the preconditions ∂P \⋃
λ∈�′ λ◦ is a k-holed sphere. Hence, by Lemma14 the orbit space X/TC ≈ (P ×

P
1)/ ∼r is a k-holed sphere as well. �

This statement is useful to determine the orbit space in concrete situation. To
demonstrate this we look at the classification of Fano threefolds from [19]. In [20,
21] the ones within the classification which admit a TC-action of complexity 1 where
identified. In the following we determine the orbit spaces for all of them.

Theorem 26 Using the notation of the Mori-Mukai classification [19] for the Fano
threefolds with (C∗)2-action we obtain the orbits spaces being k-holed spheres
with k = 0 for Q, 2.24, 2.29, 2.32, 3.10 and 3.20 with k = 1 for 2.30, 2.31, 3.18,
3.21, 3.23 and 3.24, with k = 2 for 3.19, 3.22, 4.4, 4.5, 4.7 and 4.8.

Proof For every of the above Fano varieties the combinatorial data provided in [21,
Sect. 5] consists of the moment polytope P and a piecewise linear map

� : P → DivR P
1
C

from the polytope to the vector space of R-divisors on P
1. By [21, Sect. 3.1] we

have Yλ(u) = {pt} if and only deg�(u) = 0. Now, one checks that in every case
the subset {u ∈ ∂P | deg�(u) > 0} ⊂ ∂P consists of the interior of k disjoint facts
of P . Applying Proposition25 gives the desired result. �

Remark 27 Note, that Q is the smooth quadric and by Sect. 16.3 coincides with
G+

R
(2, 5). Moreover, 2.32 is the variety of complete flags in C

3. Hence, we recover
results of [7, Proposition 8] and [15].

Proof (Proof of Theorem3) To have finitely many lower dimensional TC-orbits
implies that the GIT quotients Yu for u ∈ ∂P are just points. Then by Lemma23
we conclude that Yu = P

1
C
for every u ∈ P◦. By applying Proposition12 we obtain

X/T ≈ P
1 ∗ Sk−1 ≈ S2 ∗ Sk−1 ≈ Sk+2.
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Chapter 17
The Reflexive Dimension
of (0, 1)-Polytopes

Akiyoshi Tsuchiya

Abstract Haase and Melnikov showed that every lattice polytope is unimodularly
equivalent to a face of some reflexive polytope. The reflexive dimension of a lattice
polytope P is the minimal d so that P is unimodularly equivalent to a face of some d-
dimensional reflexive polytope. Computing the reflexive dimension of a lattice poly-
tope is a hard problem in general. In this survey, we discuss the reflexive dimension
of a (0, 1)-polytope. In particular, virtue of the algebraic technique on Gröbner bases
and a linear algebraic technique, many families of reflexive polytopes arising from
several classes of (0, 1)-polytopes are presented, and we see that the (0, 1)-polytopes
are unimodularly equivalent to facets of some reflexive polytopes.

Keywords Reflexive polytope · Reflexive dimension · Order polytope · Stable set
polytope · Edge polytope · Gröbner basis

17.1 Introduction

The reflexive polytope is one of the keywords belonging to the current trends in the
research of convex polytopes. In fact, many authors have studied reflexive polytopes
from the viewpoints of combinatorics, commutative algebra and algebraic geometry.
Hence, finding new classes of reflexive polytopes is an important problem.

A lattice polytope is a convex polytope all of whose vertices have integer coor-
dinates. Two lattice polytopes P ⊆ R

d and P′ ⊆ R
d ′
are said to be unimodularly

equivalent if there exists an affine map from the affine span aff(P) of P to the
affine span aff(P′) of P′ that maps Z

d ∩ aff(P) bijectively onto Z
d ′ ∩ aff(P′) and

that maps P to P′. Note that every lattice polytope is unimodularly equivalent to a
full-dimensional one. A lattice polytope P ⊂ R

d of dimension d is called reflexive
if the origin of R

d is the unique lattice point belonging to the interior of P and its
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dual polytope
P∨ := {y ∈ R

d | 〈x, y〉 ≤ 1 for all x ∈ P}

is also a lattice polytope, where 〈x, y〉 is the usual inner product of R
d . It is known

that reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are
related to mirror symmetry, e.g., [1, 3]. In each dimension, there exist only finitely
many reflexive polytopes up to unimodular equivalence [15]. Moreover, Haase and
Melnikov [4] showed that every lattice polytope is unimodularly equivalent to a face
of some reflexive polytope. From this result they defined the reflexive dimension of
a lattice polytope.

Definition 1 Let P be a lattice polytope. The reflexive dimension of P, denoted
by rdim(P), is the minimal integer d such thatP is unimodularly equivalent to a face
of some d-dimensional reflexive polytope.

We immediately know the following proposition from the fact that there are only
finitely many reflexive polytopes up to unimodular equivalence.

Proposition 2 Given a positive integer d, there exist up to unimodular equivalence
only finitely many lattice polytopes whose reflexive dimensions are equal to d.

Our interest is to classify lattice polytopes whose reflexive dimensions are a given
integer. We remark that classifying lattice polytopes whose reflexive dimensions
are equal to their dimensions is equivalent to classifying reflexive polytopes. In
particular, it is known that there is one reflexive polytope in dimension one, there
are 16 in dimension two, 4,319 in dimension three and 473,800,776 in dimension
four according to computations by Kreuzer and Skarke [14]. As a next step, we focus
on lattice polytopes whose reflexive dimensions are equal to their dimensions plus
one. Namely, we consider the following question.

Question 3 For which lattice polytope P, does it follow that rdim(P) = dim(P) +
1?

We note that for a lattice polytope P, rdim(P) = dim(P) + 1 if and only if P is
not reflexive and P is a facet of some reflexive polytope. For example, the reflexive
dimensions of a d-dimensional unit cube and a d-dimensional unit simplex are d + 1.
A stronger question is the following.

Question 4 For every (0, 1)-polytopeP, does it follow that rdim(P) = dim(P) + 1?
Equivalently, is every (0, 1)-polytope a facet of some reflexive polytope?

In order to show that this second Question 4 has a positive answer for some
class of (0, 1)-polytopes, we give higher-dimensional construction of lattice poly-
topes. Given two lattice polytopes P ⊂ R

d and Q ⊂ R
d , we set the lattice polytope

�(P,Q) ⊂ R
d+1 with

�(P,Q) := conv{(P × {1}) ∪ (−Q × {−1})}.
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If P = Q, then we will write �(P) := �(P,P). We remark that the origin of R
d+1

is always a relative interior lattice point of�(P). Assume thatP is full-dimensional.
Then �(P) is also full-dimensional. In particular,P × {1} is a facet of �(P). Hence
for a lattice polytope P ⊂ R

d of dimension d, if �(P) is reflexive, then we know
that P is unimodularly equivalent to a facet of some reflexive polytope.

In this survey, by using this construction, we will show that for several classes
of (0, 1)-polytopes, Question 4 has a positive answer. In particular, we will present
many large families of reflexive polytopes arising fromwell-known classes of (0, 1)-
polytopes.

This survey is organized as follows: In Sect. 17.2, we will introduce an algebraic
technique to show that a given lattice polytope is reflexive. In particular, wewill recall
basic materials and notation on toric ideals. In Sect. 17.3, we will give two families
of reflexive polytopes arising from the order polytopes and the chain polytopes of
finite partially ordered sets. In Sect. 17.4, we will give a family of reflexive polytopes
arising from the stable set polytopes of perfect graphs. Finally, in Sect. 17.5, we will
introduce a linear algebraic technique to show that a lattice polytope is reflexive, and
we will give a family of reflexive polytopes arising from the edge polytopes of finite
simple graphs.

17.2 Toric Ideals and Reflexive Polytopes

In this section, we introduce an algebraic technique to show that a lattice poly-
tope is reflexive. First, we recall basic materials and notation on toric ideals.
Let K [t±1, s] := K [t±1

1 , . . . , t±1
d , s] be the Laurent polynomial ring in d + 1 vari-

ables over a field K . If a = (a1, . . . , ad) ∈ Z
d , then tas is the Laurent mono-

mial ta11 · · · tadd s ∈ K [t±1, s]. Let P ⊂ R
d be a lattice polytope of dimension d

and P ∩ Z
d = {a1, . . . , an}. Then, the toric ring of P is the subalgebra K [P]

of K [t±1, s] generated by {ta1s, . . . , tan s} over K . We regard K [P] as a homo-
geneous algebra by setting each deg tai s = 1. Let K [x] := K [x1, . . . , xn] denote
the polynomial ring in n variables over K . The toric ideal IP of P is the ker-
nel of the surjective homomorphism π : K [x] → K [P] defined by π(xi ) = tai s
for 1 ≤ i ≤ n. It is known that IP is generated by homogeneous binomials, see,
e.g., [27]. Let < be a monomial order on K [x] and in<(IP) the initial ideal of IP
with respect to <. The initial ideal in<(IP) is called squarefree if in<(IP) is gener-
ated by squarefree monomials. The reverse lexicographic order on K [x] induced
by the ordering xn <rev · · · <rev x1 is the total order <rev on the set of mono-
mials in the variables x1, x2, . . . , xn by setting xa11 xa22 · · · xann <rev x

b1
1 xb22 · · · xbnn if

either (i)
∑n

i=1 ai <
∑n

i=1 bi , or (ii)
∑n

i=1 ai = ∑n
i=1 bi and the rightmost nonzero

component of the vector (b1 − a1, b2 − a2, . . . , bn − an) is negative. A reverse lex-
icographic order is also called a graded reverse lexicographic order. Please refer
to [5, Chaps. 1 and 5] for more details on Gröbner bases and toric ideals.

Next, we recall important classes of lattice polytopes. We say that a lattice
polytope P ⊂ R

d possesses the integer decomposition property if, for each inte-
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ger k ≥ 1 and for each a ∈ kP ∩ Z
N , there exist a1, . . . , ak belonging to P ∩ Z

N

with a = a1 + · · · + ak , where kP := {kx : x ∈ P} is the kth dilated polytope of P.
The integer decomposition property is particularly important in the theory and appli-
cation of integer programming [25, Sect. 22.10]. Moreover, a lattice polytope which
possesses the integer decomposition property is normal and very ample. Hence
these properties play important roles in algebraic geometry. A lattice polytope P
is called compressed [28] if all its “pulling triangulations” are unimodular. In partic-
ular, if any lattice point in Z

d+1 is a linear integer combination of the lattice points
in P × {1}, then P is compressed if and only if every reverse lexicographic initial
ideal of IP is squarefree [27]. We note that a lattice polytope with a unimodular
triangulation possesses the integer decomposition property, hence, all compressed
polytopes possess the integer decomposition property.

Now, we introduce an algebraic technique to show that a lattice polytope is reflex-
ive.

Lemma 5 ([8, Lemma 1.1]) Let P ⊂ R
d be a lattice polytope of dimension d such

that the origin 0 ofRd is contained in its interior andP ∩ Z
d = {a1, . . . , an}. Suppose

that any lattice point in Z
d+1 is a linear integer combination of the lattice points

in P × {1} and there exists an ordering of the variables xi1 <rev · · · <rev xin for
which ai1 = 0 such that the initial ideal in<rev(IP) of the toric ideal IP with respect
to the reverse lexicographic order <rev on the polynomial ring K [x] induced by the
ordering is squarefree. Then P is a reflexive polytope with a regular unimodular
triangulation.

Example 6 Set ai = ei for i = 1, . . . , d, ad+1 = −e1 − · · · − ed and ad+2 = 0,
where e1, . . . , ed are the standard coordinate unit vectors of R

d . Let P ⊂ R
d be

the lattice polytope with P ∩ Z
d = {a1, . . . , ad+2}. Then one has

IP = (x1 · · · xd+1 − xd+1
d+2).

Hence the initial ideal in<rev(IP) of the toric ideal IP with respect to the reverse lexi-
cographic order<rev on the polynomial ring K [x] induced by the ordering xd+2 <rev

xd+1 <rev · · · <rev x1 is squarefree. Therefore, by Lemma5,P is a reflexive polytope
with a regular unimodular triangulation.

Recently, several families of reflexive polytopes with regular unimodular triangula-
tions have been given by using this technique [7–13, 21–24].

17.3 Reflexive Polytopes Arising from Order Polytopes and
Chain Polytopes

In this section, we give two families of reflexive polytopes with regular unimodular
triangulations arising from order polytopes and chain polytopes of finite partially
ordered sets. In particular, we show that Question 4 has a positive answer for order
and for chain polytopes.



17 The Reflexive Dimension of (0, 1)-Polytopes 355

First, we recall some terminologies of finite partially ordered sets and introduce
two lattice polytopes arising from finite partially ordered sets. Let P denote a finite
partially ordered set (poset, for short) on the ground set [d] := {1, . . . , d}. A subset I
of [d] is called a poset ideal of P if i ∈ I and j ∈ P together with j ≤ i in P ,
then j ∈ I . Note that the empty set ∅ and [d] are poset ideals of P . Let J(P)

denote the set of poset ideals of P . A subset A of [d] is called an antichain of P if
i and j belonging to A with i �= j are incomparable. In particular, the empty set ∅

and each 1-element subsets { j} are antichains of P . Let A(P) denote the set of
antichains of P . For a poset ideal I of P , we write max(I ) for the set of maximal
elements of I . In particular, max(I ) is an antichain. A linear extension of P is a
permutation σ = i1i2 · · · id of [d] which satisfies a < b if ia < ib in P .

Stanley [26] introduced two classes of lattice polytopes arising from finite posets,
which are called order polytopes and chain polytopes. The order polytope OP of P
is defined to be the convex polytope consisting of those (x1, . . . , xd) ∈ R

d such that:

1. 0 ≤ xi ≤ 1 for 1 ≤ i ≤ d;
2. xi ≥ x j if i ≤ j in P .

The chain polytope CP is defined to be the convex polytope consisting of those
(x1, . . . , xd) ∈ R

d such that:

1. xi ≥ 0 for 1 ≤ i ≤ d;
2. xi1 + · · · + xik ≤ 1 for every maximal chain i1 < · · · < ik of P .

For each subset I ⊂ [d], we define the (0, 1)-vectors ρ(I ) := ∑
i∈I ei . In particu-

lar ρ(∅) is the origin 0 of R
d . Both order polytopes and chain polytopes are (0, 1)-

polytopes of dimension d. In fact, in [26, Corollary 1.3 and Theorem 2.2], it is shown
that

{the set of vertices of OP} = {ρ(I ) : I ∈ J(P)},
{the set of vertices of CP} = {ρ(A) : A ∈ A(P)}.

Moreover, both order polytopes and chain polytopes are compressed, hence, they
possess the integer decomposition property. However, the class of order polytopes is
different from the class of chain polytopes [6, Example 3.5 and Corollary 3.9].

Now, we consider the two lattice polytopes�(OP) and�(CP) for a finite poset P
on [d]. In particular, we will see that the toric ideals of these lattice polytopes are
squarefree with respect to some monomial orders on K [x]. Let

K [O] := K [{xI , yI }I∈J(P) ∪ {z}]
K [C] := K [{xmax(I ), ymax(I )}I∈J(P) ∪ {z}]

denote the polynomial rings over K , and define the surjective ring homomorphisms
πO and πC by the following:



356 A. Tsuchiya

1. πO : K [O] → K [�(OP)] by setting

πO(xI ) = tρ(I∪{d+1})s,

πO(yJ ) = t−ρ(J∪{d+1})s, and

πO(z) = s;

2. πC : K [C] → K [�(CP)] by setting

πC(xmax(I )) = tρ(max(I )∪{d+1})s,

πC(ymax(J )) = t−ρ(max(J )∪{d+1})s, and

πC(z) = s.

Here I, J ∈ J(P). Then the toric ideal I�(OP ) (resp. I�(CP ) is the kernel of πO
(resp. πC).

Next, we introduce monomial orders <O and <C, and GO and GC which are the
set of binomials. Let <O denote a reverse lexicographic order on K [O] satisfying:
1. z <O yJ <O xI ;
2. xI ′ <O xI if I ′ ⊂ I ;
3. yJ ′ <O yJ if J ′ ⊂ J ;

and GO ⊂ K [O] the set of binomials:

xI xI ′ − xI∪I ′xI∩I ′,

yJ yJ ′ − yJ∪J ′ yJ∩J ,

xI yJ − xI\{i}yJ\{i},

x∅y∅ − z2.

Let <C denote a reverse lexicographic order on K [C] satisfying:
1. z <C ymax(J ) <C xmax(I );
2. xmax(I ′) <C xmax(I ) if I ′ ⊂ I ;
3. ymax(J ′) <C ymax(J ) if J ′ ⊂ J ;

and GC ⊂ K [C] the set of binomials:

xmax(I )xmax(I ′) − ymax(I∪I ′)ymax(I∗I ′),

ymax(J )ymax(J ′) − ymax(J∪J ′)ymax(J∗J ′),

xmax(I )ymax(J ) − xmax(I )\{i}ymax(J )\{i},

x∅y∅ − z2.

Here

1. I and I ′ (resp. J and J ′) are poset ideals of P which are incomparable in J(P);
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2. I ∗ I ′ (resp. J ∗ J ′) is the poset ideal of P generated bymax(I ∩ I ′) ∩ (max(I ) ∪
max(I ′)) (resp. max(J ∩ J ′) ∩ (max(J ) ∪ max(J ′)));

3. i is a maximal element of both I and J .

Proposition 7 ([11, Propositions 2.2 and 2.4]) Let the notation be as above. ThenGO
(resp. GC) is a Gröbner basis of I�(OP ) (resp. I�(CP )) with respect to <O (resp. <C).

By combining Lemma5 and Proposition7 we obtain the following theorem.

Theorem 8 ([11, Theorem 1.3]) Let P be a finite poset on [d]. Then each of �(OP)

and �(CP) is a reflexive polytope with a regular unimodular triangulation.

Hence we have:

Corollary 9 Let P be a finite poset on [d]. Then one has

rdim(OP) = rdim(CP) = d + 1.

Remark 10 In [11], larger families of reflexive polytopes are given. In fact, for two
finite posets P and Q with |P| = |Q| = d, the three lattice polytopes �(OP ,OQ),
�(OP ,CQ) and�(CP ,CQ) are studied. By the same technique,we know that�(OP ,

OQ) is a reflexive polytope (with a regular unimodular triangulation) if and only if P
and Q have a common linear extension, and �(OP ,CQ) and �(CP ,CQ) are always
reflexive polytopes with regular unimodular triangulations [11, Theorem 1.3].

Remark 11 In [7, 9, 10], by using other constructions of lattice polytopes, large
families of reflexive polytopes are presented. Given two lattice polytopes P ⊂ R

d

and Q ⊂ R
d , we set the lattice polytope �(P,Q) ⊂ R

d with

�(P,Q) := conv{P ∪ (−Q)}.

If P = Q, then we will write �(P) := �(P,P). The two lattice polytopes �(P,Q)

and�(P,Q)often have the sameproperties. In fact,�(OP ,OQ) is a reflexive polytope
(with a regular unimodular triangulation) if and only if P and Q have a common
linear extension [7, Corollary 2.2]. Moreover, �(OP ,CQ) and �(CP ,CQ) are always
reflexive polytopes with regular unimodular triangulations; see [10, Corollary 1.2]
and [9, Corollary 1.3]. In [9, 29], combinatorial properties of these polytopes, for
example, their volumes, are studied.

17.4 Reflexive Polytopes Arising from the Stable Set
Polytopes of Perfect Graphs

In this section, we give a family of reflexive polytopes with regular unimodular
triangulations arising from the stable set polytopes of perfect graphs. In particular,
we show that Question 4 has a positive answer for the stable set polytopes of perfect
graphs.
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First, we recall what perfect graphs are and introduce the stable set polytopes of
finite simple graphs. Let G be a finite simple graph on the vertex set [d] and E(G)

the set of edges of G. (A finite graph G is called simple if G possesses no loop and
no multiple edge.) A subset W ⊂ [d] is called stable if, for all i and j belonging
to W with i �= j , one has {i, j} /∈ E(G). We remark that a stable set is often called
an independent set. A clique of G is a subset W ⊂ [d] which is a stable set of
the complementary graph G of G. The clique number ω(G) of G is the maximal
cardinality of a clique of G. The chromatic number χ(G) of G is the smallest
integer t ≥ 1 for which there exist stable set W1, . . . ,Wt of G with [d] = W1 ∪
· · · ∪ Wt . In general, it follows that ω(G) ≤ χ(G). A finite simple graph G is said to
be perfect [2] if, for any induced subgraph H ofG includingG itself, one hasω(H) =
χ(G). Perfect graphs includemany important classes of graphs, for example, chordal
graphs and comparability graphs. Moreover, it is known that the complementary
graph of a perfect graph is perfect. This characterization of perfect graphs is called
the perfect graph theorem. Recently, a stronger characterization of perfect graphs,
which is called the strong perfect graph theorem, is known. An odd hole is an induced
odd cycle of length ≥ 5 and an odd antihole is the complementary graph of an odd
hole.

Proposition 12 ([2, Strong Perfect Graph Theorem]) A finite simple graph G is
perfect if and only if G has no odd hole and no odd antihole as induced subgraph.

Next, we introduce the stable set polytopes of finite simple graphs. Let S(G)

denote the set of stable sets ofG. One has∅ ∈ S(G) and {i} ∈ S(G) for each i ∈ [d].
The stable set polytopeQG ⊂ R

d ofG is the (0, 1)-polytope which is the convex hull
of {ρ(W ) : W ∈ S(G)} in R

d . Then the dimensionQG is equal to d. It is known that
every chain polytope is a stable set polytope. In fact, let P be a finite poset on [d].
Its comparability graph GP is the finite simple graph on [d] such that {i, j} ∈ E(GP)

if and only if i < j or j < i in P . Then a stable set ofGP corresponds to an antichain
of P . Moreover, one has CP = QGP . Since every comparability graph is perfect, the
class of the chain polytopes is contained in the class of the stable set polytopes of
perfect graphs. We see a characterization of perfect graphs in terms of the stable set
polytopes.

Proposition 13 ([19, Example 1.3 (c)]) Let G be a finite simple graph on [d].
Then G is perfect if and only if QG is compressed.

Now, we consider the lattice polytope �(QG) for a perfect graph G on [d]. In
particular, we see that the toric ideal of this lattice polytope is squarefree with respect
to some monomial order on K [x]. Let

K [Q] := K [{xS, yS}S∈S(G) ∪ {z}]

denote the polynomial ring over K and define the surjective ring homomorphism
πQ : K [Q] → K [�(QG)] by:
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πQ(xS) = tρ(S∪{d+1})s,

πQ(yT ) = t−ρ(T∪{d+1})s, and

πQ(z) = s.

Here S, T ∈ S(G). Then the toric ideal I�(QG ) is the kernel of πQ.
Next, we introduce monomial order <Q and MQ which is the set of monomials.

Let <Q denote a reverse lexicographic order on K [Q] satisfying:
1. z <Q yT <O xS;
2. xS′ <Q xS if S′ ⊂ S;
3. yT ′ <Q yT if T ′ ⊂ T ;

and set

M := {x∅y∅} ∪ {xS yT : S, T ∈ S(G), S ∩ T �= ∅} ∪ MG ∪ M′
G,

where MG (resp. M′
G) is the minimal set of squarefree monomial generators

of in<Q(IQG ) (resp. in<Q(I(−QG ))). Let GQ be a finite set of binomials belonging
to I�(QG ) withM = {in<Q( f ) : f ∈ GQ }.
Proposition 14 ([12, Theorem 2.1]) Let the notation be as above. Then GQ is a
Gröbner basis of I�(QG ) with respect to <Q.

By combiningLemma5 and Proposition14,we can show that�(QG) is a reflexive
polytopewith a regular unimodular triangulation.Moreover,we can give a polyhedral
characterization of perfect graphs.

Theorem 15 ([12, Theorem 1.1 (b)]) Let G be a finite simple graph on [d]. Then
the following arguments are equivalent:

1. G is perfect;
2. �(QG) is a reflexive polytope with a regular unimodular triangulation;
3. �(QG) has a regular unimodular triangulation.

Hence we can obtain the following corollary.

Corollary 16 Let G be a perfect graph on [d]. Then one has rdim(QG) = d + 1.

Remark 17 In [12], a lager family of reflexive polytopes is given. In fact, for two
finite simple graphs G1 and G2 on [d], the lattice polytope �(QG1 ,QG2) is studied.
By the same technique, it follows from [12, Theorem 1.1 (b)] that the following
arguments are equivalent:

1. G1 and G2 are perfect;
2. �(QG1 ,QG2) is a reflexive polytope with a regular unimodular triangulation;
3. �(QG1 ,QG2) has a regular unimodular triangulation.
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Remark 18 In [21], the lattice polytope�(QG1 ,QG2) for twofinite simple graphsG1,
G2 on [d] is studied. The two lattice polytopes �(QG1 ,QG2) and �(QG1 ,QG2) have
a very similar but different property. In fact, it follows from [21, Theorem 2.8] that
the following arguments are equivalent:

1. G1 and G2 are perfect;
2. �(QG1 ,QG2) is a reflexive polytope with a regular unimodular triangulation;
3. �(QG1 ,QG2) is a reflexive polytope.

Remark 19 In [13], the lattice polytopes �(QG,OP) and �(QG,OP) for a finite
simple graph G on [d] and a finite poset P on [d] are studied. In fact, it follows
from [13, Theorem 1.2] that the following arguments are equivalent:

1. G is perfect;
2. �(QG,OP) has a regular unimodular triangulation;
3. �(QG,OP) is a reflexive polytope.

In particular, if G is perfect, then each of �(QG,OP) and �(QG,OP) is a reflexive
polytope with a regular unimodular triangulation.

17.5 Reflexive Polytopes Arising from Edge Polytopes

When we show that �(P) is reflexive for a lattice polytope P ⊂ Z
d of dimension d

by using Lemma5, we need to assume that P possesses the integer decomposition
property. In fact, order polytopes, chain polytopes and the stable set polytopes of per-
fect graphs are compressed, hence they possess the integer decomposition property.
In order to show that Question 4 has a positive answer for a class of (0, 1)-polytopes
which do not necessarily possess the integer decomposition property, we should con-
sider other approaches. In this section, we introduce a linear algebraic technique to
show that a lattice polytope which does not necessarily possess the integer decom-
position property is reflexive, and we give one family of reflexive polytopes arising
from the edge polytopes of finite simple graphs.

For two d × d integermatrices A, B, wewrite A ∼ B if B can be obtained from A
by some row and column operations over Z. Let X = {x1, . . . , xn} be a set of lattice
points in R

d . Given a subset I = {i1, . . . , id+1} ⊂ [n], let XI be the (d + 1) × (d +
1) matrix whose i th row vector is (xi , 1).

Lemma 20 ([16, Proof of Theorem 2.1]) Let X = {x1, . . . , xn} be a set of lattice
points in R

d and P ⊂ R
d a lattice polytope of dimension d all of whose vertices

belong to X. Assume that for any subset I = {i1, . . . , id+1} ⊂ [n] with det(XI ) �= 0,
it follows that for some integer 0 ≤ s ≤ d,
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XI ∼

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎬

⎭
s. . . 0

1
2

0 . . .

2

.

Then �(P) is reflexive.

In order to give a family of reflexive polytopes, to find X which satisfies the
condition of Lemma20 is an interesting problem. In fact, by using this lemma, we
can get a large family of reflexive polytopes.

Proposition 21 ([16, Proposition 2.3]) Set

X = {0} ∪ {ei : 1 ≤ i ≤ d} ∪ {ei + e j : 1 ≤ i ≤ j ≤ d} ⊂ R
d .

Then for any subset I = {i1, . . . , id+1} ⊂ [n] with det(XI ) �= 0, it follows that for
some integer 0 ≤ s ≤ d,

X I ∼

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫
⎬

⎭
s. . . 0

1
2

0 . . .

2

.

By combining Lemma20 and Proposition21, we can obtain the following theo-
rem.

Theorem 22 ([16, Theorem 2.1]) LetP ⊂ R
d be a full-dimensional lattice polytope

all of whose vertices belong to

{0} ∪ {ei : 1 ≤ i ≤ d} ∪ {ei + e j : 1 ≤ i ≤ j ≤ d}.

Then �(P) is reflexive.

The class of lattice polytopes which satisfy the condition of Theorem22 contains
a well-known large family of (0, 1)-polytopes, namely the edge polytopes of finite
simple graphs. Let G be a simple graph on [d]. The edge polytope PG ⊂ R

d of G
is the convex hull of all vectors ei + e j such that {i, j} ∈ E(G). This means that
the edge polytope of PG of G is the convex hull of all row vectors of the incidence
matrix AG of G, where AG is the matrix in {0, 1}E(G)×[d] with



362 A. Tsuchiya

ae,v =
{
1 if v ∈ e,

0 otherwise.

Moreover, the dimension of PG equals rank(AG) − 1. Hence edge polytopes are
not full-dimensional. However, given an edge polytope PG , one can easily get a
full-dimensional unimodularly equivalent copy P of PG by considering the lattice
polytope defined as the convex hull of the row vectors of AG with some columns
deleted. This implies that every edge polytope PG is unimodularly equivalent to a
lattice polytope which satisfies the condition of Theorem22. In particular, �(PG) is
unimodularly equivalent to �(P). Hence we can get the following corollary.

Corollary 23 Let G be a finite simple graph on [d]. Then one has rdim(PG) =
dim(PG) + 1.

In general, an edge polytope does not possess the integer decomposition property.
In fact, it is known when the edge polytope of a connected finite simple graph
possesses the integer decomposition property.

Proposition 24 ([18, Corollary 2.3]) Let G be a connected finite simple graph
on [d]. Then PG possesses the integer decomposition property if and only if for any
two odd cycles C and C ′ of G having no common vertex, there exists an edge of G
joining a vertex of C with a vertex of C ′.

However, even if the edge polytope PG of a connected finite simple graph G
possesses the integer decomposition property, the reflexive polytope �(PG) does
not always possess the integer decomposition property.

Example 25 Let G be the connected simple graph as follows:

G:

Then G satisfies the condition of Proposition24. Hence PG possesses the integer
decomposition property. However, �(PG) does not possess the integer decomposi-
tion property.

Finally, we characterize when �(PG) possesses the integer decomposition prop-
erty for a connected finite simple graph G.

Theorem 26 ([16, Theorem 3.2]) Let G be a connected finite simple graph on [d].
Then �(PG) possesses the integer decomposition property if and only if G does not
contain two disjoint odd cycles.
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Remark 27 We remark that the condition of Theorem26 characterizes some class
of edge polytopes. In fact, a connected finite simple graph G does not contain two
disjoint odd cycles if and only if PG is unimodular, that is, all its triangulations are
unimodular [17, Example 3.6 b].

Remark 28 In [20], the lattice polytope�(PG) for a connectedfinite simple graphG
is studied. In fact, if G does not contain two disjoint odd cycles, then �(PG) is a
reflexive polytope which possesses the integer decomposition property. However,
in general, �(PG) is not always reflexive. For instance, if G is the connected finite
simple graph which appears in Example25, then �(PG) is not reflexive and does not
possess the integer decomposition property.
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