Skip to main content

Rolling Resistance Model and Control of Spherical Robot

  • Conference paper
  • First Online:
Robotics for Sustainable Future (CLAWAR 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 324))

Included in the following conference series:

Abstract

The paper presents the model of rolling resistance and the application of this model for the control of a pendulum actuated spherical robot on a horizontal plane. Control actions are derived in the form of maneuvers (gaits) which ensure the transition between two steady motions of the system. The experiments confirming the applicability of the model of viscous rolling friction and a method for determining coefficients of rolling resistance from experimental data are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ylikorpi, T.: Mobility and motion modelling of pendulum-driven ball decoupled models robots: for steering and obstacle crossing. Doctoral dissertations, School of Electrical Engineering, 251 p. (2017)

    Google Scholar 

  2. Kilin, A.A., Pivovarova, E.N., Ivanova, T.B.: Spherical robot of combined type: dynamics and control. Regul. Chaotic Dyn. 20(6), 716–728 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, W.-H., Chen, C.-P., Yu, W.-S., Lin, C.-H., Lin, P.-C.: Design and implementation of an omnidirectional spherical robot Omnicron. In: Proceedings of 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kaohsiung (Taiwan), Piscataway, NJ, pp. 719–724. IEEE (2012)

    Google Scholar 

  4. Karavaev, Y.L., Kilin, A.A.: Nonholonomic dynamics and control of a spherical robot with an internal omniwheel platform: theory and experiments. In: Proceedings of the Steklov Institute of Mathematics, vol. 295, pp. 158–167 (2016)

    Google Scholar 

  5. Tafrishi, S.A., Svinin, M., Esmaeilzadeh, E., Yamamoto, M.: Design, modeling, and motion analysis of a novel fluid actuated spherical rolling robot. ASME J. Mech. Robot. 11(4), 041010–041021 (2019)

    Article  Google Scholar 

  6. Ivanova, T.B., Pivovarova, E.N.: Dynamics and control of a spherical robot with an axisymmetric pendulum actuator. Rus. J. Nonlinear Dyn. 9(3), 507–520 (2013)

    Google Scholar 

  7. Ivanova, T.B., Kilin, A.A., Pivovarova, E.N.: Controlled motion of a spherical robot with feedback. Int. J. Dyn. Control Syst. 24(3), 497–510 (2018)

    Article  MathSciNet  Google Scholar 

  8. Bizyaev, I.A., Mamaev, I.S.: Separatrix splitting and nonintegrability in the nonholonomic rolling of a generalized Chaplygin sphere. Int. J. Non-Linear Mech. 126, 103550 (2020)

    Google Scholar 

  9. Borisov, A.V., Kilin, A.A., Karavaev, Y.L., Klekovkin, A.V.: Stabilization of the motion of a spherical robot using feedbacks. Appl. Math. Model. 69, 583–592 (2019)

    Article  MathSciNet  Google Scholar 

  10. Kilin, A.A., Karavaev, Y.L.: Experimental research of dynamic of spherical robot of combined type. Rus. J. Nonlin. Dyn. 11(4), 721–734 (2015)

    MATH  Google Scholar 

  11. Kudra, G., Awrejcewicz, J.: Application and experimental validation of new computational models of friction forces and rolling resistance. Acta Mech. 226(9), 2831–2848 (2015)

    Article  Google Scholar 

  12. Contensou, P.: Couplage entre frottement de pivotement et frottement de pivotement dans la théorie de latoupie. In: Kreiselprobleme Gyrodynamics: IUTAM Symposium, pp. 201–216. Springer, Berlin (1963)

    Google Scholar 

  13. Terekhov, G., Pavlovsky, V.: Controlling spherical mobile robot in a two-parametric friction model. In: MATEC Web Conferences, vol. 113, p. 02007 (2017)

    Google Scholar 

  14. Antali, M., Stepan, G.: Nonsmooth analysis of three-dimensional slipping and rolling in the presence of dry friction. Nonlinear Dyn. 97, 1799–1817 (2019)

    Article  Google Scholar 

  15. Kilin, A.A., Pivovarova, E.N.: The influence of the first integrals and the rolling resistance model on tippe top inversion. Nonlinear Dyn. 103, 419–428 (2021)

    Article  Google Scholar 

  16. Kilin, A., Pivovarova, E.: Conservation laws for a spherical top on a plane with friction. Int. J. Non-Linear Mech. 129, 103666 (2021)

    Article  Google Scholar 

  17. Borisov, A.V., Ivanova, T.B., Karavaev, Y.L., Mamaev, I.S.: Theoretical and experimental investigations of the rolling of a ball on a rotating plane (turntable). Eur. J. Phys. 39(6), 065001, 13 pp. (2018)

    Google Scholar 

  18. Karavaev, Y.L., Kilin, A.A., Klekovkin, A.V.: The dynamical model of the rolling friction of spherical bodies on a plane without slipping. Rus. J. Nonlin. Dyn. 13(4), 599–609 (2017)

    MathSciNet  MATH  Google Scholar 

  19. Borisov, A.V., Kilin, A.A., Karavaev, Y.L.: Retrograde motion of a rolling disk. Phys. Usp. 60(9), 931–934 (2017)

    Article  Google Scholar 

  20. Or, A.C.: The dynamics of a tippe top. SIAM J. Appl. Math. 54(3), 597–609 (1994)

    Article  MathSciNet  Google Scholar 

  21. Ma, D., Liu, C.: Dynamics of a spinning disk. Trans. ASME J. Appl. Mech. 83(6), 061003 (2016)

    Google Scholar 

  22. Leine, R.L.: Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion. Arch. Appl. Mech. 79(11), 1063–1082 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yury L. Karavaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kilin, A.A., Karavaev, Y.L., Ivanova, T.B. (2022). Rolling Resistance Model and Control of Spherical Robot. In: Chugo, D., Tokhi, M.O., Silva, M.F., Nakamura, T., Goher, K. (eds) Robotics for Sustainable Future. CLAWAR 2021. Lecture Notes in Networks and Systems, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-86294-7_35

Download citation

Publish with us

Policies and ethics