Skip to main content

Abstract

The use of autonomous marine vehicles is growing in the last decade in the offshore industry applications. These vehicles are employed in multiple surface and underwater activities as inspections, mapping or research. The vehicles employed by marine companies, institutions and governments required a careful study in the field on environmental impact. The emissions reduction and eco-friendly performance of the modern vehicles are one of the main milestones in the current projects. This development has been promoted by the governments and political policies, according to the climate change and the environment preservation. Thereby, the use of recyclable materials, safe manufacturing processes and green energy in these vehicles require to be done according to sustainability issues. The study of the Life Cycle Assessment is a standardized process in manufacturing products with several commercial and economic implications. To develop this process, it is required the use of standards and analysis methodologies that are being supported nowadays by different software and databases. This study, with the ENDURUNS guidelines as reference (H2020 Project), presents a draft of the Life Cycle issues for different devices and vehicles developed in the project. This paper presents the goal, scope, evaluation and interpretation of the autonomous vehicles developed in ENDURUNS. The results of this study provide valuable information to consider the suitability of the project devices according to the regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arvidsson, R., Tillman, A.M., et al.: Environmental assessment of emergingtechnologies: recommendations for prospective LCA. J. Ind.Ecol. 22, 1286–1294 (2018)

    Article  Google Scholar 

  2. Bertram, V.: Unmanned surface vehicles–a survey. Skibsteknisk Selskab 1, 1–14 (2008)

    Google Scholar 

  3. Brundtland, G.H., Khalid, M., et al.: Our common future. New York 8, 32–36 (1991)

    Google Scholar 

  4. Buyle, M., Audenaert, A., et al.: The future of ex-ante LCA? Lessons learned and practical recommendations. Sustainability 11, 5456 (2019)

    Article  Google Scholar 

  5. Campara, L., Hasanspahić, N., et al.: Overview of MARPOL ANNEX VI regulations for prevention of air pollution from marine diesel engines. In: SHS Web of Conferences, vol. 58 (2018)

    Google Scholar 

  6. Ciroth, A.: ICT for environment in life cycle applications openLCA—A new open source software for life cycle assessment. Int. J. Life Cycle Assess. 12(4), 209–210 (2007)

    Article  Google Scholar 

  7. Cucurachi, S., Giesen, C., Guinée, J.: Ex-ante LCA of emerging technologies. Proc. CIRP 69, 463–468 (2018)

    Article  Google Scholar 

  8. Dreyer, L.C., Niemann, A.L., Hauschild, M.Z.: Comparison of three different LCIA methods: EDIP97, CML2001 and Eco-indicator 99: does it matter which one you choose? Int. J. Life Cycle Assess. 8(4), 191–200 (2003)

    Article  Google Scholar 

  9. Duan, H., Ahmed, K., Nanere, M.: Life cycle, competitive strategy, continuous innovation and firm performance. Int. J. Innov. Manag. 2, 2150004 (2020)

    Google Scholar 

  10. Dunmade, I., Udo, M., et al.: Lifecycle impact assessment of an engineering project management process–a SLCA approach. In: IOP Conference Series Materials Science and Engineering, vol. 413 (2018)

    Google Scholar 

  11. Elsayed, E.A.: Life cycle costs and reliability engineering. In: Encyclopedia of Statistics in Quality and Reliability (2008)

    Google Scholar 

  12. Finkbeiner, M.: The international standards as the constitution of life cycle assessment: the ISO 14040 series and its offspring. In: Klöpffer, W. (ed.) Background and Future Prospects in Life Cycle Assessment. LCTCWLCA, pp. 85–106. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8697-3_3

    Chapter  Google Scholar 

  13. Gafurov, S.A., Klochkov, E.V.: Autonomous unmanned underwater vehicles development tendencies. Proc. Eng. 106, 141–148 (2015)

    Article  Google Scholar 

  14. Goedkoop, M., Spriensma, R.: The eco-indicator ’99, a damage oriented method for life cycle impact assessment; methodology report, Amersfoort, PRé consultants. In: VROM Zoetermeer, Nr /36A/B (2000)

    Google Scholar 

  15. Gundes, S.: The use of life cycle techniques in the assessment of sustainability. Proc. Soc. Behav. Sci. 216, 916–922 (2016)

    Article  Google Scholar 

  16. Hauschild, M.Z., Huijbregts, M.: Introducing life cycle impact assessment. In: Hauschild, M.Z., Huijbregts, M.A.J. (eds.) Life Cycle Impact Assessment. LCAC, pp. 766–775. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9744-3_1

    Chapter  Google Scholar 

  17. JoRgensen, A., Herrmann, I.: Analysis of the link between a definition of sustainability and the life cycle methodologies. Int. J. Life Cycle Assess. 18(8), 1440–1449 (2013)

    Article  Google Scholar 

  18. Juchen, R., de Araujo, J., et al.: Preliminary evaluation of data collection methods for SLCA studies. Soc. LCA 22, 43–45 (2018)

    Google Scholar 

  19. Klopffer, W.: The critical review of life cycle assessment studies according to ISO 14040 and 14044. Int. J. Life Cycle Assess. 17(9), 1087–1093 (2012)

    Article  Google Scholar 

  20. Labuschagne, C., Brent, A.C.: Sustainable project life cycle management: the need to integrate life cycles in the manufacturing sector. Int. J. Proj. Manag. 23(2), 159–168 (2005)

    Article  Google Scholar 

  21. Laurent, A., Weidema, B.P., et al.: Methodological review and detailed guidance for the life cycle interpretation phase. J. Ind. Ecol. 24, 986–1003 (2020)

    Article  Google Scholar 

  22. Lecouls, H.: ISO 14043: Environmental management - life cycle assessment - life cycle interpretation. Int. J. Life Cycle Assess. 4(5), 245 (1999)

    Article  Google Scholar 

  23. Levander, O.: Autonomous ships on the high seas. IEEE Spectr. 54(2), 26–31 (2017)

    Article  Google Scholar 

  24. Li, X., Zhu, Y., Zhang, Z.: An LCA-based environmental impact assessment model for construction processes. Build. Environ. 45(3), 766–775 (2010)

    Article  Google Scholar 

  25. Malkki, H., Alanne, K.: An overview of life cycle assessment (LCA) and research-based teaching in renewable and sustainable energy education. Renew. Sustain. Energy Rev. 69, 218–231 (2017)

    Article  Google Scholar 

  26. Marini, S., Gjeci, N., et al.: ENDURUNS: an integrated and flexible approachfor seabed survey through autonomous mobile vehicles. J. Mar.Sci. Eng. 8(9), 633 (2020)

    Article  Google Scholar 

  27. Marquez, F., Lewis, R.W., Tobias, A.M., Roberts, C.: Life cycle costs for railway condition monitoring. Transp. Res. Part E Logist. Transp. Rev. 44(6), 1175–1187 (2008)

    Article  Google Scholar 

  28. Marquez, F., Karyotakis, A., Papaelias, M.: Renewable Energies: Business Outlook 2050. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-45364-4

    Book  Google Scholar 

  29. Mocerino, L., Quaranta, F., Rizzuto, E.: Climate changes and maritime transportation: a state of the art (2019)

    Google Scholar 

  30. Moseley, P.T., Rand, D., Garche, J.: Lead–acid batteries for future automobiles. In: Lead-Acid Batteries for Future Automobiles, pp. 601–618 (2017)

    Google Scholar 

  31. Murray, C., Vos, T., et al.: Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859), 2197–2223 (2012)

    Article  Google Scholar 

  32. Owsianiak, M., Laurent, A., et al.: IMPACT 2002+, ReCiPe 2008 and ILCD’s recommended practice for characterization modelling in life cycle impact assessment: a case study-based comparison. Int. J. Life Cycle Assess. 19(5), 1007–1021 (2014)

    Article  Google Scholar 

  33. Pérez, J., Márquez, F., Hernández, D.: Economic viability analysis for icing blades detection in wind turbines. J. Clean. Prod. 135, 1150–1160 (2016)

    Article  Google Scholar 

  34. Pryshlakivsky, J., Searcy, C.: Fifteen years of ISO 14040: a review. J. Clean. Prod. 57(Oct.15), 115–123 (2013)

    Article  Google Scholar 

  35. Sahoo, A., Dwivedy, S.K., Robi, P.S.: Advancements in the field of autonomous underwater vehicle. Ocean Eng. 181(JUN.1), 145–160 (2019)

    Article  Google Scholar 

  36. Sala, S., Andreasson, J.: Improving interpretation, presentation and visualisation of LCA studies for decision making support. In: Benetto, E., Gericke, K., Guiton, M. (eds.) Designing Sustainable Technologies, Products and Policies, pp. 337–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66981-6_37

    Chapter  Google Scholar 

  37. Sanchez, P., Papaelias, M., Marquez, F.: Autonomous underwater vehicles: instrumentation and measurements. IEEE Instrum. Meas. Mag. 23(2), 105–114 (2020)

    Article  Google Scholar 

  38. Segovia, I., Pliego, A., Papaelias, M., García Márquez, F.P.: Optimal management of marine inspection with autonomous underwater vehicles. In: Xu, J., Ahmed, S.E., Cooke, F.L., Duca, G. (eds.) ICMSEM 2019. AISC, vol. 1001, pp. 760–771. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-21248-3_57

    Chapter  Google Scholar 

  39. Tobin, P., Schmidt, N.M., et al.: Mapping states’ Paris climate pledges: analysing targets and groups at COP 21. Glob. Environ. Change Hum. Policy Dimensions 48, 11–21 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by European Commission’s Research and Innovation Agency (RIA) under the European Union’s Horizon 2020 Research and Innovation Programme (Research Grant Agreement H2020-MG-2018-2019-2020 n.824348).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro José Bernalte Sánchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez, P.J.B., Asensio, M.T., Papaelias, M., Márquez, F.P.G. (2021). Life Cycle Assessment in Autonomous Marine Vehicles. In: Xu, J., García Márquez, F.P., Ali Hassan, M.H., Duca, G., Hajiyev, A., Altiparmak, F. (eds) Proceedings of the Fifteenth International Conference on Management Science and Engineering Management. ICMSEM 2021. Lecture Notes on Data Engineering and Communications Technologies, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-030-79206-0_17

Download citation

Publish with us

Policies and ethics