Skip to main content

Optimal Management of Marine Inspection with Autonomous Underwater Vehicles

  • Conference paper
  • First Online:
Proceedings of the Thirteenth International Conference on Management Science and Engineering Management (ICMSEM 2019)

Abstract

New technologies and system communications are being applied in the industry, improving the efficiency and effectiveness. This paper is focused on novel technologies, software and materials that allow to explore deep ocean floor. Autonomous underwater vehicles require planning navigation models and algorithms. Sensors equipped in underwater vehicles allow to inspect and analyse inaccessible areas. Monitor and control measurement process is required to ensure suitable underwater operations. This paper presents a model using the main inspection process variables. The model calculates the field of view of the autonomous underwater vehicle to be determined according to the type of sensor, the orientation and the distance from the floor. This study aims at stabilising the fundaments to develop an autonomous route for the autonomous underwater vehicles and optimize its operation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. 3(3), 257–279 (2005)

    Article  Google Scholar 

  2. Alvarez, A., Caiti, A., Onken, R.: Evolutionary path planning for autonomous underwater vehicles in a variable ocean. IEEE J. Ocean. Eng. 29(2), 418–429 (2004)

    Article  Google Scholar 

  3. Bocharov, L.: Underwater vehicle: current status and overall trends (part 1). Electron. Sci. Technol. Bus. 7: 2009 (2009)

    Google Scholar 

  4. Brito, M.: Auv development trends and their implications for risk management strategies. Underw. Technol. 34(3), 103–105 (2017)

    Article  Google Scholar 

  5. Catenacci Volpi, N., De Palma, D., et al.: Computation of empowerment for an autonomous underwater vehicle. IFAC-PapersOnLine 49(15), 81–87 (2016)

    Article  Google Scholar 

  6. Dalgleish, F., Caimi, F., et al.: Extended range underwater optical imaging architecture. In: OCEANS 2006, pp. 1–5. IEEE (2006)

    Google Scholar 

  7. Das, B., Subudhi, B., Pati, B.B.: Cooperative formation control of autonomous underwater vehicles: an overview. Int. J. Autom. Comput. 13(3), 199–225 (2016)

    Article  Google Scholar 

  8. Desa, E., Madhan, R., Maurya, P.: Potential of autonomous underwater vehicles as new generation ocean data platforms. Indian Academy of Sciences (2006)

    Google Scholar 

  9. Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 33(2), 103–122 (2008)

    Article  Google Scholar 

  10. Galceran, E., Carreras, M.: Efficient seabed coverage path planning for ASVs and AUVs. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 88–93. IEEE (2012)

    Google Scholar 

  11. Garcia, R., Nicosevici, T., Cufí, X.: On the way to solve lighting problems in underwater imaging. In: OCEANS’02 MTS/IEEE, vol. 2, pp. 1018–1024. IEEE (2002)

    Google Scholar 

  12. Gelli, J., Meschini, A., et al.: Development and design of a compact autonomous underwater vehicle: Zeno AUV. IFAC-PapersOnLine 51(29), 20–25 (2018)

    Article  Google Scholar 

  13. Geng, X., Zielinski, A.: An eigenpath underwater acoustic communication channel model. In: ‘Challenges of Our Changing Global Environment’ Conference Proceedings OCEANS’95 MTS/IEEE, vol. 2, pp. 1189–1196. IEEE (1995)

    Google Scholar 

  14. Hagen, P.E., Midtgaard, O., Hasvold, O.: Making auvs truly autonomous. In: OCEANS 2007, pp. 1–4. IEEE (2007)

    Google Scholar 

  15. Hasvold, Ø., Størkersen, N.J., et al.: Power sources for autonomous underwater vehicles. J. Power Sources 162(2), 935–942 (2006)

    Article  Google Scholar 

  16. Hitz, G., Pomerleau, F., et al.: Autonomous inland water monitoring: design and application of a surface vessel. IEEE Robot. Autom. Mag. 19(1), 62–72 (2012)

    Article  Google Scholar 

  17. Huet, C., Mastroddi, F.: Autonomy for underwater robotsła European perspective. Auton. Robot. 40(7), 1113–1118 (2016)

    Article  Google Scholar 

  18. Iscar, E., Barbalata, C. et al.: Towards low cost, deep water AUV optical mapping. In: OCEANS 2018 MTS/IEEE Charleston, pp. 1–6. IEEE (2018)

    Google Scholar 

  19. Jaffe, J.S., Moore, K.D., et al.: Underwater optical imaging: status and prospects. Oceanography 14(3), 66–76 (2001)

    Article  Google Scholar 

  20. Jones, D.O., Bett, B.J., et al.: The use of towed camera platforms in deep-water science. Underw. Technol. 28(2), 41–50 (2009)

    Article  Google Scholar 

  21. Jun-Hong, C., Jiejun, K., et al.: The challenges of building mobile underwater wireless networks for aquatic applications. IEEE Netw. 20(3), 12–18 (2006)

    Article  Google Scholar 

  22. Kharaka, Y.K.: Petroleum formation and occurrence. A new approach to oil and gas exploration. Earth Sci. Rev. 16(16), 372–373 (1978)

    Google Scholar 

  23. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft, vol. 88, pp. 1–12 (2006)

    Google Scholar 

  24. Kruger, D., Stolkin, R. et al.: Optimal AUV path planning for extended missions in complex, fast-flowing estuarine environments. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 4265–4270. IEEE (2007)

    Google Scholar 

  25. Ludvigsen, M., Sørensen, A.J.: Towards integrated autonomous underwater operations for ocean mapping and monitoring. Annu. Rev. Control. 42, 145–157 (2016)

    Article  Google Scholar 

  26. Márquez, F.P.G., Segovia, I.: Condition monitoring system for solar power plants with radiometric and thermographic sensors embedded in unmanned aerial vehicles. Measurement 139, 152–162 (2019)

    Article  Google Scholar 

  27. Mayer, L., Jakobsson, M., et al.: The nippon foundationłgebco seabed 2030 project: the quest to see the worlds oceans completely mapped by 2030. Geosciences 8(2), 63 (2018)

    Article  Google Scholar 

  28. Micallef, A., Krastel, S., Savini, A.: Submarine Geomorphology. Springer, Berlin (2017)

    Google Scholar 

  29. Moraleda, V.B., Marugán, A.P., Márquez, F.P.G.: Acoustic maintenance management employing unmanned aerial vehicles in renewable energies. In: International Conference on Management Science and Engineering Management, pp. 969–981. Springer, Berlin (2018)

    Google Scholar 

  30. Muñoz, C.Q.G., Gonzalo, A.P. et al.: Online fault detection in solar plants using a wireless radiometer in unmanned aerial vehicles. In: International Conference on Management Science and Engineering Management, pp. 1161–1174. Springer, Berlin (2017)

    Google Scholar 

  31. Paull, L., Saeedi, S., et al.: AUV navigation and localization: a review. IEEE J. Ocean. Eng. 39(1), 131–149 (2014)

    Article  Google Scholar 

  32. Petres, C., Pailhas, Y., et al.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

    Article  Google Scholar 

  33. Prados, R., Garcia, R., Neumann, L.: Image Blending Techniques and Their Application in Underwater Mosaicing, vol. 13. Springer, Berlin (2014a)

    Book  Google Scholar 

  34. Ramírez, I.S., Marugán, A.P., Márquez, F.P.G.: Remotely piloted aircraft system and engineering management: a real case study. In: International Conference on Management Science and Engineering Management, pp. 1173–1185. Springer, Berlin (2018)

    Google Scholar 

  35. Rogass, C., Koerting, F., et al.: Translational imaging spectroscopy for proximal sensing. Sensors 17(8), 1857 (2017)

    Article  Google Scholar 

  36. Schechner, Y., Karpel, N.: Clear underwater vision. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004, vol. 1 (2004)

    Google Scholar 

  37. Teo, K., Ong, K.W., Lai, H.C.: Obstacle detection, avoidance and anti collision for meredith AUV. In: OCEANS 2009, pp. 1–10. IEEE (2009)

    Google Scholar 

  38. Weatherall, P., Marks, K.M., et al.: A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2(8), 331–345 (2015)

    Article  Google Scholar 

  39. Wynn, R.B., Huvenne, V.A., et al.: Autonomous underwater vehicles (auvs): their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 352, 451–468 (2014)

    Article  Google Scholar 

  40. Xu, G., Shen, W., Wang, X.: Applications of wireless sensor networks in marine environment monitoring: a survey. Sensors 14(9), 932–954 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here with has been supported by the European Project H2020 under the Research Grants H2020-MG-2018-2019-2020, ENDURUNS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Pedro García Márquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Segovia, I., Pliego, A., Papaelias, M., García Márquez, F.P. (2020). Optimal Management of Marine Inspection with Autonomous Underwater Vehicles. In: Xu, J., Ahmed, S., Cooke, F., Duca, G. (eds) Proceedings of the Thirteenth International Conference on Management Science and Engineering Management. ICMSEM 2019. Advances in Intelligent Systems and Computing, vol 1001. Springer, Cham. https://doi.org/10.1007/978-3-030-21248-3_57

Download citation

Publish with us

Policies and ethics