As has been outlined in the introduction, the eigenvalues \(\lambda <\delta _1^2\) of \(L=-\mathcal{T}^2-\mathcal{K}\mathcal{T}\) from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain Birman-Schwinger type operator \(\mathcal{Q}_\lambda \) that acts on functions \(\Psi =\Psi (r)\).

4.1 The Operator \(\mathcal{Q}_z\)

Let \(L^2_r\) denote the \(L^2\)-Lebesgue space of radially symmetric functions \(\Psi (x)=\Psi (r)\) on \(\mathbb R^3\), where we take

$$ \langle \Psi , \Phi \rangle =\int _{\mathbb R^3}\overline{\Psi (x)}\,\Phi (x)\,dx =4\pi \int _0^\infty r^2\,\overline{\Psi (r)}\,\Phi (r)\,dr $$

as the inner product of \(\Psi , \Phi \in L^2_r\). Unless otherwise stated, a generic constant (denoted by C) is allowed to depend only upon Q.

Definition 4.1

For \(z\in \Omega =\mathbb C\setminus [\delta _1^2, \infty [\), we introduce

$$\begin{aligned}&\mathcal{Q}_z: L^2_r\rightarrow L^2_r, \nonumber \\&(\mathcal{Q}_z\Psi )(r) = \frac{16\pi }{r^2}\sum _{k\ne 0}\int _0^\infty d\tilde{r}\,\Psi (\tilde{r}) \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \nonumber \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \times \frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-z} \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )), \nonumber \\ \end{aligned}$$
(4.1)

where \(r_{\pm }(e, \ell )\) and \(\theta (r, e, \ell )\) are as in Appendix I, Sect. A.1, and D is given by (3.1). Along with \(\mathcal{Q}_z\), we also introduce the integral kernels

(4.2)

Remark 4.2

  1. (a)

    If \(z=a+ib\in \mathbb C\setminus \mathbb R\), then \(|k^2\omega _1^2(e, \ell )-z|\ge |b|>0\). More precisely,

    $$\begin{aligned} |k|\ge \Big [\frac{\sqrt{2|a|}}{\delta _1}\Big ]+1\,\,\Longrightarrow \,\, |k^2\omega _1^2(e, \ell )-z|^2= & {} (k^2\omega _1^2(e, \ell )-a)^2+b^2 \nonumber \\\ge & {} (k^2\delta _1^2-|a|)^2+b^2 \nonumber \\\ge & {} \frac{1}{4} k^4\delta _1^4+b^2. \end{aligned}$$
    (4.3)

On the other hand, if \(z=\lambda \in ]-\infty , \delta _1^2[\), then

$$ |k^2\omega _1^2(e, \ell )-z|=k^2\omega _1^2(e, \ell )-\lambda \ge k^2\delta _1^2-\lambda \ge \delta _1^2-\lambda >0, $$

and hence

$$\begin{aligned} |k|\ge 2\,\,\Longrightarrow \,\, |k^2\omega _1^2(e, \ell )-z|\ge k^2\delta _1^2-\lambda \ge (k^2-1)\delta _1^2 \ge \frac{1}{2} k^2\delta _1^2. \end{aligned}$$
(4.4)

In particular, \(\frac{1}{k^2\omega _1^2(e, \ell )-z}\) in (4.1) and (4.2) is well-defined for \(z\in \Omega \).

(b) In the definitions, we understand the factor \(|Q'(e)|\) to be zero outside of K, the support of Q, instead of carrying around another characteristic function all the time. In particular, always \(r_+(e, \ell )\le r_Q\) holds, which means the following: in (4.1), \(\int _0^\infty d\tilde{r}\,\Psi (\tilde{r})\) can be replaced by \(\int _0^{r_Q} d\tilde{r}\,\Psi (\tilde{r})\); \((\mathcal{Q}_z\Psi )(r)\) can be replaced by \((\mathcal{Q}_z\Psi )(r)\,\mathbf{1}_{\{0\le r\le r_Q\}}\) and \(K_z(r, \tilde{r})\) can be replaced by \(K_z(r, \tilde{r})\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\). \(\diamondsuit \)

Lemma 4.3

[Properties of \({\mathcal Q}_z\)] The following assertions hold.

  1. (a)

    For every \(z\in \Omega \), we have \(\mathcal{Q}_z\in \mathcal{B}(L^2_r)\), the space of linear and bounded operators on \(L^2_r\). In addition, the map

    $$\begin{aligned} \Omega \ni z\mapsto \mathcal{Q}_z\in \mathcal{B}(L^2_r) \end{aligned}$$
    (4.5)

    is analytic, and for the derivatives

    $$\begin{aligned} (\mathcal{Q}^{(j)}_z\Psi )(r)= & {} \frac{16\pi j!}{r^2}\sum _{k\ne 0}\int _0^\infty d\tilde{r}\,\Psi (\tilde{r}) \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}}\\&\qquad \qquad \qquad \times \frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-z)^{j+1}} \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )) \end{aligned}$$

    for \(\Psi \in L^2_r\).

  2. (b)

    If \(z\in \Omega \), then

    $$\begin{aligned} (\mathcal{Q}_z\Psi )(r)=\langle K_{\bar{z}}(r, \cdot ), \Psi \rangle \end{aligned}$$

    for \(\Psi \in L^2_r\). In particular,

    $$\begin{aligned} \langle \mathcal{Q}_z\Psi , \Phi \rangle =\langle \Psi , \mathcal{Q}_{\bar{z}}\Phi \rangle \end{aligned}$$

    for \(\Psi , \Phi \in L^2_r\), so that \(Q_z^*=Q_{\bar{z}}\). Thus, if \(\lambda \in ]-\infty , \delta _1^2[\), then \(\mathcal{Q}_\lambda \) is symmetric.

  3. (c)

    If \(z\in \Omega \), then \(\mathcal{Q}_z\) is a Hilbert-Schmidt operator on \(L^2_r\).

  4. (d)

    If \(z\in \Omega \), then

    $$\begin{aligned}&{\langle \mathcal{Q}_z\Psi , \Psi \rangle } \\= & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\bar{z}} \,\bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi (r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \end{aligned}$$

    for \(\Psi \in L^2_r\). In particular, if \(\lambda \in ]-\infty , \delta _1^2[\), then \(\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle \ge 0\) for \(\Psi \in L^2_r\), i.e., \(\mathcal{Q}_\lambda \) is positive. In addition, for the derivatives

    $$\begin{aligned} {\langle \mathcal{Q}^{(j)}_z\Psi , \Psi \rangle }= & {} 64\pi ^2 j!\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-\bar{z})^{j+1}} \nonumber \\&\qquad \qquad \qquad \qquad \times \,\bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi (r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \end{aligned}$$
    (4.6)

    for \(\Psi \in L^2_r\).

  5. (e)

    There is a constant \(C>0\) such that for \(\lambda , \tilde{\lambda }\in ]-\infty , \delta _1^2[\),

    $$ {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }_{\mathrm{HS}} \le C\,\Big (1+\frac{1}{(\delta _1^2-\lambda )(\delta _1^2-\tilde{\lambda })}\Big ) \,|\lambda -\tilde{\lambda }|, $$

    where \({\Vert \cdot \Vert }_{\mathrm{HS}}\) denotes the Hilbert-Schmidt norm.

  6. (f)

    If \(\lambda \in ]-\infty , \delta _1^2[\), then the spectrum of \(\mathcal{Q}_\lambda \) consists of \(\mu _1(\lambda )\ge \mu _2(\lambda )\ge \ldots \rightarrow 0\) (the eigenvalues are listed according to their multiplicities). In addition,

    $$\begin{aligned} \mu _1(\lambda )=\Vert \mathcal{Q}_\lambda \Vert =\sup \,\{\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle : {\Vert \Psi \Vert }_{L^2_r}\le 1\}, \end{aligned}$$
    (4.7)

    where \(\Vert \cdot \Vert ={\Vert \cdot \Vert }_{\mathcal{B}(L^2_r)}\), and every function

    $$\begin{aligned} \mu _k(\cdot ):\,\,]-\infty , \delta _1^2[\,\rightarrow \,]0, \infty [ \end{aligned}$$

    for \(k\in \mathbb N\) is monotone increasing and locally Lipschitz continuous (and hence differentiable a.e. by Rademacher’s Theorem).

Proof

(a) Let \(z\in \Omega \) be fixed. By Remark 4.2(a), there is \(\alpha _0>0\) such that \(|k^2\omega _1^2\) \((e, \ell )-z|\ge \alpha _0\) for \(|k|\ge 1\) and \((e, \ell )\in D\). In addition, according to (4.3) and (4.4), there is \(k_0\in \mathbb N\) so that \(|k^2\omega _1^2(e, \ell )-z|\ge \frac{1}{2} k^2\delta _1^2\) for \(|k|\ge k_0\) and \((e, \ell )\in D\); if \(k_0\) is taken to be large enough, we can also make sure that \(\frac{1}{2} k^2\delta _1^2\ge k^{3/2}\). First, we observe that

$$\begin{aligned} r_-(e,\,\ell )\le r\le r_+(e,\,\ell ) \,\,\Longrightarrow \,\,\ell ^2\le 2r^2(e_0-U_Q(0)). \end{aligned}$$
(4.8)

To establish this claim, we recall from (3.7) that \(\ell ^2=2r_-^2(e-U_Q(r_-))\) holds, where \(r_{\pm }=r_{\pm }(e, \ell )\). Since \(U_Q\) is increasing and \(e\le e_0\), we get \(\ell ^2\le 2r_-^2(e_0-U_Q(0))\le 2r^2(e_0-U_Q(0))\).

For \(1\le |k|\le k_0\) and \(i\in \mathbb N_0\), we now apply (4.8) to r and \(\tilde{r}\) in order to estimate

$$\begin{aligned} s_{k, i}(r, \tilde{r}, z)= & {} \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \nonumber \\&\qquad \qquad \qquad \qquad \!\! \times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-z)^{i+1}} \,\sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )) \nonumber \\ \end{aligned}$$
(4.9)

as

$$\begin{aligned} |s_{k, i}(r, \tilde{r}, z)|\le & {} \alpha _0^{-(i+1)}\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \int _0^{l_*} d\ell \,\ell \int _{e_{\mathrm{min}}(\ell )}^{e_0} de\\&\qquad \qquad \qquad \qquad \qquad \qquad \!\times \mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}}\,|Q'(e)|\\\le & {} \alpha _0^{-(i+1)}\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \int _0^{l_*} d\ell \,\ell \int _{e_{\mathrm{min}}(\ell )}^{e_0} de\\&\qquad \qquad \qquad \qquad \qquad \qquad \! \times \mathbf{1}_{\{\ell ^2\le 2(e_0-U_Q(0))\min \{r^2, \tilde{r}^2\}\}}\,|Q'(e)|\\\le & {} \alpha _0^{-(i+1)}\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \,(e_0-U_Q(0))\bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )\,\min \{r^2, \tilde{r}^2\}. \end{aligned}$$

Analogously, for \(|k|\ge k_0\) and \(i\in \mathbb N_0\), we deduce

$$ |s_{k, i}(r, \tilde{r}, z)|\le \frac{1}{k^{3(i+1)/2}}\,\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \,(e_0-U_Q(0))\bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )\,\min \{r^2, \tilde{r}^2\}. $$

It follows that

$$\begin{aligned} \sum _{k\ne 0} |s_{k, i}(r, \tilde{r}, z)|\le & {} \sum _{|k|\le k_0}\alpha _0^{-(i+1)}\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \,(e_0-U_Q(0)) \nonumber \\&\qquad \qquad \!\times \bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )\,\min \{r^2, \tilde{r}^2\} \nonumber \\&+\,\sum _{|k|\ge k_0}\frac{1}{k^{3(i+1)/2}}\,\Delta _1\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \,(e_0-U_Q(0)) \nonumber \\&\qquad \qquad \!\times \bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )\,\min \{r^2, \tilde{r}^2\} \nonumber \\\le & {} C_{1, i}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\min \{r^2, \tilde{r}^2\} \end{aligned}$$
(4.10)

for

$$\begin{aligned} C_{1, i}=\Big (2k_0\alpha _0^{-(i+1)}+2\sum _{k=1}^\infty \frac{1}{k^{3/2}}\Big )\Delta _1 \,(e_0-U_Q(0))\bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg ); \end{aligned}$$
(4.11)

this constant depends upon z and Q, but \(k_0\) is independent of i. Therefore,

$$\begin{aligned} |(\mathcal{Q}_z\Psi )(r)|= & {} \Big |\frac{16\pi }{r^2}\sum _{k\ne 0}\int _0^\infty \Psi (\tilde{r})\,s_{k, 0}(r, \tilde{r}, z)\,d\tilde{r}\!\Big |\\\le & {} \frac{16\pi C_{1, 0}}{r^2}\,\,\mathbf{1}_{\{0\le r\le r_Q\}}\int _0^{r_Q} |\Psi (\tilde{r})|\,{\min }\{r^2, \tilde{r}^2\}\,d\tilde{r}. \end{aligned}$$

Next, note that

$$\begin{aligned} \min \{r^2, \tilde{r}^2\}\le r\tilde{r}. \end{aligned}$$
(4.12)

Thus, using Hölder’s inequality,

$$\begin{aligned} |(\mathcal{Q}_z\Psi )(r)|^2\le & {} \frac{256\pi ^2 C_{1, 0}^2}{r^2}\,\,\mathbf{1}_{\{0\le r\le r_Q\}} \bigg (\int _0^{r_Q}\tilde{r}\,|\Psi (\tilde{r})|\,d\tilde{r}\bigg )^2\\\le & {} \frac{256\pi ^2 C_{1, 0}^2\,r_Q}{r^2}\,\,\mathbf{1}_{\{0\le r\le r_Q\}} \int _0^{r_Q}\tilde{r}^2\,|\Psi (\tilde{r})|^2\,d\tilde{r}\\\le & {} \frac{64\pi C_{1, 0}^2\,r_Q}{r^2}\,\,\mathbf{1}_{\{0\le r\le r_Q\}} \,{\Vert \Psi \Vert }^2_{L^2_r}, \end{aligned}$$

and this in turn leads to

$$ {\Vert \mathcal{Q}_z\Psi \Vert }^2_{L^2_r}=4\pi \int _0^\infty r^2\,|(\mathcal{Q}_z\Psi )(r)|^2\,dr \le 264\pi ^2 C_{1, 0}^2\,r_Q^2\,{\Vert \Psi \Vert }^2_{L^2_r}. $$

To prove the analyticity of (4.5), we recall that it suffices to show weak analyticity, in the sense that all maps \(\Omega \ni z\mapsto \langle \Psi , Q_z\Phi \rangle \in \mathbb C\) for \(\Psi , \Phi \in L^2_r\) are analytic; see [85, Thm. 3.1.12]. Fix \(z_0\in \Omega \). If \(|z-z_0|\) is sufficiently small, then \(z\in \Omega \) and we have the series expansion

$$ \frac{1}{k^2\omega _1^2(e, \ell )-z} =\sum _{i=0}^\infty \frac{1}{(k^2\omega _1^2(e, \ell )-z_0)^{i+1}}\,(z-z_0)^i $$

for every \(k\ne 0\) and \((e, l)\in D\), which suggests that

$$\begin{aligned} {\langle \Psi , Q_z\Phi \rangle }= & {} 64\pi ^2\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,\overline{\Psi (r)}\,\Phi (\tilde{r}) \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \nonumber \\&\qquad \qquad \qquad \qquad \quad \!\!\times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-z} \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )) \nonumber \\= & {} \sum _{i=0}^\infty a_i (z-z_0)^i \end{aligned}$$
(4.13)

for

$$\begin{aligned} a_i= & {} 64\pi ^2\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,\overline{\Psi (r)}\,\Phi (\tilde{r}) \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de \,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}}\\&\qquad \qquad \qquad \qquad \qquad \qquad \times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-z_0)^{i+1}} \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )). \end{aligned}$$

We are going to show that the series (4.13) converges near \(z_0\). For this, due to (4.10) and (4.12), we deduce that

$$\begin{aligned} |a_i|= & {} 64\pi ^2\bigg |\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,\overline{\Psi (r)}\,\Phi (\tilde{r}) \sum _{k\ne 0}s_{k, i}(r, \tilde{r}, z_0)\bigg | \\\le & {} 64\pi ^2\,C_{1, i}\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,|\Psi (r)|\,|\Phi (\tilde{r})| \min \{r^2, \tilde{r}^2\} \\\le & {} 64\pi ^2\,C_{1, i}\bigg (\int _0^{r_Q} r\,|\Psi (r)|\,dr\bigg ) \bigg (\int _0^{r_Q} \tilde{r}\,|\Phi (\tilde{r})|\,d\tilde{r}\bigg ) \\\le & {} 16\pi r_Q\,C_{1, i}\,{\Vert \Psi \Vert }_{L^2_r}\,{\Vert \Phi \Vert }_{L^2_r}. \end{aligned}$$

If we write the constant \(C_{1, i}\) from (4.11) as \(C_{1, i}=\tilde{C}_1\alpha _0^{-(i+1)}+\hat{C}_1\), with \(\alpha _0\) depending only on \(z_0\), then \(|z-z_0|<\min \{\frac{\alpha _0}{2}, \frac{1}{2}\}\) ensures that

$$\begin{aligned} C_{1, i} |z-z_0|^i\le \tilde{C}_1\alpha _0^{-1} 2^{-i}+\hat{C}_1 2^{-i}, \end{aligned}$$

which has a finite \(\sum _{i=0}^\infty \). It follows that (4.13) converges for \(z\in \Omega \) such that \(|z-z_0|<\min \{\frac{\alpha _0}{2}, \frac{1}{2}\}\), i.e., on a sufficiently small ball about \(z_0\). The formula for the derivative is gotten from \(a_1\) and those for the higher order derivatives follow from this one inductively.

  1. (b)

    By the definition of \(K_z\) in (4.2), we have

    $$\begin{aligned} K_z(r, \tilde{r})=\frac{4}{r^2\tilde{r}^2}\sum _{k\ne 0} s_{k, 0}(r, \tilde{r}, z). \end{aligned}$$
    (4.14)

Hence,

$$\begin{aligned} (\mathcal{Q}_z\Psi )(r)=\frac{16\pi }{r^2}\sum _{k\ne 0}\int _0^\infty \Psi (\tilde{r})\,s_{k, 0}(r, \tilde{r}, z)\,d\tilde{r} =4\pi \int _0^\infty \tilde{r}^2\,K_z(r, \tilde{r})\,\Psi (\tilde{r})\,d\tilde{r} =\langle K_{\bar{z}}(r, \cdot ), \Psi \rangle , \end{aligned}$$
(4.15)

observing that \(\overline{K_z}=K_{\bar{z}}\). Due to \(K_z(r, \tilde{r})=K_z(\tilde{r}, r)\), we hence obtain

$$\begin{aligned} \langle \mathcal{Q}_z\Psi , \Phi \rangle= & {} 4\pi \int _0^\infty r^2\,\overline{(\mathcal{Q}_z\Psi )(r)}\,\Phi (r)\,dr =4\pi \int _0^\infty r^2\,\overline{\langle K_{\bar{z}}(r, \cdot ), \Psi \rangle }\,\Phi (r)\,dr \\= & {} 16\pi ^2\int _0^\infty dr\,r^2\,\int _0^\infty d\tilde{r}\,\tilde{r}^2 \,K_{\bar{z}}(r, \tilde{r})\,\overline{\Psi (\tilde{r})}\,\Phi (r) \\= & {} 16\pi ^2\int _0^\infty d\tilde{r}\,\tilde{r}^2\,\overline{\Psi (\tilde{r})} \int _0^\infty dr\,r^2\,K_{\bar{z}}(\tilde{r}, r)\,\Phi (r) \\= & {} 4\pi \int _0^\infty d\tilde{r}\,\tilde{r}^2\,\overline{\Psi (\tilde{r})} \,\langle \overline{K_{\bar{z}}(\tilde{r}, \cdot )}, \Phi \rangle =\langle \Psi , \mathcal{Q}_{\bar{z}}\Phi \rangle . \end{aligned}$$
  1. (c)

    According to (b), the operator \(\mathcal{Q}_z\) on \(L^2_r\) has the integral kernel \(K_{\bar{z}}\). Hence, in order to verify that \(\mathcal{Q}_z\) is Hilbert-Schmidt, we need to verify that

$$\begin{aligned} {\Vert \mathcal{Q}_z\Vert }^2_{\mathrm{HS}}= & {} \int _{\mathbb R^3}\int _{\mathbb R^3} |K_z(x, \bar{x})|^2\,dx\,d\bar{x} \nonumber \\= & {} 16\pi ^2\int _0^\infty \int _0^\infty r^2\,\tilde{r}^2\,|K_z(r, \tilde{r})|^2\,dr\,d\tilde{r} \nonumber \\= & {} 16\pi ^2\int _0^{r_Q}\int _0^{r_Q} r^2\,\tilde{r}^2\,|K_z(r, \tilde{r})|^2\,dr\,d\tilde{r}<\infty \end{aligned}$$
(4.16)

for every \(z\in \Omega \), where \(K_z\) is viewed both as a function of \((x, \bar{x})\) and a function of \((r, \tilde{r})\) and we used Remark 4.2(b); see [35, Prop. 6.36]. From (4.14), (4.10) and (4.12), we get

$$\begin{aligned} \int _0^{r_Q}\int _0^{r_Q} r^2\,\tilde{r}^2\,|K_z(r, \tilde{r})|^2\,dr\,d\tilde{r}\le & {} 16\int _0^{r_Q}\int _0^{r_Q} \frac{1}{r^2\tilde{r}^2} \,\Big (\sum _{k\ne 0} |s_{k, 0}(r, \tilde{r}, z)|\Big )^2\,dr\,d\tilde{r} \\\le & {} 16\,C_1^2\int _0^{r_Q}\int _0^{r_Q} \frac{1}{r^2\tilde{r}^2} \,(\min \{r^2, \tilde{r}^2\})^2\,dr\,d\tilde{r} \\\le & {} 16\,C_1^2\int _0^{r_Q}\int _0^{r_Q}\,dr\,d\tilde{r} =16\,C_1^2 r_Q^2<\infty . \end{aligned}$$

Note that from \(\mathcal{Q}_z\) being Hilbert-Schmidt it follows that \(\mathcal{Q}_z\) is bounded and \(\Vert \mathcal{Q}_z\Vert \le {\Vert \mathcal{Q}_z\Vert }_{\mathrm{HS}}\), i.e., once again we see that (a) holds. However, since the key of the argument is (4.10) and (4.12), it needs very little additional work to derive both bounds. (d) Here, we calculate

$$\begin{aligned} {\langle \mathcal{Q}_z\Psi , \Psi \rangle }= & {} 4\pi \int _0^\infty r^2\,\overline{(\mathcal{Q}_z\Psi )(r)}\,\Psi (r)\,dr\\= & {} 64\pi ^2\sum _{k\ne 0}\int _0^\infty dr\,\Psi (r)\int _0^\infty d\tilde{r}\,\overline{\Psi (\tilde{r})}\\&\qquad \qquad \quad \!\times \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\bar{z}}\\= & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\bar{z}}\\&\qquad \qquad \qquad \bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi (r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2\ge 0. \end{aligned}$$

The proof of (4.6) is analogous. (e) For \(\lambda , \tilde{\lambda }<\delta _1^2\), we have, cf. (4.16),

$$\begin{aligned} {{\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }^2_{\mathrm{HS}}}= & {} \int _{\mathbb R^3}\int _{\mathbb R^3} |K_\lambda (x, \bar{x})-K_{\tilde{\lambda }}(x, \bar{x})|^2\,dx\,d\bar{x} \\= & {} 16\pi ^2\int _0^{r_Q}\int _0^{r_Q} r^2\,\bar{r}^2\, |K_\lambda (r, \bar{r})-K_{\tilde{\lambda }}(r, \bar{r})|^2\,dr\,d\bar{r} \\= & {} 256\,\pi ^2\int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg |\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}}\\&\qquad \,\,\times \,\omega _1(e, \ell )\,|Q'(e)| \bigg [\frac{1}{k^2\omega _1^2(e, \ell )-\lambda } -\frac{1}{k^2\omega _1^2(e, \ell )-\tilde{\lambda }}\bigg ]\\&\qquad \,\,\times \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell ))\bigg |^2\\\le & {} 512\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\,\\&\qquad \,\,\times \bigg (\sum _{k=1}^\infty \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \,|Q'(e)|\\ \\&\qquad \qquad \qquad \qquad \quad \, \bigg |\frac{1}{k^2\omega _1^2(e, \ell )-\lambda } -\frac{1}{k^2\omega _1^2(e, \ell )-\tilde{\lambda }}\bigg |\bigg )^2. \end{aligned}$$

Using (4.8) and (4.12), we may continue this estimate for suitable constants \(C, \hat{C}>0\) as

$$\begin{aligned} {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }^2_{\mathrm{HS}}\le & {} 256\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\nonumber \\&\qquad \,\,\times \,\bigg (\sum _{k=1}^\infty \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le C\min \{r^2,\,\bar{r}^2\}\}} \,|Q'(e)| \nonumber \\&\qquad \qquad \qquad \qquad \quad \bigg |\frac{1}{k^2\omega _1^2(e, \beta )-\lambda } -\frac{1}{k^2\omega _1^2(e, \beta )-\tilde{\lambda }}\bigg |\bigg )^2 \qquad \\\le & {} 256\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\nonumber \\&\quad \qquad \times \,\bigg (\sum _{k=1}^\infty \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,|Q'(e)| \nonumber \\&\qquad \qquad \qquad \qquad \qquad \frac{|\lambda -\tilde{\lambda }|}{(k^2\omega _1^2(e, \beta )-\lambda ) (k^2\omega _1^2(e, \beta )-\tilde{\lambda })}\bigg )^2. \nonumber \end{aligned}$$
(4.17)

For \(k\ge 2\), we know from Remark 4.2(a) that \(k^2\omega _1^2(e, \beta )-\lambda \ge k^2\delta _1^2/2\) and \(k^2\omega _1^2(e, \beta )-\tilde{\lambda }\ge k^2\delta _1^2/2\) are verified. If \(k=1\), then always \(\omega _1^2(e, \beta )-\lambda \ge \delta _1^2-\lambda \) and \(\omega _1^2(e, \beta )-\tilde{\lambda }\ge \delta _1^2-\tilde{\lambda }\) hold. Thus, we arrive at

$$\begin{aligned} {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }^2_{\mathrm{HS}}\le & {} C|\lambda -\tilde{\lambda }|^2\int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, r^2\tilde{r}^2 \\&\qquad \qquad \qquad \qquad \qquad \qquad \!\! \times \,\bigg (\delta _1^{-4}\sum _{k=2}^\infty \frac{1}{k^4} \int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )^2 \\&+\,C\,\frac{|\lambda -\tilde{\lambda }|^2}{(\delta _1^2-\lambda )^2(\delta _1^2-\tilde{\lambda })^2} \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\,r^2\,\tilde{r}^2 \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \times \,\bigg (\int _{U_Q(0)}^{e_0}\,|Q'(e)|\,de\bigg )^2 \\\le & {} C\,\Big (1+\frac{1}{(\delta _1^2-\lambda )^2(\delta _1^2-\tilde{\lambda })^2}\Big ) \,|\lambda -\tilde{\lambda }|^2, \end{aligned}$$

and this yields the claim.

(f) According to (b–d), \(\mathcal{Q}_\lambda \) is a symmetric and positive Hilbert-Schmidt operator, which is in particular compact. Thus, the assertions up to and including (4.7) are a consequence of the spectral theory for compact positive self-adjoint operators; see [35, Section 6]. Concerning the \(\mu _k(\lambda )\), we have the characterization

$$\begin{aligned} \mu _k(\lambda )=\max \Big \{\min _{\Psi \in S,\,{\Vert \Psi \Vert }_{L^2_r}=1} \langle \mathcal{Q}_\lambda \Psi , \Psi \rangle : S\subset L^2_r \,\,\text{ is } \text{ a } \text{ subspace } \text{ of } \text{ dimension }\,\,k\Big \} \end{aligned}$$
(4.18)

according to the Courant max-min principle. In the present situation, this follows from the spectral decomposition theorem for symmetric and compact operators. By (d), we obtain for \(\tilde{\lambda }\ge \lambda \), both in \(]-\infty , \delta _1^2[\) and \(\Psi \in L^2_r\),

$$\begin{aligned} \langle \mathcal{Q}_{\tilde{\lambda }}\Psi , \Psi \rangle= & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1\,|Q'(e)|}{k^2\omega _1^2-\tilde{\lambda }} \,\bigg |\int _{r_-}^{r_+}\Psi (r)\sin (k\theta )\,dr\bigg |^2 \nonumber \\\ge & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1\,|Q'(e)|}{k^2\omega _1^2-\lambda } \,\bigg |\int _{r_-}^{r_+}\Psi (r)\sin (k\theta )\,dr\bigg |^2 \nonumber \\= & {} \langle \mathcal{Q}_\lambda \Psi , \Psi \rangle , \end{aligned}$$
(4.19)

where \(r_{\pm }=r_{\pm }(e, \ell )\) and \(\theta =\theta (r, e, \ell )\). Hence, (4.18) implies that \(\mu _k(\tilde{\lambda })\ge \mu _k(\lambda )\) for all \(k\in \mathbb N\). To establish the local Lipschitz continuity of \(\mu _k(\cdot )\), note that

$$ |\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle -\langle \mathcal{Q}_{\tilde{\lambda }}\Psi , \Psi \rangle | \le {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }\,{\Vert \Psi \Vert }^2_{L^2_r}, $$

whence we deduce from (e) and \(\Vert \cdot \Vert \le {\Vert \cdot \Vert }_{\mathrm{HS}}\) that for \(\Psi \in L^2_r\) satisfying \({\Vert \Psi \Vert }_{L^2_r}\le 1\), one has

$$ |\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle -\langle \mathcal{Q}_{\tilde{\lambda }}\Psi , \Psi \rangle | \le C\,\Big (1+\frac{1}{(\delta _1^2-\lambda )(\delta _1^2-\tilde{\lambda })}\Big ) \,|\lambda -\tilde{\lambda }|. $$

Applying (4.18) once more, we arrive at

$$ |\mu _k(\lambda )-\mu _k(\tilde{\lambda })| \le C\,\Big (1+\frac{1}{(\delta _1^2-\lambda )(\delta _1^2-\tilde{\lambda })}\Big ) \,|\lambda -\tilde{\lambda }|, $$

which completes the proof.    \(\square \)

In the following, we are going to derive some more specific properties of the \(\mathcal{Q}_z\). See Appendix II, Sect. B.1 below for the function spaces that are being used. Once again, we understand that \(|Q'(e_Q)|\) vanishes outside of K.

Lemma 4.4

If \(z\in \Omega \) and \(\psi (r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi (r)\) for \(\Psi \in L^2_r\), then \(\psi \in X^0_{\mathrm{odd}}\),

$$\begin{aligned} {\Vert \psi \Vert }_{X^0}\le \rho _Q(0)^{1/2}\,{\Vert \Psi \Vert }_{L^2_r} \end{aligned}$$
(4.20)

and

$$\begin{aligned} \mathcal{K}\mathcal{T}(-\mathcal{T}^2-z)^{-1}\psi =|Q'(e_Q)|\,p_r (\mathcal{Q}_z\Psi ). \end{aligned}$$
(4.21)

In particular,

$$\begin{aligned} \mathcal{Q}_z\Psi =U'_{\mathcal{T}(-\mathcal{T}^2-z)^{-1}\psi } =4\pi \int _{\mathbb R^3} p_r\,(-\mathcal{T}^2-z)^{-1}\psi \,dv. \end{aligned}$$
(4.22)

Moreover, if also \(\tilde{\psi }(r, p_r, \ell )=|Q'(e_Q)|\,p_r\tilde{\Psi }(r)\) for some \(\tilde{\Psi }\in L^2_r\), then

$$\begin{aligned} {\Vert \psi -\tilde{\psi }\Vert }_{X^0} \le \rho _Q(0)^{1/2}\,{\Vert \Psi -\tilde{\Psi }\Vert }_{L^2_r}. \end{aligned}$$
(4.23)

Proof

First, note that \(\psi \) is odd in v and has its support in K. Furthermore, due to Remark B.2(a), Lemma 2.5 and (A.32),

$$\begin{aligned} {\Vert \psi \Vert }^2_{X^0}= & {} {\Vert \psi \Vert }^2_{L^2_{\mathrm{sph},\,\frac{1}{|Q'|}}(K)} \\= & {} \iint \limits _K\frac{1}{|Q'(e_Q)|}\,|\psi (x, v)|^2\,dx\,dv \\= & {} \iint \limits _K |Q'(e_Q)|\,p_r^2\,|\Psi (r)|^2\,dx\,dv \\= & {} \int _{|x|<r_Q} dx\,|\Psi (r)|^2\int _{\mathbb R^3} dv\,|Q'(e_Q)|\,p_r^2 \\= & {} \int _{|x|<r_Q} dx\,|\Psi (r)|^2\,\rho _Q(r) \\\le & {} \rho _Q(0)\,\int _{|x|<r_Q} dx\,|\Psi (r)|^2 \le \rho _Q(0)\,{\Vert \Psi \Vert }^2_{L^2_r}. \end{aligned}$$

Thus, \(\psi \in X^0_{\mathrm{odd}}\subset X^0_0\), and accordingly Corollary B.14 yields

$$\begin{aligned}&{ \mathcal{K}\mathcal{T}(-\mathcal{T}^2-z)^{-1}\psi } \\= & {} |Q'(e_Q)|\,p_r\,\frac{16\pi ^2 i}{r^2}\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{[r_-(e,\,\ell ),\,r_+(e,\,\ell )]}(r) \,\frac{\sin (k\theta (r, e, \ell ))}{k^2\omega _1^2(e, \ell )-z}\,\psi _k(I, \ell ). \end{aligned}$$

On the other hand,

$$\begin{aligned} \psi _k(I, \ell ) = -\frac{i}{\pi }\,|Q'(e)|\,\omega _1(e, \ell ) \int _{r_-(e, \ell )}^{r_+(e, \ell )} d\tilde{r}\,\Psi (\tilde{r})\sin (k\theta (\tilde{r}, e, \ell )) \end{aligned}$$
(4.24)

by Lemma B.5. Therefore, we arrive at

$$\begin{aligned} {\mathcal{K}\mathcal{T}(-\mathcal{T}^2-z)^{-1}\psi }= & {} |Q'(e_Q)|\,p_r\,\frac{16\pi }{r^2}\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{[r_-(e,\,\ell ),\,r_+(e,\,\ell )]}(r) \\&\times \,\frac{\sin (k\theta (r, e, \ell ))}{k^2\omega _1^2(e, \ell )-z} \,|Q'(e)|\,\omega _1(e, \ell )\\&\qquad \qquad \qquad \int _{r_-(e, \ell )}^{r_+(e, \ell )} d\tilde{r} \,\Psi (\tilde{r})\sin (k\theta (\tilde{r}, e, \ell )) \\= & {} |Q'(e_Q)|\,p_r\,\frac{16\pi }{r^2}\sum _{k\ne 0} \int _0^{r_Q} d\tilde{r}\,\Psi (\tilde{r})\\&\qquad \qquad \qquad \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}}(r) \\&\times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-z} \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )) \\= & {} |Q'(e_Q)|\,p_r (\mathcal{Q}_z\Psi ), \end{aligned}$$

and this completes the proof of (4.21), by the definition of \(\mathcal{Q}_z\). Concerning (4.22), the first part follows from \(\mathcal{K} g=|Q'(e_Q)|\,p_r\,U'_g(r)\), see (B.37), and for the second part, one just has to use Lemma 2.4. Lastly, (4.23) is a direct consequence of (4.20) and the fact that \((\tilde{\psi }-\psi )(r, p_r, \ell ) =|Q'(e_Q)|\,p_r (\tilde{\Psi }-\Psi )(r)\).    \(\square \)

Now, we can make the connection from eigenvalues \(\lambda <\delta _1^2\) of the self-adjoint operator

$$\begin{aligned} L=-\mathcal{T}^2-\mathcal{K}\mathcal{T}: X^2_{\mathrm{odd}}\rightarrow X^0_{\mathrm{odd}}, \end{aligned}$$

cf. (1.16) and Corollary B.19, to eigenvalues 1 of \(Q_\lambda \).

Theorem 4.5

Let \(\lambda <\delta _1^2\). Then \(\lambda \) is an eigenvalue of L if and only if 1 is an eigenvalue of \(\mathcal{Q}_\lambda \). More precisely,

  1. (a)

    if \(u\in X^2_{\mathrm{odd}}\) is an eigenfunction of L for the eigenvalue \(\lambda \), then \(\Psi =U'_{\mathcal{T}u}\in L^2_r\) for \(r\in [0, r_Q]\) is an eigenfunction of \(\mathcal{Q}_\lambda \) for the eigenvalue 1;

  2. (b)

    if \(\Psi \in L^2_r\) is an eigenfunction of \(\mathcal{Q}_\lambda \) for the eigenvalue 1, then \(u=(-\mathcal{T}^2-\lambda )^{-1}(|Q'(e_Q)|\,p_r\Psi )\in X^2_{\mathrm{odd}}\) is an eigenfunction of L for the eigenvalue \(\lambda \).

Proof

First, suppose that \(Lu=\lambda u\) for some \(u\in X^2_{\mathrm{odd}}\) and \(u\ne 0\). Then \((-\mathcal{T}^2-\lambda )u=\mathcal{K}\mathcal{T}u\). Defining \(\psi =(-\mathcal{T}^2-\lambda )u\in X^0_{\mathrm{odd}}\), Remark B.18(a) implies that \(\psi =\mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi \). Since \(\mathcal{K} g=|Q'(e_Q)|\,p_r\,U'_g(r)\) by (B.37), we can put

$$\begin{aligned} \Psi (r)=U'_{\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi }(r)=U'_{\mathcal{T}u}(r) \end{aligned}$$

for \(r\in [0, r_Q]\) to obtain \(\psi =|Q'(e_Q)|\,p_r\Psi (r)\). Then \(\Psi \ne 0\), as otherwise \(\psi =0\) and \(u=0\). Next, we are going to verify that \(\Psi \in L^2_r\). Using (B.40) from Lemma B.15 and Lemma B.8(c), we get

$$\begin{aligned} {\Vert \Psi \Vert }^2_{L^2_r}= & {} \int _{\mathbb R^3} |U'_{\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi }(r)|^2\,dx \\= & {} 4\pi {\Big (\mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi , (-\mathcal{T}^2-\lambda )^{-1}\psi \Big )}_{X^0} \\= & {} 4\pi {(\psi , (-\mathcal{T}^2-\lambda )^{-1}\psi )}_{X^0} \\= & {} 4\pi {((-\mathcal{T}^2-\lambda )u, u)}_{X^0} \\= & {} 4\pi ({\Vert \mathcal{T}u\Vert }^2_{X^0}-\lambda \,{\Vert u\Vert }^2_{X^0}). \end{aligned}$$

In particular, Lemma B.8(a) implies \({\Vert \Psi \Vert }^2_{L^2_r}\le 4\pi {\Vert \mathcal{T}u\Vert }^2_{X^0} \le 4\pi \Delta _1^2\,{\Vert u\Vert }^2_{X^1}<\infty \), so that indeed \(\Psi \in L^2_r\). Thus, we deduce from Lemma 4.4 that

$$ |Q'(e_Q)|\,p_r (\mathcal{Q}_\lambda \Psi )=\mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi =\psi =|Q'(e_Q)|\,p_r\,\Psi , $$

and consequently \(\mathcal{Q}_\lambda \Psi =\Psi \).

Conversely, suppose that \(\mathcal{Q}_\lambda \Psi =\Psi \) is verified for some \(\Psi \in L^2_r\) and \(\Psi \ne 0\). According to Remark 4.2(b), \(\Psi \) has its support in \([0, r_Q]\). Defining \(\psi =|Q'(e_Q)\) \(|\,p_r\Psi (r)\), we obtain \(\psi \in X^0_{\mathrm{odd}}\) from Lemma 4.4. As a consequence, \(u=(-\mathcal{T}^2-\lambda )^{-1}\psi \in X^2_{\mathrm{odd}}\). Also \(u\ne 0\), since otherwise \(\psi =0\) and \(\Psi =0\). From Lemma 4.4, we finally get

$$\begin{aligned} (-\mathcal{T}^2-\lambda )u= & {} \psi =|Q'(e_Q)|\,p_r\,\Psi =|Q'(e_Q)|\,p_r (\mathcal{Q}_\lambda \Psi )\\= & {} \mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi =\mathcal{K}\mathcal{T}u, \end{aligned}$$

so that \(Lu=-\mathcal{T}^2 u-\mathcal{K}\mathcal{T}u=\lambda u\).    \(\square \)

Lemma 4.6

The following assertions hold.

  1. (a)

    To \(\Psi \in L^2_r\) we associate the function \(\psi (r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi (r)\). If \(z\in \Omega \), then

    $$\begin{aligned} \langle \mathcal{Q}_z\Psi , \Psi \rangle =64\pi ^4\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \,\frac{1}{k^2\omega _1^2(e, \ell )-\bar{z}} \,|\psi _k(I, \ell )|^2. \end{aligned}$$
    (4.25)
  2. (b)

    Let \(\Psi \in L^2_r\) be given and suppose that \(F(r)=F(0)+\int _0^r\Psi (s)\,ds\) for \(r\in [0, r_Q]\) as well as \(g=-|Q'(e_Q)|(F-F_0)\), where \(F_0\) is the zero’th Fourier coefficient of F. Then \(\mathcal{Q}_0\Psi =U'_g\) and furthermore

    $$\begin{aligned} \langle \mathcal{Q}_0\Psi , \Psi \rangle =4\pi \iint \limits _K\frac{dx\,dv}{|Q'(e_Q)|}\,|g|^2 =4\pi \iint \limits _K |Q'(e_Q)|\,(F-F_0)^2\,dx\,dv. \end{aligned}$$
    (4.26)
  3. (c)

    Let \(\Psi \in L^2_r\) be given and suppose that \(F(r)=F(0)+\int _0^r\Psi (s)\,ds\) for \(r\in [0, r_Q]\). Define \(u=-\mathcal{T}^{-1}(|Q'(e_Q)|(F-F_0))\). Then \(u\in X^2_{\mathrm{odd}}\) and

    $$\begin{aligned} {(Lu, u)}_{X^0} =\frac{1}{4\pi }\,\Big (\langle \mathcal{Q}_0\Psi , \Psi \rangle -{\Vert \mathcal{Q}_0\Psi \Vert }^2_{L^2_r}\Big ). \end{aligned}$$
    (4.27)

Proof

  1. (a)

    The relation (4.25) follows from Lemma 4.3(d) and (4.24).

  2. (b)

    Owing to Lemma B.9, we have \(g\in X^1_{\mathrm{even}}\) as well as \(\mathcal{T}g=-\psi \) for \(\psi \) as in (a). In addition, \(g_0=0\) by (B.24), so that \(g\in X^1_0\). Thus, Lemma B.13(c) yields \(-\mathcal{T}^{-1}\psi =g-g_0=g\).

Next, recall that \(\psi \) is odd in v and \({\Vert \psi \Vert }_{X^0} \le \rho _Q(0)^{1/2}\,{\Vert \Psi \Vert }_{L^2_r}<\infty \) by (4.20), which means that \(\psi \in X^0_{\mathrm{odd}}\subset X^0_0\). As a consequence, \(\mathcal{T}{(-\mathcal{T}^2)}^{-1}\psi =-\mathcal{T}^{-1}\psi =g\) by Lemma B.13(e). Hence, if we take \(z=0\in \Omega \) in (4.22) of Lemma 4.4, then we get

$$\begin{aligned} \mathcal{Q}_0\Psi =U'_{\mathcal{T}(-\mathcal{T}^2)^{-1}\psi }=U'_g. \end{aligned}$$

To verify (4.26), note first that \(ik\omega _1 g_k=-\psi _k\) for \(k\in \mathbb Z\). Applying (B.4) from Remark B.2(a), we obtain

$$\begin{aligned} \iint \limits _K\frac{dx\,dv}{|Q'(e_Q)|}\,|g|^2= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D dI\,d\ell \,\ell \,\frac{1}{|Q'(e_Q)|}\,|g_k|^2 \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D dI\,d\ell \,\ell \,\frac{1}{|Q'(e_Q)|} \,\frac{1}{k^2\omega _1^2}\,|\psi _k|^2 \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D de\,d\ell \,\ell \,\frac{1}{|Q'(e_Q)|} \,\frac{1}{k^2\omega _1^3}\,|\psi _k|^2, \end{aligned}$$

where we have used that \(\frac{\partial e}{\partial I}=\omega _1\) owing to (A.18). Thus, the claim follow from (a) for \(z=0\). (c) We continue to use the notation and the observations from (b). Since \(g\in X_0^1\), we have \(u=\mathcal{T}^{-1}g\in X_0^2\). As also \(g\in X^1_{\mathrm{even}}\) and \(\mathcal{T}^{-1}\) reverses the parity by Remark B.18, we get \(u\in X^2_{\mathrm{odd}}\). Accordingly, we deduce from (B.44) in Corollary B.19 that

$$\begin{aligned} {(Lu, u)}_{X^0}={\Vert \mathcal{T}u\Vert }^2_{X^0}-{(\mathcal{K}\mathcal{T}u, u)}_{X^0}. \end{aligned}$$

Now \(\mathcal{T}u=\mathcal{T}\mathcal{T}^{-1}g=g\) due to Lemma B.13(d), so that

$$ {\Vert \mathcal{T}u\Vert }^2_{X^0}={\Vert g\Vert }^2_{X^0}={\Vert g\Vert }^2_{L^2_{\mathrm{sph},\,\frac{1}{|Q'|}}(K)} =\frac{1}{4\pi }\,\langle \mathcal{Q}_0\Psi , \Psi \rangle $$

by Remark B.2(a) and (4.26). Furthermore, using (B.40) from Lemma B.15 in conjunction with (b), it follows that

$$\begin{aligned} {(\mathcal{K}\mathcal{T}u, u)}_{X^0}= & {} \frac{1}{4\pi }\int _{\mathbb R^3} |U'_{\mathcal{T}u}|^2\,dx =\frac{1}{4\pi }\int _{\mathbb R^3} |U'_g|^2\,dx\\= & {} \frac{1}{4\pi }\int _{\mathbb R^3} |\mathcal{Q}_0\Psi |^2\,dx =\frac{1}{4\pi }\,{\Vert \mathcal{Q}_0\Psi \Vert }^2_{L^2_r}, \end{aligned}$$

Altogether, this yields (4.27).    \(\square \)

Lemma 4.7

Let \(\mu _1:\,]-\infty , \delta _1^2[\,\rightarrow \,]0, \infty [\) be defined as in Lemma 4.3(f). Then

  1. (a)

    \(0<\mu _1(0)<1\).

  2. (b)

    If \(\lambda _*<\delta _1^2\) and \(\lambda \in [0, \lambda _*]\), or \(\lambda _*=\delta _1^2\) and \(\lambda \in [0, \lambda _*[=[0, \delta _1^2[\), then \(\mu _1(\lambda )\le 1\).

  3. (c)

    For \(\lambda \in [0, \delta _1^2[\), let \(\Psi _\lambda \in L^2_r\) denote a normalized eigenfunction of \(\mathcal{Q}_\lambda \) for \(\mu _1(\lambda )\). Define \(\psi _\lambda (r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _\lambda (r)\in X^0_{\mathrm{odd}}\) and \(g_\lambda =(-\mathcal{T}^2-\lambda )^{-1}\psi _\lambda \in X^2_{\mathrm{odd}}\). Then

    $$\begin{aligned} \mu _1(\lambda )=4\pi \,{(\psi _\lambda , g_\lambda )}_{X^0} \end{aligned}$$

    and

    $$\begin{aligned} Lg_\lambda =(1-\mu _1(\lambda ))\psi _\lambda +\lambda g_\lambda , \end{aligned}$$

    as well as

    $$ {(Lg_\lambda , g_\lambda )}_Q =\frac{1}{4\pi }\,\mu _1(\lambda )(1-\mu _1(\lambda )) +\lambda {\Vert g_\lambda \Vert }^2_{X^0}. $$
  4. (d)

    The function \(\mu _1:\,]-\infty , \delta _1^2[\,\rightarrow \,]0, \infty [\) is convex.

  5. (e)

    We have

    $$\begin{aligned} \mu _1(\lambda )\le & {} 16\pi \bigg (\int _0^{r_Q}\int _0^{r_Q} \frac{dr}{r^2}\,\frac{d\tilde{r}}{\tilde{r}^2} \bigg |\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \\&\qquad \qquad \qquad \quad \times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\lambda } \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell ))\,\bigg |^2\bigg )^{1/2}. \end{aligned}$$

Proof

(a) Clearly \(\mu _1(0)>0\), since otherwise \(\Vert \mathcal{Q}_0\Vert =0\), and thus \(\mathcal{Q}_0=0\). To show that \(\mu _1(0)<1\), let \(\Psi \in L^2_r\) be given. Define \(F(r)=\int _0^r\Psi (s)\,ds\) as well as \(u=-\mathcal{T}^{-1}(|Q'(e_Q)|(F-F_0))\). Then \(u\in X^2_{\mathrm{odd}}\) and

$$\begin{aligned} 0\le \lambda _*{\Vert u\Vert }^2_{X^0}\le {(Lu, u)}_{X^0} =\frac{1}{4\pi }\,\Big (\langle \mathcal{Q}_0\Psi , \Psi \rangle -{\Vert \mathcal{Q}_0\Psi \Vert }^2_{L^2_r}\Big ) \end{aligned}$$
(4.28)

by (1.20) and (4.27) from Lemma 4.6. As a consequence,

$$ {\Vert \mathcal{Q}_0\Psi \Vert }^2_{L^2_r}\le \langle \mathcal{Q}_0\Psi , \Psi \rangle \le {\Vert \mathcal{Q}_0\Psi \Vert }_{L^2_r} {\Vert \Psi \Vert }_{L^2_r} $$

implies that \(\mu _1(0)=\Vert \mathcal{Q}_0\Vert \le 1\). Lastly, suppose that \(\mu _1(0)=1\). Since \(\mu _1(0)\) is an eigenvalue, we have \(\mathcal{Q}_0\Psi =\Psi \) for some \(\Psi =\Psi (r)\ne 0\) such that \(\Psi \in L^2_r\); Remark 4.2(b) implies that \(\Psi \) has its support in \([0, r_Q]\). For the corresponding u, we deduce \(u=0\) from (4.28). Therefore, (B.24), Lemma B.13(d) and Lemma B.9(b) lead to

$$\begin{aligned} 0= & {} \mathcal{T}^2 u=-\mathcal{T}^2 \mathcal{T}^{-1}(|Q'(e_Q)|(F-F_0))\\= & {} -\mathcal{T}(|Q'(e_Q)|(F-F_0))=-|Q'(e)|\,p_r\,\Psi , \end{aligned}$$

which is impossible. (b) Recall from Lemma 3.18 that \(\lambda _*\le \delta _1^2\). Thus, if we fix \(\lambda \) in one of the two cases: (i) \(\lambda _*<\delta _1^2\) and \(\lambda \in [0, \lambda _*]\); or (ii) \(\lambda _*=\delta _1^2\) and \(\lambda \in [0, \lambda _*[=[0, \delta _1^2[\), then \(\lambda \in [0, \delta _1^2[\). Let \(\Psi _\lambda \in L^2_r\) denote a normalized eigenfunction for \(\mu _1(\lambda )\), i.e., we have \(\mathcal{Q}_\lambda \Psi _\lambda =\mu _1(\lambda )\Psi _\lambda \) and \({\Vert \Psi _\lambda \Vert }_{L^2_r}=1\). For \(\psi _\lambda (r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _\lambda (r)\), we get \(\psi _\lambda \in X^0_{\mathrm{odd}}\), cf. the proof of Lemma 4.6(a). Thus, \(g_\lambda =(-\mathcal{T}^2-\lambda )^{-1}\psi _\lambda \in X^2_{\mathrm{odd}}\). Using (4.21) from Lemma 4.4, we calculate

$$\begin{aligned} \mathcal{K}\mathcal{T}g_\lambda= & {} \mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda )^{-1}\psi _\lambda =|Q'(e_Q)|\,p_r (\mathcal{Q}_\lambda \Psi _\lambda )\\= & {} \mu _1(\lambda )\,|Q'(e_Q)|\,p_r \Psi _\lambda =\mu _1(\lambda )\psi _\lambda . \end{aligned}$$

In addition,

$$ \mathcal{T}^2 g_\lambda =(\mathcal{T}^2+\lambda ) g_\lambda -\lambda g_\lambda =-\psi _\lambda -\lambda g_\lambda . $$

This yields

$$\begin{aligned} Lg_\lambda =-\mathcal{T}^2 g_\lambda -\mathcal{K}\mathcal{T}g_\lambda =(1-\mu _1(\lambda ))\psi _\lambda +\lambda g_\lambda \end{aligned}$$
(4.29)

hence in particular

$$\begin{aligned} {(Lg_\lambda , g_\lambda )}_Q ={(Lg_\lambda , g_\lambda )}_{X^0} =(1-\mu _1(\lambda ))\,{(\psi _\lambda , g_\lambda )}_{X^0}+\lambda {\Vert g_\lambda \Vert }^2_{X^0}. \end{aligned}$$
(4.30)

Thus, by the Antonov stability estimate, Theorem 1.2,

$$ \lambda _*{\Vert g_\lambda \Vert }^2_{X^0} \le (1-\mu _1(\lambda ))\,{(\psi _\lambda , g_\lambda )}_{X^0}+\lambda {\Vert g_\lambda \Vert }^2_{X^0}, $$

so that

$$\begin{aligned} 0\le (\lambda _*-\lambda ) {\Vert g_\lambda \Vert }^2_{X^0} \le (1-\mu _1(\lambda ))\,{(\psi _\lambda , g_\lambda )}_{X^0}. \end{aligned}$$
(4.31)

Now, (B.26) in Corollary B.10 yields

$$\begin{aligned} {(\psi _\lambda , g_\lambda )}_{X^0}= & {} {(\psi _\lambda , (-\mathcal{T}^2-\lambda )^{-1}\psi _\lambda )}_{X^0} ={((-\mathcal{T}^2-\lambda )^{-1}\psi _\lambda , \psi _\lambda )}_{X^0} \nonumber \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D dI\,d\ell \,\ell \,\frac{1}{|Q'(e)|}\, \frac{|{(\psi _\lambda )}_k(I, \ell )|^2}{k^2\omega _1^2(I, \ell )-\lambda }, \end{aligned}$$
(4.32)

and in particular \({(\psi _\lambda , g_\lambda )}_{X^0}>0\), as otherwise \(\psi _\lambda =0\) and consequently \(\Psi _\lambda =0\), which is impossible. Hence, (4.31) shows that \(\mu _1(\lambda )\le 1\).

(c) Note that due to Lemma 4.6(a),

$$\begin{aligned} \mu _1(\lambda )= & {} \mu _1(\lambda ) {\Vert \Psi _\lambda \Vert }^2_{L^2_r} =\langle \mu _1(\lambda )\Psi _\lambda , \Psi _\lambda \rangle =\langle \mathcal{Q}_\lambda \Psi _\lambda , \Psi _\lambda \rangle \\= & {} 64\pi ^4\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \,\frac{|{(\psi _\lambda )}_k(I, \ell )|^2}{k^2\omega _1^2(e, \ell )-\lambda } \\= & {} 64\pi ^4\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,dI\,\frac{1}{|Q'(e)|} \,\frac{|{(\psi _\lambda )}_k(I, \ell )|^2}{k^2\omega _1^2(e, \ell )-\lambda }, \end{aligned}$$

and therefore the first claim follows by comparing to (4.32). The other relations are due to (4.29) and (4.30). (d) If \(\lambda \in ]-\infty , \delta _1^2[\) and \(\Psi \in L^2_r\), then

$$\begin{aligned} \frac{d^2}{d\lambda ^2}\,\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle= & {} \langle \mathcal{Q}''_\lambda \Psi , \Psi \rangle \\= & {} 128\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-\lambda )^3} \\&\qquad \qquad \qquad \qquad \times \,\bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi (r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \\\ge & {} 0 \end{aligned}$$

by (4.6) from Lemma 4.3(d). Thus, every function \(]-\infty , \delta _1^2[\,\ni \lambda \mapsto \langle \mathcal{Q}_\lambda \Psi , \Psi \rangle \) is convex. As a consequence of (4.7), also \(\mu _1(\lambda )=\sup \,\{\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle : {\Vert \Psi \Vert }_{L^2_r}\le 1\}\) is convex. (e) Here, we use

$$\begin{aligned} \mu _1(\lambda )={\Vert \mathcal{Q}_\lambda \Vert }_{\mathcal{B}(L^2_r)}\le {\Vert \mathcal{Q}_\lambda \Vert }_{\mathrm{HS}} \end{aligned}$$

and the fact that

$$\begin{aligned} {\Vert \mathcal{Q}_\lambda \Vert }_{\mathrm{HS}}^2= & {} 16\pi ^2\int _0^{r_Q}\int _0^{r_Q} r^2\,\tilde{r}^2\,|K_\lambda (r, \tilde{r})|^2\,dr\,d\tilde{r} \\= & {} 256\pi ^2\int _0^{r_Q}\int _0^{r_Q} \frac{dr}{r^2}\,\frac{d\tilde{r}}{\tilde{r}^2} \bigg |\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \\&\qquad \qquad \qquad \qquad \qquad \times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\lambda } \sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell ))\,\bigg |^2, \end{aligned}$$

cf. [35, Prop. 6.36] and (4.16).    \(\square \)

According to Lemma 4.3(f), the monotone limits

$$ \mu _{*, k}=\lim _{\lambda \rightarrow \delta _1^2-}\mu _k(\lambda ) =\sup \,\{\mu _k(\lambda ): \lambda \in [0, \delta _1^2[\} \in [\mu _k(0), \infty ] $$

do exist. Of particular importance to us will be the number

$$\begin{aligned} \mu _*=\mu _{*, 1}=\lim _{\lambda \rightarrow \delta _1^2-}\mu _1(\lambda ) =\sup \,\{\mu _1(\lambda ): \lambda \in [0, \delta _1^2[\} \in [\mu _1(0), \infty ]. \end{aligned}$$
(4.33)

Remark 4.8

If \(\lambda _*=\delta _1^2\), then \(\mu _*\le 1\). This follows from Lemma 4.7(b). \(\diamondsuit \)

The next result will use assumption (\(\omega _1\)-3). If \(\omega _1\) attains its minimum at an interior point \((\hat{e}, \hat{\beta })\in \mathring{D}\), then we are in the situation of (\(\omega _1\)-2), and Corollary 4.16 below applies. Otherwise, since \(\omega _1\) is continuous on D, its minimum is attained on the boundary \(\partial D\), which consists of three parts: the left side

$$\begin{aligned} \{(e, 0): e\in [U_Q(0), e_0]\}, \end{aligned}$$

the lower boundary curve

$$\begin{aligned} \{(e, \beta ): e=e_{\mathrm{min}}(\beta ), \beta \in [0, \beta _*]\} \end{aligned}$$

and the upper line

$$\begin{aligned} \{(e_0, \beta ): \beta \in [0, \beta _*]\}. \end{aligned}$$
(4.34)

Corollary 3.16 shows that the minimum can only be attained on this upper line (4.34) at a point \((e_0, \hat{\beta })\), and (\(\omega _1\)-3) roughly concerns the case where both \(\frac{\partial \omega _1}{\partial e}(e_0, \hat{\beta })\ne 0\) and \(\frac{\partial \omega _1}{\partial \beta }(e_0, \hat{\beta })\ne 0\), which is reasonable to expect for a minimum on the boundary.

Lemma 4.9

Suppose that (\(\omega _1\)-3) is satisfied. Then

$$\begin{aligned} \mathcal{Q}_{\delta _1^2}=\lim _{\lambda \rightarrow \delta _1^2-} \mathcal{Q}_\lambda \end{aligned}$$
(4.35)

does exist in the Hilbert-Schmidt norm \({\Vert \cdot \Vert }_{\mathrm{HS}}\) of \(L^2_r\). In particular, the kernel of the symmetric and positive Hilbert-Schmidt operator \(\mathcal{Q}_{\delta _1^2}\) is given by

$$\begin{aligned} {K_{\delta _1^2}(r, \tilde{r})}= & {} \frac{4}{r^2\tilde{r}^2}\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \\&\qquad \qquad \qquad \qquad \times \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-\delta _1^2} \,\sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell )), \end{aligned}$$

and \(\mu _*=\Vert \mathcal{Q}_{\delta _1^2}\Vert <\infty \). More generally, the k’th eigenvalue of \(\mathcal{Q}_{\delta _1^2}\) is \(\mu _{*, k}\). For \(k\in \mathbb N\), the functions

$$\begin{aligned} \mu _k(\cdot ):\,\,]-\infty , \delta _1^2]\,\rightarrow \,]0, \infty [ \end{aligned}$$

are monotone increasing, locally Lipschitz continuous on \(]-\infty , \delta _1^2[\) and continuous on \(]-\infty , \delta _1^2]\), if we set \(\mu _k(\delta _1^2)=\mu _{*, k}\). In particular, the \(\mu _k\) are differentiable a.e. Furthermore, \(\mu _1:\,\,]-\infty , \delta _1^2]\,\rightarrow \,]0, \infty [\) is a convex function.

Proof

We need to refine (4.17), from where we know that

$$\begin{aligned} {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }^2_{\mathrm{HS}}\le & {} 256\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg (\sum _{k=1}^\infty \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\tilde{r}\}} \,|Q'(e)| \\& \times \,\bigg |\frac{1}{k^2\omega _1^2(e, \beta )-\lambda } -\frac{1}{k^2\omega _1^2(e, \beta )-\tilde{\lambda }}\bigg |\bigg )^2 \end{aligned}$$

for \(\lambda , \tilde{\lambda }<\delta _1^2\) and a suitable constant \(\hat{C}>0\). Thus

$$\begin{aligned}&{{\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\tilde{\lambda }}\Vert }^2_{\mathrm{HS}}} \nonumber \\\le & {} 512\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg (\sum _{k=2}^\infty \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,|Q'(e)| \nonumber \\& \times \,\frac{|\lambda -\tilde{\lambda }|}{(k^2\omega _1^2(e, \beta )-\lambda )(k^2\omega _1^2(e, \beta )-\tilde{\lambda })} \bigg )^2 \nonumber \\&+\,512\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg ( \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,|Q'(e)| \nonumber \\& \times \,\Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\tilde{\lambda }}\Big |\bigg )^2 \nonumber \\\le & {} 8192\,\pi ^2\Delta _1^2\,\delta _1^{-8}\,|\lambda -\tilde{\lambda }|^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg (\sum _{k=2}^\infty \,\frac{1}{k^4} \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}}\,|Q'(e)|\bigg )^2 \nonumber \\&+\,1024\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg ( \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,|Q'(e)| \nonumber \\& \times \,\Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |\bigg )^2 \nonumber \\&+\,1024\,\pi ^2\Delta _1^2 \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg ( \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,|Q'(e)| \nonumber \\& \times \,\Big |\frac{1}{\omega _1^2(e, \beta )-\tilde{\lambda }} -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |\bigg )^2 \nonumber \\\le & {} C|\lambda -\tilde{\lambda }|^2 \int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\, \bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg )^2 +CT(\lambda )+CT(\tilde{\lambda }) \nonumber \\\le & {} C|\lambda -\tilde{\lambda }|^2+CT(\lambda )+CT(\tilde{\lambda }), \end{aligned}$$
(4.36)

where

$$ T(\lambda )=\int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg (\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,\Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |\bigg )^2. $$

We assert that

$$\begin{aligned} \lim _{\lambda \rightarrow \delta _1^2-} T(\lambda )=0, \end{aligned}$$
(4.37)

and to establish this claim, we are going to use Lebesgue’s dominated convergence in \(\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\) together with the condition

$$\begin{aligned} |\omega _1(e, \beta )-\delta _1|\ge c_1 |(e, \beta )-(e_0, \hat{\beta })|, \quad (e, \beta )\in D, \end{aligned}$$
(4.38)

from (\(\omega _1\)-3), where \((e_0, \hat{\beta })\in D\) satisfies \(\omega _1(e_0, \hat{\beta })=\delta _1\). Let \(r, \bar{r}>0\) be fixed and define

$$ \tau (r, \bar{r})=\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,\Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |. $$

If \((e, \beta )\in D\) are such that \(\beta \le \hat{C}r\bar{r}\) and \((e, \beta )\ne (\hat{e}, \hat{\beta })\), then \(\omega _1(e, \beta )-\delta _1\ge \alpha >0\) for \(\alpha =\alpha (e, \beta )\) by (4.38), and accordingly

$$\begin{aligned} \Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |= & {} \frac{\delta _1^2-\lambda }{(\omega _1^2(e, \beta )-\lambda )(\omega _1^2(e, \beta )-\delta _1^2)} \nonumber \\\le & {} \delta _1^{-2}\alpha ^{-2}(\delta _1^2-\lambda )\rightarrow 0, \quad \lambda \rightarrow \delta _1^2-,\nonumber \\ \end{aligned}$$
(4.39)

for this \((e, \beta )\). On the other hand,

$$\begin{aligned} \Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |\le & {} 2\delta _1^{-1}\frac{1}{\omega _1(e, \beta )-\delta _1} \nonumber \\\le & {} 2\delta _1^{-1} c_1^{-1}\frac{1}{|(e, \beta )-(e_0, \hat{\beta })|} \end{aligned}$$
(4.40)

by (4.38). Next, we are going to bound

$$\begin{aligned} I(R)=\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le R\}} \frac{1}{|(e, \beta )-(e_0, \hat{\beta })|},\quad R>0. \end{aligned}$$
(4.41)

Case 1: \(\hat{\beta }>0\). If \(\beta \le R\le \hat{\beta }/2\), then \(|(e, \beta )-(e_0, \hat{\beta })|\ge |\beta -\hat{\beta }|\ge \hat{\beta }/2\) and hence

$$\begin{aligned} I(R)\le 2\hat{\beta }^{-1}(e_0-U_Q(0))\,R, \quad R\le \hat{\beta }/2. \end{aligned}$$
(4.42)

If \(R\ge \hat{\beta }/2\), then we always have

$$\begin{aligned} I(R)\le & {} \int _0^{\beta _*} d\beta \int _{U_Q(0)}^{e_0} de \,\frac{1}{|(e-e_0, \beta -\hat{\beta })|} \le \int _{-\hat{\beta }}^{\beta _*-\hat{\beta }} dx_2\int _0^{e_0-U_Q(0)} dx_1 \,\frac{1}{|(x_1, x_2)|} \nonumber \\\le & {} \int _{-\beta _*}^{\beta _*} dx_2\int _0^{e_0-U_Q(0)} dx_1 \,\frac{1}{|(x_1, x_2)|}\le C. \end{aligned}$$
(4.43)

Case 2: \(\hat{\beta }=0\). Then

$$\begin{aligned} I(R)\le & {} \int _0^R d\beta \int _{U_Q(0)}^{e_0} de\, \frac{1}{|(e-e_0, \beta )|} \le \int _0^R dx_2\int _0^{e_0-U_Q(0)} dx_1\, \frac{1}{|(x_1, x_2)|} \nonumber \\= & {} \int _0^R dx_2\ln \Big (x_1+\sqrt{x_1^2+x_2^2}\Big )\Big |_{x_1=0}^{x_1=e_0-U_Q(0)} \nonumber \\= & {} \int _0^R dx_2\,\Big [\ln \Big (e_0-U_Q(0)+\sqrt{(e_0-U_Q(0))^2+x_2^2}\Big ) -\ln x_2\Big ] \nonumber \\\le & {} CR-R(\ln R-1)\le CR-R\ln R. \end{aligned}$$
(4.44)

Thus, if we summarize (4.39) and (4.42)–(4.44) for \(R=\hat{C}r\bar{r}\), it follows that \(\tau (r, \bar{r})\rightarrow 0\) as \(\lambda \rightarrow \delta _1^2-\) for all \(r, \bar{r}>0\). Hence, to complete the proof of (4.37), we need to obtain an integrable majorant. For, using (4.40), we can bound

$$\begin{aligned} \mathcal{I}(\lambda )= & {} \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \bigg (\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le \hat{C}r\bar{r}\}} \,\Big |\frac{1}{\omega _1^2(e, \beta )-\lambda } -\frac{1}{\omega _1^2(e, \beta )-\delta _1^2}\Big |\bigg )^2 \\= & {} \int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, \tau (r, \bar{r})^2 \le C\int _0^{r_Q}\int _0^{r_Q}\frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, I(\hat{C}r\bar{r})^2. \end{aligned}$$

Case 1: \(\hat{\beta }>0\). Let \(\hat{\varepsilon } =\min \{r_Q, \frac{\hat{\beta }}{2\hat{C}r_Q}\}\). If \(r\le \hat{\varepsilon }\) or \(\hat{r}\le \hat{\varepsilon }\), then \(\hat{C}r\bar{r}\le \hat{C}\hat{\varepsilon } r_Q\le \hat{\beta }/2\), and thus we can apply (4.42) in this case, as well as (4.43) in the opposite case. Therefore, we split the integral to obtain

$$\begin{aligned} \mathcal{I}(\lambda )\le & {} C\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\,\mathbf{1}_{\{r\le \hat{\varepsilon } \,\,\text{ or }\,\,\hat{r}\le \hat{\varepsilon }\}} \frac{1}{r^2\bar{r}^2}\,I(\hat{C}r\bar{r})^2 \\&+\,C\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\,\mathbf{1}_{\{r>\hat{\varepsilon } \,\,\text{ and }\,\,\hat{r}>\hat{\varepsilon }\}} \frac{1}{r^2\bar{r}^2}\,I(\hat{C}r\bar{r})^2 \\\le & {} C\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\,\mathbf{1}_{\{r\le \hat{\varepsilon } \,\,\text{ or }\,\,\hat{r}\le \hat{\varepsilon }\}} \frac{1}{r^2\bar{r}^2}\,r^2\bar{r}^2 \\&+\,C\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}\,\mathbf{1}_{\{r>\hat{\varepsilon } \,\,\text{ and }\,\,\hat{r}>\hat{\varepsilon }\}} \frac{1}{r^2\bar{r}^2} \\\le & {} C\int _0^{r_Q}\int _0^{r_Q} dr\,d\bar{r}, \end{aligned}$$

which shows that a suitably large constant provides an integrable majorant. Case 2: \(\hat{\beta }=0\). By (4.44), we get

$$\begin{aligned} \mathcal{I}(\lambda )\le & {} C\int _0^{r_Q}\int _0^{r_Q} \frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, I(\hat{C}r\bar{r})^2 \\\le & {} C\int _0^{r_Q}\int _0^{r_Q} \frac{dr}{r^2}\,\frac{d\bar{r}}{\bar{r}^2}\, (C\hat{C}r\bar{r}-\hat{C}r\bar{r}\ln (\hat{C}r\bar{r}))^2 \\\le & {} C\int _0^{r_Q}\int _0^{r_Q} (1-\ln (\hat{C}r\bar{r}))^2\,dr\,d\bar{r} \\\le & {} C\int _0^{r_Q}\int _0^{r_Q} (1+|\ln r|^2+|\ln \bar{r}|^2)\,dr\,d\bar{r}. \end{aligned}$$

Since \(1+|\ln r|^2+|\ln \bar{r}|^2\) is integrable on \([0, r_Q]\times [0, r_Q]\), we have found an integrable majorant also in this case. Altogether, we have shown that (4.37) is verified. At the same time, this yields \(\lim _{\tilde{\lambda }\rightarrow \delta _1^2-} T(\tilde{\lambda })=0\), and going back to (4.36), we deduce that (4.35) holds for an appropriate Hilbert-Schmidt operator \(\mathcal{Q}_{\delta _1^2}\) on \(L^2_r\). Since \({\Vert \cdot \Vert }_{\mathcal{B}(L^2_r)}\le {\Vert \cdot \Vert }_{\mathrm{HS}}\), (4.35) in particular implies that \(\mathcal{Q}_{\delta _1^2}=\lim _{\lambda \rightarrow \delta _1^2-} \mathcal{Q}_\lambda \) in \(\mathcal{B}(L^2_r)\). Recalling from (4.7) that \(\mu _1(\lambda )={\Vert \mathcal{Q}_\lambda \Vert }_{\mathcal{B}(L^2_r)}\), we can use (4.33) to get

$$ \mu _*=\lim _{\lambda \rightarrow \delta _1^2-}\mu _1(\lambda ) =\lim _{\lambda \rightarrow \delta _1^2-} {\Vert \mathcal{Q}_\lambda \Vert }_{\mathcal{B}(L^2_r)} ={\Vert \mathcal{Q}_{\delta _1^2}\Vert }_{\mathcal{B}(L^2_r)}, $$

as claimed.

Let \(\kappa _1\ge \kappa _2\ge \ldots \rightarrow 0\) denote the eigenvalues (listed according to their multiplicities) of the symmetric and positive Hilbert-Schmidt operator \(\mathcal{Q}_{\delta _1^2}\). Then

$$ \kappa _k=\max \Big \{\min _{\Psi \in S,\,{\Vert \Psi \Vert }_{L^2_r}=1} \langle \mathcal{Q}_{\delta _1^2}\Psi , \Psi \rangle : S\subset L^2_r \,\,\text{ is } \text{ a } \text{ subspace } \text{ of } \text{ dimension }\,\,k\Big \} $$

by the Courant max-min principle. Passing to the limit \(\lim _{\tilde{\lambda }\rightarrow \delta _1^2-}\) in (4.36), we derive

$$ {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\delta _1^2}\Vert }_{\mathrm{HS}} \le C|\lambda -\delta _1^2|+CT(\lambda )^{1/2}, $$

where \(\lim _{\lambda \rightarrow \delta _1^2-} T(\lambda )=0\). Thus, if \(\Psi \in L^2_r\) is such that \({\Vert \Psi \Vert }_{L^2_r}=1\), then we have

$$ |\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle -\langle \mathcal{Q}_{\delta _1^2}\Psi , \Psi \rangle | \le {\Vert \mathcal{Q}_\lambda -\mathcal{Q}_{\delta _1^2}\Vert }_{\mathrm{HS}} \le C|\lambda -\delta _1^2|+CT(\lambda )^{1/2}. $$

Since the \(\mu _k(\lambda )\) are also characterized by the Courant max-min principle, see (4.18), it follows that

$$ |\mu _k(\lambda )-\kappa _k| \le C|\lambda -\delta _1^2|+CT(\lambda )^{1/2}, $$

and accordingly \(\mu _{*, k}=\lim _{\lambda \rightarrow \delta _1^2-}\mu _k(\lambda )=\kappa _k\).

The next assertion is due to the definition of \(\mu _{*, k}\) and Lemma 4.3(f), whereas the convexity of \(\mu _1\) on \(]-\infty , \delta _1^2]\) is a consequence of Lemma 4.7(d).    \(\square \)

Corollary 4.10

Suppose that (\(\omega _1\)-3) is satisfied.

(a) There is a constant \(C>0\) such that for every \(\lambda \in [0, \delta _1^2]\) and \(r, \tilde{r}\in ]0, r_Q]\), we have

$$ |K_\lambda (r, \tilde{r})| \le \frac{C}{\tilde{r}^2}\,(1+|\ln r|). $$

(b) For \(\lambda \in [0, \delta _1^2[\), let \(\Psi _\lambda \in L^2_r\) denote a normalized eigenfunction of \(\mathcal{Q}_\lambda \) for \(\mu _1(\lambda )\). Then there is a constant \(C>0\) such that for every \(\lambda \in [0, \delta _1^2[\) and \(r\in ]0, r_Q]\), we have

$$\begin{aligned} |\Psi _\lambda (r)|\le C(1+|\ln r|)\,{\Vert \Psi _\lambda \Vert }_{L^2_r}. \end{aligned}$$

(c) For \(\Psi _\lambda \) as in (b), define \(\psi _\lambda (r, p_r, \ell ) =|Q'(e_Q)|\,p_r\Psi _\lambda (r)\in X^0_{\mathrm{odd}}\). Then there is a constant \(C>0\) such that for every \(\lambda \in [0, \delta _1^2[\) and \(k\in \mathbb Z\), we have

$$ |{(\psi _\lambda )}_k(I, \ell )|\le C\,|Q'(e)|\,{\Vert \Psi _\lambda \Vert }_{L^2_r}, \quad (I, \ell )\in D, $$

where \({(\psi _\lambda )}_k\) are the Fourier coefficients of \(\psi _\lambda \).

Proof

(a) From (4.14) and similar to the argument following (4.9), we obtain with \(\min \{r^2, \tilde{r}^2\}\le r^2\) and using (\(\omega _1\)-3)

$$\begin{aligned} |K_\lambda (r, \tilde{r})|= & {} \frac{4}{r^2\tilde{r}^2}\bigg |\sum _{k\ne 0} s_{k, 0}(r, \tilde{r}, \lambda )\bigg | \\\le & {} \frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \sum _{k\ne 0}\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le Cr^2\}} \,\frac{1}{k^2\omega _1^2(e, \beta )-\lambda } \\\le & {} \frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \sum _{|k|\ge 2}\iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le Cr^2\}} \,\frac{2}{\delta _1^2 k^2} \\&+\,\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le Cr^2\}} \,\frac{1}{\omega _1^2(e, \beta )-\lambda } \\\le & {} \frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\,r^2 +\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le Cr^2\}} \,\frac{1}{\omega _1^2(e, \beta )-\delta _1^2} \\\le & {} \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} +\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} \iint \limits _D d\beta \,de\,\mathbf{1}_{\{\beta \le Cr^2\}} \,\frac{1}{|(e, \beta )-(e_0, \hat{\beta })|}. \end{aligned}$$

By means of the function I from (4.41), this can be expressed as

$$ |K_\lambda (r, \tilde{r})|\le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} +\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\,I(\hat{C}r^2) $$

for certain constants \(C, \hat{C}>0\) that only depend on Q. Once again, we distinguish two cases. Case 1: \(\hat{\beta }>0\). If \(r^2\le \frac{\hat{\beta }}{2\hat{C}}\), then we can apply (4.42) to get

$$\begin{aligned} |K_\lambda (r, \tilde{r})|\le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}. \end{aligned}$$

On the other hand, if \(r^2\ge \frac{\hat{\beta }}{2\hat{C}}\), then (4.43) leads to

$$ |K_\lambda (r, \tilde{r})|\le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} +\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{(\frac{\hat{\beta }}{2\hat{C}})^{1/2}\le r\le r_Q,\,0\le \tilde{r}\le r_Q\}} \le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}. $$

Case 2: \(\hat{\beta }=0\). Here, we invoke (4.44) to deduce that

$$ |K_\lambda (r, \tilde{r})|\le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}} +\frac{C}{r^2\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\,|\hat{C}r^2\ln (\hat{C}r^2)| \le \frac{C}{\tilde{r}^2}\,\mathbf{1}_{\{0\le r, \tilde{r}\le r_Q\}}\,(1+|\ln r|). $$

Hence, in any case, we arrive at the bound

$$ |K_\lambda (r, \tilde{r})| \le \frac{C}{\tilde{r}^2}\,(1+|\ln r|), $$

as desired. (b) Using (a), we obtain from (4.15) and Remark 4.2(b)

$$\begin{aligned} \mu _1(0)|\Psi _\lambda (r)|\le & {} \mu _1(\lambda )|\Psi _\lambda (r)|=|(\mathcal{Q}_\lambda \Psi _\lambda )(r)| =4\pi \,\bigg |\int _0^{r_Q}\tilde{r}^2\,K_\lambda (r, \tilde{r})\,\Psi _\lambda (\tilde{r})\,d\tilde{r}\bigg | \\\le & {} C(1+|\ln r|)\int _0^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r}, \end{aligned}$$

so that

$$\begin{aligned} |\Psi _\lambda (r)|\le C_*(1+|\ln r|)\int _0^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \end{aligned}$$
(4.45)

for a certain constant \(C_*>0\) that only depends on Q. Fix \(a_*\in ]0, r_Q[\) such that \(\int _0^{a_*}(1+|\ln r|)\,dr\le \frac{1}{2C_*}\). Then

$$\begin{aligned} \int _0^{a_*} |\Psi _\lambda (r)|\,dr\le & {} C_*\int _0^{a_*}(1+|\ln r|)\,dr\int _0^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \le \frac{1}{2}\int _0^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \\= & {} \frac{1}{2}\int _0^{a_*} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} +\frac{1}{2}\int _{a_*}^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \end{aligned}$$

entails \(\int _0^{a_*} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \le \int _{a_*}^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r}\). Going back to (4.45), it follows by means of Hölder’s inequality that

$$\begin{aligned} |\Psi _\lambda (r)|\le & {} C_*(1+|\ln r|) \bigg [\int _0^{a_*} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} +\int _{a_*}^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r}\bigg ] \le 2C_*(1+|\ln r|)\int _{a_*}^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \\\le & {} \frac{2C_*}{a_*}\,(1+|\ln r|)\int _{a_*}^{r_Q} \tilde{r}|\Psi _\lambda (\tilde{r})|\,d\tilde{r} \le \frac{2C_*r_Q^{1/2}}{\sqrt{4\pi }\,a_*}\,(1+|\ln r|)\,{\Vert \Psi _\lambda \Vert }_{L^2_r}, \end{aligned}$$

from where a suitable \(C>0\) can be read off. (c) Owing to (4.24), Theorem 3.5 and (b), we have

$$\begin{aligned} |{(\psi _\lambda )}_k(I, \ell )|= & {} \frac{1}{\pi }\,|Q'(e)|\,\omega _1(e, \ell ) \bigg |\int _{r_-(e, \ell )}^{r_+(e, \ell )} \Psi _\lambda (\tilde{r})\sin (k\theta (\tilde{r}, e, \ell ))\,d\tilde{r}\bigg | \\\le & {} C\,|Q'(e)|\int _0^{r_Q} |\Psi _\lambda (\tilde{r})|\,d\tilde{r} \\\le & {} C\,|Q'(e)|\bigg (\int _0^{r_Q} (1+|\ln \tilde{r}|)\,d\tilde{r}\bigg ) {\Vert \Psi _\lambda \Vert }_{L^2_r} \le C\,|Q'(e)|\,{\Vert \Psi _\lambda \Vert }_{L^2_r}, \end{aligned}$$

which completes the proof.    \(\square \)

Corollary 4.11

Suppose that (\(\omega _1\)-3) is satisfied. Let \((\lambda _j)\subset [0, \delta _1^2[\) be such that \(\lim _{j\rightarrow \infty }\lambda _j=\delta _1^2\). For \(j\in \mathbb N\), let \(\Psi _j\in L^2_r\) denote a normalized eigenfunction of \(Q_{\lambda _j}\) for \(\mu _1(\lambda _j)\). Furthermore, define \(\psi _j(r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _j(r)\in X^0_{\mathrm{odd}}\). Then there is a subsequence \(j'\rightarrow \infty \) so that

$$\begin{aligned} \Psi _*=\lim _{j'\rightarrow \infty }\Psi _{j'} \end{aligned}$$

does exist in \(L^2_r\) and

$$\begin{aligned} \psi _*=\lim _{j'\rightarrow \infty }\psi _{j'} \end{aligned}$$

does exist in \(X^0\), where \(\psi _*(r, p_r, \ell ) =|Q'(e_Q)|\,p_r\Psi _*(r)\). In addition, \({\Vert \Psi _*\Vert }_{L^2_r}=1\) and \(\mathcal{Q}_{\delta _1^2}\Psi _*=\mu _*\Psi _*\) as well as \(\mu _*=\Vert \mathcal{Q}_{\delta _1^2}\Vert \).

Proof

Recall from (4.33) and Lemma 4.9 that \(\mu _*\in [\mu _1(0), \infty [\). For \(j, k\in \mathbb N\), we can estimate

$$\begin{aligned} \mu _*{\Vert \Psi _j-\Psi _k\Vert }_{L^2_r}\le & {} (\mu _*-\mu _1(\lambda _j)){\Vert \Psi _j\Vert }_{L^2_r} +{\Vert \mathcal{Q}_{\lambda _j}\Psi _j-\mathcal{Q}_{\lambda _k}\Psi _k\Vert }_{L^2_r} \nonumber \\&+\,(\mu _*-\mu _1(\lambda _k)){\Vert \Psi _k\Vert }_{L^2_r} \nonumber \\\le & {} (\mu _*-\mu _1(\lambda _j))+(\mu _*-\mu _1(\lambda _k)) +\,{\Vert (\mathcal{Q}_{\lambda _j}-\mathcal{Q}_{\delta _1^2})\Psi _j\Vert }_{L^2_r}\nonumber \\&+\,{\Vert \mathcal{Q}_{\delta _1^2}\Psi _j-\mathcal{Q}_{\delta _1^2}\Psi _k\Vert }_{L^2_r} +{\Vert (\mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _k})\Psi _k\Vert }_{L^2_r} \nonumber \\\le & {} (\mu _*-\mu _1(\lambda _j))+(\mu _*-\mu _1(\lambda _k)) +\,{\Vert \mathcal{Q}_{\lambda _j}-\mathcal{Q}_{\delta _1^2}\Vert }_{\mathcal{B}(L^2_r)} \nonumber \\&+\,{\Vert \mathcal{Q}_{\delta _1^2}\Psi _j-\mathcal{Q}_{\delta _1^2}\Psi _k\Vert }_{L^2_r} +{\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _k}\Vert }_{\mathcal{B}(L^2_r)} \nonumber \\\le & {} (\mu _*-\mu _1(\lambda _j))+(\mu _*-\mu _1(\lambda _k)) +{\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _j}\Vert }_{\mathrm{HS}} \nonumber \\&+\, {\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _k}\Vert }_{\mathrm{HS}} +\,{\Vert \mathcal{Q}_{\delta _1^2}\Psi _j-\mathcal{Q}_{\delta _1^2}\Psi _k\Vert }_{L^2_r}. \end{aligned}$$
(4.46)

According to Lemma 4.9, we have \(\lim _{\lambda \rightarrow \delta _1^2-} {\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_\lambda \Vert }_{\mathrm{HS}}=0\) and \(\mathcal{Q}_{\delta _1^2}: L^2_r\rightarrow L^2_r\) is a Hilbert-Schmidt operator, and hence compact. Thus, since \({\Vert \Psi _j\Vert }_{L^2_r}=1\), the set \(\{\mathcal{Q}_{\delta _1^2}\Psi _j: j\in \mathbb N\}\subset L^2_r\) is relatively compact. Therefore, there is a subsequence \(j'\rightarrow \infty \) and a function \(\hat{\Psi }\in L^2_r\) so that \(\lim _{j'\rightarrow \infty } \mathcal{Q}_{\delta _1^2}\Psi _{j'} =\hat{\Psi }\) in \(L^2_r\). From (4.46), we deduce that along the subsequence

$$\begin{aligned} \mu _*{\Vert \Psi _{j'}-\Psi _{k'}\Vert }_{L^2_r}\le & {} (\mu _*-\mu _1(\lambda _{j'}))+(\mu _*-\mu _1(\lambda _{k'})) \\&+\,{\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _{j'}}\Vert }_{\mathrm{HS}} +{\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _{k'}}\Vert }_{\mathrm{HS}} \\&+\,{\Vert \mathcal{Q}_{\delta _1^2}\Psi _{j'} -\mathcal{Q}_{\delta _1^2}\Psi _{k'}\Vert }_{L^2_r} \rightarrow 0,\quad j', k'\rightarrow \infty . \end{aligned}$$

As a consequence, \(\Psi _*=\lim _{j'\rightarrow \infty }\Psi _{j'}\) does exist in \(L^2_r\). Since

$$ {\Vert \psi _{j'}-\psi _{k'}\Vert }_{X^0} \le \rho _Q(0)^{1/2}\,{\Vert \Psi _{j'}-\Psi _{k'}\Vert }_{L^2_r} $$

by (4.23), also \(\psi _*=\lim _{j'\rightarrow \infty }\psi _{j'}\) does exist in \(X^0\), where \(\psi _*(r, p_r, \ell ) =|Q'(e_Q)|\) \(p_r\Psi _*(r)\) a.e. Lastly,

$$\begin{aligned} {\Vert \mathcal{Q}_{\delta _1^2}\Psi _*-\mu _*\Psi _*\Vert }_{L^2_r}\le & {} {\Vert \mathcal{Q}_{\delta _1^2}(\Psi _*-\Psi _{j'})\Vert }_{L^2_r} +{\Vert (\mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _{j'}})\Psi _{j'}\Vert }_{L^2_r} \\&+\,(\mu _*-\mu _1(\lambda _{j'}))\,{\Vert \Psi _{j'}\Vert }_{L^2_r} +\,\mu _*{\Vert \Psi _{j'}-\Psi _*\Vert }_{L^2_r} \\\le & {} 2\mu _*{\Vert \Psi _*-\Psi _{j'}\Vert }_{L^2_r} +{\Vert \mathcal{Q}_{\delta _1^2}-\mathcal{Q}_{\lambda _{j'}}\Vert }_{\mathcal{B}(L^2_r)} \\&+\,(\mu _*-\mu _1(\lambda _{j'}))\rightarrow 0,\quad j'\rightarrow \infty , \end{aligned}$$

implies that \(\mathcal{Q}_{\delta _1^2}\Psi _*=\mu _*\Psi _*\).    \(\square \)

The following criterion is useful for proving that \(\delta _1^2\) is an eigenvalue of L in the case where \(\mu _*=1\).

Lemma 4.12

Suppose that (\(\omega _1\)-3) is satisfied and that \(\mu _*=1\). Let \((\lambda _j)\subset [0, \delta _1^2[\) be such that \(\lim _{j\rightarrow \infty }\lambda _j=\delta _1^2\). For \(j\in \mathbb N\), let \(\Psi _j\in L^2_r\) denote a normalized eigenfunction of \(Q_{\lambda _j}\) for \(\mu _1(\lambda _j)\). Furthermore, define \(\psi _j(r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _j(r)\in X^0_{\mathrm{odd}}\) and \(g_j=(-\mathcal{T}^2-\lambda _j)^{-1}\psi _j\in X^2_{\mathrm{odd}}\). If \((g_j)\subset X^0=L^2_{\mathrm{sph},\,\frac{1}{|Q'|}}(K)\) is bounded, then \(\delta _1^2\) is an eigenvalue of L.

Proof

From (4.21), we deduce

$$\begin{aligned} \mathcal{K}\mathcal{T}g_j= & {} \mathcal{K}\mathcal{T}(-\mathcal{T}^2-\lambda _j)^{-1}\psi _j {=}|Q'(e_Q)|\,p_r (\mathcal{Q}_{\lambda _j}\Psi _j) \nonumber \\= & {} \mu _1(\lambda _j)\,|Q'(e_Q)|\,p_r\Psi _j=\mu _1(\lambda _j)\psi _j. \end{aligned}$$
(4.47)

Since \(-\mathcal{T}^2 g_j=\psi _j+\lambda _j g_j\), using Corollary B.19, this implies that for every odd function \(h\in X^{00}\), we have

$$\begin{aligned} {(g_j, Lh)}_{X^0}= & {} {(Lg_j, h)}_{X^0} ={(-\mathcal{T}^2 g_j, h)}_{X^0}-{(\mathcal{K}\mathcal{T}g_j, h)}_{X^0} \nonumber \\= & {} {(\psi _j+\lambda _j g_j, h)}_{X^0}-\mu _1(\lambda _j){(\psi _j, h)}_{X^0} \nonumber \\= & {} \lambda _j {(g_j, h)}_{X^0} +(1-\mu _1(\lambda _j)){(\psi _j, h)}_{X^0}.\qquad \end{aligned}$$
(4.48)

Next, from (4.20), we get \({\Vert \psi _j\Vert }_{X^0}\le \rho _Q(0)^{1/2}\,{\Vert \Psi _j\Vert }_{L^2_r}\le \rho _Q(0)^{1/2}\). Since \(\lim _{j\rightarrow \infty }\mu _1(\lambda _j)=\mu _*=1\), this yields in particular that

$$\begin{aligned} \lim _{j\rightarrow \infty }\,[(1-\mu _1(\lambda _j)){(\psi _j, h)}_{X^0}]=0. \end{aligned}$$
(4.49)

By assumption, \((g_j)\subset X^0\) is bounded. Hence, passing to a subsequence (that is not relabeled), we may assume that \(g_j\rightharpoonup g_*\) weakly in \(X^0\) as \(j\rightarrow \infty \) for some function \(g_*\in X^0_{\mathrm{odd}}\). Suppose that \(g_*=0\). Then \(g_j\rightharpoonup 0\) weakly in \(X^0\) implies that \(\mathcal{K}\mathcal{T}g_j\rightharpoonup 0\) weakly in \(X^0\) as \(j\rightarrow \infty \), by Lemma B.15(d). Due to (4.47), this yields \(\psi _j\rightharpoonup 0\) weakly in \(X^0\) as \(j\rightarrow \infty \). On the other hand, by Corollary 4.11, we may pass to a subsequence \(j'\rightarrow \infty \) so that \(\Psi _*=\lim _{j'\rightarrow \infty }\Psi _{j'}\) does exist in \(L^2_r\) and \(\psi _*=\lim _{j'\rightarrow \infty }\psi _{j'}\) does exist in \(X^0\) as strong limits; the functions are linked via \(\psi _*(r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _*(r)\). But then we must have \(\psi _*=0\) and accordingly \(\Psi _*=0\), which however contradicts \({\Vert \Psi _*\Vert }_{L^2_r}=1\), cf. Corollary 4.11. As a consequence, it follows that \(g_*\in X^0_{\mathrm{odd}}\) satisfies \(g_*\ne 0\). Passing to the limit \(j\rightarrow \infty \) in (4.48) and using (4.49), we moreover infer that \({(g_*, Lh)}_{X^0} =\delta _1^2 {(g_*, h)}_{X^0}\) for every odd function \(h\in X^{00}\). From Lemma C.11, we conclude that \(g_*\in X^2_{\mathrm{odd}}\) and \(Lg_*=\delta _1^2 g_*\), which completes the proof.    \(\square \)

4.2 Relating \(\mu _*\) to the Fact That \(\lambda _*\) is an Eigenvalue of L

Theorem 4.13

We have

$$\begin{aligned} \mu _*>1\,\,\Longleftrightarrow \,\,\lambda _*<\delta _1^2. \end{aligned}$$

In this case, \(\mu _1(\lambda _*)=1\) and \(\lambda _*\) is an eigenvalue of L.

Proof

If \(\mu _*>1\), then \(\lambda _*=\delta _1^2\) is impossible by Remark 4.8, so that we must have \(\lambda _*<\delta _1^2\). Conversely, suppose that \(\lambda _*<\delta _1^2\) holds. Then, according to Theorem C.8, \(\lambda _*\) is an eigenvalue of L. Let \(u_*\in X^2_{\mathrm{odd}}\) be an eigenfunction of L for the eigenvalue \(\lambda _*\). Using Theorem 4.5(a), it follows that \(\Psi _*=U'_{\mathcal{T}u_*}\in L^2_r\) for \(r\in [0, r_Q]\) is an eigenfunction of \(\mathcal{Q}_{\lambda _*}\) for the eigenvalue 1. Since \(\mu _1(\lambda _*)\) is the largest eigenvalue of \(\mathcal{Q}_{\lambda _*}\), we get \(\mu _1(\lambda _*)\ge 1\). On the other hand, \(\mu _1(\lambda _*)\le 1\) by Lemma 4.7(b), and hence \(\mu _1(\lambda _*)=1\). It remains to show that \(\mu _*>1\). Suppose that on the contrary \(\mu _*\le 1\) is satisfied. For \(\lambda \in [\lambda _*, \delta _1^2[\), the monotonicity of \(\mu _1\) then yields \(1=\mu _1(\lambda _*)\le \mu _1(\lambda )\le \mu _*\le 1\), which means that \(\mu _1(\lambda )=1\) is constant for \(\lambda \in [\lambda _*, \delta _1^2[\). Take \(\lambda _*\le \tilde{\lambda }<\lambda <\delta _1^2\). and let \(\Psi _{\tilde{\lambda }}\) denote a normalized eigenfunction for \(\mu _1(\tilde{\lambda })\). Then, by (4.19) and (4.7),

$$ 1=\mu _1(\tilde{\lambda })=\langle \mathcal{Q}_{\tilde{\lambda }}\Psi _{\tilde{\lambda }}, \Psi _{\tilde{\lambda }}\rangle \le \langle \mathcal{Q}_\lambda \Psi _{\tilde{\lambda }}, \Psi _{\tilde{\lambda }}\rangle \le \Vert \mathcal{Q}_\lambda \Vert \,{\Vert \Psi _{\tilde{\lambda }}\Vert }^2_{L^2_r}=\mu _1(\lambda )=1, $$

which means that \(\langle \mathcal{Q}_\lambda \Psi _{\tilde{\lambda }}, \Psi _{\tilde{\lambda }}\rangle =1\) for all \(\lambda _*\le \tilde{\lambda }<\lambda <\delta _1^2\). Differentiating this relation w.r. to \(\lambda \) at a fixed \(\lambda _0\in ]\tilde{\lambda }, \delta _1^2[\), it follows from (4.6) that

$$\begin{aligned} 0= & {} \langle \mathcal{Q}'_{\lambda _0}\Psi _{\tilde{\lambda }}, \Psi _{\tilde{\lambda }}\rangle \\= & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-\lambda _0)^2} \,\bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi _{\tilde{\lambda }}(r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \end{aligned}$$

for all \(\tilde{\lambda }\in [\lambda _*, \lambda _0[\). Defining \(\psi _{\tilde{\lambda }}(r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _{\tilde{\lambda }}(r)\in X^0_{\mathrm{odd}}\), then (4.24) implies that \({(\psi _{\tilde{\lambda }})}_k=0\) for \(k\in \mathbb Z\), so that \(\psi _{\tilde{\lambda }}=0\) and in turn \(\Psi _{\tilde{\lambda }}=0\), which however is impossible.    \(\square \)

Theorem 4.14

Suppose that (\(\omega _1\)-1) is satisfied. If \(\mu _*<1\), then \(\lambda _*=\delta _1^2\) and this is not an eigenvalue of L.

Proof

The approach is inspired by [20, Section 2]. Since \(\lambda _*\le \delta _1^2\) by Lemma 3.18, \(\mu _*<1\) together with Theorem 4.13 implies \(\lambda _*=\delta _1^2\). Now suppose on the contrary that there is a function \(u_*\in X^2_{\mathrm{odd}}\) such that \({\Vert u_*\Vert }_{X^0}=1\) and \(Lu_*=\delta _1^2 u_*\). If we define \(\Psi _*(r)=U'_{\mathcal{T}u_*}(r)\) for \(r\in [0, r_Q]\), then \(\Psi _*\in L^2_r\) and (B.37) yields \(\mathcal{K}\mathcal{T}u_*=|Q'(e_Q)|\,p_r\,U'_{\mathcal{T}u_*}(r) =|Q'(e_Q)|\,p_r\,\Psi _*(r)\). Hence, for \(a>0\) and \(b\in \mathbb R\), we get

$$ (-\mathcal{T}^2-(\delta _1^2-a+ib))u_*=\mathcal{K}\mathcal{T}u_*+(a-ib)u_*. $$

Since \(z=\delta _1^2-a+ib\in \Omega \), it follows from (4.21) that

$$\begin{aligned} |Q'(e_Q)|\,p_r (\mathcal{Q}_{\delta _1^2-a+ib}\Psi _*)= & {} \mathcal{K}\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}(\mathcal{K}\mathcal{T}u_*) \\= & {} \mathcal{K}\mathcal{T}u_*-(a-ib)\,\mathcal{K}\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1} u_*\\= & {} |Q'(e_Q)|\,p_r\,\Psi _*\\&-(a-ib)\,|Q'(e_Q)| \,p_r\,U'_{\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*}, \end{aligned}$$

and therefore,

$$\begin{aligned} \mathcal{Q}_{\delta _1^2-a+ib}\Psi _*=\Psi _*-(a-ib)\,U'_{\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*}. \end{aligned}$$
(4.50)

We claim that if \(a=a(\varepsilon )\rightarrow 0^+\) and \(b=b(\varepsilon )\rightarrow 0\) as \(\varepsilon \rightarrow 0\), then

$$\begin{aligned} (a-ib)\,U'_{\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*}\rightarrow 0,\quad \varepsilon \rightarrow 0^+, \end{aligned}$$
(4.51)

in \(L^2_r\). For, we can invoke Corollary B.16 as well as (B.25) to deduce

$$\begin{aligned}&{{\Vert (a-ib)\,U'_{\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*}\Vert }^2_{L^2_r}} \\\le & {} 16\pi ^2\rho _Q(0)\,(a^2+b^2)\,{\Vert (-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*\Vert }_{X^0}^2 \\= & {} 256\pi ^5\rho _Q(0)\,(a^2+b^2)\,\sum _{k\ne 0} \iint \limits _D dI\,d\ell \,\ell \,\frac{1}{|Q'(e)|} \,\frac{|{(u_*)}_k(I, \ell )|^2}{|k^2\omega _1^2(I, \ell )-(\delta _1^2-a+ib)|^2} \\= & {} 256\pi ^5\rho _Q(0)\,(a^2+b^2)\,\sum _{k\ne 0} \iint \limits _D dI\,d\ell \,\ell \,\frac{1}{|Q'(e)|} \,\frac{|{(u_*)}_k(I, \ell )|^2}{(k^2\omega _1^2(I, \ell )-\delta _1^2+a)^2+b^2}. \end{aligned}$$

If \(|k|\ge 2\), then \(k^2\omega _1^2(I, \ell )-\delta _1^2+a\ge (k^2-1)\delta _1^2\ge 3\delta _1^2\). Thus,

$$\begin{aligned}&{{\Vert (a-ib)\,U'_{\mathcal{T}(-\mathcal{T}^2-(\delta _1^2-a+ib))^{-1}u_*}\Vert }^2_{L^2_r}} \\\le & {} 2\pi ^2\delta _1^{-4}\rho _Q(0)\,(a^2+b^2)\,{\Vert u_*\Vert }^2_{X^0} \\+ & {} 512\pi ^5\rho _Q(0)\, \iint \limits _D dI\,d\ell \,\ell \,\frac{a^2+b^2}{(\omega _1^2(I, \ell )-\delta _1^2+a)^2+b^2} \,\phi _1(I, \ell ) \end{aligned}$$

for \(\phi _1(I, \ell )=\frac{|{(u_*)}_1(I, \ell )|^2}{|Q'(e)|}\in L^1(D)\). For almost all \((I, \ell )\in D\), we know from hypothesis (\(\omega _1\)-1) that \(\omega _1(I, \ell )\ne \delta _1\), i.e., \(\omega _1(I, \ell )>\delta _1\). For such an \((I, \ell )\), we have

$$ \frac{a^2+b^2}{(\omega _1^2(I, \ell )-\delta _1^2+a)^2+b^2} \le \frac{a^2+b^2}{(\omega _1^2(I, \ell )-\delta _1^2)^2+b^2}\rightarrow 0, \quad \varepsilon \rightarrow 0. $$

Since always

$$\begin{aligned} \frac{a^2+b^2}{(\omega _1^2(I, \ell )-\delta _1^2+a)^2+b^2}\le 1, \end{aligned}$$

it follows by using Lebesgue’s dominated convergence theorem that indeed (4.51) is verified. Going back to (4.50), this entails that

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0}\,\mathcal{Q}_{\delta _1^2-a+ib}\Psi _*=\Psi _*\quad \text{ in }\quad L^2_r. \end{aligned}$$
(4.52)

Next, we are going to compare \(\mathcal{Q}_{\delta _1^2-a+ib}\) to \(\mathcal{Q}_{\delta _1^2-a}\). Here, we find

$$\begin{aligned} {|\langle \mathcal{Q}_{\delta _1^2-a+ib}\Psi _*, \Psi _*\rangle -\langle \mathcal{Q}_{\delta _1^2-a}\Psi _*, \Psi _*\rangle |}&= |\langle (\mathcal{Q}_{\delta _1^2-a+ib}-\mathcal{Q}_{\delta _1^2-a})\Psi _*, \Psi _*\rangle | \\&= 64\pi ^2\,\bigg |\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de \\&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\times \,\bigg [\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-(\delta _1^2-a-ib)} -\frac{\omega _1(e, \ell )\,|Q'(e)|}{k^2\omega _1^2(e, \ell )-(\delta _1^2-a)}\bigg ] \\&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\times \,\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,\Psi _*(r)\,\overline{\Psi _*(\tilde{r})}\, \mathbf{1}_{\{r_-(e,\,\ell )\le r,\,\tilde{r}\le r_+(e,\,\ell )\}} \,\sin (k\theta (r, e, \ell ))\sin (k\theta (\tilde{r}, e, \ell ))\bigg |, \end{aligned}$$

cf. Lemma 4.3(d) and the definition of \(\mathcal{Q}_z\). Using (4.8), (4.12) and similar arguments as in the proof of Lemma 4.3(a), we obtain

$$\begin{aligned}&{|\langle \mathcal{Q}_{\delta _1^2-a+ib}\Psi _*, \Psi _*\rangle -\langle \mathcal{Q}_{\delta _1^2-a}\Psi _*, \Psi _*\rangle |} \\\le & {} C|b|\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,|Q'(e)|\, \frac{1}{|k^2\omega _1^2(e, \ell )-(\delta _1^2-a-ib)||k^2\omega _1^2(e, \ell )-(\delta _1^2-a)|} \\&\times \,\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,|\Psi _*(r)|\,|\Psi _*(\tilde{r})|\, \mathbf{1}_{\{\beta \le Cr\tilde{r}\}}. \end{aligned}$$

Now

$$\begin{aligned} |k^2\omega _1^2(e, \ell )-(\delta _1^2-a-ib)|^2= & {} (k^2\omega _1^2(e, \ell )-\delta _1^2+a)^2+b^2\ge a^2, \\ |k^2\omega _1^2(e, \ell )-(\delta _1^2-a)|^2= & {} (k^2\omega _1^2(e, \ell )-\delta _1^2+a)^2\ge a^2, \end{aligned}$$

so that

$$\begin{aligned}&{|\langle \mathcal{Q}_{\delta _1^2-a+ib}\Psi _*, \Psi _*\rangle -\langle \mathcal{Q}_{\delta _1^2-a}\Psi _*, \Psi _*\rangle |} \\\le & {} C\,\frac{|b|}{a^2}\sum _{k\ne 0}\int _0^{r_Q}\int _0^{r_Q} dr\,d\tilde{r}\,|\Psi _*(r)|\,|\Psi _*(\tilde{r})| \,r\tilde{r}\,\bigg (\int _{U_Q(0)}^{e_0} |Q'(e)|\,de\bigg ) \\\le & {} C\,\frac{|b|}{a^2}\,{\Vert \Psi _*\Vert }^2_{L^2_r}. \end{aligned}$$

So if we take for instance \(b(\varepsilon )=\varepsilon ^3\) and \(a(\varepsilon )=\varepsilon \), it follows that

$$ \lim _{\varepsilon \rightarrow 0}\,|\langle \mathcal{Q}_{\delta _1^2-\varepsilon +i\varepsilon ^3}\Psi _*, \Psi _*\rangle -\langle \mathcal{Q}_{\delta _1^2-\varepsilon }\Psi _*, \Psi _*\rangle |=0. $$

Using also (4.52), we conclude that

$$ \lim _{\varepsilon \rightarrow 0}\,\langle \mathcal{Q}_{\delta _1^2-\varepsilon }\Psi _*, \Psi _*\rangle ={\Vert \Psi _*\Vert }^2_{L^2_r}. $$

As a consequence,

$$\begin{aligned} {\Vert \Psi _*\Vert }^2_{L^2_r}= & {} \lim _{\varepsilon \rightarrow 0}\,\langle \mathcal{Q}_{\delta _1^2-\varepsilon }\Psi _*, \Psi _*\rangle \le \limsup _{\varepsilon \rightarrow 0}\,\Vert \mathcal{Q}_{\delta _1^2-\varepsilon }\Vert \,{\Vert \Psi _*\Vert }^2_{L^2_r} \\= & {} \limsup _{\varepsilon \rightarrow 0}\,\mu _1(\delta _1^2-\varepsilon )\,{\Vert \Psi _*\Vert }^2_{L^2_r} \le \mu _*\,{\Vert \Psi _*\Vert }^2_{L^2_r}. \end{aligned}$$

Since \(\mu _*<1\), this enforces \(\Psi _*=0\) and hence \(\mathcal{K}\mathcal{T}u_*=0\). Therefore, \(-\mathcal{T}^2 u_*=-\mathcal{T}^2 u_*-\mathcal{K}\mathcal{T}u_*=Lu_*=\delta _1^2 u_*\), i.e., \(\delta _1^2\) is an eigenvalue of \(-\mathcal{T}^2\) with eigenfunction \(u_*\). However, this contradicts Lemma B.12.    \(\square \)

The next result clarifies the case where \(\mu _*=1\).

Theorem 4.15

Suppose that (\(\omega _1\)-3) is satisfied and that \(\mu _*=1\). Then \(\lambda _*=\delta _1^2\), and this is an eigenvalue of L if and only if

$$\begin{aligned} {\Vert \mu '_1\Vert }_{L^\infty (]-\infty , \delta _1^2[)}<\infty \end{aligned}$$
(4.53)

holds.

Proof

Since \(\lambda _*\le \delta _1^2\) by Lemma 3.18, \(\mu _*=1\) together with Theorem 4.13 imply \(\lambda _*=\delta _1^2\). For the actual proof, recall from Lemma 4.3(f) that \(\mu _1(\cdot ):\,\,]-\infty , \delta _1^2[\,\rightarrow \,]0, \infty [\) is differentiable a.e., so (4.53) makes sense.

First, we consider the case where \(\delta _1^2\) is an eigenvalue of L. Let \(u_*\in X^2_{\mathrm{odd}}\) be such that \({\Vert u_*\Vert }_{X^0}=1\) and \(Lu_*=\delta _1^2 u_*\). If we define \(\Psi _*(r)=U'_{\mathcal{T}u_*}(r)\) for \(r\in [0, r_Q]\), then \(\Psi _*\in L^2_r\) and (B.37) implies that \(\mathcal{K}\mathcal{T}u_*=|Q'(e_Q)|\,p_r\,U'_{\mathcal{T}u_*}(r) =|Q'(e_Q)|\,p_r\,\Psi _*(r)=:\psi _*\in X^0_{\mathrm{odd}}\). For \(\lambda <\delta _1^2\), we have

$$\begin{aligned} (-\mathcal{T}^2-\lambda )u_*=Lu_*+\mathcal{K}\mathcal{T}u_*-\lambda u_*=\psi _*+(\delta _1^2-\lambda )u_*, \end{aligned}$$
(4.54)

and hence

$$\begin{aligned} (k^2\omega _1^2-\lambda ){(u_*)}_k={(\psi _*)}_k+(\delta _1^2-\lambda ){(u_*)}_k, \quad k\in \mathbb Z, \end{aligned}$$
(4.55)

for the Fourier coefficients. Since

$$ {(\psi _*, u_*)}_{X^0}={(\mathcal{K}\mathcal{T}u_*, u_*)}_{X^0} =\frac{1}{4\pi }\int _{\mathbb R^3} |U'_{\mathcal{T}u_*}(r)|^2\,dx =\frac{1}{4\pi }\,{\Vert \Psi _*\Vert }_{L^2_r}^2 $$

by (B.40) from Lemma B.15(b), taking the inner product in \(X^0\) of (4.54) with \(u_*\), we deduce

$$\begin{aligned} {((-\mathcal{T}^2-\lambda )u_*, u_*)}_{X^0} =\frac{1}{4\pi }\,{\Vert \Psi _*\Vert }_{L^2_r}^2+(\delta _1^2-\lambda ){\Vert u_*\Vert }_{X^0}^2. \end{aligned}$$
(4.56)

Next, due to (4.25) from Lemma 4.6, we have

$$\begin{aligned} \langle \mathcal{Q}_\lambda \Psi _*, \Psi _*\rangle= & {} 64\pi ^4\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \,\frac{1}{k^2\omega _1^2(e, \ell )-\lambda }\\&\qquad \qquad \qquad \qquad \qquad \quad \,\,\,\times \,|{(\psi _*)}_k(I, \ell )|^2. \end{aligned}$$

Thus, by (B.4), (A.18), Lemma B.8(b) and (4.55) applied twice,

$$\begin{aligned}&{{((-\mathcal{T}^2-\lambda )u_*, u_*)}_{X^0}} \\= & {} 16\pi ^3\sum _{k\ne 0}\int _0^\infty dI\int _0^\infty d\ell \,\ell \,\frac{1}{|Q'(e)|} \,\overline{[((-\mathcal{T}^2-\lambda )u_*]_k (I, \ell )}\,{(u_*)}_k(I, \ell ) \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \,(k^2\omega _1^2(e, \ell )-\lambda )\,|{(u_*)}_k(I, \ell )|^2 \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}{(\psi _*)}_k(I, \ell ) \,\overline{(u_*)_k(I, \ell )} \\&+\,16\pi ^3 (\delta _1^2-\lambda )\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}\,|{(u_*)}_k(I, \ell )|^2 \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}{(\psi _*)}_k(I, \ell ) \\&\qquad \qquad \qquad \quad \times \,\bigg (\frac{\overline{(\psi _*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda } +(\delta _1^2-\lambda )\frac{\overline{(u_*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda }\bigg ) \\&+\,(\delta _1^2-\lambda )\,{\Vert u_*\Vert }^2_{X^0} \\= & {} \frac{1}{4\pi }\,\langle \mathcal{Q}_\lambda \Psi _*, \Psi _*\rangle \\&+\,16\pi ^3 (\delta _1^2-\lambda )\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}{(\psi _*)}_k(I, \ell ) \,\frac{\overline{(u_*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda } \\&+\,(\delta _1^2-\lambda )\,{\Vert u_*\Vert }^2_{X^0}. \end{aligned}$$

Comparing to (4.56), this yields

$$\begin{aligned}&{\frac{1}{4\pi }\,{\Vert \Psi _*\Vert }_{L^2_r}^2} \nonumber \\= & {} \frac{1}{4\pi }\,\langle \mathcal{Q}_\lambda \Psi _*, \Psi _*\rangle \nonumber \\&+\,16\pi ^3 (\delta _1^2-\lambda )\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}{(\psi _*)}_k(I, \ell ) \,\frac{\overline{(u_*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda }.\nonumber \\ \end{aligned}$$
(4.57)

If we had \(\Psi _*=0\), then also \(\psi _*=0\) and consequently \((k^2\omega _1^2-\delta _1^2){(u_*)}_k=0\) in D for \(k\ne 0\) by (4.55). This implies that \({(u_*)}_k=0\) for \(|k|\ge 2\) and \((\omega _1-\delta _1){(u_*)}_1=0\) in D. Owing to (\(\omega _1\)-1), this enforces \({(u_*)}_1=0\) a.e. and therefore \(u_*=0\), which is a contradiction. In other words, we do know that \(\Psi _*\ne 0\). Hence, by (4.7) and (4.57),

$$\begin{aligned} \mu _1(\lambda )= & {} \sup \,\{\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle : {\Vert \Psi \Vert }_{L^2_r}\le 1\} \\\ge & {} \frac{1}{{\Vert \Psi _*\Vert }_{L^2_r}^2} \,\langle \mathcal{Q}_\lambda \Psi _*, \Psi _*\rangle \\= & {} 1-\frac{64\pi ^4}{{\Vert \Psi _*\Vert }_{L^2_r}^2} (\delta _1^2-\lambda )\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \quad \,\,\times \,{(\psi _*)}_k(I, \ell ) \,\frac{\overline{(u_*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda }. \end{aligned}$$

Thus,

$$\begin{aligned} \frac{1-\mu _1(\lambda )}{\delta _1^2-\lambda }\le & {} \frac{64\pi ^4}{{\Vert \Psi _*\Vert }_{L^2_r}^2} \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}\\&\qquad \qquad \qquad \qquad \quad \times \,{(\psi _*)}_k(I, \ell ) \,\frac{\overline{(u_*)_k(I, \ell )}}{k^2\omega _1^2(e, \ell )-\lambda }, \end{aligned}$$

and upon using (4.55) one more time, we conclude that

$$\begin{aligned} \frac{1-\mu _1(\lambda )}{\delta _1^2-\lambda }\le & {} \frac{64\pi ^4}{{\Vert \Psi _*\Vert }_{L^2_r}^2} \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}\, \frac{k^2\omega _1^2(e, \ell )-\delta _1^2}{k^2\omega _1^2(e, \ell )-\lambda } \,|(u_*)_k(I, \ell )|^2 \nonumber \\\le & {} \frac{64\pi ^4}{{\Vert \Psi _*\Vert }_{L^2_r}^2} \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\, \,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|}\,|(u_*)_k(I, \ell )|^2 \nonumber \\= & {} \frac{4\pi }{{\Vert \Psi _*\Vert }_{L^2_r}^2}\,{\Vert u_*\Vert }_{X^0}^2 \end{aligned}$$
(4.58)

for all \(\lambda <\delta _1^2\). Since \(\mu _1\) is convex on \(]-\infty , \delta _1^2]\) by Lemma 4.9(d), the difference quotients

$$\begin{aligned} \frac{\mu _1(\lambda +h)-\mu _1(\lambda )}{h} \end{aligned}$$

for \(h>0\) are monotone increasing in \(\lambda \) (and also in h); see [14, p. 13/14]. Let \(\lambda _0\in ]-\infty , \delta _1^2[\) be a point where \(\mu _1\) is differentiable and let \(h>0\). For \(\lambda _1=\lambda _0-h\) and \(\lambda _2=\delta _1^2-h\), we have \(\lambda _1<\lambda _2\), whence \(\mu _1(\delta _1^2)=\mu _*=1\) in conjunction with (4.58) for \(\lambda =\delta _1^2-h\) leads to

$$\begin{aligned} \frac{\mu _1(\lambda _0)-\mu _1(\lambda _0-h)}{h}= & {} \frac{\mu _1(\lambda _1+h)-\mu _1(\lambda _1)}{h} \\\le & {} \frac{\mu _1(\lambda _2+h)-\mu _1(\lambda _2)}{h} \\= & {} \frac{\mu _1(\delta _1^2)-\mu _1(\delta _1^2-h)}{h} \le \frac{4\pi }{{\Vert \Psi _*\Vert }_{L^2_r}^2}\,{\Vert u_*\Vert }_{X^0}^2. \end{aligned}$$

It follows that \({\Vert \mu '_1\Vert }_{L^\infty (]-\infty , \delta _1^2[)} \le \frac{4\pi }{{\Vert \Psi _*\Vert }_{L^2_r}^2}\,{\Vert u_*\Vert }_{X^0}^2\), which proves (4.53).

To establish the converse, we assume (4.53) to hold, and we are going to verify that \(\delta _1^2\) is an eigenvalue of L. For this, we are going to use Lemma 4.12. The operator family \(Q_z\) for \(z\in \Omega =\mathbb C\setminus [\delta _1^2, \infty [\) satisfies the assumptions of Lemma D.1 with \(\lambda _0=\delta _1^2\) and \(H=L^2_r\), by Lemmas 4.3 and 4.9. Hence, there are sequences \(\lambda _j\nearrow \delta _1^2\), \(\varepsilon _j>0\) and \(\Phi _{j, \lambda }\in L^2_r\) for \(\lambda \in ]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\) such that \({\Vert \Phi _{j, \lambda }\Vert }_{L^2_r}=1\),

$$\begin{aligned} ]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\ni \lambda \mapsto \Phi _{j, \lambda }\in L^2_r \end{aligned}$$

is real analytic for \(j\in \mathbb N\), and \(Q_\lambda \Phi _{j, \lambda }=\mu _1(\lambda )\Phi _{j, \lambda }\) for \(j\in \mathbb N\) and \(\lambda \in ]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\). Furthermore, \(\mu _1\) is real analytic in \(]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\) and satisfies

$$\begin{aligned} \mu '_1(\lambda )=\langle Q'_\lambda \Phi _{j, \lambda }, \Phi _{j, \lambda }\rangle \end{aligned}$$
(4.59)

for \(\lambda \in ]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\). By decreasing \(\varepsilon _j\) further, if necessary, we may assume that \(\varepsilon _j\rightarrow 0\) as \(j\rightarrow \infty \). Due to (4.53), there exists a set \(N\subset ]-\infty , \delta _1^2[\) of measure zero such that \(S=\sup _{\lambda \in ]-\infty , \delta _1^2[\setminus N} |\mu '_1(\lambda )|<\infty \). For each \(j\in \mathbb N\), pick \(\hat{\lambda }_j\in ]\lambda _j-\varepsilon _j, \lambda _j+\varepsilon _j[\setminus N\) and define \(\Psi _j=\Phi _{j, \hat{\lambda }_j}\). It follows that \(\lim _{j\rightarrow \infty }\hat{\lambda }_j=\delta _1^2\) and \({\Vert \Psi _j\Vert }_{L^2_r}=1\). In addition, \(Q_{\hat{\lambda }_j}\Psi _j=Q_{\hat{\lambda }_j}\Phi _{j, \hat{\lambda }_j} =\mu _1(\hat{\lambda }_j)\Phi _{j, \hat{\lambda }_j}=\mu _1(\hat{\lambda }_j)\Psi _j\), i.e., \(\Psi _j\) is a normalized eigenfunction for the eigenvalue \(\mu _1(\hat{\lambda }_j)\) of \(Q_{\hat{\lambda }_j}\) such that

$$\begin{aligned} \sup _{j\in \mathbb N}\,\langle Q'_{\hat{\lambda }_j}\Psi _j, \Psi _j\rangle \le S, \end{aligned}$$
(4.60)

the latter due (4.59); recall that generally \(\langle Q'_\lambda \Psi , \Psi \rangle \ge 0\) by (4.6). Now define \(\psi _j(r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _j(r)\in X^0_{\mathrm{odd}}\) and \(g_j=(-\mathcal{T}^2-\hat{\lambda }_j)^{-1}\psi _j\in X^2_{\mathrm{odd}}\). To complete the proof, we need to show that \((g_j)\subset X^0\) is bounded. From (B.4), (A.18), (B.25), (4.24) and (4.6), we obtain

$$\begin{aligned} {\Vert g_j\Vert }^2_{X^0}= & {} 16\pi ^3\sum _{k\ne 0}\int _0^\infty dI\int _0^\infty d\ell \,\ell \,\frac{1}{|Q'(e)|} \,|{(g_j)}_k(I, \ell )|^2 \\= & {} 16\pi ^3\sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de\,\frac{1}{\omega _1(e, \ell )\,|Q'(e)|} \,\frac{|{(\psi _j)}_k(I, \ell )|^2}{(k^2\omega _1^2(e, \ell )-\hat{\lambda }_j)^2} \\= & {} 16\pi \sum _{k\ne 0}\iint \limits _D d\ell \,\ell \,de \,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-\hat{\lambda }_j)^2} \bigg |\int _{r_-(e, \ell )}^{r_+(e, \ell )}\Psi _j(r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \\= & {} \frac{1}{4\pi }\,\langle \mathcal{Q}'_{\hat{\lambda }_j}\Psi _j, \Psi _j\rangle . \end{aligned}$$

Thus, the claim follows from (4.60).    \(\square \)

4.3 Some Further Results

The following observation corresponds to the situation where \(\omega _1\) is differentiable and attains its minimum at an interior point \((\hat{e}, \hat{\beta })\) of D; cf. assumption (\(\omega _1\)-2).

Corollary 4.16

Suppose that (\(\omega _1\)-2) is satisfied. Then \(\mu _*=\infty \), \(\lambda _*<\delta _1^2\), \(\mu _1(\lambda _*)=1\) and \(\lambda _*\) is an eigenvalue of L.

Proof

We only need to show that \(\mu _*=\infty \), then the remaining assertions do follow from Theorem 4.13. The lower boundary curve \({(\partial D)}_3=\{(e, \beta )\in D: e=e_{\mathrm{min}}(\beta )\}\) of D characterizes the \((e, \beta )\) where \(r_-(e, \beta )=r_0(\beta )=r_+(e, \beta )\). Since \((\hat{e}, \hat{\beta })\in \mathrm{int}\,D =\{(e, \beta ): \beta \in ]0, \beta _*[, e\in ]e_{\mathrm{min}}(\beta ), e_0[\} \subset D\setminus {(\partial D)}_3\) by hypothesis, we have that \(r_+(\hat{e}, \hat{\beta })-r_-(\hat{e}, \hat{\beta })=6\eta >0\). The functions \(r_{\pm }\) are known to be continuous (even \(C^1\)) on \(\mathrm{int}\,D\); see [30, 50] and [88, Def./Thm. 2.4(b)]. Thus, by shrinking the neighborhood U of \((\hat{e}, \hat{\beta })\) if necessary, we may assume that

$$ |r_-(e, \beta )-r_-(\hat{e}, \hat{\beta })|\le \eta , \quad |r_+(e, \beta )-r_+(\hat{e}, \hat{\beta })|\le \eta , \quad (e, \beta )\in U, $$

is verified, along with

$$\begin{aligned} |\omega _1(e, \beta )-\delta _1|\le C_1\,|(e, \beta )-(\hat{e}, \hat{\beta })|^2, \quad (e, \beta )\in U, \end{aligned}$$
(4.61)

from (1.31). Next, we have \(\theta (r_-(\hat{e}, \hat{\beta }), \hat{e}, \hat{\beta })=0\) and \(\theta (r_+(\hat{e}, \hat{\beta }), \hat{e}, \hat{\beta })=\pi \). Since \(\frac{\partial \theta }{\partial r} =\frac{\omega _1}{p_r}\) due to (A.21) and \(p_r>0\) along the half-orbit, \(\theta (\cdot , \hat{e}, \hat{\beta })\) is strictly increasing. In particular, we obtain

$$ \sin \theta (\hat{r}_m, \hat{e}, \hat{\beta })=2\sigma >0 \quad \text{ for }\quad \hat{r}_m=\frac{1}{2}\,(r_-(\hat{e}, \hat{\beta })+r_+(\hat{e}, \hat{\beta })). $$

As also

$$\begin{aligned} \theta : \{(r, e, \beta ): (e, \beta )\in \mathrm{int}\,D, r_-(e, \beta )<r<r_+(e, \beta )\}\rightarrow \mathbb R\end{aligned}$$

is continuous, there is \(\varepsilon \in ]0, \eta ]\) such that \(\sin \theta (r, e, \beta )\ge \sigma \) for \((e, \beta )\in U\) so that \(|e-\hat{e}|\le \varepsilon \), \(|\beta -\hat{\beta }|\le \varepsilon \) and \(r\in [\hat{r}_m-\varepsilon , \hat{r}_m+\varepsilon ]\cap ]r_-(e, \beta ), r_+(e, \beta )[ =[\hat{r}_m-\varepsilon , \hat{r}_m+\varepsilon ]\). If \(\varepsilon >0\) is small enough, we may assume that \([\hat{e}-\varepsilon , \hat{e}+\varepsilon ] \times [\hat{\beta }-\varepsilon , \hat{\beta }+\varepsilon ]\subset U\subset \mathrm{int}\,D\) as well as \([\hat{r}_m-\varepsilon , \hat{r}_m+\varepsilon ]\subset [0, r_Q]\). Furthermore, note that in general \(\sin \theta (r, e, \beta )\ge 0\) for \((e, \beta )\in \mathrm{int}\,D\) and \(r_-(e, \beta )<r<r_+(e, \beta )\). Next, owing to \((\hat{e}, \hat{\beta })\in \mathrm{int}\,D\), we have \(e\in ]U_Q(0), e_0[\). Using (Q2), we can thus make sure that \(\inf \{|Q'(e)|: e\in [\hat{e}-\varepsilon , \hat{e}+\varepsilon ]\}=\alpha >0\). Now, we consider the function

$$ \Psi _0(r)=\gamma ^{-1}{} \mathbf{1}_{[\hat{r}_m-\varepsilon ,\,\hat{r}_m+\varepsilon ]}(r), \quad \gamma =\Big (\frac{4\pi }{3}([\hat{r}_m+\varepsilon ]^3-[\hat{r}_m-\varepsilon ]^3)\Big )^{1/2}, $$

for which \({\Vert \Psi _0\Vert }_{L^2_r}=1\). Hence, for \(\lambda <\delta _1^2\) by Lemma 4.3(d),

$$\begin{aligned} \mu _*\ge & {} \mu _1(\lambda ) =\Vert \mathcal{Q}_\lambda \Vert =\sup \,\{\langle \mathcal{Q}_\lambda \Psi , \Psi \rangle : \Vert \Psi \Vert \le 1\} \ge \langle \mathcal{Q}_\lambda \Psi _0, \Psi _0\rangle \nonumber \\= & {} 32\pi ^2\sum _{k\ne 0} \iint \limits _D d\beta \,de\,\frac{\omega _1(e, \beta )\,|Q'(e)|}{k^2\omega _1^2(e, \beta )-\lambda } \,\bigg |\int _{r_-(e,\,\beta )}^{r_+(e,\,\beta )}\Psi _0(r)\sin (k\theta (r, e, \beta ))\,dr\bigg |^2 \nonumber \\\ge & {} 32\pi ^2 \iint \limits _D d\beta \,de\,\frac{\omega _1(e, \beta )\,|Q'(e)|}{\omega _1^2(e, \beta )-\lambda } \,\bigg (\int _{r_-(e,\,\beta )}^{r_+(e,\,\beta )}\Psi _0(r)\sin (\theta (r, e, \beta ))\,dr\bigg )^2 \nonumber \\\ge & {} 32\pi ^2\delta _1\gamma ^{-2} \int _{\hat{\beta }-\varepsilon }^{\hat{\beta }+\varepsilon } d\beta \int _{\hat{e}-\varepsilon }^{\hat{e}+\varepsilon } de \,\frac{|Q'(e)|}{\omega _1^2(e, \beta )-\lambda } \,\bigg (\int _{\hat{r}_m-\varepsilon }^{\hat{r}_m+\varepsilon }\sin (\theta (r, e, \beta ))\,dr\bigg )^2 \nonumber \\\ge & {} 128\pi ^2\delta _1\gamma ^{-2}\alpha \,\sigma ^2\varepsilon ^2 \int _{\hat{\beta }-\varepsilon }^{\hat{\beta }+\varepsilon } d\beta \int _{\hat{e}-\varepsilon }^{\hat{e}+\varepsilon } de \,\frac{1}{\omega _1^2(e, \beta )-\delta _1^2+a}, \end{aligned}$$
(4.62)

where \(a=\delta _1^2-\lambda >0\). From Theorem 3.5 and (4.61), we deduce that

$$ \omega _1^2(e, \beta )-\delta _1^2+a \le 2\Delta _1 C_1\,|\xi -\hat{\xi }|^2+a, \quad \xi =(e, \beta ),\,\,\hat{\xi }=(\hat{e}, \hat{\beta }). $$

As a consequence,

$$\begin{aligned} \int _{\hat{\beta }-\varepsilon }^{\hat{\beta }+\varepsilon } d\beta \int _{\hat{e}-\varepsilon }^{\hat{e}+\varepsilon } de \,\frac{1}{\omega _1^2(e, \beta )-\delta _1^2+a}\ge & {} \int _{|\xi -\hat{\xi }|\le \varepsilon } \,\frac{d^2\xi }{2\Delta _1 C_1\,|\xi -\hat{\xi }|^2+a} \\= & {} 2\pi \int _0^\varepsilon \,\frac{\rho }{2\Delta _1 C_1\,\rho ^2+a}\,d\rho \\= & {} \frac{\pi }{2\Delta _1 C_1}\,\ln \frac{2\Delta _1 C_1\,\varepsilon ^2+a}{a} \rightarrow \infty ,\quad a\rightarrow 0^+. \end{aligned}$$

Thus, if we pass to the limit \(\lambda \rightarrow \delta _1^2-\), i.e., \(a\rightarrow 0^+\), in (4.62), it follows that \(\mu _*=\infty \).    \(\square \)

Regarding Theorem 4.15, if (\(\omega _1\)-3) holds and if \(\mu _*=1\), then one can show that \(\lambda =\delta _1^2\) is an eigenvalue of L, provided one is able to gain a little bit from the term \(|Q'(e)|\), in the sense that \(Q'(e_0)=0\) in a controlled way, as expressed by (Q5); then the inherent logarithmic singularity can be dealt with. To simplify the presentation, we additionally assume that \(\mu _*\) is simple as an eigenvalue of \(Q_{\delta _1^2}\), but with some more technical efforts, this assumption could be disposed of.

Corollary 4.17

Suppose that (\(\omega _1\)-3) and (Q5) are satisfied, and assume that \(\mu _*=1\) is a simple eigenvalue of \(Q_{\delta _1^2}\). Then \(\lambda _*=\delta _1^2\), and this is an eigenvalue of L.

Proof

We already know that \(\lambda _*=\delta _1^2\); see the proof of Theorem 4.15. To verify that \(\delta _1^2\) is an eigenvalue of L, we are going to use Theorem 4.15. According to Lemma D.2, there is \(\varepsilon >0\) such that \(]\delta _1^2-\varepsilon , \delta _1^2[\ni \lambda \mapsto \mu _1(\lambda )\) is real analytic. In addition, there are \(\Psi _\lambda \in L^2_r\) satisfying \({\Vert \Psi _\lambda \Vert }_{L^2_r}=1\), \(Q_\lambda \Psi _\lambda =\mu _1(\lambda )\Psi _\lambda \), and \(]\delta _1^2-\varepsilon , \delta _1^2[\ni \lambda \mapsto \Psi _\lambda \) is real analytic. Also \(\mu '_1(\lambda )=\langle Q'_\lambda \Psi _\lambda , \Psi _\lambda \rangle \) holds for \(\lambda \in ]\delta _1^2-\varepsilon , \delta _1^2[\). By Lemma 4.9, the function \(\mu _1\) is convex, so that \(\mu ''_1\ge 0\) and \(\mu '_1\) is increasing. In other words,

$$\begin{aligned} {\Vert \mu '_1\Vert }_{L^\infty (]-\infty , \delta _1^2[)}=\lim _{\lambda \rightarrow \delta _1^2-} \mu '_1(\lambda )=:\mu '_*\end{aligned}$$

does exist in \(]0, \infty ]\), and the issue is to show that \(\mu '_*<\infty \). Defining \(\psi _\lambda (r, p_r, \ell )=|Q'(e_Q)|\,p_r\Psi _\lambda (r)\in X^0_{\mathrm{odd}}\) as before, we get, from Lemma 4.3(d), (4.24) and Corollary 4.10(c),

$$\begin{aligned} \mu '_1(\lambda )= & {} \langle Q'_\lambda \Psi _\lambda , \Psi _\lambda \rangle \\= & {} 64\pi ^2\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{\omega _1(e, \ell )\,|Q'(e)|}{(k^2\omega _1^2(e, \ell )-\lambda )^2} \\&\qquad \qquad \qquad \quad \,\times \,\bigg |\int _{r_-(e,\,\ell )}^{r_+(e,\,\ell )}\Psi _\lambda (r)\sin (k\theta (r, e, \ell ))\,dr\bigg |^2 \\= & {} 64\pi ^4\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{1}{(k^2\omega _1^2(e, \ell )-\lambda )^2} \,\frac{|{(\psi _\lambda )}_k(I, \ell )|^2}{\omega _1(e, \ell )\,|Q'(e)|} \\\le & {} C\sum _{k\ne 0} \iint \limits _D d\ell \,\ell \,de\,\frac{1}{(k^2\omega _1^2(e, \ell )-\lambda )^2}\,|Q'(e)| \\\le & {} C\sum _{k=2}^\infty \iint \limits _D d\ell \,\ell \,de\,\frac{4}{\delta _1^4 k^4} +C\iint \limits _D d\ell \,\ell \,de\,\frac{|Q'(e)|}{(\omega _1(e, \ell )-\delta _1)^2}. \end{aligned}$$

Thus, using (\(\omega _1\)-3) and (Q5),

$$\begin{aligned} \mu '_1(\lambda )\le & {} C+C\iint \limits _D d\ell \,\ell \,de \,\frac{(e-e_0)^\alpha }{{|(e, \beta )-(e_0, \hat{\beta })|}^2}\\\le & {} C+C\int _0^{\beta _*} d\beta \int _{e_{\mathrm{min}}(\beta )}^{e_0} de \,\frac{1}{{|(e, \beta )-(e_0, \hat{\beta })|}^{2-\alpha }}\\\le & {} C+C\int _{-\hat{\beta }}^{\beta _*-\hat{\beta }} dx_2 \int _{0}^{e_0-U_Q(0)} dx_1\,\frac{1}{{|x|}^{2-\alpha }}\le C, \end{aligned}$$

where \(x=(x_1, x_2)\). Therefore \(\mu '_*\le C\) and the proof is complete.    \(\square \)