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Preface

There are many stability problems in mathematical physics that ultimately can be
reduced to estimates on eigenvalues. In this respect, one of the best-known
examples concerns the stability of matter, which first asks the question of why
point-like electrons do not simply fall into point-like nuclei (called ‘stability of the
first kind’); see [53] and the references cited therein for more information. A related
problem (called ‘stability of the second kind’) is if matter with a large number N of
atoms has the property that energy and volume of a system of 2N atoms are twice
the energy and volume of a system of N atoms. In 1967-8, Dyson and Lenard [16]
could answer this question in the positive, using a very intricate argument. An
essential improvement came in 1975 with the work of Lieb and Thirring [54], who
invented a fermionic kinetic energy inequality (now known as the Lieb-Thirring
inequality) to derive the desired lower energy bound. The main tool in their work
(and in many others) is provided by the Birman-Schwinger principle, which relates
eigenvalue estimates for Schrodinger operators H = —A+V on L*(R") to the
study of a certain family of non-negative compact operators. These operators are
expressible in terms of an explicitly known integral kernel, at least for dimensions
three and one.

Turning to galactic dynamics, a main line of research is to determine the stability
properties of steady state solutions that correspond to static distributions (of stars
or galaxies). Upon linearizing an appropriate energy-Casimir functional for the
underlying gravitational Vlasov-Poisson system about such a steady state, the
so-called Antonov functional is obtained as the ‘Hessian’ at the steady state; it was
a fundamental observation of Antonov [4, 5] that this functional is strictly coercive
when restricted to an appropriate subclass of functions, thus providing a general
way for deriving stability.

It is the main purpose of this book to link both subjects and point out that there is
a Birman-Schwinger principle that relates spectral questions for the self-adjoint
operator L, which corresponds to the Antonov functional, to a certain family of
non-negative compact operators. As we will see, this perfectly parallels the
Schrodinger case in every respect. As an application, the Birman-Schwinger

vii



viii Preface

principle is used to characterize in which cases the ‘best constant’ in the Antonov
stability estimate is attained; the best constant will then be the principal eigenvalue
of L. This amounts to solving a quite non-standard variational problem, and it will
be important for understanding the nonlinear dynamics of the system close to a
steady state.

Cologne, Germany Markus Kunze
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Chapter 1 ®)
Introduction Check for

1.1 The Birman-Schwinger Principle

The Birman-Schwinger principle is a widely used and well-established tool in math-
ematical quantum mechanics. It was introduced through the independent works of
Birman [10] and Schwinger [81], with the idea of counting or at least estimating the
number of eigenvalues of Schrodinger operators on L2(R"). To be more specific,
consider (only formal at this point)

H=—-A+YV;

to avoid introducing negative parts, we will assume that V < 0. Then it is not difficult
to calculate that

(a) —e is a (negative) eigenvalue of H if and only if 1 is an eigenvalue of the
Birman-Schwinger operator

B, =vV—-V(=A+e)'V-V; (1.1)

see [53, Section 4.3.1].
Furthermore,

(b) if ¢ is an eigenfunction of H for the eigenvalue —e, then ¢ = /—V ¢ is an
eigenfunction of B, for the eigenvalue 1;

(c) if 1) is an eigenfunction of B, for the eigenvalue 1, then p=(—A + )~ (V/=V 1))
is an eigenfunction of H for the eigenvalue —e.

The operators B, are non-negative Hilbert-Schmidt operators (if V decays sufficiently
fastandn < 3), and in particular, they are compact. Their eigenvalues can be ordered:
A1(e) = Aa(e) > - -- — 0, and the eigenvalue curves are decreasing ine, inthate > e
implies that \;(e) < A\ (e) for all k. This implies that the number of eigenvalues of
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H less than or equal to —e agrees with the number of eigenvalues of B, greater than
or equal to 1, counting multiplicities in both cases; cf. [53, Figure 4.1, p. 78] for an
illustration. In this way, not only the number of eigenvalues of H can be bounded,
but for instance also eigenvalue moments like Y j | — e;|7, where the sum extends
over all negative eigenvalues —e; of H. This fact lies at the heart of many important
results in the field. Let us only mention here the Lieb-Thirring bound

Si-el=iia [ V@t
- R3

J

in three dimensions for an absolute constant L; 3 > 0 and V € L?(R?). It is used
in those authors’ proof of the stability of matter [54], which has found many gen-
eralizations [53] and which is much easier to follow than the original argument by
Dyson and Lenard [16]. Good general textbooks that cover the Birman-Schwinger
principle are [53, Section 4.3], [71, 82, 83] or [86, Section 7.9]. A classical reference
is [46], and the papers [8, 34, 68] provide an extensive list of related literature. There
is also a large number of further applications of the Birman-Schwinger principle in
a variety of different contexts. For instance, complex-valued potentials are treated
in [1, 20, 22, 23], Dirac operators in [12], the Bardeen-Cooper-Schrieffer model of
superconductivity in [33] and the linearized 2D Euler equations in [47].

1.2 Non-Relativistic Galactic Dynamics and the
Vlasov-Poisson System

In order to explain how the Birman-Schwinger principle will turn out to be useful
in galactic dynamics, we are going to introduce the gravitational Vlasov-Poisson
system. Itis a standard PDE system to describe the time evolution of a self-gravitating
system that consists of a large number of objects (like stars or galaxies), which interact
via gravitational forces.

Galactic dynamics in general refers to the modeling of the time evolution of self-
gravitating matter such as galaxies or, on an even larger scale, clusters of galaxies.
One attempt to do so is to write down an N-body problem, with N quite large:
N ~ 10% — 10" for galaxies and N ~ 10> — 10° for clusters of galaxies. This N-
body problem consists of coupled Newtonian equations, one for each individual
object (the ‘objects’ in a galaxy are stars, those in a cluster of galaxies are galaxies),
to study the collective behavior of the system. While results may be obtainable
numerically in this way, the mathematical complexity of even the three-body problem
prevents one from rigorously addressing deeper questions (concerning for instance
galaxy formation or stability) for such stellar systems.

Therefore, from the early days of the field, a statistical description of the evolution
has been proposed by Vlasov [91]in 1938 for plasmas (in this case a related equation
is satisfied) and by Jeans [41] in 1915 for gravitational systems; see [36] for an
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interesting historical discussion of the origins of the equation. It is also known as the
‘collisionless Boltzmann equation’, which refers to the fact that collisions among the
stars or galaxies are sufficiently rare to be neglected. A standard source of information
on galactic dynamics is [9].

The time evolution of such a system is then governed by a distribution function
f = f(t, x, v) that depends on time ¢ € R, position x € R and velocity v € R.
The quantity | ydx fv dv f(t, x, v) should be thought of as the number of objects
(henceforth called ‘particles’) at time ¢, which are located at some point x € X C R?
and which have velocities v € V C R3. Each individual particle follows a trajectory
(X (s), V(s)) in phase space R® x R? such that (X (¢), V(¢)) = (x, v) at time ¢ and

X(s) = V(s), V(s)=F(s, X(s)), (1.2)

where F denotes the force field that is collectively generated by all particles. The
requirement that f be constant along the curves defined by (1.2) then leads to the
relation
d
0=—1[f(s, X(s), V(s))]
ds

=0, f(s, X(s), V(s)) + V(s) - V. f(s, X(s), V(s))
+ F(s, X(5)) - Vo f(s, X(5), V(5))

for all s. Evaluated at time ¢, this yields
O ft,t,v)+v-Vflt,x,v)+ F(t,x) -V, f(t,x,v) =0

for all (¢, x, v), which is usually called the Vlasov equation (despite the historic
inadequacy of this terminology). The next step is to express the force field F in
terms of the distribution function f. Since we are aiming at describing gravitational
binding, we need to have F' ~ —V, V¢ for the Coulomb potential V¢ (x) = —ﬁ at
large distances. This suggests to use the field F = —V, U induced by the Poisson
equation

AUs(t, x) =4mpr(t, x), ‘ llim Ur(t,x) =0,
X[— 00
where p/(t, x) = / ft, x,v)dv (1.3)
]RS

denotes the charge density induced by f. Observe that |’ v dx py(t, x) represents the
number of particles at time #, of any velocity, which are located at some pointx € X.

Then
(t,
Us(t, x) = —/ prty) (1.4)
RS |y — x|

is Coulomb-like as |x| — oco.
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To summarize, the Vlasov-Poisson system in the gravitational case is
O ft,x,v)+v- -V f(t,x,v) =V, Us(t,x) - Vo f(t,x,0) =0 (1.5)

together with (1.3), and the equations are supposed to hold for (¢, x, v) € R x R3 x
R3. Initial data (0, x, v) = fo(x, v) at time ¢t = 0 have to be specified for f only,
since then (1.4) determines the initial data U (0, x). We will exclusively be interested
in classical solutions of (1.5) and (1.3), whose global-in-time existence is ensured,
under reasonable assumptions on fy, by [55, 67, 80]. For a mathematical overview
of the system and more background material, the reader may wish to consult [27,
63, 73].

The gravitational Vlasov-Poisson systemis widely used to describe non-relativistic
galactic dynamics. When it comes to relativistic galactic dynamics, the appropriate
model is the Einstein-Vlasov system [2]. In the present book, we will not be deal-
ing with this more general system, but of course it will be tempting to determine
which results could be transferred to the Einstein-Vlasov system; see [18, 19, 31,
32, 38-40] for work in this context that is related to the so-called Antonov bound.

1.3 Steady State Solutions

The Vlasov-Poisson system possesses an abundance of solutions Q = Q(x, v) that
are independent of time. It is therefore of interest to study the stability of those steady
states and, more ambitiously, the dynamics close to a steady state. Let eg(x, v) =
1 Jv|? + Ug(x) denote the particle energy and let ¢> = |L|* = |x|*[v|* — (x - v)? be
the square of the angular momentum L = x A v. Then both e and ¢? are conserved
along solutions of the characteristic equations X (s) = =VUp(X(s)), which result
from (1.2) for F' = —VU; note that also Uy, is independent of time. Next, recall that
afunction g = g(x, v) is said to be spherically symmetric if g(Ax, Av) = g(x, v) for
all A € SO(3) and x, v € R3. Expressed in more sophisticated terms, g needs to be
equivariant w.r. to the group action SO(3) x (R? x R?) — R3 x R3, (4, x, v) —
(Ax, Av). Now, it is the content of Jeans’s theorem that the distribution function
Q of every spherically symmetric steady state solution has to be of the form Q =
Qlep, £%);see[7, Section 2] fora precise formulation. Such steady state solutions are
called non-isotropic, in contrast to the isotropic ones, which can be written as Q =
Q(ep); a solution of the latter form will necessarily be spherically symmetric [25,
72]. Observe that we are going to systematically abuse notation in that we consider
Q = Q(x, v) to be a function of (x, v) and at the same time write Q = Q(egp, £2) or
0O = Q(ep), which indicates that Q is a function of two or of one scalar variable(s);
in general, no confusion will result from this simplification.

To precisely state our results later, we will focus on the isotropic case, and we
need to introduce the following assumptions (Q1)—(Q4) that we are going to impose
throughout the book on the profile function Q : R — [0, oo[ and the (radial) density
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po : [0, oo[— [0, oo[. The diligent reader is invited to check which parts of this work
remain valid under less restrictive hypotheses (there are several) or for non-isotropic
steady states.

(Q1) The support K = supp Q of the steady state solution Q is compact and its mass
” Q ||L1(R6) is finite.
(Q2) QO € L. (R) satisfies Q > 0, and there exists a cut-off energy ey < 0 such that

loc
Q(e) =0fore > ey, Q € C'(] — 00, ¢o]) and Q > 0in some interval [e], e[,

where e; < ep. For ¢ €]U(0), eg[, there exists ¢ > 0 such that
inf{|Q'(e)| :e€[e—¢,e+¢€]} > 0.

(Q3) Q' e L (R) and Q'(e) <O0a.e.

(Q4) pg is continuous and has compact support supp pp = [0, r¢]. In addition, py €
C'(10, o).

For one result (Corollary 4.17), we will need more precise information on the behavior
of Q' close to e = ey.

(Q5) There are constants C > 0 and o« > 0 such that

|Q'(e)] < Cleg—e)*, e [Ug(0),eol.

1.4 Examples

To illustrate that the general assumptions on Q as stated in Sect. 1.3 are verified in
many cases, we consider the steady state solution class of the polytropes and the King
models in some more detail. It should be remarked that many further examples could
be given, for instance by using [69] or [74, Theorem 3.1(a)], which basically says that

under mild technical assumptions on Q andif Q(e) = C(ey — e)’i + O((ey — e)lfa)
as e — ep— for some ¢y < 0, k €] — % %[, C > 0 and § > 0, then the resulting

steady state solution will have a finite radius and finite mass.

1.4.1 Polytropes

We consider the polytropes
O(eg) = (eg —ep)’ (1.6)

for a cut-off energy ey < O and k €] — %, %[. Then
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Ck+1)

3
r)=cyleo— Up(r)', n=k+=¢€ell,5[, c,=Qn)? ;
po(r) (eo o) > 11, 5[ 2m) F(k—i—%)

see [7, Example 4.1]. All these steady state solutions do have finite radius r¢o
(i.e., compact support) and finite mass Mg = [, po(x) dx = 47 [;° rPpo(r)dr =
Jzs Jgs Q(x,v)dx dv. The limiting case k = 7/2 is called the Plummer sphere,
where M is still finite, but rp = co. We have Q'(e) = —k(ep — e)'f[l < 0 (outside
of e =¢y for k < 1) and pg € cl([o, rol). Thus, if we take k > 1 for simplicity,
then assumptions (Q1)—(Q5) are satisfied.

1.4.2 King models

The ansatz function for the King model [9, pp. 307-311] is given by

Q(eg) = (exp (e —eg) — D+
for some cut-off energy ey < 0. Then Q € C'(] — o0, eg[) and Q' (e) = — exp(eg —

e) < 0fore < ey. The associated steady state solution does exist and has finite radius
and finite mass; see [74, Theorem 3.1(a) and Sect.4]. The density is found to be

po(r) =[ Ox,v)dv
RS

_ Lop _
= /};3 (exp (eo ~3 [v| UQ(r)) 1>+dv

= («/%)3<es erf(y/s) — @(1 + %)) s =ey— Ugp(r),

where erf(x) = % fox e~ dt denotes the error function, which has the asymp-

totic expansion erf(x) = j—’% — % + Ox°) as x — 0. For ¢(s) = e erf(\/s) —

47&(1 + 23—“), this yields the asymptotic expansion ¢(s) = 185‘3; +0E"?) as s —

0. Since Uy € C2([0, oo[), we infer that in particular p’Q (rp) = 0 holds and it fol-
lows that assumptions (Q1)—(Q4) are satisfied. However, since Q(e) = (eg — e) +
O((eg — €)?) as e — eg—, assumption (Q5) does not hold for the King model.

1.5 Linearization and the Antonov Stability Estimate

Without being too precise about its properties, we consider an isotopic steady state
solution Q = Q(eg). To study the stability of Q, we will closely follow [30] and
write f(¢t) = Q + g(¢) with g ‘small’. The total energy
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1 1
H(f@) = 3 /RS [v* £(t, x,v)dx dv — @/W IVU ¢ (t, x)|* dx

is conserved along solutions, so it could be suspected to be a Lyapunov function.
The expansion about Q then yields

1
H(f(t))=H(Q)+/ / <§|v|2+UQ)g(t)dxdv
R3 JR3
1
—8—/ VU * dx + O(g); (1.7)
iy R3

note that f — Uy is linear. The linear term on the right-hand side of (1.7) does not
vanish, i.e., Q is not a critical point of . However, this defect can be remedied by
making use of the fact that every ‘Casimir functional’

Cq»(f(t)):/ / St x. v)) dx dv
R3 JR3

is also conserved along solutions, provided that  is sufficiently well-behaved. Pass-
ing from H to
Ho =H+Co

and repeating the expansion, one arrives at

Ho(f (1) = Ho(Q) +/R3 /R}(eg + @'(Q)) g(t) dx dv

1 , 1
+3 /]R /R @"(Q) g(1)* dx dv — o /}R VU, |* dx 4+ O(g?).
(1.8)

Writing e = e, since Q = Q(e), the equation e + ¢'(Q(e)) = 0 can be (formally)
solved by taking ®'(£) = —Q~'(€), at least if for instance Q’(e) < 0 is verified for
the relevant e in the support of Q. Then Q becomes a critical point of this H¢, and
dueto 14+ @"(Q(e))Q'(e) = 0 and Q'(e) < 0, the expansion (1.8) simplifies to

1
Ho(f(1) =He(Q) + 5 Ag(1), g(1) + O(g”),

A( )—/fﬂ| |2—i/ V.U, P dx (19)
887 o S 107 " T ar Jo e '

Thus, one can expect that the stability of Q will be determined by the properties
of the quadratic (second variation) part A = 2 D*H4(Q), which we will call the
Antonov functional. It should also be noted that A(g(¢), g(¢)) is conserved along
solutions g(¢) of the system that is linearized about Q; see [63, Prop. 3.2] and (1.21)
below.
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If we now consider functions # = u(x, v) that are spherically symmetric and odd
in v, i.e., they satisfy u(x, —v) = —u(x, v), then the celebrated Antonov stability
estimate [4, 5] is

A(Tu, Tu) > cllully, (1.10)

for some constant ¢ > 0 that only depends on Q, where
ng{gaeQ}ZU'ng_va'vaQ (1.11)

for the standard Poisson bracket {g, h} = V.g-V,h — V,g -V, .h. The weighted
inner product

1 -
(g Mo = // mg(x, v) h(x,v)dxdv (1.12)
K

induces the norm || - ||, and K = supp Q C R® denotes the support of the steady
state solution Q, which is compact, if (Q1) holds. Perturbations of the form g = 7u
are called ‘dynamically accessible’, for reasons explained in [62]; also see [66].
Antonov [4, 5] could prove that the positive definiteness (1.10) is equivalent to the
linear stability of Q. Many works followed these pioneering observations, and until
to date, almost all stability proofs, linear or nonlinear, use the Antonov stability
estimate in one way or another. The bound (1.10), or variations thereof, is applied
in a number of papers, both in the physics and in the mathematics community, to
address a variety of stability issues; see [15, 26, 28, 30, 42, 43, 50, 51, 60, 89] and
many further.

1.6 The Best Constant in the Antonov Stability Estimate

In this section, we will explain the connection of the functional u — A(7u, 7 u)
from (1.10) to a certain self-adjoint operator L. Before doing so, we need to introduce
some relevant notation, function spaces, etc. Since we restrict ourselves to isotropic
steady states, the solutions will be spherically symmetric. Thus, we will consider
(1.5) and (1.3) in the spherical symmetric framework only, and it is well-known [7]
that then the system can be written as

ZZ
O f (1,7, prs )+ py O, £ (0.1, pro €2 + <73 —8,Us, r)) 0y, f(t. 1. pr 03 =0

and
" 2 / .
Uf(t,r) + ;Uf(t,r) =dmps(t,r), ,ll)n(}on(t’r):O’

27 [ 5
prt,r) = o dee | dp,ft,r, pr, o), (1.13)
0 R
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the " indicating j—r or 0, and p, = =*. If g = g(x, v) is spherically symmetric, then
pg(x) = pg(r) and U, (x) = U, (r) are radially symmetric, and we will in general
denote (

Pet)) Y) dy.

(1.14)
s |y — x|

pg(x) :/ gx,v)dv, Ug(x) = —/
R3 R
Also g = g(x, v) canbeidentified with a function g = g(r, p,, £) org = g(r, p,, £%);

see Appendix I, Section A.1.
Next, define the linear operator /C by

ICg = {Qa Ug};

it should be mentioned that both 7 from (1.11) and K do arise naturally upon lineariz-
ing the Vlasov-Poisson system about Q; see (1.21) below. Since U, (x) = U, (|x|) =
U,(r), we obtain

X /
’Cg = {0, Ug} =-V,0- Vng = _Q/(eQ) v- ; U;,(V) = _Q/(eQ) Pr Ug(r)
(1.15)
The operator L is introduced as

Lu=—T*u—KTu. (1.16)

For what concerns the appropriate function spaces, we will pass to action-angle
variables as follows. On K = supp Q, we consider the equation

F==Ul, b)), 1.17)

where Ut (r, £) = Ug(r) + % is the effective potential that occurs in the energy
function

1 1
eo =eo(r, pr, 0) = 3 oI’ + Up(r) = 5 p} + Uer(r, ),

where p, = r is the radial velocity and ¢ should be thought of as fixed. By standard
Hamiltonian system theory (see Section A.1 for details), it is then possible to write
spherically symmetric functions g = g(x, v) = g(r, p,, £) intheform g = g(0, I, £)
if we apply a canonical transformation (6, I) — (r, p,) at fixed £. Working in action-
angle variables has many advantages. First of all, it turns out that ey becomes a
function of (I, £) alone, ep = E(I, £). Secondly, the functions g are 27-periodic in
0, so they can be conveniently represented as a Fourier series

g0, 1,0 =) gl 0",

keZ

where 5
1 4 )
g1, 8) = —f g0, 1,0) e ag
27T 0
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are the Fourier coefficients. The spaces Xg,; (cf. Appendix II, Sect. B.1) are defined
in terms of this series representation by means of the norms

81 ~ D2+ gz, oy
ez 1071

where Li (D) is a weighted L?-space on the domain D of the variables (7, £). The
1071
subscript ‘odd’ in X, indicates that the functions are odd in v, which translates into

the condition g_; = —gy for k € Z on the coefficients (so that in particular g = 0).

Now we can give a precise meaning to the fact that A(7u, Tu) = (Lu, u) is the
quadratic form associated with the operator L from (1.16). We have the following
result.

Lemma 1.1 L is self-adjoint on the domain D(L) = X2, in X°,,. In addition,
(Lu,u)g = A(Tu, Tu) holds for u € ngd.

Proof Most of this will be shown later; see Corollary B.19 for the properties of L. At
this point, let us just mention that by (B.44) in Corollary B.19 the term (K7 u, u),
can be written as ﬁ fR3 IV Ury |2 dx. Hence, we deduce that

(Lu,u)g = (=T?u, o — KTu,u)g

dxd 1
=f / #mnz——f IV, Uz 2 dx
r: Jr3 |Q'(eg)] 47 Jgs

= A(Tu, Tu); (1.18)
recall (1.9). U
As a consequence, we can re-express (1.10) as follows.
Theorem 1.2 (Antonov stability estimate) If u € X gdd, then

(Lu,u)g = A(Tu, Tu) = c|lull, (1.19)

forc = %IIQIIU(R@) > 0, where supp pg = [0, rg].
Q
We will indicate a proof of Theorem 1.2 in Chapter 2. Therefore,
A =inf {(Lu,u)g 1 u € X244 lullg =1} >0 (1.20)

is well-defined; it is the ‘best constant’ in the Antonov stability estimate and a main
object of study in the present work. We will derive many results related to A, as will
be described in Section 1.8. In particular, we will be able to characterize the cases
where A, is attained, in the sense that A, = (Luy, u,) o for some minimizing function
Uy € ngd such that ||u«|l, = 1. It turns out that then u, will be an eigenfunction
of L corresponding to the eigenvalue A, so that Lu, = A,u,. The quantity \, will
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be of fundamental importance for the dynamics of the gravitational Vlasov-Poisson
system.

Lemma 1.3 Letu, € ngd be a minimizer and define

1
VA

ga(1, %, v) = cos(v/\ut) s (x, V) — sin(y/ A1) (Tu,) (x, v).

Then g, is a j—;L—periodic solution of the equation
0g+7Tg+Kg=0 (1.21)

that is obtained by linearizing (1.5) and (1.3) about Q.

Proof To linearize the system about Q, let f = Q + g as before. As a consequence
of the fact thatv - V, f — V, Uy -V, f = {f,ef} fores(x,v) = % [v]? + Uys(x), we
may write

0:8,f+{f,ef}:8tg+{Q+g,%|v|2+UQ+Ug}
=08—VoQ -ViUg+v-Vg —Vyg-V.Ug— V8-V, U,,
which is equivalent to
Og+Tg+Kg=Vyg- -V, U,. (1.22)
Thus, (1.21) is indeed the linearization. Next, note that u, is odd in v. Hence, p,, (x) =

fR3 u.(x,v)dv = 0 implies that U,, = 47TA_1pu* = 0 and therefore Ku, = 0 by
(1.15). Consequently,

0,8 + T g + Kg = —/Aesin(y/At) u, — cos(v/Aut) T,
1
+cos(v/Aut) Tty — —= sin(v/Aut) T2us

Vs
1
+ cos(v/Aut) Kuts — I sin(v/Aut) KT u,
1
= — VA sin(V/ A1) u, + = sin(v/Au) Lu, =0,

as claimed. O

At present, it is not known if periodic solutions to (1.5) and (1.3) close to steady
state solutions do exist; see [17, 56, 70]. However, in this case, j—; will conceivably
be the limiting period of the oscillations, a fact for which there is some numerical
evidence [70]. To give a heuristic argument, suppose that g. is an e-small and 7-
periodic solution to (1.22) such that T, — Ty ase — 0. Then, g. = ¢ !g. will be of

order one, T.-periodic and satisfies
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arga + Tgs + ng = 5vae : VxU§g~

Assuming now that g. — g, in a suitable norm, g, # 0 will be Ty-periodic and such
that
08« +7Tg«+Kg,=0.

If 9, + T + K does have a one-dimensional kernel, then g, is proportional to g,

from Lemma 1.3, and hence Ty = %

1.7 Domains in Action-Angle Variables

Before we will be able to describe our main results and their connection to the Birman-

Schwinger principle in Sect. 1.8, we have to take a closer look at the domains that

occur as the supports of steady state solutions, expressed in action-angle variables

(0, 1, £); recall that the particle energy ep = E(/, £) is a function of (/, £) alone.
The frequency functions associated with the energy E are

w1, 0) = M’ w1, 8) = M -

OE(l, ¢
o 0, wir, o = 2ELO

OL3 ot

where (I, L3, £) are the action variables. We would like to emphasize that wy, together
with the corresponding period function 77 (/, £) = ﬁ, will be a main player in
the game, and understanding its properties will be of central importance. This is due
to the fact that in action-angle variables the operator 7 from (1.11) is found to be
very simple:

(Tg)0,1,6) =wi(l,£) g0, 1, 0),

or g; > ikw; g in terms of the Fourier coefficients. Since w; is independent of 6,
this also yields —72g = —w} d7g or g > k*w? gi. It will turn out (see Section
3.1) that w is strictly positive, so that, at fixed ¢, the map I — E([, £) is strictly
increasing. Therefore, it can be inverted as a map E +— I (E, £), and accordingly
functions g = g(0, I, £) can be viewed as functions g(0, E, £) = g(0, [ (E, £), {)
and vice versa.

From (Q1)-(Q4) in Sect. 1.3, the following can be shown (cf. the argument in
Sect. 1.7.1 below):
In action-angle variables, one has

K ={0,E,B):0€[0,2n], B €0, Bi], E € [emin(B), eo0l},
where E = E(I,£) and I = I(E, £). Furthermore, 5 = ¢2, 3, > 0, and

emin(8) = Ueii (ro(3), B)



1.7 Domains in Action-Angle Variables 13

is the minimal energy of the effective potential U.g (-, ), which is attained at the
unique point ry(3); see Appendix I, Sect. A.1. Also, enin (+) is non-decreasing and

min {emin(ﬁ) :8€l0, B8]} = UQ(O) < €9,
max {emin(B) : B € [0, B:]} = eo.

We will always denote

D ={(E, ) : B €l0, 5], E € [emin(D), €0},
which at times will be expressed in terms of £ as

D ={(E,?):£€]0,L.] E € [emin(£), eol}, (1.23)
and similarly, we will write

K={0,E, 0):0<c[0,2n],£ €[0,L.], E € [emin(£), €0l}. (1.24)

Itis also understood that K and D can be written in terms of the variables (0, I, 3),
0, 1,¢) and (I, B), (I, £), respectively, without this being reflected by renaming the
sets. In any case, we will always have K = [0, 27] x D.

For illustration, we are going to determine K and D for the polytropes and the
King models, respectively. A general domain D is shown in Fig. 1.1.

€g

€min(B)

Uq(0)

Fig. 1.1 The domain D in coordinates (e, 3) = (E, [3)



14 1 Introduction

1.7.1 Polytropes Revisited

We wish to determine the support
K =supp Q = {eg —ep = 0}

of the polytropes in terms of 3 = ¢> and e = ey. More precisely, since always €
[0, 27] on K for the angular variable 6, we have to exhibit a set D of (e, §) such that
K = [0, 27] x D. On this domain D, we need to have

e = e = Uest (r, 3) = Uest (ro(B), B) = Ug(ro(3)) + ﬁ;)z (1.25)

with ro(8) denoting the unique point where the effective potential U (r, 3) =
Ug(r)+ % attains its minimum value epi,(3) = Uetr(ro(B), 3). From (1.25),
we get

2r0(8)* (eo — Ug(ro(B)) = .

Let
J =1{B>0:2r0(B)* (eo — Ug(ro(B)) = B}.

First, we claim that J is an interval. To see this, note that

2 (e — Uan(r. ) + 8 = 27 (e — Up(r) = 5) + 6 = 2% ey — Ug(r).

Therefore,
2r¥(eg — Ug(r)) = B = Ue(r, B) < e,

which implies that
J={8=0:emn(B) < eo}. (1.26)

Now 3 — emin(3) is increasing by Lemma A.7(c) below (which is a general result),
and thus J has to be an interval.

The next aim is to show that [0, €] C J for some € > 0 small enough. For, by
Lemma A.7(f), we have

1
ro(B)* = 0 B+ OB and emn(3) = Ug(0) + O(B'?)

as 8 — 0T, Since Up(0) < ey (the cut-off energy), the condition emi, (5) < ey from
the characterization of J in (1.26) is satisfied with strict inequality at 3 = 0. It follows
that [0, €] C J if € > 0 is sufficiently small.

Now, we are going to show that J is bounded. First, if 8 € J, then ry(3) <
ro, where supp pg = [0, rg]. Otherwise, we would have ro(3) > ro for some
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B € J \ {0}. Since rg is characterized by Uy (rg) = e, this gives Uy (ro(B3)) > eo,
and consequently 3 < 2ry(3)? (eg — U 0(ro()) < 0, whichis a contradiction. Then,
ro(8) < ro for 8 € J in turn leads to the boundedness of J, owing to

B < 2r0(B)* (e — Ug(ro(3)) < 2r{, (eo — Ug(ro(B)) < 2rj (eo — Ug(0))

uniformly for 5 € J.
Lastly, we will check that 3, = max J satisfies eyin (0x) = ep. In fact, at 3,, we
must have 2ro(8:)? (eo — U (ro(B+)) = Bs. Thus,

Bs

emin(Bx) = Uet (ro(By), By) = UQ(r()(ﬁ*)) + 2r0(B:)2

= ¢p. (1.27)

To summarize, since the condition on e is ¢y > e > eyin (), we have shown that

D ={(B,e) : B €0, ], e € [emn (D), €]}

and K = [0, 27] x D for the support K of Q in terms of e and 3, and the lower
boundary curve [0, 8] 3 B = emin () strictly increases from U (0) to e.
We would also like to point out that ry(3,) €]0, ro[. By construction, one has

ro(8+) < rg, so suppose that we had ro(3,) = rp. Since r()(ﬂ)3U/Q(ro(ﬂ)) =4,
(1.27) yields

Bx

1 /
3B = VeroB) + 3 0B Ugtro(Be))- - (128)

eo = Ug(ro(By)) +

But Uy (rg) = e, whence 0 = Uy, (rg) = ‘:—;T o¢ 52po(s) ds, which is a contradic-
0
tion. The relation (1.28) characterizes ry(f3), since o(r) = Uy (r) + % rU’Q (r) sat-
isfies @'(r) = L rB(r) for B(r) = 222 4 47py(r) > 0 from Lemma A.6(b). In
addition, ©(0) = Up(0) < €9 and p(rg) = e + %rQU’Q(rQ) > ep.
Finally, observe that the reasoning in this section did not depend on the specific

form of the polytropic ansatz function (1.6), but only on the general properties of the
functions ro(3) and e, (3).

1.7.2 King Models Revisited

Exactly as in Sect. 1.7.1, here we also get
K = Supp Q = [07 27T] X Ds D = {(5’ e) : /6 € [Ov ﬁ*]v e € [emin(ﬁ)» 60]}7

for the corresponding functions ry(3) and emin (3) = Uegr (ro(3), 3). In addition, we
have ro(83,) €]0, rol.
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1.8 Summary of the Main Results

Now, we are in a position to outline the main results of this book. In Chap. 3, we
will study the properties of w; or equivalently of 7} in some detail. First, it is shown
(Theorem 3.2) that

6y = inf {wi (e, £) : (e, £) € D} > 0. (1.29)

This fact has been mentioned above and it will be used many times. The number d;, or
more precisely 62, is intimately related to the spectrum of L, since (5% = min geg (L)
is the minimum of the essential spectrum of L. In this connection, let us also mention
that the essential spectrum of L can be determined explicitly, and it is large in the
sense that [\., 00[C e (L) for some A, > 512. Furthermore, A\, < (512 is satisfied
(Section 3.4). Along with (1.29), we will also prove that

Ay =sup{wi(e, ) : (e, £) € 5} < 00;

see Theorem 3.5. Concerning the regularity of w; or 77, it is not very difficult to
see that 7} € C! (lo)), as will be derived in Theorem 3.6. It is considerably harder to
verify that T} € C(D), i.e., that T} can be continuously extended to the boundary
OD of D. This will be done in a series of lemmas, and the results are summarized
in Theorem 3.13; the most challenging part is to make sure that 7} is continuous at
(e, B) = (Up(0), 0), which is the lower left corner of D. It will also turn out that
T, is increasing on the lower boundary curve of D (Lemma 3.14) and on the left
boundary part of D (Lemma 3.15).

In Chapter 4, we are going to make the connection of the spectral problem for
L to the Birman-Schwinger principle. We will be using an approach to reformulate
the problem that is inspired by the physics reference [61], although this paper does
neither use the operator L nor realize the underlying Birman-Schwinger principle.
Let L? denote the L?-Lebesgue space of radially symmetric functions W (x) = W (r)
on R3 with inner product

(W, D) =/ Yx)D(x)dx = 477/00 rzmcb(r) dr.
R3 0

It will be shown that one can define a family Q) of non-negative Hilbert-Schmidt
operators on L? with the following properties for A < §7:

(a) \is an eigenvalue of L if and only if 1 is an eigenvalue of Q).

This observation provides a natural way for showing that A\, is an eigenvalue of
L, provided that one has \, < 47 (i.e., there is a spectral gap). The first eigenvalue
function g1 (A) of Q) turns out to be increasing in A, and one has to locate the value
of A, where 1; becomes 1; in this way, we will be able to show that )\, is attained.
Furthermore, we will also prove:
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(b) ifu e ngd is an eigenfunction of L for the eigenvalue A, then ¥ = 47 fR3 pri
dv € L? is an eigenfunction of Q) for the eigenvalue 1;

(© if e Lf is an eigenfunction of Q) for the eigenvalue 1, then u = (=772 —
N7 (Q (eg)| pr¥) € X2y, is an eigenfunction of L for the eigenvalue .

Thus, if we compare (a)—(c) for our galactic dynamics setup to (a)—(c) from the
Schrodinger case in Sect. 1.1, then we see that both are formally identical if we asso-
ciate p, ~ /—V and —A ~ —7?2 and furthermore disregard the velocity average
fR3 dv; the appearance of [Q'(eg)| in |Q'(eg)| p, ¥ is due to the (-, -), that is used.
There is yet another fact that supports the analogy of both approaches. One of the
ways to represent Q) is

QW =4r / pr (=T =X 7" (1Q'(eQ)| pr¥) dv. (1.30)
R3

Comparing this relation to (1.1), it turns out that both relations do agree if we apply
the same identifications as before.

Throughout the book, we are going to exploit this Birman-Schwinger principle in
galactic dynamics to deal with the question in which cases A, from (1.20) is attained.
However, there seems to be a wide range of further possible applications that could
for instance be related to a limiting absorption principle or L?—L?-estimates on the
‘free resolvent’ (—72 — A\)~!, in the spirit of [45] for the Laplacian. One advantage
when dealing with (1.1) is that, in three dimensions, the operator has the explicit
integral kernel

1
Bo(x,y) ==V (x) m——— exp(—/e|x — y)) V=V (),

drlx —yl

which allows for hands-on estimates. It would also be desirable to obtain something
similar for (1.30).
The explicit form of the operator Q) is

O\: L} — L2,

167 [~ .010'@)
@wn=" 3 [“arwe [[ deeder, . e H10 @]
D

)Srisri(e, )} 750 —
0 k*wi(e, £) — A

x sin(k@(r, e, £)) sin(kO(7, e, £)),

where ry (e, £) are the maximal resp. minimal value of r along the orbit of (1.17)
that has energy e, and 6(r, e, £) is the associated angle. Note that A < &7 implies
kK*wi(e, €) — A > 62 — A > 0 for k # 0, so the denominators do not vanish. It turns
out that the family Q) can be analytically continued to Q. forz € Q@ = C \ [6?, oo,
by simply replacing A with z. In addition, we can write (Q,W)(r) = (K:(r, -), ¥)
for some L% x Lz-integral kernel K, which allows us to show that each Q, is a
Hilbert-Schmidt operator on Lf. Furthermore, (O \W¥, W) > 0 and A — (Q\W¥, ¥)
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are increasing for real A. Then, the spectrum of Q) consists of p(\) > pa(N) >
... = 0 (the eigenvalues are listed according to their multiplicities). In addition,

(A = [1Qall = sup {QuW, W) : W]z < 1},

where || - || = || - l3(z2), and every function
fu(-) = 1= 00, 67— 10, ool

for k € N is monotone increasing and locally Lipschitz continuous. According to the
Birman-Schwinger characterization of an eigenvalue A for L, we have to determine
those k and )\, where /() = 1. Since we expect A, < 7 to be the principal eigen-
value of L, more specifically we need to find A such that p; (A) = 1. In this respect,
the quantity

pe = lim i (N) = sup (V) : A € [0, 511} € [11(0), o0]

will be important, and in what follows, we are going to outline our results, depending
on [iy.

Let us first recall that 6% = min oeg (L), and if A\, < (5% and A\, were an eigenvalue
of L, then there would exist a spectral gap. We are going to prove in Theorem 4.13 that
the conditions \, < 5]2 and p, > 1 are equivalent, and in this case, 1 (\s) = 1 and
A 1s an eigenvalue of L. The difficult part of the argument is to show that a spectral
gap A\, < 6 forces ), to be an eigenvalue. This is accomplished by studying (at great
length in Appendix C) a certain evolution equation, for which \, < &7 translates into
a compactness condition; the argument is summarized in Section C.1.

Next, we turn to the case where u, < 1. Then necessarily A\, = 82, so there is no
spectral gap and we cannot use the Birman-Schwinger principle. Nevertheless, it is
possible to prove (Theorem 4.14) that now A, = 47 is not an eigenvalue, provided
that the following condition is satisfied:

(wi-1) {(I,£) € D : wi(I, £) = 4} has the Lebesgue measure zero.

This excludes (Lemma B.12) that 67 is an eigenvalue of —7 2. The proof works by
deriving suitable estimates for the operators Qs _. ;s in the limite — 0". We would
not be surprised if the case p, < 1 could not occur at all, but we were not able to
verify this.

The most pathological case seems to be p, = 1. Then once again A\, = 5%, there
is no spectral gap and the Birman-Schwinger principle does not apply. To see that
here one needs to add another condition on wy, let us change the perspective and ask
where, in D, 0; = inf 5 w; = minp wj is attained. If this happens at an interior point
(e, @) € D, then Vw (&, B) = (0, 0) and the following condition will be verified:

(w1-2) There are a point (e, ﬁ) €D, a neighborhood U of (e, B) and a constant
C; > O such that w; (¢, 3) = §; and
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wie, B) — 01| < Cil(e, ) — (@, DI, (e.8) € U. (1.31)

But then Corollary 4.16 implies that p, = 0o, which is not compatible with p, = 1.
Hence, we can assume that the minimum is attained at some point (e, [3) € 0D, the
boundary of D. According to Corollary 3.16, then (e, B) lies on the ‘upper line’
{(e, B) : e = ep, B € [0, Bi]} of the boundary and one needs to have more precise
information on the behavior of w; close to (e, B) = (e, B). If Vw (e, B) ~ (0,0)
(the following motivation is not rigorous since we don’t know that w; is differentiable
on OD), then we would be in a similar situation as what has been described before.

A

Therefore, we can assume that Vwi(eg, 5) »~ (0, 0) in tpe sense that at least one
of the derivatives %% and %’—“}J/}‘ does not vanish at (eg, 3). If it is exactly one of
the two derivatives that does not vanish, one could also derive a bunch of results,
with techniques that are similar to the ones outlined below. Hence, we are going to
assume that both derivatives do not vanish, in a weak sense that does not need the

differentiability, as formulated in the following condition:

(w1-3) There are a point (e, B) € D and a constant ¢; > 0 such that w (e, B) =0
and

lwile, B) — &1 = cil(e, B) — (eo, B)l, (e, B) € D;

it would be sufficient to require (w;-3) only locally in a neighborhood of (e, B).
Supposing that (w;-3) holds, we can show in Theorem 4.15 for i, = 1 that A\, = 5%
is an eigenvalue of L if and only if

”M/l”Lx(]—oo,&f[) <0 (1.32)

is verified; since w;(-) is differentiable a.e., this condition is meaningful. The
proof works by first observing that, as a consequence of (w;-3), the operator
Qs = lim,_, _ Q) does exist in the Hilbert-Schmidt norm (Lemma 4.9) and hence
is a Hilbert-Schmidt operator itself. In addition, ., = 1 is its first eigenvalue p, (5%).
Due to the compactness of Qs, if W; € L? is a normalized eigenfunction of Q z; for
mi(Aj)and A; — 6 12 —, then a subsequence will converge to a normalized eigenfunc-
tion W, of Qg for the eigenvalue /1, = 1 (Corollary 4.11, no need to assume (1.32)).
Once again, the situation is very much analogous to what is known for Schrédinger
operators, cf. [82, pp. 83—85] and [84, Section 2] for instance: a threshold eigen-
value and eigenfunction of the Birman-Schwinger operator do not immediately give
rise to a threshold eigenvalue and eigenfunction of the Schrédinger operator, but in
fact the existence of the latter is characterized by an additional condition, which is
(1.32) in our case. To understand its meaning, suppose for simplicity of the presen-
tation that there is € > 0 such that ]Jf — g, 612[9 A+ pp(A) is real analytic, and in
addition that there are W) € L% satisfying ||\IJA||L; =1, 0\¥) = u1(\)W), so that
also 167 — &, 62[> A > W, is real analytic. This will follow from the Kato-Rellich
perturbation theory if 1, is known to be a simple eigenvalue of Q. In the general
case, which is much more technical, one needs to work with appropriate sequences
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Aj— 512— that are constructed using an appropriate generalization of the standard
Kato-Rellich perturbation theory (Appendix IV). In the real analytic case, define
Ua(r, pr, £) = 1Q'(eg)| pr¥a(r) and gy = (=72 — N)~'4,. Then it is found that

1 1
nm@zz@mezﬂm@

and ) is increasing. Thus, (1.32) is equivalent to the condition sup [|gxllx0 < 00,
i.e., to the boundedness of (g)) C X 0. In addition, one can prove that

Lgy = (1 — pi(A)Yx + Agy,

cf. Lemma4.7(c). Since 1 (\) — ul(éf) = u, = 1, the weak convergence g\ — g.
is seen to be sufficient to ensure that g, # 0 and Lg, = 07 g,, i.e., g, is the wanted
eigenfunction of L. To establish the converse assertion, i.e., that the existence of an
eigenfunction of L for \, = (5% leads to (1.32), a different argument has to be used;
see Theorem 4.15. Corollary 4.17 contains an example of a situation where (1.32)
can be shown to hold. For this, we add (Q5) from Sect. 1.3 as an additional condition
on Q. It should not be surprising that the regularity of Q’ close to e = ¢( will become
important in this respect since we are dealing with integrals of the form

wi(e, 8)1Q'(©)
Ezfydﬁd e g

k#0 /55

many times. If A ~ 6% and k = =£1, then the behavior of w; close to (e, 3) = (e, B)
gets important; this is addressed by condition (w;-3). On the other hand, there is an
interplay with the term | Q’(e)| for e close to e(, which could compensate for possible
losses (or it could be bad itself). Generally speaking, many different results could be
derived for p, = 1 by combining assumptions of w; with assumptions on Q’ close
to eg.

Let us remark that we don’t see an immediate path to calculate u, for a given
steady state solution Q. However, there might be a smart way to settle this question,
and in any case i, together with additional important quantities like A, and d;,
for sure could be determined numerically. Another notable fact is as follows. The
Vlasov-Poisson system (1.5) and (1.3) has many invariances; see Chap. 6; quantities
that remain invariant under the scaling could be expected to be of ‘fundamental’
importance. It turns out that p, is such a quantity, but A, and §; are not. On the
contrary, the conditions \, < 512 and )\, = 612 are both invariant. We will deduce
several other invariants in Chap.6, among them the “Eddington-Ritter relation”,

which says that
27
v po0)

Now

\/7 is the “linear period” from Lemma 1.3.
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There are several other operators around that are used to assist (by means of
their coercivity) stability proofs for stellar systems, among them the “Hartree-Fock
exchange operator” by Lynden-Bell [57, 58] and the “Guo-Lin operator” [29, 88].
Concerning the latter, we are able to make a connection to the operators Q) that
we are using, more precisely to Qp. Let AgL, > 0 denote the best constant for the
Guo-Lin operator; see (5.2). Then we have

AL+ (0) =1

by Lemma 5.1, and 0 < 1;(0) < 1 implies that A\gL > 0 will always be attained
(Corollary 5.2). Of course, the clear advantage of the operators Q) is the underlying
Birman-Schwinger principle, as they can be used to detect the A, that will be the
eigenvalue.

Finally, there are four appendices. Appendix I and Appendix II contain the neces-
sary background material for what concerns the change of coordinates to action-angle
variables, function spaces and operators. Appendix III is independent and provides
a proof (using a new evolution equation) of the fact that A\, < &7 implies that )\, is
an eigenvalue of L; this will enter into the theorems obtained in Sect.4.2. Lastly,
Appendix IV concerns some specifics of the Kato-Rellich perturbation theory that
are also used to study the properties of Q) as A — §7—.



Chapter 2 ®)
The Antonov Stability Estimate oo

The purpose of this short chapter is to provide some more details on the Antonov
stability estimate, Theorem 1.2.

Proof of Theorem 1.2 We (formally) repeat the argument from [50, Prop. 4.1(ii)];
also see [30, Appendix]. Define ¢ (x, v) = % Then a direct calculation shows
that

ITul = (- 0?1 TqP + T (- 0lgPTer - v) = (- 0) [gPTx - v).

Moreover 7 (x - v) = |v]> — rU/Q(r) and, using AUy = 47py,

U/
T x-v) = —(x- v)<47TpQ(r) + Qr(r)). 2.1)

Therefore,

Up,(r)
—ov/ lul?.
.

ITul? = 4mpo()luf = (x - v 1TgP + T () lgPT(x - v) +

Now integration by parts yields [p: [gs | g"(jgv)l T(...)=0, cf. LemmaB.9(a). So
what remains after integration is

dx dv 2 1 5
(Lu,u)g = Tul — — |V Ur,|”dx
R3 JRR3 |Q (EQ)| 4 Jrs

dx dv Q( "
4 T
/Rz /1;% 10'(e Q)| Tpo(r)|ul® + (x - v)? | Tql> + ——|u |]

——/ IV Uryl*dx.
vy R3
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24 2 The Antonov Stability Estimate

From Lemma 2.4 below, we have UL (1) = 4w fR3 pr u dv. Therefore,

2 2
IV Ura|? dx :f dx = 167r2/ / p,udv} dx,
R3 R3 RrR3 | JR3

and this leads to

B dxdv ) u 2 Uyp(r)

dv
+47rf dx|: (r) —|u|2—/ e udv
w172 Je 107l o

To obtain the lower bound, note that by Lemma?2.5 below

/ prudv
R3

x /
7 U’Tu

2
}. (2.2)

E ‘ [ 2100?10 €0 s

, 12 dv , 1/2
< ! d —
—(fRsp"Q(eQ)' ”) (Awgf(egn '”')

dU 1/2
_ 1/2 2)
P ([R 0 )

Therefore, (2.2) yields

dxdv Uyp(r)
(Lu,u)g = /1;3 /R3 m p lu|=. (2.3)

The function A(r) = Ubr(r>, together with B(r) = 4mpo(r) + A(r), will be consid-

ered in Lemma A.6. It turns out that this function is strictly decreasing, positive and
such that A(rp) = r% | Ol 1 (e)- Hence (1.19) follows. (I
Q

Example 2.1 We are going to show that

L(1Q'(ep)|(x -v)) = A(r) |Q'(eg)] (x - v), (2.4)
and in particular u(x, v) = |Q'(eg)| (x - v) is not an eigenfunction for A, from
(1.20). Regarding (2.4), (2.1) says that 72(x - v) = —(x - V)@mpo(r) + A(r)) =

—B(r)(x - v), cf. Lemma A.6. Hence, using 7|Q’(eg)| = 0 from Lemma B.9(a),
also 72u = —B(r)u holds. Therefore, due to (B.37), Lemma 2.4 and Lemma 2.5,

KTu = 4w|Q’(eQ>|pr/ prudp =47r|Q’<eQ)|prr/ 210 (eg)| di
R3 R3

=47 |Q'(eg)| (x - v)po(r) = 4mpo(ru,
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where p, = x - v/r and p, = x - v/r. As a consequence,
Lu=—T?u—KTu= B(r)u—4rpo(r)u = A(r)u,
so that (2.4) is established. <
Corollary 2.2 We have
0 < A(rg) <X <AQ0) and 0 < B(rg) < A < B(0).
Proof The lower bound A\, > A(rp) follows from (2.3) and A(r) > A(rp). Regard-

ing the upper bound A\, < A(0), consider as in Example 2.1 the function u(x, v) =
|Q'(eg)|(x - v), which is odd in v. Then Lu = A(r)u, and thus

(Lu, u) —/f AXdv_ oy uf? < A(0>// dxdv_\ o p0)ul?
T o Jre 1Q7(e0)] & 10/ (e0)] Q)| (2;2)‘

Hence, it follows that A, < A(0), and it remains to be shown that A\, = A(0) is
impossible. Suppose that in fact A\, = A(0). Then, for the same u,

dx dv
f / ——— A0) [u* = AO)|ully = Acllully
R3 JR3

10'(eg)
u u

<(c s ) llully = Lu, u),.

( lullo ||u||Q>Q ¢ ©

(Lu, u) —ffMA(n 2
L= 10 e

from (2.5), this leads to

dx dv
A A0 2
/RSAHQ(QN(@) O) [uP =

But this is not possible since A is strictly decreasing by Lemma A.6(a). For the
estimates in terms of B, it is sufficient to note that B(r) > A(r) and B(rg) = A(rp),
cf. Lemma A.6(b). U

Using

Remark 2.3 Observe that 0 < A(rp) < A < A(0) and 0 < B(rg) < A\« < B(0)
from Corollary 2.2 together with Lemma A.6 imply that A, = A(r4) and A\, = B(rp)
for certain r4, rp €]0, rg[. It would be interesting to understand whether these radii
r4 and rp do have a special meaning. <&

The following observation has been made before; see [30, p. 507] and [50, (B.1)]
for instance.
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Lemma 2.4 For appropriate spherically symmetric functions g,
Ur,(r) = 471'/ prgdv.
R3

Proof Since V, Uy is independent of v, by (1.11) the density is found to be

pre(x) = /3(1} -Vig — Vg - ViUp)dv =div, /3 vgdv.
R R

Therefore, using (A.2) below and Gauss’s theorem, it follows that

/ 1 1 ]
Ug,(r) = = pre(x)dx = — . dXdlvx(./]R3 vgdv)

x|<r r

lz dS(x))i'(/ vgdv):iz/ dS(x)(/ prgdv),
= Jix|=r r R? = Jixj=r R3

where g = g(x, v) = g(r, p,, £). As g is spherically symmetric, the function G (x) =
Jxs Pr g dv is invariant under rotation, i.e., G(x) = G(|x|). Thus, U, (r) = 4n Jrs
pr g dv as desired. O

For the next lemma, cf. [30, p. 507] and [50, (B.3)].

Lemma 2.5 We have
[ 1ot av=poe
R

Proof Since -L[Q(eg)] = Q'(eg)p, due to eg =} p? + Ug(r) + 4=, we have
from (A.40):

f 10'(e0) p2dv = — f 0'(eo) p? dv
RS RS
2w o / 2
—— [ dp. | dtLQ'(eg) p,
r~ Jr 0
27 [ d
— | dee | dp, §
rZ/O /Rp dpr[Q(eQ)]p
2 [
[ aee [ ap oo
r=Jo R

/ Q(eg)dv = pg(r),
R3
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where once again (A.40) has been used. Note that the boundary term vanishes in the
integration by parts above. Indeed, if we use the notation from Lemma B.7, cf. (B.10),
(B.11) and (B.12), then for fixed » and £ € [0, [(r)], we see that

p

(Q(eg) pr) 5= Q(e0)p — Q(eo)(—p) = 2p Q(eo) =0,

since Q(ep) = 0 by (Q2). U



Chapter 3 ®)
On the Period Function 7j R

Associated with every effective potential U (r, £) = Ug(r) + % is a period func-
tion T (-, £) that is defined for certain energies e € [enin(€), eo], for which periodic

solutions of ¥ = —U;(r, £) do exist; see Appendix I, Sect. A. 1, for more information.
According to (A.20), this period function is given by
re(e.d) dr
Ti(e, ) =2 / ,
r ety ~2(e— Ue(r, £))

wherery = ry (e, £) arethe zeros of 0 = 2(e — U (1, £)) and satisfy 0 < r_(e, £) <
r+ (e, £). In addition, for every £ > 0, the potential minimum inf {U (r, £) : r > 0}
is attained at some unique ro(£) €]r_(e, £), r1 (e, £)[. The corresponding frequency

function is wy (e, £) = %

3.1 Upper Boundedness of T;

Recall that
D = {(6’, ﬁ) : ﬁ € [07 ﬂ*]’ e € [emin(ﬁ)v eO]}v (31)

and

D ={(e, ) : B €0, Bul, € €lemin(B), eol}

is its interior. We are going to show that 7} is bounded from above (or equivalently,
wj is bounded from below), uniformly in D°, which is the set of relevant (e, £), where
T is defined. As T; will be shown to be continuous in D (see Theorem 3.13 below),
this is of course for free, but since the direct argument in Theorem 3.2 could be of
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30 3 On the Period Function T;

general interest, we include it anyhow; the same remark applies to Theorem 3.5 on
the lower boundedness of Tj.

We start with an auxiliary lemma that will be useful for the proof of Theorem 3.2
and beyond.

Lemma 3.1 The following assertions are verified.
(a) Ifr > s > 0, then

2 2
{pgm(ﬂ — %) < Ug(r) — Ug(s) < ?ﬂpQ(O)(rz —-). (32

Moreover, forrg > r > s > 0,
e _
Ug(r) = Ug(s) = 15 p (2 )(r 2. (3.3)
(b) One has
r 47
po (_Q) rir: <0< 5 po(0)r’r?

0
6 2

(c) One has

1/4
rg = <—6 ,Q)> Ve

Tpo(

Proof (a) According to (A.2), we have by changing variables s = r7, ds = rdr,

/ 4r " 2 ! 2
UQ(r) = po) ; s po(s)ds = 4mr ; T po(r7)dr. (3.4)

In particular, Ué (r) = 0. Furthermore, for r > s > 0 and putting ¢t = o/r, dt =
dojr,

r r 1
Up(r) — Ug(s) = / Uy(o)do = 4r / doo f drr*po(o7)
K s 0
1 r
:47r/ dTTZ/ doopo(oT) 3.5
0 K
1 1
= 4772 / drr? / dtt po(rrt). (3.6)
0 s

Due to (A.32), we have that p’Q (r) <0,1ie., pg is radially decreasing. Thus, if 7 €
[0,1] and o € [s, 7], then po(r) < pp(0oT) < pp(0) and (3.2) follows from (3.5).
To establish (3.3), we use (3.6). To begin with, since py > 0,

1 1
Up(r)=Ugp(s) > 471'r2/2 dTTZ/ dttpo(rrt).
0 s
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Owing to r <rg, 7 €0, %], and r <1, we have r7t < %Q, so that po(rrt) >

po(%). It follows that
1

9 [ [ s el -))

Ug(r) — Ug(s)>4nr? pQ
which is (3.3). (b) The condition U (r+, £) = e means that Up(r+) +3 q =e,and
hence

2r2Up(rs) + €2 = 2rie. (3.7)

Therefore,

208 —r2)e = 2(riUq(ry) — r2Up(r-))
=207 = r)Uq(ry) +2r2 (Ug(ry) — Up(r-)),
so that
2 2 e 2 2 2
(ri — r_)r—2 =20ry —ri)(e—Uq(ry)) = 2r2(Ug(ry) — Ug(r-)).

+

It remains to use (3.3) and the upper bound from (3.2). (c) First note that po (%) > 0
].By Lemma A.7(a), (3.4) and since p¢ is non-negative

as otherwise supp pp C [0, %Q
and radially decreasing,

1
0 =ryUp(rg) = 47rr6‘/ po(roT) dT > 47rr6‘/
0 0

1
’
2471'}’3/0 TpQ(z)dT —,OQ(TQ)”S-

We will derive a more precise asymptotics of ry as £ — 0T below in (A.34)
Now, we are in a position to derive a uniform lower bound on w; or equivalently

=

TZpQ(r()T) dr
O

a uniform upper bound on 7.

Theorem 3.2 We have
81 = inf {wi (e, £) : (e, £) € D} > 0.

) > 0. Then in particular ag < pg(0), so that

g =1- /#j(o)e[%,l[.

Letry =ry(e, £) and ro = ro(£) be as before. From Lemma 3.1(c), we recall that

o

Proof Putag = po(F
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6 \/4
r0§<—> Ve (3.8)

magp

Case 1: ryp > (1 — dg)ry. Then Lemma A.10(b) in conjunction with (3.8) implies
that

e r2 27 rg 27 6 \'?
Ti(e,0) < <2 —_— — = | — .
e ) = m = A r) S 2T S5 9 0 = (1= 5g) \rag

Case 2: ry < (1 — dp)r. This is the nontrivial part of the argument. Here, we split
up the integral as

dr

Ti(e,0) = 2 2(e — Ut (r, 0)

dr

)
r_ A/2(e — Ut (r, £)) o V2(e— Ug(r, £))

=T (e, £) + T1+(e, £).

Using Lemma A.10(a), we can bound 77 as

T(e£)<2'/ r+/ rdr

<> r_Tr+ /

- 12 \/r+—r0 . Jr—r_

el | N (3.10)
l ry — 1o

Itfollowsfromry < (1 — dgp)ry that \/ry < 551/24/14 — ro. Thus, by (3.8) and since
do > 1/2,

—1/2 A/T— 1270 v
T\ (e.6) <400 X = rofro—7- <455 4f( ) . (31D
Tag

Regarding 7,", we can invoke Lemma A.7(a) to get for r € [ro, ;] by also using
Lemma A.6(a),

¢ ¢ roUp(ro)  ro Up(ro) 1
< = < 1-0p)==(1-0p)%A
2r2r2 T 2r3rd 2r2 T2 ( 0) 2( 0)” Alro)
1 27
< 3 (1 —30)*A(0) = 3 (1=350)% po(0). (3.12)

We then deduce from (3.3) in Lemma 3.1(a) and (3.12) that for r € [rg, r4],
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& &
e = Ueii(r, €) = Uesi (ry, ) = Uese (r, €) = Ug(ry) + = — Up(r) — -—
2ry 2r
2
- 2 _ 2
=Ug(ry) = Ug(r) — W (ri—r9)

2
> [;T—ZQQ - ?W a _6Q)2PQ(0)i|(ri —r?)

= % aQ(rf_ — r2),

the latter owing to the choice of d¢. This in turn yields

T+(e£)—2/r+ dr -2 ﬁf“L
1 (e, o V2(e = Ueg(r, £)) — wag Jy, /rer _

43 1 " dr 8v/3 1 83
< = Vre—r < :
/Tag JT+ Jry, T+ —7T [Tag JT+ /Tag
Adding this to (3.11), we have shown that
6 \'* 8J/3 1643
Ti(e, 0) <42 (—) + V3 = “/_. (3.13)
7raQ N /7TaQ N /7raQ

Hence, the boundedness of 7} from above is a consequence of (3.9) and (3.13). [

Observe that in the proof of Theorem 3.2 actually no properties of the sets DorD
from (3.1) have been used, apart from the fact that T (e, £) is defined for (e, £) € D.

3.2 Lower Boundedness of T

It is the purpose of this section to verify that 7} is bounded from below (or equiva-
lently, w; is bounded from above), uniformly in D.
In some cases, it will be convenient to be able to re-express the period function

rie.) dr

Ti(e, B) =2 3.14
(. ) .[@@ 2 — U, B)) G149

from (A.20), written in terms of 3 = £2, by means of an integral with fixed limits of
integration; this is more or less taken from [11, Section 2].

Lemma 3.3 We have

/2 do
Ti(e, f) = V2 :
! /2 %(“Msin 0,3),5)
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where

Ve 12
h(s,ﬁ):s( fﬁ) . h(,8) =0,

for
Vs, ) = Uesi (ro(B) + 5, 8) — emin(B).

Also, e(8) = e — enin(3), and R — s(R, 3) = s denotes the inverse mapping to
s — h(s, ) = R. Explicitly,

%(& 5 — sgn(s) Ul (ro(B) + s, 8)

>0, 3.15
2 STt 5.9 —emn® G-19)

so that also

ol [3 (1= p) Ulke(ro(B) + ps(y/é(B) sin 0, B), B) dp]'2

a2 oy Ule(ro(B) + ps(\/e(B) sin 6, B), B) dp 516

Ti(e, B) =22

Proof Letsi(e, B) =ri(e, B) — ro(B). Setting s = r — ro(3), ds = dr, we obtain

sy (e,) ds

Ti(e, ) =2
1(6 ﬁ) »/s‘(e,ﬁ) \/2(6 - emin(ﬂ) - [Ueff(rO(ﬁ) + s, ﬂ) - emin(ﬂ)])

/s+(e,3) ds
=2 . (3.17)
s ep V2@(B) = V(s, B)

Note that V (-, ) is increasing in [0, s (e, 3)], decreasing in [s_(e, 3), 0] and such
that

V(ss(e. §), B) = e — emin(B) = (D).

Furthermore, V (0, 8) = U (ro(3), 8) — emin(8) = 0 by definition and %—¥(0, B) =
Ul (ro(8), B) by (A.35), ie., V(-, () is at least quadratic about s = 0. The next
change of variables to be applied is

s+ R=nh(s,), dR= g—hds, R* = Vs, 3).
s

Then (3.17) transforms into

Ve dR
~Ja® P (s(R. ), B)v/2(B) — RY)

Finally, put R = \/e(83) sinf, dR = \/e(B) cos § df. This yields

Tl(ev 5) = 2
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do
Tie. ) = V2
e o2 B(s(J2B)sind. B). B)’

and thus the claimed formula for 77. The relation (3.15) is straightforward, whereas
(3.16) follows from Lemma A.9. O

Corollary 3.4 Ifs € [r_(e, B) — ro(0), 0], then
1 ! dp 28w
— (3 —— + —pp(0) ).
V2B(rg) ( 6/0 @+ T 3 " )>
Proof Lets_ =s_(e,3) — ro(ﬁ) Ifs e [s_, 0], then
oh |Use (ro(B) + 5, B)]
0=<—(, =
~ Os 0= (s 6)) 2 \/Ueff(ro(ﬁ) +s,0) — emln(ﬁ)

by (3.15) in Lemma 3.3. Thus, it remains to use (A.37) and (A.38) from Lemma A.9.
O

oh
= a(s» ﬁ) =<

Theorem 3.5 We have
Ay =supfwi(e, £): (e, ?) € lo)} < 00.

Proof As above, we write ro = ri(e, 8) and rog = ro(3). If r € [r_, ry], then by
Lemma 3.1(a),

e — Ueit(r, ) = Ug(ry) — Ug(r) — r2 —r?)

2.2
2rir

2 ) ) 47
S Ug(ry) —Up(r) ?pQ(O)(hr —r) < ?PQ(0)7+(7+ —r).
(3.18)

Case 1: ry /2 > ry. Here (3.18) implies that

dr
T
(e f) = / V2(e — Ues (1, B rn ve— eff(r

—
VZWpQ(O)ﬁ/ =" \/ 27rpQ<0>\/ r+ >\/ 000

Case 2: r_ < r;/2 < ry. Similarl to the first case, we obtain

Ti(e, B) = / dr / " d—r
e 2(e — Uei (1, B /2 Ve —Ue(r, B)

V 27rPQ(O) Vv /;;/2 Vi — 1 7rPQ(O)
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Case3:0<ry/2 <r_.Thenry /2 <r_ <ryandalsor_ <rg <ry <2r_aswell
asrg <ry <2r_ <2ry,soallofr_, rgand r, are of comparable size. In particular, if
r € [r—,ri], thenry/2 < r < 2r¢. In the following, we are going to use the notation
from the proof of Lemma 3.3. Let R = /é(8) sinf. If § € [—7/2,0], then R €
[—vé(B), 0] and hence s(R, B) € [s_, 0]. Thus, if furthermore p € [0, 1], then ry +
ps(R, B) € ro+ [s—, 0] = [r—, ro], so that

1
3 ro < ro+ ps(R, B) < 2rp. (3.19)

Since s(R, () € [s_, 0], Corollary 3.4 and (3.19) imply that

oh 1 ! dp 287
0 < a(S(R, 6)’ ﬂ) < —TB(rQ) <36/0 —(ro T pS(R, 6))4 + T pQ(O))
< 1 <M + 28_7T (0)) (3.20)
= Beg \rd T3 " '

for § € [—7/2,0]. By (A.34) from Lemma A.7, we have

4_L 514y — L 1/4
it = 5y P O = B( 5 +08)

as 8 — 07. Hence, there is 8y €]0, B:[ such that

B 4 _ 20
24(0) <ry = m, B €10, Bol.

Accordingly, owing to Lemma A.7(a), we can find a constant ¢y > 0 so that rg > ¢
for 8 € [fo, Bs]. If we now distinguish the cases 3 €]0, 5] and 8 € [By, O«], by
using the foregoing estimates, we deduce that in any case

L

ﬁ < max {2A(0),
€

4 —
Ty

Upon going back to (3.20), it follows that

- 28
2A(0), f—4} + =1 pQ(O)) =

1
(4
o) ( 8max{ 1 3

for 0 € [—m/2, 0]. Since generally g—i’ > 0, we finally get from Lemma 3.3

Oh
0= B (s(R, ), P) =
A

/2 do 0 do T
Te.p=va [ -2 - fz/ > ,
e o2 Z(s(R, B), B) e Z(s(R, B), B~ V2C
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which completes the proof, as we have found a positive lower bound on 7; in all
three cases. (Il

3.3 Further Properties of 77

First, we discuss some regularity properties of 7.
Theorem 3.6 We have Ty € C'(D).

Proof The continuity of 7} may be shown directly from (3.14), as we already know
that r. € C2(D) by Remark A.3; we omit the details. To prove the differentiability,
we use a method that is known and that we learned from R. Ortega. It is considerably
less painful than differentiating an explicit relation for 7} like (3.14). For (e, ) € D,
we consider

F=—Ul(rB), r0) =r_(e,), #0)=0,
where r(t) = r(t, e, ). Defining
F:RxD—>R, F(,e () =r@,e/f),

we have F € C'(R x 5) by Lemma A.l11(a). Next observe that F(t,e, ) =0
exactly for

1 3
t=0. 1=%5Ti(e.f). t =%Ti(e.f). 1 =% Tale. ). ...

Fix (¢, 3) € D and define 7 = T} (¢, 3). Then F(7, ¢, 5) = 0 by the above. Further-
more,

OF
E(I$es ﬁ) = ;:(1961 ﬁ) = _Ue/ff(r(tvev 5)! ﬁ)

and r(7, ¢, B) =r(Ty@,B3), 8 3) =r0,é 3) =r_(¢,3) in conjunction with
Lemma A.4 imply that

- e B) = —~Uly(r_(&, B), B) > 0.

Hence, the implicit function theorem yields the existence of a C'-functiont = t (e, /)
that is defined for (e, 3) in a neighborhood U C D of (e, ), such that

F(t(e,3),e,3) =0 for (e,8) € U and t(e, ) =17=T(,0).
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According to our previous remarks, for every (e, 5) € U, we must have
1
t(e, f) = ke, B) 5 Tile. )

for some k(e, 3) € Z. Then k is continuous in U and such that k(e, B) = 2, which
means that k = 2 throughout U. Thus, T} = ¢ in U shows that T} € C!(U). O

Remark 3.7 If py € C¥, then Uy € C**2. Asa consequence, r_ € C**2(D) by the
argument from Remark A.3. Comparing to Lemma A.11(a), this entails F =7 €
CHI(R x Do), so that t = t(e, 8) € C*¥T1(U) for the solution function in the proof
of Theorem 3.6. Hence, we get T} € C¥*! (Do) in this case. <&

Now, we are going to show that 7| can be extended continuously from D to D.
We start with the continuous extension to {(e, 3) : 8 €]0, B«], ¢ = emin(3)}.

Lemma 3.8 Let B €10, B,]). Then

2T
VB@o(3)

Proof This relies on the representation (3.16) of T(e, 3), which we recall as

Ti(e, ) — as D3 (e, ) = (emin(3), ). (3.21)

d0 fo(l p) Ul (ro(B) + ps(y/é(B) sin 8, 3), B) dp]'/?
—/2 oy Ule(ro(B) + ps(\/e(B) sin 6, B), B) dp o

Here, h(s, #) = s(X%2)!/2 and h(0, 8) =0 for V(s, 3) = Uest (ro(B) + s, 3) —
emin(3). Furthermore, é(3) = e — epnin(B3) and R s(R, ) = s denotes the inverse
mapping to s — h(s, 3) = R. Due to § — ﬂ > 0, we can assume that § > 5/2
throughout the argument. If r € [r_, r;] and 3 €]0, 5,], then Lemma A.6(c) and
(A.28) yields

Ti(e, B) =22

12 12
Usr(r, ) = —r—sﬁ + B'(r) —=3A'(r) = —r—f + 4mply(r) — 2A(r)
128

8t [
_ __=F 4 / _ 2 3 7 d )
5 + WPQ(”) ! /0 S PQ(S) s

Therefore, (Q4) gives the bound

1
UG A= C(14 ). relrnl Bel0Bl eelem(d). el

(3.23)
By definition, we have U (r-) + % = e. Hence, U ’Q (r) = 0leads to

% < Ugp(r-) — Up(0) + % =e—Up(0),
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r_ > ﬁ > ﬁ
T\ 2(e = Ug(0) ~ \ 4e—Ug(0))

for B € [3/2, B«] and e € [enin(0), eol; note that we will have e — emin(ﬁ) >
U (0). Going back to (3.23), we obtain

and thus

Ui I <C. relr.ril, BelB/2.5.]. e€lemn(®. el (3.24)

Next, we assert that

lim sup ls(+/e(B)sinb, B3)| = 0. (3.25)

)34)[’ e"emm(/j) Oe[—n/2,m/2]

Otherwise, there would be £y > 0 and sequences (3;), (e;) and (6;) such that
Bj = B,0; > 0 e[—n/2,7/2], e(B)) = e; — emin(B;) = emin() — emin(F) =0
as well as [s(\/é(8;)sin6;, 8;)| > ¢o for all j € N; here it was used that emin (8) =
Ues (ro(9), B) is continuous in 8 €]0, B.[, cf. Remark A.3. Thus, \/é(8;) sinf; — 0

and s(,/é(8;) sinb;, B;) — s(0, B) = 0, which is a contradiction. For the latter con-
vergence, note that s — h(s, 3) for s € [s_, s;] is an increasing function that con-
nects —/e(f) to y/é(f3). Since é(3;) — 0, we must also have s1(e;, 3;) — 0: for

instance, if we had s; (e;, 5;) — 54+ > 0 (along a subsequence), then A(s, B) =0
for s € [0, 5+], which is impossible. Thus, s+ (e;, ;) — 0, and due to |s(R, )| <

max{|s_(e, B)|, s+ (e, B)}, we obtain s(,/e(5;) sind;, 3;) — 0 as claimed.
Coming back to (3.22) and using Lemma A.7(d) and (3.24), we estimate

‘/ Ut (ro(B) + ps(v/é(B) sin ), 5),ﬂ)dp—3(ro(5))'
= '/0 [Uegr(ro(B) + ps(Veé(B) sin, B), B) — Uggy (ro(B), 5)]dﬂ|

1
c /O Is(/2() sin . B)| dp < CS(e, ),
S(e, B) = sup |s(+/e(B)sinb, B)|. (3.26)

fe[—m/2.7/2]

Similarly,

1 1
‘ /0 (1 = p) Ul (ro(B) + ps(v/e(B) sinb, 3), 3)dp — 3 B(ro(ﬁ))' < CS(e, ).

(3.27)
From (3.26), (3.27) and (3.25), in conjunction with Lebesgue’s dominated conver-
gence theorem and B(ry(5)) > 0, we deduce (3.21). O
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Remark 3.9 Note that T (e, 3) is defined for e = ¢y and 3 €]0, 3,]; it is the period
of the orbit of ¥ = —UJ;(r, B) that has the largest energy e = ey. Therefore, it is
straightforward that

74 (eo,3) dr
Ti (e, B) = 2/
r(e0.8) V2(e0 — Uett (r, 3))
extends 77 continuously to {(e, §) : e = eq, B €]0, B1}. &

There is yet another way to represent 71; see [24, Exercise 1, p. 40].

Lemma 3.10 Define

1 1
x(r, e, B) = / dr (1 — T)f do Ule(tri(e, B) +o(1 —1)r
0 0
+ A=) =1)r_(e, B, B).
Then

V+(‘-’ﬁ) d}"
r e (rie, ) —r)(r —r_(e, B) x(r, e, B)

Ti(e, ) = /2 (3.28)

Proof 1If r > s, then
1
Usit(r, B) — Ut (5. B) = (r — 5) / ULy (rr + (1= P)s, B)dr,
0

and in particular Ugg (r4, 8) = e yields fol Ul(try + (1 — 7)r—, B)d7 = 0. There-
fore, we can write

e — Uet(r, 3) = Uett (r+, 8) — Ueit (1, )
1
= (ry — r)/ Ulg(rry + (1 — 1), B)dr
0

1
= (ry — r)/0 [Ule(rre+(1 =), B)=Ulg(rro+(1—7)r_, B)1d7

1 1
=0y —r)— r_)/ dr (1 — 7')/ do Ule(try +o(1 = 1)r
0 0
+( -0 -7)r_, 3,

which leads to (3.28). O
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Lemma 3.11 We have

T(e, B) — as D> (e, B) = (Up(0), 0). (3.29)

27
VB(O)
Proof First, we note that, although it won’t be used, ¢ — ey (3) > 0 together with
Lemma A.7(f) implies e — Ug(0) > emin(8) — Up(0) ~ /Ué(O)\/B as 3 — 0,
which means that as e — U Q (0), the quantity e — Uy (0) can’t be too small in terms
of 3 — 0; due to U”(r) + = U’ (r) =4mpg(r), we have U” 0) =4 3 po(0) > 0.

To actually verify (3.29), we are going to write

"+ dr
T (e, B) = «/E/ 3.30
e, 5) . =N =X 30

as in (3.28) from Lemma 3.10, where

1
x(r) =x(r,e, B) = / dr (1 — 7')/ dUUﬁ(TrJr +o(l —71)r
0
+A=-0)1—-1)r_,pJ).

Due to Lemma A.6(c), we have U (r, ) = i—f + B(r) — 3A(r). By explicit inte-
gration,

1
35/ d“/ = e = r + (=) =)

1 2ry +or+ (1 —o)r-
2;»+ 0 T T or+ (A —oyry
ﬁ ]d ! + — s ldo !
r+ Jo (cr+ Q=0 212 Jy (or + (1 —o0)r_)?
B r+r_ 6 1
P
_ é r(r—+ry)+r_ry

2 r2rir?
_é(r++r)(r —i—r)_g 1
2 r2rr2 2 rir?’

Hence, we obtain
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_ BN+

T e, (3.31)

1 1
x2(r) = / dr (1 — 7')/ do (B —3A)(try +0(1 —1)r
0 0

g 1
U =0) 1 =7r) = 5
-y

and x»(r) = xz(r e, 3). From Lemma A.6(a) and (b), we get (B —3A)(0) =
165 9o (0) = 222 po(0) = 4 pg(0) = US(0). Since 7y +o(1 —7)r + (1 —0)
(1 —T)r_ € [r, ry] C [0,ry]forT,0 €[0,1]and r € [r_, ry], it follows from

1 1
x2(r) = / dr (1 — T)/ do[(B—-3A)(try +0(1 —7)r
0 0
+ (1 —-—0)(1 —7)r-) — (B —3A)(0)]

1 1
+= Ué(O) §

and (A.26) in Lemma A.5 that

1
sup [xa(r,e, B)| < 5 sup (B —3A)(s) — (B —3A4)(0)]
refr-,ryl s€[0,ry(e,()]
1
4= sup |UY(s) — ULO)] (3.32)
s€[0,r4(e, )]

for (e, B) € D and ry =ri(e, B).
Next, we assert that

ri(e.8) > 0 as D> (e, B) — (Up(0),0). (3.33)

To establish this claim, we will use the relation

UQ(r-‘r) UQ(F())—E— 26 emm(ﬂ)_{' 6 6‘mm(ﬂ)_‘_ 52( .2t,._r())
ri 2rgry
Hence, (3.3) from Lemma 3.1 yields
= po(2) 02 =rd) = e = Uo(0) + Ug(0) = emin(3) + 5 f A
(3.34)

Due to Lemma A.7(f), we have |enin(3) — Up(0)| = O(B'Y?) and ry = O(B'*4)
as 3 — 0. Thus, if r, (e, 8) — 7y > 0 as (e, 6) — (Up(0), 0), and along some
subsequence, then (3.34) would imply that {5 pQ( )r < 0, whichisacontradiction
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and confirms (3.33). Since both (B — 3A)(s) and Ué(s) are continuous at s = 0,

(3.32) in turn shows that

lim sup |x2(r, e, B)| = 0.
e—>Ug(0), B0 yefy_ phr]

A further preparatory step is to rewrite (3.31) as

ﬁ (ry +r)r—+7)

x(r) = T (1 + x3(r)),
2 r2r2r3_
x3(r) = xX2(r),

B e

for x3(r) = x3(r, e, 3). Owing to Lemma 3.1(b), we have

rzri <Cp.
Since also m < 1, it follows from (3.35) that
lim sup |x3(r, e, 3)| =0.

e—=Up(0), —0 relr_.ryi]

(3.35)

(3.36)

(3.37)

(3.38)

Coming back to (3.29), consider sequences e; — Up(0) and 3; — 0. Lete > 0
be given. According to (3.38), there is jo € N such that sup,.i, ., 3,).r, ;.51 1X3
(r,ej, B;)| < efor j > jo.Due to (3.36), this yields for j > joand r € [r_(e;, 3;),

r(ej, Bj)]

Bj (r4, j+r)(r— it

ﬁj (ry, j+r)(r— it

where ry j = ri(ej, 3;). Therefore, (3.30) leads to

T T 2 T T 2
< Ti(ej, <
e N

for j > jo, where

T+.j r
I; :/ dr
J " (r-2-,j _ r2)1/2(r2 _ rzyj)l/Z

(149,

Setting s = r2, ds = 2r dr, this integral may be evaluated as /; = 7/2. Thus, we

obtain
1—¢ ﬁj < 1 1+4+¢ ﬁj

<
2ozt T Tie B T om

(3.39)
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for j > jo. From (A.26) in Lemma A.5, we know that

/6/ " 1 "
———— —Up0)| = sup [|Uy(r) —Uy(0)|.
VE, j ri, j © rel0,ry ;] © ¢

Asry j — 0by (3.33), we may assume that jo is already taken so large that

2

U// _
0(0)—e =< P :
—J

L}Z <ULO0) +e

for j > jy. Therefore, (3.39) implies that

l—¢ 1 I1+¢
UG =) < s = 5 WO + )

w2

s

for j > jo. Altogether, this shows that lim;_, T1(e;, 3;) = , and it remains

NGAT)
to recall that B(0) = 167” po(0) = 4Ué (0), cf. Lemma A.6(a), (b). U
Lemma 3.12 Leré €]Uy(0), egl. Then
7@ dr .
Ti(e,3) — 2 as D> (e,B) — (¢,0), (3.40)

0 2 —Ug(r)

where 7 (e) € [0, ro] is the unique solution to Uq (7 (e)) = e.

Proof First, we are going to show that .. stays away from zero in the limiting case
that we are considering here. For this, we may assume that v, < rp /2. Due to (3.6),
we have

rio(rs) + % =Ug(ry) — Up(0) + % =e—Up(0) (3.41)
+ +

for X .
©(ry) = 4r f drr? f dtt po(rtry).
0 0
Since py is radially decreasing and 0 < 7¢r < rg/2, it follows that

27 r

2
[Y
0<ei=p0(2) =0rs) = 5000 = C1. (3.42)

In (3.41), solving the resulting quadratic equation for ri, we obtain

2= Up(0) £ /(e — Ug(0)2 — 2¢(r1) 3

= 3.43
* 2p(ry) ( )

Let us suppose that the sign were ‘—’, along (a subsequence) of ¢ — ¢ and 3 — 0.
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Then
5

e —Ug(0) + /(e = Ug(0))*> — 2¢(r1) 3

2 _
ry =

together with é — Uy (0) > 0 and (3.42) would yield ¢, < ri < C,[3 for suitable
constants C, > ¢, > 0. By Lemma 3.1(b), we have the general estimate

cf < riri.
As a consequence,
¢ 2
— <ri.
&)
However, r?> < 13 = O(3'/?) as 3 — 0 by Lemma A.7(f), which gives a contradic-
tion. To summarize, we may suppose that the sign is ‘4’ in (3.43). Hence,

) e=UgO) + (e —Ug@)? —20(r)f _ 1
2= o = 56~ Uo®)

for g < %(e —-Up (0))? yields the desired lower bound for r . Thus, in what fol-
lows, we can assume that r, (e, 3) > 1y > 0 for an appropriate constant 7y and

(e, B) — (¢, 0).

Next, we are going to show that

dr
A 2(e — Ui (1, 3))

For, owing to (3.10), we get

—0 as D> (e f)— (6,0). (3.44)

T\ (e, ) = 2[

. N - N
R o TR L N AN

Since r2r3 < C3 by (3.37) and ro = O(B'/*) by Lemma A.7(f), ry. > 1o yields

T, (e, B) < CB*/®

and completes the argument for (3.44).
Thus, in order to establish (3.40), we need to prove that

AT Ba(e.f) > 2.0 (345)

re dr 7(é)
/n, JeUa D) ./0 NG

note that Ug (ry) < Ug(ry) 4+ - = e = Uy (#(e)) implies ry < 7(e). In addition,

2 T
using (3.3), we obtain .
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™

12

™

po(Z)m (&) = 1) = == po(2) (e =)

A

A

1
Ug#(e) ~ Ug(ro) = 2 = o
+ 0

Similarly, by (3.2),

BB )
% =< ﬁ =Up@r(e)) —Up(ry)
2
< o)) —r2)

-3

IA

4 R
?PQ(O) ro (r(e) —ry),

so that ¢33 < 7(e) — ry < C;30. To validate (3.45), we are going to show

/ " dr f " 0 (3.46)
_— — ——— = 0, .
n vVe—=Usgr, B) Jo Je—Upr)
/f@ dr e dr
_—— —— |0, (3.47)
0 Je—Up(r) 0 e—Up)

both as D > (e, B) — (e, 0); the second relation is independent of 3.
To begin with,

f’“ dr 7o) dr 0
_— — — 0.
0 e—Ug(r) . Je—Ug(r)

For the first claim, if 0 <r <rg = (9(61/4) and e — ¢ > Up(0), we may suppose

that e — Up(r) = 1 > O for the e and r in question; therefore, the first claim in
(3.48) follows. Regarding the second assertion, we write

—~ 0 and (3.48)

1
e—Ug(r)=Ug(F(e)) — Up(r) = (F(e) — r)/0 Uy(ti(e) + (1 —1)r)dr

forr € [5,7(e)]. If s € [, 7(e)], then the fact that pg is radially decreasing yields

47 (S 4r (T+/2 3 r
’ _ar 2 am 2 T +
Up(s) =5 /0 o2pg(0)do > réfo o?pp(0)do > o po( 0 )z m >0

(3.49)
Hence,

e —Up(r) = m(Fle) — 1), e [% f(e)], (3.50)
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and accordingly,

F(e) dl" < —1/2 F(e) dr 2 _
=1 T =4
T+ Ve_UQ(r : T+ \,r(e)—r ?

Thus, both relations in (3.48) hold, and therefore (3.46) comes down to proving that

2 Ji(e) —ry < CB'* — 0.

—0 as D> (B — (20).

o ve—Ue(r, 3) e—Up(r)

Ifr € [ro, (1 — 84)r ], then £ < 5% < CB'/2,as ry = O(B"/*). Therefore, (3.3)
)

yields

e—Up(r) =z e —Ues(r, f) =e—Ug(r) — 5

> Ug(F(e)) — Ug((1 — Y*ry) — Y2
v
> S ro(2) (@ — (1= g — cp'l

m
> =02 ) m (@) = ri + By — €32
> cifp + s - CB172
> o',

From the estimate JLE — % < b ji for b > a > 0, we hence infer

A=, =" gy
/ro e —Ue(r, 3) /r‘0 Ve—Ug(r)

< g /(l—/11/4)r+ 1 dr
2, (e — Uet(r, B))\Je — Ug(r) 12
B [a=8"r )
S 1/
< ng ; 3/253/8 dr <Cp7° — 0. (3.51)

For the remaining part, r € [(1 — ﬂ1/4)r+, r+], we note that for such r, by (3.50),
e—Ug(r) =mF(e) —r) = mFle) —ry) = mes B
In addition,

e — Ui (r, B) = Uet (ry, B) — Uesi (1, )
1
= (ry — r)/ Ug(rre + (1 —1r, B) dr. (3.52)
0
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Ifre[(1=8Y*ry, ril thens=rry + (1 — T)r € [(1 — BYHry, ] C [5, Fe)] for
instance, and

) 5 80
Ueff(sv B) = UQ(S) > — r_ > —
by (3.49), if 3 is small enough. Thus, (3.52) leads to

1
e = Uuar(r, ) = 5m (e =), r €[l = By, ryl.

1 1 b— .
If we now use that NN < ﬁ‘; for b > a > 0, we obtain the bound
‘ /r r /’* dr
A-p"4r, A€ — Ueff(r, ﬂ) (1-84)r, /€ — UQ(}”)

F+ 1 dr
(=g, Ve — Uei(r, B)(e — Ug(r)) r?

B

2

64 1 2 / 1 s

- — = ———dr<Cp'"* > 0. (3.53)
25 mes BN m Jazpuay, ST —T

By (3.51) and (3.53), the proof of (3.46) is complete.

Therefore, it remains to check that (3.47) is satisfied. This is not worked out,
since it is just the continuity of the standard period function in the potential V (x) =
Ugp(x) —Ug(0) for x > 0 and V(x) = Up(—x) — Up(0) for x <0, for energies
e=e—Ugy(0) €]0,e0 — Uy (0)]. O

IA

IA

If we now summarize Lemma 3.8, Remark 3.9 and Lemmas 3.11 and 3.12, then
we have shown the following result (note that e, (0) = U (0) and r¢(0) = 0).

Theorem 3.13 We have T) € C(D). The extensions to 0D are given by

NEE) D e =emn(0), B €0, B
r+(e 3) dr ) _
Tite. ) = 1 2/ e aataemy ¢ €= 0B €0.5]
r(e) dr . _
Ve=Ugry e €]Ug(0), e0], =0

where 7 (e) € [0, ro] is the unique solution to Ug (7 (e)) = e.

In the remaining part of this section, we will discuss some monotonicity properties
of T1 .

Lemma 3.14 The function [0, 3,] 2 B +— Ti(emin(B), B) is strictly increasing.
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Proof We know from Lemma A.7(e) that 3 — ry(0) is strictly increasing, and fur-
thermore r — B(r) is strictly decreasing by Lemma A.6(b). Hence, the claim follows

from T (emin(5), ) = s O

Lemma 3.15 The function [Up(0), eg] > e — Ti(e, 0) is strictly increasing.

Proof The argument is analogous to the fact that for a one degree of freedom oscilla-
tor X = —V’(x) about a stable center, where V(0) = V’(0) = 0and V(—x) = V(x)
for simplicity, the condition V'(x) > 0 and V" (x) > V’(x)/x for x > O guarantees
that the period function of the periodic orbits about x = 0 is decreasing in the energy
e = %)&2 + V(x). The first reference to point this out seems to be [64] (which we
basically follow); related papers are [11, 78, 79]. To see the connection, first observe
that, by (1.13), Remark A.1 and (A.32),

p Upy(r) 3, 4 (T 5,
UQ(r)—T =47TpQ(l’)—;UQ(l’)= py ; s pQ(s)ds <0, r>0.

Thus, (U/Q(r)/r)/ = (rUé(r) - U/Q(r))/r2 < 0 forr > 0, and it follows that
1 / /
— UQ(pr) < UQ(r), p>1, r>0. (3.54)
p

The function 7 is strictly increasing, due to 1 = U 0 (r(e)) F'(e) and U o(r) > 0 for
r > 0. Therefore, its inverse [0, rg] 3 7 > e(7) € [Ug(0), o] is well-defined and
strictly increasing too; note that 7(Uy(0)) = 0 and 7(eg) = rg. Let

dr

T¢) = 2/r _ .
DT U — Up)

Then
#(e) dr
0 2(Ug(F(e)) — Up(r)

Ti(e,0) =2 = T(7(e)),

which implies that e — T (e, 0) is increasing if and only if 7 f"(f) is increasing.
If p > 1 and s € [0, 7], then by (3.54), one has

Ug(pF) — Ug(ps)=p / Uy(pr)dr<p’ / Uy(T)dr=p*(Ug(#) — Ug(s)).

s

As a consequence,
pr dr 5 /f ds
= =zp =
0 2WUo(pF) —Up(r) 0 2(Ug(pF) — Up(ps))
4 ds
Y —
0 V2WUo(F) —Ug(s)

T(pf) =2

=T@),

which completes the proof. (]
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Corollary 3.16 Suppose that 0, = inf y w; = minp w; is attained at some point
(e, B) € OD. Then (e, ﬂA) lies on the ‘upper line’ {(e, 3) : e = ey, B € [0, ]} of
the boundary.

Proof This follows from w; = 2T—’]T together with Lemmas 3.14 and 3.15. (]

Remark 3.17 It will certainly be important to gain a better understanding of the
monotonicity properties of w; (or, equivalently, 77) in D. In particular, we expect
that it should be significant to locate those points in D, where w attains its minimum
61. Some relations for % and % are stated in Lemma A.12(b), (c¢). For instance,
we have

or 19 [heh ds o [P dr
—1<e,ﬁ>:———/ —2=——/ A (3.55)
ap 2 Oe Jy r(s) oe J. o3 Tpr

which could provide a way to approach the monotonicity of 7; in 3. To see this,
we apply the transformation p = /Br~!, dp = —/Br 2 dr, like for the ‘apsidal
angle’ [77]. Defining

VB
ri(ev ﬂ) '

- 1
0p.B) =507+ Ug(g), pele. ) =

and recalling that p, = \/Z(e —Up(r) — %), we get

LI Ny
85 ’ ﬁ Oe p—(e,) 2(e — U(p, /6))

At fixed (3, this has turned the integral on the right-hand side of (3.55) into the period

function
- pi(e.3)
T(e) = /
p-(e,p)

for the transformed potential U; note that 0 < p_ < p; and U(p+, 3) = e. One
could study the monotonicity of 7 (e) in the energy e by checking the criteria that
have been listed in the papers we mentioned in the proof of Lemma 3.15 or which
can be found in similar works. Let us state a remarkable relation that could be useful
in this respect. Writing U (p) = U (p, B), it is calculated that

U'(p) = —“;—? Ué(%ﬁ) t+p. U'(p)= 5 ng(*/TB) +

2(e — Ulp, B))

2By,
P

(D).

p

and using (1.13) this yields
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0" (p) — 0/;”) = p—Ué(f) + p—{U&(?)

JB NN NN
= e () - e ()| e ()
= [ama()+ 5wl
zﬁB(ﬁ),

pt N p

In other words,

(57) = 5265

and the function B is strictly positive. Comparing to the reasoning in Lemma 3.15, this
looks promising for proving that T(e)is increasing in e, i.e., that dT‘ < 0. However,

the argument does not seem to work properly, since the integral deﬁmng T (e) is on
[p—, p+1, instead of it beginning at zero, as is the case in Lemma 3.15. <

34 X, <67

From (1.20), recall the definition of \,.
Lemma 3.18 We have )\, < 5%.

Proof From (1.18), cf. Corollary B.19 and Lemma B.8(c), we deduce that, for u €
ngd’

dx dv , 1 5
(Lu, M)Q bt| - T IViUrul dx
R3 JR3 |Q (eQ)l 4 Jps

dx dv
< _— z 2 Z = 16 3 k2 .
- /RB /]R3 |Q'(eg)| ITul” = 1Tullfo = 167 Z A L (D)

k0 o7
Since u_; = —u; by Lemma B.3(b), this yields
3 2
A\ < 327 Zk ||w]uk||Ll ) (3.56)
k=1 1071

for all u € XOdd such that ||M||Xo = ||u||Q = 1. Now we specialize (3.56) to u =
(..,0,u_1,0,u,0,...)=¢(.. —uy,0,uq,0,...) to find that
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A\, < 327r3||w1u1||§_ o , =327 //didu W2 (1, ) |ui (I, 0)]?
D

1
1Q'(e)]

=327 //dede lwl(e 0 luy (e, 0))? (3.57)

forall uy = u; (I, €) = ui(e, £) € L?, (D) satisfying
10|

1:323f/d1du 1,0
", |Q(>|'”1( )

=327 //dedM ! ! lui (e, 0)%;
g |Q'(e)| wile, £)

see Definition B.1 and cf. (A.18). Let ¢ > 0. Since ¢; = inf 5 wy, there is (¢, f) eh
such that w (e, i) < 01 + /2. As wy is continuous in D by Theorem 3.6, there is
an open neighborhood U C D of (&, ) with the property that w; (e, ) < §; + ¢ for
(e,1) € U; then [[ dedt ¢ > 0. Define

U

1 epeU
X(e’e)_{o © (e,0) e D\U

and u (e, €) = a |Q'(e)|'*wi (e, £)'/* x(e, ¢) for a = (327 [[ dedt £)~"/2. It fol-
U

3 1 2 _ 3.2 —
e)|w
D ! U

Thus, by (3.57),

s 5327T3//dedE£|Q—||u1| =321 f/deduwf
D

U

lows that

< 327%a% (6, + ¢)? // dedlt = (5, +¢)°.

Ase — 0F, we get \, < 2. O



Chapter 4 ®)
A Birman-Schwinger Type Operator oo

As has been outlined in the introduction, the eigenvalues A < 5]2 of L=-T>—-KT
from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain
Birman-Schwinger type operator Q) that acts on functions ¥ = W(r).

4.1 The Operator Q,

Let L? denote the L>-Lebesgue space of radially symmetric functions W (x) = W(r)
on R3, where we take

(W, q>>=f qf(x)q>(x)dx=47r/oor2mcb(r)dr
R3 0

as the inner product of W, ® € Lf. Unless otherwise stated, a generic constant
(denoted by C) is allowed to depend only upon Q.

Definition 4.1 For z € Q@ = C \ [6?, oo[, we introduce

Q.:L*— L2
16w <
QW) =—> | divE) || detdely e ozrizr. et
" =00 D
wi(e, O) [Q'(e)] . . g
——————————sin(kf(r, e, £)) sin(kO(7, e, £)),
(e 0) — 2 (ko( )) sin(k6( )
4.1
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where ri (e, £) and 6(r, e, £) are as in Appendix I, Sect. A.1, and D is given by (3.1).
Along with Q,, we also introduce the integral kernels

. 4
K (r,7) = ) Z// dtldely e o)<ri<r (e 0)

k£0 V)

wi(e, O)|Q'(e)]
X

W sin(kO(r, e, £)) sin(k0 (7, e, £)).

4.2)

Remark 4.2 (a) If z=a+ib e C\R, then [k*wi(e, £) —z| > |b| > 0. More
precisely,

V2
|k|z[ 5|a|]+1 = |Kwi(e, ) —zI” = KPwile, &) —a)’ + b’
> (K67 — la))* + b*
1
> Zk“é‘f + b7 (4.3)

On the other hand, if z = A €] — oo, 63[, then
Kw? (e, £) — 7| = KPwi(e, £) = A= k*6F = A= 82 -\ >0,

and hence
1
k| >2 = |Kwile, £) —z| > k*6] — A > (k2 — 1)67 > Ekzdf. (4.4)

In particular, m in (4.1) and (4.2) is well-defined for z € Q.

(b) In the definitions, we understand the factor |Q’(e)| to be zero outside of K,
the support of Q, instead of carrying around another characteristic function all
the time. In particular, always r (e, £) < rp holds, which means the following: in
(4.1), [;° dF W(F) can be replaced by [, dF ¥ (7); (Q.W)(r) can be replaced by
(Q:¥)(r) 1ip<r<r,) and K (r, ') can be replaced by K (r, 7) Ljo<r7<ry)- &

Lemma 4.3 [Properties of Q,] The following assertions hold.

(a) Foreveryz € Q, wehave Q, € B(L?), the space of linear and bounded operators
on Lf. In addition, the map

Q37 Q, e B(L?) (4.5)

is analytic, and for the derivatives



4.1 The Operator Q, 55

167!
(Q(I)\I})( ) J Z/ dr \Ij(r) /:/ d@ﬂdel _(e,O)<r,F<ri(e, 0)}

k£0

y w1(6»5)|Q( )
(K2wi(e, £) — z)it!

sin(kf(r, e, £)) sin(kO(7, e, £))

for ¥ e L2.
(b) If z € 2, then
(Q:W)(r) = (Kz:(r, ), ¥)

for W € L2. In particular,
(Q:¥, @) = (¥, Q: D)
for ¥, ® € L2, so that Qf = Q:. Thus, if A €] — oo, 83[, then Q, is symmetric.

(c) Ifz € Q, then Q, is a Hilbert-Schmidt operator on L2.
(d) Ifz € Q, then

(Q. W, )
2 wie, ) [0 f”(&“ . 2
= 647 g(;// dtlde kzwl(e -2 1) eo W (r) sin(kO(r, e, £)) dr

forV e Lf. In particular, if A €] — o0, 5%[, then (Q\W, W) > Ofor ¥ € Lf, ie.,
Q) is positive. In addition, for the derivatives

= C e, £ —

2

ri(e, )
X / W(r)sin(kO(r, e, £))dr| (4.6)

(e, ?)

for v e L2,
(e) There is a constant C > 0 such that for A\, A €] — 0o, 5%[,

1 ~
191 — Qsllys = C (1 + m) [A = Al

where || - ||ys denotes the Hilbert-Schmidt norm.

(f) If\ €] — 00, 631, then the spectrum of Q, consists of 1 (\) > pa(\) > ... — 0
(the eigenvalues are listed according to their multiplicities). In addition,

(A =[xl = sup {{Q\W, W) : W]l < 1}, 4.7)

where || - | = || - | 3(z2), and every function
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2
pic(-) 2 ] — 00, 07— 10, oof

for k € N is monotone increasing and locally Lipschitz continuous (and hence
differentiable a.e. by Rademacher’s Theorem).

Proof (a) Let z € Q be fixed. By Remark 4.2(a), there is ay > 0 such that |k2(,u]2
(e, €) — z] = ap for |k| > 1 and (e, £) € D.In addition, according to (4.3) and (4.4),
there is ko € N so that |k*w? (e, £) — z| > 3k*67 for |k| > ko and (e, £) € D; if ko is
taken to be large enough, we can also make sure that %kzdlz > k3/2. First, we observe
that

r_(e, £) <r <ry(e, £) = £* <2r(ep — Up(0)). (4.8)

To establish this claim, we recall from (3.7) that €2 = 2r% (e — U (r_)) holds, where
ry = r(e, £). Since Uy is increasing and e < ey, we get €2 < 2r? (eg — Up(0)) <
2!‘2(60 - UQ(O))

For 1 < |k| < ko and i € Ny, we now apply (4.8) to r and 7 in order to estimate

Sei(r, 7, 2) = // deldely (. o)<ri<r (e 0)
D

wile, £) Q' ()|
(K2wi(e, £) — z)it!

sin(kf(r, e, £)) sin(kO(7, e, £))
4.9)

as

IA

. l* (0]
|Sk,i(r7 F’ Z)| aa(l+l)Al 1{0§r,75rg}/ déﬁ/ de
0 emin (€)

X1 (e, 0y<r. F<ry (e, 0y 1Q'(©)]

. l* [0
ag VA Lo rry) /0 dee f (e)de
€min

X 12 <2(e0-U0 0y mingr.72}) | Q' (€)]

. €0
0y VA Tg<r vy (e0 — UQ(O))(/ |0/ (e)] de) min{r*, 7*}.

Up(0)

IA

IA

Analogously, for |k| > ko and i € Ny, we deduce

€0

- 1 / )
Isk,i (r, 7, 2)| < PEA Aq 1{0§r,f§rQ} (eo — UQ(O))(/;/ 0 10 (e)|de) min{r~, 7}.

ol

It follows that

D s n Fol < Y ag VA Loy izry) (60 — Ug(0))

k#0 |kl <ko
€o
x(/ |Q’(e)|de> min{r?, 7%}
Up(0)
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1
+ Z PR Ay Ljo<r7<rp) (60 — Ug(0))
[k|>ko

x(/eo |Q’(e)|de) min{r?, 7%}
Ug(0)

< C1i <y j<ry) min{r?, %} (4.10)
for

. © 1 €0
o —(i+1) _ ’ .
Cri = (2koag +23 7)1 (@ UQ<0)>( /U e <e>|de), @.11)

this constant depends upon z and Q, but k is independent of i. Therefore,

16 o0
(Q:0)(r)| = —”Zfo W) seolr. 7. 2) dF

72
k#0
167TC]’()
72

ro
1{0§,§,Q)f |W (7)| min{r?, 7} dF.
0

Next, note that
min{r?, 72} < rf. (4.12)

Thus, using Holder’s inequality,

r

, 256mCY, ro o \?
H(QW)(NI” = ——— Ljo<r=rg} FIv ()| dr
0

256m2Ci 1o e - -
— 1{05r5:-91/ P ) dF
0

647 C? r
- Y
-

Lio<r<ry) ||‘I’||i;,
and this in turn leads to
oo
1Q. W7, = 4 /0 r QW) ()P dr < 264> CF o1y W72

To prove the analyticity of (4.5), we recall that it suffices to show weak analyticity,
in the sense that all maps Q 3 z — (¥, Q,®) € C for ¥, ® € L? are analytic; see
[85, Thm. 3.1.12]. Fix zg € Q. If |z — 70| is sufficiently small, then z € €2 and we
have the series expansion

1 = 1 .
. = . Z—Z
k2wl (e, ) — 2 ;) (e, O) — eyt &
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for every k # 0 and (e, [) € D, which suggests that

ro ro
w o0 =6ir? [ [Tararwmom Y [[areder, oo
0 0

k20 7p5
,0) 10 . . -
% sin(k0(r, e, £)) sin(k6(F, e, £))
o0
=Y aiz—z0) (4.13)
i=0
for
ro ro
a; = 64712 f / dr dF \IJ(r)CID(F)Z / f detdel, (o py<ri<r.(c.0)
o Jo 10 /5

wie, O)1Q'(e)l

Ctet) o sin(kO(r, e, £)) sin(kO(F, e, £)).

We are going to show that the series (4.13) converges near z. For this, due to (4.10)
and (4.12), we deduce that

/rQ /rQ dr di W(r) ®(F) Y si.i(r. 7. 20)
0 0

k£0

|la;| = 64r°

ro ro
< 6472 cl,,-/ / dr dF |W(r)| |®(7)| min{r?, 7%}
0 0

647> Cl.,-<forgr |\ll(r)|dr>(f0rgf|d>(f)|d?>

16mrg Coi [IW 1l 2 191 22

IA

IA

If we write the constant C; ; from (4.11)as Cy; = C’l aa(’“) + él , with g depend-
ing only on 2o, then |z — zo| < min{%, %} ensures that
Ciilz — Zo|i < C’laglz‘i + élz_i,

which has a finite )_;°,. It follows that (4.13) converges for z €  such that |z —
z0| < min{%o, %}, i.e., on a sufficiently small ball about zy. The formula for the
derivative is gotten from a; and those for the higher order derivatives follow from
this one inductively.

(b) By the definition of K, in (4.2), we have

4 _
K F) = 5 ) sio(rn 7. 2). (4.14)
k#0
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Hence,

(Q; W) (r) = Z/ W (F) sg,o(r, 7, 2)dF —47r/ 2 K, (r, ) V(F)dr = (K:(r, "), V),
k£0
(4.15)

observing that K. = K. Due to K,(r, 7) = K, (7, r), we hence obtain
o0 - o0 -
(Q. W, @) =47r/ r2(Q. W) (r) ®(r)dr =4w/ r2 (K= (r, ), U) ®(r) dr

0 N N 0

:167r2/ drr2[ di P2 K=(r, F) W (F) ®(r)

0 0

= 16772/ dffz\IJ(F)/ dr r* K=(F,r) ®(r)
o

= 471'/ dF P W (F) (K (F, ), @) = (¥, Q: D).
0

(c) According to (b), the operator Q, on Lf has the integral kernel K:. Hence, in
order to verify that Q, is Hilbert-Schmidt, we need to verify that

IIQZII%IS=/ / K. (x, %)* dx dx
R3 JRR3
o0 oo
=167T2/ / rr i \K (r, F)|* dr dF
0 0

ro ro
1671'2/ / 27K, (r, F))? dr dF < oo (4.16)
0 0

for every z € Q, where K, is viewed both as a function of (x, x) and a function
of (r, 7) and we used Remark 4.2(b); see [35, Prop. 6.36]. From (4.14), (4.10) and
(4.12), we get

/ / r P K, (r, P dr dF < 16/ / leko(rmz)l) drdr

k#0
16C2/ / zz(min{rz,fz})zdrdf
r

16C2/ / drdr_16C2rQ<oo

IA

IA

Note that from Q, being Hilbert-Schmidt it follows that Q, is bounded and || Q.|| <
| Q; |lus- i-e., once again we see that (a) holds. However, since the key of the argument
is (4.10) and (4.12), it needs very little additional work to derive both bounds. (d)
Here, we calculate
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QW) =dr [ PO W)
_6471—22:[ dr \Il(r)/ di W (F)
k£0
// dﬁZdel _(e, O)<r,F<ri(e, 0)} wl(e Z) |Q (e)l

wi(e, &) — 2
i wi(e, O)|Q'(e)|
= 641 Zf/dud Pl 2

k#£0 ¥y

ry(e, £) 2
/ W (r)sin(k@(r, e, £))dr| > 0.
r_(e, t)

The proof of (4.6) is analogous. (e) For A, \ < 62, we have, cf. (4.16),

19x — Qsllfs :/3/ |Ky\(x, %) — K5 (x, )|* dx d%
R3 JR3

ro ro
= 167r2/ / r? 7 |K\(r, 7) — K5 (r, F) > dr dF
0 0
o (e dr dr
= 2567‘(2/ / —; _; fo dtldely (o o)< i<r, (e, 0)}
0 o I~ r k20 7
/ 1 1
xwi(e, )0 ()] - T

Kwi(e, £) =X k2wi(e, £) —
2

x sin(k@(r, e, £)) sin(kO(7, e, £))

2o [ [0 dr
<5127 A -
0 o 12’

[o¢]
x ( > // dttdelyy o< izr. e 0)10 ()
k=

_ID

1 1
2wi(e, £) — A k2wi(e, €) —

)

Using (4.8) and (4.12), we may continue this estimate for suitable constants
C,C >0as

"e dr dr
19x — Qslifs <2567 AZ/ / )

x <Z/f dBdelis<cmin2, 72y 1Q'(0)]
k=175
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1 1 )2
4.17)

wie, ) — kzwz(e B) —

rQ rQ d d
gzsész%/ / s
0 0 r- r

oo

(S oo
k=1 D

A=\ )2
(K22 (e, B) — MK e, B) =N /)

For k>2, we know from Remark 4.2(a) that k’w?(e, 3) — A\ > k*6%/2 and
wi(e, B) — A > k262 /2 are verified. If k = 1, then always wi(e, ) — A > 67 — A
and wj (e, B) — b\ > 5]2 X hold. Thus, we arrive at

"o dr dr
19y — Qsllig < CIA — A|/ / = = i’

r2 p2
x(él“Zk%/% IQ’(e)Ide>2
— Ug(0)
e NP / /w dr di ,
(03 — M2(67 — V)2 N

2
X </ |0/ (e)] de)
Ug(0)
<C

(1 n ! ) A= X2
B (62 — N)2(8% — N)? ’

and this yields the claim. (f) According to (b—d), Q) is a symmetric and positive
Hilbert-Schmidt operator, which is in particular compact. Thus, the assertions up
to and including (4.7) are a consequence of the spectral theory for compact posi-
tive self-adjoint operators; see [35, Section 6]. Concerning the j (\), we have the
characterization

i (A\) = max { min  (Q\W, W) : S C Lf is a subspace of dimension k}

wes, Wi =1

(4.18)

according to the Courant max-min principle. In the present situation, this follows

from the spectral decomposition theorem for symmetric and compact operators. By
(d), we obtain for X > ), both in ] — o0, 6%[ and ¥ € L%,

wi [Q'(e)]
(O; ¥, W) —647r22//d€£d o —ay

k#0

2

f W (r) sin(k@) dr
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> 647r22/fd€£d z;|g(€z\|

k0
= (QW, ¥), (4.19)

2

/ W (r) sin(kf) dr

where ry = ry(e, £) and 0 = 6(r, e, £). Hence, (4.18) implies that /Lk(j\) > 1 (M)
for all k € N. To establish the local Lipschitz continuity of p(-), note that

[(QAW, W) — (Q; W, W)| < [1Qx — Q5 117,

whence we deduce from (e)and || - || < || - ||yg thatfor ¥ e L2 satisfying Wil <1,
one has
QW W) — (@ ) = C (14 )X
(5% - )\)(5% - A)

Applying (4.18) once more, we arrive at
e = Ml = € (14 L )-A
Hi Hi = (6%—)0(6%—5\) )
which completes the proof. ]

In the following, we are going to derive some more specific properties of the Q,.
See Appendix II, Sect.B.1 below for the function spaces that are being used. Once
again, we understand that |Q’(e)| vanishes outside of K.

Lemmad4.4 If z € Q and ¢(r, py, £) = |Q'(eg)| py¥(r) for ¥ e Lf, then 1 €
ngd’

19150 < po () 1]l (4.20)
and
KT(-=T* =2~y =10'(eg)| pr(Q.W). 4.21)
In particular,
QW =Ur gy =4m / pr (=T* —2) " dv. (4.22)
R3

Moreover, if also 1/;(1’, pr. £) =10 (ep)] p,\i/(r)for some U € L%, then

1 = Dlixo < po©O)* W — T 2. (4.23)

Proof First, note that ¢ is odd in v and has its support in K. Furthermore, due to
Remark B.2(a), Lemma 2.5 and (A.32),
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2 2
113 = 19122

1
sph, —
P 707

1 2
= s dx d
é/|Q/(eQ>| oG, v)I"dx dv

=//|Q’<eg)|p3|wr)|2dxdv
K

:/ dx|\y(r)|2/ dv|Q'(eg)| p?
|x|<rg R3
:/H dx W (r) [ po(r)

x|<rg

< po(0) dx [W (M) < po(0) 1WII7..

lx|<ro
Thus, ¢ € X%, C X{, and accordingly Corollary B.14 yields
KT(-T* -2y
=|Q'(eg)| pr 167;2i Z/f dtldely_( ¢),r, e on) SinUCM#Z))W(L 0).

2,2 _
r k0 V) k*wi(e, €) —z

On the other hand,

/ ry(e,l)
(1, ) = L |Q'(e)| wi (e, £) dr W (r)sin(k0(7, e, £)) (4.24)
™ r_(e,f)

by Lemma B.5. Therefore, we arrive at

, 167
KT =270 =10l pr 3 - [ [ deedety conrcon®)
A 5
sin(k@(r, e, £))
k2w?(e, ) — z

10/ (e)| wie, 0)

r(e,l)
/ dr V() sin(kO(7, e, £))
r_(e,l)

16 To
=10 Z/O 47 W)

k£0

// dbldely (o ty<r i<ri(e, 0))
D

wi(e, £)1Q'(e)|

X —_—
K2wi(e, ) — z
= |Q/(6Q)| pr(Qz\I’)a

sin(kf(r, e, £)) sin(kO(7, e, £))



64 4 A Birman-Schwinger Type Operator

and this completes the proof of (4.21), by the definition of Q.. Concerning (4.22),
the first part follows from Cg = |Q'(ep)| pr Ugf (r), see (B.37), and for the second
part, one just has to use Lemma 2.4. Lastly, (4.23) is a direct consequence of (4.20)
and the fact that (15 —)(r, pr, £) =10 (eg)l p,(‘if — W) (r). O

Now, we can make the connection from eigenvalues A < &7 of the self-adjoint
operator
L=-T"—KT: X2 = X0

cf. (1.16) and Corollary B.19, to eigenvalues 1 of Q,.
Theorem 4.5 Let A\ < 02. Then X is an eigenvalue of L if and only if 1 is an eigen-
value of Q). More precisely,

(a) ifue X(z)dd is an eigenfunction of L for the eigenvalue X, then ¥ = U, € L?
forr € [0, rg] is an eigenfunction of Q) for the eigenvalue 1;

(b) if ¥ € L? is an eigenfunction of Q) for the eigenvalue 1, then u = (=72 —
N7 Q (eg)| prY) € ngd is an eigenfunction of L for the eigenvalue \.

Proof First, suppose that Lu = A\u for some u € X2, and u # 0. Then (—72 —
Mu = KT u. Defining o) = (=72 — Nu € ngd, Remark B.18(a) implies that ) =
KT (=T? — X\)~'4. Since Kg = |Q'(e0)| pr Uéf,(r) by (B.37), we can put

V() = ’/T(—’TZ—)\)*M;‘)(V) =Ur,(r)

forr € [0, rg]toobtain ) = |Q'(ep)| p, ¥ (r). Then ¥ # 0, as otherwise ) = 0 and
u = 0. Next, we are going to verify that ¥ € L2. Using (B.40) from Lemma B.15
and Lemma B.8(c), we get

1wl = fR NUF gy (P dx
- 47r<ICT(—T2 N, (T - )\)*11/))

=4n(, (=T* = N ")y
— 47T((—T2 — )\)u, M)XU
= 4n([Tullzo — A llull3o)-

X0

In particular, Lemma B.8(a) implies ||‘ll||i2 < 47r||Tu||§0 < 47TA% ||u||§(. < 00, SO
that indeed W € L2. Thus, we deduce from Lemma 4.4 that

1Q'(e0)| pr(Q\W) = KT (=T = N) ' = ¢ = |Q'(e0)| pr ¥,
and consequently O\W = W,

Conversely, suppose that Q)W = W is verified for some W € L? and W # 0.
According to Remark 4.2(b), W has its support in [0, rp]. Defining ¢ = |Q’(ep)
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| pr¥ (r), we obtain ¢ € X%, from Lemma 4.4. As a consequence, u = (=72 —
Ny e Xodd. Also u # 0, since otherwise ¢ = 0 and ¥ = 0. From Lemma 4.4,
we finally get

(=T = Nu =1 =[0Q'(eg)| p, ¥V = |Q'(eg)| pr (W)
=KT(-T* - )" =KTu,

sothat Lu = —T%u — KTu = \u. O

Lemma 4.6 The following assertions hold.

(a) To V¥ € Lf we associate the function Y(r, pr, £) = |Q'(eg)| pr¥(r). If z € Q,
then

1
Ry
Qv w)=eirt Y [[aeede me e or

k20 7p
(4.25)
(b) LetV¥ e Lf be given and supposethat F (r) = F(0) + f(; W(s)dsforr € [0,rp]
as well as g = —| Q' (eg)|(F — Fy), where F is the zero’th Fourier coefficient
of F. Then QoW = U, and furthermore

(QoW, W) 477// dx dv |g|2=4w/ 10/ (e)| (F — Fy)* dx dv.
10(eg)l |

(4.26)
(c) Let ¥ € Lf be given and suppose that F(r) = F(0) + for Y(s)ds for r €
[0, rol. Defineu = —T ' (1Q'(eg)|(F — Fy)). Then u € ngd and

1
(Lu )y = — ((Q%, ¥) = QoW I} ). (4.27)

Proof (a) The relation (4.25) follows from Lemma 4.3(d) and (4.24).

(b) Owing to Lemma B.9, we have g € X!, as well as Tg = — for ¢ as in
(a). In addition, go = 0 by (B.24), so that g € Xé. Thus, Lemma B.13(c) yields
~T'Y=g—g =g

Next, recall that ¢ is odd in v and [|9|xo < pQ(O)l/2 W2 < oo by (4.20),
which means that ¢ € X%, C X{. As a consequence, 7 (—72)" W=-—T =g
by Lemma B.13(e). Hence, if we take z = 0 € Q2 in (4.22) of Lemma 4.4, then we
get

Q¥ =Ur g1y = Uy

To verify (4.26), note first that i kw; g = — fork € Z. Applying (B.4) from Remark
B.2(a), we obtain
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dx dv
2 =167 //dum 2
//| > 0eg) &

k#0 “py
= 167° //dld [ |?
”g |Q<Q>| k%ﬂ '
= 167° //dd£
T ; e |Q( Q)|k2 3|’(/}k|

where we have used that % = wj owing to (A.18). Thus, the claim follow from (a)
for z = 0. (¢) We continue to use the notation and the observations from (b). Since
g€ X}, wehaveu =T 'g € X2. Asalso g € X\, and 7! reverses the parity by
Remark B.18, we get u € X> cdd- Accordlngly, we deduce from (B.44) in Corollary
B.19 that

(Lu, u)xo = [|Tull%0 — (KT u, u)xo.

Now Tu = T7 'g = g due to Lemma B.13(d), so that

1
—(QV¥, W)

2 2 2 _
ITullyo =gl = N8l | ()= -

1
sph, —+
P 107

by Remark B.2(a) and (4.26). Furthermore, using (B.40) from Lemma B.15 in con-
junction with (b), it follows that

(IC’Tu,u)Xo: / U, I dx =1 |U| dx

= 4— IQo\Ifl dx = — IIQo‘lflle,

Altogether, this yields (4.27). U

Lemma 4.7 Let p; :] — oo, 6%[ — 10, oo[ be defined as in Lemma 4.3(f). Then

(a) 0 < (0) < 1.
(b) If A\ < (5% and X\ € [0, \y], or Ay = (5% and X € [0, \,[= [O, 612[, then py(\) < 1.
(c) For X € [0, 512[, let W), € L? denote a normalized eigenfunction of Q) for i (\).
Define (. py, 0) = |Q'(e)| prWA(r) € X0y and gy = (=T? — Nl €
ngd. Then
p1(A) =47 (Py, gx) xo

and
Lgy = (1 — pi(A)Yx + Ag,

as well as .
(Lgr, 80 o = —— (N — 1 (N) + Allgall5o-
47
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(d) The function i :] — 00, 512[ — 10, ool is convex.

(e) We have
"o rre dr dr
pi(A) < 16#(/ / Pl Z// dtldely (o 0)<r 7<r, (e, 0)
o Jo k0 5

wi(e, £) 10 (e)|
k2wi(e, £) — A

2\ 172
sin(k0(r, e, £)) sin(k0(7, e, £)) ) .
Proof (a) Clearly 1(0) > 0, since otherwise ||Qp|l =0, and thus Qy = 0. To

show that 11(0) < 1, let W € L? be given. Define F(r) = for W(s)ds as well as
u=-T"10Q'(eg)|(F — Fy)). Then u € X2, and

1
0= Ml = (Lu )y = 2 ((Qow. %) — 1Q0WI1;) (4.28)
by (1.20) and (4.27) from Lemma 4.6. As a consequence,
QoW 12, < (QoW. W) < Q0¥ [1W]l,

implies that 1 (0) = ||Qoll < 1. Lastly, suppose that 1;(0) = 1. Since p;(0) is an
eigenvalue, we have QyW = W for some W = W (r) # O such that ¥ € Lf; Remark
4.2(b) implies that ¥ has its support in [0, r¢]. For the corresponding u, we deduce
u = 0 from (4.28). Therefore, (B.24), Lemma B.13(d) and Lemma B.9(b) lead to

0="T%u=-T"T"'(1Q'(ep)|(F — Fy))
= -T(1Q (eQ)|(F — Fp)) = —|Q'(e)| p; ¥,

which isimpossible. (b) Recall from Lemma 3.18 that A, < Jf. Thus, if we fix Ain one
of the two cases: (i) A, < 07 and A € [0, A\ ]; or (ii) A, = 67 and A € [0, \.[= [0, 63,
then \ € [0, 512[. Let W, € L? denote a normalized eigenfunction for s (\), i.e., we
have Q W) = w1 (VW) and Wyl = 1. For ¢ (r, p,, £) = [Q'(eg)| prWa(r), we
get i, € ngd, cf. the proof of Lemma 4.6(a). Thus, g\ = (=72 — N~ € ngd.
Using (4.21) from Lemma 4.4, we calculate

KTgy=KT(—T*—=N""9\ = Q' (e0)| p(Q\W))
= 11N Q' (e)| pr¥s = (M.

In addition,
T?g\ = (T>+ N)gr — Agr = — ) — Ag).

This yields
Lgy=—T"g\—KTgr= (1 — i (\)x + Aga (4.29)
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hence in particular

(Lgxr, 83 = (L&x, g\ xo = (1 — (V) (¢, g1)xo + Allgallo- (4.30)
Thus, by the Antonov stability estimate, Theorem 1.2,

Allgallko < (1= 1 (N) @, g2 x0 + Allgall3os

so that
0 < = Vllgallzo < (1= (V) @, g2 xo- (4.31)

Now, (B.26) in Corollary B.10 yields

(hx, 8\ x0 = (U, (=T = NP yo = (=T = N) 'y, 1) xo

_ 1g-3 1 | (I, O
= 167 gé/ dldee C@] B O - N (4.32)

and in particular (1), g\)yo > 0, as otherwise ¥, = 0 and consequently ¥y = 0,
which is impossible. Hence, (4.31) shows that p1(\) < 1.
(c) Note that due to Lemma 4.6(a),

i) = Nl(/\)”"p)\”ig = {1 (W)W, W) = ()W), )

1 W) (1, O
= 647" //de k
" % L Core 010@] Ruie.t) — X
— 6474 1 (W), O
= 641 Z/fdudl Tl Pt Do

k£0 ¥y

and therefore the first claim follows by comparing to (4.32). The other relations are
due to (4.29) and (4.30). (d) If A €] — o0, 5%[ and ¥ € Lf, then

d2
—5 (AW, W) = (QW, W)

d\?
_ ’ wie, £)|Q'(e)|
= 12877 // detde @ 3}

k£0 )y

X

ry(e, £) 2
/ W (r)sin(kO(r, e, £)) dr
r_(e, t)

>0

by (4.6) from Lemma 4.3(d). Thus, every function ] — 00, §7[ > A > (Q\W, W) is
convex. As a consequence of (4.7), also 1 (A) = sup {({(Q\W, W) : Wil < 1} is
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convex. (e) Here, we use

) = 11ullsaz) = 1L lus

and the fact that

ro ro
||QA||%{S=167¥/ / 27 | Ka(r, P dr dF

er d
= 25672 / / rar Z//dﬁEdEI _(e, O)<r,F<ri (e, )}

k#0 “p
wie, 010" o ?
X W sin(k@(r, e, £)) sin(kO(7, e, £)) | ,

cf. [35, Prop. 6.36] and (4.16). O

According to Lemma 4.3(f), the monotone limits

per = lim () = sup (V) : A € [0, 811} € [1(0), o0]

do exist. Of particular importance to us will be the number

po = pay =l (V) = sup (V) < A € 10, 81} € [11(0), 00].  (4.33)

Remark 4.8 If \, = 5]2, then p, < 1. This follows from Lemma 4.7(b). &

The next result will use assumption (w;-3). If w; attains its minimum at an interior
point (e, B) € 5, then we are in the situation of (w;-2), and Corollary 4.16 below
applies. Otherwise, since wj is continuous on D, its minimum is attained on the
boundary 0D, which consists of three parts: the left side

{(e,0) : e € [Ug(0), eol},

the lower boundary curve

{(e. B) s e = emin(B), B € [0, B}

and the upper line

{(e0, #) : B € [0, B:1}. (4.34)

Corollary 3.16 shows that the minimum can only be attained on this upper line (4.34)
ata point (eo, B), and (w;-3) roughly concerns the case where both a“‘ L (eo, B) #0

and (eo, ,8) # 0, which is reasonable to expect for a minimum on the boundary.
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Lemma 4.9 Suppose that (w1-3) is satisfied. Then

Q(szz lim Q)\ (435)
S

does exist in the Hilbert-Schmidt norm || - ||gs of L%. In particular, the kernel of the
symmetric and positive Hilbert-Schmidt operator Q(;]z is given by

~ 4
Kiih) = o Y [[ decdet, coeraniny

k0’55

% sin(k0(r, e, £)) sin(kO(F, e, £)),
1 ’ 1

and iy = || Qaf | < co. More generally, the k’th eigenvalue ofga% is fs . Fork e N,
the functions
() 11— 00,811 — 10, oo

are monotone increasing, locally Lipschitz continuous on ] — 0o, 82| and continuous
on ] — oo, 512], if we set /Mc(512) = s k. In particular, the py. are differentiable a.e.
Furthermore, |11 : | — 00, 6%] — 10, ool is a convex function.

Proof We need to refine (4.17), from where we know that

e e dr di [
n@—%ms%wmqll-ﬁﬁ(zfﬂwwm@mmw
k=1 D

1 1

Rwi(e, ) =X K2wi(e, ) — A

X

;

for A, A< 5% and a suitable constant C > 0. Thus
19x — Qslifs
e e dr di [ ,
< 512w2A%/0 /0 == (Zf/ dfdel;_¢,7 10 ()
k=2 "y

5 A=Al )2
(K2wi(e, B) — N (K2wi(e, B) — M)

"o rre dyr dr ’
+5127r2A%/0 /O 33 (// dfdel i ¢,q Q')
D

1 1 2
* ‘wz(e B =X Wie ﬁ)—:\))
1\= 1\,
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<o [T [redrdi (N1 2
242 -8 2
< 819272A2578 1A = )| /0 /0 r—”—z(;ﬁ//dﬁdel{ﬁimﬂg(en)
— D

re rre dr dr ,
+10247r2A%/ / = (//dﬁdel{dsér;}lQ (e)|
0 0 o
1

d

1 2
Wie, B)— A wie, f) -7 D

o o dr di ,
+10247r2A§/0 /0 53 (//dﬁdelmfé,,} Q' (e)l
D

1 1 2
x ‘ 2 Y T2 _ 62 ‘)
wl(ev 5) A wl(e’ ﬁ) 1
r r e 2
SCM—W/Qderdf(/ IQ’(e)|de> +CTON) +CTN)
0 Jo 0(0)

U,

<CIA=AP+CTN)+CTN), (4.36)

where

ro rro dr dr 1 1 2
T\ = — — dBdel,,_s, . — .
@ A A ﬂﬂ(é/ﬁ‘”%m}@wm—A ﬁmm—ﬁD

We assert that

lim T(\) =0, (4.37)
A—>02—

and to establish this claim, we are going to use Lebesgue’s dominated convergence

in [3° [ dr dF together with the condition

wile. B) — &1l = cil(e. ) — (eo. D). (e, 3) € D, (4.38)

from (w;-3), where (e, B) e D satisfies wj (e, ﬁA) = ¢;. Let r, ¥ > 0 be fixed and

define
1 1

T(r,7) = // dpde l[ﬂgérf} w]Z(e’ 3) — - le(e,ﬂ) — (512 .
D

If (e, B) € D aresuchthat§ < Crrand (e, B) # (e, B),thenwl(e, B)—6>a>0
for a = a(e, () by (4.38), and accordingly

1 1 _ =2
wie,B) =X wie,®) =861 (wie, B) — N(Wwi(e, B) — 63
<6220 =N =0, A— §—,
(4.39)
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for this (e, 3). On the other hand,

1 1 » 1

Wie. f)— A wie.f)— o =2 wi(e, ) —di

1
<25t —————  (4.40)

(e, B) — (eo, )]

by (4.38). Next, we are going to bound

1
I(R)=//dﬁde1;5 - R>0O. (4.41)
. e )~ (eo. B

Case 1: 3 > 0.If 3 < R < 3/2, then |(e, B) — (eo, 3)| = |3 — B| > (3/2 and hence
I(R) < 2371(60 —Up)R, R=< 3/2 4.42)

IfR > /5’ /2, then we always have

ﬂ* [0} 1 ﬂ* —;9 ey— UQ (0) 1
I(R) < / dg de —— < / dx2/ dx; ———
0 U (e —ep, B—P) B 0 [(x1, x2)]

B eO*UQ(O) 1
< / dxzf dx) ——— < C. (4.43)
—B. 0 [(xr, x2)|

Case 2: B = 0. Then

R ey 1 R eq UQ(()) 1
I(R)g/ dp de—f/ dx2/ dxy ————
0 ve  lle—eo, DI T Jo 0 |(x1, x2)]

R x1=e9—Ug(0)
:f dx21n<x1+,/x12+x§) e
0

R
- / dxs [m (eo — Up(0) + \/(eo — Up(0))2 + xg) “In x2:|
0
<CR—R(InR—1)<CR—RInR. (4.44)

X1:0

Thus, if we summarize (4.39) and (4.42)—(4.44) for R = Crr, it follows that
T7(r,7) > 0as A — 6%— for all r,7 > 0. Hence, to complete the proof of (4.37),
we need to obtain an integrable majorant. For, using (4.40), we can bound

¢dr dr 1 1 ’
I(/\) / / }”2 (// dﬁde 1{3<ér? w%(e, /6)) Y B w%(e,ﬂ) _ 5% })

"o dr dr "o dr dr
/ / —T(r 7)? <C/ / o I(Crr)
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Case 1: ﬁA > 0. Let £ = min{ry, %} Ifr <£orr <§é, then Cri < CA’EArQ < 3/2,
ro

and thus we can apply (4.42) in this case, as well as (4.43) in the opposite case.

Therefore, we split the integral to obtain

ro fro 1 ~
I\ < C/ / dr di Vy<: or i<ty 5= 1(Cri)’
0 0 r<r
c [ [ arar1 L1y
+ /0 /0' rar {r>éandf>§}ﬁ ( rr)
o fro 1
<C drdily<:orjz 7
= \/0 /0 rar {r<é or < }r2f2 rr
ro rro 1
C drdrl, _. P s
+ /0 /0 rarly-zand -2 25

ro ro
SC/ / drdr,
o Jo

which shows that a suitably large constant provides an integrable majorant. Case 2:
6 = 0. By (4.44), we get

ro ro 7 N
I\ <C / / dr dr 1(Cri)?
0 0

r2 72

"o (re dr dr A A A _ o
<C — (CCrr — CrriIn(Crr))
o Jo

22
ro fro n
5c[ / (1 — In(Cri))*dr dr
0 0

ro ro
5c/ / 1+ |Inr)® + | In7?) dr dF.
0 0

Since 1 + | Inr|?> 4+ |In7|? is integrable on [0, rol x [0, rol, we have found an inte-
grable majorant also in this case. Altogether, we have shown that (4.37) is verified.
At the same time, this yields limjs_, P T(\) =0, and going back to (4.36), we
deduce that (4.35) holds for an appropriate Hilbert-Schmidt operator Qs on L2
Since || - ll5z2) < Il - lns» (4.35) in particular implies that Qg = lim,_,_ Q) in
B(Lf). Recalling from (4.7) that p;(\) = || QAHB(L;), we can use (4.33) to get

M = AEI}IL“‘(A) = ,\EI;%, “Q)\”B(Lf) = ||Qaf||B(L3),

as claimed.
Let k1 > Ky > ... — 0 denote the eigenvalues (listed according to their multi-
plicities) of the symmetric and positive Hilbert-Schmidt operator Q(;%. Then

Kr = max { min  (QpW, W) : S C Lf is a subspace of dimension k}
wes, Wl =11
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by the Courant max-min principle. Passing to the limit limy_, 52— in (4.36), we derive

19x = Qs llyg < CIX =81+ CT (N2,

where limAﬁ(;]z, T(A) = 0. Thus, if ¥ € Lf is such that || W 22 = 1, then we have

{QUW, W) — (Qp W, W)| < Q) — Qi ll,,o < CIA =37+ CT (W',
Since the yi; (A) are also characterized by the Courant max-min principle, see (4.18),
it follows that

lueN) = kil < CIA =671+ CT (V'

and accordingly fu,x = limy_, 52 pe(A) = Ky.
The next assertion is due to the definition of p, ; and Lemma 4.3(f), whereas the
convexity of p; on ] — oo, 512] is a consequence of Lemma 4.7(d). ([

Corollary 4.10 Suppose that (w;-3) is satisfied.

(a) There is a constant C > 0 such that for every A € [0, 612] and r, 7 €10, rg], we
have

C
Ka(n )] <
-

(14 Inr]).

(b) For X\ € [0, 6% [, let W) € Lf denote a normalized eigenfunction of Q) for pi(N).
Then there is a constant C > 0 such that for every \ € [0, 5%[ and r €]0,rp], we
have

(W) = C(L+ [Inr]) [Wallz2-

(c) For Wy as in (b), define Y, (r, pr, £) = |Q'(eg)| py¥\(r) € ngd. Then there is a
constant C > 0 such that for every X € [0, 6?[ and k € Z, we have

W, 01 < C1O" @ Wall2, (I, £) € D,
where (1)), are the Fourier coefficients of 1.

Proof (a) From (4.14) and similar to the argument following (4.9), we obtain with
min{r?, 72} < r? and using (w;-3)

Z Sk,()(r, F, )\)‘

k£0

[K\(r, 7)| —4
ril = —=
A 272

c 1
Loy ier dfdelg<cry 57—
272 H0=rF=ro) Z// Bdelip=cr k2wie, B) — A

k#0 Y5

C 2
o) Lio<rizrg) // dfdeli<c, e

k1=2 "5

IA

IA
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c 1
+_~1 <r,r<r, //d d 1/< P2y
272 Mosrizr) | fdelis<cr e B =

C C 1
<_~1 <rF<r r2+_~1 <rr<r //d del[< 2} TH . o
= y2p2 0=risro) 22 0=risrol g p =cr) wie, B) — 07

C

C 1
= Lio<ri<ro) + 5= Lo<ri<ry) // dBdelig<cry ————5—.
2 coore o (e, ) = (e0. D)

IA

By means of the function I from (4.41), this can be expressed as

C

- C A
[Kx(r,P)| < ) Lio<ri<ry) + Fors) Lio<ri<ry) 1(Cr?)

for certain constants C, C > 0 that only depend on Q. Once again, we distinguish
two cases. Case 1: [? >0.Ifr? < % then we can apply (4.42) to get

- C
[Kx(r, F)] < = Lo<ri<ry)-

On the other hand, if 2 > % then (4.43) leads to

Cc

C
K\(r, 7)| < = ligey — 1 ; <=
[Ka(r )] = 72 0=rF=ro} + F2F2 (2 2<r<rg, 0<i<rg) = F2

Lio<rizro}-
Case 2: B = 0. Here, we invoke (4.44) to deduce that
- c Cc Ao Ao c
|K\(r,7)| < ﬁ l{OSr’;SrQ] + m 1{057,;57Q} [CreIn(Cro)| < ;7 1{057,;57Q} (14 |Inr)).

Hence, in any case, we arrive at the bound

C
KA )] < =
E

(14 |Inr)),

as desired. (b) Using (a), we obtain from (4.15) and Remark 4.2(b)

L O WA = i (MIWAE)] = (QuWa) (D] = 4

ro
/ 72 K\(r, F) U\ (F) dF
0
ro
scaﬂmm/|%®wﬂ
0

so that ro
(W) < Ci(1 +|In rl)/ W\ ()| dF (4.45)
0
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for a certain constant C, > 0 that only depends on Q. Fix a, €]0, ro[ such that

o+ |Inr)dr < ﬁ.Then

IA

Ay ax ro B 1 ro B B
/ W)l dr C*/ a1+ Ilnrl)dr/ WA dr < E/ W) dr
0 0 0 0

1 [* o1 fTe I
—/ I‘I’A(r)ldr-i-—/ [Wa(r)|dr
2 0 2 a,

entails [, |W)(F)|dF < [/ |W\(F)| dF. Going back to (4.45), it follows by means
of Holder’s inequality that

WA = Ce(1 + \lnrl)[/o ’ I\I/A(f)ldf-i-/ ¢ I‘IJA(f)\df] =2C(1 4+ |1nr\)/ ¢ WA drF

1/2
20, ro o ZC*rQ

= a +|lnr|)f FIWA(P)|dr < A+ Inr) 1wl 2,
ax as T s r

from where a suitable C > 0 can be read off. (c) Owing to (4.24), Theorem 3.5 and
(b), we have

ry(e,f)

% Q' (e)| wi (e, E)‘ / W, (7) sin(kO(7, e, £)) dr

_(e,l)

[, O]

IA

ro
CIQ’(e)I/ |WA ()| dF
0
ro
<C IQ’(e)I(/O (I+ |1n7|)df>|I‘IJAIILg < ClQ' @ ¥l L2,

which completes the proof. (]

Corollary 4.11 Suppose that (w,-3) is satisfied. Let (\;) C [0, 5%[ be such that
lim; o Aj = 5%. ForjeN, letW; e L? denote a normalized eigenfunction of 0,
Sfor 1 (). Furthermore, define ;(r, p,, £) = |Q'(eg)| p,V;(r) € ngd. Then there
is a subsequence j' — 00 so that

jl—oo
does exist in L* and
ty = lim '(/}j’
j'—00

does exist in X°, where Yu(r, pr, €) = 1Q'(eg)| pr Vi (r). In addition, ||‘-IJ*||L3 =1
and QpWV, = p, W, as well as j1,. = || Q|-

Proof Recall from (4.33) and Lemma 4.9 that p, € [u,(0), oo[. For j, k € N, we
can estimate
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el Wi = Wil 2 < (e — pn QUG 1 + 190, W5 — ka‘kaL;

+ (e — ) Wil 2

= (e = D) + (e = 1 AD) + 1(Qy; — L) Wil
T1Qs Y — Qi Wil + 1(Qs — QI Will

= (e = QD) + (e = 1 AD) + 19y, = Lipll5 )
T1Qs Y — Qi Wil + 195 — il

< (e = (X)) + (s — 1 (A)) + 1R — Qi ll
Qs — Qullyg + 195V — LaWill - (4.46)

According to Lemma 4.9, we have lim,_, 5_ [|Qz — Q,\||HS =0and Qs : L2 — L?
is a Hilbert-Schmidt operator, and hence compact. Thus, since ||¥;]|,, =1, the

set {thf V;:jeN}C L? is relatively compact. Therefore, there is a subsequence

j' = o0 and a function ¥ € L2 so that lim . QpW; = ¥ in L2. From (4.46),
we deduce that along the subsequence

pallWjr = Wil 2 < (e = (X)) + (e — 1 (i)
195 = Ol + 125 — Quyl
+||Q5%\IJ]’/—Q<;12\IJ](/”LZ —)O, j/,k/—> Q0.

As a consequence, ¥, = lim_, o, W does exist in Lf. Since
172
1 = ellyo < PO 1W) — Wil 2

by (4.23), also v, = limj._,, 1;» does exist in X0, where ¢, (r, p,, £) = |Q'(ep)]
prV.(r) a.e. Lastly,
195 W, = a2 = 195 (% = Wil . + Qg — Q)W
+ (e = Q) Wl 2 + el — Wl 2
< 2 |W = Wil + 195 = oyl
+ (s — 1)) = 0, j' — oo,

implies that Q(;]z W, = p, W, O

The following criterion is useful for proving that 47 is an eigenvalue of L in the
case where p, = 1.

Lemma 4.12 Suppose that (w,-3) is satisfied and that i, = 1. Let (A;) C [0, 5%[ be
such that limj_, o \j = 82. For j €N, let v; e L? denote a normalized eigenfunc-
tion of Qy, for py(X)). Furthermore, define 1 (r, p,, £) = |Q'(eg)| p,V;(r) € ngd
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andg; = (=T> = \))""p; € X2 If (g)) € X* = prh "\ (K) is bounded, then &}
SP: 7o,
is an eigenvalue of L.

Proof From (4.21), we deduce

KTg; =KT (=T — X)) "4;=|Q(e0)| p-(Qx,¥))
= (A Q' (el pr¥; = i (X)Y;. (4.47)

Since —72g i =1%j 4+ Ajgj, using Corollary B.19, this implies that for every odd
function & € X%, we have

(gjs Lh)xo = (ng, h)Xo = (_ngjvh)x() - (ICngvh)XU
=@+ Ajgj M) yo — 1 (X)), )y
= X85 Mo + (1 = iAW, h) yo. (4.48)

Next, from (4.20), we get [9jllyo < po(O)'/? W], < po(0)'/%.  Since
lim ;o0 p11(Aj) = ps = 1, this yields in particular that

ilin(}o[(l — M) @), h) 3] = 0. (4.49)

By assumption, (g;) C X° is bounded. Hence, passing to a subsequence (that is
not relabeled), we may assume that g; — g, weakly in X% as j — oo for some
function g, € X%,. Suppose that g, = 0. Then g; — 0 weakly in X° implies that
KTg; — 0 weakly in X° as j — 0o, by Lemma B.15(d). Due to (4.47), this yields
; — 0 weakly in X% as j — oo. On the other hand, by Corollary 4.11, we may
pass to a subsequence j' — 0o so that W, = lim;_,o, ¥} does exist in L? and
Yy =limj_, o 1) does exist in X° as strong limits; the functions are linked via
Yo (r, pr, €) = |1Q'(eg)| pr Wy (r). But then we must have 1, = 0 and accordingly
W, = 0, which however contradicts ||W,|| =1 cf. Corollary 4.11. As a conse-
quence, it follows that g, € ngd satisfies g, #~ 0. Passing to the limit j — oo
in (4.48) and using (4.49), we moreover infer that (g., Lh)xo = 6f(g*, h)xo for
every odd function 7 € X%. From Lemma C.11, we conclude that g, € ngd and
Lg, = 67g., which completes the proof.

4.2 Relating p, to the Fact That )\, is an Eigenvalue of L

Theorem 4.13 We have
e >1 <= A < 5%.

In this case, 11 (\y) = 1 and )\, is an eigenvalue of L.
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Proof 1f pu, > 1, then \, = 6% is impossible by Remark 4.8, so that we must have
A < 6%. Conversely, suppose that A\, < 6% holds. Then, according to Theorem C.8,
A, is an eigenvalue of L. Let u, € X2, be an eigenfunction of L for the eigenvalue
Ay Using Theorem 4.5(a), it follows that W, = UL, € L} for r € [0, rg] is an
eigenfunction of Q) for the eigenvalue 1. Since p; (\,) is the largest eigenvalue of
Q,,,we get (11 (M) > 1. On the other hand, £4; (A\,) < 1 by Lemma 4.7(b), and hence
(1 (Ay) = 1. It remains to show that y, > 1. Suppose that on the contrary p, < 1is
satisfied. For A € [\, 5%[, the monotonicity of ) thenyields 1 = p1(\y) < pu1(A) <
s < 1, whichmeans that ;11 (\) = 1isconstantfor A € [\,, (5%[. Take A\, < A< )\<
5%. and let W5 denote a normalized eigenfunction for (5\). Then, by (4.19) and (4.7),

L= (V) = (Q5¥5, W5) < (QuW5, W3) < [ Qall 1W5ll7; = ) =1,

which means that (Q,\W5, ¥;5) =1 for all A\, < A< )\< 512. Differentiating this
relation w.r. to A at a fixed Ay €], &2[, it follows from (4.6) that

0 = (Q),¥;, ¥y)

o wile, 0)|Q'(¢)]
= 647 Zf/ dttde B ) — o)’

k#0 “py

ry(e, £) 2
/ Vs (r) sin(k0(r, e, £)) dr
r_(e, £)

for all \ € [As, Aol. Defining o5 (r, p,, £) = |Q'(eg)| p,¥5(r) € X(O’dd, then (4.24)
implies that (1/5) <=0 for k € Z, so that ¢; = 0 and in turn W5 = 0, which however
is impossible. (]

Theorem 4.14 Suppose that (wy-1) is satisfied. If ju, < 1, then A, = 8% and this is
not an eigenvalue of L.

Proof The approach is inspired by [20, Section 2]. Since A, < 47 by Lemma 3.18,
s« < 1 together with Theorem 4.13 implies A\, = 7. Now suppose on the contrary
that there is a function u, € X2, such that ||lu.llyo = 1 and Lu, = 63u,. If we
define W, (r) = U’Tu*(r) for r € [0, 7¢], then W, € Lf and (B.37) yields K7 u, =
|Q"(eo)| pr Uz, (r) = Q' (eg)| pr W«(r). Hence, fora > 0 and b € R, we get

Since z = 07 — a + ib € Q, it follows from (4.21) that

10 (e)| pr(Qsr—aripWs) = KT (=T> — (67 —a+ib) " (KT u,)
= KTu, — (a —ib) KT (=T* — (6} —a+ib)) " u,
=10'(eg)| p; V.
—(@—ib) |0 (e)| Pr U122 —ayity)-tu,

and therefore,
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Q(;%—(H-ib"y* = \IJ* - (a - lb) U';’(_TZ_((;IZ_Q_H‘;)))—IM*‘ (450)
We claim thatif a = a(¢) — 0" and b = b(¢) — 0 as € — 0, then
@ =i Ur 2 aripyn, = 00 €= 0%, (4.51)

in L%. For, we can invoke Corollary B.16 as well as (B.25) to deduce

2
(=T2—(82—a+ib)~'u, I 12

< 167200 (0) (a® + b*) (=T = (62 — a + i) "u, 0

_ 5 2, 42 1 ()i (I, )]
= 2567 (0) (a® + b?) Z// dldee O PR T0 - & —a DT

@ — ib) Uy

k#0715
1 ()i (1, O
= 2567 g (0) (a® + b* f/dldw k .
TreO (@t )g | 0@ K231 0) — & + a1 b2

If |k| > 2, then k*wi(l, €) — 6 +a > (k* — 1)67 > 367. Thus,

(@ — ib) U/T(szf((SffaHb))"u* ”iz
< 217674 po(0) (@® + b2 [l %0
2 b2
+ 51270 (0) //dldu @t
D

(Wi(I,€) — 6 4+ a)* + b2

o1(1, £)

for 1 (1, £) = “lhﬂ e L'(D).Foralmostall (1, £) € D, we know from hypoth-

Q'(e)

esis (wy-1) that wy (I, £) # 01, i.e., wi (I, £) > §,. For such an (/, £), we have

a’+b? a’®+b?

= 0, 0.
Q1O —C P+~ @O -2+ 7

Since always
a’ +b? -
Wi(I,0) =6 +a)2 +b* ~

’

it follows by using Lebesgue’s dominated convergence theorem that indeed (4.51) is
verified. Going back to (4.50), this entails that

lim Qp_yip W = Wi i L2 (4.52)
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Next, we are going to compare Qs _, ;5 to Qs2_,. Here, we find

|(Q6127a+iblll*1 \I}*) - <Q(5]27a\11*’ \I/*)| = |((Q(527a+ib - Q(52 a)\lj*v \II*H

= 6477 fodude
k#£0 V)
[ wi(e, £) Q' (e)] _wile, O ]Q'(e)] ]
202 (e, £) — (03 —a —ib)  Kwi(e, £) — (07 — a)

ro ro -
x / / dr dF U (1) 0o Lo, trcr.rrio. o SIn(kO(r e, ) sin(kO(F, e, ) .
0 0

cf. Lemma 4.3(d) and the definition of Q.. Using (4.8), (4.12) and similar arguments
as in the proof of Lemma 4.3(a), we obtain

|<Q62—a+ibqj*’ W) — (Q52_a\y*, W)l

1
= CW/;// dtede|Q'(e)] k2w (e, £) — (6% — a — ib)| k2w (e, €) — (6% — a)|

ro rro )
< [ [ ararie.one.@neen.
0 0
Now

K*wie, £) — (67 —a —ib)|* = (Kwi(e, &) — 6; +a)’ +b* = a°,
KPwile. ) = (0F — a)* = Kwie, O) = 0 +a)* = @,

so that

Q52 ativ W Ws) — (L W, Wil

|b| Z/ / dr dr |V, (r)| |V, (r)|rr<f ' |Q’(e)|de>
Up(0)

k#0

< —2 1,12,

So if we take for instance b(e) = &> and a(e) = ¢, it follows that

lg% |(Q61275+i53q}*a \Ij*> - <Qz5]275\y*7 kIJ*H =0.

Using also (4.52), we conclude that

lim (Qp_. ., Ws) = | WallZ;
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Asa consequence,

IWall7, = lim (Qp_ Wy, W) < limsup || Qg | 1%
e~ e—>0 "

= limsup 111 (0} — &) W3, < g 10,13,

e—>0

Since 1, < 1, this enforces W, = 0 and hence K7 u, = 0. Therefore, —7 2u,, =
~T?u, — KTu, = Lu, = &u,, i.e., 6 is an eigenvalue of —7 > with eigenfunction
u.. However, this contradicts Lemma B.12. |

The next result clarifies the case where p, = 1.
Theorem 4.15 Suppose that (w;-3) is satisfied and that ., = 1. Then \, = 6, and

this is an eigenvalue of L if and only if

”M/l”Lx(]—oo,(Slz[) < o0 (453)

holds.

Proof Since \. < 07 by Lemma 3.18, j1, = 1 together with Theorem 4.13 imply
Ay = 6%. For the actual proof, recall from Lemma 4.3(f) that p;(-) : ] — oo, 5%[ —
10, ool is differentiable a.e., so (4.53) makes sense.

First, we consider the case where 5% is an eigenvalue of L. Let u, € ngd
be such that ||uy|lyo =1 and Lu, = 51214*. If we define W, (r) = U/Tu*(r) for r €
[0,70], then W, € L? and (B.37) implies that K7 u, = |Q'(eg)| pr U/Tu*(r) =
|0/ (e0)| pr Wa(r) =: ¥, € X°,,. For A\ < 07, we have

(=T = Nuw = Luy + KT uy — Mty = Py + (67 — Nt (4.54)

and hence
(w0 = N W) = @i + (67 — Ny, k € Z, (4.55)

for the Fourier coefficients. Since
1 ’ 2 1 2
(s, M*)Xo = (’CTM*, u*)XO = |U']'u*(r)| dx = _”\I"*”LZ
4 JRs 47 v
by (B.40) from Lemma B.15(b), taking the inner product in X° of (4.54) with u,,

we deduce

1
(=T% = Mt ) xo = = W7z + 0F = Vil (4.56)

Next, due to (4.25) from Lemma 4.6, we have

o 1 1
(O\W,, W,) = 647 Z// dtlde G DIO®) Bie D 3

k£0 ¥y

x | ()i (1, O
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Thus, by (B.4), (A.18), Lemma B.8(b) and (4.55) applied twice,

(=T% = Ny, us) xo
o0 o0 1
= 167 /dlf dee —T2 — Nu (1, 0) (), (I, ¢
”Zo i o [ YTk (1, €) ()i (1, 0)

k#0

_ 3 1 2,2 _ 2
= 16 Z// detde s (uwie. ) = N 1wl O]

k£0 Vg

1 I—
- 3 [ —
= 167 2// detde o W 0 w1, D

k#0 “fy
1
+ 1673 (5% — X //dud — ) (I, 02
(6] )%D ¢ e nioE @0l
1
= l167° //dud — (W), ¢
" g e nige
D
(Wi, £) 2 (w1, £)
x (k%uf(e, H_aT O =N K2 (e, 0) — A)
+ (07 = N [l 3o
1
=1 (W, W)
3.0 1 ()i (1, £)
Hlome A);// detde e D@ K*wi(e, £) — A
#0°p
+ 07 = M) sl 3o
Comparing to (4.56), this yields
1 2
ol LAY 72
1
=1 (W, W)
3,0 1 ()i, £)
+ 167 (52 A)%// dttde RO |Q,(€)|(¢*)k(1, 0) Coe b %
D
(4.57)

If we had W, = 0, then also 1, = 0 and consequently (kzwf — 612)(u*)k =0in D
for k # 0 by (4.55). This implies that (u,), = 0 for |k| > 2 and (w; — §;)(u,); =0
in D. Owing to (w;-1), this enforces (u,); = 0 a.e. and therefore u, = 0, which is a
contradiction. In other words, we do know that W, # 0. Hence, by (4.7) and (4.57),
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pi(A) = sup {{QuW, W) = [W]l2 < 1}
1

Z — 5 Q lIJ*, \I/*
v, ||iz( g )
= 5=\ //deed S —
||w ||Lz( );; ‘ ite, Z)IQ(e)I
(L, 0)
X (1/]*)]((17 £) —kzw%(e, 0 — 3

Thus,

T—m) _ 64 //dgd
Zox S 2 ewl(eﬁ)IQ(e)l

2 k0 Vg
(u)i, £)
(L, ) ———
X (1/} )k( )kzw%(e’ 6) —
and upon using (4.55) one more time, we conclude that
L—m) _  64r? Z// Kwie, o) - 1 o O
N AT e €)|Q @ Kl ) —r K
647T f/ 2
= [ (1, O)]
||w*||izk% LIl E)IQ()I .

s
= 4.58
A s (4.58)

for all \ < 5%. Since p; is convex on | — oo, 5%] by Lemma 4.9(d), the difference
quotients
pr(A+h) — (A
h

for & > 0 are monotone increasing in A (and also in h); see [14, p. 13/14]. Let
Ao €] — 00, 5]2[ be a point where p, is differentiable and let 4 > 0. For A\; = Ao — &
and \y = 67 — h, we have \; < )\, whence 1;(6}) = p. = 1 in conjunction with
(4.58) for A = 62 — h leads to

p1(Ao) — pi(Xo —h) (A +h) — pi(Ay)
h B h
~ o+ ) — )
- h
2 2
_ p1(67) /;1(51 h) < 47T2 ||“*||§(0
Wl
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It follows that ||z} ll 2o -0, 1 I|u*|l§(0, which proves (4.53).

D= H‘l’ I|2

To establish the converse, we assume (4.53) to hold, and we are going to ver-
ify that 67 is an eigenvalue of L. For this, we are going to use Lemma 4.12. The
operator family Q. for z € Q = C\ [6?, oo satisfies the assumptions of Lemma
D.1 with A = 512 and H = Lf, by Lemmas 4.3 and 4.9. Hence, there are sequences
Aj /101, e;>0and @ € L7 for A €]\; — ¢, A + €[ such that [|®; 5[], = 1,

N —ejXj+ejeA> @), € L?

isreal analyticfor j € N,and Q\®; y = p1(\)®; rforj e Nand A €]); —¢;, A +
¢;l. Furthermore, p is real analytic in [\; — €;, A; + ¢;[ and satisfies

A = (Q\ P\, @) (4.59)

for X €]A\; — €, Aj + €;[. By decreasing € ; further, if necessary, we may assume that
€j — 0as j — oo.Dueto (4.53), there exists aset N C] — 00, (512[ of measure zero

suchthat § = supy¢)_ 22p\w 111 (M| < 00.Foreach j € N,pickj\j ENj —¢gj, A\j +
€;[\N and define ¥; = <I>j.;\’_. It follows that lim_, o S\j = (512 and |W;|l,, = 1. In
addition, Q;\j\llj = QXXCDJ.’& = ,ul(:\j)cbjjf = ,ul(:\j)lllj, i.e., ¥; is a normalized

eigenfunction for the eigenvalue j; (5\ j)of O Y such that

sup (Qf W), W)) < S, (4.60)
jeN

the latter due (4.59); recall that generally (Q\W, W) > 0 by (4.6). Now define

G pr ) = 10/ (e) py¥;(r) € XSy and  g; = (=T% = A)"'; € X2y,
To complete the proof, we need to show that (g;) C X 9 is bounded. From (B.4),
(A.18), (B.25), (4.24) and (4.6), we obtain

lgjl1%0 = 16733 / dr / et —— (g, (I, O
o )
=167 Z//dude @), d. OF
orll wi (e, E)IQ @O (Kwi(e, ) — Aj)?
ry(e,l) 2
= ]67‘(2//d€€ ‘”1(6 v1g@l /+ W (r) sin(k0(r, e, €)) dr
k20" wie. ) = A2 Jr_(e.0)

1 /

Thus, the claim follows from (4.60). O
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4.3 Some Further Results

The following observation corresponds to the situation where w; is differentiable
and attains its minimum at an interior point (¢, 3) of D; cf. assumption (w;-2).

Corollary 4.16 Suppose that (w;-2)is satisfied. Then i, = 00, A, < (512, wi) =1
and A\ is an eigenvalue of L.

Proof We only need to show that y, = oo, then the remaining assertions do follow
from Theorem 4.13. The lower boundary curve (0D); = {(e, ) € D : e = epnin(6)}
of D characterizes the (e, 3) where r_(e, 8) = ro(8) = ro(e, 3). Since (e, ﬁA) €
int D = {(e, B) : B €0, Bil, e €lemin(B), eo[} C D \ (0D); by hypothesis, we have
that r, (e, ﬂA) —r_(e, B) = 6m > 0. The functions ry are known to be continuous
(even C1) on int D; see [30, 50] and [88, Def./Thm. 2.4(b)]. Thus, by shrinking the
neighborhood U of (e, B) if necessary, we may assume that

(e, ) —r-@ Bl <n, Iri(e,f)—ri@ Ml <n, (e,f) €U,

is verified, along with

wie, ) — 61l < Cil(e, B) = (&, B)I*, (e, ) €U, (4.61)

from (1.31). Next, we have 0(r_(e, ﬁ) e, ﬂ) =0 and 9(r+(e ﬂ) e, ﬁ) = 7. Since
% ”1 dueto(A.21)and p, > 0 along the half-orbit, (-, ¢, 6) is strictly increasing.
In partlcular, we obtain

~ 1 ~ ~
sin@(r,,,e,3) =20 >0 for 7, = 3 (r_(e, B) +ry(e, ).
As also

0:{(r,e,B):(e,B)eintD,r_(e,) <r <ri(e,B)} = R

is continuous, thereis ¢ €]0, n]such thatsin O(r,e, B) = ofor(e, 3) € Usothat|e —
él<e |B—PBl<cand r € [y — e, Fu+elNlr_(e, B), r+(e B)= [Fm =&, T +
e]. If ¢ > 0 is small enough, we may assume that [é — ¢, ¢ + €] X [[3 —e,f+e]lC
U Cint D as well as [/, — &, P, + €] C [0, rg]. Furthermore, note that in general
sind(r, e, 3) > 0 for (e, B) € int D and r_(e, B) < r < ry(e, 3). Next, owing to
(e, B) € int D, we have e €]Uy(0), ep[. Using (Q2), we can thus make sure that
inf{|Q'(e)| : e € [¢ — ¢, e + €]} = a > 0. Now, we consider the function

_ 4 . 172
W) =7 W) 7= (F U2l =l = 1)

for which [Wollz: = 1. Hence, for A < 512 by Lemma 4.3(d),
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pe = 1 (A) = |Qall = sup {QaW, W) : V]| < 1} = (QaWo, Wo)
2 wi(e, B3)Q'(e)] /’*(6’3) .
=327 Z / f dBde ool Wo(r) sin(kf(r, e, B)) dr

2

k20 V3 —(e, )
ri(e, 3) 2
> 3072 / / dfide ”'(f(f /)3')Q e ( f ) wo<r>sin<0<r,e,ﬁ)>dr)
r_(e, 3)
B+e Fmte 2
> 327%6,y" / dﬂ/ (lngN (/ sin(6(r, e, 3)) dr)
B+e 1
2 2,2
z 12870 L a / e _ita (462)

where a = 6% — A > 0. From Theorem 3.5 and (4.61), we deduce that

wie, B) = +a <2MCi 1€ —EP +a, E=(e,), =, 1)

As a consequence,

pre 1 d?¢
ol e st Lo ot
je.p)—ot+a  Jig=g=e 201C1 1 —&1* +a

© P

0 2A1C1p%+a
o In 2A1C152+a
T 2A1C a

— 00, a— 07T,

Thus, if we pass to the limit A — 512—, i.e.,a — 07,in(4.62),itfollows that i, = oo.
O

Regarding Theorem 4.15, if (w;-3) holds and if u, = 1, then one can show that
A = 47 is an eigenvalue of L, provided one is able to gain a little bit from the term
|Q’(e)], in the sense that Q’(eg) = 0 in a controlled way, as expressed by (Q5); then
the inherent logarithmic singularity can be dealt with. To simplify the presentation,
we additionally assume that /., is simple as an eigenvalue of Qs , but with some
more technical efforts, this assumption could be disposed of.

Corollary 4.17 Suppose that (w,-3) and (Q5) are satisfied, and assume that i, = 1
is a simple eigenvalue of Qs. Then A = 5%, and this is an eigenvalue of L.

Proof We already know that A\, = 512; see the proof of Theorem 4.15. To verify that
6% is an eigenvalue of L, we are going to use Theorem 4.15. According to LemmaD.2,
there is € > 0 such that ]6% — &, 5%[3 A+ p1(A) is real analytic. In addition, there
are W) € L% satisfying Wallz =1, O\ = 1AWy, and]5f — g, 5%[5 A= Wy
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is real analytic. Also y1j (\) = (Q) Wy, W) holds for A €]07 — ¢, 67[. By Lemma 4.9,
the function 1 is convex, so that i > 0 and ] is increasing. In other words,

’ . , o
”/J'l ”L"O(]—oo,&f[) = )\EI;} 1251 ()\) =1 [y
2

does exist in ]0, co], and the issue is to show that p/, < oo. Defining ¢, (r, p,, £) =
|Q'(eg)| pr¥(r) € X (0)dd as before, we get, from Lemma 4.3(d), (4.24) and Corollary
4.10(c),

LA = (Q\Wy, W)
2 wi(e, £) Q' (e)]
= 641 2// dtede T

k£0 )y

ri(e, £) 2
X [ W, (r) sin(kb(r, e, £)) dr

(e, £)

4 1 |, OF
=642 /f detde (k2wi(e, £) — N wile, 0) 1Q'(e)

k20 Y5

< CZ//dZZde—(kzw TN |0/ (e)]

k#0 /5

10" (e)]
> //d66d664 4+C//dK€de—(w1(e,E)—6])2'
=2D D

Thus, using (w;-3) and (Q5),

(e —eg)”

(e, B) — (e0. DI

ui () < C+Cf/d£€de

B €o 1
<C+ C/ ap de ~ -
0 emin(8) [(e, B) — (eo, B)|

Be—p e0—Up(0) 1
§C+Cf de/ dx1|—<C,
_3 0 X

2—a —
B |

where x = (x1, x). Therefore i, < C and the proof is complete. U



Chapter 5 ®)
Relation to the Guo-Lin Operator oo

In [29], the operator
AgL : HXR?) — LXR?), AgL=—A—4n f 1Q'(e)I(I — P)dv,
R3

has been introduced (there called Ag), where Hr2 (IR?) is the Sobolev space of second
order of radial functions ¢(x) = ¢(r). Here, P is the projection onto the kernel of 7°
of such a radial function, cf. Remark B.6 for an explicit expression. The associated
quadratic form is

(AcLd, 912101 = IVl 72gs) — 47 (||¢||§‘2Q,‘(R6) - ||P¢||i‘zg,‘(m)
= IVollas = 4716 = POIL: s, (5.1)

where we let

I8llLz, ey = /R 3 /R 100l g(x, v)I* dx dv

for suitable g = g(x, v). In [29] an important property that was needed for the proofs

was that
(AGL®, &)1, 10

/\GL = inf { 5
117,

L ¢ e H(RY), ¢ # 0}

be positive. However, in fact it holds that S\GL = 0, as has been noted in Theorem4.6
and the subsequent Remark b) of [88]. In [88], it was also observed that the valid
(and for the intended stability proof appropriate) replacement is
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(AGL®, &)1, 10

)\GL = inf {
IVl @)

c¢e H' (R, Vo # o} >0, (5.2)

where H!(R3) = {¢p € L2 (R?) : V¢ € L>(R?)} denotes the first order homoge-

log¢ 8
neous Sobolev space and Hr1 (R3) are the radial functions in H'(R?).

The next result establishes the connection between Agp and 1 (0).
Lemma 5.1 We have \gL + p1(0) = 1.

Proof Let ¢ € H' = H!(R?) be such that V¢ # 0. Abusing notation, we can write
Vo(x) = ﬁ W(r) for W = ¢/, and in particular Wl = IVl 2rs) and W € L2
Since

(QoW, W) = 4r f / 10/ (e0)| (& — P) dx dv
K

= 47r/ / 10/ (e0)| (6 — Pp)? dx dv =4 ||¢ — PSII%: g,
o Jw 1']

by (4.26) in Lemma4.6 and our convention concerning |Q’(eg)|, (5.1) yields

(AGL®: Dajo  (QoW, W)
VA7) ||‘1’||ig

= 1. (5.3)

Recall from (4.7) that 11 (0) = sup {{Qo V¥, V) : [Wll,> < 1}. Therefore, (5.3) leads

to
| < (AcL®, 9)2,10]

+ 11(0)
IVlI7- @)

forall such ¢ sothat1 < Agp + w1 (0) is found. Conversely, if W e Lf and W # 0, we
define ¢(r) = for W (s)ds to obtain ¢ € Hrl, and once again (5.3) holds. We deduce

that
AgGL®, / v, v v,y
- (AgL® 2¢)2,\Q| (Qo i ) S Mg+ (Qo i )
IVOIL2 s IW1172 MW 1172
for all such W, which entails 1 > Agp + 141 (0). O

Corollary 5.2 The infimum AGL in (5.2) is attained, i.e., there is a function ¢, €
Hrl (R3) such that ||V¢*||L2(JR3) = 1 and (AGL s, ¢*>2,\Q/| = AGL-

Proof 1t is implicit in [29], and explicit in [88, Prop. 4.8], that the assertion will
follow from AgL # 1. However, Lemma 4.7(a) says that 0 < x;(0) < 1, and hence
we also have 0 < AgL < 1 by Lemma5.1. O

There are some further relations of Q) and L to Agr.. We will argue only formally,
without specifying the spaces, etc.
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Remark 5.3 (a) The following observation has been used in [29] to prove that A >
0.Let¢ = ¢(r) be given and write ¢pg = P ¢ forits projection onto the kernel of 7. Let
h = h(x, v) be such that 7h = ¢ — ¢¢. Denote g = —|Q’|h and Y = U_ g/ |(4—gy)-
Then
(Acw6. 0,01 = 47 (Lg.)g + [ V6~ Vuid (5.4)
R

In fact, since 7|Q’| = 0 we get

/ / IQ/IP¢(¢—P¢)dxdv=/ / 6 P(IQ (& — Pd))dx dv
R3 JR3 R3 JR3
= [ [ s00iro-rPonarav=o.
R3 JR3
Hence from 7g = —|Q'|Th = —|Q'|(¢ — ¢p) and (1.18), we obtain

(AcL®, 9)2,10

=f |V¢|2dx—47r/ f 10| | — Po|*dx dv
R3 R3 JR3

=/ |V¢|2dx+477/ / 10| |p — Po|* dx dv
R3 R3 JR3
—87r/ / 1016 (6 — Pé)dx dv
R3 JR3

1

|V¢|2dx+47r// - 2 / & (Tg)dxdv
r: Jrs [ Q] R JR2

//—|Tg| dxdv—f—/ |v¢|2dx+2/ ¢ AUty dx
rs Jr3 Q'] 3 e

= //—|Tg| dxdv+f |V¢|2dx—2f V¢ - VUr,dx
r: Jr3 Q] 3 R3
//—|Tg| dxdv—/ |VU7g|2dx+/ |V — VU7, |*dx
r Jre Q] 3 R3

=47 (Lg.8)y +/ V¢ — VU7, |*dx,
R}

as claimed. There is also a kind of converse statement to (5.4): if h = h(x, v) is given,
then 47 (Lh, h), can be written as the sum of (AgLUzp, Uts),, o and a positive
term.

(b) We consider the eigenvalue equation Q)\Wy = p;(A\)W,. Let F) be such that
F| = W,. Then, (4.22) yields

:u’l()‘)F)/\ = MI(A)\II)\ = Q/\\II/\ = U'/T(—Tz—)\)*"q‘))\'
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for ¢\ = |Q’| p,W,. Therefore 11;(N)F\ = Ur—72-) -1y, + const. together with
T(Q'|F\) = |Q'|(TFy) = 1Q'| p,Fy = v, leads to

P NAF, = 471'/ |Q'| T (—=T* = N)"'TF)dv. (5.5)
R3
Since the operator
F > MyF =47A~! / Q| T(=T* = N"'"TFdv
R3

(most likely) will be compact on a suitable space of functions, the eigenvalues of
M, will correspond to the eigenvalues of Q). Observing

T(=T*>=N"'"TF=—(F—=PF)=\X=T>=)N"'F,
(5.5) may be rewritten as
i (ANAF, = =47 /1; |Q'| (I — P)Fydv —4m\ fR Q| (=T* = N Fydv,
so that
AGLFy + (1 = (V) AF) = 47\ /1; Q'] (=T = \)~' Fadv,

which makes a connection to Agp. <&



Chapter 6 ®)
Invariances Check for

It is well-known that the Vlasov-Poisson system (1.5), (1.3) has many invariances,
see [49, p. 427], for instance: if f = f(¢, x, v) is a solution, so is

fE, %,0) 6.1)

_n (f—i-to X+ x0 5)
BB EEANS U WA

where 11, A > 0, o € R and x € R3. The associated potential and density are

- . 1 f—i—l‘o X+ x9 - . 1 ;—i—t() X+ xo
U’Tt, :—U > ) 7t7 = ’ °
FN =0 f< pA oA ) P D)= oy pf( A A ?62)

It can be expected that quantities that are invariant will play a particularly important
role. It is the purpose of this section to determine several such quantities.
Let O = Q(x, v) be a steady state solution. According to (6.1) and (6.2), then

O, 1) = % QG ) 6.3)

is a steady state solution for every u, A > 0. The associated potential and density are

X X

Ug® =5 Uo(3). rat® = 5z r0(5):

The variables transform as x = § and v = p so that in particular r = § forr = |x|
and 7 = |x]|.
Next let O = Q(ep) depend only upon ep (x, v) = % [v|*> + Up(x). Then,
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94 6 Invariances

1 1 - 1~
eo(x,v) =7 > 4+ Up(x) = §M2|U|2 +Up(\7'%)
1, . . .
= 5 WP + UG () = ey (¥, D), (6.4)
and (6.3) leads to

Oteg) = 13 Qleg) = 15 QUiey).

Thus, if Q = Q(ep) and 0= Q(eQ) are understood as functions of one variable,
then

0'ey) == 0'eg). (6.5)
For radial potentials and densities, we have
Up(F) 1 Up(r) () L (r) (6.6)
() = — r), ~(7F) = r), .
0 2 e Po N2 e

which leads to !
U’Q(F) = )\_/LZ U’Q(r). (6.7)

The central densities are related by

1
p60) = 555 o). (6.8)

The effective potential from (7.4)is Ut (1, £) = U (r) + %, which we also write
as Uege (r, 3) = Ug(r) + % for 3 = £2. Let

Y
B=—
2
Then,
- B 1 A2 1
Ueff(r’ﬁ)~=UQ(r)+ﬁ=?UQ(V)'FEBW:EUeff(V’ﬂ)

is the corresponding transformation rule. The points r+ = r. (e, 3) are determined
by the relation Ueg (r+ (e, 3), B) = e. Owing to

~ ~ o~ 1 B 1
Uer(7s(e, B), B) = ¢ e eff(xlfi(é,ﬂ),g)zﬁe
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we obtain

P+, B) = Ars(e, B).

Next, ro = ro(0) is the point where U (-, §) attains its minimum. Since Uesr (F, B) =
1 Ueti (r, B) = 2 Uesr(\7'F, ), we get

U7, B) = X2 ULeV'F, B,

and this implies that ~
ro(B3) = Aro(B).

In terms of the variables ¢ and (3, the period function from (A.20) is

ry(e,3) dr

T, (e, =2 .
(. ) /r_@,/a) 20 — U (. D)

Using the transformation 7 = Ar, dr = Adr, it follows that

. F @B
Tl(eaﬂ)zz . ~ ~
en \J2(e - U (7, )
NE@B) d
=2\ / ) :
YRED\J2G — urhr. B)
ri(e,f) dr
= 2)\/
e 2(u2e — p=2Ue(r, B))
= AuTi(e, B).

In particular, @ (e, B) = /\Lﬂ wi (e, B) for oy = 2f—”, and if we denote §; = inf wy, then
1
also :

0 = 1. 6.9
1 )\Ml (6.9)

Next we consider the space prh . (K) = X of spherically symmetric functions

SP- o7
with the Q-dependent inner product

1 R
(i, uz)g = //mul(x,v)uz(x,v)dxdv,
K

as in Remark B.2. Defining

i o) =L u(f ,w) (6.10)
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in accordance with (6.3), we calculate, using dx = A73d¥ and dv = ,u3df) as well

as (6.5):
dx dv
il =// L LPTE N
“lo 0l

/ / Ndxp?dy = A 2 ©.11)
= ux, = — |((u . .
3A4 1Q/(eg)| pt e

Let the operator (7g)(x,v) =v-V,g(x,v) — V,g(x,v) - V,Up(x) be as in
(1.11). From the above relations, it follows that

(Tu)(x,v) =0 - Viu — Viu - V);UQ
= AN Ve — p A PP AT V- V.Ug
= A" (Tuw)(x,v). (6.12)

Alternatively, 7u = {u, e} can be used. From (6.4) and (6.10), we get

(Tﬁ)(i, l~)) = {ﬁ, €Q} = V; u- Vf) EQ - Vg EQ . Vi} 7
= p\ " Vou - ,LFZ;LVUEQ - ufz)flver PNV u
=\ {u,ep) = A\ (Tu)(x, v).

This in turn leads to

(T?a)(%,0) = {Tii,ep} = Vi (Tit) - Vyey — Vieg - Vi (Ti)
= \"*V, (Tu) ~u_2queQ - M_z)\_lVXeQ ATV (Tu)
=AY Tu, ep) = X N (T u) (x, v). (6.13)
Alternatively, if we put #(X, U) = u(’%, ud), then it = pA =24, so (6.13) may be re-
expressed as

(TR (X, D) = A2 (T ?u) (x, v). (6.14)

For the density induced by 7 i, (6.12) yields

pra(X) = / (Ti)(F,0)dv = A"p™ f (Tu)(x,v)dv = A" pry(x),

so that
Uri ) = 23 Uz (x)

for the potential. In particular,

ViUra() = A2 Vo Ugy (%),
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and hence

/ Vi Ura (D)2 di = A 5N / IV, U (0) dx

=\ *G/W Uz ()| dx. (6.15)

dx dv 1
(Lu, u) // u|2——/ IV Uru|* dx
o= | | 0o am Je T
as given by (1.18), we then obtain from (6.5), (6.12) and (6.15):
dx dv 1
i = [ [ S (i 2——/|vfun|2di
|Q(eQ>| 4m

= N33O f/ dxdv_ e 1o *6/|v Ural? dx
|Q’(e Q)I 4

=N (Lu, ). (6.16)

For

In (1.20), the quantity
A =inf {(Lu, u)g 1 u € Xoyq. llullp = 1}
is introduced. Therefore, owing to (6.16) and (6.11),

Ao =inf {(Lil, it) g : i € Xogq, il =1}
= A0 inf {(Lu, u)g 1 u € XZq, A flully = 1}
= ANt inf ((La, @) < i € Xiyg, il = 1)
= A2, (6.17)

by setting u = A\~'/21% i; it maybe checked that u € X2, if and only if # € X2,

w.I. to the transformed variables.

Using (6.7), the function A(r) = U/Qr(r) from (A.27) is found to scale as
U@ U, (r)
AF) = L — = "'u? i— = A2u2A0) (6.18)
r r

for 7 € [0,rp5l, with r5 = Arg denoting the end of the support of pg, if ro
denotes the end of the support of py.
Similarly, denoting B(r) = 4mpo(r) + A(r) asin Lemma A.7(d), owing to (6.18)
and (6.6) one gets
B(F) = A\2u2B(r).
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Now we turn to the operators Q,, from Chap. 4 and their first eigenvalues y; (v) for
v €] — oo, 6%[; note the change in notation here for the parameter of the operators,
since the letter A is already occupied from x = Ax, 7 = Ar. Let

1
V.
222

U=

If v €] — 00, &[, then & €] — o0, §2[ due to (6.9). For ¥ = W(r) let ¥ (7) = \IJ(§).
Since p, = ﬁ =p! ﬁ = i~ p,, we obtain from (6.5):

DF, pr 0) =10 (ep)| pr W) = 1PA72Q (eg)| ™" pr W(r)
(PAT21Q ()| pr W(r) = 2A72U(r, pr, £). (6.19)

First we determine the scaling of (—7 2 — z)~!4). Defining

5 1
= )\2—“2 Z,
we assert that
(=T = D7'P)E, D) = p* (=T* = 27 ") (x, v). (6.20)

To see this, let § = (=72 —)~'¢ and g = (=72 — z)~ 4. Then, (6.20) is equiv-
alent to g = u*g, but g and g are not necessarily related by (6.10); in fact § = u*g
or (=7?% —3)g = u*(=T?* — 7)g is to be shown. For, owing to (6.14) and (6.19) we
have

pH=T? = 2§ = pH (AT — NP Tzg) = PN TH(=T — g = AT
=¢=(-T>-23,
which completes the proof of (6.20). From (4.22) together with (6.20), we obtain
@) =an [ (T =5 D0y ds

= dmpt X0 (=T? =2 ")\ 7'%, pud) dD

|X]
)\_li -V 2 —1 —1~
=4r | —— ((=T° —2)7 P)(A"'X,v)dv
IATIX]
= (Q;V)(r).

Thus, if we define B
fin (@) = m\2o), b el—oo, 5l
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then i, (V) is the first eigenvalue of @;,, and U = W () is an associated eigenfunction
if and only if ¥ = W(r) is an eigenfunction of Q, for the eigenvalue y;(v). Due to
(4.33) it follows that

poe = lim @)= lim @)=

1/%6 - v—>83—

As already noted at the beginning of this chapter, it can be expected that quantities
that are unaffected by the scaling do have a special relevance. Hence, i, is one such
quantity. In addition, the condition \, < 47 is invariant, as a consequence of (6.17)
and (6.9). Further, we would like to mention

2w
m \Y pQ(O)v

cf. [59, Remark, p. 555], for which we deduce from (6.17) and (6.8):

\F,/pQ(o Vo) = : Vo).

This is called the Eddington-Ritter relation; also see [17, (27), p. 15] and [70, Section
4]. The relevance of the number j—/\l is that it is the ‘linear period’ of the system, in
the sense that the linearized system about Q has a periodic solution of this period (if
A« is an eigenvalue of L); recall Lemma 1.3.

Moreover, for any r € [0, rp] and 7 = Ar one in fact has

Pe() _po) AG) _ A BG) _ B()

A R PV (D Vi




Appendix A
Spherical Symmetry and Action-Angle
Variables

A.1 General Theory

A function g = g(x, v) is said to be spherically symmetric, if g(Ax, Av) = g(x, v)
forall A € SO(3) and x, v € R>. In this case Pe(x) = pg(r) and Uy (x) = U, (r) are
radially symmetric; here r = |x|. More explicitly,

4 [T, o0
U,(r) = —T/(; s pg(S)ds—47r/ Spg(s)ds, (A.1)

, Y 1
Uy(r) = r—2/ s%pg(s)ds = r—Z/ pg(x) dx; (A.2)
0 lx|<r
see [73]. Then, the mass in a ball of radius r is given by m(r) = r2Ué/,(r) =

4r [o s%pg(s)ds = f\xlg pe(x)dx.

Remark A.1 One can also write
, 47 4 (7 4,
Ug(r)z?rpg(r)—ﬁ A spg(s)ds,

as follows from an integration by parts. <&

Let g be spherically symmetric. Then, g = g(x, v) = g(|x|, |v|, x - v) does in
fact depend only upon three variables. By the spherical symmetry, one can use a
canonical change of variables

(x,v) = (pr, L3, &; 1, 0, X) (A.3)

on the support K = supp Q of a steady state solution Q as described in [9,
Chap. 3.5.2] and [90, Sect.5.3] to simplify matters considerably. Let
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X-v
r=|x|, pp=—— and L=xAv.
r
In particular, then L3 = x v, — xpv;. Thus, £2 = |L|?> = [x]*|v]*> = (x - v)? =

r2(Jv|* — p?) so that |v|*> = f—i + p?. For the particle energy ep(x, v) = 1[v|*> +
Uy (r) this yields

1 0
eg =eg(r, pr, ) = 3 P24 Uetr(r, £), Uese(r, £) = Up(r) + 72 (A4)
being the effective potential, for which we have
32
Ulp(r, 0) = U’Q(r) -3 (AS5)
Since i = 68—; = p;, the resulting equation of motion is
F=—=Ul 0.
From (1.13), it also follows that
" 2 / Ez
Ule(r, £) + - Ule(r, €) = 4mpo(r) + I (A.6)

Apart from r, the other “angular” variables ¢ and y are determined by

. L, _ L, AT

sm<p——(£2_L§)l/2, COS(p_—(gz_L%)l/z’ (A7)
AL)- 14

cosy = (e ) % iny = ok (A.8)

r(Ez—Lg)l/z’ r(€2—L§)1/2'
The variable pairs r <> p,, p <> L3, and x <> £ are conjugate, their Poisson brackets
can be calculated explicitly; see [90, Sect.5.3], also for an illustration of how the
new coordinates can be read off.

Our goal is now to pass to action-angle variables; see [9, Chap. 3.5] and [90,
p. 224]. The new variables (p,, L3, £; r, i, x) in (A.3) are not yet the desired action-
angle variables, since e = e(r, p,, £) depends upon r, which plays the role of an
angle. Therefore, a further canonical transformation

(r, pr) — (0, 1) atafixed ¢ (A.9)

will be made. As ¢ is fixed, the potential to consider is » > U (r, £), and for this
the change of variables (A.9) in a region where the orbits of U (-, £) are periodic is
standard; it is achieved by means of a generating function. Good general accounts of
this procedure are [6, Chap. 50] and [21, Chap. 11.3]. Let 0 < r_(e, £) < ry(e, £)



Appendix A: Spherical Symmetry and Action-Angle Variables 103

denote the zeros of 0 = 2(e — U (r, £)); see [7, Sect. 2], [30, Sect. 3.2], [50, Lemma
2.1] and [88, Theorem 2.4] for further discussions. The angle 6 € [0, 7] corresponds
to one half-turn of the periodic orbit « in the potential Ue(-, £), connecting the
“pericenter” r_ to the “apocenter” r; here 7 = p, > Oforr €]r_,ry[and p,(ry) =
0. Therefore if 6 € [7, 27], then

r@,1,0)=rQ2r—06,1,¢) and p,(0,1,¢) =—p, Q2w —0,1,7¢). (A.10)
In other words, we need to determine the (inverse) transformation (6, I) — (r, p,)

only for 6 € [0, 7], where we have p, > 0.
Let E = E(I, £) be the solution to

1 1 r(E, 0)
I =— / prdr = — V2(E — Ueg (r, £)) dr, (A.11)
27 J, T Jr_(E, €
where 7 is as before. Then consider the generating function
S(r, 1,0) = / V2E( €) — U (r', £)) dr’, (A.12)
r(EU,0),0)

which we view as a generating function for (A.9); in the terminology used in physics
books [21], it is a generating function of the second type, and it depends on one
“old variable”, r, and one “new variable”, I. The rules for determining the full
transformation from S are

0=0/S, pr=0S. (A.13)

Let us do a short and formal calculation to explain the use of (A.13). Firstly, p, = 0, S
2

and (A.12) yield e = ”7 + U (r, £) = E(1, £), so E will only depend upon action

variables after the transformation (A.9), which leads to the overall transformation

(-xs U) = (pr1 L3s E; r7 SO» X) = (11 L31 E; 07 (Ps X)9 (A'14)

cf. (A.3). Secondly, the transformation (A.9) is symplectic. To see this, differentiating
pr = 0,8(@r, I) w.r. to p, implies that 1 = (331 S)(0p, I). Therefore, we deduce from
0 = 0;S(r, I that

do ndl = [©S)dr + @} S)dl| ndl = @) dr ndI
= O}S)dr A [ @D dr + @p, 1) dpr | = @) @p, D dr A dpr =dr A dpy,
which means that (A.9) is indeed symplectic.

Let us now be somewhat more careful with the dependencies and the definition
of the transformation (A.9). The equation
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0=0/8(r1,20) (A.15)
has a solution r = r (6, I, £). In addition, put
pr=p0,1,8) =0,8(r0,1,¢),1,¢).

Thus, more explicitly

pr(0,1,8) = V2(EUI, 0) — Uit (r (0, 1, 6), 0)), (A.16)

which yields

1
E(,¢) = 5 e, 1,072+ Uegg(r(0,1,0),£) = e(r(0,1,0), p.(0,1, ), ).

(A.17)
Hence after applying the canonical transformation (A.14) the particle energy does
only depend upon 7 and ¢, both of which are actions. The associated frequencies are

0E(l, ) 0E(1,¢) 0E(1,¢)
I,0)=—, I,{)=———==0, I,0)=—=,
wi(l, £) a1 w1, £) oL, w31, £) Y,
(A.18)
and the period functions are
T ) = —2 . Ty1.0) = —2"
T e T T wd e
Also (A.15) yields
r dr/
0=0,5Sr1,0) =w(,20) (A.19)

10,0 N2(EL 0 — U (r, 0)

Since @ = 0atr_and @ = 7 atr, (recall that7#7 = p, > 0 along this part of the orbit),

we obtain
o [rECO.0 dr

T = ,
(1,0 Jr ka,0.0 V2(EU L) — Ug(r, £))

or explicitly

ry(E(,0), 0) dr
T\, 0) =2 / (A.20)
r (B 0.0 N2EU, ) — Uei(r, £))

for the period function. In particular, 77 (Z, £) = T, (E, £) by abuse of notation. Also
(A.19) implies that
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o0 _ w1 (A 21)
or  py ’
as long as p, > 0, i.e., along the half-orbit.
More systematically, the relations § = 0;S(r, I, £) for r = r(0, I, £) and

pr(e, Iv z) = aI‘S(r(97 Is E)v I» Z)

can be differentiated to obtain explicit formulas for the derivatives. This way it is
found that

1= (87,9)(0yr),

0= (9%,9)(@r) + 03,8,
Oy pr = (07,5)(Dyr),
01 pr = (D2.8)(0rr) + 0% S.

From (A.19), it follows that

2 _ w1, 0) w0
@J“L@_Jﬂﬂhm—mmw»_mwma’

which leads to

% - % and % = —(9) 5—1 (A22)
In addition, by (A.16),
3r2rS =—— Uy
and this gives
= U
Finally,
% = wil Ue/ff(aIZIS) + %

To summarize, spherically symmetric functions g = g(x, v) = g(|x|, |v], x - v)
may also be expressed as g = g(r, p,, £) = g*(0, I, £). Explicitly,

5 o ¥ 202 _ 2 5 5 e
glr,s,u) =g r,;, r’sc —u*), g, p,t) =glr, pr—}—r—z,rp,. (A.23)

Most of the time all versions of a function g will be denoted by the same symbol.
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The Antonov stability estimate is valid for spherically symmetric functions u =
u(x, v) that are odd in v. Therefore, we need to have a closer look at this class of
functions.

Remark A.2 (Parity)

(@ If (x,v) — (p,, L3, €; 1, ,x) under the above transformation (A.3), then
(x, =v) = (=pr, =L3, &; r, o + 7, ™ — X). This follows from p, = £+, L =
X A v, (A.7), and (A.8), or alternatively from the figure in [90, p. 223]. In addi-
tion, e(x, —v) = e(x, v) and £(x, —v) = £(x, v).

(b) From (A.10), we see that if
(x,v) = (pr, L3, &5, 0, ) = (I, L3, £; 0, ¢, X)
under the transformation (A.14), then
(x,=v) > (=pp, —L3, &;r, 0+, m—X)
— (I, —L3, 4;2r — 0, p + 7, m— X).

Thus if g = g(x, v) is spherically symmetric, then

(a) g is even in v if and only if g(r, —p,, £) = g(r, p,, £) if and only if g*(2m —
0,1,0)=g"0,1,10),

(b) g isoddin v if and only if g(r, —p,, £) = —&(r, p,, £) if and only if g* (27 —
0,1,0)=—g*0,1,10),

as will be convenient to determine the parity in v of a function g. <&

We are going to note some further useful relations, and we will be writing 3 = £2,
so that d3 = £ d{. Recall from above that the radii 7+ = ry (e, £) = ri(e, 3) are the
zeros of 0 = 2(e — Ug (1, £)) and satisfy 0 < r_(e, £) < ro(e, £) for the effective

potential
2

¢ B
Ueir (r, £) = Uese (r, B) = Ug(r) + 52 = Ug(r) + 27
As in [50, Lemma 2.1], one knows that for every 8 > 0
inf {Uege (r, B) : r > 0}

is attained at some unique ro(3) €]r_(e, 3), ro(e, B)[. Then Ugx (-, () is decreasing
in[r_(e, B), ro(B)[, increasing in Jro(5), r4 (e, $)], and we have Uy (ro(8), B) = 0.

Remark A.3 We recall that

D ={(e, B): B €0, Bil, e € [emin(B), €]},

and
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b‘nﬂ‘[rs 3) A

€p

emin(B)

Uqg(0)

Fig. A.1 The effective potential Ugs (r, [3)

D = {(e, B) : B €10, Bil, e Elemin(B), eol}

is its interior. Then
ry € C3(D) and ry € C'(10, B,D).

This follows from the implicit function theorem and Uy € C 2 since ry solve

Ug(r+(e, B)) + m = e, whereas r is the solution to r0(6)3Ub(ro(ﬂ)) =f;
see Lemma A.7(a) below for the latter.

Lemma A.4 One has
o

" e ) = — 1
8ﬁ ' B Zr:t(ev 5)2 Ue/ff(r:t(ev 6)7 6)’

(A.24)

and hence in particular

8”7 8r+
%(e, 6) >0 and a—ﬁ(e,ﬂ) < 0.
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Furthermore,

Ors gy — L A5
Oe e h Ul (re(e, B), ) ( )

so that also 9 9
Te.8) <0 and Lt (e, B) > 0.
Oe Oe

Proof With Ue(r, 3) = Up(r) + 55, we have Uer(ri(e,3), ) = e so that
Zri (e — Ugy(r+)) = B. Upon differentiation w.r. to 3, we obtain

81’:|:
1= 2riUQ(ri) 5+4r:t(e Up(rs)) ——

op
( ZriUQ(i)+ ﬁ) ?,;;

0
—2'} (UQ(ri) b ) ar;

—2r% Ul (ra, ﬂ)

3_5’

which yields (A.24). Since Ui (r—, 3) < 0 and Uy (ry, B) > 0, the claim concern-
ing the signs follows. In order to derive (A.25), we differentiate Ueg(rs, 5) = e
w.r. to e and get | = Uy (ry, ) %—: ([l

Lemma A.5 We have

8 Lo
2, ﬂ)zm(e gp ~2UVe®

e ﬂ>+r (e, ﬂ)/ ds (sri(e, f) + (1 = 5)r-(e, 5))

1
X fo dr [Uj(rsri(e, B) +1(1 —s)r_(e, 3)) — Up(0)],
and in particular

ﬂ 1 4 1 "
2r(e,ﬂ)2r+(e,ﬁ)2_5UQ(0)‘§ ey V0 T Ve Ol (429

Proof Since Ugy(r+) + 5 2 = e, we can write, using that U, (O) =0,



Appendix A: Spherical Symmetry and Action-Angle Variables 109

B2 B B
T ST g et
=Ug(ry) —Ug(r-)
1
=@y — r,)/ [UpGsry 4+ (1 —s)ro) — Uy (0)]ds
0
1
= (ry — r_)/ ds (sryo+ (1 —s)r-)
0
1
x/ dr Ué(TSI’++T(1 —$)ro).
0
Therefore,
B |
U0
2r3ri 2 0
1 ! ! 1
= d 1 —s)r_ dr U}, 1—s)r_)—=U}(0
r++r,,/(; S 671 —5)r )/0 FU (s (= $)r) = 3 UG0)
1 1 1
= / ds (sr4 + (1 — s)r,)/ dr [Up(rsry +1(1 —s)r) — Up(0)],
ry +r-Jo 0
as claimed. Then (A.26) is a consequence of 0 < r_ < r,. O

We need to introduce two more important functions.

Lemma A.6 The following assertions hold.

(a) The function
Uy (r)

A(r) = (A.27)

is C! and strictly decreasing in r € [0,ro]. In addition, A(0) = Ué(O) =
47” po(0) and A(rg) = rlg,|| OllL1(rs)- We also have
- Q

4 r
A@r) = —/ s3,0’Q(s) ds and lirg A'(r) = mpy(0). (A.28)
0 r—0t

T
!
(b) The function

Up(r)
-

B(r) =4mpo(r) + A(r) = 4mpo(r) +

is C! and strictly decreasing in r € [0, rol. In addition, B(0) = 1%” po(0) as

well as B(rg) = A(rg) = %”Q”L'(Rﬁ)'



110 Appendix A: Spherical Symmetry and Action-Angle Variables
(c) We have

3
Ule(r, B) + - Uly(r, 3) = B(r) and Ul(r, 3) = —5 + B(r) — 3A(r).

In particular,

{U;@m, 0) 2 B(r) = Blrg) i 1 € lr-(e. ), ro(9)] (A29)

Ue(r. B) < B(r) < B(0) : r € [ro(B), r4(e, B)]

and

Uer (r, B)| < —f + 2 poO) for relr(e.f).rie. Bl (A30)

T
Proof (a) From the differential equation (1.13) for Q one has U 5 + % U b =4mpg.
Therefore,

rUg(r) — Uy (r) _Amrpo(r) — 3Up(r)

A(r) = - > (A.31)

r r

Now by (A.2) and the hypotheses:

d d
/ = — Odv = ! — dv = ! U,dv < 0,
Po(r) /WQ v /RBQ(e@dreQ v A}Q(e@ odv <
(A.32)
so that pg is radially decreasing. It thus follows from Remark A.1 that

O A 47
Up(r) = 5 rpo(r) - /0 $po(s)ds = = rpo(r). (A33)

Hence 4nrpg(r) < SU/Q(r) and A'(r) <0, in fact A’'(r) <0 for r €]0, rg].
From the left side of (A.33) we also obtain lim,_, o+ A(r) = 4?” po(0), which
shows that A is continuous on [0, rp]. Next we calculate

4 [T 4 [ 1
Up(ro) = = / s’po(s)ds = — / s’po(s)ds = — / po(x) dx
rQ 0 rQ 0 rQ R3

1 1
= O(x, v) dxdv = B ”Q”Ll(Rf’)»
}’Q R3 JR3 rQ

which is as desired. The expression for A’(r) in (A.28) is a consequence of
(A.31) and (A.33), whereas lim, o+ A'(r) = 7rp/Q (0) is gotten from this relation
by changing variables s = r7, ds = r d7. In particular, A is C'on [0, rol.

(b) This follows from (a).

(c) Using (A.6) and (A.5), we deduce
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" 3 ’ 1 ﬂ /
Ul B) + > Uly(r, ) = 4mpo () + ;(r—3 UL ﬂ))

U/
=4mpo(r) + Qr(r) = B(r).

Also

U, = > (U = ) =340 = 2,

which yields the second claim. The estimates in (A.29) are due to Ul (r, B) <0
for r € [r_(e, 0), ro(B)], Ulgz(r, B) = 0 for r € [ro(), r1(e, §)] and the mono-
tonlclty of B. Lastly, (A.30) is obtained from |UJ;(r, B)| < j—f + B(r) +3A(r) <
2+ B(0) +34(0) = 2 + B p5(0). 0

Lemma A.7 We have

(a)

(b)
(c)
(d)

r0(6)3Ub (ro(8)) = B, and in particular for every By €10, B[ there exists cy > 0
such that ro(B) > cg for 8 € [Bo, B«l;
r2UL(r, B) = fr:(ﬁ)(47rs2pQ(s) + Zyds;
L (8) = 5L, where emin(B) = Uett (ro(8), B);
”ff(ro(ﬂ) B) = B(ro(3));

(¢) BB = wmrimmy
(f) as 3 — 0T,
- 5/4
ro(B)* = 2 (0) 8+ 0 (A.34)
emin(B) = Up(0) + /U (0)/3 + OB,
demin W A0) —1/4
45 B) = Wi + 057,

Proof (a) The relation ry(3)°U b (ro(B)) = p follows from

(b)

Ul (ro(3), 3) =0 (A.35)

and (A.5). To establish the second claim, suppose on the contrary that there is
Bo €10, B[ andasequence (3;) C [Bo, B«]sothatry(5;) < 1/j. W.l.o.g. wemay
assume that (3; — B € L. B Then 8, = ro(53,)*Up(ro(6)) = j U (ro(3y)
and0 < Uy (r) = 7 [, s2po(s)ds < %pQ(O) < WQ po(0) yield a contradic-
tion as j —> Q.

Owing to (A.6) we have that

(r2ULy) = 4nripg + ﬂ2 (A.36)

so it remains to integrate this equation, using (A.35).
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(c) We obtain
Uett Uett

d /
a5 [Wefi (ro(B), B)] = Uegr (ro(8), ) ﬁ(ﬁ)"' 93 (ro(8), ) = ﬂ (ro(8), B).

Since aggf r,pB) = 5 -L . the claim follows.
(d) From (A.6), (A.35) and (a), one finds that

2
Ueir(ro(B), B) = 4mpo (ro(B8)) — o Uer (ro(B), B) + (%)4
= 4mpo(ro(B)) + é)4
0(ro(3)
_ Q
=4mpo(ro(B)) + )

= B(ro(9).

(e) Differentiating (a), we get

d
1= rg Ué(ro) ad)

dry , ’ drg
a5t 3rg 25 Voo = (r3 U (ro) + 3rg Ug(roN 55

But

4 ! 2 7 !
r3 UG (ro) + 312 Uly(ro) = 1 <47rpQ(r0) - (ro)) +3r2 Uy (ro)
= 471 po(ro) +1f Up(ro)
= (47 po(ro) + A(ro)) 1.
(f) From (a) and Lemma A.6(a), we derive that

ro(B)* A(ro(B8)) = ro(3)’ Uy (ro(3) = B.

As A is bounded from below by A(rg) > 0, we get ro(3) < (8/A(rg))"/*, and
in particular limg_,o+ 79(3) = 0. In addition,

1

1
4 —_— —_— —_
ro(B)" — A00) 5' = 'A(ro(ﬂ)) A(O)‘ﬁ s Arg)? |A(ro(8)) — A(0)] 3.

Now (A.28) from Lemma A.6(a) together with (Q4) implies that
/ 4m " 3 7 /
[A'(r)] < il A lpo()lds < mlipgll
0

and this yields
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Tlppll 7Pl
4 _ 0 Q 5/4
ro(8) A(O)B‘ = o OB = F05%
In other words,
rB) = —B8+0B"", B0

A (0)

Therefore, since U ’Q (0) = 0 by (A.2) and the boundedness of pg on [0, rg],

p
2ro(B)?

1
=Uo(0) + 5 UG (0) ro(8)* + O(ro()*) +

Ueti (ro(B), B) = Ug(ro(B)) + 5——==
s

2 /4 B+ 0B

Next we expand

2 L B 1/4
ro(®) \/ Tl (55/4>—\/ a0 (1H00)

and recall A(O) = U 6 (0) from Lemma A.6(a) to obtain the second claim. The third
relation follows from (c) and (A.34). O

Lemma A.8 We have
¢ — emin(B) = (4 (e, B) — ro(B))? f r Ul(rro(B) + (1 — Ty (e, ). B .
e = emn() = (o) = r-(c. 0 | U8 + (1 = Dr_(e. . Bydr
Proof By means of (A.35) we calculate
¢ = enin(®) = Uas (4, ) — Uasr(ro, )
— / Ul (s, ) ds
-/ O”[Ugff(s, B) = Ul o, )1 ds

:/r+dsf dTUﬁ(T 6)

:/+(r+ T) Ul (T, B) dT
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F+—ro ,
= / sU%@ry —s,0)ds
0
1
— (ry —10)? / T Ul (rro + (1= Tyry. B) dr,
0

as claimed. The second relation is established in the same way. (]

Lemma A.9 Fors € [r_(e, B) — ro(B), r(e, B) — ro(B)], we have

1
Vet (ro(B) + 5, ) — emin(B) = 5° /0 (1= p) Ul (ro(B) + ps. B) dp.
1
Ul (ro(B) + 5, ) = s /0 UL (ro(B) + ps. ) dp.

In particular,

1
Uet (r0(B) + 5, B) = emin(8) = 5 5> B(ro) (A.37)
fors € [r_(e, B) — ro(3), 0] and also

! dp N 287
o (@ +ps)t 3

fOVS € [r,(e, 6) - ro(ﬁ)v r+(e, ﬁ) - rO(ﬁ)]

Proof We write ryp = ro(6) for short and introduce V (s, 3) = Ue(ro + s, 8) —
emin(B). Then V (0, B) = 0 by the definition of ey, (8), cf. Lemma A.7(c). In addi-
tion, O, V (s, 8) = Ul (ro + s, ) yields O,V (0, 3) = 0. Hence, by Taylor expansion,

Ut (ro(B) + 5, B)| < |s] (3ﬁ pQ(O)) (A.38)

Vs, B) = /OJ(S—T)aSZV(T, B)ydr
s 1
=/ UafV(s—a,ﬂ)chT:sz/ pOIV((1—p)s, B dp,
0 0

which gives the first relation. The second relation is shown analogously. Concerning
(A.37), this follows from (A.29) in Lemma A.6, and similarly, (A.38) is obtained
from (A.30). ([l

The last result is taken from [50, Lemma 2.1], but nevertheless a proof is
included to make the presentation self-contained. Note that the bounds obtained
in LemmaA.10 blow up as £ — 0.
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Lemma A.10 The following assertions hold, where we write r = ry(e, £):

(a) €= Ueir(r, 0) = 5 (r = r)(ry — 1) forr € [r_, 7]
(b) Ti(e, ) = @ (r— +r3).

(c) Ug(r) = max{Ug(0), =1 [| Q|11 s} for r € [0, ol.
(d) Lete < 0. Then

02 6
<roer, < ||Q||L'(Rf)_
21 QL1 ws) —e
In particular,
” Q”il(]]@) 1 e2
Ti(e, ) <27 — 5 and wi(e, ) > — L
e ” Q”Ll(Ré)

Proof (a) Let

2

14
w(r) =e— Uer(r, £) — m(r —r_)(ry —r).
+

Then
2 r(ry +ro)—2rory
r_ U’ i
v eft 2r_ry r3
2 —r@r r_ 3r_r
w//:_Ue//ff+ (++ 4)+ +’
r_ry r

" " l " / £2 1 277/ 62
(I‘UJ) =rw +2w =_rUeff_2Ueff+r_3=; _(r Ueff) +r_2 .

From (A.36) we recall that (r*Ul;) = 4mr2pg + 5. As a consequence,
(rw(r))” = —4mrpo(r) < 0. Since rw(r) vanishes bothat r =r_and r = ry,
it follows that w(r) > Oforr € [r_, ry].

(b) By (A.20) and (a),

ree.d) dr
Ti(e, ) =2
re,0) v2(e— Uecs(r,£))

N rdr N

_r
S (-4 ry).

=
12 . AN —=r2)Ty —r) 12

(c) Relation (A.2) implies that r* Uy, (r) = 4 [; s2po(s) ds > 0,s0 Uy is radially
increasing. Since pp has compact support by hypothesis, it moreover follows
from (A.1) that
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r 00 00
lim [rUp(r)] = lim |:747r/ ssz(s) ds 747rr/ spo(s) ds:| = 747r‘/ ssz(s) ds
r—0o0 r—0o0 0 r 0

- —/R3 po()dx = —[[Qll 1 ge)-

Also ~
[rUg(M] =rUy(r) + Ug(r) = —47r/ spo(s)ds <0,
sothat7Ug(r) > —| Q|| .1 (res)» and hence (c) is obtained.
(d) Observe that
62
Ve ril=1{r : e — Ust(r, £) > 0} = {r e = Ug(r) — 55 > 0}.
r
Thus if r €]r_, r[, then (c) yields
22 1 22
0<e—Up(r) — 52 =e+ - 19Nl L1 rsy — 52
which using e < 0 can be rewritten as
Q1171 o — 1Qlu@s)’
%_KZE ( —Zer—ﬁ> s re]r,,r+[. (A39)
Thus, by (c),

2 2

b4
Up(r) + 2 = sel[rol,oo[ Uei (s) = Ug(rg) + ng

1 e
> max {Ug(0), —— 1Ol L1 rey + ==
ro 2}’0

> max { Uy (0) 101 e r € [0, oo
X 9 - = <. 9 9 .
= ¢ 202
. . 02 . . ”Q”il(]RG)
In particular, if » €]r_, ry[, then Ug(r) + 5> < e implies that e > ——m

2
equivalently, % — €2 > 0. Going back to (A.39) and solving for r, we have

shown that r €]r_, ry[ yields

2
||Q||L1(Rs>—,/uQni](Rsﬁzzze<F ||Q||L1<Re)+,/||Q||L1<R6)+2eze'

< =2er <
—2e —2e

Hence, owing to e < 0,
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0 0
<r

<
2Qlra ™ 10111 ge) +  I1QI o, + 202
2
B 10N @ey + /N1 Q71 ey + 2€%€ - 1011 s

- —2e —e

which proves the claims, noting that Tj (e, £) < 27 % by (b) and w; = ZT—T U

A.2 Some Transformation Rules

In this section, we consider the transformation of integrals and Poisson brackets. We
continue to write spherically symmetric functions g = g(x, v) = g(|x/[, |v], x - v) as
g=28(r p. ) =g"0,1,010).

If G(x) = [g: &(Ix], [v], x - v)dv and A € SO(3), then G(Ax) = G(x), i.e.,

- x
G(x) =G(0,0,r) =:G(r) =/ g(r, v, rvz)dv = f ds 32/ dS(w) g(r, s, rswz)
R3 0 |lw]=1
[ee) T [ee) 1
= 27r/ dsszf df sin0g(r,s, rscosf) = 27r/ dssZ/ dt g(r, s, rst).
0 0 0 —1

In particular,

/fg(x,v)dxdv:/ G(x)dx:4ﬂ/oorzé(r)dr
R3 JR3 R3 0

o) 00 1
= 87r2/ / drds r2s2/ dt g(r, s, rst).
o Jo -1

Furthermore, by (A.23),

[ee] 1
G(x)=G@r) = 277/ ds s2/ dt g(r, s, rst)
0 -1
oo 1
= 27r/ ds s2/ dt g(r, st,rs/1 —t?2)
0 -1
= 27r/ ds s2/ df sin0 g(r, s cos 0, rs sin 0)
0 0

=27r/dp,/ dRRg(r, p-,TR) = —Z/dp,/ deegr, p,b).
R 0 r= Jr 0
(A.40)
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This in turn implies

S I 00 00
/ f g(x,v)dxdv=47rf rzG(r)dr:87r2/ dr/ dp,/ deegr, pr, o).
R3 JR3 0 0 R 0

For the transformation to g* = g*(0, I, £) one can use the fact that (r, p,) — (0, I)
is canonical at fixed £. Hence also

2w o) 00
/ / g(x,v)dx dv =87r2/ dG/ dI/ deeg*@,1,0).
R3 JR3 0 0 0

To summarize,

2

dx = 4nr*dr, dv = —7; dp,dte, dxdv=S8n*drdp,dtt=28r>dodldlL.
r

(A41)

The Poisson bracket {g, h},, = Vg - Vyh — Vi h - V, g of two such spherically

symmetric functions is also simpler in the other coordinates. For this we write ® =
r,o,x), A= (pr, L3, 0),0 = (@, ¢, x),and T = (I, L3, £); see (A.14). Then

{g. M)y = (8, Moo = (8%, ¥} 03,

since the coordinate changes are canonical. But the functions do depend only upon
(r, pr,£) and (0, 1, £), respectively. Hence

{8, W oa = (8,8)(Dp,h) — (8,1)(D),8),
(g%, h*} oy = (Dhg*)(D1h*) — (Dgh*) (D1 8"). (A42)

The equality of these Poisson brackets could also be verified by a direct calculation.
Identifying all versions of a function g, thus for instance,

X
{r.g} =V,r-V,g= ~ Vog = 0,8,

and hence in particular {r, eg} = 0p.e9 = 0, E = p, by (A.17), as expected. Next
recall from (1.11) that

Tg=1{g. eot=v-Vig—Vyg - V.Up.
Then if g = g(r) is a function of r alone, we have
T (g(r) = prg'(r).

Furthermore, eg = e = E(I, {), see (A.17). Hence by (A.42) and (A.18),
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7Tg=1{g.e0} = (0sg)(O1E) — (DE)(018) = wi0pg (A.43)

is appealingly simple in the coordinates (6, I, £). Since w, is independent of 8, see
(A.18), it also follows that

T2g = w19p(w1Dpg) = w? 2g. (A.44)

A.3 Variational Equation for the Effective Potential

We recall that
D ={(e,B) : B €0, B:], e € lemin(B), e0l},

and

D ={(e, B) : B €10, Bil, € Elemin(B), eol}

is its interior. For (e, §) € D we consider in some more detail the linearization
(variational equation) associated with

F=—Ugr,0), r(0)=r_(ep), 0)=0,

where r(t) = r(t, e, 3).

Lemma A.11 (a) The function
Rx D> (t,e,8) > r(t, e, B) €10, ool
is C?int and C' in (e, B). In addition,
Rx D> (t e f)r> it e ) €l0, o0
is in C'(R x lo)).
(b) Denote
z=z(e )= %(he, B),

0
y=yteB) = —ar (t.e.B).
e

0
w=w(t e B) = a—;u,e, B).

Then z is Ti-periodic in t, whereas only y(Ty) = y(0) and w(T;) = w(0) holds.
These functions are the solutions to
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1

20+ Ul (r(0), Bz(t) =0, 2(0) =0, 2(0) = —Ulg(r—(e. ). 8) = ———
()e ~ (e, ﬁ)

or_
() + Ul (r(1), B)y(1) =0, y<0>=é<e,ﬁ>, 3(0) =0,

w©) = 2= (. 3. () =0.

1
W(1) + Ul (r (1), Byw(r) = P BX;

Proof (a) By definition, r solves the initial value problem

B

F(t, e, -U t, + )
e, ) = Uit e, )+~ ="

r(0, e, B)=r_(e, 8), 7(0,e, 3)=0.

Since Uy is C?-regular and so is r_, the latter by Remark A.3, ODE theory
implies that r is C2-regular in ¢ and C'-regular in (e, 3). Similarly, 7 is C' in
(t, e, B).

(b) Also these statements follow from general ODE theory. U

Lemma A.12 (a) {z, y} is a fundamental system for ii + Ul (r(t), f)u = 0 with
Wronskian determinant 1.

(b) One has
8T1 1 . . 8r_ .
—(6 B) = m)’(ﬂ(&ﬁ),e, B) = W(&ﬁ))’(ﬂ(@,ﬂ)vﬁﬁ),
8T1 1 . _ or_ .
_ﬁ( B = m w(Ty(e, B), e, B) = E(& B)w(Ti(e, B), e, B3).
(c) One has
LR L
BN =20k, Teenr
Proof (a) Both z and y are solutions, hence
203(0) = Y1) = 20)3(0) = YO0 = Z=(e. ) 5

5 (e, 6)

is constant and the non-vanishing Wronskian determinant.
(b) From the T;-periodicity of r, we deduce that

7(Ti(e, B),e,B) =0. (A.45)
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Differentiating w.r. to e, it follows that

0*r
0 =#(Ti(e, B), e, ﬂ) ( B) + 5, (Tile. B).e. )
= - Ueff(r(T] (ev 6)5 e’ /6)7 ﬁ) E(e’ ﬁ) + Y(Tl (e’ ﬂ)v ev 6)
oT
=— e’ff<r_<e,ﬂ>,6>a—el<e, B) + 3(Ti(e, B), e, ).

Similarly, upon differentiating (A.45) w.r. to (3, we obtain

0 =7#(Ti(e, ), e, 5)—5(6 p) + 8(26 (Ti(e, B), e, )

= — Ul (r(Ti(e, B), e, B), B) —ﬂ(e B) + (T (e, B), e, )

= —Ulx(r(e, 3), ﬁ)—ﬁ(e B) + w(Ti(e, B), e, B).

For the second relations one just has to use (A.25).

(c) Here, we calculate

d
o (W(O)y () —w@®)y@) = wE)y®) —w)y()

1
[ () — Ugg(r(), ﬁ)w(t)] (1)

—w(z)[ — U 0). By () |

(03 y(@).

Since 1(0)y(0) — w(0)3(0) = 0, this yields i (1)y (1) = w(O)y (1) + [y 2% ds. At
t =T = Ty (e, B) we deduce that

b(T1)y(0) = (T y(T})
. Ty(s)

=w<T1)y(T1>+/O 2 ds

T y(s)

r(s)3

= w(O)y(T1)+/ ds.
0

Therefore,

y(s)
r(s)?

T
w(Tl) (6 B) = —(6 5))’(T1)+/ ds,

op
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and equivalently, using (A.25) as well as (A.24),

DTy 1 1 (T)+le y(s)d
S?
l Ue/ff(rﬂﬁ) 22 Ul (r ﬂﬁ)y : o r(s)?
which can be restated as
T
W(Ty) = _y( 1) T+ Ul ,,ﬂ)/ y((ss))3 ds. (A.46)

Next observe that

o (1 ds 1 0Ty LR
o[t d 1o,
Oe Jo r(s) r(T)? Oe o F(s)’

and consequently r(77) = r(0) = r_ and (b) implies that

/T‘ y6) o1 1 -(T)_EQ/T’ ds
o r(s)? S_er Uéff(r_,ﬂ)y ! 20e ), r(s)?

Going back to (A.46), we see that

s
r(s)?

) 1, o [h
() =~ Uyl ) 5/
0

holds. Using once again (b), we have established the claim. (]
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B.1 Fourier Expansion

Spherically symmetric functions g(x, v) = g(r, pr, £) = g(0, I, £) of (8, I, £) that
are defined on K, the support of Q, can be expanded into a Fourier series

g0, 1,0 = gl 0)e",

keZ

since
K={0,E, ¢ :0e[0,2r],£ €[0,1.], E € [emn(£), eo}

in the variables (0, E, £) by (1.24), and 0 is 2m-periodic; recall that I = I (E, £) is
the inverse function to E = E (I, £) at fixed £. Thus, K can be equally expressed in
the variables (6, I, £) and we will mostly be using those which are more convenient.
The Fourier coefficients are

1 2w )
g(1,0) = ﬁ/ g0, 1,0)e ™ do. (B.1)
0

This motivates the following.

Definition B.1 (X“-spaces) For o > 0 denote

Xa — {g — ng(l, E)eike : ||g||§(“ = 167}'32(1 +k2)a ”gk”i21 D) < OO},

keZ keZ 10]

where
D ={(E,0):Le[0,¢], E € [enin(£), eol}

is from (1.23) and expressed in (7, £), and moreover
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(. ¥)2,

? //d dZE

D

)| o, ) (I, £)

for suitable functions ¢, v on D; note ¢ = e(1, £). The associated scalar product on
the Hilbert space X is given by

(8 Wy =167 Y (1 4+ K" (g, e, (B.2)
keZ

forg =Y, ,ace*andh =Y, , hye*?. We also let
XS ={g e X" go=0) (B.3)

as well as
={g € X" : gx # 0 for only finitely many k}.

Remark B.2 (a) Note that for & = 0 the scalar product (B.2) agrees with the scalar

product in L , (K) of spherically symmetric functions given by
i

(5.0 = (6.1, i ff ey F DA v drdy,

recall (1.12); the associated norm is denoted by [|gll, = (g, &) - In fact, extending
all functions to be zero outside of K (to simplify the notation), this follows, using
(A.41), from

(g, g = /1;3 /1;3 mg(x, v) h(x,v)dx dv
2w 00 [ee)
=8772/ d&/ dI/ dwwlg)'mh(ﬁ,l,é)

2T
= dI dee 1,0 h,(I,¢ dg ¢! m=0
f f 10'(e Q>|gk( i )f ¢

k,me7Z

= 167‘(‘32/ dI/ dtl ———— g (1, 0 he(1, )
— IQ( o)l

= 16w32(gk,hk>y] o) = (& Mxo; (B.4)
keZ

observe that e = E(I, £) is independent of . In particular, we see that X° =

2
L sph, - , (K).

b)) If3>a>0,then X? C X and ||g|ly. < llgllxs for g € X7.
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(c) X% < X is dense for all o > 0. In particular, X” C X is dense for 3 > a > 0.
To verify this, let g € X and introduce

g™ = Z g e e X (B.5)
[k|<N

for N € N. Then

2 «
M — gl =167 Y A+ gl py = 0, N — oo,

k|=N+1 7

llg

so that g™ — gin X®as N — 0.
(d) A set B C X? is relatively compact if and only if

(i) B is bounded, and
(ii) for every € > 0 there is N = N (¢) € N such that

12
Sup(ZInglle (D)) <e, and

geB k=N

(iii) for every k € Z the set {gx : g € B} C L2 (D) is relatively compact, where

8§ = ZkeZ 8k et
Due to X0 = 12 (L21 (D)), this follows from [52, Thm. 5.1] for p = 2. &

10’1

Lemma B.3 (Parity) Write the spherically symmetric function g = g(x,v) as g =
g(oﬂ Iv 6) == ZkEZ gk([, E) eike. Then

(a) g is even in v if and only if g_; = gy for all k € Z. If g is real-valued, then
gk(l, 0) € R.

(b) gisoddinvifandonlyif g_, = —gi forall k € Z, and in particular gy = 0. If
g is real-valued, then g; (1, £) € iR.

Proof We use Remark A.2. For instance, g is even in v if and only if g(6, 1, £) =
g(2m — 0, I, £), which is equivalent to

Yoa 0" =g 00 = g (1,0 e =g (10 eV,

keZ keZ keZ JEZ

and comparing coefficients, we arrive at the first part of (a). Furthermore, if g is
real-valued, then by (B.1):

- 1 [2 .
gk(1,€)=§/ g0, 1,0)e™do = g_1(I,0) = g (1, 0),
0

which means that g; is real-valued. The proof of (b) is analogous. O
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Thus if we need to restrict ourselves to odd functions later, then we have to pass
to a subspace X5y, of X, as introduced in

Definition B.4 (X¢,-spaces and X¢,.,-spaces) For a > 0 denote

even
Xoa =1g € X1 gx = —g for k e Z}, (B.6)
X?Ven {gGXa:g_kzgk forkEZ}.

We derive some further useful relations.

Lemma B.5 For appropriate functions ¥ = W (r) and ¢ = p(e) consider

»(r, pr, £) = p(eg) prY(r). (B.7)
Then o
(I, 8) = —— ap(e) wi (e, K)/ , W (r)sin(kf(r, e, £)) dr
(e,€)

for the Fourier coefficients of 1, and in particular 1y = 0.

Proof Since ep = E(I, £) is independent of 6 by (A.11), using (A.10) the Fourier
coefficients are calculated to be

1 27 )
Y, 4) = — e 0 qp
27T 0

-t <p(E)(‘/ﬂ (0, DY (r (0, 1)) e db
27T 0

2m
_/ prQr — 0, DY Q2r — 0, 1)) e ¥ d9)

1 4 . .
- #(E) / () (e — ") do
0

— l— p(E) /ﬂ prY(r)sin(kf) db
™ 0

—igO(E)wlf+\IJ(r)sin(k9)dr,
™ r_—

where we applied the transformation [0,7] 260 — r € [r_,ry], dr = £ d0,
cf. (A.22), in the last step. The dependencies are e = E = E(I, £), w(e, Z)
wi(l,¢)and O(r, e, £) = 0(r, I, £). O

Remark B.6 (Projection of ¢ = ¢(r)) Observe that the zero’th Fourier coefficient
of a function ¢ = ¢(r) depending only upon r is
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2T T
o1, 0) = — [ 600, 1,0 as =1 / 6(r (0, 1, 0)) O
2w 0 ™ Jo

wie, &) Y o(r) 2 (@0 g (r)
—_— r = —_—
™ r(e,t) Dr T, ) Ji 0y Pr

r’

where p, = \/ 2(e = Ug(r)) — 7 cande=E=E (1, £) This agrees with the relation
from [29, equ. (29)] for the projection onto ker 7~ of such a radial function. &

Next we will re-express Uy (r) for g = Y., g ¢*” in terms of the g.

LemmaB.7 Forg =Y ,_; g e'*’ we have

1
Ug(r) = // detdelie p).ryie,ty<r) ——= e D go1,0)
167T
dlldeliec ¢).r (e, 0)<r<ry (e o)
keZ D
1 sin(kf(r, e, £))
X g1, 0),
wi(e, £) k
where I = I (e, £). In particular, if g = Zk#o gi %0 then
1672 1 sin(kf(r, e, £))

Ué(r) = Z // dtide 1{(e ):r_(e, £)<r<ri(e, 0)} wi(e, 0) % gk, 0).

k05
(B.8)

Proof By linearity it suffices to consider the special case that g(r, p,, ) =

g(0,1,0) =h(I,£) e’ where k € Z and h is defined for (I, £) € D, cf. Defini-
tion B.1. For the density, using (A.41) we have

2 o0
pg(r) =f gdv = —Z/dprf delg(r, pr,t). (B.9)
R3 r= Jr 0

To analyze the domain of integration in p, and £ at fixed r, we note that

1 5 Z2 2
> _p 4+ U —>Up(0 —
€= 50 +Uo(r) + 5 =2 Up(0) + 75

holds. Therefore, 2r%(eg — Ug(0)) > ¢* and we get the restriction

€ <I(r) = /2r2(eq — Up(0)). (B.10)
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If ¢isfixed, then Ueg (r4, £) = eyields p, = :t\/Z(e —Up(r)) — f—z = Qatry.Thus,
we must have —p < p, < p for

R 02
pr, 0) = \/Z(eo —Up(r)) — = (B.11)
Hence, we obtain from (B.9) that
o (I p ‘
Pheito (r) = —2/ dﬁﬁ/ dp,h([,E)e’ke, (B.12)
r 0 —p

where 0 = 6(r, p,, ) and I = I (r, p,, £). Now we are going to apply the transfor-

mation p, — e(r, p,, £) = % pr2 + Ug(r) + %, which is quadratic. Observe that
. e

e(r,£p,f) =ey and e(r,0,¢) =Up(r) + 22 < €.
r

If p, € [, 0L then 7 = p, < Oande(r, p,, £) €l + Ug(r), o] with the inverse

transformation given by e — p, = p,(r,e,l) = —\/ 2(e = Up(r)) — g Similarly,

if p, €10, p], then ¥ = p, > 0 and e(r, p,, £) e]% + Ugp(r), ep], whereas the

inverse transformation is e — p, = p,(r,e,l) = \/ 2(e —Ug(r)) — f—z Noting that

De pr, we deduce from (B.12),

apr
o i 0 ) p )
Pheito (1) = —2/ dee </ dp, h(l, ) e +/ dp, h(l,£) e’k(’)
r 0 —p 0
~ p2
2 I(r) 5 +Uo(r) d . B
== f dee < f 2 < h(I, £) 0P 0
r*Jo @ —2(e ~ Ug(r) — &
+/e° de h(l, £) eike(r,pj,m)
2

Gr+vo) \[2(e — Up(r) — &

o [l 0 de
r< Jo L +Up(r) \/2(6 —Ugy(r)) — f_i

2r

X h(I,€) (™00 4 (ikirrr.0) (B.13)

for pf = pE(r,e, ) = :I:\/2(e —Ug(r)) — % Using (A.10), we obtain 6(r, p;,
£) = 2w — 0(r, pi, £). Thus, (B.13) simplifies to

4 iy ey d
Preis (1) = — / daee / ¢ h(I, £) cos(kf),
r 0 ¢

2

¥ 0o \/2(e —~Up(r) -5
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where [ = I (e, £) and 6 = 0(r, p;", £). Then, (A.2) implies that
U, 10 (R)
An R

= F 2 ppeins () dr

16 R l(r) e d
=2 ar / dee / ¢ — (1. 6) cos(k?)
0 Lr+Uo) /2(e ~Upr)) ~ &

167r

dr dZZ

enin(®) /2<e ~Upr)) ~ &
h(l, £) cos(k®)
(B.14)

0<e<1(r) eo< fz +Ug(r)<e}

for I = I(e, ¢) and 6 = O(r, p;, £). We claim that
1{Osesi<r>.eos;,—é+ug<r>5e} =1rra(), (B.15)

where 4 = ry (e, £) as before. Recall that r. are the solutions to 2(e — Up(r)) —
£ =0, whereas 2(¢ — Up(r)) — & > 0 in Jr_,r[ and 2(e — Up(r)) — & <0
outside [r_, ri]. Hence if 1; ; =1, then r € [r_, r+] Conversely, if r € [r_, ry],
then e > 2 52 +Ug(r) and consequently ey > e > 2 52 + Ugp(0), so that 2r2(eg —
Up(0)) > ¢2, which means that £ < [ (r). This completes the argument for (B.15).
Going back to (B.14) and recalling (1.23), it yields

Lo 1
U o (R) = ™ [ ar ([ aeede 1[, (P (L €) cos(kO)
J2te = Uo(r)) -
16 ko
_ ler® de e dehl, e)/ dr 1[0,R](r)\/ cos(kd) —:
- 2(e—Ug(r) — 7

note that I = I (e, £) does not depend upon r. To calculate the integral

. /u dr 1o () cos(kf) :
- J2te—Uor) - &

we use the transformation [0, 7] 2 0 — r (0, I, £) = r (0, e, £) € [r_, r1], which has
dr = = d0 by (A.22). Therefore,
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"+ cos(k6)
I= 1{<e,z>:r+<e,e>sk}/ dr =
- U - &

cos(k6)
J2te—Uor) - &

1 s
= 1, 0): 1. (e, <R} w_1/0 df cos(kf)

R
+1{(e,£):r,(e.e)gksu(e,li)}f dr
r—

1 O(R,e,0)
+ e, 0):r_(e. )<R<rs (e, 0)) ;/ df cos(k6)
1 Jo

iy
= Le. 0):r, (e, )<k} —— Oko
wi

+ L, 0:r (e, <R=<r1 (e, 00} o 3 ;

here w; = w; (I, £) = wy(e, £). Thus, we arrive at

1673 1
I
heiké (r) = 2 ko // dtldeh(l, 1) 1{(6,6):r+(e, £)<r} m

D
1672
+ P dtldeh(l, €)Y, o):r_(e, ) <r<r, (e, 0)}
D
y 1 sin(kf(r, e, £))
wi (e, £) k ’
which yields the asserted formula for U é (r). O

B.2 Operators

The next definition is consistent with the fact that 7 g = {g, ep}=w0pg and
T2g=w? d7g, cf. (A.43) and (A.44).

Lemma B.8 The following assertions hold.

(a) Let
T, 0) =ikw (I,0)gr(I,£) for ke Z. (B.16)

Ifa >0, then T : X! — X is well-defined and
17gllxe < Arligllixess for ge Xt

where A is from Theorem 3.5. In addition, T (X“™') C X§.
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(b) Let D(T?) = X? and define
T2:X2 = X% (T%9),U,0) = —k*wi(,0) g (I, £) for keZ. (B.17)
Then T2 is a self-adjoint operator on X° and

172¢ll e < A2 ||gllxers for ge X2 (B.18)

(c) We have

(=778 9o = 167° Y Klwigell> ) = T8l for g€ X°.
k0 107

Proof (a) By the definition of 7~ and of the norms,

17 gl = 167 Y (1 +&)" ||<7'g>k||Lz o
keZ \

167 Y (1 + &K langell 32| ()
keZ @

IA

a+1
16w AT Y (L+ k)" lgelfz | () = AT lglwn-  (B.19)
keZ 121

The fact that 7 (X! C X, ¢ follows from (7 g), = 0. (b) First observe that T2 is
densely defined in X° by Remark B.2(c). To show that 72 is symmetric, we remark
that for g, h € X2,

(T8, h)xo =167 Y (T2, hi) 2

L

keZ 10|
=_167T3Z/f dlde E Y kWi, 0) gi(1,€) hi (1, £)
keZ
(B.20)
=167 Y (& (T°h)) 2, oy = (8. T h)xo. (B.21)
keZ 7

Next we verify that ran(72 & i) = X°. For, let h € X° be given and define g* by

hi(1,0)

—— - for kelZ. (B.22)
k2w (1,0) Fi

e, 0 =~

Then g € X?. To see this, we are going to use estimate (4.3) from Remark 4.2(a).
It implies (note @ = 0 and b = 1) that
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g1 =167 (1 + K2 gl )
keZ 27

o - I L DP
=167 3 (1+4) //‘“ 0@ P10 F 1P

keZ

16 3//d1d££ ho(I, 0)?
" IQ()I'O( )

L e, 0P
1673 1 +k? //dldz
HI6m ) (1 +KY? 0@ kst 11

k#£0

1
163//d1d€£—h 1,0
< 16w lQ()||o( )|

+327%(1 +45—4)Z// dIdM 3 |he(1, )]
k£0 ¥

<21+ 467 Ihll-

IA

This proves that g= € X? is well-defined through (B.22), and then (72 £+ i)g* = h
is obtained from the definition of 72. Thus, 7 is self-adjoint. The bound (B.18) is
derived analogously to (B.19). (c) Here, we have

(=778, Ox0 = 167° Y (=T, 812, vy = 167 ) (] g 80,2

keZ 7 keZ ?
=161y ||lkw1gk||u< =167 ) ||<"rg>k||Li( =T 810,
keZ 10| keZ 101
as was to be shown. O

Lemma B.9 The following assertions hold.
(a) Letg = g(I,£) € L*, (D). Then Tg = 0. In particular, T |Q’ (eg)| =0.

71
(b) Let L% be defined as in Chapter 4. For ¥V € Lf let F(r) = F(0) + fo W(s)ds
for r €[0,rp] and denote by Fy the zero’th Fourier coefficient of F. Then

|Q'(eg)|(F — Fy) € X1, and
T Q' (e@)I(F — Fp)) = 10/ (eg)| pr V. (B.23)
Proof (a) If g = g(I, £), then gy = g and gy = 0 for k # O by definition of the

Fourier coefficients, cf. (B.1). In particular, g € X' and hence (B.16) from Lemma
B.8 yields 7°g = 0. The second part follows from ey = e (1, £) and

10 o, = [[ draceioen <o,
21 D
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the latter due to e € [Ug(0), eg] and (Q3). (b) First note that

2w
/ 10/ (e0)| Fo(I, 0) e ™ df = 27 | Q' ()| Fo(, £)dro
0
for k € Z as well as
2w
f Q" (e@)| F(0,1,£)d0 =27 |Q'(eg)| Fo(I, £).
0

If k # 0, then through integration by parts

2T
/ 10 (eo)| F (6, 1, £) ¥ d
0

2T
10'(eo)] / Fr, 1, 0)) e db
0

_ 1. —iko|*" ke o AT
= §|Q(eQ)|[F(r(9,1,l))e ‘0 foe F/(r) S5 do

_ 1 10Q(eg)l
ik wi(1,0)

27
pr¥(r) e 0 g0,
0

where we used r(2, I, €) = r(0, 1, ) and (A.22). Thus if we let 1(r, p,, £) =
|Q'(eg)| pr W(r), then

2
—ik0 =7
fo 10/ (eo)| F(0, 1, £) ¥ a6 = = - wl(] g 1.0

for k # 0. To summarize, we have shown that
[1Q'(e)|(F — Fyp)],(I, £) =0,
[1Q'(e)|(F — Fp)], (I, ) =

.0 Wi (1, €) for k # 0. (B.24)

Since 1 is odd, we have ¥_;, = —; for k € Z by Lemma B.3(b); hence Lemma
B.3(a) implies that | Q'(ep)|(F — Fp) is even. Moreover, recalling from Lemma B.5
that 19 = 0 and using (4.20) from Lemma 4.4, we get

11Q'(eQ)|(F — Fo)ll3 = 167° Y (14K [I1Q'(eo)I(F — Fo)]kIILL

keZ 10’1

1+ k2 2
= 167 32 +
k0

<3267 ) Iell3: | ()

k#0 o'l
= 3216, 2|95 < 32776, 2 p (0) [W7; < oo.

L*, (D)
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Therefore, it follows that |Q'(e)|(F — Fy) € X éven. To establish (B.23), it suffices
to observe that

[T (1Q (e@)|(F — Fo))l;, = ikwi [|Q(e)|(F — Fo)l; = ¥x

for k € Z by (B.16) and (B.24). U

From (B.3) in Definition B.1 recall that, for o > 0,
X§ =1{g€X":go=0)

is the space of functions with vanishing zero’th Fourier coefficient. It is a Hilbert
space under the scalar product defined in (B.2). If we restrict 72 to such spaces, then
we get the following.

Corollary B.10 Let D(72) = X2 and define T* : X3 — X3 as before. Then T2 is
a self-adjoint operator on X8 such that =T > 512 as operators. In particular, we
have o(—T7?) C [6?, 0o[ and Q = C \ [62, 0o[C p(—=T>). For z € Q, the resolvent
R_7(2) = (=T 2% — z)" ' is given by

hi(1,0)

_TZ_ - :XO X27 _TZ_ _1h I’E =
( 7' X0 = X5 (C DD =

for k#0

(B.25)
and (=772 —2)"'h)y = 0. We also have

g2 3 1 i (1, O B2
(=T*=2)""h )0 = 167 %l/dldw 0@l B0 3 (B.26)

forh € Xg.

Proof Clearly XJ° C X{§ is dense for o > 0, where X)° = X% N {g : go = 0}; thus
in particular, X3 C X{) is dense. The symmetry of 72 is shown as in (B.21). Also
ran(72 £ i) = X{ holds, since if 1 € XJ is given, then g* defined via (B.22) yields
functions gi S X%.Thus, VIEE X% — Xg is self-adjoint. To establish that —72 > 512,
letg e X(z). Then, by (B.20),

1
(—T%g, 9y = 167T3Z// dldee KW, €) g1, 0

el 10'(o)]
1
> 167r35f2//d1dw—|gk(1, 0)?
= 10'(e)]
D
=07 l18ll%0-

From —72 > 67 it follows that o(—72) C [7, ool, see [37, Prop. 5.12], which is
equivalent to p(—72) D C\ [5%, ool. For the last assertions, they are derived in a
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similar fashion as the estimates in Lemma B.8(b), but for completeness we include

the details. Fix z € Q,leth € X{) be given and define g; (I, £) = % fork € Z.
wi(l,6)—z

Note that go = 0, and we are going to establish that g € X2; then (=72 — z)g = h
will be a direct consequence of the definition of 72. According to Remark 4.2(a), there
is ap > 0 such that [k*w} (1, €) — z| > ap for |k| > 1and (I, £) € D.In addition, by
(4.3) and (4.4) there is ko € N so that |k*wi(1, €) — z| > $k267 for |k| > ko and
(1, ¢) € D. Hence, we can bound

1 lhe(1, 0
Igl%, = 167° (1+k2)2//d1d€£
g % £ 10/ (e)| [K2wi(l, £) — 2
1
< 16may?(1 +k3)? Z // dldee |hi (1, 0)?

1Q'(e)]

1<kl <ko—1p3

|k|>ko

L (0P
+167° 1+k“//d1du
DI 0@ Tk
D

< 1673052 (1 4 k3)? Z // dl dﬁﬂ@ \h (1, 0)?

1<lkl<ko—1 3

1
2563 674 //dldw— he(1, 0)
+ 2567 6, Z IQ’(e)II K, D)

|k|=ko D
< (g (L +k)* + 16 87 [l 5o:

observe that both g and k( will depend upon z. For (B.26), we calculate from (B.2)

(=T =) h hyxo = 167> Y ([(=T2 — 2"l "oz | (o)

keZ 12]
1 he(I, £)?
=16w32//d1dm / 2' LOF
= 10/(0)] KW (I, ) — %
which completes the proof. (I

Remark B.11 If we consider 772 : X> — X, then the resolvent (—72 —z)~!:

X% — X?isnot defined at z = 0, since the associated multiplier m blows up
21,0

for k = 0. This problem does not occur for 72 : X3 — X{, as we omit the coefficient
k =0 for (=72 —z)~': XJ — X3. From the context it will always be clear which
operator and which resolvent we are dealing with. <&

For the next result, we remind that §; = inf 5 w; and A| = sup w;. We also recall
that the discrete spectrum of a self-adjoint operator A in a Hilbert space, called 04(A),
consists of all eigenvalues of A of finite multiplicity that are isolated points of the
spectrum o (A). Its complement o (A) = 0(A) \ 04(A) is the essential spectrum.
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Lemma B.12 We have

Tess (=T = |_JK2[57, ATl (B.27)
k=1

for the essential spectrum, and in particular
67 = Min O (—T2). (B.28)

If in addition (w:-1) is satisfied, then 5% ¢ a,,(—‘TZ), the point spectrum of —T 2.

Proof To establish (B.27), we first show that k3 107, A[C Gess(—72) for all kg €
N. For, let u3 €163, A3[. Using [37, Thm. 7.2], it suffices to construct a Weyl
sequence (g) for \g = k23, i.e., a sequence (g') C X3 such that [|g ] yo = 1
for j e N, g —~ 0and (=72 — \g)g") — 0in X% as j — oo.
Since w; is continuous by Theorem 3.6 and D is connected, w, (lo)) 1s an inter-
al that satisfies 191, A[C wl(D) C [01, A1]. In particular, py = wl(I E) for some
(I l) € D. Let é = e(I l) €]Up(0), el denote the associated energy and select
€ > 0 according to (Q2), i.e., with the property that

m =inf{|Q'(e)| ;e c[é —¢,é+¢]} > 0. (B.29)
From the continuity of Q" in ] — 00, eg[ we furthermore have
=sup{|Q'(e)| ;e € [e —¢,é+¢]} < o0. (B.30)

Defining ﬁ =12 and assuming € > 0 to be sufficiently small, we may suppose
that the square S = {(¢, 8) ;e €[e —c, e +¢€],[ € [3—6,3—{—5]} c D.Lety =
m(x) € C(‘)’O(Rz) be a function such that n; > 0, n; has its support in B;(0), and
fRZ N1 (x) dx = 1. We will use the standard mollifiers 7; (x) = j*m(jx) for j € N,
they have their supports in B;/;(0) and satisfy ./RZ 71j(x) dx = 1. Then the functions
xjle,3) =njle—é, 0— 3)"/2 have their supports in Byj; (e, B) C S for j large
enough, w.l.o.g. for j > 1. For g;(e, 3) = |Q'(e)|x; (e, 3), we deduce from 3 = ¢2
and (A.18) that

1
g2 ffdldw—u;v-(l, P
T 10'(e)]

1 1
Z dedf———— 13.:(c. B)2
24/ «di e mioe) &

1 2@ . -
= Zl/dedﬁ—wl(E,ﬂ) nije—e,B—0).

Since
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[[ deasne—es-p= [[aeasne-e5-h= [[mwax=1,
D N [—¢, e]?

it follows from (B.29) and (B.30) that

llgjlle < (B.31)

L

M
1271 26,

m
20,
In addition, if ¢ € C$°(D), then

1 1 I
|(gj7¢)LL(D)| = z‘//dedﬂmgj(& 3) (e, 6)‘

[

19l // dedfn(ite—é.5— A"
1
S

J )1/
2] 91l // dym(jy)

[—e.el?

1 12
ot [[ axm)

B, (0)
Ci Il - (B.32)

771(](6 é,8—0B)"2 pe, e)‘

IA

IA

IA

IA

Due to (B.29), (B.30) and (B.31), and taking into account the support properties of
gj» we conclude from (B.32) that also

lim (2). 02, p) =0, ¢ € LQ+ D). (B.33)
127

Next, we also note that

f / dedB10/(©)] Wi(e, B — 127 x; (e, B)?
D
< c// dedf wie, B) — o) ;e — &, 8 — )
S

_ c// dy @1+ yi, B+ y2) — wi @ 521 (0)

[—e,c]?

= Cf/ dx (@ @+ j7'x1, B+ ) —wi@, B)?mx) = 0, j — oo.
B (0)
(B.34)
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For the Weyl sequence, consider §Y(8, I, £) = g;(e, 3) e’ — g;(e, 3) e~.
Then 81%) =Zj. g(’k)(J = —g; and g/’ = 0 for k # +ko; in particular, g is odd.
Furthermore,

3 ) 35 12
189150 = 167> > 113V ”Lg y =32 18,1172, (p)

keZ 1071 071

in conjunction with (B.31) shows that
16 mAT" < 13950 < 167° M5} (B.35)

for all j. Nextleth € X°. Then hik, € L2 (D) and

@V Wy =167 Y@ h)pz )
k20 101

= 167° (gj,hko)LL( —1673 g h ko)Li(D) -0
107 107

as j — oo due to (B.33). Therefore, g0 — 0 in X for j — ooc. In addition, using
(B.34),

—T2 2P0 = 87° //d —
1T =208Vl =873 | [ dedp —— ﬁ)|Q(eQ>I

keZ
x |((=T2 = 2)g") U, O

(k3wi(e, B)* — Xo)? .
=163//dd 0 Jae
" | AP e BIaegl B ¢ OF

_ 3,4 ’ ((UI(e, ﬁ)z - /1’(2])2 . 2
= 167k l/ dedB3|Q(e)| e B xj(e, B)

IA

C// dedB|Q'(e)| (wile, D* — ud)* xj(e, B)* = 0
D

as j — oo.

Thus, by (B.35), we can normalize the sequence (g/)) to obtain the desired Weyl
sequence (g\/).

Hence, we have verified that k2107, A2[C 0ess(—72) for all ko € N. Since
Oess(—T %) is closed [37, Problem 10.5], it follows that even k2 [67, A?] C Oess (=T %)
holds for ky € N, which proves ‘D’ in (B.27).

For the converse ‘C’, take \ € ges(—72) and let () C Xé be an associated
Weyl sequence, i.e., we have ||g/||yo = 1 for j € N, g/) — 0and b)) = (-T2 —
Mg — 0in X as j — oo. First note that oes(—72) C o(=T2) C [62, oo[ by
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Corollary B.10 yields A > §7. Fork € Ndefine g, = dist(3, [67, A?]). If we assume
thate;, > Oforall k € N, then 1%2 — Oask — ooimplies thaté = inf{e; : k € N} >
0. Since wi(1, £) € [6%, A3,

A
w1, 0) — N = k*|wi(I, ) — i k*é, keN.
If we write g = Y, Lo g (1, ) € and hD) = Y, Lo (1, 0) €™, then

hY (1, £)

)
o= k0
s (.0 2w (1,0) — A

due to (B.25). It follows that

N2
1= g0
=167 // dld g1, o)
g IQ( )
1 h(]) I,K 2
16W3Z//dldﬂé 2' e (4O 5
s Q'@ KW}, £) = A
16
< i Zk4 //dldee ||h“>(1 0P
k0
1677 .
—= ,] — OO,

which is impossible. As a consequence, we must have €;, = 0 for some ky € N. But
then 1%2 € [63, A%], which means that \ € k3[67, AZ].
0

Concerning (B.28), as ess(—72) C [07, oo[, we have inf oess(—7 ) > 67. For
the converse, [5%, A%] C Oess(—T2) due to (B.27), and therefore inf gegs (—T %) < 512.
The infimum is a minimum, owing to (512 € Tess(—T ).

For the last claim, assume on the contrary that g € X(Z) is such that g # 0 and

—7%g = 63g. For the components this means that k>w? g; = 67 g; in L?, (D) forall
\Q/

k # 0.Since w?(l, £) > &3, it follows that g; = Oin L2 (D) for |k| > 2. According

to (wi-1)theset {(1,¢) € D : wi(I,£) = 6;} has Lebesgue measure zero. Therefore,

g+1(1,€) =0 for a.e. (I,£) € D, which means that also g1; = 0 in Li (D), and
107

hence g = 0. O

Lemma B.13 Define

T 'h) (1, €) = ﬁ he(1,0) for k #0 and (T 'h)y(1, €) = 0.
(B.36)
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(a) Ifa >0, then T~ : X5 — Xg“ is well-defined and
17"l xorr < V267 |Rllxe for h e X

(b) T7'Th=g—go for g€ X**', and in particular T~'T?g =T g for g €
xot2,

(c) IfTg=nhforge X" thenT'h =g — go.
(d) TT'h = hforh e Xg.

-1 _
(e) T(=T2) 'h=—T'hforh e XJ.

Proof (a) To begin with, (7~'h), = 0 holds by definition. In addition,

_ 2 a+1 _ 2
I Rl =160 D~ A+ I 1T Wil | oy
k0 7]

1 k2 a+1 1 2
— 16y % ‘ “
J0 k w1 L*, (D)

1071

<3267 ) (LI iz () =267 1hl1%0

k0 127

and hence in particular 7~ 'h € X,

(b) Note that 7 g€ Xj by Lemma B.8(a). Hence, we have T l9g =
> k0 ﬁ (T ) et = > ko 8k e*? = g — go. For the second statement one
uses (7°g), = 0.

(c) This follows from (b).

(d) Here, ~we calculate TT 'h =Y pegikor (T Ry e = 3 g ikw
(T'h); %0 = Zk;&o hy e*? = h, due to hy = 0.

(e) According to their definition in (B.25), the coefficients of the resolvent (—7 %)~ 'n
at z =0 are given by ((=72)"'h);, = 2%, for k # 0 and ((—=72)"'h)y = 0.

Kw?
Therefore,
-1 . -1 i J hk i
TT?) h=) ik (T2 hye'=) ik e
= k#£0
1
=— Z ikt hee'=—7""h,
k#oz w1

and this completes the proof.

For the next result recall the operator K from (1.15), given by
Kg =—Q'(eg) py Uy(r) = 1Q'(eg)| py Uy (1), (B.37)

where we have used assumption (Q3) for the last step.
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Corollary B.14 Forz € Qand (0, 1,0) = Zk?&o (I, 0)e*? € X8 we have
KT (=T -2
=10'(eg)| pr 16m Z // dtldely (o o), r, (e, 0) sin(kb(r, e, £)) e, £),

2 2,2 —
L g k*wi(e, t) —z

where I = I (e, ?).
Proof If welet g = (=72 —z)~ !4 € X2, then

U1, 0)

k*wi(I,£) —z

g, 8) =

by (B.25); in particular, go = 0. Next, if » = 7 g, then
ikwi(1,2)

h(1, ) =ikwi (1,2 1l)= ———"
kI, ) = ikwi (I, £) gk (1, £) R0 — =

(1, £)
for the coefficients of h € X|. Therefore, KT (=72 —2)" ' = Kh = |Q'(ep)|
pr Uj (r) and (B.8) from Lemma B.7 yield the claim. U

Lemma B.15 Define K7 : X° — X° by
(KT )1, €) = 167 |Q'(e)| wi (e, €) Zf/ diidegn(l, )

m#0 “py

°°dr1
X 3 (.00, et @ D, ro @ 01 ()

x sin(kO(r, e, £)) sin(mO(r, &, £)) (B.38)

fork € Z. Then
(a) KT agrees with what is obtained from (B.37). In particular

KTg =4710' o) p. [ prgdo (B.39)
R3

and KT is a linear bounded operator on X°.
(b) KT is symmetric and

1
(KT g, 8)x0 = 4—/ IU/Tg(r)Izdx >0 for ge X (B.40)
T JR3

(c) KT : Xg — X(O) is well-defined, linear, bounded, symmetric and positive.
(d) If g; — O weakly in X%as j — oo, then KT g; — 0weakly in X%as j — oo.
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Proof (a) For KT g = |Q'(eg)| pr U’Tg (r) we deduce from Lemma B.5 that

; ry(e,l)
(KT g, £) = —% 10" (e)| wi e, £) Ug(r) sin(k0(r, e, £)) dr
r_(e,t)

where e = e(/, £). Noting that (7 g),,(I, ) =imw;(I, £)g, (I, £), and in par-
ticular (7 g), = 0, the claim thus follows from (B.8) in Lemma B.7. Regarding
(B.39), Lemma 2.4 says that U.’Tg (r)y=4n fR3 pr g dv. Hence, (B.37) shows that
(B.39) holds. For the boundedness, we write out (B.39) more explicitly:

(KT g)(x,v) = 4m Q' (e)] p, /Rs Prg(x,v)dv (B.41)

for p,=x-v/lx], p,=x-9/lx], e=1w?+Up(r). If we also let
e= % |0]> + Ug(r), then we obtain from Holder’s inequality and Lemma 2.5

(KT &) (x, v)]

1/2 1 1/2
547TIQ/(6)|IprI</ IQ/(é)Iﬁfdﬁ> (f T|g(x,ﬁ>|2dﬁ>
- & 10'@)

1/2
<4rn|Q'(e) |pr|pQ(r>”2(/]R lg(x, ﬁ)lzdi)) .

1
s [Q'(0)]

Observe that Q" € L2 (R) by (Q3) and e € [U(0), ep]. Furthermore |p,| <
maxg |v|, the maximal |v| for some (x, v) € K. Also po(r) < po(0) due to

(A.32). Therefore, (B.4) leads to

IKT g% = ||7<7'g||i:p @®

hA‘Qi/‘
— 1 2
= /f 0@ (KT g)(x,v)|“dxdv
K
642 5 ,
= 3 po(0) (max [v])” sup {|Q'(e)| : e € [Ug(0), eol}
dx dv o
< | iz e
=t Cir llgliz | () = Cicr I8l (B.42)

sph. o7

(b) Here we calculate, for g, h € X% and using (B.4) as well as (B.41),
(KT g, h)xo = (KT g, h)g
T -
= ——— (KT g)(x,v) h(x,v)dx dv
-/R3 /]R3 1Q'(e)l
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=47r/ dx/ dvp,/ dv p, g(x,v) h(x,v) (B.43)
IR3 R3 R3
=47T/ dx dvp,/ dv p, g(x,v) h(x, v)
R3 R3 R3
1

= / g(x, v) (KT h)(x,v)dx dv
r: Jrs | Q' ()]
= (qu(Th)Q = (g’ (}(Th)xo,

which shows the symmetry. If we specify to & = g, then (B.43) and Lemma 2.4
yield

(KT g, 8)xo :477/ dx </ dv prg(x,v))<f dv p, g(x, 5))
R3 R3 R3

2
1
=dn | dx| | dvp, gix,v)| =— | UL ()| dx,
T/Rs * fR VPl y) 47T/Rs| Te (I dx

so that K7 is positive.
(c) Note that (K7 g), = 0 by (B.38), even if g € X°, and not g € X{). Thus, in
particular K7 (XJ) C X3, and the remaining assertions follow from (a) and (b).
(d) Leth € X°. Then K7 h € X° and by (b):

(KT gjh)yo = (g KTh)yo = 0, j— o0,

which means that K7 g; — 0 weakly in X% as j — oo.

Corollary B.16 If g € X°, then
1Usel,, < 4mp0(0)'72 gl 0.
Proof The argument is very similar to the one for (B.42) above. First recall from

Lemma 2.4 that Ul,g =47 ng prg dv, whence this is defined for g € X 0 and not
only for g € X'. Here we have, using Lemma2.5 and the monotonicity of pg,

Ul <47 [ Il lgte ol dv
R.

) 172 1 , 12
54W</R.3'Q(e)'p"d”) (/R 10/ 8V d”)
» " / | . 172
< 4mpo(r) (Rle’(e)||g(x’U)| v)

12 1 2 2
4 0 , d .
< 470 (0) (fnmg/(en gCr, V)| v)
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Accordingly, we obtain

, 1
1U711;, < 16790 (0) /R i /R o ¥ v)[*dx dv = 1677 pg(0) gl %0

where we (as always) extend g by zero outside K. ([
Now we turn to L = =72 — K7 from (1.16).

Lemma B.17 The linear operator L =—T°%—KT with domain D(L) =

D(—=T?) = X% is self-adjoint on Xg.

Proof According to Corollary B.10, —772 : X2 — X{ is self-adjoint. In addition,
KT : Xy — XJ is symmetric and bounded by Lemma B.15(c), and in particular
closed. Moreover, —K7 is surely —7 2-bounded with relative bound zero. Hence L
is self-adjoint, trivially by the Kato-Rellich-Theorem; see [37, Theorem 13.5]. [

Since the Antonov stability estimate concerns spherically symmetric functions
u = u(x, v) that are odd in v, we have to restrict X8 further, in accordance with
Definition B.4; recall from (B.6) that

Xoga=18€ X 18 =—g for k e Z}

are the odd functions, represented as a Fourier series.

Remark B.18 (a) The operators 7 and 7' do reverse the parity, whereas 77
preserves the parity; this is a direct consequence of LemmaB.3 and (B.16),
(B.36), (B.17). The resolvent (=72 —z)~' : X0y — X244 of =72 on X2y is
still given by (B.25) for z € Q.

(b) K7 g is always odd; this is due to LemmaB.3 and (B.38).

(c) The statements regarding the spectrum of —72 from LemmaB.12 are not
affected, if —772 is considered on X2, instead of X3; for (B.27), note that
the Weyl sequence as constructed in the proof of LemmaB.12 consists of odd
functions.

Corollary B.19 The linear operator L = —T* — KT with domain D(L) = X2,
is self-adjoint on ngd. In addition,

1
(Lu, w)xo = |Tull%0 — —/ \Us, () > dx for u e X2y, (B.44)
471' R3
For the essential spectrum, we have Oes(L) = 0ess (=T 2). In particular;

Oess (L) = | JK?[67. AY] and 67 = min oo (L). (B.45)
k=1

If wy is not constant, then there exists . > 07 such that [\., 00[C Gess(L).
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Proof The self-adjointness follows from Lemma B.17 and Remark B.18(a) and (b).
For (B.44), we can apply Lemma B.8(c) and Lemma B.15(b).

To establish that e (L) = 0ess(—T %) We are going to use Weyl’s Theorem; see
[37, Theorem 14.6]. For this we need to prove that K7 is relatively L-compact.
Since D(KT) = X > Xodd = D(L) for the domains, this will follow once we can
show that K7 (L +i)~': X%, — X%, is a compact operator. Due to Corollary
C.6 we know that K : X° — X0is compact; recall that Lf h (K) = X°. Hence, it

suffices to prove that 7 (L + i)' : X0, — X%isa boundi& ‘cfl,)‘erator. By the second
resolvent identity, [37, Prop. 1.9],
L+ =T+ + T2+ 'KT L+,
so that
TL+D" =TT+ +T T+ )7 KT+ )7 (B.46)
Ifh e Xodd, then (B.16) and (B.25) yield

1 Kwi, 0?1, 0
10 ()] |k2wi(I, £) +i|?

1T (=T2%+ i)~ 1h||X0 = 167T3Z//d1d£€

k£0 )y

In particular, for £ # 0 we have

Kwi (I, 0% b (1, 01> K, 0% h(, O hi(l, €
wi( . )[R ( ) )P K ,4) |hi (1, 0)] - ,4A2| k( . )2 < Clhn(L. O,
lK2wi(1, €) +i|? k4wl 0) +1 k
It follows that
17 (=2 + D) Al <CZ//d1dM 5 el OF = Cll,

k#£0 ¥y

which shows that 7 (—72 + i)~ : X, — X is bounded. Also KT : X* — X0,
is bounded, by Lemma B.15(a). Lastly, L is self-adjoint, so that (L) C R. Hence,
dist(—i, o(L)) > 1 implies that for the resolvent [|(L + i)'l xo, = dist(—i,
(L)™' < 1. Altogether, 7 (L +i)~": ngd — X° from (B.46) is seen to be
bounded.

Regarding (B.45), the assertions follow from (B.27) and (B.28) in Lemma B.12,
together with Remark B.18(c).

For the last claim, since w is not constant, there is ky € N such that 6% < +1)2 A2
for k > k. By induction w.r. to k > ko we are going to establish that [k§52, szz] C
ess(L) for all k > ko. For k = ko we have [k267, k3 A?] C 0ess(L) due to (B.45).
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Suppose now that [k307, k?A?] C oess(L) is verified for some k > ko. Then (k +
1)25% < sz% in conjunction with (B.45) yields

[K*A%, (k + D*AT] C 1k + D267, (k + 1)2A?] C 0es(L),
which leads to
[k50%, (k + 1)2AT] = [k267, k2 AT U [K2AT, (k + 1)2AT] C 0ess(L)

and completes the proof. (]



Appendix C
An Evolution Equation

C.1 Summary of the Argument

The aim of this section is to show that \, < 5% implies that ), is an eigenvalue of L
(Theorem C.8). To outline the argument, we remark that )\, can be expressed as

A = inf {®u) 1 u € X}y, lullyo = 1}
for X4 as defined in Appendix II, Sect.B.1, and
S (u) = [|Tulko — (KT u, u)xo.

For a given time interval J = [0, a] or J = [0, oo[ and a given continuous function
h:J — X}, we consider the family of operators

W, s): g W, s)g, (Wt.s)g) = Wilt,9)g (k€ Z), (Cl)

Wi(t, s)(I, £) = exp ( - / [k*wi(I, €) — ®(h(T))] dT), (C.2)

for t,s € J, t > s; to emphasize the dependence on &, we will at times also write
“W(t, s; h). Note the evolution system property

W, s) oW, 7)=W(E, 1), t,s,TelJ, t>s5s>T. (C.3)

We will consider the evolution equation

g(t)y =W, 0y + f W(t,s) KT g(s)ds (C4)
0
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for t > 0 and initial data v, where ‘W(¢, s) = W(t, s; g). In Theorem C.4, we are
going to establish that if ¢ € ngd is such that [|?)||yo = 1 and ® () < A, + €, (for
€+ > 0 small enough), then there exists a global continuous solution g : [0, co[—
Xédd of (C.4) that satisfies ||g(¢)]|xo = 1 for ¢ € [0, oo[. This result does not rely on
A« < 82, the condition )\, < 7 is enough. The point about (C.4) is the following.
Differentiating (C.2) for h = g w.r. to ¢, we get

OWi(t, ), €) = —[K*wi (1, £) — D(g(t)] Wi(t, s)(U, £)
and hence, at least formally,

(WL, $)g) = (O, Wilt, s)gr) = (—[k*wi — @ (gt Wi(t, s)gr)
= T2W(t,5)g + ®(g(1) W(t,s)g.

Applying this relation to (C.4), it follows that

gt) =T*W(t, )¢+ P(gt)y
+/ [TZ’VV(I, KT g(s) + O(gt)) W(t,s)KT g(s)lds + KT g(t)
0

=T2g(t) + D(g(1) g(t) + KT g(t)
= —Lg(t) + ®(g(1)) g(1). (C.5)

This implies that the || - || yo-norm is preserved along the solution flow. Since ® (1) =
(Lu,u)g = (Lu, u)xo foru € ngd and as the solution g(¢) is regular enough, we
also deduce from (C.5) that

d d
2 @EM) = — (Lg(®), gy =2(Lg(1), g'D)xs
=2(Lg(t), —Lg(t) + ®(g(t)) (1)) xo = =2 (I Lg(®) |50 — ®(g(1)?).

Now

18" D)0 = I — Lg () + D () g(®)]|%0
= |Lg(t) 130 — 2®(g(1)) (Lg(t), g(t))xo + P(g()* lg(*) 130
= ILg®)]%0 — ®(g(1))%,

which in turn yields

d )

o Q(g(®) =-2g(lx0 =0.

Therefore, we see that ® is a Lyapunov function for the evolution. Since ||g(?) || xo =
1, we also have ®(g(t)) = (Lg(t), g(t))xo > A4, and itis a natural question to ask, if
we can construct a minimizer of @ in the following way. Consider a sequence of ini-
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tial data (1;) C X2, such that ®(¢p;) < A, + 1/j and let g; denote the correspond-
ing solution to (C.4) so that g;(0) = %;. Then A\, < ®(g;(#)) < P(¥;) < A +1/j
for all ¢ € [0, oo[ and j € N. Hence, the key point is to find a sequence of times
(¢;) with the properties that £; — oo and {g;(¢;) : j € N} C XY is relatively com-
pact. We will show that this goal can be accomplished, if the condition \, < 67 is
imposed; the limiting function ¢, will then be the desired eigenfunction of L for the
eigenvalue \,.

C.2 SetUp

The best constant in the Antonov stability estimate is
Ao = inf {(Lu, u)yo 1 u € X2y, |l xo = 1} > 0,

cf. (1.20). We also introduce

o:xly >R,

Q@) = | Tullo — (KT u,u)xo = |1 Tull30 — ﬁ /R Uz, (2 dx, (C6)
recall Lemma B.15(b). Then

Ao = inf {®@u) 1 u € Xhyy, lullyo = 1}

by Lemma C.10 below. Let the operators ‘W (z, s) be defined as in (C.1) and (C.2).

Remark C.1 (Parity) Since k enters as k? into the definition, one has W_,(t, s) =
Wi (t, s). Therefore, it follows from Lemma B.3 that ‘W(z, s) preserves the parity
in v: if g is even in v, then ‘W(¢, s)g is even in v, and if g is odd in v, then W(z, s)g
is odd in v. &

We will study the evolution equation
t
g(t) =W, 0)y +f W(t,s) KT g(s)ds (C.7
0

for t > 0 and initial data v, defining W (t, s) = W(t, s; g).

C.3 Existence of solutions

First we will study local existence and uniqueness for (C.7). Henceforth, we will
2
always assume that the parameter ¢, > 0 satisfies €, < min{i, %‘ .
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Lemma C.2 Let vy € ngd be such that ® (V) < Ay + €4. Then (C.7) has a unique
solution g € C(J, Xédd) on some time interval J = [0, a] with a > 0 such that
C(g(1) < Ax+2e for 1t €J and |8l < 10[1¥lx1, where [glls, ;= max
{lg®lx 1€ J}

Proof Define
G=1{geCU XLy :g0) =1, ®(gt) <\ +2e.forrel,
I8l < 10[I8hll 51}

where J = [0, a] with

8ex 52 1

125l 2000 C 181151 190152 (AT + 1420 Cger)?” 800 Co 1901131

a=min{1

Ex } 0
> b
4-108(Co 11131 + CoCrer 191151 + Crcr)?

for Cxq > 0 from (B.42), Cy from Lemma C.9 and A; from Theorem 3.5. By
Lemma C.9, G is a closed subset of the Banach space C(J, X},,), which is equipped
with the norm || - ||, ;. If we set g(t) = 1 for ¢t € J, then g € G, which shows that
G # . Nextlet F : G — G be given by

(F(g)(t) =W, 0)y +/ W, s) KT g(s)ds, geG, tel,
0

where W(t, s) = W(t, s; g). First we are going to verify that F is well-defined, i.e.,
F(G) C G. Fix g € G and write h(t) = (F(g))(t). Then h(0) = 1. The operators
“W(t, s) do preserve the parity in v, whereas K7 is always odd; see Remarks C.1
and B.18(c). Thus, if ¢ € X2, isoddinvand g(s) € X!y, isoddinv,alsoh = F(g)
will be odd in v. In addition, by (C.68), (C.75) for « = 1 and (B.42):

A lx1 = IWE 0l + H/O W, s) KT g(s)ds

X!

, . 12
< o>t bl g1 + = (1 +e45*’)1/2(/ ||7(Tg(S)||§(0 ds)
\ e, 0
; , 12
< o2ext Il g + E_ (1 +€45*1)1/2C‘K’T</ ||g(s)||§(o ds)
% 0

> 2 €
= e Wl + | = (402 Cor Vi gl ©®
*

2
<l + = 1+ 2O Va gl
*
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fort € [0, a]. Since ||gllp,; < 10 [1¥lIx1,a < 1,6, < 1/4anda < it follows

8e,
= = 125 c2 ’
that also ||2]| o1 < 10 || 1 is verified. To prove that & is continuous at to = 0, note

that by (C.84) and (C.8):

A () — Pl g
t
= W@, 0) = WO, 01l x1 + H /0 W, s) KT g(s)ds
X

[2
<A+ D)@+ Plxe + —a + e D20 Vgl — 0, 1 — 0T,
*

(C.9)

Next we are going to verify that A is continuous at 7y € J such that 7y €]0, a.
W.lLo.g. consider 7 > 0 only, where 7 is so small that ¢y +n € J. Fix § €]0, #[.
Then by (C.85), (C.78), (C.79), (C.80) and (B.42):

Ao +m) — h(o)ll x1

fo+n
< IW@o +n,0) = Wo, O)l¥lx1 + H / Wity +1n.5) KT g(s)ds
fo

x!

to—0
+ H /0 [ Wty +n,s) — W(tg, s)] KT g(s)ds !
X

0]
Wty +n,s) KT g(s)ds
t9—9

<2(A2+1)[ f+e2°*’° ]nwnxo

2 to+n 1/2
= a4+ e2€*">( / IKT g()1%0 ds)
Ex )

tg—0
+ /0 IlW (0 + 1, 5) = W0, )1 KT &)l x1 ds

10
W(ty, s) KT g(s)ds
to—0

+

d

x! x!

4 ey (46 0 2 1/2
+ - (+e 5 (14 ))(/ ] |\7(7‘g(s)||x0 ds)
Ex fo—

R O v A L%

2 2e 10+n 2 172
= (1 ) C(K’r(/ Ol ds)
Ex 10

2 l0—5 # 3
+2(AT+ 1) Cxer A - f+exP(28*(to N[l o ds

e (s 0 2 12
+ Tz 1+ Coer ([° 100 as)
n—

2 o
=283+ D[ Vi 0] Wil + | (1 2 Cocrlgloe,1 Vi
*
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A? +1 10 - 4
+ 16* Coxer lIgllco.1 |:2 In <g)\/ﬁ + 2ext0 77:| + i 1+ 325*(7/—0—5)) Cxor ||g||oo,l\/g~
Ex

(C.10)

So if we for instance set § = 7, it follows that lim, o+ [|A(to + 1) — h(to)| x1 = 0.
Since a similar argument proves the continuity of 4 at #p = a, in summary we have
shown that h € C(J, X édd). It remains to check the condition ® (h(z)) < A\, + 2¢,
for t € J. For this, owing to Lemma C.9 and by (C.9) fort € J:

[P (h (1)) — P(P)]
= 2Co(I1hOllx1 + Ll x D@ — Plix1
<22Cq [l x1 1A (1) — Yl x1

2
<22Cq I¥llx1 [(A%+ D@+ )Y gl +,/a (a +e45*f)”2c(;«rﬁ||g||oo,1}

2 £
<22Cq 1Yl x1 [ﬁ(A% + 1) [ ¢l g2 + 10 /; (14 *)12Cye ||¢||X1} NG
%

44 Cy
< 7 Il elx2 (AT +1420Cxer) Va
Ex

= Ex,
recalling the definition of a. Hence, we obtain
Q(h(1) < [Ph(1) = P+ PW) <€+ P(W) = A\ +2e4, 1€,

Altogether, so far we have verified that F(G) C G. Next we will show that F :
G — Gisacontraction. Let g1, g» € G. Then ®(g;(¢)) < Ay + 2¢, and D (g2(¢)) <
A« + 2¢, for t € J by the definition of G. Furthermore, in the notation of Lemma
C.18 below,

t
A(t; 815 82) = 2Co (181 l00,1 + 1821l 00,1) / lg1(7) — &2(D)lIx1 dT
0

t
<40Cs ||w||x1f lg1(7) = g2() 11 d
0

<40Cq [|1¥llx: lIg1 — &2lloo,1 @
800 Co ||9)]|3: a
1

IATA

by the choice of a. Thus, in particular

A(t; g1, 82) exp(A(t; g1, 82)) < 120Co [Yllx1 1181 — &2llco1 @-
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Hence for ¢t € J one deduces from this estimate, Lemma C.18, (C.75) for « = 1 and
(B.42) that

I(F(g)) (@) — (F(g2) @) x1
t t
= H(W(t,O; gy +/ Wit s; 1) KT gi1(s)ds — W(t,0; g2)¢ —/ Wit s; 2) KT ga(s) ds
0 0

X!

t
< W, 0; g1) — W(t, 0; 22)¢lix1 + H/O (W, s; g1) — W, s; 821 KT ga(s)ds

X!

t
+ H /0 Wi, s; 81) KT (g1(s) — g2(s)) ds

Xl
< 2A(t: g1, g2) exp(A(t: g1, 82)) (1 + &%) 9] 1

2 f 12
+ 7z Al g1, 82) exp(A(t; g1, 82)) (1 +e25*’)</0 KT g2() 150 ds)
Ex
2 2et ! 2 2
+ gz (L+e™) /o KT (g1(s) — g2(s) 0 ds
Ex

960 Co Cgcr ! 12
<960 Co Ilw\lxl g1 — &2l 1@ + ——5—— I¥llx1 g1 — g2l ||82(S)||§(0 ds) a
Ey 0

8C 172
fff( f lgi(s) - gz(s)niods)

9600 Cop Cxc
<960 Co 1151 181 = 82lloo,1 @ + ——5—— %1151 181 = g2lloc1 @™
Ex

8Cqcr
e~ 2lloo1 a'/?

9600
=T (Co 013 + CoCoer 10131 + Crr ) g1 = g2lloo, a2

where we used in between that 2¢,t < 2¢.a < 2¢, < 1/2. Thus, by the choice of
a, we obtain ||[F(g1) — F(g2) oo =< % llg1 — &2ll00,1> and the Banach fixed point
theorem applies to yield the claim. O

Corollary C.3 In the setting of Lemma C.2, the solution g hat the following addi-
tional properties:

(a) 1lg(t) — gy < Calg,a)(t =)/ fort,s e J, 1 =5,
(b) g(t) € X2 fort € J and
lg@llx < Cs(g,a), te,
where C4(g, a) > 0and Cs5(g, a) > 0 are explicit constants (see below) that depend
upon Ay, a =max J, [[¥llx2, €, Cxr and (|8l oo, 1-

(c) The function J >t +— g(t) € ngd is continuous in 10, al.
(d) The function J >t +> g(t) € X(o)Cld is differentiable at every t €]0, a[ and its
derivative is given by

g'(t) = —Lg(t) + @(g(1) (). (C.11)
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(e) The function J >t — ®(g(t)) € R is differentiable at every t €]0, a[ and its
derivative is given by

d
— @(g(1)) = =2 (Lg% — (g(1))?).

dt
) IflYlxo =1, then ||g(t)| xo = L fort € J and (g'(t), g(t))xo = 0 fort €]0, al.
Furthermore, )
D(g(n)) — P(g(to)) = —2/ ||g’(t)||§(0 dt (C.12)

forty, ty € J, t1 > ty. Inparticular, J > t — ®(g(t)) € R is monotone decreas-
ing and ®(g(t)) = A fort € J.

Proof Since the solution g is a fixed point of F in the proof of Lemma C.2, one has
h = F(g) = g. Hence, (C.9) and (C.10) for § = n and < 1 imply that

lg(t) — Yl < Ci(g, a)Wt, (tel), (C.13)
1 t
gt +mn) —g@Wllx < Ca(g, a)(; +1+1n (;))\/_
(t,t+ned,t >0,n>0), (C.14)

where

2
Ci(g,a) = (AT + D) A +Va) I¥l x> + \/Z (1 + e 2 Coxr 118l o1
*

2 4
Calg.@) = = (A + D [0l o + = | (AT + D™ 4201 +¢*) | Cxr lglloc 1
* *

If t < n'/3, then (C.13) leads to

lgt+m —g®lx <llglt+n) — Yl + llgt) — Yl
< Ci(g, ) (W1 +n+ 1)
<2Ci(g. a)yn'3 +n

< 2\/§C1(g,a) 771/6.
On the other hand, if t > 7'/3, then by (C.14):
—1/3 a
le@+m — gy = Calg, a)(n +1+1In (ﬂ)ﬁ
a
< Cz(g,a)<2n‘”3+ln — ) n
(;))v

3\, /6
< Cy(g,a) 2+|lna|+e Ui
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for @ = max J, where we also used that 3 |Inx|x < % for x € [0, 1]. In summary,
we have shown thatifz, ¢t +n € J,t > 0,7 €]0, 1], then

gt +m) —glix = Cs(8.a) ",
provided that we define
C3(g,a) =4C1(g,a) + (4 + [Ina])Cy(g, a).
It follows that for ¢, s € J, t > s, one always has the Holder bound
lg®) = 8@y < Calg, @)t —)'/°

for
Cy(g,a) = C3(g,a) +2|1glloo1>

as is claimed in (a).
Owing to Remark B.2(b), this in particular implies that [|g() — g(s)|lxo <
Cy(g,a)(t — $)'76 and thus also
KT g(t) — KT g(s)llxo < CrerCa(g. a)(t — 5)"/° (C.15)
for ¢, s € J by (B.42). Hence, we obtain from (C.7), (C.68) and (C.76) with A =
CxrCy(g,a),y=1/6,a=2,and (C.77) that for ¢t € J:

g x> = W, 00l x= +

‘ /0 W, s) KT [g(s) — g(r)]ds

X2

+ H / W(t,s) KT g(t)ds
0

X2

4 1
< [ Yllx2 + 3 CirCalg, a)z<€—2 1153 4 ™ et t4/3)

* Ex

1
t— Q2+ KT gllxo

4 |
< e |[¢llx2 +3CrCals, a>2<g—2 all’ 4 et a“”)
*

*

Cocr

+ Q2+ ) )18 llo
£

=:Cs(g,a),
which yields the asserted bound in (b).

In order to prove the continuity of g in X gdd as claimed in (c), fix ty €]0, a[ and
n > 0 sufficiently small. Then by (C.7):
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glto+mn) — glto) = Wity +n,0)) — Wi(t, 0)¢
to+n
+ Wto+n,s) KT g(s)ds

to
to
+ / (Wit + 11, $) — Wito, )] KT g(s) ds
0
= B; + B, + B3, (C.16)

with B, j =1, 2, 3, denoting the three lines. We will bound each of the three terms
individually and we will start with B;. Here, it suffices to invoke (C.86), since by
this estimate on has

I Billx> = Wt + 1, 0)¢) — Wi(to, 0)9[l x>

2
<2(AT+1) [W 1+ exp(e.to) 77] 191l xo- (C.17)
ex "ty
To deal with B, in (C.16), we write this term as

to+n fo+n
By = W(tg+n, ) [KT g(s) — KT g(tg +n)lds + (/ W(tg+1,s) ds) KT gty +n)
1o )

= By1 + By. (C.18)

First we consider B,;. Recall from (C.15) that || K7 g(¢) — KT g(s)|lyo < Cxr
C4(g,a)(t — s5)'/°. Hence, (C.76) with v = 2 and v = 1/6 leads to

to+n 2
1B %: = H Wito +n,5) [KT g(to +n) — KT g(s)]ds
to X2
4
<3C2_Cyle. 2(_ L 4em ) 1/3
< 3Cxys Ca(g,a) €£+4€*e n)n
15
= 55 Cier Calg. @)’ ', (C.19)
*

‘What concerns B, in (C.18), we have

2

10+n
(KT g(to + e, O

Wi(to +n,5), ) ds

1
Bnl|2,=167°) (1 k“//dldu
1Byl =167 Y (1 4+ k%) | T

kel

fo

Therefore, (C.64), (C.65) together with 1 — e™ < min{1, x} implies that

to+n ) 2
/ e ek lo+n=s) ds] (KT g(to + M, O

10

o0
1
B2l < 327°) (1 +k2)2//d1dw - [
= ’ 10/ (e)l



Appendix C: An Evolution Equation 157

1 fo+n 2
+ 12877 // dldte e [/ eenliotn=o) dx] (KT g0+ . )
D

10

3273 L (1 4 k)2 1
== (+ (1= emeky2 / f d1det ——— [(KT g(to + (L, )
& &~ ’ 10 (o)l

3273 e 1
+ ? (€251 — 1)2 //dldlé 0@l (KT g(to +m)1 (I, £)*

6413
< TS mingl, K402) 1T 8000 + el )
5 1
* k=2 07
3273 .
+ @ = 12 (KT glto + il -
e2 L(D)

1071

Observing that, forall € J and k € Z,

167 (KT gONll72 | () < IKT W30 < Cher @130

27

< Cirligli, <100 Cir 191151, (C.20)

this leads to

1B2l% < Z min{L, k*n*} [(KTg(to + mell72 | (py
* k#0 01
200 .
+— Cier 10150 (7 = 1% (C21)

*

Thus if we go back to (C.18) and invoke (C.19) and (C.21), we have shown that

1Ballx2 < I1Baillx2 + 1Bzl x2

IA

12
5

= Cyer Cag.a)n'/®+ = (1677 " min{1, k*n*} | (KT g0 + )il ) :
Ex E* 1 (D)

k#0 0]

15 -

+ = Cxr Il (€77 —1). (C.22)
Concerning Bj in (C.16), we fix § €]0, min{1, #y}[ and split this term further up into

to—9

Bi= [ (WGt 1)~ W 91 KT g(5)ds
0
fp
+ / (Wt +n,s) — W, )1 (KT g(s) — KT g(tp)) ds
fo—0

+ (/ U [W(to +n,s) — W, S)]ds> KT g(to)
fo—0

= B3; + B3y + Bss. (C.23)
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For B3, one has from (C.86) and (B.42):

to—0d
IB31llx2 =< /o W (o + 1. 5) — W0, )1 KT g(s)ll x2 ds
s tg—0 2
<=2(A1+D / [7 V4 exp2ex (o — 5)) n} KT g(s)ll xo ds
1 o 63/2(1?0 — )32 * X

t9—0 2
< 2<A%+1>c7<¢ﬁ,fo [ 7 +e2€*'°] Ig()ll o ds

(to —5)3/2

= Z(A% +1) C‘K‘T \/ﬁ ”g”oo,l [Tﬂ o~ 172 =+ e2°*1010i|

8C
< =P AT+ D0 (415 glloo 1 72, (C.24)
Ex

In order to bound B3, from (C.23), we use (C.69). It follows that

2
I1B321ly2

1673 Z(1+k2)2//d1d€€ o

[0}
/ L IWilo + 1,900 = Wito. ). 0]
10—

2
X (KT g(s)i (1, €) — (KT g(to)k (I, £)) ds

1o 2
R AT+ 12 Y (1 +k2)? [/ drdee —— [/ ds e~ &k (to=s)
Z Q' (e)l 10—6

IA

2
X (KT g(s)i, €) — (KT g(10)) 5))}

)
12873 (A2 + 1)? // drdes —— [/ ds X+ (10=5)
|Q’ (e)l 10—6

2
X (KT g(s)1(1, €) — (KT g(t0))1 U, 5))] .

+

To the right-hand side we apply Lemma C.13. It follows that

64r
1B %, < —(Az 1)2§ k2/ e k0= (KT g () — (KT g(to)el2 s
10—0
1071

32 2 2 4e,d o 2
+—E (AT + D7 (™ — 1)/ 5 (KT g(s)1 — (’KTg(to))lllel (D) 95
* 10— —

10'|

By Remark C.14 one has k2e =+ (=) < =
that

Thus from (B.42) and (a), it follows
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A

ds
183212 < 2(A2+1>2 / S IKT )~ KT g0

R 1o
+ ? (AT +DF (0 — 1) SIKT56) - KT g(10) 0 ds
* 07
ds

2 0 2.0 2
< = (AT+ D~ C, Cy(g,a) _—
2 4 KT s (10 — )23

1 ~ 0]
+— (A} + 12 Chy Ca(g. a)? (¥4 — 1) 6(z0 — 3 as
* n—

6 3 5
= 5 AT+ 1% Cler Ca(g, %81 4 1= (AT + 1) Cey Calg, ) (17 = ) o2
*

IA

12 .
2 (A} + 1)? Chg Ca(g. a)? ¥ 5173 (C.25)
Next we turn to B33 from (C.23). Here, we have

2
[‘Wk(to + 0.5, ) — Wi, s)(I, O)]ds

IB3slly. = 167> (1 +k%)? // didee

k40

x (KT g(t0)i (1, O,

whence (C.69) leads to

2
B33z
2

1
<3203 (A} +1)? Z(sz) min{1, k4n2}//d1d€€ oo [/0 exp(—exk> (1o 73))ds:|

x (KT g(to)k (I, )

1 2
+12873 (AT + 1P // didee #[/0 exp(2e, (fo fs))ds}
/s Q") L Jry-s

x (KT g(to)1 (I, O)

647r
P12 me{l K IKT gkl | )
k=2 071
327T -
7 @ = DAKT g7z | )
0
+ 170 " min{1, K HI(KT (1) 3 2 o) (C.26)
k#0 107

Thus if we summarize (C.24), (C.25) and (C.26), it follows from (C.23) that

1Bsllx2 < l1Baillx2 + 1 Ba2llx2 + [ B33l x2

8Cxr
= 3n
Ex

32 o 4 .
(AT + D0 (1410 glloo,1 V10712 4 — (AT 4+ 1) Coer Calg, @) 05110
*

2 § 12
+a(A2 + 1) %0 (167#me{1 KK T gto))ell? L(D)) ) (C.27)

k0 0]
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Altogether, now we can go back to (C.16) and use (C.17), (C.22) and (C.27). In this
way, we obtain

llg(to +m) — g(to)ll 2
<|IBilly2 + IBally2 + I B3l x2

2 5
<2(A7+1) [3/2—[3/2 i+ EXP(2€*IO)W]II1/)HX0 + = Cxr Ca(garn'/®
Ex 0

1/2
2 .
+= (167r3 > min{L k*n?} (KT g(to + )il 2 (D)>
AT % @

15 -
+— Cxer Wy (¥ 1)
*

8C. 4

+ 5 (AT 4+ D0 (14 15%) Iglloo,1 VT2 4 = (AT + 1) Cor Calg. ) 2540 51/6
€% *
2 A2 2646 (163 42 2 12

+ A+ D (167 > min{1, k*y KT gkl (D)> : (C.28)

k0 21

Then the next step is to take, for instance, § = n*/*. In addition, we have

lim 167 Y " min{L, k) (KT g (o + xDDllj2 |y =0, (C29)

n—0+ L
k0 1]

if lim,_,o+ x () = 0. This is a consequence of the generalized Lebesgue dominated
convergence theorem (for sums). In fact, we have lim,_, o+ min{1, k*n?} (KT g (1) +
><(17)))k||i2 o = 0 for every k € Z \ {0}, cf. (C.20). Furthermore, using (B.42),

|

0
glloo,1 = 10[4b[lx1 and (a),

1071 [

Tim KT g0+ X0z, ) = IKT&Uelliz, (k€ Z\ 10,
|

and similarly

167 S IKT gl +mils |y = IKT gt + 1)

1
k#£0 o7

= KT g(t) 30 = 167° Y I(KT go)ell7>
k0 o7

as n— 0". This yields (C.29), and therefore (C.28) shows that
lg(to + 1) — g(®)|ly2 = o(1) as n — O, which means that g : J — X(z)dd is con-
tinuous at #y. To establish (d), let d(r) = —Lg(t) + ®(g(¢))g(¢). Since g(¢) € ngd
by (b), Remark B.18(a) and (B.18) imply that 72g(¢) € X°,,. As a consequence
of Lg(t) = =T %g(t) — KT g(¢), it follows from Remark B.18(b) and (B.42) that
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Lg(t) € X2, Hence, in particular d(t) € X2,. Now by (C.7) one has for n > 0
small enough:

gt +mn) —g) —nd()
t+n t
=Wt +n, 000+ W +n,s) KT g(s)ds — W(t,0)y — / W(t,s) KT g(s)ds —nd(t)
0 0

t+n
=Wt +n,000 —W(eE, 00+ Wt +n,s) KT g(s)ds —nKT g(t)
t
t
+ /0 (Wt +1,5) = W(t,$) KT g(s)ds —n[T* + D(g(t)] g(1)
t+n
=Wt +n,00— W, 0y + / Wt +n,s)KT g(s)ds —nKT g(t)
t

t
+f(W(t—|—77, s) — W(t,s) KT g(s)ds
0

t
-7 [‘7'2 + ®(g(1))] (W(t, 0)y + /0 W(t,s) KT g(s) ds)

= W + 1,000 — W(t, 009 — n[T? + D(g(1)] W(t, 0)¢)
t+n
+ Wt +n,5) KT g(s)ds —nKT g(t)
t

t
+ /0 (W +.9) = Wt ) = n[T2 + DI W, ) KT g(s) ds. (C.30)
We will write this relation as

gt +mn) —gt) —nd@) = A + Ay + As, (C31)

with A;, j = 1,2, 3, denoting the three lines, and look at each A; individually. Let
my(t) = my(t)(I, €) = k*wi(I, £) — ®(g(t)). For Ay, one has by (C.70) for s = 0:

1
IA1l%0 = 167° Z//dldum‘(wk(t—kn, 0)(1, &) — Wi (2, 0)(1, )

k#£0°p
2
O, O Wi, 001, 0| (1, O

oo
. 2 k2
3273 (A%+1)47;ZZ(|A0, M+, mln{l,k27]}> e 2ok ‘mnizl D)
k=2 o1
+32m (A + DY (AC I+ Pt T g, -

10|

IA

oo
= 6ar® (A + D2 Y2 (1A + K min(1 k49 )2,
k=2

+ (AT + D' (AC ]+ et Ty,

1 (D)

107
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h 1
e _exp(=, o (g(r) — d(g(r)]dr) — 1

n

A(t, )

(C.32)

Asa consequence,

A% < 3(AT+ D*? (AE )|+ m2e* 1 |1y)50

+32° (AT + DY ) & min{L K ll7s )

|k|>2 107l

so that
IA1llxo < 2(AT + D (AG ]+ 1) T |9 xo

1/2
+2(A2+ 1) (167T3Zk4 min{1, K2} 12 (D)> . (C33)

k#0 107

To bound A, in (C.30), we decompose it as

t+n
Ay = W@ +n,9)KT[g(s) — g®)]lds

t

t+n
+ |:/ W +n,s) dsi| KT gt) —nKT g(t)
= Ay + An. (C.34)

Then by (C.68), (B.42) and Remark B.2(b):
t+n
1 An o < / W +n.5) KT Tg(s) — g]llyo ds
t
t+n
< / 9 KT Tg(s) — g(1)]ll o ds
t
_ t+n
< Cper 1 [ 18(s) — g(1)ll o ds
t
t+n
< Cy & f lg(s) — gl ds
t

t+n
< Cyr € Cu(g, @) / (s —0)/°ds
t
< Cyr € Cu(g.a)n'/°. (C.35)
With regard to A, from (C.34), here one has

2
A
142210

141 2
= 16m° Z [f drdee %[/ Wyt +n,5)U, 0 ds — n} (KT g, O
par Q"I LJ:
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3 o 141 2 )
< 167° Zf/d[d IQ(e)I(/ d‘s‘l—exp(—/s mk(‘r)(l,l)d‘r)D (KT g (L, 02

k#0"p

From (C.62) we know that 0 < my(1)(I, £) < A3k? for |k| > 2, so that fl+n my(T)
(I,¢)dr € [0, Azkz(t +n—s)]. If k| =1, then —2e, <mp(T)(U, 0) < A2 by
(C.63) yields fsm m (7)1, €) d1 € [2e,(t + 1 —5), Az(t +n—-s)]C
[—2&,, oo[. Since |1 — e~*| < €2 min{1, |x|} for x € [—2¢,, oo[, we deduce that

t+n t+n
‘1 —exp ( —/ me(r)(I. £) w)‘ < min{l, m(r)(I. 0) dr }

> min{1, A%kz(t +n—1s)}

s

for all k € Z \ {0}. Hence, we may continue the above estimate as

142211%0
t+n 2
< 16364 Z//dl e —— (/ ds min{l,A§k2<z+n—s>}) (KT g (1, O
s 10’ ( ]
<P 16rdet 3 / f drdee min(1, K42} (KT g0 (1, O
ol 10’ ( ]
=2 1677 3 min{l, AR ) KT Ol )
k£0 ‘é—‘
<P 160 e* (AT + 1) Y min{l, k%) ||(‘K7'g(t))k|\ oy (C.36)
k£0 ﬁ

Thus, we can go back to (C.34) and summarize (C.35) and (C.36). This yields

lAzllxo < |A2illxo + | A2zl xo
< Cxr e Ca(g, a)n'"®
12
+ne® (A2 + 1)(167r3 me{l k*n?} ”(‘K‘Tg(t))klle] (D)) .
k0 o7

(C.37)

Concerning A3 in (C.30), this term is further split up into

t
As = fo (W(t T, 8) — Wty s) — T2 + d(g()] W, s)) KT Tg(s) — g()]ds

t
n [/0 (W(t F,5) — W, s) — T2 + d(e(1)] W, s)) ds] KT (1)

= A3] + Azp. (C.38)
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Then we obtain from (C.70):

2 _ 13 1 ! o _ )
M3, = 167 k%/D/dzm ‘Q,(e)“/o (Wit + 7. 5)(1. &) = Wy e, 9)(1. 0

Fmp U, & Wi, ), e))

2
X (KT g(sNi(, &) — (KT g (I, O] ds

IA

o0
2
2@+ 42y (|A(t, I + k2 min(1, k%})
k=2

1 ! o
X /Dfdldllm[/o exp(—exk=(t —5))

2
X (KT gk, &) — (KT g, Z)lds]

+3203 (At + Dt et 0 (A I +m)?
1 t
X ‘{;fdld/d( W[/{) expex(t —s))

2
X (KT g(sN1U. &) — (KT gm) 1, f)lds]

(C.39)
for A(t, ) from (C.32). To the right-hand side we apply Lemma C.13. This yields

2
1431150

32
€

=

’; o0
T 1 R 2
@f+ 047 30 5 (186w + £ min(1, 7))
* k=2
t
x / ds =) (KT g5 — (KT gl
o L2, (o
o7

873
+ E—(A% + D* et (Aaa | +m)?
*

t
degt _ — 2
x (¢ 1) /0 (KT g(s))1 (7<Tg(t))1||L2 i (D) ds

10|
2 t
= =@+t AP /0 IKT g(s) — KT g(1)|Io ds
*
6473 &
+ —; @A} + 02 Y K2 min(1, k49?)
* k=2
! 20
X / ds e~k (1=3) (KT g(s)k — (7(7'g(f))k”22
0 LL(D)
10|
1
+ T(A% + et (A | +m)?
Ex
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t
x (@ 1) [T ) = KT 50l ds

4 t
< —(A% + Dt 2 n? (A ) +’r})2/0 lg(s) — gl ds
32
+—<A2+1> DD
0<|k|<n~1/2
/ ds e~k (1=9) KT g(s)k = (KT gl 2 D)
1

1071
327T

+1)4 2 Z ©2
lk|=n=1/2

/ ds ==k 1=9) (KT gDk = (KT gkl D)
0 L

o’

16 -
< — (A + DGR g, an® (A ] + 1)
*

6473
L8 (Az+ 1)47]13/62 Ik|7/3
k#£0

/ ds e~k (1=9) KT g(s)k = (KT gl 2 Dy’
0 L2y

10|

From Remark C.14 one has [k|7/3¢=5"(=9) < m. As a consequence, by (a),
o (t—s

16 ;
IA31 1150 < —(A% + D* O gl an*(AG ]+ )

256
+ 1376 @+ 1ty / an«rg(s»k—(7<‘rg<z>)k||L1 o

k#0 10]

IA

a(A% + DYt 2 gl ant (A )] +n)?

8 tods
+rge (AF+ D0 fo TR 1T 8(6) = KT g0 50
:

IA

16 .
— AT+ DT R g% an? (A6 ]+ m)?
*
8 2 4 2 2 136 [° ds 1/3
+—— (AT + D CL Ca(g, a)? ' / — -5V
s (B1+ D G ) W

16 A
—(A% + D* et 0 e liglZe a P (AG, )] +m)?

IA

i/ﬁ (A} + D?* Cap Ca(g, @) n'3/% a0, (C.40)

Next we turn to As; in (C.38). Analogously to (C.39) one gets

2
1432110

o0
2
<A+t Y. (\A(t, Ml + k% min(1, k%})
k=2
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2
/ / dldet IQ]( - [ f exp(—exk2(t — ) (KT g(0)e (1. 0)| ds]
D

+3203 A+ DF et 2 (A )] +m)?

2
//dldKZ 0@ |:/ exp(2e4(t —s))l(?(?‘g(t))l(l,é)lds] .
D

Thus integrating out fot ds, we see that

+1)4n2Z(IA(t -+ min{1, k) ) T8Iz,

k=2 07

2
IAs20l%0 <

873 _
+ A DT (A ) IKT O p,
Ex ﬁ

2

—2<A2 + DA P KT ()50

(A2+1)4 2me{l K} (KT gl ()
& k=2 1o

+4—2(A2 + DO (JAG ]+ IKT 80130

400
< —(A2+1)4 e 2 b3 n* (AG, )| +n)?

*

(A2+1>4 2me{l Ky ||(7<‘/‘g(r>)k||zi o (C4D

* k=2 1071

Hence if we use (C.40) and (C.41) in (C.38), it follows that

A

143l < I14s1llx0 + 145l x0

60 i

— AT+ 120 Cor [l (4@ 0 (1AG ] + )
*

IA

7
+ s (A1 + D? Cxr Ca(go @y a2/
Ex

i 1/2
+ _(A% + 1)2 (1671'3 Zmln{l k4’l72} ”(«Tg(t))k“Lz ; (D)> .
Ex k#0 o
(C.42)

Therefore altogether from (C.31), (C.33), (C.37) and (C.42), we see that

gt +m) — &) —nd@®)llxo
< [lAsllxo + [ A2llxo0 + [[ A3l x0
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62 Cia
< — (A} + 12X MD (Cgeqr + 1) [Pl 51 (14 a2y n (|AE, D] +17)

*

e 7
+ Cyer ¥ Ca(g, a) "/ + — (A% + 12 Coer Ca(g, a) a1 1312
Ex

1/2
+2(A241) n(mﬁZk“ min{L, K7} 142 (D))
k#0 07

\ 1/2
+aez€* (A2 1 1)? n(mHme{l k4n2}||(7<‘7g(t))k||ﬁl<o>> :
pors 107

(C.43)

Now g € C(J, Xédd) together with Lemma C.9 implies that J 5 ¢ — ®(g(¥)) is
continuous; in fact this function is even Holder continuous by (a). It follows that

_ [t B _
lim A(r,n) = lim exp(— [, [P (g(1) — P(g(1)]1dT) 1 .
n—>0% n—0+ N

As in (C.29) we also have (recalling that ¢ € ngd) that

lim 167T3Zk4 min{1, k*n*} ||1/),<|| o) =0,

n—0+
k#0
: 3 4. 2
n1_1§)1+ 167 ;;mmu k*n }||(7(Tg(t))k||L2 o) =0.

Hence, (C.43) yields 7! g(t +n) — g(t) —nd(t)| yo = o(1) as n — 0F, which
means that g is differentiable at 7 and g’(z) = d (7).

To show (e), since g(¢) € ngd, (B.44) and (C.6) imply that ®(g(r)) =
(Lg(t), g(t)) xo. Hence, by Corollary B.19, one has for > 0 small enough:

Q(g(r +m) — P(g(®) = (Lgt +m), gt +m)yo — (L&), g(t)) x0

= (Lg(t+m) — Lg(t), g(t +m)yo + (Lg), gt +m) — &) 0

= (g +mn) —g@), Lg+m)yo + (Lg(®), gt +n) — g(t)) y0

= (gt +mn) —gt) —ng' (1), Lg(t +m)) yo + 1 (&' (1), Lg(t + ) y0
+(Lg(0), gt +m) — g(t) —ng’ 1) yo +n (Lg (), g (1)) xo0

=n(g'(1), Lg(t +m) yo + 1 (Lg(1). g' (1)) yo
+(Lg(®), gt +m) — g(t) — ng (1)) xo
+ (gt +m — g®) —ng' (), Lg(t +m) x0. (C.44)

From (B.18) and (B.42), we deduce

ILg(t +m) — LgMliyo < IT2g(t +1) — T2g®)llyo + KT gt +1) — KT g(t)l xo
A2 gt +n) — gDliy2 + Cxer gt +m) — 2@l o

A

IA
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< (A} + Cxep) gt + 1) — 2@l x2-

Thus lim, o+ Lg(t +7) = Lg(t)in X 9 by (c). Furthermore, from (d) we know that

0 gt +m) —g@) —ng'Olxo - 0, 1 — 0"
As a consequence, (C.44) together with (C.11) yields

. Qg +m) — P(g@)
1m

10 ” = (&', Lg@)xo + (Lg(®), &' ()xo

=2(Lg(t), —Lg(t) + D(g)) g®))xo
= —2(ILg®) %0 — D(g(1))).

Finally, we turn to the proof of (f) so that ||¢||yo = 1 is added as a hypothesis.
Denote p(t) = ||g(t)||§(0. Then ¢(0) = 1, and moreover by (d):
@) =2(g1), 8 ®))xo
= 2] = (g0, Lg®)xo + D(g(0) (5(1). (1) |
=2®0(g()) (p(r) — 1).

Therefore p(t) = 1 for ¢t € J due to uniqueness, and in particular (g(), g'(¢)) xo
% @' (t) = 0 for t €]0, a[. Furthermore,

g% = | = Lg(®) + P((1)g ()30
= ILg(") 130 — 2P (8(1)) (Lg(®), g(1))xo + @ (g(1)* gD 50
= [Lg®)[50 — ®(2(1))*,

and (C.12)is obtained from (e) upon integration. Lastly, Lemma C.10and || g(¢) || xo =
1 imply that ®(g(¢)) > A, fort € J. O

Theorem C.4 Let ¢ € ngd be such that ||Y]|xo = 1 and ® () < Ay + €4 Then
there exists a continuous solution g : [0, co[— Xédd of (C.7) that has all the addi-
tional properties as listed in Corollary C.3(a)—(f), where (a) and (b) are valid on
every finite time interval [0, a].

Proof Denote

T = sup {a > ( : there exists a solution g € C([0, a], Xédd) of (C.7)

such that ®(g(1)) < A, + 2¢, for 7 € [0, a]}.

By Lemma C.2 and Corollary C.3 one has {...} £ @, and hence T > 0. Let g, h €
C(0,a], X (l)dd) be two solutions of (C.7) that are defined on a common time interval
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[0, a] such that ®(g(1)) < A\, + 2e, and ®(h(t)) < A, + 2¢, forall ¢ € [0, a]. Also
[8llo,1 < 00and |zl < 00, where [[gllo,; = max {[[g(®)lx: : ¢ € [0, a]}. Hence
for ¢t € [0, a] one deduces from Lemma C.18 and (C.75) for o = 1 that

lg(®) = h(®)l x1

t '
= H(W(t, 0; 9y + / W, s; g) KT g(s)ds — W(t,0; h)yp — / W(t,s; h) KT h(s)ds |
0 0 X

t
S W@, 0;8) — W, 0 )l 1 + ”/(; (W, s:8) — W, ss DIKT h(s)ds

x!

t
+ H / W, s; g) KT (g(s) — h(s))ds
0 x1

< 2A(1; 8. h) exp(A(t: 8. ) (1 + &) 9] 1

t 1/2
b2 A g myexpA(: g m) L+ 20 ([ 1KT R ds
2 0 X
*
2 2e ! 2 172
g e C*h( /0 15T (g(5) — A ds> ,
*

where

t t
At g, 1) =2Co(lIglloo,1 + 1hllo,1) fo lg(m) —h(Dly1dr < C/o lg(T) —h(Dlly1dT =< C,
(C.45)

with constants denoted by C > 0 being allowed to depend upon Cg, Cxcr, €4, ||| 15
llglloo.1> I17lloo,1 and @ < co. Thus, it follows from (C.45) and (B.42) that

t ' 172
lg(®) —h@®)llx < C/O lg(T) — h(T)lIx: dT+C</0 [HOEIG ds> .

Squaring this relation, one obtains by using Holder’s inequality that

t 2 t
lg(t) = h(D) 2 < c(/o lg(™) — APy df) +c/0 lg(s) — h(s) % ds
<c /O lg(s) — h(s) I ds.

As a consequence, Gronwall’s inequality yields g(¢) = h(¢) for ¢ € [0, a]. From this
uniqueness, one obtains a maximal and continuous solution g : [0, T[— X, édd. Since
the arguments from Corollary C.3 can be applied on any compact subinterval [0, a]
of [0, T[, we even know that g(¢) € X?)dd and ||g(?)||xo =1 for ¢ € [0, T'[, and in
addition ¢ — ®(g(¢)) is monotone decreasing on [0, T'[; in particular, this implies
that ®(g(¢)) < ®(g(0)) = P(W) < A\, + e, fort € [0, T|.
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Suppose now that T < oo. First we are going to show that in this case ¢, =
lim,_, 7 g(¢) does existin Xédd. Let(z;) C [0, T[beasequencesuchthatlim;_, . t; =
T. W.lo.g. we consider #; and ¢; such that t; > t; > T /2. Then for § > 0 small by

(C.7), (C.85), (C.78), (C.79), (B.42) and (C.85):

fi
lg) —g@pliy1 = W@, 0) = W, 0Dl + ”/ Wi, 5) KT g(s)ds
]

t;i—0
+H/" (Wi 5) = Wt ) KTg(s) ds |
0 X

‘s
W(ti,s) KT g(s)ds
tj—

+\ "
x! tj—(j

<2(A2+1)[ -V expCeat) (1

1/2
1/2 a +€25*(t’_tf))(/ ||7<’Tg(3)||§(o dS)

I

t;i—0
+ /0 DWW, 5) — W, ) KT g(s) 1 ds

4 2 ) g 12
+ 7z (10T >>(/ IKT ()50 ds)
Ex —0

lj

2 L e e ZN P
54(A1+1) i —tjit+e (t; t]) Hw”xo
exT

2 2, T fi 2 12
oy (42 >cq<¢</ ug(s)nxods)
Ex t

j
1j=0 1
+2(A%+1)c7<¢f0 [7 i =1

ex(tj —s)

+ exp(26*(tj —s5))(t —

tj*

= 4(A2+1)[ i+~ 1) }uwnxo

£
! Wi, s) KT g(s)ds

)] lg@llyo ds

2e(T+1 i 2 172
1/2 (14 2T+ >>c,<¢<f RO ds)

x!

1/2 (1 + &>+ Coerr SR R (1 + > T Cper /5
5 1j=6 1
+2}+ e / [7,/1-—7
e N A

+ expQen(t — ) (4 — 1) | ds

1 e
<4+ D[ i+ G =i

1/2 (142 THD) Coe (fi7 =17 + /)

+2(A1+1)C7(’/‘[1n< )\/f’/Jr =T *tj)]-

(C.46)
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So if we set for instance = ,/f; — ;, this estimate proves that ¢, = lim,_, 1 g(¢)
exists in X (l)dd, and the function

g) : tel0, T[
vy  t=T ~

8«:[0,T] - Xéd(p g«(t) = {
is continuous. Since @ : X édd — R is continuous by Lemma C.9, one has

P(h) = lim P(g(1) = A + &

Similarly, we also find that ||1).] yo = lim;—7 ||g(¢)]|xo = 1. The estimate which
leads to (C.46) also yields that

1
Vs T =)l

4
+ 75 (14T Coor (V=5 +V/0)
Ex

lg®) = gl = 4(al+ D

F20a1 410 Gy [1n(3) Vs + %&ew ()]

for 1,5 € [0, T[, t >s>T/2. 1f § =i —5 <1, then —xInx¥?> < 2 for x €
[0, 1] shows that

lig(t) — g)llx1 < CI+CvV5+Cln (%) P

< C5+CVs+Cs'?
<8\
= C*(t_s)l/Gv

where C, > 0 depend upon Ay, Cxr, €4, T, ||1]lxo. On the other hand, if § =

Jt —s > 1, then

lg@®) = g@llx < 2118xlloo,t < 2llgullooy ¢ —9)'°

for [|g«ll 0.1 = max {||g«(*)|Ix1 : 7 € [0, T]} < oo.Insummary, we have verified that

”g(t) - g(s)”Xl 5 C**(t - s)1/6’ C** = C* + 2 “g*”oo,l’ (C47)

fort,s € [0, T], t > s > T/2; note that is was not possible to derive this estimate
directly from Corollary C.3(a), since a bound on |[g(¢)| x: for ¢ € [0, a] enters the
constants C(g, a) and C,(g, a), and a priori we do not know that sup {||g(?)||x: :
t € [0, T[} < oo. From (C.47) it follows that 1), € X(Z)dd: by (C.7), (C.68), (C.81),
(C.76) for A = Cx7Cyy, ¥y = 1/6, a = 2 and (C.77) one has
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7)2
Il < [WCT. Ow”"”” [ W KT e ds

X2

T
+ H < W(T, s) ds)?(’]'w*
X2 T/2

T
+H / WT, $) KT (g(5) — ) ds
)2 x2
24T, i L
< Tl + — (

2esT /2 2 1/2
N )([0 u7<'rg<s>||xods)

CyqC
(/)"0 4 K =T (1 2)23
Ex

+4C7(7—C**
Ex

1
+—@ + 1) | KT sl g0
*

< 00;

recall that ||¢4]|xo = 1 and observe fOT/2 ||‘K7'g(s)||§(o ds < C%T OT/Z ||g(s)||§((J

ds = C, (T /2). Therefore, we have shown that in fact ¢, € X2y, is verified.
Now consider the evolution equation

h(t) = W(T +t, T)h, + / W(T +t,T +5) KT h(s) ds. (C.48)
0

Owing to ¢, € ngd and ® (v,) < A, + &4, a fixed point argument analogous to the
proof of Lemma C.2 can be employed to show that there is 6 > 0 and a continuous
solution 4 : [0, §] — X(l)dd of (C.48) such that ®(h(z)) < Ay + 2¢, for t € [0, §].
Define

g«() : 1el0,T]

> - 1 4 _
§:10.7 401 = Xogg. g(t)_{h(t—T) L el T +4]

Then ‘W (T, T) = id implies that g is continuous, and furthermore ®(g(¢)) < A\, +
2¢, fort € [0, T + 6].If t € [0, T[, then

t t
g(t)y=g@t) =W, 0y + / W(t,s) KT g(s)ds = W(t, 0)y + / W(t,s) KT g(s)ds
0 0

by (C.7) for g. On the other hand, if t €]T, T + ], then owing to (C.7) att = T and
(C.3):

gt) = h(t—T)
—T
= W(t, T, +[ W, T +5)KT h(s)ds
0
T t
= W(t, T)|:‘VV(T, 0)y +/ W, s) KT g(s) ds] +/ W, VKT h(r—T)dr
0 T
T t
= W(t, 0)¢ +/ W(t,s) KT g(s)ds +[ W, 7)KT g(r)dr
0 T

t
= W, 0 + f W, 5) KT3(s) ds.
0
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This proves that in fact g is a solution of (C.7) on [0, T + §], which however con-
tradicts the definition of 7. Therefore, we must have T = oc and the claims follow.
O

C.4 Compactness

The next result is well-known in principle; see Remark B.2(a) for the definition of
the space L> | (K) = X°.

sph, 17

Lemma C.5 The linear operator

KL, LK) > L3, (K), Kg =10 (eg)|"? p, UL(r),
is compact. Furthermore, |Q/(eQ)|1/27?g = Kg for K from (1.15) and (Kg), =
|Q'(ep)] 12(K g), for the Fourier coefficients.

Proof We closely follow [48, Lemma 2.2]. Let (g;) C L:ph _,_(K) be bounded.
10|

The associated densities p,, have compact support supp p,, C {x € R3 : |x| < ro).
Furthermore, if we denote by maxg |v| < oo the maximal value of |v| for some
(x,v) € K, then using Holder’s inequality, (Q3) and e € [Up(0), eol:

Ipg; ()1 = U g (x, v d
’ maxg |v|

12 1 ) 1/2
, d TA o 18 d
</maxmv\|Q(eQ)' ") <fRs [ ”)

C(m;(xx|v|)3/2 sup{|Q/(e)] : e € [Ug(0), 60]}1/2(

| R 172
C — g (x, d .
</mK o 107eg] &1V ”)

Hence, we obtain

IA

IA

| , 2
— eix, d
/mamm 10(eg 81V ")

IA

1
2 2 2
) dx < - - i(x, dxdv =C : < C,
/3 ng/(X)| x <C lf 10'(eo)] lg;j(x,v)|“dxdv ||gj||L:phA LK) =

1071
(C49)
independently of j. Thus, (p,,) C L*(R?) is bounded, and therefore also

VYU oy < CUIVOIA™ pe )y < Cllg, ey < C-

In addition, by the Hardy-Littlewood-Sobolev inequality, we have
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||VUg, ||L2(R3) E C”VA_lpg, ||L2(R3) S C”pg] ||L6/5(]R3) E C”pg, ||L2(]R3) S C,
(C.50)
using (C.49) and the compact support of the p, . Accordingly, we have shown that
(VU;,) CH '(R?) is bounded, which means in particular that the sequence has a

convergent subsequence in any L?(Bg(0)), R > 0, where Bz(0) = {x € R? : |x| <
R}. Next, if [x| > 2rg and |y — x| < rg, then |y| > |x| —rg > |x|/2. From (1.14),
we find that for |x| > 2rg:

e, (5 — )| 4 c
IVU-(x)ISf 50 = e 2 gl <
! prizrg P P T 2

Since f LI=R W < CR™', due to the local compactness it is now straightforward to
prove that (VUy,) C L2(R3) has a strong limit. This yields

1Kg; —7~<gk||Lzh L / / P21, (r) = UL () dx dv

1071
< (m[?x|v|)5/ |VU,, (x) — VU, (x)|* dx
R3
— 0, j, k— oo,

which shows that (7~( gj) C szh ., (K) has a strongly convergent subsequence.
e

Next, K is a bounded operator, since

1Kl

2 (K)://pr2|U§(r)|2dxdv
sph“QL/‘ e

< Comgx oD IV Ul a0, = Clpeliaesy = Clela  xy
" o

cf. (C.50) and (C.49). The relation |Q’ (eQ)|1/ 2K g = Kg is obvious and for
(Kg) =10’ (eQ)|1/2(‘Kg)k fork € Zitsuffices to remark thate = e is independent
of 6. O

Corollary C.6 The linear operator

KLy, o (K) = Loy o (K), Kg =10'(eo)| pr Uy(r),

sph, o7
is compact.

Proof Sinceeg € [ey, Up(0)], we have | Q' (eg)| < C.Dueto Lemma C.5 we there-
fore obtain |Kg| = |Q’ (eQ)|1/2|7(g| < C'?|Kg|, which implies that X is bounded
and compact. (]
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Lemma C.7 Suppose that \. + 3¢, < &7 is satisfied. Let (1;) C X2y, and (t;) C
10, oo[ be sequences such that ||Vl yo = 1 and ®(p;) < Ay + &4 for j €N, and
furthermore t; — 0o as j — 00. Denote by g; the solution of (C.7) with initial data
gj(0) =1;. Then

{gjtj):j e Ny X°

is relatively compact.

Proof Owing to Theorem C.4 one has ||g;(¢)|ly, = 1 forall j € Nand ¢ € [0, ool.
Moreover,
A = @(g;(1) = P(g;(0) = P(¥h)) = A+ (C.5D)

for j € Nandt € [0, oo[. Therefore by (C.6), and also using (B.42),
17°g; ()15 = P(g;(1)) + (KT g; (1), 8;(1))xo

= )\* +é&x + ”(I(Tg](t)”XO “gj(t)”Xo
< A+ + Cxr,

which says that {7 g;(z) : j € N, t € [0, oo[} C X" is bounded. Hence, according to
Lemma C.5, the set

(KTgj(t): jeN,t €000 C X =L2, . (K)
&

Q'

s

is relatively compact. By (C.7),

Zj
g‘j(l‘j)Z(W(lj,O)wj‘i‘/ "W(tj,s)(K‘ng(s)ds, ]GN
0

For the initial data terms, (C.72) yields

1
W3, 001 = 167 Y [ [ araee Wi, 0 0w, oF

k£0 V)

IA

1
1673 -2 *k2-/fd1d£€— (I, 0
s %exp( exk”t;) | 0@ (¥, 0)]

IA

167 exp(—2¢.t;) Z// dlidee Fl(eﬂ | (L, O

k#0 /55

= exp(—2e.t;) ||1,ZJ]‘”§(0 -0, j— oo

Hence, it suffices to establish that

1
B = {/ (W(tj,s)T(‘l'gj(s)ds:jeN} cx°
0
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is relatively compact, where W(¢;, s) = W(¢;, s; g;). For this we are going to use
Remark B.2(d) and we introduce

2

, JoNeN.
L, (D)
10

S;(N) = 167° Z

k|>N

/ Wty s) (KT g ()i ds

Then (C.72), Lemma C.13, (B.42) and || g; (s)||§(0 = 1 lead to

2
Si(N) = 1673 Z // dlde’e / Wi(tj, s)U, ) (KT gij(s),0)ds
[kI=N “p
1673
< L / ds O (KT g, 6Dl )
s |k|>N o7
| s e O KT g 05)
= 2 2, JACHAID'S
== CW > = / k= g
|/<|>N
1
< 5 Cikr Z
& |k|>N
Taking N = 1 shows that
1 2
sup / W(tj,s) KT gj(s)ds =sup S;(1) < oo,
jeN 0 X0 jeN
so that B ¢ X? is bounded. In addition,
2
su / Wilt;,s) (KT g;(s)kds ! Crr Y.
p A J = 1632 KT _4
TN >N L, (D 167T & [KI=N

10’1

will be smaller than €2, if N = N (¢) is taken sufficiently large. It remains to validate
(iii) from Remark B.2(d), i.e., the fact that each

B, = {/jfwk(z‘,-,s) (KT gj()ds - j € N} CL? (D)
0 1071

is relatively compact. Since (K7 g;(s))x = |Q'(ep)|'/? (‘]N(‘ng (5))x by Lemma C.5,
this is equivalent to the statement that each
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. Ij ~
B, = {/ Wk(tj,s) (Wng(S))k ds : j € N} C LZ(D)
0

is relatively compact. As every projection m; : X° — L?, (D), mg = g, is contin-
101
uous, the above discussion implies that

Cr = {(KTgj(t): j €N, 1 €[0,00[} C L%(D)

is relatively compact. Due to (Q3) and e € [Uy(0), eg], we have

161, = / / ardee'C 5 o
D

1Q'(e)]
1
10" (e)]

<sup{|Q'(e)| : e € [Up(0), eol}'? // drdet lp(1, )
D

2
=< C“¢||L21 (D)*
10]

In other words, the identity map 7 : Li (D) — L*(D) is continuous, which in turn
10
yields that also

Cr = {(KTgj() : j €N, 1 €[0,00[} C L*(D) (C.52)

is relatively compact. Next we write

Wi(t, s)(I, £) = exp ( - f [k*wi(, €) — q)(gj(T))]dT)

N

=P < B / 67 —ex — cb(gj(T))]dT) e TPt

for p(1,¢) = kzw,z(l, )+, — 512; thene, < (1, ¢) < sz% + ¢, for (1,¢) € D.
Consider the probability measure

i tj ' -1
dpj = aj Lo, (s) e~ B PTe= @@ N7 g - — (/ o= I 101 —enm@tg; ds)
0

This is well-defined: according to (C.51) we have

=0 =A== 6 —e—P(g (M) =6 — A\ =26, > 6., (C53)
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which shows that

1 2 1 2 1
— < —(1 _efélt/ < afl < —(1 — e*‘Sl’j < —,
25f_(512( )= _5*( )_5*

at least if j is sufficiently large (as we may assume). By means of dj1; we may write
the elements ¢; = fo Wi(t),s) (7(ng (s))xds of By ata point (1, £) € D as

;{1 0) = /Ol/ o [ BT =5 = g (AT o= =5)90.0 (FeT g (5))(1, £) ds
= /R a; e IO (KT g ()il €) dpsj(s).
Due to Lemma C.19, we thus have
6; € @ aj'e 7 (KT () 15 € 10171

c a{ﬂewx e [% El]a €0,y € ék} c LX(D),
2’ ¢,

cf. (C.52). As a consequence,
B C a{ﬁe—wx e [i i] o€ [0, 00l, x € ék] C LX(D). (C.54)
26% 9 6* bl b b

The set S = {...} C L*(D) is relatively compact. To see this, let (3;) C [55

287 g_
(07) C [0, oo[and (x;) C Cy be sequences By passing to subsequences, if necessary,

we may assume that 3; — [y € [25” = 11,0 = 09 € [0, occ]and x; — xoin L*(D),

the latter by the relative compactness of Cy. Case 1: 0g = 0o. Then
18 e 7 Xill2py < Bi e 7 lIXillL2(py < Ce™ 7 — 0, i — o0,
so that §3; e~ 7¥x; — 0 in L%(D). Case 2: 0y < oo. Here, we have

18 e xi — Boe” ™ Xxoll 2y < lle” 7 Bixi — e " BixillL2p)
+1le™?Bixi — e~ 7 Boxollr2(py

< sup [e D — =018 2y
(1.)eD

+e " |Bixi — BoxollL2(p)-
So if we furthermore use the bound

e — 77| < |1 — e—(Uo—U,)y| < |o; — ool e|00_(7i‘(k2A%+5*)
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for y € [e4, k2A? + &,], it follows that 3; e %¥y; — (g e ¥xp in L?(D). There-
fore S C ~LZ(D) is relatively compact, whence so is ¢o S, which implies by (C.54)
that also B, C L*(D) is relatively compact. (]

Theorem C.8 Suppose that \, < &;. Then \, is an eigenvalue of L.

Proof Lete, > 0be sosmall that \, + 3¢, < 612 and e, < min{%, ﬁ} are satisfied.
From (C.58) in Lemma C.10, we know that

A = inf{@(g) : g € Xoga, lIgllyo = 1}-
Hence forevery j € N we can fix a function; € ngd C ngd such that [|9); || yo = 1
and ®(1;) < Ao+ 1/j. Then if j > 1/e, one has ®(¢);) < A\ + 1/j < A\ + &4,
which we assume for simplicity to hold for j > 1. Denote by g; the solution of (C.7)

with initial data g;(0) = ;. According to Theorem C.4 (i.e., Corollary C.3), one
then has g; (1) € X2,q and [|g;(1)]l xo = 1 as well as

gi(t) = —Lg;(t) + P(g; (1) g; () (C.55)

and .
D(g;() — D(g;(s)) = —2/ g} (T)Ili0 dr (C.56)

for j e Nand ¢, s € [0, oof, t > s. Since ®(g;(-)) is monotone decreasing and
(g (1)) = Allg; (D50 = As,
the limit /; = lim,_, o, ®(g;(?)) does exist. Hence, (C.56) leads to
| g0 dr = 5 @@ —1)) < 00

for every j e N. As ]0,00[3 ¢ — g;(t) € X(z)dd is continuous, also the derivative
10, 00[3 t g} (t) =—Lg;()+ P(g;(1)) g;(t) € ngd is continuous. As a conse-
quence, there must be a time #; > j such that

(C.57)

g5 Dl <
Then t; — oo as j — oo and
1
Ae = D(g(17) = P(g(0) = P(h)) = A + 7

which implies that lim;_, o, ®(g;(#;)) = As; in particular, the sequence (g;(¢;)) C
XY is a minimal sequence for \,. Using Lemma C.7, by passing to a subsequence
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(which is not relabeled), we may furthermore assume that g;(t;) — ¢, in X as j —
oo, for some function ¢, € ngd. Owingto ||g;(#;) |l yo = 1 wealsohave ||, | yo = 1.
Next we take the inner product of (C.55) at ¢t = ¢t; with an odd function 7 € X 00 to
obtain from Corollary B.19 that

(&5t 1)y — P(g;(1) (8;(1)s 1) xo-

Recalling (C.57) we can pass to the limit j — oo and it follows that

(QO*’ Lh)XO = A*(So*a h)XO

for any & € X® that is odd. Then Lemma C.11 implies that ¢, € X2, and Ly, =
A« 0x, which completes the proof. (I

C.5 Some Technical Lemmas

Lemma C.9 There is a Co > 0 such that for g, h € X1, we have

[P (g)—D ()| < C¢[(|lgllxl+llhllxl) lg — hllx1+dlgllxo + IRl xo0) lg — hIIXO]-
In particular,

|P(g) — ®(M)| = 2Co(ligllx + 1Rllx1) Ilg = Allx:-

Proof By means of Lemma B.8(a) and (B.42) we estimate

|D(g) — @] = 1T g% — (KT g, 8)x0 — 1T hll%0 + (KT h, h)xo
< (17gllxo + TRl x) 1T (g = W) xo
+ (KT g. 8 — h)xol + (KT (g — h), h) ol
< AT lglix + Ialix) llg — Rllx
+ Crer (l1gllxo + 1]l x0) I8 — Rl xo.

Thus, we can define Cg = A% + Cx4. To obtain the second bound one just has to
apply Remark B.2(b). (I

Lemma C.10 Let .
A =inf {®u):ue Xy, lullyo = 1}.

Then A = \,, and hence D(u) > )\*||u||§(0 foru € X(l)dd. Moreover,
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A = inf (D) 1 u € X0, ullyo = 1}. (C.58)

Proof Let € > 0. By definition there is a function u € ngd such that [|u| yo =
1 and (Lu, u)yo < Ay +¢€. Using (B.44) from Lemma B.19 we get A\, +¢ >
(Lu, u)go = ®(u) > \, so that A, > \. Conversely, for £ > 0 there is u € Xl
such that [|u[yo = 1 and ®(u) < A+ ¢. If we write u = Y, _, uz €’ and define
u™ =3 oy e*? as in (B.5) from Remark B.2(c), then u™ e X% is odd
and |u™) —u|y1 — 0 as N — oo. Since in particular ™) € X2,,, the definition
of A, and (B.44) imply that ® ™) = (Lu™, u™M)y0 > )\*||M(N)||§(0. Owing to
Lemma C.9 we have ® (™)) — ®(u) as N — oo. Thus, passing to the limit we
infer that \ +e>d(u) > )\*||u||§(o = )\, for every € > 0. To establish (C.58), let
A =inf {®) :u € X%, |ulyo = 1}. Since X%, c X ,, we have A > \,. To ver-
ify the converse, let € > (. Then there is a function u € X(l)dd such that ||u|/xo =1
as well as @ (u) < A\, + €. Let the associated u™) € X%, be defined as above. Then
on = lu™ —ullyi — 0as N — oo and also

Ny, 2 3 2@ 2 3 2@ 2 2
Iy =167 3 A+- NGy ) <1677 3 A +ED" el 7z ) = Ilka

1 1
k=N 0] kez 0]

(C.59)

for a = 0, 1. Next let A > 0. Then Au™ € X%,, and from Lemma C.9 together
with the preceding estimate we get

|®(Au™) — D )| < |P(Au™) — ™) + [@@™) — D)
< 2Ce(A+ DA = 1[lu™|,
+2Co (™ [l + llaell ) ™ = ]l
< 2Co(A+ DA =1 |lul} +4Collulx16n. (C.60)

Let
o0l €
7) = min {—, —}
2 12Cq ull%:

Owing to |[u]lyo = 1 and u™¥) — u in X! as N — oo, we may fix an N € N large
enough such that both conditions

13
v <——— and uM|yp>1-7n
4Cq [lully X

are verified;then 1 — 1 < ||u™||yo < 1 holds, by (C.59). Now we take A = ||M(N)||;(}
to obtain Au™ € X%, and ||Au"|| o = 1. In addition,

JA—1]= Al — [[u™]lxo| < An < 2n,



182 Appendix C: An Evolution Equation
and also A 4+ 1 < 3. Going back to (C.60), it follows that

|D(Au™M) — @ (u)| < 2Co(A + DIA — 1] [lull%: +4Collully16n
< 12Cq ul3um + 4Collull x5

< 2e.
By definition, this shows that
A< ®(Au™) < o) + | P(Au™)) — D)| < D(u) +26 < A\ + 3¢

is verified for all £ > 0. Hence \ < A4, and consequently A= Ay O
The next result says that a weak solution to Lu = Au is also a strong solution.

Lemma C.11 Let A > Oandu € ngd be such that (u, Lh)xo = A(u, h) xo for all
h € X% that are odd. Then u ngd and Lu = A\u.

Proof By assumption and by Lemma B.15(b), we have
(u, =T h)xo = Mu, h)yo + (u, KT h) xo = MNu, h)yo + (KT u, h) xo.

Therefore, (B.21) and (B.42) lead to

'167r32//d1d££ T )|k w? Tig hy

k#0755
= [(u, =T *h)xol < M|, W) xo| + [(KT u, h) ol < A+ Cyerr) llullxo Il xo
(C.61)

for all 4 € X that are odd. For fixed N € N we apply this estimate to & given by
hy = k*uy for0 < |k| < Nandh; = Ofor |k| > N + l,ie..h = ZO<\k\5N kuy .
Then (C.61) implies that

167352 Z k4||uk||izl oy = 16757 Z //dldu |k4|uk|2

0<|k|<N 10'] 0<[k|<N “f5
<t6r® - //dIdM o k*w? |ug]?
0<[k|<N “fy
< A\ + Cyer) llullxo 1Al xo.
On the other hand,
]l = 167 ||hk||u( =167 > k' ||uk||Lzl Dy

keZ 107 0<lk|<N

and this in turn leads to
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167 Z(sz) ||uk||LL(D =167 1+ k>’ ||uk||Li(D)

1
lkI<N 107 0<|k|<N 107

<6dr Y Kl

0<[k|<N 0]
< 5_;* A+ Coer)? Ml o
for every N € N. As N — oo, it follows that u € X(z)dd. Hence, (Lu, h)yo =

(u, Lh)yo = A(u, h) yo forall i € X% that are odd. Since X® C X? is dense accord-
ing to Remark B.2(c), we deduce that Lu = Au. O

Lemma C.12 Leth :J — Xédd be continuous and such that ®(h(t)) < A\, + 2¢e,
for t € J. Denote W(t,s) = WI(t,s; h) and mi(t) = mp(t)(I, £) = kzwlz(l, ) —
@O (h(t)). Then

e k? <m()(I,0) < APk, keZ\{-1,0,1}, telJ, (C.62)

and
—2e, <mp()(I,0) < A%, k==1, tel. (C.63)

In particular,

(Wi (t,5)(I, £)] < exp(—exk?(t —5)), keZ\{=1,0,1}, t,seJ, t>s, (C.64)

[ Wi(t, )T, 0)] < expQRex(t —s)), k=+1, t,seJ, t>s, (C.65)
t 1
/ Wi, s)(I, 0)|ds < "L keZ\{-1,0,1}, t,7eJ, t >, (C.66)
T Ex
t 1
/ (Wit )1, Olds < — AU k=21, r7ed 127, (C.67)
T Ex
W, )glxa < D gliya, t.s€d, 125 ge Xy (C.68)

Furthermore, one has

Wit +n,5), £) — Wi(t,s)U, 0)]
exp(—ek*(t —s)) : keZ\{-1,0,1}
expe,(t —s)) : k==1 ’
(C.69)

< (A7 + Dmin{l,k*n} x {

and moreover

[ Wit +1.5)(1. £) = Wit )L &) + i) (1. &) Wit )L 0)]
_ t+n _ .
< (a2 +1)277<exp< J: [cb(h(x))n ®(h(1))]d7) — 1

exp(—e.k>(t —s)) : keZ\{-1,0,1}
exp(2e,) expRe(t —s)) : k==l

+ k> min{1, k%})

(C.70)
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fort+mn,t,s € J,nel0, 1], t>s.
If we assume that even A\, + 3e, < 5% holds, then (C.62), (C.63) and (C.64),
(C.65) can be sharpened to
ek <mp)(I,€) < ATK?, keZ\{0}, tel, (C.71)
and

| Wi(t, s)(U, £)] < exp(—s*kz(t —s), keZ\{0}, t,seJ, t>s5. (C72)

Proof Since §; = inf w; and A\, < 6% by Lemma 3.18, we have for |k| > 2

1
mp(t)(1, £) > k267 — Ny — 26, > (k2 — 1)67 — 26, > E(kz +2)07 — 2, > .k,
which yields the lower bound in (C.62). If |k| = 1, then

mp(t)(1, €) > 67 — N, — 26, > —2¢,

is the best we can get without assuming that A, < 6%. If, however, A\, + 3¢, < 5% is
verified as is the case for (C.71) and (C.72), then |k| = 1 entails

mp(t)(1, ) > 67 — M\ — 2¢, > &,

also in this case. Next, using Lemma C.10, we have in particular that ®(h(¢)) >
0. Therefore, also my(t)(I, £) < A%k2 by Theorem 3.5 for all k € Z \ {0}. As
We(t,s)U, £) = exp(— fst my (1)1, £)dT), (C.64)-(C.67) are a direct consequence
of (C.62) and (C.63), and also (C.71) and (C.72) are verified. Concerning (C.68), we
have | Wy (t, s)(1, £)| < exp(2e4(t — s)) for all k € Z \ {0}. It follows that

W gl = 1603 (14D (W, )9l

2, (D)
keZ 10/l

= 16%32(14—/{2 Wy (t, S)gk“LL(D)
keZ 10/l
e, (t—5) 2y

< 16m%¢" Y (14 k) ”gk”Ll(D)

keZ 10"
= gl

To establish (C.69), one has

(Wit +n,9)U, £) — Wi, 5)U, 0]

= exp(—/;l+nmk(7)(1, ()dT) —exp(—/xtmk(T)(l, E)dT)
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- [1 —exp(—/Hnmk(T)(l,E)dT)]exp(—/tmk(T)(l, Z)dr)
t S

exp(—ek2(t —s)) : ke Z\{-1,0,1}
expes(t —s)) : k==I1
exp(—esk2(t —s)) : ke Z\{-1,0,1}
expRex(t —s)) : k==+1 ’

t+n
<minf1, [, odr] x{
t

< (AT + Dmin{1, &%y} x {

where we used the bound 1 — e™ < min{1, x} for x > 0 together with (C.62) and
(C.63). Finally, by definition,

Wit +n0,9)U,0) = Wi(t,s)L, €) +nmy ()1, €) Wi, )1, £)

=exp(—/t+nmk(r)(1,4)dr) —exp(—/t

t
+nmy(t)(1, ) exp(—/ mk(T)(I,ﬁ)dT)

N

mi(r)(I, €) dT)

t+n t
- [exp ( - /t mp(r)(1, ) dT) — 1+ pmp(), e)] exp ( _ / mp(r)(1, ) dr)
N

[ exp (= T m ()1, ) = mi ()1, O1dr) exp(=nmi 01, 0) — 1
n

=1
+my (), Z):| Wi (t,s)(U, L)

exp (= [/ TM@ () — D)1 dT) ~ 1

=n " exp(—nmy ()L, ) Wi(t,)U, 0

[ exp(—=nmg (), ) =1 +nmp @)U, O
+n "

:| Wi (t,s)(U, L).

Thus owing to (C.62)—(C.65):

Wi (t + 1.9, €) = Wi (t, )1, ) + nmg ()T, €) Wi (2. )T, £)]
exp(— [ TN@ (1)) — ®(h(T)]dT) — 1 ‘

n

N exp(—exk2n) exp(—exk2(t —s)) : ke Z\ {=1,0, 1}
exp(2e4«n) expRex(t — ) D k==1

exp(—esk2(t — ) : ke Z\{-1,0,1}

+ im0 F om0, 0) x{ et sy ket

(C.73)

where f(x) = % for x > 0. Now f(x)= xfol(l — T)e ™ dr shows that
always f(x) < xfol(l —7)dT =x/2. On the other hand, f/(x)>0 and
lim,_,  f(x) = lalsoyields f(x) < 1,sothat0 < f(x) < min{l, x}. Since my (¢)
(1,0) < A%k2 in all cases, it follows from (C.73) that
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(Wit + 1, )T, €) = Wi, )L, £) + nmi () (1, €) Wiz, s)(1, D)
. exp(— [ [@(h(1)) — D(h(T)]dT) — 1 ‘

n
exp(—e k% (t — s)) : keZ\{-1,0,1}
exp(2e,) expe,(t —s)) : k==l

2.2 5 . 5 exp(—ek?(t —s)) : keZ\{-1,0,1}
+ A7 (AT + D) knp min{l, & n}x{ expQe,(t — ) ¢ k= =+l ,

which implies (C.70). (]

Lemma C.13 Letty, t,t3 € J be suchthatt; < t, < t3. In addition, let g = g(s, \)
denote an X°,-valued continuous function depending upon a parameter \ (which
itself is also allowed to depend upon t,, t», t3). Then for k € Z \ {0}:

1 2
l/ dldee m |:/t] exp(—z—:*kz(@ —5)) gk (s, MU, £)] dsi|

2

1 &
< 5 @ min (1 .2 — 1) / ds & 1ge(s, VIZ: -
* fl @
Similarly, if p = ¢(s, \) € L*, (D), then
1071
1 e ?
// dldee— [/ exp(2e.(13 — 5)) [P(s, M), z)lds]
Q') L/,

D

- L el (e _ gt ; (s, V|12 ds (C.74)

= 4 ] PN, ) ® '

* 1 o'l

Proof Let A = A(ty, t2, t3, k, A) denote the expression on the left-hand side. First
we apply Minkowski’s inequality [87, p. 271]. This yields

I 1/242
A< [/ ds(// dldee ! exp(—2e,k*(t3 — 5)) | gk (s, N (U, e)|2> }
n g Q' (e)]

2
5]
—2e,k? exk?
=e 13|:f ds e lgi(s, M2, (D)i| .
f o1

1071

Next we will make use of Jensen’s inequality for the convex function f(x) = x2
and the probability measure du = oly, 1,1(s) e=¥* ds, where o = g,k*(eF" —
e=¥'1)=1 Tt follows that
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2
A= om [ f dirllge(s: Ve, ]
10’1

< e 2 g f dpllg(s VI,
(7

1 2y o euk? ¢
= — e*ZE*k [ (gv*k no_ ek’ tl) f ds e,*k ' ||gk(S /\)”LZ (D)

€.k? o
1 . -
= T min {1 el (o — 1) / ds & llge(s, VI s
* h o7

using the estimate 1 — e™ < x for x > 0 for the last step. To establish (C.74) we
proceed as above to get

2
A §€4E*t3 [/ ds e~ 2 (s, )\)"LzI i| s
n 107

where A stands for the left-hand side in (C.74). It remains to apply the Holder
inequality in s. ]

The following elementary observation will be used at several places.

Remark C.14 Lety > 0,&, > 0,and ¢ > s > 0. The function f(x) = x7e 50 —9*
for x > O attains its maximal value

SO R vy
(e*(r —s>> ¢'= (e*a —s))

Lemma C.15 Leth :J — ded be continuous and such that ® (h(t)) < A\, + 2¢,
fort € J. Denote W(t,s) = W(t,s; h).

(a) If a € [1,2], then

<&

atx:g(to E

2 « t 1

Sy -
ca 0 (t_s)a—l

xe *

H / W, s)g(s)ds
0

+ ¢ lg) 30 ds. (C79)

(b) iftr e Jand|g(t) —g(s)|xo < At —s)" fort,s € J suchthatt > s > T and
a < 2(y+ 1), then

2

! 2%A? 25+ —a
H/; W, s)lg®) — g(s)lds . < m -7
2aA2

de, (t—7) t— 2’7+1
T T =7
(C.76)
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(c) in addition one has for0 < T <t

! 1
H / W, s)gt)ds| < 6—(2+e25*<’—”) gl xo. (C.77)

X2

(d) ifh >0andt+ h € J, then

2

t+h 2 t+h
H f Wt +h,s)g(s)ds| < E—<1+e4f*") / Ig($)[o ds. (C.78)
t * 1t

X!

(e) ifh,d >0,t+h,t—06¢€J,then

2

H/ W+ h,s)g(s)ds
t—9

2 ) t
< = (14 )y / llg(s)lI30 ds, (C.79)
X1 Ex t—0

(f) ifd >0andt — 9§ € J, then

2

Hf W, s)g(s)ds
t—9

E 4e,d ! 2
=< (1+e™%) 5 g ()0 dss, (C.80)
* t—

Xl
(g) and moreover

172

4 2e,t (/1/2 2
< — +e™ g lixods |
X2 Ex <\/; ) 0 X

(C.81)

12
H/ W(t,s)g(s)ds
0

fort e Jandg:J — X% continuous.

Proof We start out somewhat more generally and fix #, t;, 13 € J such that #; <
th < t3.Let g = g(s, \) denote an X?, ;-valued continuous function depending upon
a parameter A\ (which itself is also allowed to depend upon ¢4, f,, #3). Then by (C.62)
and (C.63):

%) 2
H/ W(tz, s)g(s, N ds

X(,Y
2
=167 (I +iH” H/ Wi (3, 8)gk (s, N ds
2
keZ L~y D)
10|
2
167!'32(14-/(2) //cudu / Wi (t3, ), €) gk (s, N, ) ds
keZ

2

15
<327 2“2180 //d aee Q [/ exp(—exk2(13 — )) lg (s, V(U Z)Ids]

2
[ exp(2ex(13 — 5)) 81 (s, MU, E)IdS} ;

+327r32“/ dldee
s |Q (E)I
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recall that g_;, = —g;. Hence, from Lemma C.13, we deduce that

2 3ha OO
32772 12

< 2eT 4T ka—z oExk(12=213) min {1, E*kz(tz —m

X« Ex k=2

/ % s 5 ge s, I
x s e 8k (s, V7o
1 L7y (D)

\’\

o)
H / Wi(t3, 5)g(s, N ds
n

32732 A
Ex13 4egty _ 74c*t2 A ds.
1z, (e” ) ; ||g1(S )H Lo

10'|
(C.82)

Now to verify (C.75), wetake t) = 7,6, = t3 = ¢, g(s, \) = g(s, 1), and @ € [1, 2[.
Hence,

! 2 32%32“ i 2 2 k(l )
a— —Ex s
[ wassnas . 3k [ ase leets. 012 )
1071
3273 20 pAext (p—dexT _ ,—dext /
_— —e t ds.
P ) [ lsen, s
10'|

From Remark C.14 one has k20~2¢—k" (=) < (—_L_ya=1 Aga consequence,

E(t s)

' 2 3mde & 1
W(t,s)g(s,t)ds < ds ——— s, t
[ W L k;/ el 0l 2, o
= 0
3273 2% degt o, —desT —4e )
+?e #l (@ TAERT _ o / llg1 (s, t)H L(D)ds
0
20 1 5
= Ef,f ; dfm”g(&t)uxo
2% et (4 eyt
€. —4ExT 76
e e *)f g0 ds.  (C.83)

Thus if we take 7 = 0 and g(s, t) = g(s), then we obtain (C.75) for a € [1, 2[. To
prove (C.76), let g(s, t) = g(¢) — g(s). Then by assumption

lg(s, Dlixo =lg®) —g®)llxo < At —$)", 1=5>7,

and accordingly (C.83) leads to

S)ZW*OH»l ds

. 2
/ W(t,s)g(s, t)ds
0 X

2042,

t
+ 4 Exl (6745*7 _ 6746*1) / (t _ S)Z’y dS
Ex -
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20 A2
S -
QCy+ 1) — )l

N 20 A2
427 + De,

(t _ 7_)2(’7+1)7Oz

de, (t—T) (t _ 7_)2"1’+1.

Next we turn to (C.77), where the argument is similar, but more direct. Here by
(C.66) and (C.67):

' 2
H/ W, s)g(t)ds
X2
2
=167 ) (1+k%)? //dum lge (1) (1,
Py |Q'(e)]
< 327° 1+k22f/d1d€£— 2
<327 (;( ) 0@ | E§k4
/f dl dtt —— g (), 0)|? R e“f*(fﬂ)
IQ( )| ' 4es
D
1
=5 @+ Y g () [150-
6*
What concerns (C.78), due to (C.82) witht; =t,tp =t+h,t3 =t + h, g(s, \) =
g(s), and o = 1 it follows that
t+h 2 647T t+h 2
W(t+h,s)g(s)ds < / e ek Fh=s) Hgk(V)H 12
t x! Ex 1 (D)
10/
47 aesithy (y—dent _ —desrnyy [T
+ o e - " >/ lg1()117 Lo
1071
6471' Sl t+h
<[ astmon g,
k=2 1
647 gen ) d
ey /t g1 612, 2, o

1]

2 t+h
= Zasen [ gy ds
Ex t

To establish (C.79), one takes ty =t —J, tp =t, ts =t + h, g(s, \) = g(s), and
a = 1in (C.82). This yields
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2

64 o~ [ —e k2 (142h—s) 2
< Yo| dse gk p)

1
Ex 0]

H/ W+ h,s)g(s)ds
t—0

X!

647 4ech ( 4e,0 ' 2
+4—€*6’ (e -1 \/t;é ”gl(s)”LZl (D)ds

10']

*

2 N t
== + ety / lig(s) %0 ds.
t—0

To show (C.80), we specialize (C.82)tot; =t — 6,1, =13 = ¢, g(s, A) = g(s), and
a = 1. In this way, we obtain

, P oeam & [ s
‘ | wesewas| <EEN [ ase g,
£ 5 1
—0 X! * p—p J1—0 07
647T'3 4e,d ! 2
+?(€ <=1 i 5”g1(s)”L21 (D)ds
* - 1071

2 R t
< = (14e*0) / llg(s)l1%0 ds.
Ex t—0

Finally to verify (C.81), weuse (C.82) witht; = 0,5, =1/2,t3 =1, g(s, \) = g(s),
and o = 2. It follows that

/2 2 12873 & /2
Wt )g(s)ds| < ——— S ke K12 [ ggem k9 g ()2,
2 Ex L~y (D)
0 X k=2 0 1
- 10|
12873 4., _acap, [P 2
rm e =) [T, -, s

1
10|

From Remark C.14 one has k2e~5"1/2 < 5% Hence, the claim follows and the proof
is complete. U

Lemma C.16 Leth :J — X(l)dd be continuous and such that ©(h(t)) < A\, + 2¢,
fort € J. Denote W(t,s) = W(t,s; h). Then

[(W(t, 0) — WO,0)gllxi < (AT+ 1) (t + )% [Igllx (C.84)

fort e Jand g € ngd. In addition,

1
WG +h,5) = Wt 5)gly sz(A%+1>[ _Y)\/ﬁ—i-cxp(ls*(t—s))h] lglyo (C.85)

ex(t
and

(WG +hs) — Wt )gllg2 <2(AT +1) [ Vi + expQex(t — s))h] gl xo

(C.86)

e 21— 52
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fort>s,h>0,s,t,t+h€J,andgeX8dd.

Proof By definition,

(W, 5) = W(T, )8l %0
=167 Y (LKD) (Wit 5) = Wi(r, s)gel

keZ ﬁ(m
2
=167 Y (14 &H° /f didee Tl(e)l ‘((Wk(t,s)(l, 0 — Wi (r, )L, 0) g (I, 5)‘ .
keZ D

(C.87)
Write my (o) = my (o)1, £) = kzw%(l, £) — ®(h(0)) as before. Then by (C.62) for
k] > 2:

| Wy (t,s)(L, €) — Wi (T,s5)(I1, )] = exp < — /ka(a) da)

t
exp(—/ mk((T)dO') - 1‘

t
< exp(—exk®(r — 5)) [1 —exp < - / my (o) da>],

where we have dropped the arguments (/, £) on the right-hand side. Similarly, if
k = %1, then (C.63) yields

t
[ Wi(t,s)(,€) — Wi(r,s)(, £)| < expRex(T —5)) [1 — exp < 7/‘ my (o) da)].

Since always my (o) < A%kz, we obtain the bound

(Wi (t, )1, €) — Wi(r, $)(I, )] < exp(—exk?(r — s)) [1 — exp(— A2 (t — T))]

< exp(—exk*(r — 5)) min{l, ATt — 1)}, k| =2,
where in the last step we have used that 1 — e™ < x for x > 0. In the same way,
| Wi(t, s)(I, £) — Wi(r,s)(1, £)| < A7 expen(T —s) (t —7), k=+1.

Thus, we deduce from (C.87):

(W, s) — W(T, $))gl ko

s « 1 2
<3203 Y (1447 f/ d1ALE— - [(Wit.5) (1. 0) = Wi(r, )1, 0) gk (1, 0)
= ) 10'(e)l

+3273 20 /f dldee Tl(é’)l ’((Wl(t,s)(l, ) —Wi(r,s)U, ) g1, Z))z
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< 327320 kzikza exp(—2exk* (7 — 5)) min{1, ATk* (¢t — )%} ||gk||2 L(D)
0]

+3273 29 AT exp(des (m — ) (t — )% gy || (C.88)

L2, o)

10’
To establish (C.84)—(C.86), it follows from (C.88) for o € {1, 2} that
(W@ +h,s) = W, $)gllx

o0
<327 2% (AT + 1) ) K exp(=2e,k7 (0 — ) min{ 1 KR} llgll}> )
k=2 2
+32m3 2 At exp(de. (1 — ) B2 llgi 112

>, (D)
101
ho12
<3227 (AT + 1)[ D KR exp(=2e k3 =) llgell}: |
k=2 17

2c 2
+ Z k2 exp(—2e.k*(1 — 5)) ||gk||Ll (D)]
k=h-1/2 10']

+327° 2 At exp(de(t — ) P g1z

(D)
Q\
h— 1/2
<327 2% (AT + 1)[2#“*2/1 exp(=2e.k>(t =) lgelz | ()
k=2 127

+ Z K202 hexp(=2e,k° (1 = 5)) llgell]2 (D):|
k=h112 01
+ 3277 2% Al exp(de, (t — 5)) h* ||gi ”LL )
107]
<320 2° (A + )k Zk2“+2 exp(=2e.k%(t = ) Igellz: | (p)
k=2 107l
+3273 29 At exp(de, (t — 5)) 12 || g1 Ile

o (C.89)

Q]

Soifwetake o = 1,sets = ¢t = 0 and replace & by ¢, then we obtain (C.84). Regard-
ing (C.85) and (C.86), from Remark C.14 one has ke+? exp(—ZE*kz(t —5)) <

(zga(ﬂs) )®*+1. Thus, we obtain by means of (C.89) that

(Wt + h,s) — W, $)glxe

3 e . a+1 a+1
=R @+ D () Z A

o7
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+327° 2° At expde.(t =) W gl )

107
a—+1

a+l1
m) h + exp(de.(t — 5)) hz} g0,

sza(A‘Hl)[(

which proves both (C.85) and (C.86). O
Lemma C.17 Leth,h, :J — ngd be continuous and such that ® (h(t)) < A\ +
2e, and O (hy(t)) < Ay + 2¢e, fort € J. Then fort,s € J such thatt > s:

(Wit s5 ), 0 = Wit 55 ha) (L, O < A by, ha) exp(A(: by, b)) exp(—e4k> (i — 5))
(C.90)

fork € Z\ {—1,0, 1} and
(Wi, 55 1)U, €) — Wi(t, ss ha), 0] < At; by, ha) exp(At; by, ho)) expex(t — ) (C.91)
for k = £1. Here,
t
A(t; hy, ho) = 2Co(1hilloo1 + 120l 06.1) / lh1(T) — ha(T) | x1 dT
0

with [|8lloe,1 = max {[g(O)]x: : 7 € J}.

Proof By definition and by means of Lemma C.12:

(Wi, s:h)U, £) — Wi, s ha)(, O]

t t
exp(ffY k2w (1, Z)*CD(hl(T))]dT) fexp(*fx [kzwf(l,ﬁ)%b(hz(r))]dT)

t
exp (- / KW (1, &) — @(hy (7)) d7)

t
- ’1 ~ep (= [ 10t @) - @ha(rar)

exp(—esk2(t —s)) : ke Z\{-1,0,1}
exp(ex(t —s)) : k==l ’

=

t
1—exp( - / (@1 (1) = S(ha(T)]dr)| x

(C.92)
Now Lemma C.9 yields

|® (71 (7)) — P(ha(T)] = 2Co (1A (D)1 + A2 (DI x) 1R1(T) — ha(T) [ x1
< 2Co (I lloo,1 + A2l oo, DAL (T) = ha (T [l x1,

and consequently

t t
' —f [@r1(T) = P(ha(T)]dT| < 2Co (A1 lloo,1 + 112]l00,1) /0 21(7) = ha(D)llx1 dT.
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Therefore, the inequality |1 — e*| < |x|e™*! for x € R in conjunction with (C.92)
leads to (C.90) and (C.91). (I

Lemma C.18 Leth|, h,: J — Xédd be continuous and such that ®(h(t)) < A\« +
2e, and O (hy(t)) < A\ + 2, fort € J.

(a) Ifte Jandg:J — ngd is continuous, then

t
H / (W, 5: hy) — Wi, s: ho)] g(s) ds
0

X!

2 ¢ 172
=5 A(t; by, hy) exp(A(t; by, ho)) (1 +€25*t)(/ ||8(S)||§(o ds) .
€y 0
(b) Ift € Jandy € X(l)dd, then

(W, 0; hy) — W, 0; h2))dll 1 S21\(1;hlﬁhz)CXP(A(ﬂhl,hz))(l+€25*[)Hw||xl.
Here,
t
A(t; hy, hy) =2C(|hill ot + A2l s0.1) / 171 (T) = ho(T)lIx1 dT
0

with ||gll.; = max {|lg(H)llx : t € J}.

Proof (a) By definition and by (C.90), (C.91) from Lemma C.17:

t 2
H/ [W(t,s;hy) —W(t,s;h2)]g(s)ds
0 X]
t 2
=167 Y (1 +4k?) / [Wi(t, 53 h1) — Wilt, 55 )] g (s) ds
kez 0 L2, (D
1
1
=16y (1+k2 //d]deei
™2k Q@)
€Z D

2
X

t
/0[(Wk(t,Sth)(l,E)—(Wk(t,SQhz)(l,e)]gk(s)(l,z)ds

< 32 A(t; hy, ho)? exp(RA(t; iy, ha))
- 2 1 ! 2 2
X ];(1 + k%) éfdldﬂﬂ @] |:/0 exp(—exk“(t — ) gk (s)(, E)lds]

+ 64T A(t; by, h2)? expQA(t: by, ha))

t 2
X /D/ dldte |Q/1W |:/0 exp(2ex(t —s)) |g1(s)(, E)lds] .




196 Appendix C: An Evolution Equation

If at this point we apply Lemma C.13, it follows that

; 2
H/ [w(;,s;hl)—W(Z,S;hz)]g(S)dS
I LHEE (1 2y 2
h2)? expQA(t; hy, hz))Z 2 /Oe lek®2 () ds
k=2 ’
0]
)% expA(E: hy ) € (1 - _4”")/ 8162 | ()
L

10|
2 t
< = AWk ) expQAGE by k) (1 +e4f*’>/0 g ()% ds,
*

and this yields what is asserted.
(b) Here, we have similarly

(W, 05 hy) — W, 0; hz))wll2

=16m3 Y (144> //dldu Wi (t,0; )1, €) = Wi(t,0; hp) (I, € 1.t
ﬂé< ) ‘Q()‘\ k(1 0: h1) (1, €) = Wi, 0: o) (1 O [ (1, 0

<3213 At by, )2 expRA(; By, hz))Z(l + k%) exp(—2e5k2t) //dl dee ——— | (1, 0%

P \Q/( )

+ 643Nt hy, hy)? exp(RA(t; By, hz))8xp(45*t)//dld€€ TZe [ (1, )2

< 64m3A(t; by, h)2? exp(RA(t: Iy, hz))(1+e4c*’)2(l+k2)//d1du TZe] [ (1, 0
k=1

< 4N b1 h)? expRAG ko) (1) 012

and this suffices to completes the proof.
]

Lemma C.19 Let (2, F, p) be a probability space and X a Banach space. Suppose
that f : Q2 — X is (Bochner) integrable. Then

[Qf(w)du(w) eco{f(w):wel}

where €0 denotes the closure of the convex hull.

Proof See [13, Cor. 8, p. 48]. O



Appendix D
On Kato-Rellich Perturbation Theory

In this section, we derive a (likely non-optimal) result that might be known, although
we have not been able to find a suitable reference. Usually, Kato-Rellich perturbation
theory concerns analytic families of symmetric or self-adjoint operators A, that
are defined in an open neighborhood of z = 0, for instance, and depending on the
multiplicity of an eigenvalue pp of Ay, the existence of branches of eigenvalues
and/or eigenfunctions close to z = 0 is discussed; see [44, 76], [71, Sect. XIL.2] and
[65, Sect. 5].

However, in the application that we are aiming for (see Chapter 4), the family of
operators is analytic in Q = C \ [6?, oo[ for some §; > 0, but it only has a continu-
ous extension to z = 2, in the sense that Ay = limycp 5 Ay does exist in the
operator norm. In this situation, one is not able to expand A, in a (real or complex)
neighborhood of z = 47.

Let H be a Hilbert space. By L(H) we denote the bounded linear operators in H,
whereas K (H) will stand for the compact linear operators in H. The spectrum of an
operator A is 0(A), whereas p(A) = C \ o(A) is its resolvent.

Lemma D.1 Let Q = C\ [\, oo[ for some Ay > 0 and suppose that A, is an ana-
Iytic family of operators A, € K(H) for z € Q such that Ay, := limyegr, x—x,— A
does exist in the operator norm. In addition, we suppose that A} = A; for z € Q and
that

(AW, W) > (A\W, W) >0 (D.1)

is satisfied for A > \ bothin] — oo, Ao[, and ¥ € H. Define i1 (M) to be the largest
eigenvalue of Ay. Then there are sequences X\ /' Ao, €x > 0 and Vi \ € H for
A €]\ — €k, Ak + x| such that Al =1,

e — €, Mc + e[ A > Wir€H

is real analytic fork € N, and A\Wy x = pi(N) W afork € Nand X €]\ — e, M\ +
exl. In addition, i is real analytic in 1\, — e, M\ + e[ and satisfies
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py(A) = (A\ W, i) (D.2)

for A €1\ — €k, A + el

Proof From the spectral theory of compact positive self-adjoint operators, see [35,
Sect. 6], itfollows that the spectrum of each A for A €] — 00, Ag] consists of 111 (A\) >
2 (A) = ... — 0 (the eigenvalues are listed according to their finite multiplicities).
Furthermore, due to (p.l) and using the Courant max-min principle, we have ¢ (/N\) >
wr(N) fork € Nand A > A, both in ] — 00, Ag]; also see the proof of Lemma 4.3(e).
Since | — 00, Ao[2 A — A) € L(H) isreal analytic, this map is in particular locally
Lipschitz continuous. From this fact, together with the Courant max-min principle,
we deduce that each gy :] — 00, Ag[—]0, oo[ is a continuous function, which is
monotone increasing; once again cf. the proof of Lemma 4.3(e). Noting that 1 (\) <
e (Mo) < pi1(No), the limits limy_, »,— px(A) do exist and are finite. Hence if we
define pu (No) = limy_, »,— px (M), then the eigenvalues py :] — 00, Adg] —]0, oo[ are
continuous.

For the ‘Kato-Rellich-part’ of the argument we follow [65, Thm. 5.8]. Letm € N
denote the multiplicity of the eigenvalue j1; (o) of A),. The case m = 11is easier (and
in fact a better result can be obtained, see Lemma D.2 below), so we consider m > 2.
For illustration, we restrict ourselves to m = 2, and the general case is not much
more difficult. Hence, we know that 117 (\g) = p2(Ng) > pz(Ag) > ....Letn > Obe
such that 141 (Ao) — 1 > 13(Xo) + 7. From the continuity of y; and p,, we infer that
there is € > 0 with the property that (), 2 (A) €lpr(Mo) — 1, p1(Ao)] for A €
[MAo — &, Mo]. For k > 3 and A\ €] — 00, Ag] we also have pi(N) < pr(Ao) < u3(Ao),
i.e., the eigenvalue groups {11 (\), 2 (N} and {u3(A), ...} are strictly separated for
Ae[Xo—¢, Nl Let r = (M) — (u3s(Mo)+n) >n>0and T'={ze€C:|z—
w1(No)| =r}. Then p(N), pp(N\) are inside of I', whereas p3(), ... are outside
of I" for A € [y — &, A\ol; we have dist(ux(N), I') > p1(Ao) — pz(Ag) — 2 > 0 for
k = 1,2, whereas dist(ux (M), I') > n for k > 3. For A € [\g — €, \¢] consider the
Riesz projection operator

1
P\ = rf(AA -7 td¢
™t Jr

on H.Since ' N 0(A)) = 0, the resolvent R, (() = (A) — ¢)~!is well-defined for
¢ € I'; in fact Ry, is analytic in a neighborhood of I" and satisfies

IR, (Ol = dist(¢, o(Ax)) ™" < minfn, i1 (No) — p3(ho) — 27}~ =: Co

for A € [Ag — €, A\g] and ¢ € T". Hence for A, e [Ao — &, Ao] the second resolvent
identity yields

iulg R4, (0) — Ra; (Ol = ZUIFJ IR, (O)(Ax = AR (Ol < GGl Ax — Asll,
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which implies that [A\g — &, \g] 2 A — P, € L(H) is continuous. Defining more

generally
— 57 [@a-oac
i

it may moreover be shown as in analytic Kato-Rellich theory (see [44, Chapter 7,
Sect. 1], [71, Sect. XI1.2], [65, Thm. 5.8]) that every A €]\g — &, Ao[ has a complex
neighborhood U, C Csuchthat Uy > z — P, € L(H) is well-defined and analytic.
The map Py, : H — H is the orthogonal projection onto the eigenspace ker(A,, —
11(No)), which is (m = 2)-dimensional; see [65, Cor. 5.6]. If A € [\ — €, X[, then
o (AN (Ao) — 1, 1 (M) + nl= {1 (M), p2(N)}. Denoting the spectralresolutlon
of the symmetric operator A, by EY, we thus have P, = E‘(L’]\)( ot — Ep Moy ,»and
in particular P) is an orthogonal projection; cf. [65, Prop. 5.5 & Prop. 3.4]. Hence,
it follows from the continuity of [A\g — &, A\g] 2 A+~ P\ € L(H) and [71, Lemma,
p. 14] that dimran P, = 2 for A < )¢ sufficiently close to \¢, which we can assume
to hold for A € [A\g — &, Ao[.

What is next is the reduction to a two-dimensional problem. According to [37,
Prop. 6.9] with o1 = {1 (A), p2(\)}, we know that

P Ay = APy, o(A\P)) = {1V, 12N}, o(AxU — Py)) = {us(N), ...},

for A € [Ag — €, Ag]. Denoting L) =ran Py, = P\H, thus A) : Ly, — L) is well-
defined and o (Ax[,,) = {p1(N), p2(M)}. Let

Cy=P\P\,+ (U — P)U — Py).

Then Cy : H — H is an orthogonal projection and Cy, = I. Also C : Ly, — L
is well-defined. In fact, if ¥ € L), then ¥ = P, ® for some & € H. There-
fore, (I — P\)¥ = 0and C\W = P\P ® = P,\W € L).Inaddition, [Xg — €, Ao] 3
A+ Cy € L(H) is continuous. Hence, by decreasing ¢ > 0 further if necessary, we
may assume that C) is invertible for A € [A\g — &, Ao]. In other words, C} is a lin-
ear bijection between the two-dimensional spaces L), and L,. Let {¥;, W»} be an
orthonormal basis of L), = ker(A,, — 11(Ao)). Then {C WV, C,\W,} is a basis of
L), and we obtain an orthonormal basis {(), @21} of L) by the Gram-Schmidt
orthonormalization; explicitly,

1

——— C\¥y,
ICx W, ]

1
(ICA\2 1> = (Ca W, p10)D)1/2

P =

o\ = (Ca¥z — (CaVa, ©12) P1A)-

Since C),¥; = V¥jand Cy, ¥, = W,, wehave ¢, = W) and p,), = W,. If we define
a matrix A(\) = (a‘,~k()\))j’k=1’2 by means of

ajr(N) = (Axejn, o), 1, k=12,
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then A()) is symmetric and represents Ay : Ly — L) w.r. to the orthonormal basis
{p1x, p2a}. In particular, o(A(N) = {1 (N), pa(N)}, and A\ W; = p1(Ao)¥; for
Jj =1, 2 implies that A(\g) = p1(No) o, with I, denoting the identity matrix in two
dimensions. For a fixed A €]\ — €, A\g[ we can extend all of the above definitions
and relations analytically to z € U,, the complex neighborhood of A\, where z — P,
is analytic; in particular, z — A(z) is analytic on U,.

Let A ={X € [Xo—¢, Mol u1(N) # pa(N)}. Case 1: )\ is an accumulation point
of A. Then there is a sequence (\;) C]A\g — €, Ao[ such that Ay 7 Ao and 1 (\) >
() for k € N. Thus, p1();) is a simple eigenvalue of A()\;) for each k € N.
Owing to a theorem by Rellich [76, p. 42], in particular there is £, > O such that
1Ak — €k, Ak + ex[@ A = g () isreal analytic, and moreover there is a real analytic
function [M\¢ — ek, M + ex[3 A = & (V) € R? such that AN)E () = (V&)
and | (V)| = 1 for X €]\ — e, Ak + [ Let

U =" W + 67 W € Ly C H, & = (€7, ¢2). (D.3)
Then

Ay = fél)(A)AMPu + €1E2)(/\)A)\S02)\
= " Wlan (Ve + anMNenl + &7 Nlaa (Ve + an(Nea]
= 1" MNan V) + €7 Naa Mg + 167 NanO) + 5 (Nan (V)2
= 1 NE iy + ()\)EIEZ)WL\
= (N

is verified. Since |&(\)| =1 we must have W; y # 0, as {1\, p2)} is linearly
independent. Thus is we define Wy \ = Wy A||’1\ilk, A» then we obtain the claim.
Case 2: )y is not an accumulation point of A. Then there is a left-sided neigh-
borhood of Ay, which we assume to be [A\g — &, Ao], so that p;(A\) = ua(A) for
all A € [A\g — ¢, Ao, i.e., the multiplicity of the first eigenvalue equals two over
the whole interval. Let (\¢) C]A\g — €, A\o[ be a sequence such that Ay 7 Ag. By
a theorem of Rellich [76, p. 42], in particular there are £, > 0 and real analytic
functions [\ — g, M + €x[2 A = sk (M), (M) as well as real analytic functions
e — €, M F e[ A= &), G\ € R? such that

ANEGN) = st NV&EN),  ANGAN) = 6V GN),

and &, (\), (x(\) are orthonormal for A €]\ — ¢, A\ + €x[. Using part (2) of
Rellich’s result, by decreasing ¢, further we can additionally make sure that
{sr(N), (M)} = a(A(N) = {1 (N), p2(N)}, which means that actually si(\) =
tr(A\) = p1 (M) holds for A €]\ — e, A\x + €[. Hence, we can proceed as in Case
1 with (D.3) to complete the argument.

The proof of (D.2), which was already used by Rellich [75, p. 471, footnote], is
well-known but included for completeness. In fact for y; to be differentiable at some
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) and the formula to hold at ), it suffices that the operator family is differentiable at
A, but the eigenvalue family needs only be continuous at \; we found this observation
in [3]. Let A €]\ — &, A\ + e[ and & > 0 be small. Then

((Axtn — A Wiogns W) = i+ 1) (Wroagns Yroa) — (Weoagn, AW
= (WA +h) = () (P xins Yroa),

so dividing by 4 and taking the limit # — 0+ yields (D.2); recall that ||y \|| = 1.
|

Lemma D.2 In the setting of Lemma D.I, suppose that additionally p;(X\) is a
simple eigenvalue of Ay,. Then there is € > 0 such that 1o — €, Ao[D A = p1(N) is
real analytic. In addition, there are V) € H satisfying |Wy| = 1, AyWy = (AW,
and 1Ay — €, N[> A +— W, is real analytic. Furthermore,

py () = (A\Wy, W) (D.4)

fOV)\ G])\() — &, /\Q[

Proof Since pi;(Ao) > pa(Ao), there is n > 0 and € > 0 such that p;(Ng) — 7 >
12(Xo) + 1, 1 (A) €lur(Ao) — 0, p1(Ao)] as well as i (A) < pa(Ag) for A € [Ag —
€, MoJand k > 2; cf. the proof of LemmaD.1.Letr = p(Ag) — (2 (Xo) + 1) > n >
OandT" = {z € C: |z — 1 (Ng)| = r}. Then w1 (N) is inside of I', whereas (), . . .
are outside of " for A € [A\g — &, Ag]. Once again we consider the Riesz projection
operator

1
P\ = T/(AA—O‘%JC
™t Jr

on H for A € [A\g — &, Agl. Then A € [\g — €, A\g] 2 A\ — Py € L(H) is continuous.
Defining more generally

Po=s [0 ac,
Tt Jr

it may moreover be shown that every A €]\g — €, A\o[ has a complex neighborhood
U, C CsuchthatUy > z — P, € L(H) is well-defined and analytic. The map P, :
H — H isthe orthogonal projection onto the one-dimensional eigenspace ker (A, —
11 (Ng)). As before it follows that dim ran Py = 1 for A < A sufficiently close to A,
which we can assume to hold for A € [\g — &, A\o[. For ¥ € H such that |V || =1
and Ay ¥ = p1(Ao) ¥ we define U, = P\Wfor A € [\g — &, \g]. Then U, € ran Py

and |
Py=— (A= O7hd¢
27 S 1=

for § > 0 small, by ~the Cauchy theorem. From [71, Theorem XII.5(d)], it follows
that (A) — u1(N))"W, = 0 for some n € N. Since A) is symmetric, all eigenval-
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ues are semisimple, which means that in fact (A) — )W, = 0. Owing to ¥ €
ran Py, we have ||\ilA0 | =[Py, W¥I| = [¥| = 1. Therefore, due to the continuity of
[ — e, Aol 2 A— P\ € L(H), we may suppose that \Il,\ #0for A € [Ny — ¢, Mol
Thus if we define W, = ||¥,|~'W,, then we are done for what concerns the eigen-
functions, as JAg — €, Ao[> A +— Py € L(H) is real analytic. To establish that p,
is real analytic as well, let A €] — €, Aol. Then [71, Theprem XII.8] implies that
for z near )\, say z € V5 C C, there is exactly one point E(z) € 0(A;) near M1(5\),
and this point is isolated and nondegenerate. In addition, the map V5 3 z — E(z) is
analytic. Restricting to real z = A € V;N]Ag — €, Ag[, the choice of € above implies
that E(A) = p1()), which shows that p; is real analytic on V;N]Ag — €, Ao[. The
relation (D.4) can be derived as before. O
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