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Of all the ways of acquiring books,
writing them oneself is regarded
as the most praiseworthy method.1

1BENJAMIN W.: Illuminations, translated by Harry Zohn, Schocken Books, New York 1968, p. 61.



Preface

There are many stability problems in mathematical physics that ultimately can be
reduced to estimates on eigenvalues. In this respect, one of the best-known
examples concerns the stability of matter, which first asks the question of why
point-like electrons do not simply fall into point-like nuclei (called ‘stability of the
first kind’); see [53] and the references cited therein for more information. A related
problem (called ‘stability of the second kind’) is if matter with a large number N of
atoms has the property that energy and volume of a system of 2N atoms are twice
the energy and volume of a system of N atoms. In 1967–8, Dyson and Lenard [16]
could answer this question in the positive, using a very intricate argument. An
essential improvement came in 1975 with the work of Lieb and Thirring [54], who
invented a fermionic kinetic energy inequality (now known as the Lieb-Thirring
inequality) to derive the desired lower energy bound. The main tool in their work
(and in many others) is provided by the Birman-Schwinger principle, which relates
eigenvalue estimates for Schrödinger operators H ¼ �DþV on L2ðRnÞ to the
study of a certain family of non-negative compact operators. These operators are
expressible in terms of an explicitly known integral kernel, at least for dimensions
three and one.

Turning to galactic dynamics, a main line of research is to determine the stability
properties of steady state solutions that correspond to static distributions (of stars
or galaxies). Upon linearizing an appropriate energy-Casimir functional for the
underlying gravitational Vlasov-Poisson system about such a steady state, the
so-called Antonov functional is obtained as the ‘Hessian’ at the steady state; it was
a fundamental observation of Antonov [4, 5] that this functional is strictly coercive
when restricted to an appropriate subclass of functions, thus providing a general
way for deriving stability.

It is the main purpose of this book to link both subjects and point out that there is
a Birman-Schwinger principle that relates spectral questions for the self-adjoint
operator L, which corresponds to the Antonov functional, to a certain family of
non-negative compact operators. As we will see, this perfectly parallels the
Schrödinger case in every respect. As an application, the Birman-Schwinger
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principle is used to characterize in which cases the ‘best constant’ in the Antonov
stability estimate is attained; the best constant will then be the principal eigenvalue
of L. This amounts to solving a quite non-standard variational problem, and it will
be important for understanding the nonlinear dynamics of the system close to a
steady state.

Cologne, Germany Markus Kunze
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Chapter 1
Introduction

1.1 The Birman-Schwinger Principle

The Birman-Schwinger principle is a widely used and well-established tool in math-
ematical quantum mechanics. It was introduced through the independent works of
Birman [10] and Schwinger [81], with the idea of counting or at least estimating the
number of eigenvalues of Schrödinger operators on L2(Rn). To be more specific,
consider (only formal at this point)

H = −� + V ;

to avoid introducing negative parts, wewill assume that V ≤ 0. Then it is not difficult
to calculate that

(a) −e is a (negative) eigenvalue of H if and only if 1 is an eigenvalue of the
Birman-Schwinger operator

Be = √−V (−� + e)−1
√−V ; (1.1)

see [53, Section 4.3.1].

Furthermore,

(b) if φ is an eigenfunction of H for the eigenvalue −e, then ψ = √−Vφ is an
eigenfunction of Be for the eigenvalue 1;

(c) ifψ is an eigenfunction of Be for the eigenvalue 1, thenφ=(−� + e)−1(
√−Vψ)

is an eigenfunction of H for the eigenvalue −e.

Theoperators Be are non-negativeHilbert-Schmidt operators (ifV decays sufficiently
fast and n ≤ 3), and in particular, they are compact. Their eigenvalues can be ordered:
λ1(e) ≥ λ2(e) ≥ · · · → 0, and the eigenvalue curves are decreasing in e, in that ẽ ≥ e
implies that λk(e) ≤ λk(ẽ) for all k. This implies that the number of eigenvalues of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Introduction

H less than or equal to −e agrees with the number of eigenvalues of Be greater than
or equal to 1, counting multiplicities in both cases; cf. [53, Figure 4.1, p. 78] for an
illustration. In this way, not only the number of eigenvalues of H can be bounded,
but for instance also eigenvalue moments like

∑
j | − e j |γ , where the sum extends

over all negative eigenvalues −e j of H . This fact lies at the heart of many important
results in the field. Let us only mention here the Lieb-Thirring bound

∑

j

| − e j | ≤ L1,3

∫

R3
|V (x)|5/2 dx

in three dimensions for an absolute constant L1,3 > 0 and V ∈ L5/2(R3). It is used
in those authors’ proof of the stability of matter [54], which has found many gen-
eralizations [53] and which is much easier to follow than the original argument by
Dyson and Lenard [16]. Good general textbooks that cover the Birman-Schwinger
principle are [53, Section 4.3], [71, 82, 83] or [86, Section 7.9]. A classical reference
is [46], and the papers [8, 34, 68] provide an extensive list of related literature. There
is also a large number of further applications of the Birman-Schwinger principle in
a variety of different contexts. For instance, complex-valued potentials are treated
in [1, 20, 22, 23], Dirac operators in [12], the Bardeen-Cooper-Schrieffer model of
superconductivity in [33] and the linearized 2D Euler equations in [47].

1.2 Non-Relativistic Galactic Dynamics and the
Vlasov-Poisson System

In order to explain how the Birman-Schwinger principle will turn out to be useful
in galactic dynamics, we are going to introduce the gravitational Vlasov-Poisson
system. It is a standard PDE system to describe the time evolution of a self-gravitating
system that consists of a large number of objects (like stars or galaxies),which interact
via gravitational forces.

Galactic dynamics in general refers to the modeling of the time evolution of self-
gravitating matter such as galaxies or, on an even larger scale, clusters of galaxies.
One attempt to do so is to write down an N -body problem, with N quite large:
N ∼ 106 − 1011 for galaxies and N ∼ 102 − 103 for clusters of galaxies. This N -
body problem consists of coupled Newtonian equations, one for each individual
object (the ‘objects’ in a galaxy are stars, those in a cluster of galaxies are galaxies),
to study the collective behavior of the system. While results may be obtainable
numerically in thisway, themathematical complexity of even the three-body problem
prevents one from rigorously addressing deeper questions (concerning for instance
galaxy formation or stability) for such stellar systems.

Therefore, from the early days of the field, a statistical description of the evolution
has been proposed by Vlasov [91] in 1938 for plasmas (in this case a related equation
is satisfied) and by Jeans [41] in 1915 for gravitational systems; see [36] for an
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interesting historical discussion of the origins of the equation. It is also known as the
‘collisionless Boltzmann equation’, which refers to the fact that collisions among the
stars or galaxies are sufficiently rare to be neglected.A standard source of information
on galactic dynamics is [9].

The time evolution of such a system is then governed by a distribution function
f = f (t, x, v) that depends on time t ∈ R, position x ∈ R

3 and velocity v ∈ R
3.

The quantity
∫
X dx

∫
V dv f (t, x, v) should be thought of as the number of objects

(henceforth called ‘particles’) at time t , which are located at some point x ∈ X ⊂ R
3

and which have velocities v ∈ V ⊂ R
3. Each individual particle follows a trajectory

(X (s), V (s)) in phase space R
3 × R

3 such that (X (t), V (t)) = (x, v) at time t and

Ẋ(s) = V (s), V̇ (s) = F(s, X (s)), (1.2)

where F denotes the force field that is collectively generated by all particles. The
requirement that f be constant along the curves defined by (1.2) then leads to the
relation

0 = d

ds
[ f (s, X (s), V (s))]

= ∂t f (s, X (s), V (s)) + V (s) · ∇x f (s, X (s), V (s))

+ F(s, X (s)) · ∇v f (s, X (s), V (s))

for all s. Evaluated at time t , this yields

∂t f (t, t, v) + v · ∇x f (t, x, v) + F(t, x) · ∇v f (t, x, v) = 0

for all (t, x, v), which is usually called the Vlasov equation (despite the historic
inadequacy of this terminology). The next step is to express the force field F in
terms of the distribution function f . Since we are aiming at describing gravitational
binding, we need to have F ∼ −∇x VC for the Coulomb potential VC(x) = − 1

|x | at
large distances. This suggests to use the field F = −∇xU induced by the Poisson
equation

�xU f (t, x) = 4πρ f (t, x), lim|x |→∞U f (t, x) = 0,

where ρ f (t, x) =
∫

R3
f (t, x, v) dv (1.3)

denotes the charge density induced by f . Observe that
∫
X dx ρ f (t, x) represents the

number of particles at time t , of any velocity, which are located at some point x ∈ X .
Then

U f (t, x) = −
∫

R3

ρ f (t, y)

|y − x | dy (1.4)

is Coulomb-like as |x | → ∞.
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To summarize, the Vlasov-Poisson system in the gravitational case is

∂t f (t, x, v) + v · ∇x f (t, x, v) − ∇xU f (t, x) · ∇v f (t, x, v) = 0 (1.5)

together with (1.3), and the equations are supposed to hold for (t, x, v) ∈ R × R
3 ×

R
3. Initial data f (0, x, v) = f0(x, v) at time t = 0 have to be specified for f only,

since then (1.4) determines the initial dataU f (0, x).Wewill exclusively be interested
in classical solutions of (1.5) and (1.3), whose global-in-time existence is ensured,
under reasonable assumptions on f0, by [55, 67, 80]. For a mathematical overview
of the system and more background material, the reader may wish to consult [27,
63, 73].

ThegravitationalVlasov-Poisson system iswidelyused todescribe non-relativistic
galactic dynamics. When it comes to relativistic galactic dynamics, the appropriate
model is the Einstein-Vlasov system [2]. In the present book, we will not be deal-
ing with this more general system, but of course it will be tempting to determine
which results could be transferred to the Einstein-Vlasov system; see [18, 19, 31,
32, 38–40] for work in this context that is related to the so-called Antonov bound.

1.3 Steady State Solutions

The Vlasov-Poisson system possesses an abundance of solutions Q = Q(x, v) that
are independent of time. It is therefore of interest to study the stability of those steady
states and, more ambitiously, the dynamics close to a steady state. Let eQ(x, v) =
1
2 |v|2 +UQ(x) denote the particle energy and let �2 = |L|2 = |x |2|v|2 − (x · v)2 be
the square of the angular momentum L = x ∧ v. Then both eQ and �2 are conserved
along solutions of the characteristic equations Ẍ(s) = −∇UQ(X (s)), which result
from (1.2) for F = −∇UQ ; note that alsoUQ is independent of time. Next, recall that
a function g = g(x, v) is said to be spherically symmetric if g(Ax, Av) = g(x, v) for
all A ∈ SO(3) and x, v ∈ R

3. Expressed in more sophisticated terms, g needs to be
equivariant w.r. to the group action SO(3) × (R3 × R

3) → R
3 × R

3, (A, x, v) �→
(Ax, Av). Now, it is the content of Jeans’s theorem that the distribution function
Q of every spherically symmetric steady state solution has to be of the form Q =
Q(eQ, �2); see [7, Section 2] for a precise formulation. Such steady state solutions are
called non-isotropic, in contrast to the isotropic ones, which can be written as Q =
Q(eQ); a solution of the latter form will necessarily be spherically symmetric [25,
72]. Observe that we are going to systematically abuse notation in that we consider
Q = Q(x, v) to be a function of (x, v) and at the same time write Q = Q(eQ, �2) or
Q = Q(eQ), which indicates that Q is a function of two or of one scalar variable(s);
in general, no confusion will result from this simplification.

To precisely state our results later, we will focus on the isotropic case, and we
need to introduce the following assumptions (Q1)–(Q4) that we are going to impose
throughout the book on the profile function Q : R → [0,∞[ and the (radial) density
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ρQ : [0,∞[→ [0,∞[. The diligent reader is invited to checkwhich parts of thiswork
remain valid under less restrictive hypotheses (there are several) or for non-isotropic
steady states.

(Q1) The support K = supp Q of the steady state solution Q is compact and its mass
‖Q‖L1(R6) is finite.

(Q2) Q ∈ L∞
loc(R) satisfies Q ≥ 0, and there exists a cut-off energy e0 < 0 such that

Q(e) = 0 for e ≥ e0, Q ∈ C1(] − ∞, e0[) and Q > 0 in some interval [e1, e0[,
where e1 < e0. For ê ∈]UQ(0), e0[, there exists ε > 0 such that

inf{|Q′(e)| : e ∈ [ê − ε, ê + ε]} > 0.

(Q3) Q′ ∈ L∞
loc(R) and Q′(e) ≤ 0 a.e.

(Q4) ρQ is continuous and has compact support supp ρQ = [0, rQ]. In addition, ρQ ∈
C1([0, rQ]).

For one result (Corollary 4.17),wewill needmoreprecise informationon thebehavior
of Q′ close to e = e0.

(Q5) There are constants C > 0 and α > 0 such that

|Q′(e)| ≤ C(e0 − e)α, e ∈ [UQ(0), e0[.

1.4 Examples

To illustrate that the general assumptions on Q as stated in Sect. 1.3 are verified in
many cases, we consider the steady state solution class of the polytropes and the King
models in some more detail. It should be remarked that many further examples could
be given, for instance by using [69] or [74, Theorem 3.1(a)], which basically says that
undermild technical assumptions on Q and if Q(e) = C(e0 − e)k+ + O((e0 − e)k+δ

+ )

as e → e0− for some e0 < 0, k ∈] − 1
2 ,

3
2 [, C > 0 and δ > 0, then the resulting

steady state solution will have a finite radius and finite mass.

1.4.1 Polytropes

We consider the polytropes

Q(eQ) = (e0 − eQ)k+ (1.6)

for a cut-off energy e0 < 0 and k ∈] − 1
2 ,

7
2 [. Then
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ρQ(r) = cn(e0 −UQ(r))n+, n = k + 3

2
∈]1, 5[, cn = (2π)3/2

�(k + 1)

�(k + 5
2 )

;

see [7, Example 4.1]. All these steady state solutions do have finite radius rQ
(i.e., compact support) and finite mass MQ = ∫

R3 ρQ(x) dx = 4π
∫ rQ
0 r2ρQ(r) dr =∫

R3

∫
R3 Q(x, v) dx dv. The limiting case k = 7/2 is called the Plummer sphere,

where MQ is still finite, but rQ = ∞. We have Q′(e) = −k(e0 − e)k−1
+ ≤ 0 (outside

of e = e0 for k ≤ 1) and ρQ ∈ C1([0, rQ]). Thus, if we take k > 1 for simplicity,
then assumptions (Q1)–(Q5) are satisfied.

1.4.2 King models

The ansatz function for the King model [9, pp. 307–311] is given by

Q(eQ) = (exp (e0 − eQ) − 1)+

for some cut-off energy e0 < 0. Then Q ∈ C1(] − ∞, e0[) and Q′(e) = − exp(e0 −
e) ≤ 0 for e < e0. The associated steady state solution does exist and has finite radius
and finite mass; see [74, Theorem 3.1(a) and Sect. 4]. The density is found to be

ρQ(r) =
∫

R3
Q(x, v) dv

=
∫

R3

(

exp
(
e0 − 1

2
|v|2 −UQ(r)

)
− 1

)

+
dv

= (
√
2π)3

(
es erf(

√
s) −

√
4s

π

(
1 + 2s

3

))
, s = e0 −UQ(r),

where erf(x) = 2√
π

∫ x
0 e−t2 dt denotes the error function, which has the asymp-

totic expansion erf(x) = 2x√
π

− 2x3

3
√

π
+ O(x5) as x → 0. For ϕ(s) = es erf(

√
s) −

√
4s
π
(1 + 2s

3 ), this yields the asymptotic expansion ϕ(s) = 8s5/2

15
√

π
+ O(s7/2) as s →

0+. SinceUQ ∈ C2([0,∞[), we infer that in particular ρ′
Q(rQ) = 0 holds and it fol-

lows that assumptions (Q1)–(Q4) are satisfied. However, since Q(e) = (e0 − e) +
O((e0 − e)2) as e → e0−, assumption (Q5) does not hold for the King model.

1.5 Linearization and the Antonov Stability Estimate

Without being too precise about its properties, we consider an isotopic steady state
solution Q = Q(eQ). To study the stability of Q, we will closely follow [30] and
write f (t) = Q + g(t) with g ‘small’. The total energy
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H( f (t)) = 1

2

∫

R3
|v|2 f (t, x, v) dx dv − 1

8π

∫

R3
|∇U f (t)(t, x)|2 dx

is conserved along solutions, so it could be suspected to be a Lyapunov function.
The expansion about Q then yields

H( f (t)) = H(Q) +
∫

R3

∫

R3

(1

2
|v|2 +UQ

)
g(t) dx dv

− 1

8π

∫

R3
|∇Ug(t)|2 dx + O(g3); (1.7)

note that f �→ U f is linear. The linear term on the right-hand side of (1.7) does not
vanish, i.e., Q is not a critical point of H. However, this defect can be remedied by
making use of the fact that every ‘Casimir functional’

C�( f (t)) =
∫

R3

∫

R3
�( f (t, x, v)) dx dv

is also conserved along solutions, provided that� is sufficiently well-behaved. Pass-
ing from H to

H� = H + C�

and repeating the expansion, one arrives at

H�( f (t)) = H�(Q) +
∫

R3

∫

R3
(eQ + �′(Q)) g(t) dx dv

+ 1

2

∫

R3

∫

R3
�′′(Q) g(t)2 dx dv − 1

8π

∫

R3
|∇Ug(t)|2 dx + O(g3).

(1.8)

Writing e = eQ , since Q = Q(e), the equation e + �′(Q(e)) = 0 can be (formally)
solved by taking �′(ξ) = −Q−1(ξ), at least if for instance Q′(e) < 0 is verified for
the relevant e in the support of Q. Then Q becomes a critical point of this H�, and
due to 1 + �′′(Q(e))Q′(e) = 0 and Q′(e) < 0, the expansion (1.8) simplifies to

H�( f (t)) = H�(Q) + 1

2
A(g(t), g(t)) + O(g3),

A(g, g) =
∫

R3

∫

R3

dx dv

|Q′(eQ)| |g|2 − 1

4π

∫

R3
|∇xUg|2 dx . (1.9)

Thus, one can expect that the stability of Q will be determined by the properties
of the quadratic (second variation) part A = 2 D2H�(Q), which we will call the
Antonov functional. It should also be noted that A(g(t), g(t)) is conserved along
solutions g(t) of the system that is linearized about Q; see [63, Prop. 3.2] and (1.21)
below.
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If we now consider functions u = u(x, v) that are spherically symmetric and odd
in v, i.e., they satisfy u(x,−v) = −u(x, v), then the celebrated Antonov stability
estimate [4, 5] is

A(T u, T u) ≥ c‖u‖2Q (1.10)

for some constant c > 0 that only depends on Q, where

T g = {g, eQ} = v · ∇x g − ∇vg · ∇xUQ (1.11)

for the standard Poisson bracket {g, h} = ∇x g · ∇vh − ∇vg · ∇xh. The weighted
inner product

(g, h)Q =
∫∫

K

1

|Q′(eQ)| g(x, v) h(x, v) dx dv (1.12)

induces the norm ‖ · ‖Q , and K = supp Q ⊂ R
6 denotes the support of the steady

state solution Q, which is compact, if (Q1) holds. Perturbations of the form g = T u
are called ‘dynamically accessible’, for reasons explained in [62]; also see [66].
Antonov [4, 5] could prove that the positive definiteness (1.10) is equivalent to the
linear stability of Q. Many works followed these pioneering observations, and until
to date, almost all stability proofs, linear or nonlinear, use the Antonov stability
estimate in one way or another. The bound (1.10), or variations thereof, is applied
in a number of papers, both in the physics and in the mathematics community, to
address a variety of stability issues; see [15, 26, 28, 30, 42, 43, 50, 51, 60, 89] and
many further.

1.6 The Best Constant in the Antonov Stability Estimate

In this section, we will explain the connection of the functional u �→ A(T u, T u)

from (1.10) to a certain self-adjoint operator L . Before doing so, we need to introduce
some relevant notation, function spaces, etc. Since we restrict ourselves to isotropic
steady states, the solutions will be spherically symmetric. Thus, we will consider
(1.5) and (1.3) in the spherical symmetric framework only, and it is well-known [7]
that then the system can be written as

∂t f (t, r, pr , �
2) + pr ∂r f (t, r, pr , �

2) +
(�2

r3
− ∂rU f (t, r)

)
∂pr f (t, r, pr , �

2) = 0

and

U ′′
f (t, r) + 2

r
U ′

f (t, r) = 4πρ f (t, r), lim
r→∞U f (t, r) = 0,

ρ f (t, r) = 2π

r2

∫ ∞

0
d� �

∫

R

dpr f (t, r, pr , �
2), (1.13)
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the ′ indicating d
dr or ∂r , and pr = x ·v

r . If g = g(x, v) is spherically symmetric, then
ρg(x) = ρg(r) and Ug(x) = Ug(r) are radially symmetric, and we will in general
denote

ρg(x) =
∫

R3
g(x, v) dv, Ug(x) = −

∫

R3

ρg(y)

|y − x | dy. (1.14)

Also g = g(x, v) canbe identifiedwith a function g = g(r, pr , �)or g = g(r, pr , �2);
see Appendix I, Section A.1.

Next, define the linear operator K by

Kg = {Q,Ug};

it should bementioned that both T from (1.11) andK do arise naturally upon lineariz-
ing the Vlasov-Poisson system about Q; see (1.21) below. SinceUg(x) = Ug(|x |) =
Ug(r), we obtain

Kg = {Q,Ug} = −∇vQ · ∇xUg = −Q′(eQ) v · x
r
U ′

g(r) = −Q′(eQ) pr U
′
g(r).

(1.15)
The operator L is introduced as

Lu = −T 2u − KT u. (1.16)

For what concerns the appropriate function spaces, we will pass to action-angle
variables as follows. On K = supp Q, we consider the equation

r̈ = −U ′
eff(r, �), (1.17)

where Ueff(r, �) = UQ(r) + �2

2r2 is the effective potential that occurs in the energy
function

eQ = eQ(r, pr , �) = 1

2
|v|2 +UQ(r) = 1

2
p2r +Ueff(r, �),

where pr = ṙ is the radial velocity and � should be thought of as fixed. By standard
Hamiltonian system theory (see Section A.1 for details), it is then possible to write
spherically symmetric functions g = g(x, v) = g(r, pr , �) in the form g = g(θ, I, �)
if we apply a canonical transformation (θ, I ) �→ (r, pr ) at fixed �.Working in action-
angle variables has many advantages. First of all, it turns out that eQ becomes a
function of (I, �) alone, eQ = E(I, �). Secondly, the functions g are 2π-periodic in
θ, so they can be conveniently represented as a Fourier series

g(θ, I, �) =
∑

k∈Z
gk(I, �) e

ikθ,

where

gk(I, �) = 1

2π

∫ 2π

0
g(θ, I, �) e−ikθ dθ
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are the Fourier coefficients. The spaces Xα
odd (cf. Appendix II, Sect.B.1) are defined

in terms of this series representation by means of the norms

‖g‖2Xα ∼
∑

k∈Z
(1 + k2)

α ‖gk‖2L2
1

|Q′ |
(D)

,

where L2
1

|Q′ |
(D) is a weighted L2-space on the domain D of the variables (I, �). The

subscript ‘odd’ in Xα
odd indicates that the functions are odd in v, which translates into

the condition g−k = −gk for k ∈ Z on the coefficients (so that in particular g0 = 0).
Nowwe can give a precise meaning to the fact thatA(T u, T u) = (Lu, u)Q is the

quadratic form associated with the operator L from (1.16). We have the following
result.

Lemma 1.1 L is self-adjoint on the domain D(L) = X2
odd in X0

odd. In addition,
(Lu, u)Q = A(T u, T u) holds for u ∈ X2

odd.

Proof Most of this will be shown later; see Corollary B.19 for the properties of L . At
this point, let us just mention that by (B.44) in Corollary B.19 the term (KT u, u)Q
can be written as 1

4π

∫
R3 |∇xUT u |2 dx . Hence, we deduce that

(Lu, u)Q = (−T 2u, u)Q − (KT u, u)Q

=
∫

R3

∫

R3

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

= A(T u, T u); (1.18)

recall (1.9). �

As a consequence, we can re-express (1.10) as follows.

Theorem 1.2 (Antonov stability estimate) If u ∈ X2
odd, then

(Lu, u)Q = A(T u, T u) ≥ c ‖u‖2Q (1.19)

for c = 1
r3Q

‖Q‖L1(R6) > 0, where supp ρQ = [0, rQ].
We will indicate a proof of Theorem 1.2 in Chapter 2. Therefore,

λ∗ = inf {(Lu, u)Q : u ∈ X2
odd, ‖u‖Q = 1} > 0 (1.20)

is well-defined; it is the ‘best constant’ in the Antonov stability estimate and a main
object of study in the present work. We will derive many results related to λ∗, as will
be described in Section 1.8. In particular, we will be able to characterize the cases
whereλ∗ is attained, in the sense thatλ∗ = (Lu∗, u∗)Q for someminimizing function
u∗ ∈ X2

odd such that ‖u∗‖Q = 1. It turns out that then u∗ will be an eigenfunction
of L corresponding to the eigenvalue λ∗, so that Lu∗ = λ∗u∗. The quantity λ∗ will
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be of fundamental importance for the dynamics of the gravitational Vlasov-Poisson
system.

Lemma 1.3 Let u∗ ∈ X2
odd be a minimizer and define

g∗(t, x, v) = cos(
√

λ∗t) u∗(x, v) − 1√
λ∗

sin(
√

λ∗t) (T u∗)(x, v).

Then g∗ is a 2π√
λ∗
-periodic solution of the equation

∂t g + T g + Kg = 0 (1.21)

that is obtained by linearizing (1.5) and (1.3) about Q.

Proof To linearize the system about Q, let f = Q + g as before. As a consequence
of the fact that v · ∇x f − ∇xU f · ∇v f = { f, e f } for e f (x, v) = 1

2 |v|2 +U f (x), we
may write

0 = ∂t f + { f, e f } = ∂t g +
{
Q + g,

1

2
|v|2 +UQ +Ug

}

= ∂t g − ∇vQ · ∇xUg + v · ∇x g − ∇vg · ∇xUQ − ∇vg · ∇xUg,

which is equivalent to

∂t g + T g + Kg = ∇vg · ∇xUg. (1.22)

Thus, (1.21) is indeed the linearization.Next, note that u∗ is odd in v. Hence,ρu∗(x) =∫
R3 u∗(x, v) dv = 0 implies that Uu∗ = 4π�−1ρu∗ = 0 and therefore Ku∗ = 0 by
(1.15). Consequently,

∂t g∗ + T g∗ + Kg∗ = −
√

λ∗ sin(
√

λ∗t) u∗ − cos(
√

λ∗t) T u∗

+ cos(
√

λ∗t) T u∗ − 1√
λ∗

sin(
√

λ∗t) T 2u∗

+ cos(
√

λ∗t)Ku∗ − 1√
λ∗

sin(
√

λ∗t)KT u∗

= −
√

λ∗ sin(
√

λ∗t) u∗ + 1√
λ∗

sin(
√

λ∗t) Lu∗ = 0,

as claimed. �

At present, it is not known if periodic solutions to (1.5) and (1.3) close to steady
state solutions do exist; see [17, 56, 70]. However, in this case, 2π√

λ∗
will conceivably

be the limiting period of the oscillations, a fact for which there is some numerical
evidence [70]. To give a heuristic argument, suppose that gε is an ε-small and Tε-
periodic solution to (1.22) such that Tε → T0 as ε → 0. Then, g̃ε = ε−1gε will be of
order one, Tε-periodic and satisfies
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∂t g̃ε + T g̃ε + Kg̃ε = ε∇v g̃ε · ∇xUg̃ε
.

Assuming now that g̃ε → g̃∗ in a suitable norm, g̃∗ �= 0 will be T0-periodic and such
that

∂t g̃∗ + T g̃∗ + Kg̃∗ = 0.

If ∂t + T + K does have a one-dimensional kernel, then g̃∗ is proportional to g∗
from Lemma 1.3, and hence T0 = 2π√

λ∗
.

1.7 Domains in Action-Angle Variables

Beforewewill be able to describe ourmain results and their connection to theBirman-
Schwinger principle in Sect. 1.8, we have to take a closer look at the domains that
occur as the supports of steady state solutions, expressed in action-angle variables
(θ, I, �); recall that the particle energy eQ = E(I, �) is a function of (I, �) alone.

The frequency functions associated with the energy E are

ω1(I, �) = ∂E(I, �)

∂ I
, ω2(I, �) = ∂E(I, �)

∂L3
= 0, ω3(I, �) = ∂E(I, �)

∂�
,

where (I, L3, �) are the action variables.Wewould like to emphasize thatω1, together
with the corresponding period function T1(I, �) = 2π

ω1(I,�)
, will be a main player in

the game, and understanding its properties will be of central importance. This is due
to the fact that in action-angle variables the operator T from (1.11) is found to be
very simple:

(T g)(θ, I, �) = ω1(I, �) ∂θg(θ, I, �),

or gk �→ ikω1 gk in terms of the Fourier coefficients. Since ω1 is independent of θ,
this also yields −T 2g = −ω2

1 ∂2
θ g or gk �→ k2ω2

1 gk . It will turn out (see Section
3.1) that ω1 is strictly positive, so that, at fixed �, the map I �→ E(I, �) is strictly
increasing. Therefore, it can be inverted as a map E �→ I (E, �), and accordingly
functions g = g(θ, I, �) can be viewed as functions g̃(θ, E, �) = g(θ, I (E, �), �)

and vice versa.
From (Q1)–(Q4) in Sect. 1.3, the following can be shown (cf. the argument in

Sect. 1.7.1 below):
In action-angle variables, one has

K = {(θ, E,β) : θ ∈ [0, 2π],β ∈ [0,β∗], E ∈ [emin(β), e0]},

where E = E(I, �) and I = I (E, �). Furthermore, β = �2, β∗ > 0, and

emin(β) = Ueff(r0(β),β)
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is the minimal energy of the effective potential Ueff(·,β), which is attained at the
unique point r0(β); see Appendix I, Sect.A.1. Also, emin(·) is non-decreasing and

min {emin(β) : β ∈ [0,β∗]} = UQ(0) < e0,

max {emin(β) : β ∈ [0,β∗]} = e0.

We will always denote

D = {(E,β) : β ∈ [0,β∗], E ∈ [emin(β), e0]},

which at times will be expressed in terms of � as

D = {(E, �) : � ∈ [0, �∗], E ∈ [emin(�), e0]}, (1.23)

and similarly, we will write

K = {(θ, E, �) : θ ∈ [0, 2π], � ∈ [0, l∗], E ∈ [emin(�), e0]}. (1.24)

It is also understood that K and D can bewritten in terms of the variables (θ, I,β),
(θ, I, �) and (I,β), (I, �), respectively, without this being reflected by renaming the
sets. In any case, we will always have K = [0, 2π] × D.

For illustration, we are going to determine K and D for the polytropes and the
King models, respectively. A general domain D is shown in Fig. 1.1.

Fig. 1.1 The domain D in coordinates (e,β) = (E,β)



14 1 Introduction

1.7.1 Polytropes Revisited

We wish to determine the support

K = supp Q = {e0 − eQ ≥ 0}

of the polytropes in terms of β = �2 and e = eQ . More precisely, since always θ ∈
[0, 2π] on K for the angular variable θ, we have to exhibit a set D of (e,β) such that
K = [0, 2π] × D. On this domain D, we need to have

e0 ≥ e ≥ Ueff(r,β) ≥ Ueff(r0(β),β) = UQ(r0(β)) + β

2r0(β)2
, (1.25)

with r0(β) denoting the unique point where the effective potential Ueff(r,β) =
UQ(r) + β

2r2 attains its minimum value emin(β) = Ueff(r0(β),β). From (1.25),
we get

2r0(β)2 (e0 −UQ(r0(β)) ≥ β.

Let
J = {β ≥ 0 : 2r0(β)2 (e0 −UQ(r0(β)) ≥ β}.

First, we claim that J is an interval. To see this, note that

2r2(e0 −Ueff(r,β)) + β = 2r2
(
e0 −UQ(r) − β

2r2

)
+ β = 2r2(e0 −UQ(r)).

Therefore,
2r2(e0 −UQ(r)) ≥ β ⇐⇒ Ueff(r,β) ≤ e0,

which implies that
J = {β ≥ 0 : emin(β) ≤ e0}. (1.26)

Now β �→ emin(β) is increasing by Lemma A.7(c) below (which is a general result),
and thus J has to be an interval.

The next aim is to show that [0, ε] ⊂ J for some ε > 0 small enough. For, by
Lemma A.7(f), we have

r0(β)4 = 1

A(0)
β + O(β2) and emin(β) = UQ(0) + O(β1/2)

as β → 0+. SinceUQ(0) < e0 (the cut-off energy), the condition emin(β) ≤ e0 from
the characterization of J in (1.26) is satisfiedwith strict inequality atβ = 0. It follows
that [0, ε] ⊂ J if ε > 0 is sufficiently small.

Now, we are going to show that J is bounded. First, if β ∈ J , then r0(β) ≤
rQ , where supp ρQ = [0, rQ]. Otherwise, we would have r0(β) > rQ for some
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β ∈ J \ {0}. Since rQ is characterized by UQ(rQ) = e0, this gives UQ(r0(β)) > e0,
and consequently β ≤ 2r0(β)2 (e0 −UQ(r0(β)) ≤ 0, which is a contradiction. Then,
r0(β) ≤ rQ for β ∈ J in turn leads to the boundedness of J , owing to

β ≤ 2r0(β)2 (e0 −UQ(r0(β)) ≤ 2r2Q (e0 −UQ(r0(β)) ≤ 2r2Q (e0 −UQ(0))

uniformly for β ∈ J .
Lastly, we will check that β∗ = max J satisfies emin(β∗) = e0. In fact, at β∗, we

must have 2r0(β∗)2 (e0 −UQ(r0(β∗)) = β∗. Thus,

emin(β∗) = Ueff(r0(β∗),β∗) = UQ(r0(β∗)) + β∗
2r0(β∗)2

= e0. (1.27)

To summarize, since the condition on e is e0 ≥ e ≥ emin(β), we have shown that

D = {(β, e) : β ∈ [0,β∗], e ∈ [emin(β), e0]}

and K = [0, 2π] × D for the support K of Q in terms of e and β, and the lower
boundary curve [0,β∗] � β �→ emin(β) strictly increases from UQ(0) to e0.

We would also like to point out that r0(β∗) ∈]0, rQ[. By construction, one has
r0(β∗) ≤ rQ , so suppose that we had r0(β∗) = rQ . Since r0(β)3U ′

Q(r0(β)) = β,
(1.27) yields

e0 = UQ(r0(β∗)) + β∗
2r0(β∗)2

= UQ(r0(β∗)) + 1

2
r0(β∗)U ′

Q(r0(β∗)). (1.28)

But UQ(rQ) = e0, whence 0 = U ′
Q(rQ) = 4π

r2Q

∫ rQ
0 s2ρQ(s) ds, which is a contradic-

tion. The relation (1.28) characterizes r0(β∗), since ϕ(r) = UQ(r) + 1
2 rU

′
Q(r) sat-

isfies ϕ′(r) = 1
2 r B(r) for B(r) = U ′

Q(r)

r + 4πρQ(r) > 0 from Lemma A.6(b). In
addition, ϕ(0) = UQ(0) < e0 and ϕ(rQ) = e0 + 1

2 rQU
′
Q(rQ) > e0.

Finally, observe that the reasoning in this section did not depend on the specific
form of the polytropic ansatz function (1.6), but only on the general properties of the
functions r0(β) and emin(β).

1.7.2 King Models Revisited

Exactly as in Sect. 1.7.1, here we also get

K = supp Q = [0, 2π] × D, D = {(β, e) : β ∈ [0,β∗], e ∈ [emin(β), e0]},

for the corresponding functions r0(β) and emin(β) = Ueff(r0(β),β). In addition, we
have r0(β∗) ∈]0, rQ[.
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1.8 Summary of the Main Results

Now, we are in a position to outline the main results of this book. In Chap.3, we
will study the properties of ω1 or equivalently of T1 in some detail. First, it is shown
(Theorem 3.2) that

δ1 = inf {ω1(e, �) : (e, �) ∈ D̊} > 0. (1.29)

This fact has beenmentioned above and it will be usedmany times. The number δ1, or
more precisely δ21 , is intimately related to the spectrum of L , since δ21 = min σess(L)

is the minimum of the essential spectrum of L . In this connection, let us also mention
that the essential spectrum of L can be determined explicitly, and it is large in the
sense that [λc,∞[⊂ σess(L) for some λc > δ21 . Furthermore, λ∗ ≤ δ21 is satisfied
(Section 3.4). Along with (1.29), we will also prove that

�1 = sup {ω1(e, �) : (e, �) ∈ D̊} < ∞;

see Theorem 3.5. Concerning the regularity of ω1 or T1, it is not very difficult to
see that T1 ∈ C1(D̊), as will be derived in Theorem 3.6. It is considerably harder to
verify that T1 ∈ C(D), i.e., that T1 can be continuously extended to the boundary
∂D of D. This will be done in a series of lemmas, and the results are summarized
in Theorem 3.13; the most challenging part is to make sure that T1 is continuous at
(e,β) = (UQ(0), 0), which is the lower left corner of D. It will also turn out that
T1 is increasing on the lower boundary curve of D (Lemma 3.14) and on the left
boundary part of D (Lemma 3.15).

In Chapter 4, we are going to make the connection of the spectral problem for
L to the Birman-Schwinger principle. We will be using an approach to reformulate
the problem that is inspired by the physics reference [61], although this paper does
neither use the operator L nor realize the underlying Birman-Schwinger principle.
Let L2

r denote the L
2-Lebesgue space of radially symmetric functions �(x) = �(r)

on R
3 with inner product

〈�,�〉 =
∫

R3
�(x) �(x) dx = 4π

∫ ∞

0
r2 �(r)�(r) dr.

It will be shown that one can define a family Qλ of non-negative Hilbert-Schmidt
operators on L2

r with the following properties for λ < δ21:

(a) λ is an eigenvalue of L if and only if 1 is an eigenvalue of Qλ.

This observation provides a natural way for showing that λ∗ is an eigenvalue of
L , provided that one has λ∗ < δ21 (i.e., there is a spectral gap). The first eigenvalue
function μ1(λ) ofQλ turns out to be increasing in λ, and one has to locate the value
of λ, where μ1 becomes 1; in this way, we will be able to show that λ∗ is attained.
Furthermore, we will also prove:
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(b) if u ∈ X2
odd is an eigenfunction of L for the eigenvalue λ, then � = 4π

∫
R3 pr u

dv ∈ L2
r is an eigenfunction of Qλ for the eigenvalue 1;

(c) if � ∈ L2
r is an eigenfunction of Qλ for the eigenvalue 1, then u = (−T 2 −

λ)−1(|Q′(eQ)| pr�) ∈ X2
odd is an eigenfunction of L for the eigenvalue λ.

Thus, if we compare (a)–(c) for our galactic dynamics setup to (a)–(c) from the
Schrödinger case in Sect. 1.1, then we see that both are formally identical if we asso-
ciate pr ∼ √−V and −� ∼ −T 2 and furthermore disregard the velocity average∫
R3 dv; the appearance of |Q′(eQ)| in |Q′(eQ)| pr� is due to the (·, ·)Q that is used.
There is yet another fact that supports the analogy of both approaches. One of the
ways to represent Qλ is

Qλ� = 4π
∫

R3
pr (−T 2 − λ)−1 (|Q′(eQ)| pr�) dv. (1.30)

Comparing this relation to (1.1), it turns out that both relations do agree if we apply
the same identifications as before.

Throughout the book, we are going to exploit this Birman-Schwinger principle in
galactic dynamics to deal with the question in which cases λ∗ from (1.20) is attained.
However, there seems to be a wide range of further possible applications that could
for instance be related to a limiting absorption principle or L p–Lq -estimates on the
‘free resolvent’ (−T 2 − λ)−1, in the spirit of [45] for the Laplacian. One advantage
when dealing with (1.1) is that, in three dimensions, the operator has the explicit
integral kernel

Be(x, y) = √−V (x)
1

4π|x − y| exp(−√
e |x − y|)√−V (y),

which allows for hands-on estimates. It would also be desirable to obtain something
similar for (1.30).

The explicit form of the operator Qλ is

Qλ : L2
r → L2

r ,

(Qλ�)(r)=16π

r2
∑

k �=0

∫ ∞

0
dr̃ �(r̃)

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}
ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − λ

× sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)),

where r±(e, �) are the maximal resp. minimal value of r along the orbit of (1.17)
that has energy e, and θ(r, e, �) is the associated angle. Note that λ < δ21 implies
k2ω2

1(e, �) − λ ≥ δ21 − λ > 0 for k �= 0, so the denominators do not vanish. It turns
out that the familyQλ can be analytically continued toQz for z ∈ � = C \ [δ21,∞[,
by simply replacing λ with z. In addition, we can write (Qz�)(r) = 〈Kz̄(r, ·),�〉
for some L2 × L2-integral kernel K , which allows us to show that each Qz is a
Hilbert-Schmidt operator on L2

r . Furthermore, 〈Qλ�,�〉 ≥ 0 and λ → 〈Qλ�,�〉
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are increasing for real λ. Then, the spectrum of Qλ consists of μ1(λ) ≥ μ2(λ) ≥
. . . → 0 (the eigenvalues are listed according to their multiplicities). In addition,

μ1(λ) = ‖Qλ‖ = sup {〈Qλ�,�〉 : ‖�‖L2
r
≤ 1},

where ‖ · ‖ = ‖ · ‖B(L2
r )
, and every function

μk(·) : ] − ∞, δ21[ → ]0,∞[

for k ∈ N is monotone increasing and locally Lipschitz continuous. According to the
Birman-Schwinger characterization of an eigenvalue λ for L , we have to determine
those k and λ, where μk(λ) = 1. Since we expect λ∗ ≤ δ21 to be the principal eigen-
value of L , more specifically we need to find λ such that μ1(λ) = 1. In this respect,
the quantity

μ∗ = lim
λ→δ21−

μ1(λ) = sup {μ1(λ) : λ ∈ [0, δ21[} ∈ [μ1(0),∞]

will be important, and in what follows, we are going to outline our results, depending
on μ∗.

Let us first recall that δ21 = min σess(L), and if λ∗ < δ21 and λ∗ were an eigenvalue
of L , then therewould exist a spectral gap.We are going to prove in Theorem4.13 that
the conditions λ∗ < δ21 and μ∗ > 1 are equivalent, and in this case, μ1(λ∗) = 1 and
λ∗ is an eigenvalue of L . The difficult part of the argument is to show that a spectral
gap λ∗ < δ21 forces λ∗ to be an eigenvalue. This is accomplished by studying (at great
length in Appendix C) a certain evolution equation, for which λ∗ < δ21 translates into
a compactness condition; the argument is summarized in Section C.1.

Next, we turn to the case where μ∗ < 1. Then necessarily λ∗ = δ21 , so there is no
spectral gap and we cannot use the Birman-Schwinger principle. Nevertheless, it is
possible to prove (Theorem 4.14) that now λ∗ = δ21 is not an eigenvalue, provided
that the following condition is satisfied:

(ω1-1) {(I, �) ∈ D : ω1(I, �) = δ1} has the Lebesgue measure zero.

This excludes (Lemma B.12) that δ21 is an eigenvalue of −T 2. The proof works by
deriving suitable estimates for the operatorsQδ21−ε+iε3 in the limit ε → 0+.Wewould
not be surprised if the case μ∗ < 1 could not occur at all, but we were not able to
verify this.

The most pathological case seems to be μ∗ = 1. Then once again λ∗ = δ21 , there
is no spectral gap and the Birman-Schwinger principle does not apply. To see that
here one needs to add another condition on ω1, let us change the perspective and ask
where, in D, δ1 = inf D̊ ω1 = minD ω1 is attained. If this happens at an interior point
(ê, β̂) ∈ D̊, then ∇ω1(ê, β̂) = (0, 0) and the following condition will be verified:

(ω1-2) There are a point (ê, β̂) ∈ D̊, a neighborhood U of (ê, β̂) and a constant
C1 > 0 such that ω1(ê, β̂) = δ1 and
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|ω1(e,β) − δ1| ≤ C1 |(e,β) − (ê, β̂)|2, (e,β) ∈ U. (1.31)

But then Corollary 4.16 implies that μ∗ = ∞, which is not compatible with μ∗ = 1.
Hence, we can assume that the minimum is attained at some point (ê, β̂) ∈ ∂D, the
boundary of D. According to Corollary 3.16, then (ê, β̂) lies on the ‘upper line’
{(e,β) : e = e0,β ∈ [0,β∗]} of the boundary and one needs to have more precise
information on the behavior of ω1 close to (ê, β̂) = (e0, β̂). If ∇ω1(e0, β̂) ∼ (0, 0)
(the followingmotivation is not rigorous sincewe don’t know thatω1 is differentiable
on ∂D), then we would be in a similar situation as what has been described before.
Therefore, we can assume that ∇ω1(e0, β̂) � (0, 0) in the sense that at least one
of the derivatives ∂ω1

∂e and ∂ω1
∂β

does not vanish at (e0, β̂). If it is exactly one of
the two derivatives that does not vanish, one could also derive a bunch of results,
with techniques that are similar to the ones outlined below. Hence, we are going to
assume that both derivatives do not vanish, in a weak sense that does not need the
differentiability, as formulated in the following condition:

(ω1-3) There are a point (e0, β̂) ∈ D and a constant c1 > 0 such that ω1(e0, β̂) = δ1
and

|ω1(e,β) − δ1| ≥ c1|(e,β) − (e0, β̂)|, (e,β) ∈ D;

it would be sufficient to require (ω1-3) only locally in a neighborhood of (e0, β̂).
Supposing that (ω1-3) holds, we can show in Theorem 4.15 for μ∗ = 1 that λ∗ = δ21
is an eigenvalue of L if and only if

‖μ′
1‖L∞(]−∞,δ21 [) < ∞ (1.32)

is verified; since μ1(·) is differentiable a.e., this condition is meaningful. The
proof works by first observing that, as a consequence of (ω1-3), the operator
Qδ21

= limλ→δ21− Qλ does exist in the Hilbert-Schmidt norm (Lemma 4.9) and hence
is a Hilbert-Schmidt operator itself. In addition, μ∗ = 1 is its first eigenvalue μ1(δ

2
1).

Due to the compactness ofQδ21
, if � j ∈ L2

r is a normalized eigenfunction of Qλ j for
μ1(λ j ) and λ j → δ21−, then a subsequence will converge to a normalized eigenfunc-
tion �∗ ofQδ21

for the eigenvalue μ∗ = 1 (Corollary 4.11, no need to assume (1.32)).
Once again, the situation is very much analogous to what is known for Schrödinger
operators, cf. [82, pp. 83–85] and [84, Section 2] for instance: a threshold eigen-
value and eigenfunction of the Birman-Schwinger operator do not immediately give
rise to a threshold eigenvalue and eigenfunction of the Schrödinger operator, but in
fact the existence of the latter is characterized by an additional condition, which is
(1.32) in our case. To understand its meaning, suppose for simplicity of the presen-
tation that there is ε > 0 such that ]δ21 − ε, δ21[� λ �→ μ1(λ) is real analytic, and in
addition that there are �λ ∈ L2

r satisfying ‖�λ‖L2
r
= 1, Qλ�λ = μ1(λ)�λ, so that

also ]δ21 − ε, δ21[� λ �→ �λ is real analytic. This will follow from the Kato-Rellich
perturbation theory if μ∗ is known to be a simple eigenvalue of Qδ21

. In the general
case, which is much more technical, one needs to work with appropriate sequences
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λ j → δ21− that are constructed using an appropriate generalization of the standard
Kato-Rellich perturbation theory (Appendix IV). In the real analytic case, define
ψλ(r, pr , �) = |Q′(eQ)| pr�λ(r) and gλ = (−T 2 − λ)−1ψλ. Then it is found that

‖gλ‖2X0 = 1

4π
〈Q′

λ�λ, �λ〉 = 1

4π
μ′
1(λ)

and μ′
1 is increasing. Thus, (1.32) is equivalent to the condition sup ‖gλ‖X0 < ∞,

i.e., to the boundedness of (gλ) ⊂ X0. In addition, one can prove that

Lgλ = (1 − μ1(λ))ψλ + λgλ,

cf. Lemma 4.7(c). Since μ1(λ) → μ1(δ
2
1) = μ∗ = 1, the weak convergence gλ ⇀ g∗

is seen to be sufficient to ensure that g∗ �= 0 and Lg∗ = δ21g∗, i.e., g∗ is the wanted
eigenfunction of L . To establish the converse assertion, i.e., that the existence of an
eigenfunction of L for λ∗ = δ21 leads to (1.32), a different argument has to be used;
see Theorem 4.15. Corollary 4.17 contains an example of a situation where (1.32)
can be shown to hold. For this, we add (Q5) from Sect. 1.3 as an additional condition
on Q. It should not be surprising that the regularity of Q′ close to e = e0 will become
important in this respect since we are dealing with integrals of the form

∑

k �=0

∫∫

D

dβ de
ω1(e,β) |Q′(e)|
k2ω2

1(e,β) − λ
(. . .)

many times. If λ ∼ δ21 and k = ±1, then the behavior of ω1 close to (e,β) = (e0, β̂)

gets important; this is addressed by condition (ω1-3). On the other hand, there is an
interplay with the term |Q′(e)| for e close to e0, which could compensate for possible
losses (or it could be bad itself). Generally speaking, many different results could be
derived for μ∗ = 1 by combining assumptions of ω1 with assumptions on Q′ close
to e0.

Let us remark that we don’t see an immediate path to calculate μ∗ for a given
steady state solution Q. However, there might be a smart way to settle this question,
and in any case μ∗, together with additional important quantities like λ∗ and δ1,
for sure could be determined numerically. Another notable fact is as follows. The
Vlasov-Poisson system (1.5) and (1.3) has many invariances; see Chap.6; quantities
that remain invariant under the scaling could be expected to be of ‘fundamental’
importance. It turns out that μ∗ is such a quantity, but λ∗ and δ1 are not. On the
contrary, the conditions λ∗ < δ21 and λ∗ = δ21 are both invariant. We will deduce
several other invariants in Chap.6, among them the “Eddington-Ritter relation”,
which says that

2π√
λ∗

√
ρQ(0)

is invariant; note that 2π√
λ∗

is the “linear period” from Lemma 1.3.
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There are several other operators around that are used to assist (by means of
their coercivity) stability proofs for stellar systems, among them the “Hartree-Fock
exchange operator” by Lynden-Bell [57, 58] and the “Guo-Lin operator” [29, 88].
Concerning the latter, we are able to make a connection to the operators Qλ that
we are using, more precisely to Q0. Let λGL > 0 denote the best constant for the
Guo-Lin operator; see (5.2). Then we have

λGL + μ1(0) = 1

by Lemma 5.1, and 0 < μ1(0) < 1 implies that λGL > 0 will always be attained
(Corollary 5.2). Of course, the clear advantage of the operatorsQλ is the underlying
Birman-Schwinger principle, as they can be used to detect the λ∗ that will be the
eigenvalue.

Finally, there are four appendices. Appendix I and Appendix II contain the neces-
sary backgroundmaterial forwhat concerns the change of coordinates to action-angle
variables, function spaces and operators. Appendix III is independent and provides
a proof (using a new evolution equation) of the fact that λ∗ < δ21 implies that λ∗ is
an eigenvalue of L; this will enter into the theorems obtained in Sect. 4.2. Lastly,
Appendix IV concerns some specifics of the Kato-Rellich perturbation theory that
are also used to study the properties of Qλ as λ → δ21−.



Chapter 2
The Antonov Stability Estimate

The purpose of this short chapter is to provide some more details on the Antonov
stability estimate, Theorem 1.2.

Proof of Theorem 1.2 We (formally) repeat the argument from [50, Prop. 4.1(ii)];
also see [30, Appendix]. Define q(x, v) = u(x,v)

x ·v . Then a direct calculation shows
that

|T u|2 = (x · v)2 |T q|2 + T
(
(x · v)|q|2T (x · v)

)
− (x · v) |q|2T 2(x · v).

Moreover T (x · v) = |v|2 − rU ′
Q(r) and, using �UQ = 4πρQ ,

T 2(x · v) = −(x · v)
(
4πρQ(r) + U ′

Q(r)

r

)
. (2.1)

Therefore,

|T u|2 − 4πρQ(r)|u|2 = (x · v)2 |T q|2 + T
(
(x · v) |q|2T (x · v)

)
+ U ′

Q(r)

r
|u|2.

Now integration by parts yields
∫
R3

∫
R3

dx dv
|Q′(eQ)| T (. . .) = 0, cf. LemmaB.9(a). So

what remains after integration is

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

=
∫

R3

∫

R3

dx dv

|Q′(eQ)|
[
4πρQ(r)|u|2 + (x · v)2 |T q|2 + U ′

Q(r)

r
|u|2

]

− 1

4π

∫

R3
|∇xUT u |2 dx .
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From Lemma 2.4 below, we have U ′
T u(r) = 4π

∫
R3 pr u dv. Therefore,

∫

R3
|∇xUT u |2 dx =

∫

R3

∣∣∣ x
r
U ′

T u

∣∣∣
2
dx = 16π2

∫

R3

∣∣∣
∫

R3
pr u dv

∣∣∣
2
dx,

and this leads to

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)|
[
(x · v)2

∣∣∣T u

x · v

∣∣∣
2 + U ′

Q(r)

r
|u|2

]

+ 4π
∫

R3
dx

[
ρQ(r)

∫

R3

dv

|Q′(eQ)| |u|2 −
∣∣∣∣
∫

R3
pr u dv

∣∣∣∣
2 ]

. (2.2)

To obtain the lower bound, note that by Lemma2.5 below

∣∣∣∣
∫

R3
pr u dv

∣∣∣∣ =
∣∣∣∣
∫

R3
pr |Q′(eQ)|1/2 |Q′(eQ)|−1/2 u dv

∣∣∣∣

≤
( ∫

R3
p2r |Q′(eQ)| dv

)1/2( ∫

R3

dv

|Q′(eQ)| |u|2
)1/2

= ρQ(r)1/2
( ∫

R3

dv

|Q′(eQ)| |u|2
)1/2

.

Therefore, (2.2) yields

(Lu, u)Q ≥
∫

R3

∫

R3

dx dv

|Q′(eQ)|
U ′

Q(r)

r
|u|2. (2.3)

The function A(r) = U ′
Q(r)

r , together with B(r) = 4πρQ(r) + A(r), will be consid-
ered in Lemma A.6. It turns out that this function is strictly decreasing, positive and
such that A(rQ) = 1

r3Q
‖Q‖L1(R6). Hence (1.19) follows. �

Example 2.1 We are going to show that

L (|Q′(eQ)|(x · v)) = A(r) |Q′(eQ)| (x · v), (2.4)

and in particular u(x, v) = |Q′(eQ)| (x · v) is not an eigenfunction for λ∗ from
(1.20). Regarding (2.4), (2.1) says that T 2(x · v) = −(x · v)(4πρQ(r) + A(r)) =
−B(r)(x · v), cf. Lemma A.6. Hence, using T |Q′(eQ)| = 0 from Lemma B.9(a),
also T 2u = −B(r)u holds. Therefore, due to (B.37), Lemma 2.4 and Lemma 2.5,

KT u = 4π |Q′(eQ)| pr
∫

R3
p̃r u d ṽ = 4π |Q′(eQ)| pr r

∫

R3
p̃2r |Q′(eQ)| d ṽ

= 4π |Q′(eQ)| (x · v)ρQ(r) = 4πρQ(r)u,
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where pr = x · v/r and p̃r = x · ṽ/r . As a consequence,

Lu = −T 2u − KT u = B(r)u − 4πρQ(r)u = A(r)u,

so that (2.4) is established. ♦
Corollary 2.2 We have

0 < A(rQ) ≤ λ∗ < A(0) and 0 < B(rQ) ≤ λ∗ < B(0).

Proof The lower bound λ∗ ≥ A(rQ) follows from (2.3) and A(r) ≥ A(rQ). Regard-
ing the upper bound λ∗ < A(0), consider as in Example 2.1 the function u(x, v) =
|Q′(eQ)|(x · v), which is odd in v. Then Lu = A(r)u, and thus

(Lu, u)Q =
∫

R3

∫

R3

dx dv

|Q′(eQ)| A(r) |u|2 ≤ A(0)
∫

R3

∫

R3

dx dv

|Q′(eQ)| |u|2 = A(0)‖u‖2Q .

(2.5)
Hence, it follows that λ∗ ≤ A(0), and it remains to be shown that λ∗ = A(0) is
impossible. Suppose that in fact λ∗ = A(0). Then, for the same u,

∫

R3

∫

R3

dx dv

|Q′(eQ)| A(0) |u|2 = A(0)‖u‖2Q = λ∗‖u‖2Q

≤
(
L

u

‖u‖Q
,

u

‖u‖Q

)

Q

‖u‖2Q = (Lu, u)Q .

Using

(Lu, u)Q =
∫ ∫

K

dx dv

|Q′(eQ)| A(r) |u|2

from (2.5), this leads to

∫

R3

∫

R3

dx dv

|Q′(eQ)| (A(r) − A(0)) |u|2 ≥ 0.

But this is not possible since A is strictly decreasing by Lemma A.6(a). For the
estimates in terms of B, it is sufficient to note that B(r) ≥ A(r) and B(rQ) = A(rQ),
cf. Lemma A.6(b). �

Remark 2.3 Observe that 0 < A(rQ) ≤ λ∗ < A(0) and 0 < B(rQ) ≤ λ∗ < B(0)
fromCorollary 2.2 together with LemmaA.6 imply thatλ∗ = A(rA) andλ∗ = B(rB)

for certain rA, rB ∈]0, rQ[. It would be interesting to understand whether these radii
rA and rB do have a special meaning. ♦

The following observation has been made before; see [30, p. 507] and [50, (B.1)]
for instance.
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Lemma 2.4 For appropriate spherically symmetric functions g,

U ′
T g(r) = 4π

∫

R3
pr g dv.

Proof Since ∇xUQ is independent of v, by (1.11) the density is found to be

ρT g(x) =
∫

R3
(v · ∇x g − ∇vg · ∇xUQ) dv = divx

∫

R3
v g dv.

Therefore, using (A.2) below and Gauss’s theorem, it follows that

U ′
T g(r) = 1

r2

∫

|x |≤r
ρT g(x) dx = 1

r2

∫

|x |≤r
dx divx

( ∫

R3
v g dv

)

= 1

r2

∫

|x |=r
dS(x)

x

r
·
( ∫

R3
v g dv

)
= 1

r2

∫

|x |=r
dS(x)

( ∫

R3
pr g dv

)
,

where g = g(x, v) = g(r, pr , �). As g is spherically symmetric, the functionG(x) =∫
R3 pr g dv is invariant under rotation, i.e., G(x) = G(|x |). Thus, U ′

T g(r) = 4π
∫
R3

pr g dv as desired. �

For the next lemma, cf. [30, p. 507] and [50, (B.3)].

Lemma 2.5 We have ∫

R3
|Q′(eQ)| p2r dv = ρQ(r).

Proof Since d
dpr

[Q(eQ)] = Q′(eQ)pr due to eQ = 1
2 p2r +UQ(r) + �2

2r2 , we have
from (A.40):

∫

R3
|Q′(eQ)| p2r dv = −

∫

R3
Q′(eQ) p2r dv

= − 2π

r2

∫

R

dpr

∫ ∞

0
d� � Q′(eQ) p2r

= − 2π

r2

∫ ∞

0
d� �

∫

R

dpr
d

dpr
[Q(eQ)] pr

= 2π

r2

∫ ∞

0
d� �

∫

R

dpr Q(eQ)

=
∫

R3
Q(eQ) dv = ρQ(r),
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where once again (A.40) has been used. Note that the boundary term vanishes in the
integration by parts above. Indeed, if we use the notation fromLemmaB.7, cf. (B.10),
(B.11) and (B.12), then for fixed r and � ∈ [0, l̂(r)], we see that

(Q(eQ) pr )
∣∣∣
p̂

− p̂
= Q(e0) p̂ − Q(e0)(− p̂) = 2 p̂ Q(e0) = 0,

since Q(e0) = 0 by (Q2). �



Chapter 3
On the Period Function T1

Associated with every effective potential Ueff(r, �) = UQ(r) + �2

2r2 is a period func-
tion T1(·, �) that is defined for certain energies e ∈ [emin(�), e0], for which periodic
solutions of r̈ = −U ′

eff(r, �)do exist; seeAppendix I, Sect.A.1, formore information.
According to (A.20), this period function is given by

T1(e, �) = 2
∫ r+(e,�)

r−(e,�)

dr√
2(e −Ueff(r, �))

,

where r± = r±(e, �) are the zeros of 0 = 2(e −Ueff(r, �)) and satisfy 0 < r−(e, �) <

r+(e, �). In addition, for every � > 0, the potential minimum inf {Ueff(r, �) : r ≥ 0}
is attained at some unique r0(�) ∈]r−(e, �), r+(e, �)[. The corresponding frequency
function is ω1(e, �) = 2π

T1(e,�)
.

3.1 Upper Boundedness of T1

Recall that
D = {(e,β) : β ∈ [0,β∗], e ∈ [emin(β), e0]}, (3.1)

and
D̊ = {(e,β) : β ∈]0,β∗[, e ∈]emin(β), e0[}

is its interior. We are going to show that T1 is bounded from above (or equivalently,
ω1 is bounded from below), uniformly in D̊, which is the set of relevant (e, �), where
T1 is defined. As T1 will be shown to be continuous in D (see Theorem 3.13 below),
this is of course for free, but since the direct argument in Theorem 3.2 could be of
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general interest, we include it anyhow; the same remark applies to Theorem 3.5 on
the lower boundedness of T1.

We start with an auxiliary lemma that will be useful for the proof of Theorem 3.2
and beyond.

Lemma 3.1 The following assertions are verified.

(a) If r > s > 0, then

2π

3
ρQ(r)(r2 − s2) ≤ UQ(r) −UQ(s) ≤ 2π

3
ρQ(0)(r2 − s2). (3.2)

Moreover, for rQ ≥ r > s > 0,

UQ(r) −UQ(s) ≥ π

12
ρQ

(rQ
2

)
(r2 − s2). (3.3)

(b) One has
π

6
ρQ

(rQ
2

)
r2−r

2
+ ≤ �2 ≤ 4π

3
ρQ(0) r2−r

2
+.

(c) One has

r0 ≤
(

6

πρQ(
rQ
2 )

)1/4 √
�.

Proof (a) According to (A.2), we have by changing variables s = rτ , ds = rdτ ,

U ′
Q(r) = 4π

r2

∫ r

0
s2ρQ(s) ds = 4πr

∫ 1

0
τ 2ρQ(rτ ) dτ . (3.4)

In particular, U ′
Q(r) ≥ 0. Furthermore, for r > s > 0 and putting t = σ/r , dt =

dσ/r ,

UQ(r) −UQ(s) =
∫ r

s
U ′

Q(σ) dσ = 4π
∫ r

s
dσσ

∫ 1

0
dττ 2ρQ(στ )

= 4π
∫ 1

0
dττ 2

∫ r

s
dσσρQ(στ ) (3.5)

= 4πr2
∫ 1

0
dττ 2

∫ 1

s
r

dt t ρQ(rτ t). (3.6)

Due to (A.32), we have that ρ′
Q(r) ≤ 0, i.e., ρQ is radially decreasing. Thus, if τ ∈

[0, 1] and σ ∈ [s, r ], then ρQ(r) ≤ ρQ(στ ) ≤ ρQ(0) and (3.2) follows from (3.5).
To establish (3.3), we use (3.6). To begin with, since ρQ ≥ 0,

UQ(r)−UQ(s) ≥ 4πr2
∫ 1

2

0
dττ 2

∫ 1

s
r

dt t ρQ(rτ t).
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Owing to r ≤ rQ , τ ∈ [0, 1
2 ], and t ≤ 1, we have rτ t ≤ rQ

2 , so that ρQ(rτ t) ≥
ρQ(

rQ
2 ). It follows that

UQ(r) −UQ(s)≥4πr2ρQ

(rQ
2

) ∫ 1
2

0
dττ 2

∫ 1

s
r

dt t=4πr2ρQ

(rQ
2

) 1

48

(
1 −

( s
r

)2)
,

which is (3.3). (b) The conditionUeff(r±, �) = e means thatUQ(r±) + �2

2r2±
= e, and

hence
2r2±UQ(r±) + �2 = 2r2±e. (3.7)

Therefore,

2(r2+ − r2−)e = 2(r2+UQ(r+) − r2−UQ(r−))

= 2(r2+ − r2−)UQ(r+) + 2r2−(UQ(r+) −UQ(r−)),

so that

(r2+ − r2−)
�2

r2+
= 2(r2+ − r2−)(e −UQ(r+)) = 2r2−(UQ(r+) −UQ(r−)).

It remains to use (3.3) and the upper bound from (3.2). (c) First note that ρQ(
rQ
2 ) > 0,

as otherwise supp ρQ ⊂ [0, rQ
2 ]. ByLemmaA.7(a), (3.4) and sinceρQ is non-negative

and radially decreasing,

�2 = r30 U
′
Q(r0) = 4πr40

∫ 1

0
τ 2ρQ(r0τ ) dτ ≥ 4πr40

∫ 1
2

0
τ 2ρQ(r0τ ) dτ

≥ 4πr40

∫ 1
2

0
τ 2ρQ

(rQ
2

)
dτ = π

6
ρQ(

rQ
2

) r40 .

We will derive a more precise asymptotics of r0 as � → 0+ below in (A.34). �
Now, we are in a position to derive a uniform lower bound on ω1 or equivalently

a uniform upper bound on T1.

Theorem 3.2 We have

δ1 = inf {ω1(e, �) : (e, �) ∈ D̊} > 0.

Proof Put aQ = ρQ(
rQ
2 ) > 0. Then in particular aQ ≤ ρQ(0), so that

δQ = 1 −
√

aQ
16ρQ(0)

∈
[1
2
, 1

[
.

Let r± = r±(e, �) and r0 = r0(�) be as before. From Lemma 3.1(c), we recall that
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r0 ≤
(

6

πaQ

)1/4 √
�. (3.8)

Case 1: r0 ≥ (1 − δQ)r+. Then Lemma A.10(b) in conjunction with (3.8) implies
that

T1(e, �) ≤ π

√
r−r+
�

(r− + r+) ≤ 2π
r2+
�

≤ 2π

(1 − δQ)2

r20
�

≤ 2π

(1 − δQ)2

(
6

πaQ

)1/2

.

(3.9)

Case 2: r0 ≤ (1 − δQ)r+. This is the nontrivial part of the argument. Here, we split
up the integral as

T1(e, �) = 2
∫ r+

r−

dr√
2(e −Ueff(r, �))

= 2
∫ r0

r−

dr√
2(e −Ueff(r, �))

+ 2
∫ r+

r0

dr√
2(e −Ueff(r, �))

=: T−
1 (e, �) + T+

1 (e, �).

Using Lemma A.10(a), we can bound T−
1 as

T−
1 (e, �) ≤ 2

√
r−r+
�

∫ r0

r−

r dr√
(r − r−)(r+ − r)

≤ 2
√
r−r+
�

r0√
r+ − r0

∫ r0

r−

dr√
r − r−

= 4
√
r−r+
�

r0√
r+ − r0

√
r0 − r−. (3.10)

It follows from r0 ≤ (1 − δQ)r+ that
√
r+ ≤ δ

−1/2
Q

√
r+ − r0. Thus, by (3.8) and since

δQ ≥ 1/2,

T−
1 (e, �) ≤ 4δ−1/2

Q

√
r−
�

r0
√
r0 − r− ≤ 4δ−1/2

Q

r20
�

≤ 4
√
2

(
6

πaQ

)1/2

. (3.11)

Regarding T+
1 , we can invoke Lemma A.7(a) to get for r ∈ [r0, r+] by also using

Lemma A.6(a),

�2

2r2+r2
≤ �2

2r2+r20
= r0U ′

Q(r0)

2r2+
≤ r0U ′

Q(r0)

2r20
(1 − δQ)2 = 1

2
(1 − δQ)2 A(r0)

≤ 1

2
(1 − δQ)2A(0) = 2π

3
(1 − δQ)2 ρQ(0). (3.12)

We then deduce from (3.3) in Lemma 3.1(a) and (3.12) that for r ∈ [r0, r+],
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e −Ueff(r, �) = Ueff(r+, �) −Ueff(r, �) = UQ(r+) + �2

2r2+
−UQ(r) − �2

2r2

= UQ(r+) −UQ(r) − �2

2r2+r2
(r2+ − r2)

≥
[

π

12
aQ − 2π

3
(1 − δQ)2 ρQ(0)

]
(r2+ − r2)

= π

24
aQ(r2+ − r2),

the latter owing to the choice of δQ . This in turn yields

T+
1 (e, �) = 2

∫ r+

r0

dr√
2(e −Ueff(r, �))

≤ √
2

√
24

πaQ

∫ r+

r0

dr√
r2+ − r2

≤ 4
√
3√

πaQ

1√
r+

∫ r+

r0

dr√
r+ − r

= 8
√
3√

πaQ

1√
r+

√
r+ − r0 ≤ 8

√
3√

πaQ
.

Adding this to (3.11), we have shown that

T1(e, �) ≤ 4
√
2

(
6

πaQ

)1/2

+ 8
√
3√

πaQ
= 16

√
3√

πaQ
. (3.13)

Hence, the boundedness of T1 from above is a consequence of (3.9) and (3.13). �

Observe that in the proof of Theorem 3.2 actually no properties of the sets D̊ or D
from (3.1) have been used, apart from the fact that T1(e, �) is defined for (e, �) ∈ D̊.

3.2 Lower Boundedness of T1

It is the purpose of this section to verify that T1 is bounded from below (or equiva-
lently, ω1 is bounded from above), uniformly in D̊.

In some cases, it will be convenient to be able to re-express the period function

T1(e,β) = 2
∫ r+(e,β)

r−(e,β)

dr√
2(e −Ueff(r,β))

(3.14)

from (A.20), written in terms of β = �2, by means of an integral with fixed limits of
integration; this is more or less taken from [11, Section 2].

Lemma 3.3 We have

T1(e,β) = √
2

∫ π/2

−π/2

dθ
∂h
∂s (s(

√
ê(β) sin θ,β),β)

,
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where

h(s,β) = s

(
V (s,β)

s2

)1/2

, h(0,β) = 0,

for
V (s,β) = Ueff(r0(β) + s,β) − emin(β).

Also, ê(β) = e − emin(β), and R 
→ s(R,β) = s denotes the inverse mapping to
s 
→ h(s,β) = R. Explicitly,

∂h

∂s
(s,β) = sgn(s)

2

U ′
eff(r0(β) + s,β)√

Ueff(r0(β) + s,β) − emin(β)
≥ 0, (3.15)

so that also

T1(e,β) = 2
√
2

∫ π/2

−π/2
dθ

[∫ 1
0 (1 − ρ)U ′′

eff(r0(β) + ρs(
√
ê(β) sin θ,β),β) dρ]1/2∫ 1

0 U ′′
eff(r0(β) + ρs(

√
ê(β) sin θ,β),β) dρ

.

(3.16)

Proof Let s±(e,β) = r±(e,β) − r0(β). Setting s = r − r0(β), ds = dr , we obtain

T1(e,β) = 2
∫ s+(e,β)

s−(e,β)

ds√
2(e − emin(β) − [Ueff(r0(β) + s,β) − emin(β)])

= 2
∫ s+(e,β)

s−(e,β)

ds√
2(ê(β) − V (s,β))

. (3.17)

Note that V (·,β) is increasing in [0, s+(e,β)], decreasing in [s−(e,β), 0] and such
that

V (s±(e,β),β) = e − emin(β) = ê(β).

Furthermore, V (0,β) = Ueff(r0(β),β) − emin(β) = 0 by definition and ∂V
∂s (0,β) =

U ′
eff(r0(β),β) by (A.35), i.e., V (·,β) is at least quadratic about s = 0. The next

change of variables to be applied is

s 
→ R = h(s,β), dR = ∂h

∂s
ds, R2 = V (s,β).

Then (3.17) transforms into

T1(e,β) = 2
∫ √

ê(β)

−
√

ê(β)

dR
∂h
∂s (s(R,β),β)

√
2(ê(β) − R2)

.

Finally, put R = √
ê(β) sin θ, dR = √

ê(β) cos θ dθ. This yields
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T1(e,β) = √
2

∫ π/2

−π/2

dθ
∂h
∂s (s(

√
ê(β) sin θ,β),β)

,

and thus the claimed formula for T1. The relation (3.15) is straightforward, whereas
(3.16) follows from Lemma A.9. �

Corollary 3.4 If s ∈ [r−(e,β) − r0(β), 0], then
0 ≤ ∂h

∂s
(s,β) ≤ 1√

2B(rQ)

(
3β

∫ 1

0

dρ

(r0(β) + ρs)4
+ 28π

3
ρQ(0)

)
.

Proof Let s− = s−(e,β) − r0(β). If s ∈ [s−, 0], then
0 ≤ ∂h

∂s
(s,β) =

∣∣∣∂h
∂s

(s,β)

∣∣∣ = 1

2

|U ′
eff(r0(β) + s,β)|√

Ueff(r0(β) + s,β) − emin(β)

by (3.15) in Lemma 3.3. Thus, it remains to use (A.37) and (A.38) from Lemma A.9.
�

Theorem 3.5 We have

�1 = sup {ω1(e, �) : (e, �) ∈ D̊} < ∞.

Proof As above, we write r± = r±(e,β) and r0 = r0(β). If r ∈ [r−, r+], then by
Lemma 3.1(a),

e −Ueff(r,β) = UQ(r+) −UQ(r) − β

2r2+r2
(r2+ − r2)

≤ UQ(r+) −UQ(r) ≤ 2π

3
ρQ(0)(r2+ − r2) ≤ 4π

3
ρQ(0)r+(r+ − r).

(3.18)

Case 1: r+/2 ≥ r0. Here (3.18) implies that

T1(e,β) = 2
∫ r+

r−

dr√
2(e −Ueff(r,β))

≥ √
2

∫ r+

r0

dr√
e −Ueff(r,β)

≥
√

3

2πρQ(0)

1√
r+

∫ r+

r0

dr√
r+ − r

= 2

√
3

2πρQ(0)

√
r+ − r0

r+
≥

√
3

πρQ(0)
.

Case 2: r− ≤ r+/2 ≤ r0. Similarl to the first case, we obtain

T1(e,β) = 2
∫ r+

r−

dr√
2(e −Ueff(r,β))

≥ √
2

∫ r+

r+/2

dr√
e −Ueff(r,β)

≥
√

3

2πρQ(0)

1√
r+

∫ r+

r+/2

dr√
r+ − r

=
√

6

πρQ(0)
.
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Case 3: 0 ≤ r+/2 ≤ r−. Then r+/2 ≤ r− ≤ r+ and also r− ≤ r0 ≤ r+ ≤ 2r− as well
as r0 ≤ r+ ≤ 2r− ≤ 2r0, so all of r−, r0 and r+ are of comparable size. In particular, if
r ∈ [r−, r+], then r0/2 ≤ r ≤ 2r0. In the following, we are going to use the notation
from the proof of Lemma 3.3. Let R = √

ê(β) sin θ. If θ ∈ [−π/2, 0], then R ∈
[−√

ê(β), 0] and hence s(R,β) ∈ [s−, 0]. Thus, if furthermore ρ ∈ [0, 1], then r0 +
ρs(R,β) ∈ r0 + [s−, 0] = [r−, r0], so that

1

2
r0 ≤ r0 + ρs(R,β) ≤ 2r0. (3.19)

Since s(R,β) ∈ [s−, 0], Corollary 3.4 and (3.19) imply that

0 ≤ ∂h

∂s
(s(R,β),β) ≤ 1√

2B(rQ)

(
3β

∫ 1

0

dρ

(r0 + ρs(R,β))4
+ 28π

3
ρQ(0)

)

≤ 1√
2B(rQ)

(
48β

r40
+ 28π

3
ρQ(0)

)
(3.20)

for θ ∈ [−π/2, 0]. By (A.34) from Lemma A.7, we have

r40 = 1

A(0)
β + O(β5/4) = β

( 1

A(0)
+ O(β1/4)

)

as β → 0+. Hence, there is β0 ∈]0,β∗[ such that

β

2A(0)
≤ r40 ≤ 2β

A(0)
, β ∈]0,β0].

Accordingly, owing to Lemma A.7(a), we can find a constant c0 > 0 so that r0 ≥ c0
for β ∈ [β0,β∗]. If we now distinguish the cases β ∈]0,β0] and β ∈ [β0,β∗], by
using the foregoing estimates, we deduce that in any case

β

r40
≤ max

{
2A(0),

β∗
c40

}
.

Upon going back to (3.20), it follows that

0 ≤ ∂h

∂s
(s(R,β),β) ≤ 1√

2B(rQ)

(
48max

{
2A(0),

β∗
c40

}
+ 28π

3
ρQ(0)

)
=: C1

for θ ∈ [−π/2, 0]. Since generally ∂h
∂s ≥ 0, we finally get from Lemma 3.3

T1(e,β) = √
2

∫ π/2

−π/2

dθ
∂h
∂s (s(R,β),β)

≥ √
2

∫ 0

−π/2

dθ
∂h
∂s (s(R,β),β)

≥ π√
2C1

,
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which completes the proof, as we have found a positive lower bound on T1 in all
three cases. �

3.3 Further Properties of T1

First, we discuss some regularity properties of T1.

Theorem 3.6 We have T1 ∈ C1(D̊).

Proof The continuity of T1 may be shown directly from (3.14), as we already know
that r± ∈ C2(D̊) by Remark A.3; we omit the details. To prove the differentiability,
we use a method that is known and that we learned from R. Ortega. It is considerably
less painful than differentiating an explicit relation for T1 like (3.14). For (e,β) ∈ D̊,
we consider

r̈ = −U ′
eff(r,β), r(0) = r−(e,β), ṙ(0) = 0,

where r(t) = r(t, e,β). Defining

F : R × D̊ → R, F(t, e,β) = ṙ(t, e,β),

we have F ∈ C1(R × D̊) by Lemma A.11(a). Next observe that F(t, e,β) = 0
exactly for

t = 0, t = ±1

2
T1(e,β), t = ±T1(e,β), t = ±3

2
T1(e,β), . . . .

Fix (ẽ, β̃) ∈ D̊ and define t̃ = T1(ẽ, β̃). Then F(t̃, ẽ, β̃) = 0 by the above. Further-
more,

∂F

∂t
(t, e,β) = r̈(t, e,β) = −U ′

eff(r(t, e,β),β)

and r(t̃, ẽ, β̃) = r(T1(ẽ, β̃), ẽ, β̃) = r(0, ẽ, β̃) = r−(ẽ, β̃) in conjunction with
Lemma A.4 imply that

∂F

∂t
(t̃, ẽ, β̃) = −U ′

eff(r−(ẽ, β̃), β̃) > 0.

Hence, the implicit function theoremyields the existence of aC1-function t = t (e,β)

that is defined for (e,β) in a neighborhood U ⊂ D̊ of (ẽ, β̃), such that

F(t (e,β), e,β) = 0 for (e,β) ∈ U and t (ẽ, β̃) = t̃ = T1(ẽ, β̃).
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According to our previous remarks, for every (e,β) ∈ U , we must have

t (e,β) = k(e,β)
1

2
T1(e,β)

for some k(e,β) ∈ Z. Then k is continuous in U and such that k(ẽ, β̃) = 2, which
means that k = 2 throughout U . Thus, T1 = t in U shows that T1 ∈ C1(U ). �
Remark 3.7 If ρQ ∈ Ck , thenUQ ∈ Ck+2. As a consequence, r− ∈ Ck+2(D̊) by the
argument from Remark A.3. Comparing to Lemma A.11(a), this entails F = ṙ ∈
Ck+1(R × D̊), so that t = t (e,β) ∈ Ck+1(U ) for the solution function in the proof
of Theorem 3.6. Hence, we get T1 ∈ Ck+1(D̊) in this case. ♦

Now, we are going to show that T1 can be extended continuously from D̊ to D.
We start with the continuous extension to {(e,β) : β ∈]0,β∗], e = emin(β)}.
Lemma 3.8 Let β̂ ∈]0,β∗]. Then

T1(e,β) → 2π√
B(r0(β̂))

as D̊ 
 (e,β) → (emin(β̂), β̂). (3.21)

Proof This relies on the representation (3.16) of T1(e,β), which we recall as

T1(e,β) = 2
√
2

∫ π/2

−π/2
dθ

[∫ 1
0 (1 − ρ)U ′′

eff(r0(β) + ρs(
√
ê(β) sin θ,β),β) dρ]1/2∫ 1

0 U ′′
eff(r0(β) + ρs(

√
ê(β) sin θ,β),β) dρ

.

(3.22)
Here, h(s,β) = s( V (s,β)

s2 )1/2 and h(0,β) = 0 for V (s,β) = Ueff(r0(β) + s,β) −
emin(β). Furthermore, ê(β) = e − emin(β) and R 
→ s(R,β) = s denotes the inverse
mapping to s 
→ h(s,β) = R. Due to β → β̂ > 0, we can assume that β ≥ β̂/2
throughout the argument. If r ∈ [r−, r+] and β ∈]0,β∗], then Lemma A.6(c) and
(A.28) yields

U ′′′
eff(r,β) = −12β

r5
+ B ′(r) − 3A′(r) = −12β

r5
+ 4πρ′

Q(r) − 2A′(r)

= −12β

r5
+ 4πρ′

Q(r) − 8π

r4

∫ r

0
s3ρ′

Q(s) ds.

Therefore, (Q4) gives the bound

|U ′′′
eff(r,β)| ≤ C

(
1 + 1

r5−

)
, r ∈ [r−, r+], β ∈]0,β∗], e ∈ [emin(β), e0].

(3.23)
By definition, we have UQ(r−) + β

2r− = e. Hence, U ′
Q(r) ≥ 0 leads to

β

2r2−
≤ UQ(r−) −UQ(0) + β

2r2−
= e −UQ(0),
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and thus

r− ≥
√

β

2(e −UQ(0))
≥

√
β̂

4(e −UQ(0))

for β ∈ [β̂/2,β∗] and e ∈ [emin(β), e0]; note that we will have e → emin(β̂) >

UQ(0). Going back to (3.23), we obtain

|U ′′′
eff(r,β)| ≤ C, r ∈ [r−, r+], β ∈ [β̂/2,β∗], e ∈ [emin(β), e0]. (3.24)

Next, we assert that

lim
β→β̂, e→emin(β̂)

sup
θ∈[−π/2,π/2]

|s(
√
ê(β) sin θ,β)| = 0. (3.25)

Otherwise, there would be ε0 > 0 and sequences (β j ), (e j ) and (θ j ) such that
β j → β̂, θ j → θ̂ ∈ [−π/2,π/2], ê(β j ) = e j − emin(β j ) → emin(β̂) − emin(β̂) = 0
as well as |s(√ê(β j ) sin θ j ,β j )| ≥ ε0 for all j ∈ N; here it was used that emin(β) =
Ueff(r0(β),β) is continuous in β ∈]0,β∗[, cf. Remark A.3. Thus,

√
ê(β j ) sin θ j → 0

and s(
√
ê(β j ) sin θ j ,β j ) → s(0, β̂) = 0, which is a contradiction. For the latter con-

vergence, note that s 
→ h(s,β) for s ∈ [s−, s+] is an increasing function that con-
nects −√

ê(β) to
√
ê(β). Since ê(β j ) → 0, we must also have s±(e j ,β j ) → 0: for

instance, if we had s+(e j ,β j ) → ŝ+ > 0 (along a subsequence), then h(s, β̂) = 0
for s ∈ [0, ŝ+], which is impossible. Thus, s±(e j ,β j ) → 0, and due to |s(R,β)| ≤
max{|s−(e,β)|, s+(e,β)}, we obtain s(

√
ê(β j ) sin θ j ,β j ) → 0 as claimed.

Coming back to (3.22) and using Lemma A.7(d) and (3.24), we estimate

∣∣∣∣
∫ 1

0
U ′′

eff(r0(β) + ρs(
√
ê(β) sin θ,β),β) dρ − B(r0(β))

∣∣∣∣
=

∣∣∣∣
∫ 1

0
[U ′′

eff(r0(β) + ρs(
√
ê(β) sin θ,β),β) −U ′′

eff(r0(β),β)] dρ

∣∣∣∣
≤ C

∫ 1

0
|s(

√
ê(β) sin θ,β)| dρ ≤ CS(e,β),

S(e,β) = sup
θ∈[−π/2,π/2]

|s(
√
ê(β) sin θ,β)|. (3.26)

Similarly,

∣∣∣∣
∫ 1

0
(1 − ρ)U ′′

eff(r0(β) + ρs(
√
ê(β) sin θ,β),β) dρ − 1

2
B(r0(β))

∣∣∣∣ ≤ CS(e,β).

(3.27)
From (3.26), (3.27) and (3.25), in conjunction with Lebesgue’s dominated conver-
gence theorem and B(r0(β̂)) > 0, we deduce (3.21). �
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Remark 3.9 Note that T1(e,β) is defined for e = e0 and β ∈]0,β∗]; it is the period
of the orbit of r̈ = −U ′′

eff(r,β) that has the largest energy e = e0. Therefore, it is
straightforward that

T1(e0,β) = 2
∫ r+(e0,β)

r−(e0,β)

dr√
2(e0 −Ueff(r,β))

extends T1 continuously to {(e,β) : e = e0,β ∈]0,β∗]}. ♦
There is yet another way to represent T1; see [24, Exercise 1, p. 40].

Lemma 3.10 Define

χ(r, e,β) =
∫ 1

0
dτ (1 − τ )

∫ 1

0
dσU ′′

eff(τr+(e,β) + σ(1 − τ )r

+ (1 − σ)(1 − τ )r−(e,β),β).

Then

T1(e,β) = √
2

∫ r+(e,β)

r−(e,β)

dr√
(r+(e,β) − r)(r − r−(e,β))χ(r, e,β)

. (3.28)

Proof If r > s, then

Ueff(r,β) −Ueff(s,β) = (r − s)
∫ 1

0
U ′

eff(τr + (1 − τ )s,β) dτ ,

and in particularUeff(r±,β) = e yields
∫ 1
0 U ′

eff(τr+ + (1 − τ )r−,β) dτ = 0. There-
fore, we can write

e −Ueff(r,β) = Ueff(r+,β) −Ueff(r,β)

= (r+ − r)
∫ 1

0
U ′

eff(τr+ + (1 − τ )r,β) dτ

= (r+ − r)
∫ 1

0
[U ′

eff(τr++(1 − τ )r,β)−U ′
eff(τr++(1−τ )r−,β)] dτ

= (r+ − r)(r − r−)

∫ 1

0
dτ (1 − τ )

∫ 1

0
dσU ′′

eff(τr+ + σ(1 − τ )r

+ (1 − σ)(1 − τ )r−,β),

which leads to (3.28). �
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Lemma 3.11 We have

T1(e,β) → 2π√
B(0)

as D̊ 
 (e,β) → (UQ(0), 0). (3.29)

Proof First, we note that, although it won’t be used, e − emin(β) ≥ 0 together with

Lemma A.7(f) implies e −UQ(0) ≥ emin(β) −UQ(0) ∼
√
U ′′

Q(0)
√

β as β → 0,

which means that as e → UQ(0), the quantity e −UQ(0) can’t be too small in terms
of β → 0; due to U ′′

Q(r) + 2
r U

′
Q(r) = 4πρQ(r), we have U ′′

Q(0) = 4π
3 ρQ(0) > 0.

To actually verify (3.29), we are going to write

T1(e,β) = √
2

∫ r+

r−

dr√
(r+ − r)(r − r−)χ(r)

(3.30)

as in (3.28) from Lemma 3.10, where

χ(r) = χ(r, e,β) =
∫ 1

0
dτ (1 − τ )

∫ 1

0
dσU ′′

eff(τr+ + σ(1 − τ )r

+ (1 − σ)(1 − τ )r−,β).

Due to Lemma A.6(c), we have U ′′
eff(r,β) = 3β

r4 + B(r) − 3A(r). By explicit inte-
gration,

3β
∫ 1

0
dσ

∫ 1

0
dτ (1 − τ )

1

(τr+ + σ(1 − τ )r + (1 − σ)(1 − τ )r−)4

= β

2r2+

∫ 1

0
dσ

2r+ + σr + (1 − σ)r−
(σr + (1 − σ)r−)3

= β

r+

∫ 1

0
dσ

1

(σr + (1 − σ)r−)3
+ β

2r2+

∫ 1

0
dσ

1

(σr + (1 − σ)r−)2

= β

r+
r + r−
2r2r2−

+ β

2r2+

1

rr−

= β

2

r(r− + r+) + r−r+
r2r2−r2+

= β

2

(r+ + r)(r− + r)

r2r2−r2+
− β

2

1

r2−r2+
.

Hence, we obtain
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χ(r) = β

2

(r+ + r)(r− + r)

r2r2−r2+
+ χ2(r), (3.31)

χ2(r) =
∫ 1

0
dτ (1 − τ )

∫ 1

0
dσ (B − 3A)(τr+ + σ(1 − τ )r

+ (1 − σ)(1 − τ )r−) − β

2

1

r2−r2+
,

and χ2(r) = χ2(r, e,β). From Lemma A.6(a) and (b), we get (B − 3A)(0) =
16π
3 ρQ(0) − 12π

3 ρQ(0) = 4π
3 ρQ(0) = U ′′

Q(0). Since τr+ + σ(1 − τ )r + (1 − σ)

(1 − τ )r− ∈ [r−, r+] ⊂ [0, r+] for τ ,σ ∈ [0, 1] and r ∈ [r−, r+], it follows from

χ2(r) =
∫ 1

0
dτ (1 − τ )

∫ 1

0
dσ [(B − 3A)(τr+ + σ(1 − τ )r

+ (1 − σ)(1 − τ )r−) − (B − 3A)(0)]
+1

2
U ′′

Q(0) − β

2

1

r2−r2+

and (A.26) in Lemma A.5 that

sup
r∈[r−,r+]

|χ2(r, e,β)| ≤ 1

2
sup

s∈[0,r+(e,β)]
|(B − 3A)(s) − (B − 3A)(0)|

+1

2
sup

s∈[0,r+(e,β)]
|U ′′

Q(s) −U ′′
Q(0)| (3.32)

for (e,β) ∈ D̊ and r± = r±(e,β).
Next, we assert that

r+(e,β) → 0 as D̊ 
 (e,β) → (UQ(0), 0). (3.33)

To establish this claim, we will use the relation

UQ(r+) −UQ(r0) = e − β

2r2+
− emin(β) + β

2r20
= e − emin(β) + β

2r20r
2+
(r2+ − r20 ).

Hence, (3.3) from Lemma 3.1 yields

π

12
ρQ

(rQ
2

)
(r2+ − r20 ) ≤ e −UQ(0) +UQ(0) − emin(β) + β

2r20r
2+
(r2+ − r20 ).

(3.34)

Due to Lemma A.7(f), we have |emin(β) −UQ(0)| = O(β1/2) and r0 = O(β1/4)

as β → 0. Thus, if r+(e,β) → r̂+ > 0 as (e,β) → (UQ(0), 0), and along some
subsequence, then (3.34)would imply that π

12 ρQ(
rQ
2 ) r̂2+ ≤ 0,which is a contradiction
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and confirms (3.33). Since both (B − 3A)(s) and U ′′
Q(s) are continuous at s = 0,

(3.32) in turn shows that

lim
e→UQ(0),β→0

sup
r∈[r−,r+]

|χ2(r, e,β)| = 0. (3.35)

A further preparatory step is to rewrite (3.31) as

χ(r) = β

2

(r+ + r)(r− + r)

r2r2−r2+
(1 + χ3(r)), (3.36)

χ3(r) = 2

β

r2r2−r2+
(r+ + r)(r− + r)

χ2(r),

for χ3(r) = χ3(r, e,β). Owing to Lemma 3.1(b), we have

r2−r
2
+ ≤ Cβ. (3.37)

Since also r2

(r++r)(r−+r) ≤ 1, it follows from (3.35) that

lim
e→UQ(0),β→0

sup
r∈[r−,r+]

|χ3(r, e,β)| = 0. (3.38)

Coming back to (3.29), consider sequences e j → UQ(0) and β j → 0. Let ε > 0
be given. According to (3.38), there is j0 ∈ N such that supr∈[r−(e j ,β j ),r+(e j ,β j )] |χ3

(r, e j ,β j )| ≤ ε for j ≥ j0. Due to (3.36), this yields for j ≥ j0 and r ∈ [r−(e j ,β j ),

r+(e j ,β j )]
β j

2

(r+, j + r)(r−, j + r)

r2 r2−, j r
2+, j

(1 − ε) ≤ χ(r, e j , β j ) ≤ β j

2

(r+, j + r)(r−, j + r)

r2 r2−, j r
2+, j

(1 + ε),

where r±, j = r±(e j ,β j ). Therefore, (3.30) leads to

r−, j r+, j√
1 + ε

2

β
1/2
j

I j ≤ T1(e j ,β j ) ≤ r−, j r+, j√
1 − ε

2

β
1/2
j

I j

for j ≥ j0, where

I j =
∫ r+, j

r−, j

r

(r2+, j − r2)1/2(r2 − r2−, j )
1/2

dr.

Setting s = r2, ds = 2r dr , this integral may be evaluated as I j = π/2. Thus, we
obtain

1 − ε

π2

β j

r2−, j r
2
+, j

≤ 1

T1(e j ,β j )2
≤ 1 + ε

π2

β j

r2−, j r
2
+, j

(3.39)
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for j ≥ j0. From (A.26) in Lemma A.5, we know that

∣∣∣∣ β j

r2−, j r
2
+, j

−U ′′
Q(0)

∣∣∣∣ ≤ sup
r∈[0,r+, j ]

|U ′′
Q(r) −U ′′

Q(0)|.

As r+, j → 0 by (3.33), we may assume that j0 is already taken so large that

U ′′
Q(0) − ε ≤ β j

r2−, j r
2
+, j

≤ U ′′
Q(0) + ε

for j ≥ j0. Therefore, (3.39) implies that

1 − ε

π2
(U ′′

Q(0) − ε) ≤ 1

T1(e j ,β j )2
≤ 1 + ε

π2
(U ′′

Q(0) + ε)

for j ≥ j0. Altogether, this shows that lim j→∞ T1(e j ,β j ) = π√
U ′′

Q(0)
, and it remains

to recall that B(0) = 16π
3 ρQ(0) = 4U ′′

Q(0), cf. Lemma A.6(a), (b). �

Lemma 3.12 Let ê ∈]UQ(0), e0]. Then

T1(e,β) → 2
∫ r̂(ê)

0

dr√
2(ê −UQ(r))

as D̊ 
 (e,β) → (ê, 0), (3.40)

where r̂(e) ∈ [0, rQ] is the unique solution to UQ(r̂(e)) = e.

Proof First, we are going to show that r+ stays away from zero in the limiting case
that we are considering here. For this, we may assume that r+ ≤ rQ/2. Due to (3.6),
we have

r2+ϕ(r+) + β

2r2+
= UQ(r+) −UQ(0) + β

2r2+
= e −UQ(0) (3.41)

for

ϕ(r+) = 4π
∫ 1

0
dττ 2

∫ 1

0
dt t ρQ(τ tr+).

Since ρQ is radially decreasing and 0 ≤ τ tr+ ≤ rQ/2, it follows that

0 < c1 = 2π

3
ρQ

(rQ
2

)
≤ ϕ(r+) ≤ 2π

3
ρQ(0) = C1. (3.42)

In (3.41), solving the resulting quadratic equation for r2+, we obtain

r2+ = e −UQ(0) ± √
(e −UQ(0))2 − 2ϕ(r+)β

2ϕ(r+)
. (3.43)

Let us suppose that the sign were ‘−’, along (a subsequence) of e → ê and β → 0.
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Then

r2+ = β

e −UQ(0) + √
(e −UQ(0))2 − 2ϕ(r+)β

together with ê −UQ(0) > 0 and (3.42) would yield c2β ≤ r2+ ≤ C2β for suitable
constants C2 > c2 > 0. By Lemma 3.1(b), we have the general estimate

cβ ≤ r2−r
2
+.

As a consequence,
c

C2
≤ r2−.

However, r2− ≤ r20 = O(β1/2) as β → 0 by Lemma A.7(f), which gives a contradic-
tion. To summarize, we may suppose that the sign is ‘+’ in (3.43). Hence,

r2+ = e −UQ(0) + √
(e −UQ(0))2 − 2ϕ(r+)β

2ϕ(r+)
≥ 1

2C1
(e −UQ(0))

for β ≤ 1
2C1

(e −UQ(0))2 yields the desired lower bound for r+. Thus, in what fol-
lows, we can assume that r+(e,β) ≥ η0 > 0 for an appropriate constant η0 and
(e,β) → (ê, 0).

Next, we are going to show that

T−
1 (e,β) = 2

∫ r0

r−

dr√
2(e −Ueff(r,β))

→ 0 as D̊ 
 (e,β) → (ê, 0). (3.44)

For, owing to (3.10), we get

T−
1 (e,β) ≤ 4

√
r−r+√

β

r0√
r+ − r0

√
r0 − r− ≤ 4

√
r−r+√

β

r3/20√
r+ − r0

.

Since r2−r2+ ≤ Cβ by (3.37) and r0 = O(β1/4) by Lemma A.7(f), r+ ≥ η0 yields

T−
1 (e,β) ≤ Cβ3/8

and completes the argument for (3.44).
Thus, in order to establish (3.40), we need to prove that

∫ r+

r0

dr√
e −Ueff(r,β)

→
∫ r̂(ê)

0

dr√
ê −UQ(r)

as D̊ 
 (e,β) → (ê, 0); (3.45)

note that UQ(r+) ≤ UQ(r+) + β
2r2+

= e = UQ(r̂(e)) implies r+ ≤ r̂(e). In addition,
using (3.3), we obtain
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π

12
ρQ

(rQ
2

)
η0 (r̂(e) − r+) ≤ π

12
ρQ

(rQ
2

)
(r̂(e)2 − r2+)

≤ UQ(r̂(e)) −UQ(r+) = β

2r2+
≤ 1

2η2
0

β.

Similarly, by (3.2),
β

2r2Q
≤ β

2r2+
= UQ(r̂(e)) −UQ(r+)

≤ 2π

3
ρQ(0)(r̂(e)2 − r2+)

≤ 4π

3
ρQ(0) rQ (r̂(e) − r+),

so that c3β ≤ r̂(e) − r+ ≤ C3β. To validate (3.45), we are going to show

∣∣∣∣
∫ r+

r0

dr√
e −Ueff(r,β)

−
∫ r̂(e)

0

dr√
e −UQ(r)

∣∣∣∣ → 0, (3.46)

∣∣∣∣
∫ r̂(e)

0

dr√
e −UQ(r)

−
∫ r̂(ê)

0

dr√
ê −UQ(r)

∣∣∣∣ → 0, (3.47)

both as D̊ 
 (e,β) → (ê, 0); the second relation is independent of β.
To begin with,

∫ r0

0

dr√
e −UQ(r)

→ 0 and
∫ r̂(e)

r+

dr√
e −UQ(r)

→ 0. (3.48)

For the first claim, if 0 ≤ r ≤ r0 = O(β1/4) and e → ê > UQ(0), we may suppose
that e −UQ(r) ≥ η1 > 0 for the e and r in question; therefore, the first claim in
(3.48) follows. Regarding the second assertion, we write

e −UQ(r) = UQ(r̂(e)) −UQ(r) = (r̂(e) − r)
∫ 1

0
U ′

Q(τ r̂(e) + (1 − τ )r) dτ

for r ∈ [ r+2 , r̂(e)]. If s ∈ [ r+2 , r̂(e)], then the fact that ρQ is radially decreasing yields

U ′
Q(s) = 4π

s2

∫ s

0
σ2ρQ(σ) dσ ≥ 4π

r2Q

∫ r+/2

0
σ2ρQ(σ) dσ ≥ πr3+

6r2Q
ρQ

(r+
2

)
≥ η2 > 0.

(3.49)
Hence,

e −UQ(r) ≥ η2(r̂(e) − r), r ∈
[r+
2

, r̂(e)
]
, (3.50)
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and accordingly,

∫ r̂(e)

r+

dr√
e −UQ(r)

≤ η
−1/2
2

∫ r̂(e)

r+

dr√
r̂(e) − r

= 2η−1/2
2

√
r̂(e) − r+ ≤ Cβ1/2 → 0.

Thus, both relations in (3.48) hold, and therefore (3.46) comes down to proving that

∣∣∣∣
∫ r+

r0

dr√
e −Ueff(r,β)

−
∫ r+

r0

dr√
e −UQ(r)

∣∣∣∣ → 0 as D̊ 
 (e,β) → (ê, 0).

If r ∈ [r0, (1 − β1/4)r+], then β
2r2 ≤ β

2r20
≤ Cβ1/2, as r0 = O(β1/4). Therefore, (3.3)

yields

e −UQ(r) ≥ e −Ueff(r,β) = e −UQ(r) − β

2r2

≥ UQ(r̂(e)) −UQ((1 − β1/4)r+) − Cβ1/2

≥ π

12
ρQ

(rQ
2

)
(r̂(e)2 − (1 − β1/4)2r2+) − Cβ1/2

≥ π

12
ρQ

(rQ
2

)
η0 (r̂(e) − r+ + β1/4r+) − Cβ1/2

≥ c4β + c5β
1/4 − Cβ1/2

≥ c6β
1/4.

From the estimate 1√
a

− 1√
b

≤ b−a
a
√
b
for b ≥ a > 0, we hence infer

∣∣∣∣
∫ (1−β1/4)r+

r0

dr√
e −Ueff(r,β)

−
∫ (1−β1/4)r+

r0

dr√
e −UQ(r)

∣∣∣∣

≤ β

2

∫ (1−β1/4)r+

r0

1

(e −Ueff(r,β))
√
e −UQ(r)

dr

r2

≤ β

2r20

∫ (1−β1/4)r+

r0

1

c3/26 β3/8
dr ≤ Cβ1/8 → 0. (3.51)

For the remaining part, r ∈ [(1 − β1/4)r+, r+], we note that for such r , by (3.50),

e −UQ(r) ≥ η2(r̂(e) − r) ≥ η2(r̂(e) − r+) ≥ η2c3 β.

In addition,

e −Ueff(r,β) = Ueff(r+,β) −Ueff(r,β)

= (r+ − r)
∫ 1

0
U ′

eff(τr+ + (1 − τ )r,β) dτ . (3.52)
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If r∈[(1−β1/4)r+, r+], then s=τr+ + (1 − τ )r ∈ [(1 − β1/4)r+, r+] ⊂ [ r+2 , r̂(e)] for
instance, and

U ′
eff(s,β) = U ′

Q(s) − β

s3
≥ η2 − 8β

r3+
≥ η2 − 8β

η3
0

≥ 1

2
η2

by (3.49), if β is small enough. Thus, (3.52) leads to

e −Ueff(r,β) ≥ 1

2
η2 (r+ − r), r ∈ [(1 − β1/4)r+, r+].

If we now use that 1√
a

− 1√
b

≤ b−a√
ab

for b ≥ a > 0, we obtain the bound

∣∣∣∣
∫ r+

(1−β1/4)r+

dr√
e −Ueff(r,β)

−
∫ r+

(1−β1/4)r+

dr√
e −UQ(r)

∣∣∣∣
≤ β

2

∫ r+

(1−β1/4)r+

1√
e −Ueff(r,β)(e −UQ(r))

dr

r2

≤ β

2

4

η2
0

1

η2c3 β

√
2

η2

∫ r+

(1−β1/4)r+

1√
r+ − r

dr ≤ Cβ1/8 → 0. (3.53)

By (3.51) and (3.53), the proof of (3.46) is complete.
Therefore, it remains to check that (3.47) is satisfied. This is not worked out,

since it is just the continuity of the standard period function in the potential V (x) =
UQ(x) −UQ(0) for x ≥ 0 and V (x) = UQ(−x) −UQ(0) for x ≤ 0, for energies
ê = e −UQ(0) ∈]0, e0 −UQ(0)]. �

If we now summarize Lemma 3.8, Remark 3.9 and Lemmas 3.11 and 3.12, then
we have shown the following result (note that emin(0) = UQ(0) and r0(0) = 0).

Theorem 3.13 We have T1 ∈ C(D). The extensions to ∂D are given by

T1(e,β) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2π√
B(r0(β))

: e = emin(β),β ∈ [0,β∗]

2
∫ r+(e0,β)

r−(e0,β)
dr√

2(e0−Ueff (r,β))
: e = e0,β ∈]0,β∗]

2
∫ r̂(e)
0

dr√
2(e−UQ (r))

: e ∈]UQ(0), e0],β = 0

,

where r̂(e) ∈ [0, rQ] is the unique solution to UQ(r̂(e)) = e.

In the remaining part of this section, wewill discuss somemonotonicity properties
of T1.

Lemma 3.14 The function [0,β∗] 
 β 
→ T1(emin(β),β) is strictly increasing.



3.3 Further Properties of T1 49

Proof We know from Lemma A.7(e) that β 
→ r0(β) is strictly increasing, and fur-
thermore r 
→ B(r) is strictly decreasing byLemmaA.6(b).Hence, the claim follows
from T1(emin(β),β) = 2π√

B(r0(β))
. �

Lemma 3.15 The function [UQ(0), e0] 
 e 
→ T1(e, 0) is strictly increasing.

Proof The argument is analogous to the fact that for a one degree of freedom oscilla-
tor ẍ = −V ′(x) about a stable center, where V (0) = V ′(0) = 0 and V (−x) = V (x)
for simplicity, the condition V ′(x) > 0 and V ′′(x) > V ′(x)/x for x > 0 guarantees
that the period function of the periodic orbits about x = 0 is decreasing in the energy
e = 1

2 ẋ
2 + V (x). The first reference to point this out seems to be [64] (which we

basically follow); related papers are [11, 78, 79]. To see the connection, first observe
that, by (1.13), Remark A.1 and (A.32),

U ′′
Q(r) − U ′

Q(r)

r
= 4πρQ(r) − 3

r
U ′

Q(r) = 4π

r3

∫ r

0
s3ρ′

Q(s) ds < 0, r > 0.

Thus, (U ′
Q(r)/r)′ = (rU ′′

Q(r) −U ′
Q(r))/r2 < 0 for r > 0, and it follows that

1

p
U ′

Q(pr) < U ′
Q(r), p > 1, r > 0. (3.54)

The function r̂ is strictly increasing, due to 1 = U ′
Q(r̂(e)) r̂ ′(e) and U ′

Q(r) > 0 for
r > 0. Therefore, its inverse [0, rQ] 
 r̂ 
→ e(r̂) ∈ [UQ(0), e0] is well-defined and
strictly increasing too; note that r̂(UQ(0)) = 0 and r̂(e0) = rQ . Let

T̂ (r̂) = 2
∫ r̂

0

dr√
2(UQ(r̂) −UQ(r))

.

Then

T1(e, 0) = 2
∫ r̂(e)

0

dr√
2(UQ(r̂(e)) −UQ(r)

= T̂ (r̂(e)),

which implies that e 
→ T1(e, 0) is increasing if and only if r̂ 
→ T̂ (r̂) is increasing.
If p > 1 and s ∈ [0, r̂ ], then by (3.54), one has

UQ(pr̂) −UQ(ps)=p
∫ r̂

s
U ′

Q(pτ ) dτ≤p2
∫ r̂

s
U ′

Q(τ ) dτ=p2(UQ(r̂) −UQ(s)).

As a consequence,

T̂ (pr̂) = 2
∫ pr̂

0

dr√
2(UQ(pr̂) −UQ(r))

= 2p
∫ r̂

0

ds√
2(UQ(pr̂) −UQ(ps))

≥ 2
∫ r̂

0

ds√
2(UQ(r̂) −UQ(s))

= T̂ (r̂),

which completes the proof. �
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Corollary 3.16 Suppose that δ1 = inf D̊ ω1 = minD ω1 is attained at some point

(ê, β̂) ∈ ∂D. Then (ê, β̂) lies on the ‘upper line’ {(e,β) : e = e0,β ∈ [0,β∗]} of
the boundary.

Proof This follows from ω1 = 2π
T1

together with Lemmas 3.14 and 3.15. �

Remark 3.17 It will certainly be important to gain a better understanding of the
monotonicity properties of ω1 (or, equivalently, T1) in D. In particular, we expect
that it should be significant to locate those points in D, where ω1 attains its minimum
δ1. Some relations for ∂T1

∂e and ∂T1
∂β

are stated in Lemma A.12(b), (c). For instance,
we have

∂T1
∂β

(e,β) = −1

2

∂

∂e

∫ T1(e,β)

0

ds

r(s)2
= − ∂

∂e

∫ r+(e,β)

r−(e,β)

dr

r2 pr
, (3.55)

which could provide a way to approach the monotonicity of T1 in β. To see this,
we apply the transformation ρ = √

β r−1, dρ = −√
β r−2 dr , like for the ‘apsidal

angle’ [77]. Defining

Ũ (ρ,β) = 1

2
ρ2 +UQ

(√
β

ρ

)
, ρ∓(e,β) =

√
β

r±(e,β)
,

and recalling that pr =
√
2(e −UQ(r) − β

2r2 ), we get

∂T1
∂β

(e,β) = − 1√
β

∂

∂e

∫ ρ+(e,β)

ρ−(e,β)

dρ√
2(e − Ũ (ρ,β))

.

At fixed β, this has turned the integral on the right-hand side of (3.55) into the period
function

T̃ (e) =
∫ ρ+(e,β)

ρ−(e,β)

dρ√
2(e − Ũ (ρ,β))

for the transformed potential Ũ ; note that 0 < ρ− < ρ+ and Ũ (ρ±,β) = e. One
could study the monotonicity of T̃ (e) in the energy e by checking the criteria that
have been listed in the papers we mentioned in the proof of Lemma 3.15 or which
can be found in similar works. Let us state a remarkable relation that could be useful
in this respect. Writing Ũ (ρ) = Ũ (ρ,β), it is calculated that

Ũ ′(ρ) = −
√

β

ρ2
U ′

Q

(√
β

ρ

)
+ ρ, Ũ ′′(ρ) = β

ρ4
U ′′

Q

(√
β

ρ

)
+ 2

√
β

ρ3
U ′

Q

(√
β

ρ

)
+ 1,

and using (1.13) this yields
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Ũ ′′(ρ) − Ũ ′(ρ)

ρ
= β

ρ4
U ′′

Q

(√
β

ρ

)
+ 3

√
β

ρ3
U ′

Q

(√
β

ρ

)

= β

ρ4

[
4πρQ

(√
β

ρ

)
− 2ρ√

β
U ′

Q

(√
β

ρ

)]
+ 3

√
β

ρ3
U ′

Q

(√
β

ρ

)

= β

ρ4

[
4πρQ

(√
β

ρ

)
+ ρ√

β
U ′

Q

(√
β

ρ

)]

= β

ρ4
B

(√
β

ρ

)
.

In other words, (
Ũ ′(ρ)

ρ

)′
= β

ρ5
B

(√
β

ρ

)
,

and the function B is strictly positive.Comparing to the reasoning inLemma3.15, this
looks promising for proving that T̃ (e) is increasing in e, i.e., that ∂T1

∂β
< 0. However,

the argument does not seem to work properly, since the integral defining T̃ (e) is on
[ρ−, ρ+], instead of it beginning at zero, as is the case in Lemma 3.15. ♦

3.4 λ∗ ≤ δ2
1

From (1.20), recall the definition of λ∗.

Lemma 3.18 We have λ∗ ≤ δ21 .

Proof From (1.18), cf. Corollary B.19 and Lemma B.8(c), we deduce that, for u ∈
X2
odd,

(Lu, u)Q =
∫
R3

∫
R3

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫
R3

|∇xUT u |2 dx

≤
∫
R3

∫
R3

dx dv

|Q′(eQ)| |T u|2 = ‖T u‖2X0 = 16π3
∑
k �=0

k2‖ω1uk‖2L2
1

|Q′ |
(D)

.

Since u−k = −uk by Lemma B.3(b), this yields

λ∗ ≤ 32π3
∞∑
k=1

k2‖ω1uk‖2L2
1

|Q′ |
(D)

(3.56)

for all u ∈ X2
odd such that ‖u‖X0 = ‖u‖Q = 1. Now we specialize (3.56) to u ∼=

(. . . , 0, u−1, 0, u1, 0, . . .) = (. . . , 0,−u1, 0, u1, 0, . . .) to find that
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λ∗ ≤ 32π3‖ω1u1‖2L2
1

|Q′ |
(D)

= 32π3
∫∫

D

d I d� �
1

|Q′(e)| ω2
1(I, �) |u1(I, �)|2

= 32π3
∫∫

D

de d� �
1

|Q′(e)| ω1(e, �) |u1(e, �)|2 (3.57)

for all u1 = u1(I, �) = u1(e, �) ∈ L2
1

|Q′ |
(D) satisfying

1 = 32π3
∫∫

D

d I d� �
1

|Q′(e)| |u1(I, �)|2

= 32π3
∫∫

D

de d� �
1

|Q′(e)|
1

ω1(e, �)
|u1(e, �)|2;

see Definition B.1 and cf. (A.18). Let ε > 0. Since δ1 = inf D̊ ω1, there is (ê, l̂) ∈ D̊
such that ω1(ê, l̂) < δ1 + ε/2. As ω1 is continuous in D̊ by Theorem 3.6, there is
an open neighborhood U ⊂ D̊ of (ê, l̂) with the property that ω1(e, l) < δ1 + ε for
(e, l) ∈ U ; then

∫∫
U

de d� � > 0. Define

χ(e, �) =
{
1 : (e, �) ∈ U
0 : (e, �) ∈ D \U

and u1(e, �) = a |Q′(e)|1/2ω1(e, �)1/2 χ(e, �) for a = (32π3
∫∫
U

de d� �)−1/2. It fol-

lows that

32π3
∫∫

D

de d� �
1

|Q′(e)|ω1
|u1|2 = 32π3a2

∫∫

U

de d� � = 1.

Thus, by (3.57),

λ∗ ≤ 32π3
∫∫

D

de d� �
ω1

|Q′| |u1|2 = 32π3a2
∫∫

U

de d� �ω2
1

≤ 32π3a2 (δ1 + ε)2
∫∫

U

de d� � = (δ1 + ε)2.

As ε → 0+, we get λ∗ ≤ δ21 . �



Chapter 4
A Birman-Schwinger Type Operator

As has been outlined in the introduction, the eigenvalues λ < δ21 of L = −T 2 − KT
from (1.16) are in one-to-one correspondence with the eigenvalues 1 of a certain
Birman-Schwinger type operator Qλ that acts on functions � = �(r).

4.1 The Operator Qz

Let L2
r denote the L2-Lebesgue space of radially symmetric functions �(x) = �(r)

on R3, where we take

〈�,�〉 =
∫
R3

�(x) �(x) dx = 4π
∫ ∞

0
r2 �(r)�(r) dr

as the inner product of �,� ∈ L2
r . Unless otherwise stated, a generic constant

(denoted by C) is allowed to depend only upon Q.

Definition 4.1 For z ∈ � = C \ [δ21,∞[, we introduce

Qz : L2
r → L2

r ,

(Qz�)(r) = 16π

r2
∑
k �=0

∫ ∞

0
dr̃ �(r̃)

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

×ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)),

(4.1)
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where r±(e, �) and θ(r, e, �) are as in Appendix I, Sect.A.1, and D is given by (3.1).
Along with Qz , we also introduce the integral kernels

Kz(r, r̃) = 4

r2r̃2
∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)).

(4.2)

Remark 4.2 (a) If z = a + ib ∈ C \ R, then |k2ω2
1(e, �) − z| ≥ |b| > 0. More

precisely,

|k| ≥
[√

2|a|
δ1

]
+ 1 =⇒ |k2ω2

1(e, �) − z|2 = (k2ω2
1(e, �) − a)2 + b2

≥ (k2δ21 − |a|)2 + b2

≥ 1

4
k4δ41 + b2. (4.3)

On the other hand, if z = λ ∈] − ∞, δ21[, then

|k2ω2
1(e, �) − z| = k2ω2

1(e, �) − λ ≥ k2δ21 − λ ≥ δ21 − λ > 0,

and hence

|k| ≥ 2 =⇒ |k2ω2
1(e, �) − z| ≥ k2δ21 − λ ≥ (k2 − 1)δ21 ≥ 1

2
k2δ21 . (4.4)

In particular, 1
k2ω2

1(e,�)−z
in (4.1) and (4.2) is well-defined for z ∈ �.

(b) In the definitions, we understand the factor |Q′(e)| to be zero outside of K ,
the support of Q, instead of carrying around another characteristic function all
the time. In particular, always r+(e, �) ≤ rQ holds, which means the following: in
(4.1),

∫ ∞
0 dr̃ �(r̃) can be replaced by

∫ rQ

0 dr̃ �(r̃); (Qz�)(r) can be replaced by
(Qz�)(r) 1{0≤r≤rQ } and Kz(r, r̃) can be replaced by Kz(r, r̃) 1{0≤r,r̃≤rQ }. ♦
Lemma 4.3 [Properties of Qz] The following assertions hold.

(a) For every z ∈ �, we haveQz ∈ B(L2
r ), the space of linear and bounded operators

on L2
r . In addition, the map

� � z �→ Qz ∈ B(L2
r ) (4.5)

is analytic, and for the derivatives
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(Q( j)
z �)(r) = 16π j !

r2
∑
k �=0

∫ ∞

0
dr̃ �(r̃)

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
(k2ω2

1(e, �) − z) j+1
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

for � ∈ L2
r .

(b) If z ∈ �, then
(Qz�)(r) = 〈Kz̄(r, ·),�〉

for � ∈ L2
r . In particular,

〈Qz�,�〉 = 〈�,Qz̄�〉

for �,� ∈ L2
r , so that Q∗

z = Qz̄. Thus, if λ ∈] − ∞, δ21[, then Qλ is symmetric.
(c) If z ∈ �, then Qz is a Hilbert-Schmidt operator on L2

r .
(d) If z ∈ �, then

〈Qz�,�〉
= 64π2

∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z̄

∣∣∣∣
∫ r+(e, �)

r−(e, �)
�(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

for � ∈ L2
r . In particular, if λ ∈] − ∞, δ21[, then 〈Qλ�,�〉 ≥ 0 for � ∈ L2

r , i.e.,
Qλ is positive. In addition, for the derivatives

〈Q( j)
z �,�〉 = 64π2 j !

∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|

(k2ω2
1(e, �) − z̄) j+1

×
∣∣∣∣
∫ r+(e, �)

r−(e, �)
�(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

(4.6)

for � ∈ L2
r .

(e) There is a constant C > 0 such that for λ, λ̃ ∈] − ∞, δ21[,

‖Qλ − Qλ̃‖HS ≤ C
(
1 + 1

(δ21 − λ)(δ21 − λ̃)

)
|λ − λ̃|,

where ‖ · ‖HS denotes the Hilbert-Schmidt norm.
(f) If λ ∈] − ∞, δ21[, then the spectrum of Qλ consists of μ1(λ) ≥ μ2(λ) ≥ . . . → 0

(the eigenvalues are listed according to their multiplicities). In addition,

μ1(λ) = ‖Qλ‖ = sup {〈Qλ�,�〉 : ‖�‖L2
r
≤ 1}, (4.7)

where ‖ · ‖ = ‖ · ‖B(L2
r )

, and every function
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μk(·) : ] − ∞, δ21[ → ]0,∞[

for k ∈ N is monotone increasing and locally Lipschitz continuous (and hence
differentiable a.e. by Rademacher’s Theorem).

Proof (a) Let z ∈ � be fixed. By Remark 4.2(a), there is α0 > 0 such that |k2ω2
1

(e, �) − z| ≥ α0 for |k| ≥ 1 and (e, �) ∈ D. In addition, according to (4.3) and (4.4),
there is k0 ∈ N so that |k2ω2

1(e, �) − z| ≥ 1
2k2δ21 for |k| ≥ k0 and (e, �) ∈ D; if k0 is

taken to be large enough, we can also make sure that 1
2k2δ21 ≥ k3/2. First, we observe

that
r−(e, �) ≤ r ≤ r+(e, �) =⇒ �2 ≤ 2r2(e0 − UQ(0)). (4.8)

To establish this claim, we recall from (3.7) that �2 = 2r2−(e − UQ(r−)) holds, where
r± = r±(e, �). Since UQ is increasing and e ≤ e0, we get �2 ≤ 2r2−(e0 − UQ(0)) ≤
2r2(e0 − UQ(0)).

For 1 ≤ |k| ≤ k0 and i ∈ N0, we now apply (4.8) to r and r̃ in order to estimate

sk,i (r, r̃ , z) =
∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
(k2ω2

1(e, �) − z)i+1
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

(4.9)

as

|sk,i (r, r̃ , z)| ≤ α−(i+1)
0 �1 1{0≤r,r̃≤rQ }

∫ l∗

0
d� �

∫ e0

emin(�)

de

×1{r−(e, �)≤r, r̃≤r+(e, �)} |Q′(e)|
≤ α−(i+1)

0 �1 1{0≤r,r̃≤rQ }
∫ l∗

0
d� �

∫ e0

emin(�)

de

×1{�2≤2(e0−UQ(0))min{r2,r̃2}} |Q′(e)|
≤ α−(i+1)

0 �1 1{0≤r,r̃≤rQ } (e0 − UQ(0))

( ∫ e0

UQ(0)
|Q′(e)| de

)
min{r2, r̃2}.

Analogously, for |k| ≥ k0 and i ∈ N0, we deduce

|sk,i (r, r̃ , z)| ≤ 1

k3(i+1)/2
�1 1{0≤r,r̃≤rQ } (e0 − UQ(0))

(∫ e0

UQ(0)
|Q′(e)| de

)
min{r2, r̃2}.

It follows that

∑
k �=0

|sk,i (r, r̃ , z)| ≤
∑

|k|≤k0

α−(i+1)
0 �1 1{0≤r,r̃≤rQ } (e0 − UQ(0))

×
(∫ e0

UQ(0)
|Q′(e)| de

)
min{r2, r̃2}
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+
∑

|k|≥k0

1

k3(i+1)/2
�1 1{0≤r,r̃≤rQ } (e0 − UQ(0))

×
(∫ e0

UQ(0)
|Q′(e)| de

)
min{r2, r̃2}

≤ C1,i 1{0≤r,r̃≤rQ } min{r2, r̃2} (4.10)

for

C1,i =
(
2k0α

−(i+1)
0 + 2

∞∑
k=1

1

k3/2

)
�1 (e0 − UQ(0))

(∫ e0

UQ(0)
|Q′(e)| de

)
; (4.11)

this constant depends upon z and Q, but k0 is independent of i . Therefore,

|(Qz�)(r)| =
∣∣∣16π

r2
∑
k �=0

∫ ∞

0
�(r̃) sk,0(r, r̃ , z) dr̃

∣∣∣

≤ 16πC1,0

r2
1{0≤r≤rQ }

∫ rQ

0
|�(r̃)|min{r2, r̃2} dr̃ .

Next, note that
min{r2, r̃2} ≤ rr̃ . (4.12)

Thus, using Hölder’s inequality,

|(Qz�)(r)|2 ≤ 256π2C2
1,0

r2
1{0≤r≤rQ }

( ∫ rQ

0
r̃ |�(r̃)| dr̃

)2

≤ 256π2C2
1,0 rQ

r2
1{0≤r≤rQ }

∫ rQ

0
r̃2 |�(r̃)|2 dr̃

≤ 64πC2
1,0 rQ

r2
1{0≤r≤rQ } ‖�‖2L2

r
,

and this in turn leads to

‖Qz�‖2L2
r
= 4π

∫ ∞

0
r2 |(Qz�)(r)|2 dr ≤ 264π2C2

1,0 r2Q ‖�‖2L2
r
.

To prove the analyticity of (4.5), we recall that it suffices to show weak analyticity,
in the sense that all maps � � z �→ 〈�, Qz�〉 ∈ C for �,� ∈ L2

r are analytic; see
[85, Thm. 3.1.12]. Fix z0 ∈ �. If |z − z0| is sufficiently small, then z ∈ � and we
have the series expansion

1

k2ω2
1(e, �) − z

=
∞∑

i=0

1

(k2ω2
1(e, �) − z0)i+1

(z − z0)
i
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for every k �= 0 and (e, l) ∈ D, which suggests that

〈�, Qz�〉 = 64π2
∫ rQ

0

∫ rQ

0
dr dr̃ �(r)�(r̃)

∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

=
∞∑

i=0

ai (z − z0)
i (4.13)

for

ai = 64π2
∫ rQ

0

∫ rQ

0
dr dr̃ �(r)�(r̃)

∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
(k2ω2

1(e, �) − z0)i+1
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)).

We are going to show that the series (4.13) converges near z0. For this, due to (4.10)
and (4.12), we deduce that

|ai | = 64π2

∣∣∣∣
∫ rQ

0

∫ rQ

0
dr dr̃ �(r)�(r̃)

∑
k �=0

sk,i (r, r̃ , z0)

∣∣∣∣

≤ 64π2 C1,i

∫ rQ

0

∫ rQ

0
dr dr̃ |�(r)| |�(r̃)|min{r2, r̃2}

≤ 64π2 C1,i

( ∫ rQ

0
r |�(r)| dr

)(∫ rQ

0
r̃ |�(r̃)| dr̃

)

≤ 16πrQ C1,i ‖�‖L2
r
‖�‖L2

r
.

If we write the constant C1,i from (4.11) as C1,i = C̃1α
−(i+1)
0 + Ĉ1, with α0 depend-

ing only on z0, then |z − z0| < min{α0
2 , 1

2 } ensures that

C1,i |z − z0|i ≤ C̃1α
−1
0 2−i + Ĉ12

−i ,

which has a finite
∑∞

i=0. It follows that (4.13) converges for z ∈ � such that |z −
z0| < min{α0

2 , 1
2 }, i.e., on a sufficiently small ball about z0. The formula for the

derivative is gotten from a1 and those for the higher order derivatives follow from
this one inductively.

(b) By the definition of Kz in (4.2), we have

Kz(r, r̃) = 4

r2r̃2
∑
k �=0

sk,0(r, r̃ , z). (4.14)
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Hence,

(Qz�)(r) = 16π

r2
∑
k �=0

∫ ∞

0
�(r̃) sk,0(r, r̃ , z) dr̃ = 4π

∫ ∞

0
r̃2 Kz(r, r̃) �(r̃) dr̃ = 〈Kz̄(r, ·),�〉,

(4.15)
observing that Kz = Kz̄ . Due to Kz(r, r̃) = Kz(r̃ , r), we hence obtain

〈Qz�,�〉 = 4π
∫ ∞

0
r2 (Qz�)(r)�(r) dr = 4π

∫ ∞

0
r2 〈Kz̄(r, ·),�〉 �(r) dr

= 16π2
∫ ∞

0
dr r2

∫ ∞

0
dr̃ r̃2 Kz̄(r, r̃)�(r̃)�(r)

= 16π2
∫ ∞

0
dr̃ r̃2 �(r̃)

∫ ∞

0
dr r2 Kz̄(r̃ , r)�(r)

= 4π
∫ ∞

0
dr̃ r̃2 �(r̃) 〈Kz̄(r̃ , ·),�〉 = 〈�,Qz̄�〉.

(c) According to (b), the operator Qz on L2
r has the integral kernel Kz̄ . Hence, in

order to verify that Qz is Hilbert-Schmidt, we need to verify that

‖Qz‖2HS =
∫
R3

∫
R3

|Kz(x, x̄)|2 dx dx̄

= 16π2
∫ ∞

0

∫ ∞

0
r2 r̃2 |Kz(r, r̃)|2 dr dr̃

= 16π2
∫ rQ

0

∫ rQ

0
r2 r̃2 |Kz(r, r̃)|2 dr dr̃ < ∞ (4.16)

for every z ∈ �, where Kz is viewed both as a function of (x, x̄) and a function
of (r, r̃) and we used Remark 4.2(b); see [35, Prop. 6.36]. From (4.14), (4.10) and
(4.12), we get

∫ rQ

0

∫ rQ

0
r2 r̃2 |Kz(r, r̃)|2 dr dr̃ ≤ 16

∫ rQ

0

∫ rQ

0

1

r2r̃2

( ∑
k �=0

|sk,0(r, r̃ , z)|
)2

dr dr̃

≤ 16C2
1

∫ rQ

0

∫ rQ

0

1

r2r̃2
(min{r2, r̃2})2 dr dr̃

≤ 16C2
1

∫ rQ

0

∫ rQ

0
dr dr̃ = 16C2

1r2Q < ∞.

Note that fromQz being Hilbert-Schmidt it follows thatQz is bounded and ‖Qz‖ ≤
‖Qz‖HS, i.e., once again we see that (a) holds. However, since the key of the argument
is (4.10) and (4.12), it needs very little additional work to derive both bounds. (d)
Here, we calculate
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〈Qz�,�〉 = 4π
∫ ∞

0
r2 (Qz�)(r)�(r) dr

= 64π2
∑
k �=0

∫ ∞

0
dr �(r)

∫ ∞

0
dr̃ �(r̃)

×
∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}
ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z̄

= 64π2
∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z̄

∣∣∣∣
∫ r+(e, �)

r−(e, �)
�(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

≥ 0.

The proof of (4.6) is analogous. (e) For λ, λ̃ < δ21 , we have, cf. (4.16),

‖Qλ − Qλ̃‖2HS =
∫
R3

∫
R3

|Kλ(x, x̄) − Kλ̃(x, x̄)|2 dx dx̄

= 16π2
∫ rQ

0

∫ rQ

0
r2 r̄2 |Kλ(r, r̄) − Kλ̃(r, r̄)|2 dr dr̄

= 256π2
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

∣∣∣∣
∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

×ω1(e, �) |Q′(e)|
[

1

k2ω2
1(e, �) − λ

− 1

k2ω2
1(e, �) − λ̃

]

× sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

∣∣∣∣
2

≤ 512 π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

×
( ∞∑

k=1

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)} |Q′(e)|

∣∣∣∣ 1

k2ω2
1(e, �) − λ

− 1

k2ω2
1(e, �) − λ̃

∣∣∣∣
)2

.

Using (4.8) and (4.12), we may continue this estimate for suitable constants
C, Ĉ > 0 as

‖Qλ − Qλ̃‖2HS ≤ 256π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

×
( ∞∑

k=1

∫∫

D

dβ de 1{β≤C min{r2, r̄2}} |Q′(e)|
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∣∣∣∣ 1

k2ω2
1(e,β) − λ

− 1

k2ω2
1(e,β) − λ̃

∣∣∣∣
)2

(4.17)

≤ 256π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

×
( ∞∑

k=1

∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|

|λ − λ̃|
(k2ω2

1(e,β) − λ)(k2ω2
1(e,β) − λ̃)

)2

.

For k ≥ 2, we know from Remark 4.2(a) that k2ω2
1(e,β) − λ ≥ k2δ21/2 and

k2ω2
1(e,β) − λ̃ ≥ k2δ21/2 are verified. If k = 1, then always ω2

1(e,β) − λ ≥ δ21 − λ

and ω2
1(e,β) − λ̃ ≥ δ21 − λ̃ hold. Thus, we arrive at

‖Qλ − Qλ̃‖2HS ≤ C |λ − λ̃|2
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
r2r̃2

×
(

δ−4
1

∞∑
k=2

1

k4

∫ e0

UQ(0)
|Q′(e)| de

)2

+ C
|λ − λ̃|2

(δ21 − λ)2(δ21 − λ̃)2

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
r2 r̃2

×
( ∫ e0

UQ(0)
|Q′(e)| de

)2

≤ C
(
1 + 1

(δ21 − λ)2(δ21 − λ̃)2

)
|λ − λ̃|2,

and this yields the claim. (f) According to (b–d), Qλ is a symmetric and positive
Hilbert-Schmidt operator, which is in particular compact. Thus, the assertions up
to and including (4.7) are a consequence of the spectral theory for compact posi-
tive self-adjoint operators; see [35, Section 6]. Concerning the μk(λ), we have the
characterization

μk(λ) = max
{

min
�∈S, ‖�‖L2r

=1
〈Qλ�,�〉 : S ⊂ L2

r is a subspace of dimension k
}

(4.18)
according to the Courant max-min principle. In the present situation, this follows
from the spectral decomposition theorem for symmetric and compact operators. By
(d), we obtain for λ̃ ≥ λ, both in ] − ∞, δ21[ and � ∈ L2

r ,

〈Qλ̃�,�〉 = 64π2
∑
k �=0

∫∫

D

d� � de
ω1 |Q′(e)|
k2ω2

1 − λ̃

∣∣∣∣
∫ r+

r−
�(r) sin(kθ) dr

∣∣∣∣
2
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≥ 64π2
∑
k �=0

∫∫

D

d� � de
ω1 |Q′(e)|
k2ω2

1 − λ

∣∣∣∣
∫ r+

r−
�(r) sin(kθ) dr

∣∣∣∣
2

= 〈Qλ�,�〉, (4.19)

where r± = r±(e, �) and θ = θ(r, e, �). Hence, (4.18) implies that μk(λ̃) ≥ μk(λ)

for all k ∈ N. To establish the local Lipschitz continuity of μk(·), note that

|〈Qλ�,�〉 − 〈Qλ̃�,�〉| ≤ ‖Qλ − Qλ̃‖ ‖�‖2L2
r
,

whencewededuce from (e) and‖ · ‖ ≤ ‖ · ‖HS that for� ∈ L2
r satisfying‖�‖L2

r
≤ 1,

one has

|〈Qλ�,�〉 − 〈Qλ̃�,�〉| ≤ C
(
1 + 1

(δ21 − λ)(δ21 − λ̃)

)
|λ − λ̃|.

Applying (4.18) once more, we arrive at

|μk(λ) − μk(λ̃)| ≤ C
(
1 + 1

(δ21 − λ)(δ21 − λ̃)

)
|λ − λ̃|,

which completes the proof. �

In the following, we are going to derive some more specific properties of theQz .
See Appendix II, Sect.B.1 below for the function spaces that are being used. Once
again, we understand that |Q′(eQ)| vanishes outside of K .

Lemma 4.4 If z ∈ � and ψ(r, pr , �) = |Q′(eQ)| pr�(r) for � ∈ L2
r , then ψ ∈

X0
odd,

‖ψ‖X0 ≤ ρQ(0)1/2 ‖�‖L2
r

(4.20)

and
KT (−T 2 − z)−1ψ = |Q′(eQ)| pr (Qz�). (4.21)

In particular,

Qz� = U ′
T (−T 2−z)−1ψ = 4π

∫
R3

pr (−T 2 − z)−1ψ dv. (4.22)

Moreover, if also ψ̃(r, pr , �) = |Q′(eQ)| pr �̃(r) for some �̃ ∈ L2
r , then

‖ψ − ψ̃‖X0 ≤ ρQ(0)1/2 ‖� − �̃‖L2
r
. (4.23)

Proof First, note that ψ is odd in v and has its support in K . Furthermore, due to
Remark B.2(a), Lemma 2.5 and (A.32),
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‖ψ‖2X0 = ‖ψ‖2L2
sph, 1

|Q′ |
(K )

=
∫∫

K

1

|Q′(eQ)| |ψ(x, v)|2 dx dv

=
∫∫

K

|Q′(eQ)| p2
r |�(r)|2 dx dv

=
∫

|x |<rQ

dx |�(r)|2
∫
R3

dv |Q′(eQ)| p2
r

=
∫

|x |<rQ

dx |�(r)|2 ρQ(r)

≤ ρQ(0)
∫

|x |<rQ

dx |�(r)|2 ≤ ρQ(0) ‖�‖2L2
r
.

Thus, ψ ∈ X0
odd ⊂ X0

0, and accordingly Corollary B.14 yields

KT (−T 2 − z)−1ψ

= |Q′(eQ)| pr
16π2i

r2
∑
k �=0

∫∫

D

d� � de 1[r−(e, �), r+(e, �)](r)
sin(kθ(r, e, �))

k2ω2
1(e, �) − z

ψk(I, �).

On the other hand,

ψk(I, �) = − i

π
|Q′(e)| ω1(e, �)

∫ r+(e,�)

r−(e,�)
dr̃ �(r̃) sin(kθ(r̃ , e, �)) (4.24)

by Lemma B.5. Therefore, we arrive at

KT (−T 2 − z)−1ψ = |Q′(eQ)| pr
16π

r2
∑
k �=0

∫∫

D

d� � de 1[r−(e, �), r+(e, �)](r)

× sin(kθ(r, e, �))

k2ω2
1(e, �) − z

|Q′(e)| ω1(e, �)

∫ r+(e,�)

r−(e,�)
dr̃ �(r̃) sin(kθ(r̃ , e, �))

= |Q′(eQ)| pr
16π

r2
∑
k �=0

∫ rQ

0
dr̃ �(r̃)

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}(r)

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − z
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

= |Q′(eQ)| pr (Qz�),
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and this completes the proof of (4.21), by the definition of Qz . Concerning (4.22),
the first part follows from Kg = |Q′(eQ)| pr U ′

g(r), see (B.37), and for the second
part, one just has to use Lemma 2.4. Lastly, (4.23) is a direct consequence of (4.20)
and the fact that (ψ̃ − ψ)(r, pr , �) = |Q′(eQ)| pr (�̃ − �)(r). �

Now, we can make the connection from eigenvalues λ < δ21 of the self-adjoint
operator

L = −T 2 − KT : X2
odd → X0

odd,

cf. (1.16) and Corollary B.19, to eigenvalues 1 of Qλ.

Theorem 4.5 Let λ < δ21 . Then λ is an eigenvalue of L if and only if 1 is an eigen-
value of Qλ. More precisely,

(a) if u ∈ X2
odd is an eigenfunction of L for the eigenvalue λ, then � = U ′

T u ∈ L2
r

for r ∈ [0, rQ] is an eigenfunction of Qλ for the eigenvalue 1;
(b) if � ∈ L2

r is an eigenfunction of Qλ for the eigenvalue 1, then u = (−T 2 −
λ)−1(|Q′(eQ)| pr�) ∈ X2

odd is an eigenfunction of L for the eigenvalue λ.

Proof First, suppose that Lu = λu for some u ∈ X2
odd and u �= 0. Then (−T 2 −

λ)u = KT u. Defining ψ = (−T 2 − λ)u ∈ X0
odd, Remark B.18(a) implies that ψ =

KT (−T 2 − λ)−1ψ. Since Kg = |Q′(eQ)| pr U ′
g(r) by (B.37), we can put

�(r) = U ′
T (−T 2−λ)−1ψ(r) = U ′

T u(r)

for r ∈ [0, rQ] to obtainψ = |Q′(eQ)| pr�(r). Then� �= 0, as otherwiseψ = 0 and
u = 0. Next, we are going to verify that � ∈ L2

r . Using (B.40) from Lemma B.15
and Lemma B.8(c), we get

‖�‖2L2
r
=

∫
R3

|U ′
T (−T 2−λ)−1ψ(r)|2 dx

= 4π
(
KT (−T 2 − λ)−1ψ, (−T 2 − λ)−1ψ

)
X0

= 4π(ψ, (−T 2 − λ)−1ψ)X0

= 4π((−T 2 − λ)u, u)X0

= 4π(‖T u‖2X0 − λ ‖u‖2X0).

In particular, Lemma B.8(a) implies ‖�‖2L2
r
≤ 4π‖T u‖2X0 ≤ 4π�2

1 ‖u‖2X1 < ∞, so

that indeed � ∈ L2
r . Thus, we deduce from Lemma 4.4 that

|Q′(eQ)| pr (Qλ�) = KT (−T 2 − λ)−1ψ = ψ = |Q′(eQ)| pr �,

and consequently Qλ� = �.
Conversely, suppose that Qλ� = � is verified for some � ∈ L2

r and � �= 0.
According to Remark 4.2(b), � has its support in [0, rQ]. Defining ψ = |Q′(eQ)
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| pr�(r), we obtain ψ ∈ X0
odd from Lemma 4.4. As a consequence, u = (−T 2 −

λ)−1ψ ∈ X2
odd. Also u �= 0, since otherwise ψ = 0 and � = 0. From Lemma 4.4,

we finally get

(−T 2 − λ)u = ψ = |Q′(eQ)| pr � = |Q′(eQ)| pr (Qλ�)

= KT (−T 2 − λ)−1ψ = KT u,

so that Lu = −T 2u − KT u = λu. �

Lemma 4.6 The following assertions hold.

(a) To � ∈ L2
r we associate the function ψ(r, pr , �) = |Q′(eQ)| pr�(r). If z ∈ �,

then

〈Qz�,�〉 = 64π4
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|
1

k2ω2
1(e, �) − z̄

|ψk(I, �)|2.

(4.25)
(b) Let� ∈ L2

r be given and suppose that F(r) = F(0) + ∫ r
0 �(s) ds for r ∈ [0, rQ]

as well as g = −|Q′(eQ)|(F − F0), where F0 is the zero’th Fourier coefficient
of F. Then Q0� = U ′

g and furthermore

〈Q0�,�〉 = 4π
∫∫

K

dx dv

|Q′(eQ)| |g|2 = 4π
∫∫

K

|Q′(eQ)| (F − F0)
2 dx dv.

(4.26)
(c) Let � ∈ L2

r be given and suppose that F(r) = F(0) + ∫ r
0 �(s) ds for r ∈

[0, rQ]. Define u = −T −1(|Q′(eQ)|(F − F0)). Then u ∈ X2
odd and

(Lu, u)X0 = 1

4π

(
〈Q0�,�〉 − ‖Q0�‖2L2

r

)
. (4.27)

Proof (a) The relation (4.25) follows from Lemma 4.3(d) and (4.24).
(b) Owing to Lemma B.9, we have g ∈ X1

even as well as T g = −ψ for ψ as in
(a). In addition, g0 = 0 by (B.24), so that g ∈ X1

0. Thus, Lemma B.13(c) yields
−T −1ψ = g − g0 = g.

Next, recall that ψ is odd in v and ‖ψ‖X0 ≤ ρQ(0)1/2 ‖�‖L2
r
< ∞ by (4.20),

which means that ψ ∈ X0
odd ⊂ X0

0. As a consequence, T (−T 2)
−1

ψ = −T −1ψ = g
by Lemma B.13(e). Hence, if we take z = 0 ∈ � in (4.22) of Lemma 4.4, then we
get

Q0� = U ′
T (−T 2)−1ψ = U ′

g.

Toverify (4.26), notefirst that ikω1gk = −ψk for k ∈ Z.Applying (B.4) fromRemark
B.2(a), we obtain
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∫∫

K

dx dv

|Q′(eQ)| |g|2 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(eQ)| |gk |2

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(eQ)|
1

k2ω2
1

|ψk |2

= 16π3
∑
k �=0

∫∫

D

de d� �
1

|Q′(eQ)|
1

k2ω3
1

|ψk |2,

where we have used that ∂e
∂ I = ω1 owing to (A.18). Thus, the claim follow from (a)

for z = 0. (c) We continue to use the notation and the observations from (b). Since
g ∈ X1

0, we have u = T −1g ∈ X2
0. As also g ∈ X1

even and T −1 reverses the parity by
Remark B.18, we get u ∈ X2

odd. Accordingly, we deduce from (B.44) in Corollary
B.19 that

(Lu, u)X0 = ‖T u‖2X0 − (KT u, u)X0 .

Now T u = T T −1g = g due to Lemma B.13(d), so that

‖T u‖2X0 = ‖g‖2X0 = ‖g‖2L2
sph, 1

|Q′ |
(K )

= 1

4π
〈Q0�,�〉

by Remark B.2(a) and (4.26). Furthermore, using (B.40) from Lemma B.15 in con-
junction with (b), it follows that

(KT u, u)X0 = 1

4π

∫
R3

|U ′
T u |2 dx = 1

4π

∫
R3

|U ′
g|2 dx

= 1

4π

∫
R3

|Q0�|2 dx = 1

4π
‖Q0�‖2L2

r
,

Altogether, this yields (4.27). �

Lemma 4.7 Let μ1 : ] − ∞, δ21[ → ]0,∞[ be defined as in Lemma 4.3(f). Then

(a) 0 < μ1(0) < 1.
(b) If λ∗ < δ21 and λ ∈ [0,λ∗], or λ∗ = δ21 and λ ∈ [0,λ∗[= [0, δ21[, then μ1(λ) ≤ 1.
(c) For λ ∈ [0, δ21[, let �λ ∈ L2

r denote a normalized eigenfunction of Qλ for μ1(λ).
Define ψλ(r, pr , �) = |Q′(eQ)| pr�λ(r) ∈ X0

odd and gλ = (−T 2 − λ)−1ψλ ∈
X2
odd. Then

μ1(λ) = 4π (ψλ, gλ)X0

and
Lgλ = (1 − μ1(λ))ψλ + λgλ,

as well as

(Lgλ, gλ)Q = 1

4π
μ1(λ)(1 − μ1(λ)) + λ‖gλ‖2X0 .
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(d) The function μ1 : ] − ∞, δ21[ → ]0,∞[ is convex.
(e) We have

μ1(λ) ≤ 16π

( ∫ rQ

0

∫ rQ

0

dr

r2
dr̃

r̃2

∣∣∣∣
∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − λ
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

∣∣∣∣
2)1/2

.

Proof (a) Clearly μ1(0) > 0, since otherwise ‖Q0‖ = 0, and thus Q0 = 0. To
show that μ1(0) < 1, let � ∈ L2

r be given. Define F(r) = ∫ r
0 �(s) ds as well as

u = −T −1(|Q′(eQ)|(F − F0)). Then u ∈ X2
odd and

0 ≤ λ∗‖u‖2X0 ≤ (Lu, u)X0 = 1

4π

(
〈Q0�,�〉 − ‖Q0�‖2L2

r

)
(4.28)

by (1.20) and (4.27) from Lemma 4.6. As a consequence,

‖Q0�‖2L2
r
≤ 〈Q0�,�〉 ≤ ‖Q0�‖L2

r
‖�‖L2

r

implies that μ1(0) = ‖Q0‖ ≤ 1. Lastly, suppose that μ1(0) = 1. Since μ1(0) is an
eigenvalue, we haveQ0� = � for some � = �(r) �= 0 such that � ∈ L2

r ; Remark
4.2(b) implies that � has its support in [0, rQ]. For the corresponding u, we deduce
u = 0 from (4.28). Therefore, (B.24), Lemma B.13(d) and Lemma B.9(b) lead to

0 = T 2u = −T 2T −1(|Q′(eQ)|(F − F0))

= −T (|Q′(eQ)|(F − F0)) = −|Q′(e)| pr �,

which is impossible. (b)Recall fromLemma3.18 thatλ∗ ≤ δ21 . Thus, ifwefixλ in one
of the two cases: (i)λ∗ < δ21 andλ ∈ [0,λ∗]; or (ii)λ∗ = δ21 andλ ∈ [0,λ∗[= [0, δ21[,
then λ ∈ [0, δ21[. Let �λ ∈ L2

r denote a normalized eigenfunction for μ1(λ), i.e., we
have Qλ�λ = μ1(λ)�λ and ‖�λ‖L2

r
= 1. For ψλ(r, pr , �) = |Q′(eQ)| pr�λ(r), we

get ψλ ∈ X0
odd, cf. the proof of Lemma 4.6(a). Thus, gλ = (−T 2 − λ)−1ψλ ∈ X2

odd.
Using (4.21) from Lemma 4.4, we calculate

KT gλ = KT (−T 2 − λ)−1ψλ = |Q′(eQ)| pr (Qλ�λ)

= μ1(λ) |Q′(eQ)| pr�λ = μ1(λ)ψλ.

In addition,
T 2gλ = (T 2 + λ)gλ − λgλ = −ψλ − λgλ.

This yields
Lgλ = −T 2gλ − KT gλ = (1 − μ1(λ))ψλ + λgλ (4.29)
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hence in particular

(Lgλ, gλ)Q = (Lgλ, gλ)X0 = (1 − μ1(λ)) (ψλ, gλ)X0 + λ‖gλ‖2X0 . (4.30)

Thus, by the Antonov stability estimate, Theorem 1.2,

λ∗‖gλ‖2X0 ≤ (1 − μ1(λ)) (ψλ, gλ)X0 + λ‖gλ‖2X0 ,

so that
0 ≤ (λ∗ − λ)‖gλ‖2X0 ≤ (1 − μ1(λ)) (ψλ, gλ)X0 . (4.31)

Now, (B.26) in Corollary B.10 yields

(ψλ, gλ)X0 = (ψλ, (−T 2 − λ)−1ψλ)X0 = ((−T 2 − λ)−1ψλ,ψλ)X0

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|(ψλ)k(I, �)|2

k2ω2
1(I, �) − λ

, (4.32)

and in particular (ψλ, gλ)X0 > 0, as otherwise ψλ = 0 and consequently �λ = 0,
which is impossible. Hence, (4.31) shows that μ1(λ) ≤ 1.
(c) Note that due to Lemma 4.6(a),

μ1(λ) = μ1(λ)‖�λ‖2L2
r
= 〈μ1(λ)�λ, �λ〉 = 〈Qλ�λ, �λ〉

= 64π4
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|
|(ψλ)k(I, �)|2

k2ω2
1(e, �) − λ

= 64π4
∑
k �=0

∫∫

D

d� � d I
1

|Q′(e)|
|(ψλ)k(I, �)|2

k2ω2
1(e, �) − λ

,

and therefore the first claim follows by comparing to (4.32). The other relations are
due to (4.29) and (4.30). (d) If λ ∈] − ∞, δ21[ and � ∈ L2

r , then

d2

dλ2
〈Qλ�,�〉 = 〈Q′′

λ�,�〉

= 128π2
∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|

(k2ω2
1(e, �) − λ)3

×
∣∣∣∣
∫ r+(e, �)

r−(e, �)
�(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

≥ 0

by (4.6) from Lemma 4.3(d). Thus, every function ] − ∞, δ21[ � λ �→ 〈Qλ�,�〉 is
convex. As a consequence of (4.7), also μ1(λ) = sup {〈Qλ�,�〉 : ‖�‖L2

r
≤ 1} is
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convex. (e) Here, we use

μ1(λ) = ‖Qλ‖B(L2
r )

≤ ‖Qλ‖HS
and the fact that

‖Qλ‖2HS = 16π2
∫ rQ

0

∫ rQ

0
r2 r̃2 |Kλ(r, r̃)|2 dr dr̃

= 256π2
∫ rQ

0

∫ rQ

0

dr

r2
dr̃

r̃2

∣∣∣∣
∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − λ
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

∣∣∣∣
2

,

cf. [35, Prop. 6.36] and (4.16). �

According to Lemma 4.3(f), the monotone limits

μ∗,k = lim
λ→δ21−

μk(λ) = sup {μk(λ) : λ ∈ [0, δ21[} ∈ [μk(0),∞]

do exist. Of particular importance to us will be the number

μ∗ = μ∗,1 = lim
λ→δ21−

μ1(λ) = sup {μ1(λ) : λ ∈ [0, δ21[} ∈ [μ1(0),∞]. (4.33)

Remark 4.8 If λ∗ = δ21 , then μ∗ ≤ 1. This follows from Lemma 4.7(b). ♦
The next result will use assumption (ω1-3). If ω1 attains its minimum at an interior

point (ê, β̂) ∈ D̊, then we are in the situation of (ω1-2), and Corollary 4.16 below
applies. Otherwise, since ω1 is continuous on D, its minimum is attained on the
boundary ∂D, which consists of three parts: the left side

{(e, 0) : e ∈ [UQ(0), e0]},

the lower boundary curve

{(e,β) : e = emin(β),β ∈ [0,β∗]}

and the upper line
{(e0,β) : β ∈ [0,β∗]}. (4.34)

Corollary 3.16 shows that the minimum can only be attained on this upper line (4.34)
at a point (e0, β̂), and (ω1-3) roughly concerns the case where both ∂ω1

∂e (e0, β̂) �= 0

and ∂ω1
∂β

(e0, β̂) �= 0, which is reasonable to expect for a minimum on the boundary.
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Lemma 4.9 Suppose that (ω1-3) is satisfied. Then

Qδ21
= lim

λ→δ21−
Qλ (4.35)

does exist in the Hilbert-Schmidt norm ‖ · ‖HS of L2
r . In particular, the kernel of the

symmetric and positive Hilbert-Schmidt operator Qδ21
is given by

Kδ21
(r, r̃) = 4

r2r̃2
∑
k �=0

∫∫

D

d� � de 1{r−(e, �)≤r, r̃≤r+(e, �)}

× ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − δ21
sin(kθ(r, e, �)) sin(kθ(r̃ , e, �)),

and μ∗ = ‖Qδ21
‖ < ∞. More generally, the k’th eigenvalue of Qδ21

is μ∗,k . For k ∈ N,
the functions

μk(·) : ] − ∞, δ21] → ]0,∞[

are monotone increasing, locally Lipschitz continuous on ] − ∞, δ21[ and continuous
on ] − ∞, δ21], if we set μk(δ

2
1) = μ∗,k . In particular, the μk are differentiable a.e.

Furthermore, μ1 : ] − ∞, δ21] → ]0,∞[ is a convex function.

Proof We need to refine (4.17), from where we know that

‖Qλ − Qλ̃‖2HS ≤ 256π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∞∑
k=1

∫∫

D

dβ de 1{β≤Ĉrr̃} |Q′(e)|

×
∣∣∣∣ 1

k2ω2
1(e,β) − λ

− 1

k2ω2
1(e,β) − λ̃

∣∣∣∣
)2

for λ, λ̃ < δ21 and a suitable constant Ĉ > 0. Thus

‖Qλ − Qλ̃‖2HS
≤ 512 π2�2

1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∞∑
k=2

∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|

× |λ − λ̃|
(k2ω2

1(e,β) − λ)(k2ω2
1(e,β) − λ̃)

)2

+ 512 π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|

×
∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − λ̃

∣∣∣
)2
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≤ 8192 π2�2
1 δ−8

1 |λ − λ̃|2
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∞∑
k=2

1

k4

∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|
)2

+ 1024π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|

×
∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣
)2

+ 1024π2�2
1

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∫∫

D

dβ de 1{β≤Ĉrr̄} |Q′(e)|

×
∣∣∣ 1

ω2
1(e,β) − λ̃

− 1

ω2
1(e,β) − δ21

∣∣∣
)2

≤ C |λ − λ̃|2
∫ rQ

0

∫ rQ

0
dr dr̄

( ∫ e0

UQ(0)
|Q′(e)| de

)2

+ CT (λ) + CT (λ̃)

≤ C |λ − λ̃|2 + CT (λ) + CT (λ̃), (4.36)

where

T (λ) =
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∫∫

D

dβ de 1{β≤Ĉrr̄}
∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣
)2

.

We assert that
lim

λ→δ21−
T (λ) = 0, (4.37)

and to establish this claim, we are going to use Lebesgue’s dominated convergence
in

∫ rQ

0

∫ rQ

0 dr dr̄ together with the condition

|ω1(e,β) − δ1| ≥ c1|(e,β) − (e0, β̂)|, (e,β) ∈ D, (4.38)

from (ω1-3), where (e0, β̂) ∈ D satisfies ω1(e0, β̂) = δ1. Let r, r̄ > 0 be fixed and
define

τ (r, r̄) =
∫∫

D

dβ de 1{β≤Ĉrr̄}
∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣.

If (e,β) ∈ D are such thatβ ≤ Ĉrr̄ and (e,β) �= (ê, β̂), thenω1(e,β) − δ1 ≥ α > 0
for α = α(e,β) by (4.38), and accordingly

∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣ = δ21 − λ

(ω2
1(e,β) − λ)(ω2

1(e,β) − δ21)

≤ δ−2
1 α−2(δ21 − λ) → 0, λ → δ21−,

(4.39)
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for this (e,β). On the other hand,

∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣ ≤ 2δ−1
1

1

ω1(e,β) − δ1

≤ 2δ−1
1 c−1

1

1

|(e,β) − (e0, β̂)| (4.40)

by (4.38). Next, we are going to bound

I (R) =
∫∫

D

dβ de 1{β≤R}
1

|(e,β) − (e0, β̂)| , R > 0. (4.41)

Case 1: β̂ > 0. If β ≤ R ≤ β̂/2, then |(e,β) − (e0, β̂)| ≥ |β − β̂| ≥ β̂/2 and hence

I (R) ≤ 2β̂−1(e0 − UQ(0)) R, R ≤ β̂/2. (4.42)

If R ≥ β̂/2, then we always have

I (R) ≤
∫ β∗

0
dβ

∫ e0

UQ(0)
de

1

|(e − e0,β − β̂)| ≤
∫ β∗−β̂

−β̂

dx2

∫ e0−UQ (0)

0
dx1

1

|(x1, x2)|

≤
∫ β∗

−β∗
dx2

∫ e0−UQ(0)

0
dx1

1

|(x1, x2)| ≤ C. (4.43)

Case 2: β̂ = 0. Then

I (R) ≤
∫ R

0
dβ

∫ e0

UQ(0)
de

1

|(e − e0,β)| ≤
∫ R

0
dx2

∫ e0−UQ(0)

0
dx1

1

|(x1, x2)|

=
∫ R

0
dx2 ln

(
x1 +

√
x2
1 + x2

2

)∣∣∣x1=e0−UQ(0)

x1=0

=
∫ R

0
dx2

[
ln

(
e0 − UQ(0) +

√
(e0 − UQ(0))2 + x2

2

)
− ln x2

]

≤ C R − R(ln R − 1) ≤ C R − R ln R. (4.44)

Thus, if we summarize (4.39) and (4.42)–(4.44) for R = Ĉrr̄ , it follows that
τ (r, r̄) → 0 as λ → δ21− for all r, r̄ > 0. Hence, to complete the proof of (4.37),
we need to obtain an integrable majorant. For, using (4.40), we can bound

I(λ) =
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2

( ∫∫

D

dβ de 1{β≤Ĉrr̄}
∣∣∣ 1

ω2
1(e,β) − λ

− 1

ω2
1(e,β) − δ21

∣∣∣
)2

=
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
τ (r, r̄)2 ≤ C

∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
I (Ĉrr̄)2.
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Case 1: β̂ > 0. Let ε̂ = min{rQ,
β̂

2ĈrQ
}. If r ≤ ε̂ or r̂ ≤ ε̂, then Ĉrr̄ ≤ Ĉ ε̂rQ ≤ β̂/2,

and thus we can apply (4.42) in this case, as well as (4.43) in the opposite case.
Therefore, we split the integral to obtain

I(λ) ≤ C
∫ rQ

0

∫ rQ

0
dr dr̄ 1{r≤ε̂ or r̂≤ε̂}

1

r2r̄2
I (Ĉrr̄)2

+ C
∫ rQ

0

∫ rQ

0
dr dr̄ 1{r>ε̂ and r̂>ε̂}

1

r2r̄2
I (Ĉrr̄)2

≤ C
∫ rQ

0

∫ rQ

0
dr dr̄ 1{r≤ε̂ or r̂≤ε̂}

1

r2r̄2
r2r̄2

+ C
∫ rQ

0

∫ rQ

0
dr dr̄ 1{r>ε̂ and r̂>ε̂}

1

r2r̄2

≤ C
∫ rQ

0

∫ rQ

0
dr dr̄ ,

which shows that a suitably large constant provides an integrable majorant. Case 2:
β̂ = 0. By (4.44), we get

I(λ) ≤ C
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
I (Ĉrr̄)2

≤ C
∫ rQ

0

∫ rQ

0

dr

r2
dr̄

r̄2
(CĈrr̄ − Ĉrr̄ ln(Ĉrr̄))2

≤ C
∫ rQ

0

∫ rQ

0
(1 − ln(Ĉrr̄))2 dr dr̄

≤ C
∫ rQ

0

∫ rQ

0
(1 + | ln r |2 + | ln r̄ |2) dr dr̄ .

Since 1 + | ln r |2 + | ln r̄ |2 is integrable on [0, rQ] × [0, rQ], we have found an inte-
grable majorant also in this case. Altogether, we have shown that (4.37) is verified.
At the same time, this yields limλ̃→δ21− T (λ̃) = 0, and going back to (4.36), we

deduce that (4.35) holds for an appropriate Hilbert-Schmidt operator Qδ21
on L2

r .
Since ‖ · ‖B(L2

r )
≤ ‖ · ‖HS, (4.35) in particular implies that Qδ21

= limλ→δ21− Qλ in
B(L2

r ). Recalling from (4.7) that μ1(λ) = ‖Qλ‖B(L2
r )
, we can use (4.33) to get

μ∗ = lim
λ→δ21−

μ1(λ) = lim
λ→δ21−

‖Qλ‖B(L2
r )

= ‖Qδ21
‖B(L2

r )
,

as claimed.
Let κ1 ≥ κ2 ≥ . . . → 0 denote the eigenvalues (listed according to their multi-

plicities) of the symmetric and positive Hilbert-Schmidt operator Qδ21
. Then

κk = max
{

min
�∈S, ‖�‖L2r

=1
〈Qδ21

�,�〉 : S ⊂ L2
r is a subspace of dimension k

}
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by the Courant max-min principle. Passing to the limit limλ̃→δ21− in (4.36), we derive

‖Qλ − Qδ21
‖
HS

≤ C |λ − δ21 | + CT (λ)1/2,

where limλ→δ21− T (λ) = 0. Thus, if � ∈ L2
r is such that ‖�‖L2

r
= 1, then we have

|〈Qλ�,�〉 − 〈Qδ21
�,�〉| ≤ ‖Qλ − Qδ21

‖
HS

≤ C |λ − δ21 | + CT (λ)1/2.

Since the μk(λ) are also characterized by the Courant max-min principle, see (4.18),
it follows that

|μk(λ) − κk | ≤ C |λ − δ21 | + CT (λ)1/2,

and accordingly μ∗,k = limλ→δ21− μk(λ) = κk .
The next assertion is due to the definition of μ∗,k and Lemma 4.3(f), whereas the

convexity of μ1 on ] − ∞, δ21] is a consequence of Lemma 4.7(d). �

Corollary 4.10 Suppose that (ω1-3) is satisfied.

(a) There is a constant C > 0 such that for every λ ∈ [0, δ21] and r, r̃ ∈]0, rQ], we
have

|Kλ(r, r̃)| ≤ C

r̃2
(1 + | ln r |).

(b) For λ ∈ [0, δ21[, let �λ ∈ L2
r denote a normalized eigenfunction of Qλ for μ1(λ).

Then there is a constant C > 0 such that for every λ ∈ [0, δ21[ and r ∈]0, rQ], we
have

|�λ(r)| ≤ C(1 + | ln r |) ‖�λ‖L2
r
.

(c) For �λ as in (b), define ψλ(r, pr , �) = |Q′(eQ)| pr�λ(r) ∈ X0
odd. Then there is a

constant C > 0 such that for every λ ∈ [0, δ21[ and k ∈ Z, we have

|(ψλ)k(I, �)| ≤ C |Q′(e)| ‖�λ‖L2
r
, (I, �) ∈ D,

where (ψλ)k are the Fourier coefficients of ψλ.

Proof (a) From (4.14) and similar to the argument following (4.9), we obtain with
min{r2, r̃2} ≤ r2 and using (ω1-3)

|Kλ(r, r̃)| = 4

r2r̃2

∣∣∣∣
∑
k �=0

sk,0(r, r̃ ,λ)

∣∣∣∣

≤ C

r2r̃2
1{0≤r,r̃≤rQ }

∑
k �=0

∫∫

D

dβ de 1{β≤Cr2}
1

k2ω2
1(e,β) − λ

≤ C

r2r̃2
1{0≤r,r̃≤rQ }

∑
|k|≥2

∫∫

D

dβ de 1{β≤Cr2}
2

δ21k2
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+ C

r2r̃2
1{0≤r,r̃≤rQ }

∫∫

D

dβ de 1{β≤Cr2}
1

ω2
1(e,β) − λ

≤ C

r2r̃2
1{0≤r,r̃≤rQ } r2 + C

r2r̃2
1{0≤r,r̃≤rQ }

∫∫

D

dβ de 1{β≤Cr2}
1

ω2
1(e,β) − δ21

≤ C

r̃2
1{0≤r,r̃≤rQ } + C

r2r̃2
1{0≤r,r̃≤rQ }

∫∫

D

dβ de 1{β≤Cr2}
1

|(e,β) − (e0, β̂)| .

By means of the function I from (4.41), this can be expressed as

|Kλ(r, r̃)| ≤ C

r̃2
1{0≤r,r̃≤rQ } + C

r2r̃2
1{0≤r,r̃≤rQ } I (Ĉr2)

for certain constants C, Ĉ > 0 that only depend on Q. Once again, we distinguish

two cases. Case 1: β̂ > 0. If r2 ≤ β̂

2Ĉ
, then we can apply (4.42) to get

|Kλ(r, r̃)| ≤ C

r̃2
1{0≤r,r̃≤rQ }.

On the other hand, if r2 ≥ β̂

2Ĉ
, then (4.43) leads to

|Kλ(r, r̃)| ≤ C

r̃2
1{0≤r,r̃≤rQ } + C

r2r̃2
1{( β̂

2Ĉ
)1/2≤r≤rQ , 0≤r̃≤rQ } ≤ C

r̃2
1{0≤r,r̃≤rQ }.

Case 2: β̂ = 0. Here, we invoke (4.44) to deduce that

|Kλ(r, r̃)| ≤ C

r̃2
1{0≤r,r̃≤rQ } + C

r2r̃2
1{0≤r,r̃≤rQ } |Ĉr2 ln(Ĉr2)| ≤ C

r̃2
1{0≤r,r̃≤rQ } (1 + | ln r |).

Hence, in any case, we arrive at the bound

|Kλ(r, r̃)| ≤ C

r̃2
(1 + | ln r |),

as desired. (b) Using (a), we obtain from (4.15) and Remark 4.2(b)

μ1(0)|�λ(r)| ≤ μ1(λ)|�λ(r)| = |(Qλ�λ)(r)| = 4π

∣∣∣∣
∫ rQ

0
r̃2 Kλ(r, r̃)�λ(r̃) dr̃

∣∣∣∣
≤ C(1 + | ln r |)

∫ rQ

0
|�λ(r̃)| dr̃ ,

so that

|�λ(r)| ≤ C∗(1 + | ln r |)
∫ rQ

0
|�λ(r̃)| dr̃ (4.45)
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for a certain constant C∗ > 0 that only depends on Q. Fix a∗ ∈]0, rQ[ such that∫ a∗
0 (1 + | ln r |) dr ≤ 1

2C∗ . Then

∫ a∗

0
|�λ(r)| dr ≤ C∗

∫ a∗

0
(1 + | ln r |) dr

∫ rQ

0
|�λ(r̃)| dr̃ ≤ 1

2

∫ rQ

0
|�λ(r̃)| dr̃

= 1

2

∫ a∗

0
|�λ(r̃)| dr̃ + 1

2

∫ rQ

a∗
|�λ(r̃)| dr̃

entails
∫ a∗
0 |�λ(r̃)| dr̃ ≤ ∫ rQ

a∗ |�λ(r̃)| dr̃ . Going back to (4.45), it follows by means
of Hölder’s inequality that

|�λ(r)| ≤ C∗(1 + | ln r |)
[ ∫ a∗

0
|�λ(r̃)| dr̃ +

∫ rQ

a∗
|�λ(r̃)| dr̃

]
≤ 2C∗(1 + | ln r |)

∫ rQ

a∗
|�λ(r̃)| dr̃

≤ 2C∗
a∗

(1 + | ln r |)
∫ rQ

a∗
r̃ |�λ(r̃)| dr̃ ≤

2C∗r1/2Q√
4π a∗

(1 + | ln r |) ‖�λ‖L2
r
,

from where a suitable C > 0 can be read off. (c) Owing to (4.24), Theorem 3.5 and
(b), we have

|(ψλ)k(I, �)| = 1

π
|Q′(e)| ω1(e, �)

∣∣∣∣
∫ r+(e,�)

r−(e,�)
�λ(r̃) sin(kθ(r̃ , e, �)) dr̃

∣∣∣∣
≤ C |Q′(e)|

∫ rQ

0
|�λ(r̃)| dr̃

≤ C |Q′(e)|
( ∫ rQ

0
(1 + | ln r̃ |) dr̃

)
‖�λ‖L2

r
≤ C |Q′(e)| ‖�λ‖L2

r
,

which completes the proof. �

Corollary 4.11 Suppose that (ω1-3) is satisfied. Let (λ j ) ⊂ [0, δ21[ be such that
lim j→∞ λ j = δ21 . For j ∈ N, let � j ∈ L2

r denote a normalized eigenfunction of Qλ j

for μ1(λ j ). Furthermore, define ψ j (r, pr , �) = |Q′(eQ)| pr� j (r) ∈ X0
odd. Then there

is a subsequence j ′ → ∞ so that

�∗ = lim
j ′→∞ � j ′

does exist in L2
r and

ψ∗ = lim
j ′→∞ ψ j ′

does exist in X0, where ψ∗(r, pr , �) = |Q′(eQ)| pr�∗(r). In addition, ‖�∗‖L2
r
= 1

and Qδ21
�∗ = μ∗�∗ as well as μ∗ = ‖Qδ21

‖.

Proof Recall from (4.33) and Lemma 4.9 that μ∗ ∈ [μ1(0),∞[. For j, k ∈ N, we
can estimate
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μ∗‖� j − �k‖L2
r
≤ (μ∗ − μ1(λ j ))‖� j‖L2

r
+ ‖Qλ j � j − Qλk �k‖L2

r

+ (μ∗ − μ1(λk))‖�k‖L2
r

≤ (μ∗ − μ1(λ j )) + (μ∗ − μ1(λk)) + ‖(Qλ j − Qδ21
)� j‖L2

r

+‖Qδ21
� j − Qδ21

�k‖L2
r
+ ‖(Qδ21

− Qλk )�k‖L2
r

≤ (μ∗ − μ1(λ j )) + (μ∗ − μ1(λk)) + ‖Qλ j − Qδ21
‖B(L2

r )

+‖Qδ21
� j − Qδ21

�k‖L2
r
+ ‖Qδ21

− Qλk ‖B(L2
r )

≤ (μ∗ − μ1(λ j )) + (μ∗ − μ1(λk)) + ‖Qδ21
− Qλ j ‖HS

+‖Qδ21
− Qλk ‖HS + ‖Qδ21

� j − Qδ21
�k‖L2

r
. (4.46)

According to Lemma 4.9, we have limλ→δ21− ‖Qδ21
− Qλ‖HS = 0 andQδ21

: L2
r → L2

r
is a Hilbert-Schmidt operator, and hence compact. Thus, since ‖� j‖L2

r
= 1, the

set {Qδ21
� j : j ∈ N} ⊂ L2

r is relatively compact. Therefore, there is a subsequence

j ′ → ∞ and a function �̂ ∈ L2
r so that lim j ′→∞ Qδ21

� j ′ = �̂ in L2
r . From (4.46),

we deduce that along the subsequence

μ∗‖� j ′ − �k ′ ‖L2
r
≤ (μ∗ − μ1(λ j ′)) + (μ∗ − μ1(λk ′))

+‖Qδ21
− Qλ j ′ ‖HS + ‖Qδ21

− Qλk′ ‖HS
+‖Qδ21

� j ′ − Qδ21
�k ′ ‖

L2
r
→ 0, j ′, k ′ → ∞.

As a consequence, �∗ = lim j ′→∞ � j ′ does exist in L2
r . Since

‖ψ j ′ − ψk ′ ‖X0 ≤ ρQ(0)1/2 ‖� j ′ − �k ′ ‖L2
r

by (4.23), also ψ∗ = lim j ′→∞ ψ j ′ does exist in X0, where ψ∗(r, pr , �) = |Q′(eQ)|
pr�∗(r) a.e. Lastly,

‖Qδ21
�∗ − μ∗�∗‖L2

r
≤ ‖Qδ21

(�∗ − � j ′)‖
L2

r
+ ‖(Qδ21

− Qλ j ′ )� j ′ ‖
L2

r

+ (μ∗ − μ1(λ j ′)) ‖� j ′ ‖L2
r
+ μ∗‖� j ′ − �∗‖L2

r

≤ 2μ∗‖�∗ − � j ′ ‖L2
r
+ ‖Qδ21

− Qλ j ′ ‖B(L2
r )

+ (μ∗ − μ1(λ j ′)) → 0, j ′ → ∞,

implies that Qδ21
�∗ = μ∗�∗. �

The following criterion is useful for proving that δ21 is an eigenvalue of L in the
case where μ∗ = 1.

Lemma 4.12 Suppose that (ω1-3) is satisfied and that μ∗ = 1. Let (λ j ) ⊂ [0, δ21[ be
such that lim j→∞ λ j = δ21 . For j ∈ N, let � j ∈ L2

r denote a normalized eigenfunc-
tion of Qλ j for μ1(λ j ). Furthermore, define ψ j (r, pr , �) = |Q′(eQ)| pr� j (r) ∈ X0

odd
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and g j = (−T 2 − λ j )
−1ψ j ∈ X2

odd. If (g j ) ⊂ X0 = L2
sph, 1

|Q′ |
(K ) is bounded, then δ21

is an eigenvalue of L.

Proof From (4.21), we deduce

KT g j = KT (−T 2 − λ j )
−1ψ j=|Q′(eQ)| pr (Qλ j � j )

= μ1(λ j ) |Q′(eQ)| pr� j = μ1(λ j )ψ j . (4.47)

Since −T 2g j = ψ j + λ j g j , using Corollary B.19, this implies that for every odd
function h ∈ X00, we have

(g j , Lh)X0 = (Lg j , h)X0 = (−T 2g j , h)X0 − (KT g j , h)X0

= (ψ j + λ j g j , h)X0 − μ1(λ j )(ψ j , h)X0

= λ j (g j , h)X0 + (1 − μ1(λ j ))(ψ j , h)X0 . (4.48)

Next, from (4.20), we get ‖ψ j‖X0 ≤ ρQ(0)1/2 ‖� j‖L2
r
≤ ρQ(0)1/2. Since

lim j→∞ μ1(λ j ) = μ∗ = 1, this yields in particular that

lim
j→∞ [(1 − μ1(λ j ))(ψ j , h)X0 ] = 0. (4.49)

By assumption, (g j ) ⊂ X0 is bounded. Hence, passing to a subsequence (that is
not relabeled), we may assume that g j ⇀ g∗ weakly in X0 as j → ∞ for some
function g∗ ∈ X0

odd. Suppose that g∗ = 0. Then g j ⇀ 0 weakly in X0 implies that
KT g j ⇀ 0 weakly in X0 as j → ∞, by Lemma B.15(d). Due to (4.47), this yields
ψ j ⇀ 0 weakly in X0 as j → ∞. On the other hand, by Corollary 4.11, we may
pass to a subsequence j ′ → ∞ so that �∗ = lim j ′→∞ � j ′ does exist in L2

r and
ψ∗ = lim j ′→∞ ψ j ′ does exist in X0 as strong limits; the functions are linked via
ψ∗(r, pr , �) = |Q′(eQ)| pr�∗(r). But then we must have ψ∗ = 0 and accordingly
�∗ = 0, which however contradicts ‖�∗‖L2

r
= 1, cf. Corollary 4.11. As a conse-

quence, it follows that g∗ ∈ X0
odd satisfies g∗ �= 0. Passing to the limit j → ∞

in (4.48) and using (4.49), we moreover infer that (g∗, Lh)X0 = δ21(g∗, h)X0 for
every odd function h ∈ X00. From Lemma C.11, we conclude that g∗ ∈ X2

odd and
Lg∗ = δ21g∗, which completes the proof. �

4.2 Relating μ∗ to the Fact That λ∗ is an Eigenvalue of L

Theorem 4.13 We have
μ∗ > 1 ⇐⇒ λ∗ < δ21 .

In this case, μ1(λ∗) = 1 and λ∗ is an eigenvalue of L.
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Proof If μ∗ > 1, then λ∗ = δ21 is impossible by Remark 4.8, so that we must have
λ∗ < δ21 . Conversely, suppose that λ∗ < δ21 holds. Then, according to Theorem C.8,
λ∗ is an eigenvalue of L . Let u∗ ∈ X2

odd be an eigenfunction of L for the eigenvalue
λ∗. Using Theorem 4.5(a), it follows that �∗ = U ′

T u∗ ∈ L2
r for r ∈ [0, rQ] is an

eigenfunction of Qλ∗ for the eigenvalue 1. Since μ1(λ∗) is the largest eigenvalue of
Qλ∗ , we get μ1(λ∗) ≥ 1. On the other hand, μ1(λ∗) ≤ 1 by Lemma 4.7(b), and hence
μ1(λ∗) = 1. It remains to show that μ∗ > 1. Suppose that on the contrary μ∗ ≤ 1 is
satisfied. For λ ∈ [λ∗, δ21[, themonotonicity ofμ1 then yields 1 = μ1(λ∗) ≤ μ1(λ) ≤
μ∗ ≤ 1,whichmeans thatμ1(λ) = 1 is constant forλ ∈ [λ∗, δ21[. Takeλ∗ ≤ λ̃ < λ <

δ21 . and let�λ̃ denote a normalized eigenfunction forμ1(λ̃). Then, by (4.19) and (4.7),

1 = μ1(λ̃) = 〈Qλ̃�λ̃, �λ̃〉 ≤ 〈Qλ�λ̃, �λ̃〉 ≤ ‖Qλ‖ ‖�λ̃‖2L2
r
= μ1(λ) = 1,

which means that 〈Qλ�λ̃, �λ̃〉 = 1 for all λ∗ ≤ λ̃ < λ < δ21 . Differentiating this
relation w.r. to λ at a fixed λ0 ∈]λ̃, δ21[, it follows from (4.6) that

0 = 〈Q′
λ0

�λ̃, �λ̃〉

= 64π2
∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|

(k2ω2
1(e, �) − λ0)2

∣∣∣∣
∫ r+(e, �)

r−(e, �)
�λ̃(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

for all λ̃ ∈ [λ∗,λ0[. Defining ψλ̃(r, pr , �) = |Q′(eQ)| pr�λ̃(r) ∈ X0
odd, then (4.24)

implies that (ψλ̃)k = 0 for k ∈ Z, so that ψλ̃ = 0 and in turn�λ̃ = 0, which however
is impossible. �
Theorem 4.14 Suppose that (ω1-1) is satisfied. If μ∗ < 1, then λ∗ = δ21 and this is
not an eigenvalue of L.

Proof The approach is inspired by [20, Section 2]. Since λ∗ ≤ δ21 by Lemma 3.18,
μ∗ < 1 together with Theorem 4.13 implies λ∗ = δ21 . Now suppose on the contrary
that there is a function u∗ ∈ X2

odd such that ‖u∗‖X0 = 1 and Lu∗ = δ21u∗. If we
define �∗(r) = U ′

T u∗(r) for r ∈ [0, rQ], then �∗ ∈ L2
r and (B.37) yields KT u∗ =

|Q′(eQ)| pr U ′
T u∗(r) = |Q′(eQ)| pr �∗(r). Hence, for a > 0 and b ∈ R, we get

(−T 2 − (δ21 − a + ib))u∗ = KT u∗ + (a − ib)u∗.

Since z = δ21 − a + ib ∈ �, it follows from (4.21) that

|Q′(eQ)| pr (Qδ21−a+ib�∗) = KT (−T 2 − (δ21 − a + ib))−1(KT u∗)

= KT u∗ − (a − ib)KT (−T 2 − (δ21 − a + ib))−1u∗
= |Q′(eQ)| pr �∗

−(a − ib) |Q′(eQ)| pr U ′
T (−T 2−(δ21−a+ib))−1u∗

,

and therefore,
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Qδ21−a+ib�∗ = �∗ − (a − ib) U ′
T (−T 2−(δ21−a+ib))−1u∗

. (4.50)

We claim that if a = a(ε) → 0+ and b = b(ε) → 0 as ε → 0, then

(a − ib) U ′
T (−T 2−(δ21−a+ib))−1u∗

→ 0, ε → 0+, (4.51)

in L2
r . For, we can invoke Corollary B.16 as well as (B.25) to deduce

‖(a − ib) U ′
T (−T 2−(δ21−a+ib))−1u∗

‖2
L2

r

≤ 16π2ρQ(0) (a2 + b2) ‖(−T 2 − (δ21 − a + ib))−1u∗‖2X0

= 256π5ρQ(0) (a2 + b2)
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|(u∗)k(I, �)|2

|k2ω2
1(I, �) − (δ21 − a + ib)|2

= 256π5ρQ(0) (a2 + b2)
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|(u∗)k(I, �)|2

(k2ω2
1(I, �) − δ21 + a)2 + b2

.

If |k| ≥ 2, then k2ω2
1(I, �) − δ21 + a ≥ (k2 − 1)δ21 ≥ 3δ21 . Thus,

‖(a − ib) U ′
T (−T 2−(δ21−a+ib))−1u∗

‖2
L2

r

≤ 2π2δ−4
1 ρQ(0) (a2 + b2) ‖u∗‖2X0

+ 512π5ρQ(0)
∫∫

D

d I d� �
a2 + b2

(ω2
1(I, �) − δ21 + a)2 + b2

φ1(I, �)

for φ1(I, �) = |(u∗)1(I,�)|2
|Q′(e)| ∈ L1(D). For almost all (I, �) ∈ D, we know from hypoth-

esis (ω1-1) that ω1(I, �) �= δ1, i.e., ω1(I, �) > δ1. For such an (I, �), we have

a2 + b2

(ω2
1(I, �) − δ21 + a)2 + b2

≤ a2 + b2

(ω2
1(I, �) − δ21)

2 + b2
→ 0, ε → 0.

Since always
a2 + b2

(ω2
1(I, �) − δ21 + a)2 + b2

≤ 1,

it follows by using Lebesgue’s dominated convergence theorem that indeed (4.51) is
verified. Going back to (4.50), this entails that

lim
ε→0

Qδ21−a+ib�∗ = �∗ in L2
r . (4.52)
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Next, we are going to compare Qδ21−a+ib to Qδ21−a . Here, we find

|〈Qδ21−a+ib�∗, �∗〉 − 〈Qδ21−a�∗, �∗〉| = |〈(Qδ21−a+ib − Qδ21−a)�∗, �∗〉|
= 64π2

∣∣∣∣
∑
k �=0

∫∫

D

d� � de

×
[

ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − (δ21 − a − ib)
− ω1(e, �) |Q′(e)|

k2ω2
1(e, �) − (δ21 − a)

]

×
∫ rQ

0

∫ rQ

0
dr dr̃ �∗(r)�∗(r̃) 1{r−(e, �)≤r, r̃≤r+(e, �)} sin(kθ(r, e, �)) sin(kθ(r̃ , e, �))

∣∣∣∣,

cf. Lemma 4.3(d) and the definition ofQz . Using (4.8), (4.12) and similar arguments
as in the proof of Lemma 4.3(a), we obtain

|〈Qδ21−a+ib�∗, �∗〉 − 〈Qδ21−a�∗, �∗〉|

≤ C |b|
∑
k �=0

∫∫

D

d� � de |Q′(e)| 1

|k2ω2
1(e, �) − (δ21 − a − ib)||k2ω2

1(e, �) − (δ21 − a)|

×
∫ rQ

0

∫ rQ

0
dr dr̃ |�∗(r)| |�∗(r̃)| 1{β≤Crr̃}.

Now

|k2ω2
1(e, �) − (δ21 − a − ib)|2 = (k2ω2

1(e, �) − δ21 + a)2 + b2 ≥ a2,

|k2ω2
1(e, �) − (δ21 − a)|2 = (k2ω2

1(e, �) − δ21 + a)2 ≥ a2,

so that

|〈Qδ21−a+ib�∗, �∗〉 − 〈Qδ21−a�∗, �∗〉|
≤ C

|b|
a2

∑
k �=0

∫ rQ

0

∫ rQ

0
dr dr̃ |�∗(r)| |�∗(r̃)| rr̃

( ∫ e0

UQ(0)
|Q′(e)| de

)

≤ C
|b|
a2

‖�∗‖2L2
r
.

So if we take for instance b(ε) = ε3 and a(ε) = ε, it follows that

lim
ε→0

|〈Qδ21−ε+iε3�∗, �∗〉 − 〈Qδ21−ε�∗, �∗〉| = 0.

Using also (4.52), we conclude that

lim
ε→0

〈Qδ21−ε�∗, �∗〉 = ‖�∗‖2L2
r
.
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As a consequence,

‖�∗‖2L2
r
= lim

ε→0
〈Qδ21−ε�∗, �∗〉 ≤ lim sup

ε→0
‖Qδ21−ε‖ ‖�∗‖2L2

r

= lim sup
ε→0

μ1(δ
2
1 − ε) ‖�∗‖2L2

r
≤ μ∗ ‖�∗‖2L2

r
.

Since μ∗ < 1, this enforces �∗ = 0 and hence KT u∗ = 0. Therefore, −T 2u∗ =
−T 2u∗ − KT u∗ = Lu∗ = δ21u∗, i.e., δ21 is an eigenvalue of−T 2 with eigenfunction
u∗. However, this contradicts Lemma B.12. �

The next result clarifies the case where μ∗ = 1.

Theorem 4.15 Suppose that (ω1-3) is satisfied and that μ∗ = 1. Then λ∗ = δ21 , and
this is an eigenvalue of L if and only if

‖μ′
1‖L∞(]−∞,δ21 [) < ∞ (4.53)

holds.

Proof Since λ∗ ≤ δ21 by Lemma 3.18, μ∗ = 1 together with Theorem 4.13 imply
λ∗ = δ21 . For the actual proof, recall from Lemma 4.3(f) that μ1(·) : ] − ∞, δ21[ →
]0,∞[ is differentiable a.e., so (4.53) makes sense.

First, we consider the case where δ21 is an eigenvalue of L . Let u∗ ∈ X2
odd

be such that ‖u∗‖X0 = 1 and Lu∗ = δ21u∗. If we define �∗(r) = U ′
T u∗(r) for r ∈

[0, rQ], then �∗ ∈ L2
r and (B.37) implies that KT u∗ = |Q′(eQ)| pr U ′

T u∗(r) =
|Q′(eQ)| pr �∗(r) =: ψ∗ ∈ X0

odd. For λ < δ21 , we have

(−T 2 − λ)u∗ = Lu∗ + KT u∗ − λu∗ = ψ∗ + (δ21 − λ)u∗, (4.54)

and hence
(k2ω2

1 − λ)(u∗)k = (ψ∗)k + (δ21 − λ)(u∗)k, k ∈ Z, (4.55)

for the Fourier coefficients. Since

(ψ∗, u∗)X0 = (KT u∗, u∗)X0 = 1

4π

∫
R3

|U ′
T u∗(r)|2 dx = 1

4π
‖�∗‖2L2

r

by (B.40) from Lemma B.15(b), taking the inner product in X0 of (4.54) with u∗,
we deduce

((−T 2 − λ)u∗, u∗)X0 = 1

4π
‖�∗‖2L2

r
+ (δ21 − λ)‖u∗‖2X0 . (4.56)

Next, due to (4.25) from Lemma 4.6, we have

〈Qλ�∗, �∗〉 = 64π4
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|
1

k2ω2
1(e, �) − λ

× |(ψ∗)k(I, �)|2.
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Thus, by (B.4), (A.18), Lemma B.8(b) and (4.55) applied twice,

((−T 2 − λ)u∗, u∗)X0

= 16π3
∑
k �=0

∫ ∞

0
d I

∫ ∞

0
d� �

1

|Q′(e)| [((−T 2 − λ)u∗]k(I, �) (u∗)k(I, �)

= 16π3
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| (k2ω2
1(e, �) − λ) |(u∗)k(I, �)|2

= 16π3
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| (ψ∗)k(I, �) (u∗)k(I, �)

+ 16π3(δ21 − λ)
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| |(u∗)k(I, �)|2

= 16π3
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| (ψ∗)k(I, �)

×
(

(ψ∗)k(I, �)

k2ω2
1(e, �) − λ

+ (δ21 − λ)
(u∗)k(I, �)

k2ω2
1(e, �) − λ

)

+ (δ21 − λ) ‖u∗‖2X0

= 1

4π
〈Qλ�∗, �∗〉

+ 16π3(δ21 − λ)
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| (ψ∗)k(I, �)
(u∗)k(I, �)

k2ω2
1(e, �) − λ

+ (δ21 − λ) ‖u∗‖2X0 .

Comparing to (4.56), this yields

1

4π
‖�∗‖2L2

r

= 1

4π
〈Qλ�∗, �∗〉

+ 16π3(δ21 − λ)
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| (ψ∗)k(I, �)
(u∗)k(I, �)

k2ω2
1(e, �) − λ

.

(4.57)

If we had �∗ = 0, then also ψ∗ = 0 and consequently (k2ω2
1 − δ21)(u∗)k = 0 in D

for k �= 0 by (4.55). This implies that (u∗)k = 0 for |k| ≥ 2 and (ω1 − δ1)(u∗)1 = 0
in D. Owing to (ω1-1), this enforces (u∗)1 = 0 a.e. and therefore u∗ = 0, which is a
contradiction. In other words, we do know that �∗ �= 0. Hence, by (4.7) and (4.57),
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μ1(λ) = sup {〈Qλ�,�〉 : ‖�‖L2
r
≤ 1}

≥ 1

‖�∗‖2L2
r

〈Qλ�∗, �∗〉

= 1 − 64π4

‖�∗‖2L2
r

(δ21 − λ)
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|

× (ψ∗)k(I, �)
(u∗)k(I, �)

k2ω2
1(e, �) − λ

.

Thus,

1 − μ1(λ)

δ21 − λ
≤ 64π4

‖�∗‖2L2
r

∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|

× (ψ∗)k(I, �)
(u∗)k(I, �)

k2ω2
1(e, �) − λ

,

and upon using (4.55) one more time, we conclude that

1 − μ1(λ)

δ21 − λ
≤ 64π4

‖�∗‖2
L2

r

∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|
k2ω2

1(e, �) − δ21
k2ω2

1(e, �) − λ
|(u∗)k(I, �)|2

≤ 64π4

‖�∗‖2
L2

r

∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)| |(u∗)k(I, �)|2

= 4π

‖�∗‖2
L2

r

‖u∗‖2X0 (4.58)

for all λ < δ21 . Since μ1 is convex on ] − ∞, δ21] by Lemma 4.9(d), the difference
quotients

μ1(λ + h) − μ1(λ)

h

for h > 0 are monotone increasing in λ (and also in h); see [14, p. 13/14]. Let
λ0 ∈] − ∞, δ21[ be a point where μ1 is differentiable and let h > 0. For λ1 = λ0 − h
and λ2 = δ21 − h, we have λ1 < λ2, whence μ1(δ

2
1) = μ∗ = 1 in conjunction with

(4.58) for λ = δ21 − h leads to

μ1(λ0) − μ1(λ0 − h)

h
= μ1(λ1 + h) − μ1(λ1)

h

≤ μ1(λ2 + h) − μ1(λ2)

h

= μ1(δ
2
1) − μ1(δ

2
1 − h)

h
≤ 4π

‖�∗‖2L2
r

‖u∗‖2X0 .



4.2 Relating μ∗ to the Fact That λ∗ is an Eigenvalue of L 85

It follows that ‖μ′
1‖L∞(]−∞,δ21 [) ≤ 4π

‖�∗‖2L2r
‖u∗‖2X0 , which proves (4.53).

To establish the converse, we assume (4.53) to hold, and we are going to ver-
ify that δ21 is an eigenvalue of L . For this, we are going to use Lemma 4.12. The
operator family Qz for z ∈ � = C \ [δ21,∞[ satisfies the assumptions of Lemma
D.1 with λ0 = δ21 and H = L2

r , by Lemmas 4.3 and 4.9. Hence, there are sequences
λ j ↗ δ21 , ε j > 0 and � j,λ ∈ L2

r for λ ∈]λ j − ε j ,λ j + ε j [ such that ‖� j,λ‖L2
r
= 1,

]λ j − ε j ,λ j + ε j [� λ �→ � j,λ ∈ L2
r

is real analytic for j ∈ N, and Qλ� j,λ = μ1(λ)� j,λ for j ∈ N andλ ∈]λ j − ε j ,λ j +
ε j [. Furthermore, μ1 is real analytic in ]λ j − ε j ,λ j + ε j [ and satisfies

μ′
1(λ) = 〈Q′

λ� j,λ,� j,λ〉 (4.59)

forλ ∈]λ j − ε j ,λ j + ε j [. By decreasing ε j further, if necessary,wemay assume that
ε j → 0 as j → ∞. Due to (4.53), there exists a set N ⊂] − ∞, δ21[ of measure zero
such that S = supλ∈]−∞,δ21 [\N |μ′

1(λ)| < ∞. For each j ∈ N, pick λ̂ j ∈]λ j − ε j ,λ j +
ε j [\N and define � j = � j,λ̂ j

. It follows that lim j→∞ λ̂ j = δ21 and ‖� j‖L2
r
= 1. In

addition, Qλ̂ j
� j = Qλ̂ j

� j,λ̂ j
= μ1(λ̂ j )� j,λ̂ j

= μ1(λ̂ j )� j , i.e., � j is a normalized

eigenfunction for the eigenvalue μ1(λ̂ j ) of Qλ̂ j
such that

sup
j∈N

〈Q′
λ̂ j

� j , � j 〉 ≤ S, (4.60)

the latter due (4.59); recall that generally 〈Q′
λ�,�〉 ≥ 0 by (4.6). Now define

ψ j (r, pr , �) = |Q′(eQ)| pr� j (r) ∈ X0
odd and g j = (−T 2 − λ̂ j )

−1ψ j ∈ X2
odd.

To complete the proof, we need to show that (g j ) ⊂ X0 is bounded. From (B.4),
(A.18), (B.25), (4.24) and (4.6), we obtain

‖g j ‖2X0 = 16π3
∑
k �=0

∫ ∞
0

d I
∫ ∞
0

d� �
1

|Q′(e)| |(g j )k(I, �)|2

= 16π3
∑
k �=0

∫∫

D

d� � de
1

ω1(e, �) |Q′(e)|
|(ψ j )k(I, �)|2

(k2ω2
1(e, �) − λ̂ j )

2

= 16π
∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|

(k2ω2
1(e, �) − λ̂ j )

2

∣∣∣∣
∫ r+(e,�)

r−(e,�)
� j (r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

= 1

4π
〈Q′

λ̂ j
� j , � j 〉.

Thus, the claim follows from (4.60). �
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4.3 Some Further Results

The following observation corresponds to the situation where ω1 is differentiable
and attains its minimum at an interior point (ê, β̂) of D; cf. assumption (ω1-2).

Corollary 4.16 Suppose that (ω1-2) is satisfied. Then μ∗ = ∞, λ∗ < δ21 , μ1(λ∗) = 1
and λ∗ is an eigenvalue of L.

Proof We only need to show that μ∗ = ∞, then the remaining assertions do follow
from Theorem 4.13. The lower boundary curve (∂D)3 = {(e,β) ∈ D : e = emin(β)}
of D characterizes the (e,β) where r−(e,β) = r0(β) = r+(e,β). Since (ê, β̂) ∈
int D = {(e,β) : β ∈]0,β∗[, e ∈]emin(β), e0[} ⊂ D \ (∂D)3 by hypothesis, we have
that r+(ê, β̂) − r−(ê, β̂) = 6η > 0. The functions r± are known to be continuous
(even C1) on int D; see [30, 50] and [88, Def./Thm. 2.4(b)]. Thus, by shrinking the
neighborhood U of (ê, β̂) if necessary, we may assume that

|r−(e,β) − r−(ê, β̂)| ≤ η, |r+(e,β) − r+(ê, β̂)| ≤ η, (e,β) ∈ U,

is verified, along with

|ω1(e,β) − δ1| ≤ C1 |(e,β) − (ê, β̂)|2, (e,β) ∈ U, (4.61)

from (1.31). Next, we have θ(r−(ê, β̂), ê, β̂) = 0 and θ(r+(ê, β̂), ê, β̂) = π. Since
∂θ
∂r = ω1

pr
due to (A.21) and pr > 0 along the half-orbit, θ(·, ê, β̂) is strictly increasing.

In particular, we obtain

sin θ(r̂m, ê, β̂) = 2σ > 0 for r̂m = 1

2
(r−(ê, β̂) + r+(ê, β̂)).

As also

θ : {(r, e,β) : (e,β) ∈ int D, r−(e,β) < r < r+(e,β)} → R

is continuous, there is ε ∈]0, η] such that sin θ(r, e,β) ≥ σ for (e,β) ∈ U so that |e −
ê| ≤ ε, |β − β̂| ≤ ε and r ∈ [r̂m − ε, r̂m + ε]∩]r−(e,β), r+(e,β)[= [r̂m − ε, r̂m +
ε]. If ε > 0 is small enough, we may assume that [ê − ε, ê + ε] × [β̂ − ε, β̂ + ε] ⊂
U ⊂ int D as well as [r̂m − ε, r̂m + ε] ⊂ [0, rQ]. Furthermore, note that in general
sin θ(r, e,β) ≥ 0 for (e,β) ∈ int D and r−(e,β) < r < r+(e,β). Next, owing to
(ê, β̂) ∈ int D, we have e ∈]UQ(0), e0[. Using (Q2), we can thus make sure that
inf{|Q′(e)| : e ∈ [ê − ε, ê + ε]} = α > 0. Now, we consider the function

�0(r) = γ−11[r̂m−ε, r̂m+ε](r), γ =
(4π
3

([r̂m + ε]3 − [r̂m − ε]3)
)1/2

,

for which ‖�0‖L2
r
= 1. Hence, for λ < δ21 by Lemma 4.3(d),
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μ∗ ≥ μ1(λ) = ‖Qλ‖ = sup {〈Qλ�,�〉 : ‖�‖ ≤ 1} ≥ 〈Qλ�0, �0〉
= 32π2

∑
k �=0

∫∫

D

dβ de
ω1(e,β) |Q′(e)|
k2ω2

1(e,β) − λ

∣∣∣∣
∫ r+(e, β)

r−(e, β)

�0(r) sin(kθ(r, e,β)) dr

∣∣∣∣
2

≥ 32π2
∫∫

D

dβ de
ω1(e,β) |Q′(e)|
ω2
1(e,β) − λ

( ∫ r+(e, β)

r−(e, β)

�0(r) sin(θ(r, e,β)) dr

)2

≥ 32π2δ1γ
−2

∫ β̂+ε

β̂−ε

dβ

∫ ê+ε

ê−ε

de
|Q′(e)|

ω2
1(e,β) − λ

( ∫ r̂m+ε

r̂m−ε

sin(θ(r, e,β)) dr

)2

≥ 128π2δ1γ
−2α σ2ε2

∫ β̂+ε

β̂−ε

dβ

∫ ê+ε

ê−ε

de
1

ω2
1(e,β) − δ21 + a

, (4.62)

where a = δ21 − λ > 0. From Theorem 3.5 and (4.61), we deduce that

ω2
1(e,β) − δ21 + a ≤ 2�1C1 |ξ − ξ̂|2 + a, ξ = (e,β), ξ̂ = (ê, β̂).

As a consequence,

∫ β̂+ε

β̂−ε
dβ

∫ ê+ε

ê−ε
de

1

ω2
1(e,β) − δ21 + a

≥
∫
|ξ−ξ̂|≤ε

d2ξ

2�1C1 |ξ − ξ̂|2 + a

= 2π
∫ ε

0

ρ

2�1C1 ρ2 + a
dρ

= π

2�1C1
ln

2�1C1 ε2 + a

a
→ ∞, a → 0+.

Thus, if we pass to the limitλ → δ21−, i.e., a → 0+, in (4.62), it follows thatμ∗ = ∞.
�

Regarding Theorem 4.15, if (ω1-3) holds and if μ∗ = 1, then one can show that
λ = δ21 is an eigenvalue of L , provided one is able to gain a little bit from the term
|Q′(e)|, in the sense that Q′(e0) = 0 in a controlled way, as expressed by (Q5); then
the inherent logarithmic singularity can be dealt with. To simplify the presentation,
we additionally assume that μ∗ is simple as an eigenvalue of Qδ21

, but with some
more technical efforts, this assumption could be disposed of.

Corollary 4.17 Suppose that (ω1-3) and (Q5) are satisfied, and assume that μ∗ = 1
is a simple eigenvalue of Qδ21

. Then λ∗ = δ21 , and this is an eigenvalue of L.

Proof We already know that λ∗ = δ21; see the proof of Theorem 4.15. To verify that
δ21 is an eigenvalue of L , we are going to use Theorem4.15.According to LemmaD.2,
there is ε > 0 such that ]δ21 − ε, δ21[� λ �→ μ1(λ) is real analytic. In addition, there
are �λ ∈ L2

r satisfying ‖�λ‖L2
r
= 1, Qλ�λ = μ1(λ)�λ, and ]δ21 − ε, δ21[� λ �→ �λ
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is real analytic. Alsoμ′
1(λ) = 〈Q′

λ�λ, �λ〉 holds forλ ∈]δ21 − ε, δ21[. By Lemma 4.9,
the function μ1 is convex, so that μ′′

1 ≥ 0 and μ′
1 is increasing. In other words,

‖μ′
1‖L∞(]−∞,δ21 [) = lim

λ→δ21−
μ′
1(λ) =: μ′

∗

does exist in ]0,∞], and the issue is to show that μ′∗ < ∞. Defining ψλ(r, pr , �) =
|Q′(eQ)| pr�λ(r) ∈ X0

odd as before,we get, fromLemma4.3(d), (4.24) andCorollary
4.10(c),

μ′
1(λ) = 〈Q′

λ�λ, �λ〉
= 64π2

∑
k �=0

∫∫

D

d� � de
ω1(e, �) |Q′(e)|

(k2ω2
1(e, �) − λ)2

×
∣∣∣∣
∫ r+(e, �)

r−(e, �)
�λ(r) sin(kθ(r, e, �)) dr

∣∣∣∣
2

= 64π4
∑
k �=0

∫∫

D

d� � de
1

(k2ω2
1(e, �) − λ)2

|(ψλ)k(I, �)|2
ω1(e, �) |Q′(e)|

≤ C
∑
k �=0

∫∫

D

d� � de
1

(k2ω2
1(e, �) − λ)2

|Q′(e)|

≤ C
∞∑

k=2

∫∫

D

d� � de
4

δ41k4
+ C

∫∫

D

d� � de
|Q′(e)|

(ω1(e, �) − δ1)2
.

Thus, using (ω1-3) and (Q5),

μ′
1(λ) ≤ C + C

∫∫

D

d� � de
(e − e0)α

|(e,β) − (e0, β̂)|2

≤ C + C
∫ β∗

0
dβ

∫ e0

emin(β)

de
1

|(e,β) − (e0, β̂)|2−α

≤ C + C
∫ β∗−β̂

−β̂

dx2

∫ e0−UQ(0)

0
dx1

1

|x |2−α
≤ C,

where x = (x1, x2). Therefore μ′∗ ≤ C and the proof is complete. �



Chapter 5
Relation to the Guo-Lin Operator

In [29], the operator

AGL : H 2
r (R3) → L2

r (R
3), AGL = −� − 4π

∫
R3

|Q′(eQ)|(I − P) dv,

has been introduced (there called A0), where H 2
r (R3) is the Sobolev space of second

order of radial functions φ(x) = φ(r). Here, P is the projection onto the kernel of T
of such a radial function, cf. Remark B.6 for an explicit expression. The associated
quadratic form is

〈AGLφ,φ〉2,|Q′| = ‖∇φ‖2L2(R3) − 4π
(
‖φ‖2L2

|Q′ |(R
6)

− ‖Pφ‖2L2
|Q′ |(R

6)

)

= ‖∇φ‖2L2(R3) − 4π ‖φ − Pφ‖2L2
|Q′ |(R

6)
, (5.1)

where we let

‖g‖2L2
|Q′ |(R

6)
=

∫
R3

∫
R3

|Q′(eQ)| |g(x, v)|2 dx dv

for suitable g = g(x, v). In [29] an important property that was needed for the proofs
was that

λ̂GL = inf

{ 〈AGLφ,φ〉2,|Q′|
‖φ‖2L2(R3)

: φ ∈ H 2
r (R3),φ 	= 0

}

be positive. However, in fact it holds that λ̂GL = 0, as has been noted in Theorem4.6
and the subsequent Remark b) of [88]. In [88], it was also observed that the valid
(and for the intended stability proof appropriate) replacement is
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λGL = inf

{ 〈AGLφ,φ〉2,|Q′ |
‖∇φ‖2L2(R3)

: φ ∈ Ḣ 1
r (R3),∇φ 	= 0

}
> 0, (5.2)

where Ḣ 1(R3) = {φ ∈ L2
loc(R

3) : ∇φ ∈ L2(R3)} denotes the first order homoge-
neous Sobolev space and Ḣ 1

r (R3) are the radial functions in Ḣ 1(R3).

The next result establishes the connection between λGL and μ1(0).

Lemma 5.1 We have λGL + μ1(0) = 1.

Proof Let φ ∈ Ḣ 1
r = Ḣ 1

r (R3) be such that ∇φ 	= 0. Abusing notation, we can write
∇φ(x) = x

|x | �(r) for � = φ′, and in particular ‖�‖L2
r
= ‖∇φ‖L2(R3) and � ∈ L2

r .
Since

〈Q0�,�〉 = 4π
∫∫

K

|Q′(eQ)| (φ − Pφ)2 dx dv

= 4π
∫
R3

∫
R3

|Q′(eQ)| (φ − Pφ)2 dx dv = 4π ‖φ − Pφ‖2L2
|Q′ |(R

6)

by (4.26) in Lemma4.6 and our convention concerning |Q′(eQ)|, (5.1) yields
〈AGLφ,φ〉2,|Q′|

‖∇φ‖2L2(R3)

+ 〈Q0�,�〉
‖�‖2L2

r

= 1. (5.3)

Recall from (4.7) that μ1(0) = sup {〈Q0�,�〉 : ‖�‖L2
r
≤ 1}. Therefore, (5.3) leads

to

1 ≤ 〈AGLφ,φ〉2,|Q′|
‖∇φ‖2L2(R3)

+ μ1(0)

for all suchφ so that 1 ≤ λGL + μ1(0) is found. Conversely, if� ∈ L2
r and� 	= 0,we

define φ(r) = ∫ r
0 �(s) ds to obtain φ ∈ Ḣ 1

r , and once again (5.3) holds. We deduce
that

1 = 〈AGLφ,φ〉2,|Q′ |
‖∇φ‖2L2(R3)

+ 〈Q0�,�〉
‖�‖2L2

r

≥ λGL + 〈Q0�,�〉
‖�‖2L2

r

for all such �, which entails 1 ≥ λGL + μ1(0). �
Corollary 5.2 The infimum λGL in (5.2) is attained, i.e., there is a function φ∗ ∈
Ḣ 1
r (R3) such that ‖∇φ∗‖L2(R3) = 1 and 〈AGLφ∗,φ∗〉2,|Q′| = λGL.

Proof It is implicit in [29], and explicit in [88, Prop. 4.8], that the assertion will
follow from λGL 	= 1. However, Lemma 4.7(a) says that 0 < μ1(0) < 1, and hence
we also have 0 < λGL < 1 by Lemma5.1. �

There are some further relations ofQλ and L to AGL.Wewill argue only formally,
without specifying the spaces, etc.
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Remark 5.3 (a) The following observation has been used in [29] to prove thatλGL >

0.Letφ = φ(r)begiven andwriteφ0 = Pφ for its projectiononto thekernel ofT . Let
h = h(x, v) be such that T h = φ − φ0. Denote g = −|Q′|h and ψ = U−|Q′|(φ−φ0).
Then

〈AGLφ,φ〉2,|Q′| = 4π (Lg, g)Q +
∫
R3

|∇φ − ∇ψ|2 dx . (5.4)

In fact, since T |Q′| = 0 we get

∫
R3

∫
R3

|Q′| Pφ (φ − Pφ) dx dv =
∫
R3

∫
R3

φ P(|Q′| (φ − Pφ)) dx dv

=
∫
R3

∫
R3

φ (|Q′| (Pφ − P2φ)) dx dv = 0.

Hence from T g = −|Q′|T h = −|Q′|(φ − φ0) and (1.18), we obtain

〈AGLφ,φ〉2,|Q′ |

=
∫
R3

|∇φ|2 dx − 4π
∫
R3

∫
R3

|Q′| |φ − Pφ|2 dx dv

=
∫
R3

|∇φ|2 dx + 4π
∫
R3

∫
R3

|Q′| |φ − Pφ|2 dx dv

−8π
∫
R3

∫
R3

|Q′| φ (φ − Pφ) dx dv

=
∫
R3

|∇φ|2 dx + 4π
∫
R3

∫
R3

1

|Q′| |T g|2 dx dv + 8π
∫
R3

∫
R3

φ (T g) dx dv

= 4π
∫
R3

∫
R3

1

|Q′| |T g|2 dx dv +
∫
R3

|∇φ|2 dx + 2
∫
R3

φ�UT g dx

= 4π
∫
R3

∫
R3

1

|Q′| |T g|2 dx dv +
∫
R3

|∇φ|2 dx − 2
∫
R3

∇φ · ∇UT g dx

= 4π
∫
R3

∫
R3

1

|Q′| |T g|2 dx dv −
∫
R3

|∇UT g|2 dx +
∫
R3

|∇φ − ∇UT g|2 dx

= 4π (Lg, g)Q +
∫
R3

|∇φ − ∇UT g|2 dx,

as claimed. There is also a kind of converse statement to (5.4): if h = h(x, v) is given,
then 4π (Lh, h)Q can be written as the sum of 〈AGLUT h,UT h〉2,|Q′| and a positive
term.
(b) We consider the eigenvalue equation Qλ�λ = μ1(λ)�λ. Let Fλ be such that
F ′

λ = �λ. Then, (4.22) yields

μ1(λ)F ′
λ = μ1(λ)�λ = Qλ�λ = U ′

T (−T 2−λ)−1ψλ
.
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for ψλ = |Q′| pr�λ. Therefore μ1(λ)Fλ = UT (−T 2−λ)−1ψλ
+ const. together with

T (|Q′|Fλ) = |Q′| (T Fλ) = |Q′| pr F ′
λ = ψλ leads to

μ1(λ)�Fλ = 4π
∫
R3

|Q′| T (−T 2 − λ)−1T Fλ dv. (5.5)

Since the operator

F 
→ MλF = 4π�−1
∫
R3

|Q′| T (−T 2 − λ)−1T F dv

(most likely) will be compact on a suitable space of functions, the eigenvalues of
Mλ will correspond to the eigenvalues of Qλ. Observing

T (−T 2 − λ)−1T F = −(F − PF) − λ(−T 2 − λ)−1F,

(5.5) may be rewritten as

μ1(λ)�Fλ = −4π
∫
R3

|Q′| (I − P)Fλ dv − 4πλ

∫
R3

|Q′| (−T 2 − λ)−1Fλ dv,

so that

AGLFλ + (1 − μ1(λ))�Fλ = 4πλ

∫
R3

|Q′| (−T 2 − λ)−1Fλ dv,

which makes a connection to AGL. ♦



Chapter 6
Invariances

It is well-known that the Vlasov-Poisson system (1.5), (1.3) has many invariances,
see [49, p. 427], for instance: if f = f (t, x, v) is a solution, so is

f̃ (t̃, x̃, ṽ) = μ

λ2
f
( t̃ + t0

μλ
,
x̃ + x0

λ
,μṽ

)
, (6.1)

where μ,λ > 0, t0 ∈ R and x0 ∈ R
3. The associated potential and density are

U f̃ (t̃, x̃) = 1

μ2
U f

( t̃ + t0
μλ

,
x̃ + x0

λ

)
, ρ f̃ (t̃, x̃) = 1

μ2λ2
ρ f

( t̃ + t0
μλ

,
x̃ + x0

λ

)
.

(6.2)
It can be expected that quantities that are invariant will play a particularly important
role. It is the purpose of this section to determine several such quantities.

Let Q = Q(x, v) be a steady state solution. According to (6.1) and (6.2), then

Q̃(x̃, ṽ) = μ

λ2
Q

( x̃
λ

,μṽ
)

(6.3)

is a steady state solution for every μ,λ > 0. The associated potential and density are

UQ̃(x̃) = 1

μ2
UQ

( x̃
λ

)
, ρQ̃(x̃) = 1

μ2λ2
ρQ

( x̃
λ

)
.

The variables transform as x = x̃
λ
and v = μṽ so that in particular r = r̃

λ
for r = |x |

and r̃ = |x̃ |.
Next let Q = Q(eQ) depend only upon eQ(x, v) = 1

2 |v|2 +UQ(x). Then,
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eQ(x, v) = 1

2
|v|2 +UQ(x) = 1

2
μ2|ṽ|2 +UQ(λ−1 x̃)

= 1

2
μ2|ṽ|2 + μ2UQ̃(x̃) = μ2eQ̃(x̃, ṽ), (6.4)

and (6.3) leads to

Q̃(eQ̃) = μ

λ2
Q(eQ) = μ

λ2
Q(μ2eQ̃).

Thus, if Q = Q(eQ) and Q̃ = Q̃(eQ̃) are understood as functions of one variable,
then

Q̃′(eQ̃) = μ3

λ2
Q′(eQ). (6.5)

For radial potentials and densities, we have

UQ̃(r̃) = 1

μ2
UQ(r), ρQ̃(r̃) = 1

λ2μ2
ρQ(r), (6.6)

which leads to

U ′
Q̃
(r̃) = 1

λμ2
U ′

Q(r). (6.7)

The central densities are related by

ρQ̃(0) = 1

λ2μ2
ρQ(0). (6.8)

The effective potential from (7.4) isUeff(r, �) = UQ(r) + �2

2r2 , whichwe alsowrite

as Ueff(r,β) = UQ(r) + β
2r2 for β = �2. Let

β̃ = λ2

μ2
β.

Then,

Ũeff(r̃ , β̃) := UQ̃(r̃) + β̃

2r̃2
= 1

μ2
UQ(r) + λ2

μ2
β

1

2λ2r2
= 1

μ2
Ueff(r,β)

is the corresponding transformation rule. The points r± = r±(e,β) are determined
by the relation Ueff(r±(e,β),β) = e. Owing to

Ũeff(r̃±(ẽ, β̃), β̃) = ẽ ⇐⇒ 1

μ2
Ueff(λ

−1r̃±(ẽ, β̃),β) = 1

μ2
e



6 Invariances 95

we obtain
r̃±(ẽ, β̃) = λ r±(e,β).

Next, r0 = r0(β) is the point whereUeff(·,β) attains itsminimum. Since Ũeff(r̃ , β̃) =
μ−2Ueff(r,β) = μ−2Ueff(λ

−1r̃ ,β), we get

Ũ ′
eff(r̃ , β̃) = λ−1μ−2U ′

eff(λ
−1r̃ ,β),

and this implies that
r̃0(β̃) = λ r0(β).

In terms of the variables e and β, the period function from (A.20) is

T1(e,β) = 2
∫ r+(e,β)

r−(e,β)

dr√
2(e −Ueff(r,β))

.

Using the transformation r̃ = λr , dr̃ = λdr , it follows that

T̃1(ẽ, β̃) = 2
∫ r̃+(ẽ,β̃)

r̃−(ẽ,β̃)

dr̃√
2(ẽ − Ũeff(r̃ , β̃))

= 2λ
∫ λ−1r̃+(ẽ,β̃)

λ−1r̃−(ẽ,β̃)

dr√
2(ẽ − Ũeff(λr, β̃))

= 2λ
∫ r+(e,β)

r−(e,β)

dr√
2(μ−2e − μ−2Ueff(r,β))

= λμ T1(e,β).

In particular, ω̃1(ẽ, β̃) = 1
λμ

ω1(e,β) for ω̃1 = 2π
T̃1
, and if we denote δ1 = inf ω1, then

also

δ̃1 = 1

λμ
δ1. (6.9)

Next we consider the space L2
sph, 1

|Q′ |
(K ) = X0 of spherically symmetric functions

with the Q-dependent inner product

(u1, u2)Q =
∫∫

K

1

|Q′(eQ)| u1(x, v) u2(x, v) dx dv,

as in Remark B.2. Defining

ũ(x̃, ṽ) = μ

λ2
u
( x̃
λ

,μṽ
)

(6.10)
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in accordance with (6.3), we calculate, using dx = λ−3dx̃ and dv = μ3d ṽ as well
as (6.5):

‖ũ‖2Q̃ =
∫ ∫

dx̃ d ṽ

|Q̃′(eQ̃)| |ũ(x̃, ṽ)|2

= λ2

μ3

μ2

λ4

∫ ∫
λ3dx μ−3dv

|Q′(eQ)| |u(x, v)|2 = λ

μ4
‖u‖2Q . (6.11)

Let the operator (T g)(x, v) = v · ∇x g(x, v) − ∇vg(x, v) · ∇xUQ(x) be as in
(1.11). From the above relations, it follows that

(T ũ)(x̃, ṽ) = ṽ · ∇x̃ ũ − ∇ṽ ũ · ∇x̃UQ̃

= μ−1μλ−2λ−1 v · ∇xu − μλ−2μμ−2λ−1 ∇vu · ∇xUQ

= λ−3(T u)(x, v). (6.12)

Alternatively, T u = {u, eQ} can be used. From (6.4) and (6.10), we get

(T ũ)(x̃, ṽ) = {ũ, eQ̃} = ∇x̃ ũ · ∇ṽ eQ̃ − ∇x̃ eQ̃ · ∇ṽ ũ

= μλ−3∇xu · μ−2μ∇veQ − μ−2λ−1∇xeQ · μ2λ−2∇vu

= λ−3 {u, eQ} = λ−3(T u)(x, v).

This in turn leads to

(T 2ũ)(x̃, ṽ) = {T ũ, eQ̃} = ∇x̃ (T ũ) · ∇ṽ eQ̃ − ∇x̃ eQ̃ · ∇ṽ (T ũ)

= λ−4∇x (T u) · μ−2μ∇veQ − μ−2λ−1∇xeQ · λ−3μ∇v(T u)

= λ−4μ−1{T u, eQ} = λ−4μ−1(T 2u)(x, v). (6.13)

Alternatively, if we put û(x̃, ṽ) = u( x̃
λ
,μṽ), then ũ = μλ−2û, so (6.13) may be re-

expressed as
(T 2û)(x̃, ṽ) = λ−2μ−2(T 2u)(x, v). (6.14)

For the density induced by T ũ, (6.12) yields

ρT ũ(x̃) =
∫

(T ũ)(x̃, ṽ) d ṽ = λ−3μ−3
∫

(T u)(x, v) dv = λ−3μ−3ρT u(x),

so that
UT ũ(x̃) = λ−1μ−3UT u(x)

for the potential. In particular,

∇x̃UT ũ(x̃) = λ−2μ−3 ∇xUT u(x),
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and hence

∫
|∇x̃UT ũ(x̃)|2 dx̃ = λ−4μ−6λ3

∫
|∇xUT u(x)|2 dx

= λ−1μ−6
∫

|∇xUT u(x)|2 dx . (6.15)

For

(Lu, u)Q =
∫ ∫

dx dv

|Q′(eQ)| |T u|2 − 1

4π

∫

R3
|∇xUT u |2 dx

as given by (1.18), we then obtain from (6.5), (6.12) and (6.15):

(Lũ, ũ)Q̃ =
∫ ∫

dx̃ d ṽ

|Q̃′(eQ̃)| (T ũ)2 − 1

4π

∫
|∇x̃UT ũ |2 dx̃

= λ3μ−3λ2μ−3λ−6
∫ ∫

dx dv

|Q′(eQ)| (T u)2 − 1

4π
λ−1μ−6

∫
|∇xUT u |2 dx

= λ−1μ−6 (Lu, u)Q . (6.16)

In (1.20), the quantity

λ∗ = inf {(Lu, u)Q : u ∈ X2
odd, ‖u‖Q = 1}

is introduced. Therefore, owing to (6.16) and (6.11),

λ̃∗ = inf {(Lũ, ũ)Q̃ : ũ ∈ X2
odd, ‖ũ‖Q̃ = 1}

= λ−1μ−6 inf {(Lu, u)Q : u ∈ X2
odd,λμ−4 ‖u‖Q = 1}

= λ−1μ−6λ−1μ4 inf {(Lû, û)Q : û ∈ X2
odd, ‖û‖Q = 1}

= λ−2μ−2λ∗, (6.17)

by setting u = λ−1/2μ2 û; it maybe checked that u ∈ X2
odd if and only if ũ ∈ X2

odd
w.r. to the transformed variables.

Using (6.7), the function A(r) = U ′
Q(r)

r from (A.27) is found to scale as

Ã(r̃) =
U ′

Q̃
(r̃)

r̃
= λ−1μ−2

U ′
Q(r)

λr
= λ−2μ−2A(r) (6.18)

for r̃ ∈ [0, rQ̃], with rQ̃ = λrQ denoting the end of the support of ρQ̃ , if rQ
denotes the end of the support of ρQ .

Similarly, denoting B(r) = 4πρQ(r) + A(r) as in LemmaA.7(d), owing to (6.18)
and (6.6) one gets

B̃(r̃) = λ−2μ−2B(r).
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Nowwe turn to the operators Qν fromChap.4 and their first eigenvaluesμ1(ν) for
ν ∈] − ∞, δ21[; note the change in notation here for the parameter of the operators,
since the letter λ is already occupied from x̃ = λx , r̃ = λr . Let

ν̃ = 1

λ2μ2
ν.

If ν ∈] − ∞, δ21[, then ν̃ ∈] − ∞, δ̃21[ due to (6.9). For � = �(r) let �̃(r̃) = �( r̃
λ
).

Since p̃r = x̃ ·ṽ
|x̃ | = μ−1 x ·v

|x | = μ−1 pr , we obtain from (6.5):

ψ̃(r̃ , p̃r , �̃) = |Q̃′(eQ̃)| p̃r �̃(r̃) = μ3λ−2|Q′(eQ)| μ−1 pr �(r)

= μ2λ−2 |Q′(eQ)| pr �(r) = μ2λ−2 ψ(r, pr , �). (6.19)

First we determine the scaling of (−T 2 − z)−1ψ. Defining

z̃ = 1

λ2μ2
z,

we assert that

((−T 2 − z̃)−1ψ̃)(x̃, ṽ) = μ4 ((−T 2 − z)−1ψ)(x, v). (6.20)

To see this, let g̃ = (−T 2 − z̃)−1ψ̃ and g = (−T 2 − z)−1ψ. Then, (6.20) is equiv-
alent to g̃ = μ4g, but g̃ and g are not necessarily related by (6.10); in fact g̃ = μ4ĝ
or (−T 2 − z̃)g̃ = μ4(−T 2 − z̃)ĝ is to be shown. For, owing to (6.14) and (6.19) we
have

μ4(−T 2 − z̃)ĝ = μ4(−λ−2μ−2T 2g − λ−2μ−2zg) = μ2λ−2(−T 2 − z)g = μ2λ−2 ψ

= ψ̃ = (−T 2 − z̃)g̃,

which completes the proof of (6.20). From (4.22) together with (6.20), we obtain

(Q̃z̃�̃)(r̃) = 4π
∫

p̃r ((−T 2 − z̃)−1ψ̃)(x̃, ṽ) d ṽ

= 4πμ4
∫

x̃ · ṽ

|x̃ | ((−T 2 − z)−1ψ)(λ−1 x̃,μṽ) d ṽ

= 4π
∫

λ−1 x̃ · v

|λ−1 x̃ | ((−T 2 − z)−1ψ)(λ−1 x̃, v) dv

= (Qz�)(r).

Thus, if we define
μ̃1(ν̃) = μ1(λ

2μ2ν̃), ν̃ ∈] − ∞, δ̃21[,
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then μ̃1(ν̃) is the first eigenvalue of Q̃ν̃ , and �̃ = �̃(r̃) is an associated eigenfunction
if and only if � = �(r) is an eigenfunction of Qν for the eigenvalue μ1(ν). Due to
(4.33) it follows that

μ̃∗ = lim
ν̃→δ̃21−

μ̃1(ν̃) = lim
ν→δ21−

μ1(ν) = μ∗.

As already noted at the beginning of this chapter, it can be expected that quantities
that are unaffected by the scaling do have a special relevance. Hence, μ∗ is one such
quantity. In addition, the condition λ∗ < δ21 is invariant, as a consequence of (6.17)
and (6.9). Further, we would like to mention

2π√
λ∗

√
ρQ(0),

cf. [59, Remark, p. 555], for which we deduce from (6.17) and (6.8):

2π√
λ̃∗

√
ρQ̃(0) = 2π

λ−1μ−1
√

λ∗
λ−1μ−1

√
ρQ(0) = 2π√

λ∗

√
ρQ(0).

This is called the Eddington-Ritter relation; also see [17, (27), p. 15] and [70, Section
4]. The relevance of the number 2π√

λ∗
is that it is the ‘linear period’ of the system, in

the sense that the linearized system about Q has a periodic solution of this period (if
λ∗ is an eigenvalue of L); recall Lemma 1.3.

Moreover, for any r ∈ [0, rQ] and r̃ = λr one in fact has

ρQ̃(r̃)

λ̃∗
= ρQ(r)

λ∗
,

Ã(r̃)

λ̃∗
= A(r)

λ∗
,

B̃(r̃)

λ̃∗
= B(r)

λ∗
.



Appendix A
Spherical Symmetry and Action-Angle
Variables

A.1 General Theory

A function g = g(x, v) is said to be spherically symmetric, if g(Ax, Av) = g(x, v)

for all A ∈ SO(3) and x, v ∈ R
3. In this case ρg(x) = ρg(r) andUg(x) = Ug(r) are

radially symmetric; here r = |x |. More explicitly,

Ug(r) = −4π

r

∫ r

0
s2ρg(s) ds − 4π

∫ ∞

r
sρg(s) ds, (A.1)

U ′
g(r) = 4π

r2

∫ r

0
s2ρg(s) ds = 1

r2

∫
|x |≤r

ρg(x) dx; (A.2)

see [73]. Then, the mass in a ball of radius r is given by m(r) = r2U ′
g(r) =

4π
∫ r
0 s2ρg(s) ds = ∫

|x |≤r ρg(x) dx .

Remark A.1 One can also write

U ′
g(r) = 4π

3
rρg(r) − 4π

3r2

∫ r

0
s3ρ′

g(s) ds,

as follows from an integration by parts. ♦
Let g be spherically symmetric. Then, g = g(x, v) = g̃(|x |, |v|, x · v) does in

fact depend only upon three variables. By the spherical symmetry, one can use a
canonical change of variables

(x, v) �→ (pr , L3, �; r,ϕ,χ) (A.3)

on the support K = supp Q of a steady state solution Q as described in [9,
Chap. 3.5.2] and [90, Sect. 5.3] to simplify matters considerably. Let
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r = |x |, pr = x · v

r
and L = x ∧ v.

In particular, then L3 = x1v2 − x2v1. Thus, �2 = |L|2 = |x |2|v|2 − (x · v)2 =
r2(|v|2 − p2r ) so that |v|2 = �2

r2 + p2r . For the particle energy eQ(x, v) = 1
2 |v|2 +

UQ(r) this yields

eQ = eQ(r, pr , �) = 1

2
p2r +Ueff(r, �), Ueff(r, �) = UQ(r) + �2

2r2
(A.4)

being the effective potential, for which we have

U ′
eff(r, �) = U ′

Q(r) − �2

r3
. (A.5)

Since ṙ = ∂e
∂ pr

= pr , the resulting equation of motion is

r̈ = −U ′
eff(r, �).

From (1.13), it also follows that

U ′′
eff(r, �) + 2

r
U ′

eff(r, �) = 4πρQ(r) + �2

r4
. (A.6)

Apart from r , the other “angular” variables ϕ and χ are determined by

sinϕ = L1

(�2 − L2
3)

1/2
, cosϕ = L2

(�2 − L2
3)

1/2
, (A.7)

cosχ = (e3 ∧ L) · x
r(�2 − L2

3)
1/2

, sinχ = � x3
r(�2 − L2

3)
1/2

. (A.8)

The variable pairs r ↔ pr ,ϕ ↔ L3, andχ ↔ � are conjugate, their Poisson brackets
can be calculated explicitly; see [90, Sect. 5.3], also for an illustration of how the
new coordinates can be read off.

Our goal is now to pass to action-angle variables; see [9, Chap. 3.5] and [90,
p. 224]. The new variables (pr , L3, �; r,ϕ,χ) in (A.3) are not yet the desired action-
angle variables, since e = e(r, pr , �) depends upon r , which plays the role of an
angle. Therefore, a further canonical transformation

(r, pr ) → (θ, I ) at a fixed � (A.9)

will be made. As � is fixed, the potential to consider is r �→ Ueff(r, �), and for this
the change of variables (A.9) in a region where the orbits ofUeff(·, �) are periodic is
standard; it is achieved by means of a generating function. Good general accounts of
this procedure are [6, Chap. 50] and [21, Chap. 11.3]. Let 0 < r−(e, �) < r+(e, �)
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denote the zeros of 0 = 2(e −Ueff(r, �)); see [7, Sect. 2], [30, Sect. 3.2], [50, Lemma
2.1] and [88, Theorem 2.4] for further discussions. The angle θ ∈ [0,π] corresponds
to one half-turn of the periodic orbit γ in the potential Ueff(·, �), connecting the
“pericenter” r− to the “apocenter” r+; here ṙ = pr > 0 for r ∈]r−, r+[ and pr (r±) =
0. Therefore if θ ∈ [π, 2π], then

r(θ, I, �) = r(2π − θ, I, �) and pr (θ, I, �) = −pr (2π − θ, I, �). (A.10)

In other words, we need to determine the (inverse) transformation (θ, I ) �→ (r, pr )
only for θ ∈ [0,π], where we have pr ≥ 0.

Let E = E(I, �) be the solution to

I = 1

2π

∫
γ

pr dr = 1

π

∫ r+(E, �)

r−(E, �)

√
2(E −Ueff(r, �)) dr, (A.11)

where γ is as before. Then consider the generating function

S(r, I, �) =
∫ r

r−(E(I, �), �)

√
2(E(I, �) −Ueff(r ′, �)) dr ′, (A.12)

which we view as a generating function for (A.9); in the terminology used in physics
books [21], it is a generating function of the second type, and it depends on one
“old variable”, r , and one “new variable”, I . The rules for determining the full
transformation from S are

θ = ∂I S, pr = ∂r S. (A.13)

Let us do a short and formal calculation to explain the use of (A.13). Firstly, pr = ∂r S

and (A.12) yield e = p2r
2 +Ueff(r, �) = E(I, �), so E will only depend upon action

variables after the transformation (A.9), which leads to the overall transformation

(x, v) �→ (pr , L3, �; r,ϕ,χ) �→ (I, L3, �; θ,ϕ,χ), (A.14)

cf. (A.3). Secondly, the transformation (A.9) is symplectic. To see this, differentiating
pr = ∂r S(r, I ) w.r. to pr implies that 1 = (∂2

r I S)(∂pr I ). Therefore, we deduce from
θ = ∂I S(r, I ) that

dθ ∧ d I =
[
(∂2r I S) dr + (∂2I I S) d I

]
∧ d I = (∂2r I S) dr ∧ d I

= (∂2r I S) dr ∧
[
(∂r I ) dr + (∂pr I ) dpr

]
= (∂2r I S)(∂pr I ) dr ∧ dpr = dr ∧ dpr ,

which means that (A.9) is indeed symplectic.
Let us now be somewhat more careful with the dependencies and the definition

of the transformation (A.9). The equation
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θ = ∂I S(r, I, �) (A.15)

has a solution r = r(θ, I, �). In addition, put

pr = pr (θ, I, �) = ∂r S(r(θ, I, �), I, �).

Thus, more explicitly

pr (θ, I, �) = √
2(E(I, �) −Ueff(r(θ, I, �), �)), (A.16)

which yields

E(I, �) = 1

2
pr (θ, I, �)

2 +Ueff(r(θ, I, �), �) = e(r(θ, I, �), pr (θ, I, �), �).

(A.17)
Hence after applying the canonical transformation (A.14) the particle energy does
only depend upon I and �, both of which are actions. The associated frequencies are

ω1(I, �) = ∂E(I, �)

∂ I
, ω2(I, �) = ∂E(I, �)

∂L3
= 0, ω3(I, �) = ∂E(I, �)

∂�
,

(A.18)
and the period functions are

T1(I, �) = 2π

ω1(I, �)
, T3(I, �) = 2π

ω3(I, �)
.

Also (A.15) yields

θ = ∂I S(r, I, �) = ω1(I, �)
∫ r

r−(E(I, �), �)

dr ′
√
2(E(I, �) −Ueff(r ′, �))

. (A.19)

Since θ = 0 at r− and θ = π at r+ (recall that ṙ = pr > 0 along this part of the orbit),
we obtain

π = 2π

T1(I, �)

∫ r+(E(I, �), �)

r−(E(I, �), �)

dr√
2(E(I, �) −Ueff(r, �))

,

or explicitly

T1(I, �) = 2
∫ r+(E(I, �), �)

r−(E(I, �), �)

dr√
2(E(I, �) −Ueff(r, �))

(A.20)

for the period function. In particular, T1(I, �) = T1(E, �) by abuse of notation. Also
(A.19) implies that
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∂θ

∂r
= ω1

pr
(A.21)

as long as pr > 0, i.e., along the half-orbit.
More systematically, the relations θ = ∂I S(r, I, �) for r = r(θ, I, �) and

pr (θ, I, �) = ∂r S(r(θ, I, �), I, �)

can be differentiated to obtain explicit formulas for the derivatives. This way it is
found that

1 = (∂2
r I S)(∂θr),

0 = (∂2
r I S)(∂I r) + ∂2

I I S,

∂θ pr = (∂2
rr S)(∂θr),

∂I pr = (∂2
rr S)(∂I r) + ∂2

r I S.

From (A.19), it follows that

∂2
r I S(r, I, �) = ω1(I, �)√

2(E(I, �) −Ueff(r, �))
= ω1(I, �)

pr (θ, I, �)
,

which leads to
∂r

∂θ
= pr

ω1
and

∂r

∂ I
= −(∂2

I I S)
pr
ω1

. (A.22)

In addition, by (A.16),

∂2
rr S = − 1

pr
U ′

eff

and this gives
∂ pr
∂θ

= − 1

ω1
U ′

eff .

Finally,
∂ pr
∂ I

= 1

ω1
U ′

eff(∂
2
I I S) + ω1

pr
.

To summarize, spherically symmetric functions g = g(x, v) = g̃(|x |, |v|, x · v)

may also be expressed as g = ĝ(r, pr , �) = g∗(θ, I, �). Explicitly,

g̃(r, s, u) = ĝ
(
r,
u

r
,
√
r2s2 − u2

)
, ĝ(r, pr , �) = g̃

(
r,

√
p2r + �2

r2
, rpr

)
. (A.23)

Most of the time all versions of a function g will be denoted by the same symbol.
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The Antonov stability estimate is valid for spherically symmetric functions u =
u(x, v) that are odd in v. Therefore, we need to have a closer look at this class of
functions.

Remark A.2 (Parity)

(a) If (x, v) �→ (pr , L3, �; r,ϕ,χ) under the above transformation (A.3), then
(x,−v) �→ (−pr ,−L3, �; r,ϕ + π,π − χ). This follows from pr = x ·v

r , L =
x ∧ v, (A.7), and (A.8), or alternatively from the figure in [90, p. 223]. In addi-
tion, e(x,−v) = e(x, v) and �(x,−v) = �(x, v).

(b) From (A.10), we see that if

(x, v) �→ (pr , L3, �; r,ϕ,χ) �→ (I, L3, �; θ,ϕ,χ)

under the transformation (A.14), then

(x,−v) �→ (−pr ,−L3, �; r,ϕ + π,π − χ)

�→ (I,−L3, �; 2π − θ,ϕ + π,π − χ).

Thus if g = g(x, v) is spherically symmetric, then

(a) g is even in v if and only if ĝ(r,−pr , �) = ĝ(r, pr , �) if and only if g∗(2π −
θ, I, �) = g∗(θ, I, �),

(b) g is odd in v if and only if ĝ(r,−pr , �) = −ĝ(r, pr , �) if and only if g∗(2π −
θ, I, �) = −g∗(θ, I, �),

as will be convenient to determine the parity in v of a function g. ♦
We are going to note some further useful relations, and we will be writing β = �2,

so that dβ = � d�. Recall from above that the radii r± = r±(e, �) = r±(e,β) are the
zeros of 0 = 2(e −Ueff(r, �)) and satisfy 0 < r−(e, �) < r+(e, �) for the effective
potential

Ueff(r, �) = Ueff(r,β) = UQ(r) + �2

2r2
= UQ(r) + β

2r2
.

As in [50, Lemma 2.1], one knows that for every β > 0

inf {Ueff(r,β) : r ≥ 0}

is attained at some unique r0(β) ∈]r−(e,β), r+(e,β)[. Then Ueff(·,β) is decreasing
in [r−(e,β), r0(β)[, increasing in ]r0(β), r+(e,β)], and we haveU ′

eff(r0(β),β) = 0.

Remark A.3 We recall that

D = {(e,β) : β ∈ [0,β∗], e ∈ [emin(β), e0]},

and
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Fig. A.1 The effective potential Ueff (r,β)

D̊ = {(e,β) : β ∈]0,β∗[, e ∈]emin(β), e0[}

is its interior. Then
r± ∈ C2(D̊) and r0 ∈ C1(]0,β∗[).

This follows from the implicit function theorem and UQ ∈ C2, since r± solve
UQ(r±(e,β)) + β

2r±(e,β)2
= e, whereas r0 is the solution to r0(β)3U ′

Q(r0(β)) = β;
see Lemma A.7(a) below for the latter.

Lemma A.4 One has

∂r±
∂β

(e,β) = − 1

2r±(e,β)2U ′
eff(r±(e,β),β)

, (A.24)

and hence in particular

∂r−
∂β

(e,β) > 0 and
∂r+
∂β

(e,β) < 0.
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Furthermore,
∂r±
∂e

(e,β) = 1

U ′
eff(r±(e,β),β)

, (A.25)

so that also
∂r−
∂e

(e,β) < 0 and
∂r+
∂e

(e,β) > 0.

Proof With Ueff(r,β) = UQ(r) + β
2r2 , we have Ueff(r±(e,β),β) = e so that

2r2±(e −UQ(r±)) = β. Upon differentiation w.r. to β, we obtain

1 = −2r2±U
′
Q(r±)

∂r±
∂β

+ 4r±(e −UQ(r±))
∂r±
∂β

=
(

− 2r2±U
′
Q(r±) + 2β

r±

)
∂r±
∂β

= −2r2±

(
U ′

Q(r±) − β

r3±

)
∂r±
∂β

= −2r2± U ′
eff(r±,β)

∂r±
∂β

,

which yields (A.24). Since U ′
eff(r−,β) < 0 and U ′

eff(r+,β) > 0, the claim concern-
ing the signs follows. In order to derive (A.25), we differentiate Ueff(r±,β) = e
w.r. to e and get 1 = U ′

eff(r±,β)
∂r±
∂e . �

Now we determine the asymptotics of β
r2−r2+

as β → 0.

Lemma A.5 We have

β

2r−(e,β)2r+(e,β)2
− 1

2
U ′′

Q(0)

= 1

r+(e,β) + r−(e,β)

∫ 1

0
ds (sr+(e,β) + (1 − s)r−(e,β))

×
∫ 1

0
dτ [U ′′

Q(τsr+(e,β) + τ (1 − s)r−(e,β)) −U ′′
Q(0)],

and in particular

∣∣∣∣ β

2r−(e,β)2r+(e,β)2
− 1

2
U ′′

Q(0)

∣∣∣∣ ≤ 1

2
sup

r∈[0,r+(e,β)]
|U ′′

Q(r) −U ′′
Q(0)|. (A.26)

Proof Since UQ(r±) + β
2r2±

= e, we can write, using that U ′
Q(0) = 0,
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β

2r2−r2+
(r2+ − r2−) = e − β

2r2+
− e + β

2r2−
= UQ(r+) −UQ(r−)

= (r+ − r−)

∫ 1

0
[U ′

Q(sr+ + (1 − s)r−) −U ′
Q(0)] ds

= (r+ − r−)

∫ 1

0
ds (sr+ + (1 − s)r−)

×
∫ 1

0
dτ U ′′

Q(τsr+ + τ (1 − s)r−).

Therefore,

β

2r2−r2+
− 1

2
U ′′

Q(0)

= 1

r+ + r−

∫ 1

0
ds (sr++(1 − s)r−)

∫ 1

0
dτ U ′′

Q(τsr+ + τ (1 − s)r−) − 1

2
U ′′

Q(0)

= 1

r+ + r−

∫ 1

0
ds (sr+ + (1 − s)r−)

∫ 1

0
dτ [U ′′

Q(τsr+ + τ (1 − s)r−) −U ′′
Q(0)],

as claimed. Then (A.26) is a consequence of 0 < r− ≤ r+. �

We need to introduce two more important functions.

Lemma A.6 The following assertions hold.

(a) The function

A(r) = U ′
Q(r)

r
(A.27)

is C1 and strictly decreasing in r ∈ [0, rQ]. In addition, A(0) = U ′′
Q(0) =

4π
3 ρQ(0) and A(rQ) = 1

r3Q
‖Q‖L1(R6). We also have

A′(r) = 4π

r4

∫ r

0
s3ρ′

Q(s) ds and lim
r→0+

A′(r) = πρ′
Q(0). (A.28)

(b) The function

B(r) = 4πρQ(r) + A(r) = 4πρQ(r) + U ′
Q(r)

r

is C1 and strictly decreasing in r ∈ [0, rQ]. In addition, B(0) = 16π
3 ρQ(0) as

well as B(rQ) = A(rQ) = 1
r3Q

‖Q‖L1(R6).
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(c) We have

U ′′
eff(r,β) + 3

r
U ′

eff(r,β) = B(r) and U ′′
eff(r,β) = 3β

r4
+ B(r) − 3A(r).

In particular,

{
U ′′

eff(r,β) ≥ B(r) ≥ B(rQ) : r ∈ [r−(e,β), r0(β)]
U ′′

eff(r,β) ≤ B(r) ≤ B(0) : r ∈ [r0(β), r+(e,β)] (A.29)

and

|U ′′
eff(r,β)| ≤ 3β

r4
+ 28π

3
ρQ(0) for r ∈ [r−(e,β), r+(e,β)]. (A.30)

Proof (a) From the differential equation (1.13) for Q one hasU ′′
Q + 2

r U
′
Q = 4πρQ .

Therefore,

A′(r) = rU ′′
Q(r) −U ′

Q(r)

r2
= 4πrρQ(r) − 3U ′

Q(r)

r2
. (A.31)

Now by (A.2) and the hypotheses:

ρ′
Q(r) =

∫
R3

d

dr
Q dv =

∫
R3

Q′(eQ)
d

dr
eQ dv =

∫
R3

Q′(eQ)U ′
Q dv ≤ 0,

(A.32)
so that ρQ is radially decreasing. It thus follows from Remark A.1 that

U ′
Q(r) = 4π

3
rρQ(r) − 4π

3r2

∫ r

0
s3ρ′

Q(s) ds ≥ 4π

3
rρQ(r). (A.33)

Hence 4πrρQ(r) ≤ 3U ′
Q(r) and A′(r) ≤ 0, in fact A′(r) < 0 for r ∈]0, rQ].

From the left side of (A.33) we also obtain limr→0+ A(r) = 4π
3 ρQ(0), which

shows that A is continuous on [0, rQ]. Next we calculate

U ′
Q(rQ) = 4π

r2Q

∫ rQ

0
s2ρQ(s) ds = 4π

r2Q

∫ ∞

0
s2ρQ(s) ds = 1

r2Q

∫
R3

ρQ(x) dx

= 1

r2Q

∫
R3

∫
R3

Q(x, v) dx dv = 1

r2Q
‖Q‖L1(R6),

which is as desired. The expression for A′(r) in (A.28) is a consequence of
(A.31) and (A.33), whereas limr→0+ A′(r) = πρ′

Q(0) is gotten from this relation
by changing variables s = rτ , ds = r dτ . In particular, A is C1 on [0, rQ].

(b) This follows from (a).
(c) Using (A.6) and (A.5), we deduce
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U ′′
eff(r,β) + 3

r
U ′

eff(r,β) = 4πρQ(r) + 1

r

( β

r3
+U ′

eff(r,β)
)

= 4πρQ(r) + U ′
Q(r)

r
= B(r).

Also
3

r
U ′

eff(r,β) = 3

r

(
U ′

Q(r) − β

r3

)
= 3A(r) − 3β

r4
,

which yields the second claim. The estimates in (A.29) are due to U ′
eff(r,β) ≤ 0

for r ∈ [r−(e,β), r0(β)], U ′
eff(r,β) ≥ 0 for r ∈ [r0(β), r+(e,β)] and the mono-

tonicity of B. Lastly, (A.30) is obtained from |U ′′
eff(r,β)| ≤ 3β

r4 + B(r) + 3A(r) ≤
3β
r4 + B(0) + 3A(0) = 3β

r4 + 28π
3 ρQ(0). �

Lemma A.7 We have

(a) r0(β)3U ′
Q(r0(β)) = β, and in particular for everyβ0 ∈]0,β∗[ there exists c0 > 0

such that r0(β) ≥ c0 for β ∈ [β0,β∗];
(b) r2U ′

eff(r,β) = ∫ r
r0(β)

(4πs2ρQ(s) + β
s2 ) ds;

(c) demin
dβ

(β) = 1
2r0(β)2

, where emin(β) = Ueff(r0(β),β);
(d) U ′′

eff(r0(β),β) = B(r0(β));
(e) dr0

dβ
(β) = 1

r0(β)3 B(r0(β))
;

(f) as β → 0+,

r0(β)4 = 1

A(0)
β + O(β5/4), (A.34)

emin(β) = UQ(0) +
√
U ′′

Q(0)
√

β + O(β3/4),

demin

dβ
(β) =

√
A(0)

2
√

β
+ O(β−1/4).

Proof (a) The relation r0(β)3U ′
Q(r0(β)) = β follows from

U ′
eff(r0(β),β) = 0 (A.35)

and (A.5). To establish the second claim, suppose on the contrary that there is
β0 ∈]0,β∗[ and a sequence (β j ) ⊂ [β0,β∗] so that r0(β j ) ≤ 1/j .W.l.o.g.wemay
assume thatβ j → β̂ ∈ [β0,β∗]. Thenβ j = r0(β j )

3U ′
Q(r0(β j )) ≤ j−3U ′

Q(r0(β j ))

and 0 ≤ U ′
Q(r) = 4π

r2
∫ r
0 s2ρQ(s) ds ≤ 4πr

3 ρQ(0) ≤ 4πrQ
3 ρQ(0) yield a contradic-

tion as j → ∞.
(b) Owing to (A.6) we have that

(r2U ′
eff)

′ = 4πr2ρQ + β

r2
, (A.36)

so it remains to integrate this equation, using (A.35).
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(c) We obtain
d

dβ
[Ueff (r0(β), β)] = U ′

eff (r0(β), β)
dr0
dβ

(β) + ∂Ueff

∂β
(r0(β), β) = ∂Ueff

∂β
(r0(β), β).

Since ∂Ueff
∂β

(r,β) = 1
2r2 , the claim follows.

(d) From (A.6), (A.35) and (a), one finds that

U ′′
eff(r0(β),β) = 4πρQ(r0(β)) − 2

r0(β)
U ′

eff(r0(β),β) + β

r0(β)4

= 4πρQ(r0(β)) + β

r0(β)4

= 4πρQ(r0(β)) + U ′
Q(r0(β))

r0(β)

= B(r0(β)).

(e) Differentiating (a), we get

1 = r30 U
′′
Q(r0)

dr0
dβ

+ 3r20
dr0
dβ

U ′
Q(r0) = (r30 U

′′
Q(r0) + 3r20 U

′
Q(r0))

dr0
dβ

.

But

r30 U
′′
Q(r0) + 3r20 U

′
Q(r0) = r30

(
4πρQ(r0) − 2

r0
U ′

Q(r0)
)

+ 3r20 U
′
Q(r0)

= 4πr30 ρQ(r0) + r20 U
′
Q(r0)

= (4π ρQ(r0) + A(r0)) r
3
0 .

(f) From (a) and Lemma A.6(a), we derive that

r0(β)4A(r0(β)) = r0(β)3U ′
Q(r0(β)) = β.

As A is bounded from below by A(rQ) > 0, we get r0(β) ≤ (β/A(rQ))1/4, and
in particular limβ→0+ r0(β) = 0. In addition,

∣∣∣∣r0(β)4 − 1

A(0)
β

∣∣∣∣ =
∣∣∣∣ 1

A(r0(β))
− 1

A(0)

∣∣∣∣ β ≤ 1

A(rQ)2
|A(r0(β)) − A(0)| β.

Now (A.28) from Lemma A.6(a) together with (Q4) implies that

|A′(r)| ≤ 4π

r4

∫ r

0
s3|ρ′

Q(s)| ds ≤ π‖ρ′
Q‖∞,

and this yields
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∣∣∣∣r0(β)4 − 1

A(0)
β

∣∣∣∣ ≤ π‖ρ′
Q‖∞

A(rQ)2
r0(β)β ≤ π‖ρ′

Q‖∞
A(rQ)9/4

β5/4.

In other words,

r0(β)4 = 1

A(0)
β + O(β5/4), β → 0+.

Therefore, since U ′
Q(0) = 0 by (A.2) and the boundedness of ρQ on [0, rQ],

Ueff(r0(β),β) = UQ(r0(β)) + β

2r0(β)2

= UQ(0) + 1

2
U ′′

Q(0) r0(β)2 + O(r0(β)3) + β

2
√

1
A(0) β + O(β5/4)

.

Next we expand

r0(β)2 =
√

1

A(0)
β + O(β5/4) =

√
β

A(0)

(
1 + O(β1/4)

)

and recall A(0) = U ′′
Q(0) from Lemma A.6(a) to obtain the second claim. The third

relation follows from (c) and (A.34). �

Lemma A.8 We have

e − emin(β) = (r+(e,β) − r0(β))2
∫ 1

0
τ U ′′

eff(τr0(β) + (1 − τ )r+(e,β),β) dτ ,

e − emin(β) = (r0(β) − r−(e,β))2
∫ 1

0
τ U ′′

eff(τr0(β) + (1 − τ )r−(e,β),β) dτ .

Proof By means of (A.35) we calculate

e − emin(β) = Ueff(r+,β) −Ueff(r0,β)

=
∫ r+

r0

U ′
eff(s,β) ds

=
∫ r+

r0

[U ′
eff(s,β) −U ′

eff(r0,β)] ds

=
∫ r+

r0

ds
∫ s

r0

dτ U ′′
eff(τ ,β)

=
∫ r+

r0

(r+ − τ )U ′′
eff(τ ,β) dτ
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=
∫ r+−r0

0
s U ′′

eff(r+ − s,β) ds

= (r+ − r0)
2
∫ 1

0
τ U ′′

eff(τr0 + (1 − τ )r+,β) dτ ,

as claimed. The second relation is established in the same way. �

Lemma A.9 For s ∈ [r−(e,β) − r0(β), r+(e,β) − r0(β)], we have

Ueff(r0(β) + s,β) − emin(β) = s2
∫ 1

0
(1 − ρ)U ′′

eff(r0(β) + ρs,β) dρ,

U ′
eff(r0(β) + s,β) = s

∫ 1

0
U ′′

eff(r0(β) + ρs,β) dρ.

In particular,

Ueff(r0(β) + s,β) − emin(β) ≥ 1

2
s2 B(rQ) (A.37)

for s ∈ [r−(e,β) − r0(β), 0] and also

|U ′
eff(r0(β) + s,β)| ≤ |s|

(
3β

∫ 1

0

dρ

(r0(β) + ρs)4
+ 28π

3
ρQ(0)

)
(A.38)

for s ∈ [r−(e,β) − r0(β), r+(e,β) − r0(β)].
Proof We write r0 = r0(β) for short and introduce V (s,β) = Ueff(r0 + s,β) −
emin(β). Then V (0,β) = 0 by the definition of emin(β), cf. Lemma A.7(c). In addi-
tion,∂sV (s,β) = U ′

eff(r0 + s,β) yields∂sV (0,β) = 0.Hence, byTaylor expansion,

V (s,β) =
∫ s

0
(s − τ ) ∂2

s V (τ ,β) dτ

=
∫ s

0
σ ∂2

s V (s − σ,β) dσ = s2
∫ 1

0
ρ ∂2

s V ((1 − ρ)s,β) dρ,

which gives the first relation. The second relation is shown analogously. Concerning
(A.37), this follows from (A.29) in Lemma A.6, and similarly, (A.38) is obtained
from (A.30). �

The last result is taken from [50, Lemma 2.1], but nevertheless a proof is
included to make the presentation self-contained. Note that the bounds obtained
in LemmaA.10 blow up as � → 0.
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Lemma A.10 The following assertions hold, where we write r± = r±(e, �):

(a) e −Ueff(r, �) ≥ �2

2r2r−r+ (r − r−)(r+ − r) for r ∈ [r−, r+].
(b) T1(e, �) ≤ π

√
r−r+
�

(r− + r+).
(c) UQ(r) ≥ max{UQ(0),− 1

r ‖Q‖L1(R6)} for r ∈ [0,∞[.
(d) Let e < 0. Then

�2

2‖Q‖L1(R6)

≤ r− < r+ ≤ ‖Q‖L1(R6)

−e
.

In particular,

T1(e, �) ≤ 2π
‖Q‖2L1(R6)

e2
1

�
and ω1(e, �) ≥ e2

‖Q‖2L1(R6)

�.

Proof (a) Let

w(r) = e −Ueff(r, �) − �2

2r2r− r+
(r − r−)(r+ − r).

Then

w′ = −U ′
eff + �2

2r−r+
r(r+ + r−) − 2r−r+

r3
,

w′′ = −U ′′
eff + �2

r−r+
−r(r+ + r−) + 3r−r+

r4
,

(rw)′′ = rw′′ + 2w′ = −r U ′′
eff − 2U ′

eff + �2

r3
= 1

r

(
− (r2U ′

eff)
′ + �2

r2

)
.

From (A.36) we recall that (r2U ′
eff)

′ = 4πr2ρQ + �2

r2 . As a consequence,
(rw(r))′′ = −4πrρQ(r) ≤ 0. Since rw(r) vanishes both at r = r− and r = r+,
it follows that w(r) ≥ 0 for r ∈ [r−, r+].

(b) By (A.20) and (a),

T1(e, �) = 2
∫ r+(e,�)

r−(e,�)

dr√
2(e −Ueff(r, �))

≤ 2
√
r−r+
�

∫ r+

r−

r dr√
(r − r−)(r+ − r)

= π

√
r−r+
�

(r− + r+).

(c) Relation (A.2) implies that r2U ′
Q(r) = 4π

∫ r
0 s2ρQ(s) ds ≥ 0, soUQ is radially

increasing. Since ρQ has compact support by hypothesis, it moreover follows
from (A.1) that
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lim
r→∞[rUQ(r)] = lim

r→∞

[
− 4π

∫ r

0
s2ρQ(s) ds − 4πr

∫ ∞
r

sρQ(s) ds

]
= −4π

∫ ∞
0

s2ρQ(s) ds

= −
∫
R3

ρQ(x) dx = −‖Q‖L1(R6).

Also

[rUQ(r)]′ = rU ′
Q(r) +UQ(r) = −4π

∫ ∞

r
sρQ(s) ds ≤ 0,

so that rUQ(r) ≥ −‖Q‖L1(R6), and hence (c) is obtained.
(d) Observe that

]r−, r+[= {r : e −Ueff(r, �) > 0} =
{
r : e −UQ(r) − �2

2r2
> 0

}
.

Thus if r ∈]r−, r+[, then (c) yields

0 < e −UQ(r) − �2

2r2
≤ e + 1

r
‖Q‖L1(R6) − �2

2r2
,

which using e < 0 can be rewritten as

‖Q‖2L1(R6)

−2e
− �2 ≥

(√−2e r − ‖Q‖L1(R6)√−2e

)2

, r ∈]r−, r+[. (A.39)

Thus, by (c),

UQ(r) + �2

2r2
≥ inf

s∈[0,∞[Ueff(s) = UQ(r0) + �2

2r20

≥ max

{
UQ(0),− 1

r0
‖Q‖L1(R6) + �2

2r20

}

≥ max

{
UQ(0),−‖Q‖2L1(R6)

2�2

}
, r ∈ [0,∞[.

In particular, if r ∈]r−, r+[, then UQ(r) + �2

2r2 < e implies that e ≥ −‖Q‖2
L1(R6)

2�2 , or

equivalently,
‖Q‖2

L1(R6)

−2e − �2 ≥ 0. Going back to (A.39) and solving for r , we have
shown that r ∈]r−, r+[ yields

‖Q‖L1(R6) −
√

‖Q‖2L1(R6)
+ 2�2e

√−2e
≤ √−2e r ≤

‖Q‖L1(R6) +
√

‖Q‖2L1(R6)
+ 2�2e

√−2e
.

Hence, owing to e < 0,
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�2

2‖Q‖L1(R6)

≤ �2

‖Q‖L1(R6) +
√

‖Q‖2L1(R6)
+ 2�2e

≤ r

≤
‖Q‖L1(R6) +

√
‖Q‖2L1(R6)

+ 2�2e

−2e
≤ ‖Q‖L1(R6)

−e
,

which proves the claims, noting that T1(e, �) ≤ 2π r2+
�
by (b) and ω1 = 2π

T1
. �

A.2 Some Transformation Rules

In this section, we consider the transformation of integrals and Poisson brackets. We
continue to write spherically symmetric functions g = g(x, v) = g̃(|x |, |v|, x · v) as
g = ĝ(r, pr , �) = g∗(θ, I, �).

If G(x) = ∫
R3 g̃(|x |, |v|, x · v) dv and A ∈ SO(3), then G(Ax) = G(x), i.e.,

G(x) = G(0, 0, r) =: G̃(r) =
∫
R3

g̃(r, |v|, rv3) dv =
∫ ∞
0

ds s2
∫
|ω|=1

dS(ω) g̃(r, s, rsω3)

= 2π
∫ ∞
0

ds s2
∫ π

0
dθ sin θ g̃(r, s, rs cos θ) = 2π

∫ ∞
0

ds s2
∫ 1

−1
dt g̃(r, s, rst).

In particular,

∫
R3

∫
R3

g(x, v) dx dv =
∫
R3

G(x) dx = 4π
∫ ∞

0
r2G̃(r) dr

= 8π2
∫ ∞

0

∫ ∞

0
dr ds r2s2

∫ 1

−1
dt g̃(r, s, rst).

Furthermore, by (A.23),

G(x) = G̃(r) = 2π
∫ ∞

0
ds s2

∫ 1

−1
dt g̃(r, s, rst)

= 2π
∫ ∞

0
ds s2

∫ 1

−1
dt ĝ(r, st, rs

√
1 − t2)

= 2π
∫ ∞

0
ds s2

∫ π

0
dθ sin θ ĝ(r, s cos θ, rs sin θ)

= 2π
∫
R

dpr

∫ ∞

0
dR R ĝ(r, pr , r R) = 2π

r2

∫
R

dpr

∫ ∞

0
d� � ĝ(r, pr , �).

(A.40)
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This in turn implies

∫
R3

∫
R3

g(x, v) dx dv = 4π
∫ ∞
0

r2G̃(r) dr = 8π2
∫ ∞
0

dr
∫
R

dpr

∫ ∞
0

d� � ĝ(r, pr , �).

For the transformation to g∗ = g∗(θ, I, �) one can use the fact that (r, pr ) → (θ, I )
is canonical at fixed �. Hence also

∫
R3

∫
R3

g(x, v) dx dv = 8π2
∫ 2π

0
dθ

∫ ∞

0
d I

∫ ∞

0
d� � g∗(θ, I, �).

To summarize,

dx = 4πr2 dr, dv = 2π

r2
dpr d� �, dx dv = 8π2 dr dpr d� � = 8π2 dθ d I d� �.

(A.41)
The Poisson bracket {g, h}xv = ∇x g · ∇vh − ∇xh · ∇vg of two such spherically

symmetric functions is also simpler in the other coordinates. For this we write � =
(r,ϕ,χ), A = (pr , L3, �), � = (θ,ϕ,χ), and I = (I, L3, �); see (A.14). Then

{g, h}xv = {ĝ, ĥ}�A = {g∗, h∗}�I,

since the coordinate changes are canonical. But the functions do depend only upon
(r, pr , �) and (θ, I, �), respectively. Hence

{ĝ, ĥ}�A = (∂r ĝ)(∂pr ĥ) − (∂r ĥ)(∂pr ĝ),

{g∗, h∗}�I = (∂θg
∗)(∂I h

∗) − (∂θh
∗)(∂I g

∗). (A.42)

The equality of these Poisson brackets could also be verified by a direct calculation.
Identifying all versions of a function g, thus for instance,

{r, g} = ∇xr · ∇vg = x

r
· ∇vg = ∂pr g,

and hence in particular {r, eQ} = ∂pr eQ = ∂pr E = pr by (A.17), as expected. Next
recall from (1.11) that

T g = {g, eQ} = v · ∇x g − ∇vg · ∇xUQ .

Then if g = g(r) is a function of r alone, we have

T (g(r)) = pr g
′(r).

Furthermore, eQ = e = E(I, �), see (A.17). Hence by (A.42) and (A.18),
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T g = {g, eQ} = (∂θg)(∂I E) − (∂θE)(∂I g) = ω1∂θg (A.43)

is appealingly simple in the coordinates (θ, I, �). Since ω1 is independent of θ, see
(A.18), it also follows that

T 2g = ω1∂θ(ω1∂θg) = ω2
1 ∂2

θ g. (A.44)

A.3 Variational Equation for the Effective Potential

We recall that
D = {(e,β) : β ∈ [0,β∗], e ∈ [emin(β), e0]},

and
D̊ = {(e,β) : β ∈]0,β∗[, e ∈]emin(β), e0[}

is its interior. For (e,β) ∈ D̊ we consider in some more detail the linearization
(variational equation) associated with

r̈ = −U ′
eff(r,β), r(0) = r−(e,β), ṙ(0) = 0,

where r(t) = r(t, e,β).

Lemma A.11 (a) The function

R × D̊ � (t, e,β) �→ r(t, e,β) ∈]0,∞[

is C2 in t and C1 in (e,β). In addition,

R × D̊ � (t, e,β) �→ ṙ(t, e,β) ∈]0,∞[

is in C1(R × D̊).

(b) Denote

z = z(t, e,β) = ∂r

∂t
(t, e,β),

y = y(t, e,β) = ∂r

∂e
(t, e,β),

w = w(t, e,β) = ∂r

∂β
(t, e,β).

Then z is T1-periodic in t , whereas only y(T1) = y(0) and w(T1) = w(0) holds.
These functions are the solutions to
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z̈(t) +U ′′
eff (r(t),β)z(t) = 0, z(0) = 0, ż(0) = −U ′

eff (r−(e,β),β) = − 1
∂r−
∂e (e,β)

,

ÿ(t) +U ′′
eff (r(t),β)y(t) = 0, y(0) = ∂r−

∂e
(e, β), ẏ(0) = 0,

ẅ(t) +U ′′
eff (r(t),β)w(t) = 1

r(t)3
, w(0) = ∂r−

∂β
(e, β), ẇ(0) = 0.

Proof (a) By definition, r solves the initial value problem

r̈(t, e, β) = −U ′
Q(r(t, e, β)) + β

r(t, e, β)3
, r(0, e, β)=r−(e,β), ṙ(0, e, β)=0.

Since UQ is C2-regular and so is r−, the latter by Remark A.3, ODE theory
implies that r is C2-regular in t and C1-regular in (e,β). Similarly, ṙ is C1 in
(t, e,β).

(b) Also these statements follow from general ODE theory. �

Lemma A.12 (a) {z, y} is a fundamental system for ü +U ′′
eff(r(t),β)u = 0 with

Wronskian determinant 1.

(b) One has

∂T1
∂e

(e,β) = 1

U ′
eff(r−(e,β),β)

ẏ(T1(e,β), e,β) = ∂r−
∂e

(e,β) ẏ(T1(e,β), e,β),

∂T1
∂β

(e,β) = 1

U ′
eff(r−(e,β),β)

ẇ(T1(e,β), e,β) = ∂r−
∂e

(e,β) ẇ(T1(e,β), e,β).

(c) One has
∂T1
∂β

(e,β) = −1

2

∂

∂e

∫ T1(e,β)

0

ds

r(s, e,β)2
.

Proof (a) Both z and y are solutions, hence

z(t)ẏ(t) − y(t)ż(t) = z(0)ẏ(0) − y(0)ż(0) = ∂r−
∂e

(e,β)
1

∂r−
∂e (e,β)

= 1

is constant and the non-vanishing Wronskian determinant.
(b) From the T1-periodicity of r , we deduce that

ṙ(T1(e,β), e,β) = 0. (A.45)



Appendix A: Spherical Symmetry and Action-Angle Variables 121

Differentiating w.r. to e, it follows that

0 = r̈(T1(e,β), e,β)
∂T1
∂e

(e,β) + ∂2r

∂e ∂t
(T1(e,β), e,β)

= −U ′
eff(r(T1(e,β), e,β),β)

∂T1
∂e

(e,β) + ẏ(T1(e,β), e,β)

= −U ′
eff(r−(e,β),β)

∂T1
∂e

(e,β) + ẏ(T1(e,β), e,β).

Similarly, upon differentiating (A.45) w.r. to β, we obtain

0 = r̈(T1(e,β), e,β)
∂T1
∂β

(e,β) + ∂2r

∂β ∂t
(T1(e,β), e,β)

= −U ′
eff(r(T1(e,β), e,β),β)

∂T1
∂β

(e,β) + ẇ(T1(e,β), e,β)

= −U ′
eff(r−(e,β),β)

∂T1
∂β

(e,β) + ẇ(T1(e,β), e,β).

For the second relations one just has to use (A.25).

(c) Here, we calculate

d

dt
(ẇ(t)y(t) − w(t)ẏ(t)) = ẅ(t)y(t) − w(t)ÿ(t)

=
[ 1

r(t)3
−U ′′

eff(r(t),β)w(t)
]
y(t)

−w(t)
[

−U ′′
eff(r(t),β)y(t)

]

= 1

r(t)3
y(t).

Since ẇ(0)y(0) − w(0)ẏ(0) = 0, this yields ẇ(t)y(t) = w(t)ẏ(t) + ∫ t
0

y(s)
r(s)3 ds. At

t = T1 = T1(e,β) we deduce that

ẇ(T1)y(0) = ẇ(T1)y(T1)

= w(T1)ẏ(T1) +
∫ T1

0

y(s)

r(s)3
ds

= w(0)ẏ(T1)+
∫ T1

0

y(s)

r(s)3
ds.

Therefore,

ẇ(T1)
∂r−
∂e

(e,β) = ∂r−
∂β

(e,β) ẏ(T1) +
∫ T1

0

y(s)

r(s)3
ds,
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and equivalently, using (A.25) as well as (A.24),

ẇ(T1)
1

U ′
eff(r−,β)

= − 1

2r2− U ′
eff(r−,β)

ẏ(T1) +
∫ T1

0

y(s)

r(s)3
ds,

which can be restated as

ẇ(T1) = − ẏ(T1)

2r2−
+U ′

eff(r−,β)

∫ T1

0

y(s)

r(s)3
ds. (A.46)

Next observe that

∂

∂e

∫ T1

0

ds

r(s)2
= 1

r(T1)2
∂T1
∂e

− 2
∫ T1

0

ds

r(s)3
y(s),

and consequently r(T1) = r(0) = r− and (b) implies that

∫ T1

0

y(s)

r(s)3
ds = 1

2r2−

1

U ′
eff(r−,β)

ẏ(T1) − 1

2

∂

∂e

∫ T1

0

ds

r(s)2
.

Going back to (A.46), we see that

ẇ(T1) = −1

2
U ′

eff(r−,β)
∂

∂e

∫ T1

0

ds

r(s)2

holds. Using once again (b), we have established the claim. �



Appendix B
Function Spaces and Operators

B.1 Fourier Expansion

Spherically symmetric functions g(x, v) = g(r, pr , �) = g(θ, I, �) of (θ, I, �) that
are defined on K , the support of Q, can be expanded into a Fourier series

g(θ, I, �) =
∑
k∈Z

gk(I, �) e
ikθ,

since
K = {(θ, E, �) : θ ∈ [0, 2π], � ∈ [0, l∗], E ∈ [emin(�), e0]}

in the variables (θ, E, �) by (1.24), and θ is 2π-periodic; recall that I = I (E, �) is
the inverse function to E = E(I, �) at fixed �. Thus, K can be equally expressed in
the variables (θ, I, �) and we will mostly be using those which are more convenient.
The Fourier coefficients are

gk(I, �) = 1

2π

∫ 2π

0
g(θ, I, �) e−ikθ dθ. (B.1)

This motivates the following.

Definition B.1 (Xα-spaces) For α ≥ 0 denote

Xα =
{
g =

∑
k∈Z

gk(I, �) e
ikθ : ‖g‖2Xα = 16π3

∑
k∈Z

(1 + k2)
α ‖gk‖2L2

1
|Q′ |

(D)
< ∞

}
,

where
D = {(E, �) : � ∈ [0, �∗], E ∈ [emin(�), e0]}

is from (1.23) and expressed in (I, �), and moreover
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(φ,ψ)L2
1

|Q′ |
(D) =

∫∫

D

d I d� �
1

|Q′(e)| φ(I, �) ψ(I, �)

for suitable functions φ,ψ on D; note e = e(I, �). The associated scalar product on
the Hilbert space Xα is given by

(g, h)Xα = 16π3
∑
k∈Z

(1 + k2)
α

(gk, hk)L2
1

|Q′ |
(D) (B.2)

for g = ∑
k∈Z gk eikθ and h = ∑

k∈Z hk eikθ. We also let

Xα
0 = {g ∈ Xα : g0 = 0} (B.3)

as well as
X00 = {g ∈ X0 : gk �= 0 for only finitely many k}.

Remark B.2 (a) Note that for α = 0 the scalar product (B.2) agrees with the scalar
product in L2

sph, 1
|Q′ |

(K ) of spherically symmetric functions given by

(g, h)Q := (g, h)L2
sph, 1

|Q′ |
(K ) =

∫∫

K

1

|Q′(eQ)| g(x, v) h(x, v) dx dv,

recall (1.12); the associated norm is denoted by ‖g‖Q = (g, g)Q . In fact, extending
all functions to be zero outside of K (to simplify the notation), this follows, using
(A.41), from

(g, h)Q =
∫
R3

∫
R3

1

|Q′(eQ)| g(x, v) h(x, v) dx dv

= 8π2
∫ 2π

0
dθ

∫ ∞

0
d I

∫ ∞

0
d� �

1

|Q′(eQ)| g(θ, I, �) h(θ, I, �)

= 8π2
∑
k,m∈Z

∫ ∞

0
d I

∫ ∞

0
d� �

1

|Q′(eQ)| gk(I, �) hm(I, �)
∫ 2π

0
dθ ei(m−k)θ

= 16π3
∑
k∈Z

∫ ∞

0
d I

∫ ∞

0
d� �

1

|Q′(eQ)| gk(I, �) hk(I, �)

= 16π3
∑
k∈Z

(gk, hk)L2
1

|Q′ |
(D) = (g, h)X0; (B.4)

observe that e = E(I, �) is independent of θ. In particular, we see that X0 =
L2
sph, 1

|Q′ |
(K ).

(b) If β ≥ α ≥ 0, then Xβ ⊂ Xα and ‖g‖Xα ≤ ‖g‖Xβ for g ∈ Xβ .
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(c) X00 ⊂ Xα is dense for all α ≥ 0. In particular, Xβ ⊂ Xα is dense for β ≥ α ≥ 0.
To verify this, let g ∈ Xα and introduce

g(N ) =
∑
|k|≤N

gk e
ikθ ∈ X00 (B.5)

for N ∈ N. Then

‖g(N ) − g‖2Xα = 16π3
∑

|k|≥N+1

(1 + k2)
α ‖gk‖2L2

1
|Q′ |

(D)
→ 0, N → ∞,

so that g(N ) → g in Xα as N → ∞.
(d) A set B ⊂ X0 is relatively compact if and only if

(i) B is bounded, and
(ii) for every ε > 0 there is N = N (ε) ∈ N such that

sup
g∈B

( ∑
|k|≥N

‖gk‖2L2
1

|Q′ |
(D)

)1/2

≤ ε , and

(iii) for every k ∈ Z the set {gk : g ∈ B} ⊂ L2
1

|Q′ |
(D) is relatively compact, where

g = ∑
k∈Z gk eikθ.

Due to X0 ∼= l2
Z
(L2

1
|Q′ |

(D)), this follows from [52, Thm. 5.1] for p = 2. ♦

Lemma B.3 (Parity) Write the spherically symmetric function g = g(x, v) as g =
g(θ, I, �) = ∑

k∈Z gk(I, �) eikθ. Then

(a) g is even in v if and only if g−k = gk for all k ∈ Z. If g is real-valued, then
gk(I, �) ∈ R.

(b) g is odd in v if and only if g−k = −gk for all k ∈ Z, and in particular g0 = 0. If
g is real-valued, then gk(I, �) ∈ iR.

Proof We use Remark A.2. For instance, g is even in v if and only if g(θ, I, �) =
g(2π − θ, I, �), which is equivalent to

∑
k∈Z

gk(I, �) e
ikθ =

∑
k∈Z

gk(I, �) e
ik(2π−θ) =

∑
k∈Z

gk(I, �) e
−ikθ =

∑
j∈Z

g− j (I, �) e
i jθ,

and comparing coefficients, we arrive at the first part of (a). Furthermore, if g is
real-valued, then by (B.1):

gk(I, �) = 1

2π

∫ 2π

0
g(θ, I, �) eikθ dθ = g−k(I, �) = gk(I, �),

which means that gk is real-valued. The proof of (b) is analogous. �
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Thus if we need to restrict ourselves to odd functions later, then we have to pass
to a subspace Xα

odd of X
α, as introduced in

Definition B.4 (Xα
odd-spaces and Xα

even-spaces) For α ≥ 0 denote

Xα
odd = {g ∈ Xα : g−k = −gk f or k ∈ Z}, (B.6)

Xα
even = {g ∈ Xα : g−k = gk f or k ∈ Z}.

We derive some further useful relations.

Lemma B.5 For appropriate functions � = �(r) and ϕ = ϕ(e) consider

ψ(r, pr , �) = ϕ(eQ) pr�(r). (B.7)

Then

ψk(I, �) = − i

π
ϕ(e)ω1(e, �)

∫ r+(e,�)

r−(e,�)
�(r) sin(kθ(r, e, �)) dr

for the Fourier coefficients of ψ, and in particular ψ0 = 0.

Proof Since eQ = E(I, �) is independent of θ by (A.11), using (A.10) the Fourier
coefficients are calculated to be

ψk(I, �) = 1

2π

∫ 2π

0
ψ e−ikθ dθ

= 1

2π
ϕ(E)

( ∫ π

0
pr (θ, I )�(r(θ, I )) e−ikθ dθ

−
∫ 2π

π

pr (2π − θ, I )�(r(2π − θ, I )) e−ikθ dθ

)

= 1

2π
ϕ(E)

∫ π

0
pr�(r) (e−ikθ − eikθ) dθ

= − i

π
ϕ(E)

∫ π

0
pr�(r) sin(kθ) dθ

= − i

π
ϕ(E)ω1

∫ r+

r−
�(r) sin(kθ) dr,

where we applied the transformation [0,π] � θ → r ∈ [r−, r+], dr = pr
ω1

dθ,
cf. (A.22), in the last step. The dependencies are e = E = E(I, �), ω1(e, �) =
ω1(I, �) and θ(r, e, �) = θ(r, I, �). �

Remark B.6 (Projection of φ = φ(r)) Observe that the zero’th Fourier coefficient
of a function φ = φ(r) depending only upon r is
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φ0(I, �) = 1

2π

∫ 2π

0
φ(r(θ, I, �)) dθ = 1

π

∫ π

0
φ(r(θ, I, �)) dθ

= ω1(e, �)

π

∫ r+(e,�)

r−(e,�)

φ(r)

pr
dr = 2

T1(e, �)

∫ r+(e,�)

r−(e,�)

φ(r)

pr
dr,

where pr =
√
2(e −UQ(r)) − �2

r2 and e = E = E(I, �)This agrees with the relation
from [29, equ. (29)] for the projection onto kerT of such a radial function. ♦

Next we will re-express U ′
g(r) for g = ∑

k∈Z gk eikθ in terms of the gk .

Lemma B.7 For g = ∑
k∈Z gk eikθ we have

U ′
g(r) = 16π3

r2

∫∫

D

d� � de 1{(e, �): r+(e, �)≤r}
1

ω1(e, �)
g0(I, �)

+ 16π2

r2
∑
k∈Z

∫∫

D

d� � de 1{(e, �): r−(e, �)≤r≤r+(e, �)}

× 1

ω1(e, �)

sin(kθ(r, e, �))

k
gk(I, �),

where I = I (e, �). In particular, if g = ∑
k �=0 gk e

ikθ, then

U ′
g(r) = 16π2

r2

∑
k �=0

∫∫

D

d� � de 1{(e, �): r−(e, �)≤r≤r+(e, �)}
1

ω1(e, �)

sin(kθ(r, e, �))

k
gk(I, �).

(B.8)

Proof By linearity it suffices to consider the special case that g(r, pr , �) =
g(θ, I, �) = h(I, �) eikθ, where k ∈ Z and h is defined for (I, �) ∈ D, cf. Defini-
tionB.1. For the density, using (A.41) we have

ρg(r) =
∫
R3

g dv = 2π

r2

∫
R

dpr

∫ ∞

0
d� � g(r, pr , �). (B.9)

To analyze the domain of integration in pr and � at fixed r , we note that

e0 ≥ 1

2
p2r +UQ(r) + �2

2r2
≥ UQ(0) + �2

2r2

holds. Therefore, 2r2(e0 −UQ(0)) ≥ �2 and we get the restriction

� ≤ l̂(r) =
√
2r2(e0 −UQ(0)). (B.10)
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If � is fixed, thenUeff(r±, �) = e yields pr = ±
√
2(e −UQ(r)) − �2

r2 = 0 at r±. Thus,
we must have − p̂ ≤ pr ≤ p̂ for

p̂(r, �) =
√
2(e0 −UQ(r)) − �2

r2
. (B.11)

Hence, we obtain from (B.9) that

ρheikθ (r) = 2π

r2

∫ l̂(r)

0
d� �

∫ p̂

− p̂
dpr h(I, �) eikθ, (B.12)

where θ = θ(r, pr , �) and I = I (r, pr , �). Now we are going to apply the transfor-
mation pr �→ e(r, pr , �) = 1

2 p
2
r +UQ(r) + �2

2r2 , which is quadratic. Observe that

e(r,± p̂, �) = e0 and e(r, 0, �) = UQ(r) + �2

2r2
< e0.

If pr ∈ [− p̂, 0[, then ṙ = pr < 0 and e(r, pr , �) ∈] �2

2r2 +UQ(r), e0]with the inverse
transformation given by e �→ pr = pr (r, e, l) = −

√
2(e −UQ(r)) − �2

r2 . Similarly,

if pr ∈]0, p̂], then ṙ = pr > 0 and e(r, pr , �) ∈] �2

2r2 +UQ(r), e0], whereas the

inverse transformation is e �→ pr = pr (r, e, l) =
√
2(e −UQ(r)) − �2

r2 . Noting that
∂e
∂ pr

= pr , we deduce from (B.12),

ρheikθ (r) = 2π

r2

∫ l̂(r)

0
d� �

( ∫ 0

− p̂
dpr h(I, �) eikθ +

∫ p̂

0
dpr h(I, �) eikθ

)

= 2π

r2

∫ l̂(r)

0
d� �

( ∫ �2

2r2
+UQ (r)

e0

de

−
√
2(e −UQ(r)) − �2

r2

h(I, �) eikθ(r,p
−
r ,�)

+
∫ e0

�2

2r2
+UQ(r)

de√
2(e −UQ(r)) − �2

r2

h(I, �) eikθ(r,p
+
r ,�)

)

= 2π

r2

∫ l̂(r)

0
d� �

∫ e0

�2

2r2
+UQ(r)

de√
2(e −UQ(r)) − �2

r2

× h(I, �) (eikθ(r,p
−
r ,�) + eikθ(r,p

+
r ,�)) (B.13)

for p±
r = p±

r (r, e, �) = ±
√
2(e −UQ(r)) − �2

r2 . Using (A.10), we obtain θ(r, p−
r ,

�) = 2π − θ(r, p+
r , �). Thus, (B.13) simplifies to

ρheikθ (r) = 4π

r2

∫ l̂(r)

0
d� �

∫ e0

�2

2r2
+UQ (r)

de√
2(e −UQ(r)) − �2

r2

h(I, �) cos(kθ),
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where I = I (e, �) and θ = θ(r, p+
r , �). Then, (A.2) implies that

U ′
heikθ (R)

= 4π

R2

∫ R

0
r2ρheikθ (r) dr

= 16π2

R2

∫ R

0
dr

∫ l̂(r)

0
d� �

∫ e0

�2

2r2
+UQ(r)

de√
2(e −UQ(r)) − �2

r2

h(I, �) cos(kθ)

= 16π2

R2

∫ R

0
dr

∫ l∗

0
d� �

∫ e0

emin(�)

de√
2(e −UQ(r)) − �2

r2

× 1{0≤�≤l̂(r), e0≤ �2

2r2
+UQ(r)≤e} h(I, �) cos(kθ)

(B.14)

for I = I (e, �) and θ = θ(r, p+
r , �). We claim that

1{0≤�≤l̂(r), e0≤ �2

2r2
+UQ(r)≤e} = 1[r−, r+](r), (B.15)

where r± = r±(e, �) as before. Recall that r± are the solutions to 2(e −UQ(r)) −
�2

r2 = 0, whereas 2(e −UQ(r)) − �2

r2 > 0 in ]r−, r+[ and 2(e −UQ(r)) − �2

r2 < 0
outside [r−, r+]. Hence if 1{...} = 1, then r ∈ [r−, r+]. Conversely, if r ∈ [r−, r+],
then e ≥ �2

2r2 +UQ(r) and consequently e0 ≥ e ≥ �2

2r2 +UQ(0), so that 2r2(e0 −
UQ(0)) ≥ �2, which means that � ≤ l̂(r). This completes the argument for (B.15).
Going back to (B.14) and recalling (1.23), it yields

U ′
heikθ (R) = 16π2

R2

∫ R

0
dr

∫∫

D

d� � de
1√

2(e −UQ(r)) − �2

r2

1[r−,r+](r) h(I, �) cos(kθ)

= 16π2

R2

∫∫

D

d� � de h(I, �)
∫ r+

r−
dr 1[0,R](r)

cos(kθ)√
2(e −UQ(r)) − �2

r2

;

note that I = I (e, �) does not depend upon r . To calculate the integral

I =
∫ r+

r−
dr 1[0,R](r)

cos(kθ)√
2(e −UQ(r)) − �2

r2

we use the transformation [0,π] � θ �→ r(θ, I, �) = r(θ, e, �) ∈ [r−, r+], which has
dr = p+

r
ω1

dθ by (A.22). Therefore,
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I = 1{(e, �): r+(e, �)≤R}
∫ r+

r−
dr

cos(kθ)√
2(e −UQ(r)) − �2

r2

+ 1{(e, �): r−(e, �)≤R≤r+(e, �)}
∫ R

r−
dr

cos(kθ)√
2(e −UQ(r)) − �2

r2

= 1{(e, �): r+(e, �)≤R}
1

ω1

∫ π

0
dθ cos(kθ)

+ 1{(e, �): r−(e, �)≤R≤r+(e, �)}
1

ω1

∫ θ(R,e,�)

0
dθ cos(kθ)

= 1{(e, �): r+(e, �)≤R}
π

ω1
δk0

+ 1{(e, �): r−(e, �)≤R≤r+(e, �)}
1

ω1

sin(kθ(R, e, �))

k
;

here ω1 = ω1(I, �) = ω1(e, �). Thus, we arrive at

U ′
heikθ (r) = 16π3

r2
δk0

∫∫

D

d� � de h(I, �) 1{(e, �): r+(e, �)≤r}
1

ω1(e, �)

+ 16π2

r2

∫∫

D

d� � de h(I, �) 1{(e, �): r−(e, �)≤r≤r+(e, �)}

× 1

ω1(e, �)

sin(kθ(r, e, �))

k
,

which yields the asserted formula for U ′
g(r). �

B.2 Operators

The next definition is consistent with the fact that T g = {g, eQ}=ω1∂θg and
T 2g=ω2

1 ∂2
θ g, cf. (A.43) and (A.44).

Lemma B.8 The following assertions hold.

(a) Let
(T g)k(I, �) = ik ω1(I, �)gk(I, �) for k ∈ Z. (B.16)

If α ≥ 0, then T : Xα+1 → Xα is well-defined and

‖T g‖Xα ≤ �1 ‖g‖Xα+1 for g ∈ Xα+1,

where �1 is from Theorem 3.5. In addition, T (Xα+1) ⊂ Xα
0 .
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(b) Let D(T 2) = X2 and define

T 2 : X2 → X0, (T 2g)k(I, �) = −k2ω2
1(I, �) gk(I, �) for k ∈ Z. (B.17)

Then T 2 is a self-adjoint operator on X0 and

‖T 2g‖Xα ≤ �2
1 ‖g‖Xα+2 for g ∈ Xα+2. (B.18)

(c) We have

(−T 2g, g)X0 = 16π3
∑
k �=0

k2‖ω1gk‖2L2
1

|Q′ |
(D)

= ‖T g‖2X0 for g ∈ X2.

Proof (a) By the definition of T and of the norms,

‖T g‖2Xα = 16π3
∑
k∈Z

(1 + k2)
α ‖(T g)k‖2L2

1
|Q′ |

(D)

= 16π3
∑
k∈Z

(1 + k2)
α
k2 ‖ω1gk‖2L2

1
|Q′ |

(D)

≤ 16π3�2
1

∑
k∈Z

(1 + k2)
α+1 ‖gk‖2L2

1
|Q′ |

(D)
= �2

1 ‖g‖2Xα+1 . (B.19)

The fact that T (Xα+1) ⊂ Xα
0 follows from (T g)0 = 0. (b) First observe that T 2 is

densely defined in X0 by Remark B.2(c). To show that T 2 is symmetric, we remark
that for g, h ∈ X2,

(T 2g, h)X0 = 16π3
∑
k∈Z

((T 2g)k, hk)L2
1

|Q′ |
(D)

=−16π3
∑
k∈Z

∫∫

D

d I d� �
1

|Q′(e)| k
2ω2

1(I, �) gk(I, �) hk(I, �)

(B.20)

= 16π3
∑
k∈Z

(gk, (T 2h)k)L2
1

|Q′ |
(D) = (g,T 2h)X0 . (B.21)

Next we verify that ran(T 2 ± i) = X0. For, let h ∈ X0 be given and define g± by

g±
k (I, �) = − hk(I, �)

k2ω2
1(I, �) ∓ i

for k ∈ Z. (B.22)

Then g± ∈ X2. To see this, we are going to use estimate (4.3) from Remark 4.2(a).
It implies (note a = 0 and b = 1) that
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‖g±‖2X2 = 16π3
∑
k∈Z

(1 + k2)2 ‖g±
k ‖2L2

1
|Q′ |

(D)

= 16π3
∑
k∈Z

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2

|k2ω2
1(I, �) ∓ i |2

≤ 16π3
∫∫

D

d I d� �
1

|Q′(e)| |h0(I, �)|2

+ 16π3
∑
k �=0

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2
1
4k

4δ41 + 1

≤ 16π3
∫∫

D

d I d� �
1

|Q′(e)| |h0(I, �)|2

+ 32π3(1 + 4δ−4
1 )

∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |hk(I, �)|2

≤ 2(1 + 4δ−4
1 ) ‖h‖2X0 .

This proves that g± ∈ X2 is well-defined through (B.22), and then (T 2 ± i)g± = h
is obtained from the definition of T 2. Thus, T 2 is self-adjoint. The bound (B.18) is
derived analogously to (B.19). (c) Here, we have

(−T 2g, g)X0 = 16π3
∑
k∈Z

((−T 2g)k, gk)L2
1

|Q′ |
(D) = 16π3

∑
k∈Z

(k2ω2
1 gk, gk)L2

1
|Q′ |

(D)

= 16π3
∑
k∈Z

‖ik ω1gk‖2L2
1

|Q′ |
(D)

=16π3
∑
k∈Z

‖(T g)k‖2L2
1

|Q′ |
(D)

=‖T g‖2X0 ,

as was to be shown. �

Lemma B.9 The following assertions hold.

(a) Let g = g(I, �) ∈ L2
1

|Q′ |
(D). Then T g = 0. In particular, T |Q′(eQ)| = 0.

(b) Let L2
r be defined as in Chapter 4. For � ∈ L2

r let F(r) = F(0) + ∫ r
0 �(s) ds

for r ∈ [0, rQ] and denote by F0 the zero’th Fourier coefficient of F. Then
|Q′(eQ)|(F − F0) ∈ X1

even and

T (|Q′(eQ)|(F − F0)) = |Q′(eQ)| pr �. (B.23)

Proof (a) If g = g(I, �), then g0 = g and gk = 0 for k �= 0 by definition of the
Fourier coefficients, cf. (B.1). In particular, g ∈ X1 and hence (B.16) from Lemma
B.8 yields T g = 0. The second part follows from eQ = eQ(I, �) and

‖|Q′(eQ)|‖2L2
1

|Q′ |
(D) =

∫∫

D

d I d� � |Q′(e)| < ∞,
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the latter due to e ∈ [UQ(0), e0] and (Q3). (b) First note that∫ 2π

0
|Q′(eQ)| F0(I, �) e

−ikθ dθ = 2π |Q′(eQ)| F0(I, �)δk0

for k ∈ Z as well as

∫ 2π

0
|Q′(eQ)| F(θ, I, �) dθ = 2π |Q′(eQ)| F0(I, �).

If k �= 0, then through integration by parts
∫ 2π

0
|Q′(eQ)| F(θ, I, �) e−ikθ dθ

= |Q′(eQ)|
∫ 2π

0
F(r(θ, I, �)) e−ikθ dθ

= − 1

ik
|Q′(eQ)|

[
F(r(θ, I, l))e−ikθ

∣∣∣2π
0

−
∫ 2π

0
e−ikθ F ′(r)

dr

dθ
dθ

]

= 1

ik

|Q′(eQ)|
ω1(I, �)

∫ 2π

0
pr �(r) e−ikθ dθ,

where we used r(2π, I, �) = r(0, I, �) and (A.22). Thus if we let ψ(r, pr , �) =
|Q′(eQ)| pr �(r), then

∫ 2π

0
|Q′(eQ)| F(θ, I, �) e−ikθ dθ = 2π

ik

1

ω1(I, �)
ψk(I, �)

for k �= 0. To summarize, we have shown that

[|Q′(eQ)|(F − F0)]0(I, �) = 0,

[|Q′(eQ)|(F − F0)]k(I, �) = 1

ik

1

ω1(I, �)
ψk(I, �) for k �= 0. (B.24)

Since ψ is odd, we have ψ−k = −ψk for k ∈ Z by Lemma B.3(b); hence Lemma
B.3(a) implies that |Q′(eQ)|(F − F0) is even. Moreover, recalling from Lemma B.5
that ψ0 = 0 and using (4.20) from Lemma 4.4, we get

‖|Q′(eQ)|(F − F0)‖2X1 = 16π3
∑
k∈Z

(1 + k2) ‖[Q′(eQ)|(F − F0)]k‖2L2
1

|Q′ |
(D)

= 16π3
∑
k �=0

1 + k2

k2

∥∥∥∥ 1

ω1
ψk

∥∥∥∥
2

L2
1

|Q′ |
(D)

≤ 32π3δ−2
1

∑
k �=0

‖ψk‖2L2
1

|Q′ |
(D)

= 32π3δ−2
1 ‖ψ‖2X0 ≤ 32π3δ−2

1 ρQ(0) ‖�‖2L2
r
< ∞.
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Therefore, it follows that |Q′(eQ)|(F − F0) ∈ X1
even. To establish (B.23), it suffices

to observe that

[T (|Q′(eQ)|(F − F0))]k = ik ω1 [|Q′(eQ)|(F − F0)]k = ψk

for k ∈ Z by (B.16) and (B.24). �

From (B.3) in Definition B.1 recall that, for α ≥ 0,

Xα
0 = {g ∈ Xα : g0 = 0}

is the space of functions with vanishing zero’th Fourier coefficient. It is a Hilbert
space under the scalar product defined in (B.2). If we restrict T 2 to such spaces, then
we get the following.

Corollary B.10 LetD(T 2) = X2
0 and define T 2 : X2

0 → X0
0 as before. Then T 2 is

a self-adjoint operator on X0
0 such that −T 2 ≥ δ21 as operators. In particular, we

have σ(−T 2) ⊂ [δ21,∞[ and � = C \ [δ21,∞[⊂ ρ(−T 2). For z ∈ �, the resolvent
R−T 2(z) = (−T 2 − z)−1 is given by

(−T 2 − z)−1 : X0
0 → X2

0, ((−T 2 − z)−1h)k(I, �) = hk(I, �)

k2ω2
1(I, �) − z

for k �= 0

(B.25)
and ((−T 2 − z)−1h)0 = 0. We also have

((−T 2 − z)−1h, h)X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2

k2ω2
1(I, �) − z̄

(B.26)

for h ∈ X0
0 .

Proof Clearly X00
0 ⊂ Xα

0 is dense for α ≥ 0, where X00
0 = X00 ∩ {g : g0 = 0}; thus

in particular, X2
0 ⊂ X0

0 is dense. The symmetry of T 2 is shown as in (B.21). Also
ran(T 2 ± i) = X0

0 holds, since if h ∈ X0
0 is given, then g± defined via (B.22) yields

functions g± ∈ X2
0. Thus,T 2 : X2

0 → X0
0 is self-adjoint. To establish that−T 2 ≥ δ21 ,

let g ∈ X2
0. Then, by (B.20),

(−T 2g, g)X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| k
2ω2

1(I, �) |gk(I, �)|2

≥ 16π3δ21
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |gk(I, �)|2

= δ21 ‖g‖2X0 .

From −T 2 ≥ δ21 it follows that σ(−T 2) ⊂ [δ21,∞[, see [37, Prop. 5.12], which is
equivalent to ρ(−T 2) ⊃ C \ [δ21,∞[. For the last assertions, they are derived in a
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similar fashion as the estimates in Lemma B.8(b), but for completeness we include
the details. Fix z ∈ �, let h ∈ X0

0 be given and define gk(I, �) = hk (I,�)
k2ω2

1(I,�)−z
for k ∈ Z.

Note that g0 = 0, and we are going to establish that g ∈ X2
0; then (−T 2 − z)g = h

will be adirect consequenceof the definitionofT 2.According toRemark4.2(a), there
is α0 > 0 such that |k2ω2

1(I, �) − z| ≥ α0 for |k| ≥ 1 and (I, �) ∈ D. In addition, by
(4.3) and (4.4) there is k0 ∈ N so that |k2ω2

1(I, �) − z| ≥ 1
2k

2δ21 for |k| ≥ k0 and
(I, �) ∈ D. Hence, we can bound

‖g‖2X2
0

= 16π3
∑
k �=0

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2

|k2ω2
1(I, �) − z|2

≤ 16π3α−2
0 (1 + k20)

2
∑

1≤|k|≤k0−1

∫∫

D

d I d� �
1

|Q′(e)| |hk(I, �)|2

+ 16π3
∑

|k|≥k0

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2

1
4 k

4δ41

≤ 16π3α−2
0 (1 + k20)

2
∑

1≤|k|≤k0−1

∫∫

D

d I d� �
1

|Q′(e)| |hk(I, �)|2

+ 256π3 δ−4
1

∑
|k|≥k0

∫∫

D

d I d� �
1

|Q′(e)| |hk(I, �)|2

≤ (α−2
0 (1 + k20)

2 + 16 δ−4
1 )‖h‖2X0

0
;

observe that both α0 and k0 will depend upon z. For (B.26), we calculate from (B.2)

((−T 2 − z)−1h, h)X0 = 16π3
∑
k∈Z

([(−T 2 − z)−1h]k, hk)L2
1

|Q′ |
(D)

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|hk(I, �)|2

k2ω2
1(I, �) − z̄

,

which completes the proof. �

Remark B.11 If we consider T 2 : X2 → X0, then the resolvent (−T 2 − z)−1 :
X0 → X2 is not defined at z = 0, since the associated multiplier 1

k2ω2
1(I,�)−z

blows up

for k = 0. This problem does not occur forT 2 : X2
0 → X0

0, as we omit the coefficient
k = 0 for (−T 2 − z)−1 : X0

0 → X2
0. From the context it will always be clear which

operator and which resolvent we are dealing with. ♦
For the next result, we remind that δ1 = inf D̊ ω1 and�1 = supD̊ ω1.We also recall

that the discrete spectrumof a self-adjoint operator A in aHilbert space, calledσd(A),
consists of all eigenvalues of A of finite multiplicity that are isolated points of the
spectrum σ(A). Its complement σess(A) = σ(A) \ σd(A) is the essential spectrum.
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Lemma B.12 We have

σess(−T 2) =
∞⋃
k=1

k2[δ21,�2
1] (B.27)

for the essential spectrum, and in particular

δ21 = min σess(−T 2). (B.28)

If in addition (ω1-1) is satisfied, then δ21 /∈ σp(−T 2), the point spectrum of −T 2.

Proof To establish (B.27), we first show that k20 ]δ21,�2
1[⊂ σess(−T 2) for all k0 ∈

N. For, let μ2
0 ∈]δ21,�2

1[. Using [37, Thm. 7.2], it suffices to construct a Weyl
sequence (g( j)) for λ0 = k20μ

2
0, i.e., a sequence (g( j)) ⊂ X2

0 such that ‖g( j)‖X0 = 1
for j ∈ N, g( j) ⇀ 0 and (−T 2 − λ0)g( j) → 0 in X0 as j → ∞.

Since ω1 is continuous by Theorem 3.6 and D̊ is connected, ω1(D̊) is an inter-
val that satisfies ]δ1,�1[⊂ ω1(D̊) ⊂ [δ1,�1]. In particular, μ0 = ω1( Î , �̂) for some
( Î , l̂) ∈ D̊. Let ê = ê( Î , l̂) ∈]UQ(0), e0[ denote the associated energy and select
ε > 0 according to (Q2), i.e., with the property that

m = inf{|Q′(e)| : e ∈ [ê − ε, ê + ε]} > 0. (B.29)

From the continuity of Q′ in ] − ∞, e0[ we furthermore have

M = sup{|Q′(e)| : e ∈ [ê − ε, ê + ε]} < ∞. (B.30)

Defining β̂ = l̂2 and assuming ε > 0 to be sufficiently small, we may suppose
that the square S = {(e,β) : e ∈ [ê − ε, ê + ε],β ∈ [β̂ − ε, β̂ + ε]} ⊂ D̊. Let η1 =
η1(x) ∈ C∞

0 (R2) be a function such that η1 ≥ 0, η1 has its support in B1(0), and∫
R2 η1(x) dx = 1. We will use the standard mollifiers η j (x) = j2η1( j x) for j ∈ N,
they have their supports in B1/j (0) and satisfy

∫
R2 η j (x) dx = 1. Then the functions

χ j (e,β) = η j (e − ê,β − β̂)1/2 have their supports in B1/j (ê, β̂) ⊂ S for j large
enough, w.l.o.g. for j ≥ 1. For g̃ j (e,β) = |Q′(e)|χ j (e,β), we deduce from β = �2

and (A.18) that

‖g̃ j‖2L2
1

|Q′ |
(D)

=
∫∫

D

d I d� �
1

|Q′(e)| |g̃ j (I, �)|2

= 1

2

∫∫

D

de dβ
1

ω1(e,β) |Q′(e)| |g̃ j (e,β)|2

= 1

2

∫∫

D

de dβ
|Q′(e)|
ω1(e,β)

η j (e − ê,β − β̂).

Since
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∫∫

D

de dβ η j (e − ê,β − β̂) =
∫∫

S

de dβ η j (e − ê,β − β̂) =
∫∫

[−ε, ε]2
η j (x) dx = 1,

it follows from (B.29) and (B.30) that

m

2�1
≤ ‖g̃ j‖2L2

1
|Q′ |

(D)
≤ M

2δ1
. (B.31)

In addition, if φ ∈ C∞
0 (D̊), then

|(g̃ j ,φ)L2
1

|Q′ |
(D)

| = 1

2

∣∣∣∣
∫∫

D

de dβ
1

ω1(e,β) |Q′(e)| g̃ j (e,β) φ(e, �)

∣∣∣∣

= j

2

∣∣∣∣
∫∫

D

de dβ
1

ω1(e,β)
η1( j (e − ê,β − β̂))1/2 φ(e, �)

∣∣∣∣

≤ j

2δ1
‖φ‖L∞

∫∫

S

de dβ η1( j (e − ê,β − β̂))1/2

≤ j

2δ1
‖φ‖L∞

∫∫

[−ε,ε]2
dy η1( j y)

1/2

≤ 1

2δ1 j
‖φ‖L∞

∫∫

B1(0)

dx η1(x)
1/2

≤ C j−1‖φ‖L∞ . (B.32)

Due to (B.29), (B.30) and (B.31), and taking into account the support properties of
g̃ j , we conclude from (B.32) that also

lim
j→∞ (g̃ j ,φ)L2

1
|Q′ |

(D)
= 0, φ ∈ L2

1
|Q′ |

(D). (B.33)

Next, we also note that
∫∫

D

de dβ |Q′(e)| (ω1(e,β)2 − μ2
0)

2 χ j (e,β)2

≤ C
∫∫

S

de dβ (ω1(e,β) − μ0)
2 η j (e − ê,β − β̂)

= C
∫∫

[−ε,ε]2
dy (ω1(ê + y1, β̂ + y2) − ω1(ê, β̂))2 η j (y)

= C
∫∫

B1(0)

dx (ω1(ê + j−1x1, β̂ + j−1x2) − ω1(ê, β̂))2 η1(x) → 0, j → ∞.

(B.34)
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For the Weyl sequence, consider g̃( j)(θ, I, �) = g̃ j (e,β) eik0θ − g̃ j (e,β) e−ik0θ.
Then g̃( j)

k0
= g̃ j , g̃

( j)
−k0

= −g̃ j and g̃( j)
k = 0 for k �= ±k0; in particular, g̃( j) is odd.

Furthermore,

‖g̃( j)‖2X0 = 16π3
∑
k∈Z

‖g̃( j)
k ‖2L2

1
|Q′ |

(D)
= 32π3‖g̃ j‖2L2

1
|Q′ |

(D)

in conjunction with (B.31) shows that

16π3m�−1
1 ≤ ‖g̃( j)‖2X0 ≤ 16π3Mδ−1

1 (B.35)

for all j . Next let h ∈ X0. Then h±k0 ∈ L2
1

|Q′ |
(D) and

(g̃( j), h)X0 = 16π3
∑
k �=0

(g̃( j)
k , hk)L2

1
|Q′ |

(D)

= 16π3(g̃ j , hk0)L2
1

|Q′ |
(D)

−16π3(g̃ j , h−k0)L2
1

|Q′ |
(D)

→ 0

as j → ∞ due to (B.33). Therefore, g̃( j) ⇀ 0 in X0 for j → ∞. In addition, using
(B.34),

‖(−T 2 − λ0)g̃
( j)‖2X0 = 8π3

∑
k∈Z

∫∫

D

de dβ
1

ω1(e,β) |Q′(eQ)|
× |((−T 2 − λ0)g̃

( j))k(I, �)|2

= 16π3
∫∫

D

de dβ
(k20ω1(e,β)2 − λ0)

2

ω1(e,β) |Q′(eQ)| |g̃( j)
k0

(I, �)|2

= 16π3k40

∫∫

D

de dβ |Q′(e)| (ω1(e,β)2 − μ2
0)

2

ω1(e,β)
χ j (e,β)2

≤ C
∫∫

D

de dβ |Q′(e)| (ω1(e,β)2 − μ2
0)

2 χ j (e,β)2 → 0

as j → ∞.

Thus, by (B.35), we can normalize the sequence (g̃( j)) to obtain the desired Weyl
sequence (g( j)).

Hence, we have verified that k20 ]δ21,�2
1[⊂ σess(−T 2) for all k0 ∈ N. Since

σess(−T 2) is closed [37, Problem 10.5], it follows that even k20 [δ21,�2
1] ⊂ σess(−T 2)

holds for k0 ∈ N, which proves ‘⊃’ in (B.27).
For the converse ‘⊂’, take λ ∈ σess(−T 2) and let (g( j)) ⊂ X2

0 be an associated
Weyl sequence, i.e., we have ‖g( j)‖X0 = 1 for j ∈ N, g( j) ⇀ 0 and h( j) = (−T 2 −
λ)g( j) → 0 in X0 as j → ∞. First note that σess(−T 2) ⊂ σ(−T 2) ⊂ [δ21,∞[ by
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Corollary B.10 yields λ ≥ δ21 . For k ∈ N define εk = dist( λ
k2 , [δ21,�2

1]). If we assume
that εk > 0 for all k ∈ N, then λ

k2 → 0 as k → ∞ implies that ε̂ = inf{εk : k ∈ N} >

0. Since ω2
1(I, �) ∈ [δ21,�2

1],

|k2ω2
1(I, �) − λ| = k2

∣∣∣ω2
1(I, �) − λ

k2

∣∣∣ ≥ k2ε̂, k ∈ N.

If we write g( j) = ∑
k �=0 g

( j)
k (I, �) eikθ and h( j) = ∑

k �=0 h
( j)
k (I, �) eikθ, then

g( j)
k (I, �) = h( j)

k (I, �)

k2ω2
1(I, �) − λ

due to (B.25). It follows that

1 = ‖g( j)‖2X0

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |g( j)
k (I, �)|2

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
|h( j)

k (I, �)|2
|k2ω2

1(I, �) − λ|2

≤ 16π3

ε̂2

∑
k �=0

1

k4

∫∫

D

d I d� �
1

|Q′(e)| |h( j)
k (I, �)|2

≤ 16π3

ε̂2
‖h( j)‖2X0 → 0, j → ∞,

which is impossible. As a consequence, we must have εk0 = 0 for some k0 ∈ N. But
then λ

k20
∈ [δ21,�2

1], which means that λ ∈ k20[δ21,�2
1].

Concerning (B.28), as σess(−T 2) ⊂ [δ21,∞[, we have inf σess(−T 2) ≥ δ21 . For
the converse, [δ21,�2

1] ⊂ σess(−T 2) due to (B.27), and therefore inf σess(−T 2) ≤ δ21 .
The infimum is a minimum, owing to δ21 ∈ σess(−T 2).

For the last claim, assume on the contrary that g ∈ X2
0 is such that g �= 0 and

−T 2g = δ21g. For the components this means that k2ω2
1 gk = δ21 gk in L

2
1

|Q′ |
(D) for all

k �= 0. Since ω2
1(I, �) ≥ δ21 , it follows that gk = 0 in L2

1
|Q′ |

(D) for |k| ≥ 2. According

to (ω1-1) the set {(I, �) ∈ D : ω1(I, �) = δ1} has Lebesgue measure zero. Therefore,
g±1(I, �) = 0 for a.e. (I, �) ∈ D, which means that also g±1 = 0 in L2

1
|Q′ |

(D), and

hence g = 0. �

Lemma B.13 Define

(T−1h)k(I, �) = 1

ik ω1(I, �)
hk(I, �) for k �= 0 and (T−1h)0(I, �) = 0.

(B.36)



140 Appendix B: Function Spaces and Operators

(a) If α ≥ 0, then T−1 : Xα
0 → Xα+1

0 is well-defined and

‖T−1h‖Xα+1 ≤ √
2 δ−1

1 ‖h‖Xα for h ∈ Xα
0 .

(b) T−1T h = g − g0 for g ∈ Xα+1, and in particular T−1T 2g = T g for g ∈
Xα+2.

(c) If T g = h for g ∈ Xα+1, then T−1h = g − g0.
(d) TT−1h = h for h ∈ Xα

0 .

(e) T (−T 2)
−1
h = −T−1h for h ∈ X0

0 .

Proof (a) To begin with, (T−1h)0 = 0 holds by definition. In addition,

‖T−1h‖2Xα+1 = 16π3
∑
k �=0

(1 + k2)
α+1 ‖(T−1h)k‖2L2

1
|Q′ |

(D)

= 16π3
∑
k �=0

(1 + k2)
α+1

k2

∥∥∥ 1

ω1
hk

∥∥∥
2

L2
1

|Q′ |
(D)

≤ 32π3δ−2
1

∑
k �=0

(1 + k2)
α ‖hk‖2L2

1
|Q′ |

(D)
= 2δ−2

1 ‖h‖2Xα ,

and hence in particular T−1h ∈ Xα+1
0 .

(b) Note that T g ∈ Xα
0 by Lemma B.8(a). Hence, we have T−1T g =∑

k �=0
1

ikω1
(T g)k e

ikθ = ∑
k �=0 gk e

ikθ = g − g0. For the second statement one
uses (T g)0 = 0.

(c) This follows from (b).
(d) Here, we calculate TT−1h = ∑

k∈Z ikω1 (T−1h)k e
ikθ = ∑

k �=0 ikω1

(T−1h)k e
ikθ = ∑

k �=0 hk e
ikθ = h, due to h0 = 0.

(e) According to their definition in (B.25), the coefficients of the resolvent (−T 2)
−1
h

at z = 0 are given by ((−T 2)−1h)k = hk
k2ω2

1
for k �= 0 and ((−T 2)−1h)0 = 0.

Therefore,

T (−T 2)
−1
h =

∑
k �=0

ikω1 ((−T 2)
−1
h)k e

ikθ=
∑
k �=0

ik
hk
k2ω1

eikθ

= −
∑
k �=0

1

ikω1
hk e

ikθ= − T−1h,

and this completes the proof.
�

For the next result recall the operator K from (1.15), given by

Kg = −Q′(eQ) pr U
′
g(r) = |Q′(eQ)| pr U ′

g(r), (B.37)

where we have used assumption (Q3) for the last step.
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Corollary B.14 For z ∈ � and ψ(θ, I, �) = ∑
k �=0 ψk(I, �)eikθ ∈ X0

0 we have

KT (−T 2 − z)−1ψ

= |Q′(eQ)| pr 16π
2i

r2
∑
k �=0

∫∫

D

d� � de 1[r−(e, �), r+(e, �)](r)
sin(kθ(r, e, �))

k2ω2
1(e, �) − z

ψk(I, �),

where I = I (e, �).

Proof If we let g = (−T 2 − z)−1ψ ∈ X2
0, then

gk(I, �) = ψk(I, �)

k2ω2
1(I, �) − z

for k ∈ Z

by (B.25); in particular, g0 = 0. Next, if h = T g, then

hk(I, �) = ik ω1(I, �) gk(I, �) = ik ω1(I, �)

k2ω2
1(I, �) − z

ψk(I, �)

for the coefficients of h ∈ X1
0. Therefore, KT (−T 2 − z)−1ψ = Kh = |Q′(eQ)|

pr U ′
h(r) and (B.8) from Lemma B.7 yield the claim. �

Lemma B.15 Define KT : X0 → X0 by

(KT g)k(I, �) = 16π |Q′(e)| ω1(e, �)
∑
m �=0

∫∫

D

d �̃ �̃ dẽ gm( Ĩ , �̃)

×
∫ ∞

0

dr

r2
1[r−(e,�), r+(e,�)]∩[r−(ẽ, �̃), r+(ẽ, �̃)](r)

× sin(kθ(r, e, �)) sin(mθ(r, ẽ, �̃)) (B.38)

for k ∈ Z. Then

(a) KT agrees with what is obtained from (B.37). In particular

KT g = 4π |Q′(eQ)| pr
∫
R3

pr g dv (B.39)

and KT is a linear bounded operator on X0.
(b) KT is symmetric and

(KT g, g)X0 = 1

4π

∫
R3

|U ′
T g(r)|2 dx ≥ 0 for g ∈ X0. (B.40)

(c) KT : X0
0 → X0

0 is well-defined, linear, bounded, symmetric and positive.
(d) If g j ⇀ 0 weakly in X0 as j → ∞, then KT g j ⇀ 0 weakly in X0 as j → ∞.
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Proof (a) For KT g = |Q′(eQ)| pr U ′
T g(r) we deduce from Lemma B.5 that

(KT g)k(I, �) = − i

π
|Q′(e)| ω1(e, �)

∫ r+(e,�)

r−(e,�)
U ′

T g(r) sin(kθ(r, e, �)) dr

where e = e(I, �). Noting that (T g)m(I, �) = im ω1(I, �)gm(I, �), and in par-
ticular (T g)0 = 0, the claim thus follows from (B.8) in Lemma B.7. Regarding
(B.39), Lemma 2.4 says thatU ′

T g(r) = 4π
∫
R3 pr g dv. Hence, (B.37) shows that

(B.39) holds. For the boundedness, we write out (B.39) more explicitly:

(KT g)(x, v) = 4π |Q′(e)| pr
∫
R3

p̃r g(x, ṽ) d ṽ (B.41)

for pr = x · v/|x |, p̃r = x · ṽ/|x |, e = 1
2 |v|2 +UQ(r). If we also let

ẽ = 1
2 |ṽ|2 +UQ(r), then we obtain from Hölder’s inequality and Lemma 2.5

|(KT g)(x, v)|
≤ 4π |Q′(e)| |pr |

(∫
R3

|Q′(ẽ)| p̃2r d ṽ

)1/2( ∫
R3

1

|Q′(ẽ)| |g(x, ṽ)|2 d ṽ

)1/2

≤ 4π |Q′(e)| |pr | ρQ(r)1/2
( ∫

R3

1

|Q′(ẽ)| |g(x, ṽ)|2 d ṽ

)1/2

.

Observe that Q′ ∈ L∞
loc(R) by (Q3) and e ∈ [UQ(0), e0]. Furthermore |pr | ≤

maxK |v|, the maximal |v| for some (x, v) ∈ K . Also ρQ(r) ≤ ρQ(0) due to
(A.32). Therefore, (B.4) leads to

‖KT g‖2X0 = ‖KT g‖2L2
sph, 1

|Q′ |
(K )

=
∫∫

K

1

|Q′(e)| |(KT g)(x, v)|2 dx dv

≤ 64π2

3
ρQ(0) (max

K
|v|)5 sup {|Q′(e)| : e ∈ [UQ(0), e0]}

×
∫
R3

∫
R3

dx d ṽ

|Q′(ẽ)| |g(x, ṽ)|2

=: C2
KT ‖g‖2L2

sph, 1
|Q′ |

(K )
= C2

KT ‖g‖2X0 . (B.42)

(b) Here we calculate, for g, h ∈ X0 and using (B.4) as well as (B.41),

(KT g, h)X0 = (KT g, h)Q

=
∫
R3

∫
R3

1

|Q′(e)| (KT g)(x, v) h(x, v) dx dv
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= 4π
∫
R3

dx
∫
R3

dv pr

∫
R3

d ṽ p̃r g(x, ṽ) h(x, v) (B.43)

= 4π
∫
R3

dx
∫
R3

dv pr

∫
R3

d ṽ p̃r g(x, v) h(x, ṽ)

=
∫
R3

∫
R3

1

|Q′(e)| g(x, v) (KT h)(x, v) dx dv

= (g,KT h)Q = (g,KT h)X0 ,

which shows the symmetry. If we specify to h = g, then (B.43) and Lemma 2.4
yield

(KT g, g)X0 = 4π
∫
R3

dx

(∫
R3

dv pr g(x, v)

)( ∫
R3

d ṽ p̃r g(x, ṽ)

)

= 4π
∫
R3

dx

∣∣∣∣
∫
R3

dv pr g(x, v)

∣∣∣∣
2

= 1

4π

∫
R3

|U ′
T g(r)|2 dx,

so that KT is positive.
(c) Note that (KT g)0 = 0 by (B.38), even if g ∈ X0, and not g ∈ X0

0. Thus, in
particularKT (X0

0) ⊂ X0
0, and the remaining assertions follow from (a) and (b).

(d) Let h ∈ X0. Then KT h ∈ X0 and by (b):

(KT g j , h)X0 = (g j ,KT h)X0 → 0, j → ∞,

which means that KT g j ⇀ 0 weakly in X0 as j → ∞.
�

Corollary B.16 If g ∈ X0, then

‖U ′
T g‖L2

r
≤ 4πρQ(0)1/2 ‖g‖X0 .

Proof The argument is very similar to the one for (B.42) above. First recall from
Lemma 2.4 that U ′

T g = 4π
∫
R3 pr g dv, whence this is defined for g ∈ X0, and not

only for g ∈ X1. Here we have, using Lemma2.5 and the monotonicity of ρQ ,

|U ′
T g(x)| ≤ 4π

∫
R3

|pr | |g(x, v)| dv

≤ 4π

( ∫
R3

|Q′(e)| p2r dv

)1/2 ( ∫
R3

1

|Q′(e)| |g(x, v)|2 dv

)1/2

≤ 4πρQ(r)1/2
( ∫

R3

1

|Q′(e)| |g(x, v)|2 dv

)1/2

≤ 4πρQ(0)1/2
( ∫

R3

1

|Q′(e)| |g(x, v)|2 dv

)1/2

.
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Accordingly, we obtain

‖U ′
T g‖2L2

r
≤ 16π2ρQ(0)

∫
R3

∫
R3

1

|Q′(e)| |g(x, v)|2 dx dv = 16π2ρQ(0) ‖g‖2X0 ,

where we (as always) extend g by zero outside K . �
Now we turn to L = −T 2 − KT from (1.16).

Lemma B.17 The linear operator L = −T 2 − KT with domain D(L) =
D(−T 2) = X2

0 is self-adjoint on X0
0 .

Proof According to CorollaryB.10, −T 2 : X2
0 → X0

0 is self-adjoint. In addition,
KT : X0

0 → X0
0 is symmetric and bounded by Lemma B.15(c), and in particular

closed. Moreover, −KT is surely −T 2-bounded with relative bound zero. Hence L
is self-adjoint, trivially by the Kato-Rellich-Theorem; see [37, Theorem 13.5]. �

Since the Antonov stability estimate concerns spherically symmetric functions
u = u(x, v) that are odd in v, we have to restrict X0

0 further, in accordance with
Definition B.4; recall from (B.6) that

Xα
odd = {g ∈ Xα : g−k = −gk f or k ∈ Z}

are the odd functions, represented as a Fourier series.

Remark B.18 (a) The operators T and T−1 do reverse the parity, whereas T 2

preserves the parity; this is a direct consequence of LemmaB.3 and (B.16),
(B.36), (B.17). The resolvent (−T 2 − z)−1 : X0

odd → X2
odd of −T 2 on X2

odd is
still given by (B.25) for z ∈ �.

(b) KT g is always odd; this is due to LemmaB.3 and (B.38).

(c) The statements regarding the spectrum of −T 2 from LemmaB.12 are not
affected, if −T 2 is considered on X2

odd instead of X2
0; for (B.27), note that

the Weyl sequence as constructed in the proof of LemmaB.12 consists of odd
functions.

Corollary B.19 The linear operator L = −T 2 − KT with domain D(L) = X2
odd

is self-adjoint on X0
odd. In addition,

(Lu, u)X0 = ‖T u‖2X0 − 1

4π

∫
R3

|U ′
T u(r)|2 dx for u ∈ X2

odd. (B.44)

For the essential spectrum, we have σess(L) = σess(−T 2). In particular,

σess(L) =
∞⋃
k=1

k2[δ21,�2
1] and δ21 = min σess(L). (B.45)

If ω1 is not constant, then there exists λc > δ21 such that [λc,∞[⊂ σess(L).
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Proof The self-adjointness follows from Lemma B.17 and Remark B.18(a) and (b).
For (B.44), we can apply Lemma B.8(c) and Lemma B.15(b).

To establish that σess(L) = σess(−T 2) we are going to use Weyl’s Theorem; see
[37, Theorem 14.6]. For this we need to prove that KT is relatively L-compact.
SinceD(KT ) = X0 ⊃ X2

odd = D(L) for the domains, this will follow once we can
show that KT (L + i)−1 : X0

odd → X0
odd is a compact operator. Due to Corollary

C.6 we know thatK : X0 → X0 is compact; recall that L2
sph, 1

|Q′ |
(K ) = X0. Hence, it

suffices to prove thatT (L + i)−1 : X0
odd → X0 is a bounded operator. By the second

resolvent identity, [37, Prop. 1.9],

(L + i)−1 = (−T 2 + i)−1 + (−T 2 + i)−1KT (L + i)−1,

so that

T (L + i)−1 = T (−T 2 + i)−1 + T (−T 2 + i)−1KT (L + i)−1. (B.46)

If h ∈ X0
odd, then (B.16) and (B.25) yield

‖T (−T 2 + i)−1h‖2X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
k2ω1(I, �)2|hk(I, �)|2

|k2ω2
1(I, �) + i |2 .

In particular, for k �= 0 we have

k2ω1(I, �)2|hk(I, �)|2
|k2ω2

1(I, �) + i |2 = k2ω1(I, �)2|hk(I, �)|2
k4ω4

1(I, �) + 1
≤ δ−4

1 �2
1

|hk(I, �)|2
k2

≤ C |hk(I, �)|2.

It follows that

‖T (−T 2 + i)−1h‖2X0 ≤ C
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |hk(I, �)|2 ≤ C‖h‖2X0 ,

which shows that T (−T 2 + i)−1 : X0
odd → X0 is bounded. AlsoKT : X0 → X0

odd
is bounded, by Lemma B.15(a). Lastly, L is self-adjoint, so that σ(L) ⊂ R. Hence,
dist(−i,σ(L)) ≥ 1 implies that for the resolvent ‖(L + i)−1‖L(X0) = dist(−i,
σ(L))−1 ≤ 1. Altogether, T (L + i)−1 : X0

odd → X0 from (B.46) is seen to be
bounded.

Regarding (B.45), the assertions follow from (B.27) and (B.28) in Lemma B.12,
together with Remark B.18(c).

For the last claim, sinceω1 is not constant, there is k0 ∈ N such that δ21 < k2

(k+1)2 �
2
1

for k ≥ k0. By induction w.r. to k ≥ k0 we are going to establish that [k20δ21, k2�2
1] ⊂

σess(L) for all k ≥ k0. For k = k0 we have [k20δ21, k20�2
1] ⊂ σess(L) due to (B.45).
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Suppose now that [k20δ21, k2�2
1] ⊂ σess(L) is verified for some k ≥ k0. Then (k +

1)2δ21 < k2�2
1 in conjunction with (B.45) yields

[k2�2
1, (k + 1)2�2

1] ⊂ ](k + 1)2δ21, (k + 1)2�2
1] ⊂ σess(L),

which leads to

[k20δ21, (k + 1)2�2
1] = [k20δ21, k2�2

1] ∪ [k2�2
1, (k + 1)2�2

1] ⊂ σess(L)

and completes the proof. �



Appendix C
An Evolution Equation

C.1 Summary of the Argument

The aim of this section is to show that λ∗ < δ21 implies that λ∗ is an eigenvalue of L
(Theorem C.8). To outline the argument, we remark that λ∗ can be expressed as

λ∗ = inf {�(u) : u ∈ X1
odd, ‖u‖X0 = 1}

for X1
odd as defined in Appendix II, Sect.B.1, and

�(u) = ‖T u‖2X0 − (KT u, u)X0 .

For a given time interval J = [0, a] or J = [0,∞[ and a given continuous function
h : J → X1

odd, we consider the family of operators

W(t, s) : g �→ W(t, s)g, (W(t, s)g)k = Wk(t, s)gk (k ∈ Z), (C.1)

Wk(t, s)(I, �) = exp
(

−
∫ t

s
[k2ω2

1(I, �) − �(h(τ ))] dτ
)
, (C.2)

for t, s ∈ J , t ≥ s; to emphasize the dependence on h, we will at times also write
W(t, s; h). Note the evolution system property

W(t, s) ◦ W(s, τ ) = W(t, τ ), t, s, τ ∈ J, t ≥ s ≥ τ . (C.3)

We will consider the evolution equation

g(t) = W(t, 0)ψ +
∫ t

0
W(t, s)KT g(s) ds (C.4)
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for t ≥ 0 and initial data ψ, where W(t, s) = W(t, s; g). In Theorem C.4, we are
going to establish that if ψ ∈ X2

odd is such that ‖ψ‖X0 = 1 and �(ψ) ≤ λ∗ + ε∗ (for
ε∗ > 0 small enough), then there exists a global continuous solution g : [0,∞[→
X1
odd of (C.4) that satisfies ‖g(t)‖X0 = 1 for t ∈ [0,∞[. This result does not rely on

λ∗ < δ21 , the condition λ∗ ≤ δ21 is enough. The point about (C.4) is the following.
Differentiating (C.2) for h = g w.r. to t , we get

∂tWk(t, s)(I, �) = −[k2ω2
1(I, �) − �(g(t))]Wk(t, s)(I, �)

and hence, at least formally,

∂t (W(t, s)g) ∼= (∂tWk(t, s)gk) = (−[k2ω2
1 − �(g(t))]Wk(t, s)gk)

∼= T 2W(t, s)g + �(g(t))W(t, s)g.

Applying this relation to (C.4), it follows that

g′(t) = T 2W(t, s)ψ + �(g(t))ψ

+
∫ t

0
[T 2W(t, s)KT g(s) + �(g(t))W(t, s)KT g(s)] ds + KT g(t)

= T 2g(t) + �(g(t)) g(t) + KT g(t)

= −Lg(t) + �(g(t)) g(t). (C.5)

This implies that the ‖ · ‖X0 -norm is preserved along the solution flow. Since�(u) =
(Lu, u)Q = (Lu, u)X0 for u ∈ X2

odd and as the solution g(t) is regular enough, we
also deduce from (C.5) that

d

dt
�(g(t)) = d

dt
(Lg(t), g(t))X0 = 2 (Lg(t), g′(t))X0

= 2 (Lg(t),−Lg(t) + �(g(t)) g(t))X0 = −2 (‖Lg(t)‖2X0 − �(g(t))2).

Now

‖g′(t)‖2X0 = ‖ − Lg(t) + �(g(t))g(t)‖2X0

= ‖Lg(t)‖2X0 − 2�(g(t)) (Lg(t), g(t))X0 + �(g(t))2 ‖g(t)‖2X0

= ‖Lg(t)‖2X0 − �(g(t))2,

which in turn yields
d

dt
�(g(t)) = −2 ‖g′(t)‖2X0 ≤ 0.

Therefore, we see that � is a Lyapunov function for the evolution. Since ‖g(t)‖X0 =
1, we also have�(g(t)) = (Lg(t), g(t))X0 ≥ λ∗, and it is a natural question to ask, if
we can construct a minimizer of � in the following way. Consider a sequence of ini-
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tial data (ψ j ) ⊂ X2
odd such that �(ψ j ) ≤ λ∗ + 1/j and let g j denote the correspond-

ing solution to (C.4) so that g j (0) = ψ j . Then λ∗ ≤ �(g j (t)) ≤ �(ψ j ) ≤ λ∗ + 1/j
for all t ∈ [0,∞[ and j ∈ N. Hence, the key point is to find a sequence of times
(t j ) with the properties that t j → ∞ and {g j (t j ) : j ∈ N} ⊂ X0 is relatively com-
pact. We will show that this goal can be accomplished, if the condition λ∗ < δ21 is
imposed; the limiting function ϕ∗ will then be the desired eigenfunction of L for the
eigenvalue λ∗.

C.2 Set Up

The best constant in the Antonov stability estimate is

λ∗ = inf {(Lu, u)X0 : u ∈ X2
odd, ‖u‖X0 = 1} > 0,

cf. (1.20). We also introduce

� : X1
odd → R,

�(u) = ‖T u‖2X0 − (KT u, u)X0 = ‖T u‖2X0 − 1

4π

∫
R3

|U ′
T u(r)|2 dx, (C.6)

recall Lemma B.15(b). Then

λ∗ = inf {�(u) : u ∈ X1
odd, ‖u‖X0 = 1}

by Lemma C.10 below. Let the operators W(t, s) be defined as in (C.1) and (C.2).

Remark C.1 (Parity) Since k enters as k2 into the definition, one hasW−k(t, s) =
Wk(t, s). Therefore, it follows from Lemma B.3 that W(t, s) preserves the parity
in v: if g is even in v, thenW(t, s)g is even in v, and if g is odd in v, thenW(t, s)g
is odd in v. ♦

We will study the evolution equation

g(t) = W(t, 0)ψ +
∫ t

0
W(t, s)KT g(s) ds (C.7)

for t ≥ 0 and initial data ψ, defining W(t, s) = W(t, s; g).

C.3 Existence of solutions

First we will study local existence and uniqueness for (C.7). Henceforth, we will

always assume that the parameter ε∗ > 0 satisfies ε∗ ≤ min{ 14 , δ21
2 }.
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Lemma C.2 Let ψ ∈ X2
odd be such that �(ψ) ≤ λ∗ + ε∗. Then (C.7) has a unique

solution g ∈ C(J, X1
odd) on some time interval J = [0, a] with a > 0 such that

�(g(t)) ≤ λ∗ + 2ε∗ for t ∈ J and ‖g‖∞,1 ≤ 10 ‖ψ‖X1 , where ‖g‖∞,1=max
{‖g(t)‖X1 : t ∈ J }.
Proof Define

G = {g ∈ C(J, X1
odd) : g(0) = ψ, �(g(t)) ≤ λ∗ + 2ε∗ for t ∈ J,

‖g‖∞,1 ≤ 10 ‖ψ‖X1},

where J = [0, a] with

a = min

{
1,

8ε∗
125C2

KT
,

ε3∗
2000C2

� ‖ψ‖2
X1 ‖ψ‖2

X2 (�2
1 + 1 + 20CKT )2

,
1

800C� ‖ψ‖2
X1

,

ε∗
4 · 108(C� ‖ψ‖2

X1 + C�CKT ‖ψ‖2
X1 + CKT )2

}
> 0,

for CKT > 0 from (B.42), C� from Lemma C.9 and �1 from Theorem 3.5. By
Lemma C.9,G is a closed subset of the Banach space C(J, X1

odd), which is equipped
with the norm ‖ · ‖∞,1. If we set g(t) = ψ for t ∈ J , then g ∈ G, which shows that
G �= ∅. Next let F : G → G be given by

(F(g))(t) = W(t, 0)ψ +
∫ t

0
W(t, s)KT g(s) ds, g ∈ G, t ∈ J,

whereW(t, s) = W(t, s; g). First we are going to verify that F is well-defined, i.e.,
F(G) ⊂ G. Fix g ∈ G and write h(t) = (F(g))(t). Then h(0) = ψ. The operators
W(t, s) do preserve the parity in v, whereas KT is always odd; see Remarks C.1
and B.18(c). Thus, ifψ ∈ X2

odd is odd in v and g(s) ∈ X1
odd is odd in v, also h = F(g)

will be odd in v. In addition, by (C.68), (C.75) for α = 1 and (B.42):

‖h(t)‖X1 ≤ ‖W(t, 0)ψ‖X1 +
∥∥∥∥

∫ t

0
W(t, s)KT g(s) ds

∥∥∥∥
X1

≤ e2ε∗t ‖ψ‖X1 +
√

2

ε∗
(1 + e4ε∗t )1/2

( ∫ t

0
‖KT g(s)‖2X0 ds

)1/2

≤ e2ε∗t ‖ψ‖X1 +
√

2

ε∗
(1 + e4ε∗t )1/2CKT

( ∫ t

0
‖g(s)‖2X0 ds

)1/2

≤ e2ε∗t ‖ψ‖X1 +
√

2

ε∗
(1 + e4ε∗t )1/2CKT

√
t ‖g‖∞,1 (C.8)

≤ e2ε∗a ‖ψ‖X1 +
√

2

ε∗
(1 + e4ε∗a)1/2CKT

√
a ‖g‖∞,1
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for t ∈ [0, a]. Since ‖g‖∞,1 ≤ 10 ‖ψ‖X1 , a ≤ 1, ε∗ ≤ 1/4 and a ≤ 8ε∗
125C2

KT
, it follows

that also ‖h‖∞,1 ≤ 10 ‖ψ‖X1 is verified. To prove that h is continuous at t0 = 0, note
that by (C.84) and (C.8):

‖h(t) − ψ‖X1

≤ ‖[W(t, 0) − W(0, 0)]ψ‖X1 +
∥∥∥∥

∫ t

0
W(t, s)KT g(s) ds

∥∥∥∥
X1

≤ (�2
1 + 1) (t + t2)1/2 ‖ψ‖X2 +

√
2

ε∗
(1 + e4ε∗t )1/2CKT

√
t ‖g‖∞,1 → 0, t → 0+.

(C.9)

Next we are going to verify that h is continuous at t0 ∈ J such that t0 ∈]0, a[.
W.l.o.g. consider η > 0 only, where η is so small that t0 + η ∈ J . Fix δ ∈]0, t0[.
Then by (C.85), (C.78), (C.79), (C.80) and (B.42):

‖h(t0 + η) − h(t0)‖X1

≤ ‖[W(t0 + η, 0) − W(t0, 0)]ψ‖X1 +
∥∥∥∥

∫ t0+η

t0
W(t0 + η, s)KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t0−δ

0
[W(t0 + η, s) − W(t0, s)]KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t0

t0−δ
W(t0 + η, s)KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t0

t0−δ
W(t0, s)KT g(s) ds

∥∥∥∥
X1

≤ 2 (�2
1 + 1)

[ 1

ε∗t0
√

η + e2ε∗t0 η
]
‖ψ‖X0

+
√

2

ε∗
(1 + e2ε∗η)

( ∫ t0+η

t0
‖KT g(s)‖2

X0 ds

)1/2

+
∫ t0−δ

0
‖[W(t0 + η, s) − W(t0, s)]KT g(s)‖X1 ds

+ 4

ε
1/2∗

(1 + e2ε∗(η+δ))

( ∫ t0

t0−δ
‖KT g(s)‖2

X0 ds

)1/2

≤ 2 (�2
1 + 1)

[ 1

ε∗t0
√

η + e2ε∗t0 η
]
‖ψ‖X0

+
√

2

ε∗
(1 + e2ε∗η)CKT

( ∫ t0+η

t0
‖g(s)‖2

X0 ds

)1/2

+ 2 (�2
1 + 1)CKT

∫ t0−δ

0

[
1

ε∗(t0 − s)

√
η + exp(2ε∗(t0 − s)) η

]
‖g(s)‖X0 ds

+ 4

ε
1/2∗

(1 + e2ε∗(η+δ))CKT

( ∫ t0

t0−δ
‖g(s)‖2

X0 ds

)1/2

≤ 2 (�2
1 + 1)

[ 1

ε∗t0
√

η + e2ε∗t0 η
]
‖ψ‖X0 +

√
2

ε∗
(1 + e2ε∗η)CKT ‖g‖∞,1

√
η
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+ �2
1 + 1

ε∗
CKT ‖g‖∞,1

[
2 ln

( t0
δ

)√
η + e2ε∗t0 η

]
+ 4

ε
1/2∗

(1 + e2ε∗(η+δ))CKT ‖g‖∞,1
√

δ.

(C.10)

So if we for instance set δ = η, it follows that limη→0+ ‖h(t0 + η) − h(t0)‖X1 = 0.
Since a similar argument proves the continuity of h at t0 = a, in summary we have
shown that h ∈ C(J, X1

odd). It remains to check the condition �(h(t)) ≤ λ∗ + 2ε∗
for t ∈ J . For this, owing to Lemma C.9 and by (C.9) for t ∈ J :

|�(h(t)) − �(ψ)|
≤ 2C�(‖h(t)‖X1 + ‖ψ‖X1 )‖h(t) − ψ‖X1

≤ 22C� ‖ψ‖X1 ‖h(t) − ψ‖X1

≤ 22C� ‖ψ‖X1

[
(�2

1 + 1) (t + t2)1/2 ‖ψ‖X2 +
√

2

ε∗
(1 + e4ε∗t )1/2CKT

√
t ‖g‖∞,1

]

≤ 22C� ‖ψ‖X1

[√
2 (�2

1 + 1) ‖ψ‖X2 + 10

√
2

ε∗
(1 + e4ε∗)1/2CKT ‖ψ‖X1

] √
t

≤ 44C�

ε
1/2∗

‖ψ‖X1 ‖ψ‖X2 (�2
1 + 1 + 20CKT )

√
a

≤ ε∗,

recalling the definition of a. Hence, we obtain

�(h(t)) ≤ |�(h(t)) − �(ψ)| + �(ψ) ≤ ε∗ + �(ψ) ≤ λ∗ + 2ε∗, t ∈ J.

Altogether, so far we have verified that F(G) ⊂ G. Next we will show that F :
G → G is a contraction. Let g1, g2 ∈ G. Then �(g1(t)) ≤ λ∗ + 2ε∗ and �(g2(t)) ≤
λ∗ + 2ε∗ for t ∈ J by the definition of G. Furthermore, in the notation of Lemma
C.18 below,

	(t; g1, g2) = 2C�(‖g1‖∞,1 + ‖g2‖∞,1)

∫ t

0
‖g1(τ ) − g2(τ )‖X1 dτ

≤ 40C� ‖ψ‖X1

∫ t

0
‖g1(τ ) − g2(τ )‖X1 dτ

≤ 40C� ‖ψ‖X1 ‖g1 − g2‖∞,1 a

≤ 800C� ‖ψ‖2X1 a

≤ 1

by the choice of a. Thus, in particular

	(t; g1, g2) exp(	(t; g1, g2)) ≤ 120C� ‖ψ‖X1 ‖g1 − g2‖∞,1 a.
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Hence for t ∈ J one deduces from this estimate, Lemma C.18, (C.75) for α = 1 and
(B.42) that

‖(F(g1))(t) − (F(g2))(t)‖X1

=
∥∥∥∥W(t, 0; g1)ψ +

∫ t

0
W(t, s; g1)KT g1(s) ds − W(t, 0; g2)ψ −

∫ t

0
W(t, s; g2)KT g2(s) ds

∥∥∥∥
X1

≤ ‖W(t, 0; g1) − W(t, 0; g2))ψ‖X1 +
∥∥∥∥

∫ t

0
[W(t, s; g1) − W(t, s; g2)]KT g2(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t

0
W(t, s; g1)KT (g1(s) − g2(s)) ds

∥∥∥∥
X1

≤ 2	(t; g1, g2) exp(	(t; g1, g2)) (1 + e2ε∗ t ) ‖ψ‖X1

+ 2

ε
1/2∗

	(t; g1, g2) exp(	(t; g1, g2)) (1 + e2ε∗ t )

( ∫ t

0
‖KT g2(s)‖2X0 ds

)1/2

+ 2

ε
1/2∗

(1 + e2ε∗ t )

( ∫ t

0
‖KT (g1(s) − g2(s))‖2X0 ds

)1/2

≤ 960C� ‖ψ‖2X1 ‖g1 − g2‖∞,1 a + 960C�CKT

ε
1/2∗

‖ψ‖X1 ‖g1 − g2‖∞,1

(∫ t

0
‖g2(s)‖2X0 ds

)1/2

a

+ 8CKT

ε
1/2∗

( ∫ t

0
‖g1(s) − g2(s)‖2X0 ds

)1/2

≤ 960C� ‖ψ‖2X1 ‖g1 − g2‖∞,1 a + 9600C�CKT

ε
1/2∗

‖ψ‖2X1 ‖g1 − g2‖∞,1 a
3/2

+ 8CKT

ε
1/2∗

‖g1 − g2‖∞,1 a
1/2

≤ 9600

ε
1/2∗

(
C� ‖ψ‖2X1 + C�CKT ‖ψ‖2X1 + CKT

)
‖g1 − g2‖∞,1 a

1/2,

where we used in between that 2ε∗t ≤ 2ε∗a ≤ 2ε∗ ≤ 1/2. Thus, by the choice of
a, we obtain ‖F(g1) − F(g2)‖∞,1 ≤ 1

2 ‖g1 − g2‖∞,1, and the Banach fixed point
theorem applies to yield the claim. �

Corollary C.3 In the setting of Lemma C.2, the solution g hat the following addi-
tional properties:

(a) ‖g(t) − g(s)‖X1 ≤ C4(g, a)(t − s)1/6 for t, s ∈ J , t ≥ s,
(b) g(t) ∈ X2

odd for t ∈ J and

‖g(t)‖X2 ≤ C5(g, a), t ∈ J,

where C4(g, a) > 0 and C5(g, a) > 0 are explicit constants (see below) that depend
upon �1, a = max J , ‖ψ‖X2 , ε∗, CKT and ‖g‖∞,1.

(c) The function J � t �→ g(t) ∈ X2
odd is continuous in ]0, a[.

(d) The function J � t �→ g(t) ∈ X0
odd is differentiable at every t ∈]0, a[ and its

derivative is given by

g′(t) = −Lg(t) + �(g(t)) g(t). (C.11)
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(e) The function J � t �→ �(g(t)) ∈ R is differentiable at every t ∈]0, a[ and its
derivative is given by

d

dt
�(g(t)) = −2 (‖Lg(t)‖2X0 − �(g(t))2).

(f) If ‖ψ‖X0 = 1, then ‖g(t)‖X0 = 1 for t ∈ J and (g′(t), g(t))X0 = 0 for t ∈]0, a[.
Furthermore,

�(g(t1)) − �(g(t0)) = −2
∫ t1

t0

‖g′(t)‖2X0 dt (C.12)

for t0, t1 ∈ J , t1 ≥ t0. In particular, J � t �→ �(g(t)) ∈ R is monotone decreas-
ing and �(g(t)) ≥ λ∗ for t ∈ J .

Proof Since the solution g is a fixed point of F in the proof of Lemma C.2, one has
h = F(g) = g. Hence, (C.9) and (C.10) for δ = η and η ≤ 1 imply that

‖g(t) − ψ‖X1 ≤ C1(g, a)
√
t, (t ∈ J ), (C.13)

‖g(t + η) − g(t)‖X1 ≤ C2(g, a)

(
1

t
+ 1 + ln

( t

η

))√
η,

(t, t + η ∈ J, t > 0, η > 0), (C.14)

where

C1(g, a) = (�2
1 + 1) (1 + √

a) ‖ψ‖X2 +
√

2

ε∗
(1 + e4ε∗a)1/2CKT ‖g‖∞,1,

C2(g, a) = 2

ε∗
(�2

1 + 1) e2ε∗a ‖ψ‖X0 + 4

ε∗

[
(�2

1 + 1)e2ε∗a + 2(1 + e4ε∗)
]
CKT ‖g‖∞,1.

If t ≤ η1/3, then (C.13) leads to

‖g(t + η) − g(t)‖X1 ≤ ‖g(t + η) − ψ‖X1 + ‖g(t) − ψ‖X1

≤ C1(g, a)(
√
t + η + √

t)

≤ 2C1(g, a)
√

η1/3 + η

≤ 2
√
2C1(g, a) η1/6.

On the other hand, if t ≥ η1/3, then by (C.14):

‖g(t + η) − g(t)‖X1 ≤ C2(g, a)

(
η−1/3 + 1 + ln

(a
η

))√
η

≤ C2(g, a)

(
2η−1/3 + ln

(a
η

))√
η

≤ C2(g, a)

(
2 + | ln a| + 3

e

)
η1/6
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for a = max J , where we also used that 3 | ln x | x ≤ 3
e for x ∈ [0, 1]. In summary,

we have shown that if t , t + η ∈ J , t > 0, η ∈]0, 1], then

‖g(t + η) − g(t)‖X1 ≤ C3(g, a) η1/6,

provided that we define

C3(g, a) = 4C1(g, a) + (4 + | ln a|)C2(g, a).

It follows that for t, s ∈ J , t ≥ s, one always has the Hölder bound

‖g(t) − g(s)‖X1 ≤ C4(g, a)(t − s)1/6

for
C4(g, a) = C3(g, a) + 2‖g‖∞,1,

as is claimed in (a).
Owing to Remark B.2(b), this in particular implies that ‖g(t) − g(s)‖X0 ≤

C4(g, a)(t − s)1/6 and thus also

‖KT g(t) − KT g(s)‖X0 ≤ CKTC4(g, a)(t − s)1/6 (C.15)

for t, s ∈ J by (B.42). Hence, we obtain from (C.7), (C.68) and (C.76) with A =
CKTC4(g, a), γ = 1/6, α = 2, and (C.77) that for t ∈ J :

‖g(t)‖X2 ≤ ‖W(t, 0)ψ‖X2 +
∥∥∥∥

∫ t

0
W(t, s)KT [g(s) − g(t)] ds

∥∥∥∥
X2

+
∥∥∥∥

∫ t

0
W(t, s)KT g(t) ds

∥∥∥∥
X2

≤ e2ε∗t‖ψ‖X2 + 3C2
KTC4(g, a)2

(
4

ε2∗
t1/3 + 1

4ε∗
e4ε∗t t4/3

)

+ 1

ε∗
(2 + e2ε∗t ) ‖KT g‖X0

≤ e2ε∗a‖ψ‖X2 + 3C2
KTC4(g, a)2

(
4

ε2∗
a1/3 + 1

4ε∗
e4ε∗a a4/3

)

+CKT

ε∗
(2 + e2ε∗a) ‖g‖∞,1

= : C5(g, a),

which yields the asserted bound in (b).
In order to prove the continuity of g in X2

odd as claimed in (c), fix t0 ∈]0, a[ and
η > 0 sufficiently small. Then by (C.7):
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g(t0 + η) − g(t0) = W(t0 + η, 0)ψ − W(t0, 0)ψ

+
∫ t0+η

t0

W(t0 + η, s)KT g(s) ds

+
∫ t0

0
[W(t0 + η, s) − W(t0, s)]KT g(s) ds

= B1 + B2 + B3, (C.16)

with Bj , j = 1, 2, 3, denoting the three lines. We will bound each of the three terms
individually and we will start with B1. Here, it suffices to invoke (C.86), since by
this estimate on has

‖B1‖X2 = ‖W(t0 + η, 0)ψ − W(t0, 0)ψ‖X2

≤ 2 (�2
1 + 1)

[
2

ε
3/2
∗ t3/20

√
η + exp(2ε∗t0) η

]
‖ψ‖X0 . (C.17)

To deal with B2 in (C.16), we write this term as

B2 =
∫ t0+η

t0
W(t0 + η, s) [KT g(s) − KT g(t0 + η)] ds +

(∫ t0+η

t0
W(t0 + η, s) ds

)
KT g(t0 + η)

= B21 + B22. (C.18)

First we consider B21. Recall from (C.15) that ‖KT g(t) − KT g(s)‖X0 ≤ CKT
C4(g, a)(t − s)1/6. Hence, (C.76) with α = 2 and γ = 1/6 leads to

‖B21‖2X2 =
∥∥∥∥

∫ t0+η

t0

W(t0 + η, s) [KT g(t0 + η) − KT g(s)] ds
∥∥∥∥
2

X2

≤ 3C2
KT C4(g, a)2

( 4

ε2∗
+ 1

4ε∗
e4ε∗η η

)
η1/3

≤ 15

ε2∗
C2
KT C4(g, a)2 η1/3. (C.19)

What concerns B22 in (C.18), we have

‖B22‖2X2=16π3
∑
k∈Z

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t0+η

t0
Wk(t0 + η, s)(I, �) ds

∣∣∣∣
2

|(KT g(t0 + η))k(I, �)|2.

Therefore, (C.64), (C.65) together with 1 − e−x ≤ min{1, x} implies that

‖B22‖2X2 ≤ 32π3
∞∑
k=2

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0+η

t0
e−ε∗k2(t0+η−s) ds

]2
|(KT g(t0 + η))k(I, �)|2
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+ 128π3
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0+η

t0
e2ε∗(t0+η−s) ds

]2
|(KT g(t0 + η))1(I, �)|2

= 32π3

ε2∗

∞∑
k=2

(1 + k2)2

k4
(1 − e−ε∗k2η)2

∫∫

D

d I d� �
1

|Q′(e)| |(KT g(t0 + η))k(I, �)|2

+ 32π3

ε2∗
(e2ε∗η − 1)2

∫∫

D

d I d� �
1

|Q′(e)| |(KT g(t0 + η))1(I, �)|2

≤ 64π3

ε2∗

∞∑
k=2

min{1, k4η2} ‖(KT g(t0 + η))k‖2L2
1

|Q′ |
(D)

+ 32π3

ε2∗
(e2ε∗η − 1)2 ‖(KT g(t0 + η))1‖2L2

1
|Q′ |

(D)
.

Observing that, for all t ∈ J and k ∈ Z,

16π3‖(KT g(t))k‖2L2
1

|Q′ |
(D)

≤ ‖KT g(t)‖2X0 ≤ C2
KT ‖g(t)‖2X0

≤ C2
KT ‖g‖2∞,1 ≤ 100C2

KT ‖ψ‖2X1 , (C.20)

this leads to

‖B22‖2X2 ≤ 32π3

ε2∗

∑
k �=0

min{1, k4η2} ‖(KT g(t0 + η))k‖2L2
1

|Q′ |
(D)

+ 200

ε2∗
C2
KT ‖ψ‖2X1 (e2ε∗η − 1)2. (C.21)

Thus if we go back to (C.18) and invoke (C.19) and (C.21), we have shown that

‖B2‖X2 ≤ ‖B21‖X2 + ‖B22‖X2

≤ 5

ε∗
CKT C4(g, a) η1/6 + 2

ε∗

(
16π3

∑
k �=0

min{1, k4η2} ‖(KT g(t0 + η))k‖2L2 1
|Q′|

(D)

)1/2

.

+ 15

ε∗
CKT ‖ψ‖X1 (e2ε∗η − 1). (C.22)

Concerning B3 in (C.16), we fix δ ∈]0,min{1, t0}[ and split this term further up into

B3 =
∫ t0−δ

0
[W(t0 + η, s) − W(t0, s)]KT g(s) ds

+
∫ t0

t0−δ

[W(t0 + η, s) − W(t0, s)] (KT g(s) − KT g(t0)) ds

+
( ∫ t0

t0−δ

[W(t0 + η, s) − W(t0, s)] ds
)
KT g(t0)

= B31 + B32 + B33. (C.23)
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For B31, one has from (C.86) and (B.42):

‖B31‖X2 ≤
∫ t0−δ

0
‖[W(t0 + η, s) − W(t0, s)]KT g(s)‖X2 ds

≤ 2 (�2
1 + 1)

∫ t0−δ

0

[
2

ε
3/2∗ (t0 − s)3/2

√
η + exp(2ε∗(t0 − s)) η

]
‖KT g(s)‖X0 ds

≤ 2 (�2
1 + 1)CKT

√
η

∫ t0−δ

0

[
2

ε
3/2∗ (t0 − s)3/2

+ e2ε∗t0
]

‖g(s)‖X0 ds

≤ 2 (�2
1 + 1)CKT

√
η ‖g‖∞,1

[
4

ε
3/2∗

δ−1/2 + e2ε∗t0 t0
]

≤ 8CKT

ε
3/2∗

(�2
1 + 1)e2ε∗t0 (1 + t3/20 ) ‖g‖∞,1

√
η δ−1/2. (C.24)

In order to bound B32 from (C.23), we use (C.69). It follows that

‖B32‖2X2 = 16π3
∑
k∈Z

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t0

t0−δ
[Wk (t0 + η, s)(I, �) − Wk (t0, s)(I, �)]

× ((KT g(s))k (I, �) − (KT g(t0))k (I, �)) ds

∣∣∣∣
2

≤ 32π3(�2
1 + 1)2

∞∑
k=2

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0

t0−δ
ds e−ε∗k2(t0−s)

× ((KT g(s))k (I, �) − (KT g(t0))k (I, �))

]2

+ 128π3(�2
1 + 1)2

∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0

t0−δ
ds e2ε∗(t0−s)

× ((KT g(s))1(I, �) − (KT g(t0))1(I, �))

]2
.

To the right-hand side we apply Lemma C.13. It follows that

‖B32‖2X2 ≤ 64π3

ε∗
(�2

1 + 1)2
∞∑
k=2

k2
∫ t0

t0−δ
e−ε∗k2(t0−s) ‖(KT g(s))k − (KT g(t0))k‖2L2

1
|Q′ |

(D)
ds

+ 32π3

ε∗
(�2

1 + 1)2 (e4ε∗δ − 1)
∫ t0

t0−δ
‖(KT g(s))1 − (KT g(t0))1‖2L2

1
|Q′ |

(D)
ds.

ByRemarkC.14onehas k2e−ε∗k2(t0−s) ≤ 1
ε∗(t0−s) . Thus, from (B.42) and (a), it follows

that
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‖B32‖2X2 ≤ 2

ε2∗
(�2

1 + 1)2
∫ t0

t0−δ

ds

t0 − s
‖KT g(s) − KT g(t0)‖2X0

+ 1

ε∗
(�2

1 + 1)2 (e4ε∗δ − 1)
∫ t0

t0−δ
‖KT g(s) − KT g(t0)‖2X0 ds

≤ 2

ε2∗
(�2

1 + 1)2 C2
KT C4(g, a)2

∫ t0

t0−δ

ds

(t0 − s)2/3

+ 1

ε∗
(�2

1 + 1)2 C2
KT C4(g, a)2 (e4ε∗δ − 1)

∫ t0

t0−δ
(t0 − s)1/3 ds

= 6

ε2∗
(�2

1 + 1)2 C2
KT C4(g, a)2δ1/3 + 3

4ε∗
(�2

1 + 1)2 C2
KT C4(g, a)2 (e4ε∗δ − 1) δ4/3

≤ 12

ε2∗
(�2

1 + 1)2 C2
KT C4(g, a)2 e4ε∗δ δ1/3. (C.25)

Next we turn to B33 from (C.23). Here, we have

‖B33‖2X2 = 16π3
∑
k �=0

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t0

t0−δ
[Wk(t0 + η, s)(I, �) − Wk(t0, s)(I, �)] ds

∣∣∣∣
2

× |(KT g(t0))k(I, �)|2,

whence (C.69) leads to

‖B33‖2X2

≤ 32π3(�2
1 + 1)2

∞∑
k=2

(1 + k2)2 min{1, k4η2}
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0

t0−δ
exp(−ε∗k2(t0 − s)) ds

]2

× |(KT g(t0))k(I, �)|2

+ 128π3(�2
1 + 1)2η2

∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t0

t0−δ
exp(2ε∗(t0 − s)) ds

]2

× |(KT g(t0))1(I, �)|2

≤ 64π3

ε2∗
(�2

1 + 1)2
∞∑
k=2

min{1, k4η2}‖(KT g(t0))k‖2L2
1

|Q′ |
(D)

+ 32π3

ε2∗
(�2

1 + 1)2η2 (e2ε∗δ − 1)2‖(KT g(t0))1‖2L2
1

|Q′ |
(D)

≤ 32π3

ε2∗
(�2

1 + 1)2 e4ε∗δ
∑
k �=0

min{1, k4η2}‖(KT g(t0))k‖2L2
1

|Q′ |
(D)

. (C.26)

Thus if we summarize (C.24), (C.25) and (C.26), it follows from (C.23) that

‖B3‖X2 ≤ ‖B31‖X2 + ‖B32‖X2 + ‖B33‖X2

≤ 8CKT

ε
3/2∗

(�2
1 + 1)e2ε∗ t0 (1 + t3/20 ) ‖g‖∞,1

√
η δ−1/2 + 4

ε∗
(�2

1 + 1)CKT C4(g, a) e2ε∗δ δ1/6

+ 2

ε∗
(�2

1 + 1) e2ε∗δ

(
16π3

∑
k �=0

min{1, k4η2}‖(KT g(t0))k‖2L2
1

|Q′ |
(D)

)1/2

. (C.27)
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Altogether, now we can go back to (C.16) and use (C.17), (C.22) and (C.27). In this
way, we obtain

‖g(t0 + η) − g(t0)‖X2

≤ ‖B1‖X2 + ‖B2‖X2 + ‖B3‖X2

≤ 2 (�2
1 + 1)

[
2

ε
3/2∗ t3/20

√
η + exp(2ε∗t0) η

]
‖ψ‖X0 + 5

ε∗
CKT C4(g, a) η1/6

+ 2

ε∗

(
16π3

∑
k �=0

min{1, k4η2} ‖(KT g(t0 + η))k‖2L2 1
|Q′|

(D)

)1/2

+ 15

ε∗
CKT ‖ψ‖X1 (e2ε∗η − 1)

+ 8CKT

ε
3/2∗

(�2
1 + 1)e2ε∗t0 (1 + t3/20 ) ‖g‖∞,1

√
η δ−1/2 + 4

ε∗
(�2

1 + 1)CKT C4(g, a) e2ε∗δ δ1/6

+ 2

ε∗
(�2

1 + 1) e2ε∗δ
(
16π3

∑
k �=0

min{1, k4η2}‖(KT g(t0))k‖2L2 1
|Q′ |

(D)

)1/2
. (C.28)

Then the next step is to take, for instance, δ = η3/4. In addition, we have

lim
η→0+

16π3
∑
k �=0

min{1, k4η2} ‖(KT g(t0 + χ(η)))k‖2L2
1

|Q′ |
(D)

= 0, (C.29)

if limη→0+ χ(η) = 0. This is a consequence of the generalized Lebesgue dominated
convergence theorem (for sums). In fact, we have limη→0+ min{1, k4η2} ‖(KT g(t0 +
χ(η)))k‖2L2

1
|Q′ |

(D)
= 0 for every k ∈ Z \ {0}, cf. (C.20). Furthermore, using (B.42),

‖g‖∞,1 ≤ 10 ‖ψ‖X1 and (a),

lim
η→0+

‖(KT g(t0 + χ(η)))k‖2L2
1

|Q′ |
(D)

= ‖(KT g(t0))k‖2L2
1

|Q′ |
(D)

, k ∈ Z \ {0},

and similarly

16π3
∑
k �=0

‖(KT g(t0 + η))k‖2L2
1

|Q′ |
(D)

= ‖KT g(t0 + η)‖2X0

→ ‖KT g(t0)‖2X0 = 16π3
∑
k �=0

‖(KT g(t0))k‖2L2
1

|Q′ |
(D)

as η → 0+. This yields (C.29), and therefore (C.28) shows that
‖g(t0 + η) − g(t)‖X2 = o(1) as η → 0+, which means that g : J → X2

odd is con-
tinuous at t0. To establish (d), let d(t) = −Lg(t) + �(g(t))g(t). Since g(t) ∈ X2

odd
by (b), Remark B.18(a) and (B.18) imply that T 2g(t) ∈ X0

odd. As a consequence
of Lg(t) = −T 2g(t) − KT g(t), it follows from Remark B.18(b) and (B.42) that
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Lg(t) ∈ X0
odd. Hence, in particular d(t) ∈ X0

odd. Now by (C.7) one has for η > 0
small enough:

g(t + η) − g(t) − η d(t)

= W(t + η, 0)ψ +
∫ t+η

0
W(t + η, s)KT g(s) ds − W(t, 0)ψ −

∫ t

0
W(t, s)KT g(s) ds − η d(t)

= W(t + η, 0)ψ − W(t, 0)ψ +
∫ t+η

t
W(t + η, s)KT g(s) ds − ηKT g(t)

+
∫ t

0
(W(t + η, s) − W(t, s))KT g(s) ds − η [T 2 + �(g(t))] g(t)

= W(t + η, 0)ψ − W(t, 0)ψ +
∫ t+η

t
W(t + η, s)KT g(s) ds − ηKT g(t)

+
∫ t

0
(W(t + η, s) − W(t, s))KT g(s) ds

− η [T 2 + �(g(t))]
(
W(t, 0)ψ +

∫ t

0
W(t, s)KT g(s) ds

)

= W(t + η, 0)ψ − W(t, 0)ψ − η [T 2 + �(g(t))]W(t, 0)ψ

+
∫ t+η

t
W(t + η, s)KT g(s) ds − ηKT g(t)

+
∫ t

0

(
W(t + η, s) − W(t, s) − η [T 2 + �(g(t))]W(t, s)

)
KT g(s) ds. (C.30)

We will write this relation as

g(t + η) − g(t) − η d(t) = A1 + A2 + A3, (C.31)

with A j , j = 1, 2, 3, denoting the three lines, and look at each A j individually. Let
mk(t) = mk(t)(I, �) = k2ω2

1(I, �) − �(g(t)). For A1, one has by (C.70) for s = 0:

‖A1‖2X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣Wk(t + η, 0)(I, �) − Wk(t, 0)(I, �)

+ ηmk(t)(I, �)Wk(t, 0)(I, �)
∣∣∣2 |ψk(I, �)|2

≤ 32π3 (�2
1 + 1)4η2

∞∑
k=2

(
|�(t, η)| + k2 min{1, k2η}

)2
e−2ε∗k2t‖ψk‖2L2

1
|Q′ |

(D)

+ 32π3 (�2
1 + 1)4η2 (|�(t, η)| + η)2e4ε∗(1+t) ‖ψ1‖2L2

1
|Q′ |

(D)

≤ 64π3 (�2
1 + 1)4η2

∞∑
k=2

(
|�(t, η)|2 + k4 min{1, k4η2}

)
‖ψk‖2L2

1
|Q′|

(D)

+ (�2
1 + 1)4η2 (|�(t, η)| + η)2e4ε∗(1+t) ‖ψ‖2X0 ,
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where

�(t, η) = exp(− ∫ t+η

t [�(g(t)) − �(g(τ ))] dτ ) − 1

η
. (C.32)

As a consequence,

‖A1‖2X0 ≤ 3(�2
1 + 1)4η2 (|�(t, η)| + η)2e4ε∗(1+a) ‖ψ‖2X0

+ 32π3(�2
1 + 1)4η2

∑
|k|≥2

k4 min{1, k4η2} ‖ψk‖2L2
1

|Q′ |
(D)

so that

‖A1‖X0 ≤ 2(�2
1 + 1)2η (|�(t, η)| + η) e2ε∗(1+a) ‖ψ‖X0

+ 2(�2
1 + 1)2η

(
16π3

∑
k �=0

k4 min{1, k4η2} ‖ψk‖2L2
1

|Q′ |
(D)

)1/2

. (C.33)

To bound A2 in (C.30), we decompose it as

A2 =
∫ t+η

t
W(t + η, s)KT [g(s) − g(t)] ds

+
[ ∫ t+η

t
W(t + η, s) ds

]
KT g(t) − ηKT g(t)

= A21 + A22. (C.34)

Then by (C.68), (B.42) and Remark B.2(b):

‖A21‖X0 ≤
∫ t+η

t
‖W(t + η, s)KT [g(s) − g(t)]‖X0 ds

≤
∫ t+η

t
e2ε∗(t+η−s) ‖KT [g(s) − g(t)]‖X0 ds

≤ CKT e2ε∗η
∫ t+η

t
‖g(s) − g(t)‖X0 ds

≤ CKT e2ε∗
∫ t+η

t
‖g(s) − g(t)‖X1 ds

≤ CKT e2ε∗C4(g, a)

∫ t+η

t
(s − t)1/6 ds

≤ CKT e2ε∗C4(g, a) η7/6. (C.35)

With regard to A22 from (C.34), here one has

‖A22‖2X0

= 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t+η

t
Wk (t + η, s)(I, �) ds − η

]2
|(KT g(t))k (I, �)|2
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≤ 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
( ∫ t+η

t
ds

∣∣∣1 − exp
(

−
∫ t+η

s
mk (τ )(I, �) dτ

)∣∣∣
)2

|(KT g(t))k (I, �)|2.

From (C.62) we know that 0 ≤ mk(τ )(I, �) ≤ �2
1k

2 for |k| ≥ 2, so that
∫ t+η

s mk(τ )

(I, �) dτ ∈ [0,�2
1k

2(t + η − s)]. If |k| = 1, then −2ε∗ ≤ mk(τ )(I, �) ≤ �2
1 by

(C.63) yields
∫ t+η

s mk(τ )(I, �) dτ ∈ [−2ε∗(t + η − s),�2
1(t + η − s)] ⊂

[−2ε∗,∞[. Since |1 − e−x | ≤ e2ε∗ min{1, |x |} for x ∈ [−2ε∗,∞[, we deduce that
∣∣∣1 − exp

(
−

∫ t+η

s
mk(τ )(I, �) dτ

)∣∣∣ ≤ e2ε∗ min

{
1,

∣∣∣∣
∫ t+η

s
mk(τ )(I, �) dτ

∣∣∣∣
}

≤ e2ε∗ min{1,�2
1k

2(t + η − s)}

for all k ∈ Z \ {0}. Hence, we may continue the above estimate as

‖A22‖2X0

≤ 16π3e4ε∗ ∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
( ∫ t+η

t
ds min{1,�2

1k
2(t + η − s)}

)2

|(KT g(t))k (I, �)|2

≤ η2 16π3e4ε∗ ∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| min{1,�4
1k

4η2} |(KT g(t))k (I, �)|2

= η2 16π3e4ε∗ ∑
k �=0

min{1,�4
1k

4η2} ‖(KT g(t))k‖2L2 1
|Q′ |

(D)

≤ η2 16π3e4ε∗ (�4
1 + 1)

∑
k �=0

min{1, k4η2} ‖(KT g(t))k‖2L2 1
|Q′ |

(D)
. (C.36)

Thus, we can go back to (C.34) and summarize (C.35) and (C.36). This yields

‖A2‖X0 ≤ ‖A21‖X0 + ‖A22‖X0

≤ CKT e2ε∗C4(g, a) η7/6

+ η e2ε∗ (�2
1 + 1)

(
16π3

∑
k �=0

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

)1/2

.

(C.37)

Concerning A3 in (C.30), this term is further split up into

A3 =
∫ t

0

(
W(t + η, s) − W(t, s) − η [T 2 + �(g(t))]W(t, s)

)
KT [g(s) − g(t)] ds

+
[ ∫ t

0

(
W(t + η, s) − W(t, s) − η [T 2 + �(g(t))]W(t, s)

)
ds

]
KT g(t)

= A31 + A32. (C.38)
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Then we obtain from (C.70):

‖A31‖2X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t

0

(
Wk (t + η, s)(I, �) − Wk (t, s)(I, �)

+ ηmk (t)(I, �)Wk (t, s)(I, �)
)

× [(KT g(s))k (I, �) − (KT g(t))k (I, �)] ds
∣∣∣∣
2

≤ 32π3(�2
1 + 1)4 η2

∞∑
k=2

(
|�(t, η)| + k2 min{1, k2η}

)2

×
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(−ε∗k2(t − s))

× |(KT g(s))k (I, �) − (KT g(t))k (I, �)| ds
]2

+ 32π3(�2
1 + 1)4 e4ε∗ η2 (|�(t, η)| + η)2

×
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(2ε∗(t − s))

× |(KT g(s))1(I, �) − (KT g(t))1(I, �)| ds
]2

(C.39)

for �(t, η) from (C.32). To the right-hand side we apply Lemma C.13. This yields

‖A31‖2X0

≤ 32π3

ε∗
(�2

1 + 1)4 η2
∞∑
k=2

1

k2

(
|�(t, η)| + k2 min{1, k2η}

)2

×
∫ t

0
ds e−ε∗k2(t−s) ‖(KT g(s))k − (KT g(t))k‖2L2 1

|Q′ |
(D)

+ 8π3

ε∗
(�2

1 + 1)4 e4ε∗ η2(|�(t, η)| + η)2

× (e4ε∗t − 1)
∫ t

0
‖(KT g(s))1 − (KT g(t))1‖2L2 1

|Q′|
(D)

ds

≤ 2

ε∗
(�2

1 + 1)4 η2 |�(t, η)|2
∫ t

0
‖KT g(s) − KT g(t)‖2

X0 ds

+ 64π3

ε∗
(�2

1 + 1)4 η2
∞∑
k=2

k2 min{1, k4η2}

×
∫ t

0
ds e−ε∗k2(t−s) ‖(KT g(s))k − (KT g(t))k‖2L2 1

|Q′ |
(D)

+ 1

4ε∗
(�2

1 + 1)4 e4ε∗ η2(|�(t, η)| + η)2
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× (e4ε∗t − 1)
∫ t

0
‖KT g(s) − KT g(t)‖2

X0 ds

≤ 4

ε∗
(�2

1 + 1)4 e4ε∗(1+t) C2
KT η2 (|�(t, η)| + η)2

∫ t

0
‖g(s) − g(t)‖2

X0 ds

+ 32π3

ε∗
(�2

1 + 1)4 η4
∑

0<|k|≤η−1/2

k4

×
∫ t

0
ds e−ε∗k2(t−s) ‖(KT g(s))k − (KT g(t))k‖2L2 1

|Q′ |
(D)

+ 32π3

ε∗
(�2

1 + 1)4 η2
∑

|k|≥η−1/2

k2

×
∫ t

0
ds e−ε∗k2(t−s) ‖(KT g(s))k − (KT g(t))k‖2L2 1

|Q′ |
(D)

≤ 16

ε∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖g‖2∞,1 a η2(|�(t, η)| + η)2

+ 64π3

ε∗
(�2

1 + 1)4 η13/6
∑
k �=0

|k|7/3

×
∫ t

0
ds e−ε∗k2(t−s) ‖(KT g(s))k − (KT g(t))k‖2L2 1

|Q′ |
(D)

.

From Remark C.14 one has |k|7/3e−ε∗k2(t−s) ≤ 4
ε
7/6∗ (t−s)7/6

. As a consequence, by (a),

‖A31‖2X0 ≤ 16

ε∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖g‖2∞,1 a η2(|�(t, η)| + η)2

+ 256π3

ε
13/6∗

(�2
1 + 1)4 η13/6

∑
k �=0

∫ t

0

ds

(t − s)7/6
‖(KT g(s))k − (KT g(t))k‖2L2

1
|Q′ |

(D)

≤ 16

ε∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖g‖2∞,1 a η2(|�(t, η)| + η)2

+ 8

ε
13/6∗

(�2
1 + 1)4 η13/6

∫ t

0

ds

(t − s)7/6
‖KT g(s) − KT g(t)‖2X0

≤ 16

ε∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖g‖2∞,1 a η2(|�(t, η)| + η)2

+ 8

ε
13/6∗

(�2
1 + 1)4 C2

KT C4(g, a)2 η13/6
∫ t

0

ds

(t − s)7/6
(t − s)1/3

≤ 16

ε∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖g‖2∞,1 a η2(|�(t, η)| + η)2

+ 48

ε
13/6∗

(�2
1 + 1)4 C2

KT C4(g, a)2 η13/6 a1/6. (C.40)

Next we turn to A32 in (C.38). Analogously to (C.39) one gets

‖A32‖2X0

≤ 32π3(�2
1 + 1)4 η2

∞∑
k=2

(
|�(t, η)| + k2 min{1, k2η}

)2
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×
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(−ε∗k2(t − s)) |(KT g(t))k (I, �)| ds

]2

+ 32π3(�2
1 + 1)4 e4ε∗ η2 (|�(t, η)| + η)2

×
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(2ε∗(t − s)) |(KT g(t))1(I, �)| ds

]2
.

Thus integrating out
∫ t
0 ds, we see that

‖A32‖2X0 ≤ 32π3

ε2∗
(�2

1 + 1)4 η2
∞∑
k=2

(
|�(t, η)| + min{1, k2η}

)2 ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

+ 8π3

ε2∗
(�2

1 + 1)4 e4ε∗(1+t) η2 (|�(t, η)| + η)2 ‖(KT g(t))1‖2L2
1

|Q′ |
(D)

≤ 2

ε2∗
(�2

1 + 1)4 η2|�(t, η)|2 ‖KT g(t)‖2X0

+ 64π3

ε2∗
(�2

1 + 1)4 η2
∞∑
k=2

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

+ 1

4ε2∗
(�2

1 + 1)4 e4ε∗(1+a) η2 (|�(t, η)| + η)2 ‖KT g(t)‖2X0

≤ 400

ε2∗
(�2

1 + 1)4 e4ε∗(1+a) C2
KT ‖ψ‖2X1 η2 (|�(t, η)| + η)2

+ 64π3

ε2∗
(�2

1 + 1)4 η2
∞∑
k=2

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

. (C.41)

Hence if we use (C.40) and (C.41) in (C.38), it follows that

‖A3‖X0 ≤ ‖A31‖X0 + ‖A32‖X0

≤ 60

ε∗
(�2

1 + 1)2 e2ε∗(1+a) CKT ‖ψ‖X1 (1 + a1/2) η (|�(t, η)| + η)

+ 7

ε
13/12
∗

(�2
1 + 1)2 CKT C4(g, a) a1/12 η13/12

+ 2

ε∗
(�2

1 + 1)2 η

(
16π3

∑
k �=0

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

)1/2

.

(C.42)

Therefore altogether from (C.31), (C.33), (C.37) and (C.42), we see that

‖g(t + η) − g(t) − η d(t)‖X0

≤ ‖A1‖X0 + ‖A2‖X0 + ‖A3‖X0
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≤ 62

ε∗
(�2

1 + 1)2 e2ε∗(1+a) (CKT + 1) ‖ψ‖X1 (1 + a1/2) η (|�(t, η)| + η)

+CKT e2ε∗C4(g, a) η7/6 + 7

ε
13/12
∗

(�2
1 + 1)2 CKT C4(g, a) a1/12 η13/12

+ 2(�2
1 + 1)2η

(
16π3

∑
k �=0

k4 min{1, k4η2} ‖ψk‖2L2
1

|Q′ |
(D)

)1/2

+ 4

ε∗
e2ε∗ (�2

1 + 1)2 η

(
16π3

∑
k �=0

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

)1/2

.

(C.43)

Now g ∈ C(J, X1
odd) together with Lemma C.9 implies that J � t �→ �(g(t)) is

continuous; in fact this function is even Hölder continuous by (a). It follows that

lim
η→0+

�(t, η) = lim
η→0+

exp(− ∫ t+η

t [�(g(t)) − �(g(τ ))] dτ ) − 1

η
= 0.

As in (C.29) we also have (recalling that ψ ∈ X2
odd) that

lim
η→0+

16π3
∑
k �=0

k4 min{1, k4η2} ‖ψk‖2L2
1

|Q′ |
(D)

= 0,

lim
η→0+

16π3
∑
k �=0

min{1, k4η2} ‖(KT g(t))k‖2L2
1

|Q′ |
(D)

= 0.

Hence, (C.43) yields η−1‖g(t + η) − g(t) − η d(t)‖X0 = o(1) as η → 0+, which
means that g is differentiable at t and g′(t) = d(t).

To show (e), since g(t) ∈ X2
odd, (B.44) and (C.6) imply that �(g(t)) =

(Lg(t), g(t))X0 . Hence, by Corollary B.19, one has for η > 0 small enough:

�(g(t + η)) − �(g(t)) = (Lg(t + η), g(t + η))X0 − (Lg(t), g(t))X0

= (Lg(t + η) − Lg(t), g(t + η))X0 + (Lg(t), g(t + η) − g(t))X0

= (g(t + η) − g(t), Lg(t + η))X0 + (Lg(t), g(t + η) − g(t))X0

= (g(t + η) − g(t) − ηg′(t), Lg(t + η))X0 + η (g′(t), Lg(t + η))X0

+ (Lg(t), g(t + η) − g(t) − ηg′(t))X0 + η (Lg(t), g′(t))X0

= η (g′(t), Lg(t + η))X0 + η (Lg(t), g′(t))X0

+ (Lg(t), g(t + η) − g(t) − ηg′(t))X0

+ (g(t + η) − g(t) − ηg′(t), Lg(t + η))X0 . (C.44)

From (B.18) and (B.42), we deduce

‖Lg(t + η) − Lg(t)‖X0 ≤ ‖T 2g(t + η) − T 2g(t)‖X0 + ‖KT g(t + η) − KT g(t)‖X0

≤ �2
1 ‖g(t + η) − g(t)‖X2 + CKT ‖g(t + η) − g(t)‖X0
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≤ (�2
1 + CKT ) ‖g(t + η) − g(t)‖X2 .

Thus limη→0+ Lg(t + η) = Lg(t) in X0 by (c). Furthermore, from (d) we know that

η−1‖g(t + η) − g(t) − ηg′(t)‖X0 → 0, η → 0+.

As a consequence, (C.44) together with (C.11) yields

lim
η→0+

�(g(t + η)) − �(g(t))

η
= (g′(t), Lg(t))X0 + (Lg(t), g′(t))X0

= 2 (Lg(t),−Lg(t) + �(g(t)) g(t))X0

= −2 (‖Lg(t)‖2X0 − �(g(t))2).

Finally, we turn to the proof of (f) so that ‖ψ‖X0 = 1 is added as a hypothesis.
Denote ϕ(t) = ‖g(t)‖2X0 . Then ϕ(0) = 1, and moreover by (d):

ϕ′(t) = 2 (g(t), g′(t))X0

= 2
[

− (g(t), Lg(t))X0 + �(g(t)) (g(t), g(t))X0

]

= 2�(g(t)) (ϕ(t) − 1).

Therefore ϕ(t) = 1 for t ∈ J due to uniqueness, and in particular (g(t), g′(t))X0 =
1
2 ϕ′(t) = 0 for t ∈]0, a[. Furthermore,

‖g′(t)‖2X0 = ‖ − Lg(t) + �(g(t))g(t)‖2X0

= ‖Lg(t)‖2X0 − 2�(g(t)) (Lg(t), g(t))X0 + �(g(t))2 ‖g(t)‖2X0

= ‖Lg(t)‖2X0 − �(g(t))2,

and (C.12) is obtained from (e) upon integration. Lastly, LemmaC.10 and ‖g(t)‖X0 =
1 imply that �(g(t)) ≥ λ∗ for t ∈ J . �

Theorem C.4 Let ψ ∈ X2
odd be such that ‖ψ‖X0 = 1 and �(ψ) ≤ λ∗ + ε∗. Then

there exists a continuous solution g : [0,∞[→ X1
odd of (C.7) that has all the addi-

tional properties as listed in Corollary C.3(a)–(f), where (a) and (b) are valid on
every finite time interval [0, a].
Proof Denote

T = sup
{
a > 0 : there exists a solution g ∈ C([0, a], X1

odd) of (C.7)

such that �(g(t)) ≤ λ∗ + 2ε∗ for t ∈ [0, a]
}
.

By Lemma C.2 and Corollary C.3 one has {. . .} �= ∅, and hence T > 0. Let g, h ∈
C([0, a], X1

odd) be two solutions of (C.7) that are defined on a common time interval
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[0, a] such that �(g(t)) ≤ λ∗ + 2ε∗ and �(h(t)) ≤ λ∗ + 2ε∗ for all t ∈ [0, a]. Also
‖g‖∞,1 < ∞ and ‖h‖∞,1 < ∞, where ‖g‖∞,1 = max {‖g(t)‖X1 : t ∈ [0, a]}. Hence
for t ∈ [0, a] one deduces from Lemma C.18 and (C.75) for α = 1 that

‖g(t) − h(t)‖X1

=
∥∥∥∥W(t, 0; g)ψ +

∫ t

0
W(t, s; g)KT g(s) ds − W(t, 0; h)ψ −

∫ t

0
W(t, s; h)KT h(s) ds

∥∥∥∥
X1

≤ ‖(W(t, 0; g) − W(t, 0; h))ψ‖X1 +
∥∥∥∥

∫ t

0
[W(t, s; g) − W(t, s; h)]KT h(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t

0
W(t, s; g)KT (g(s) − h(s)) ds

∥∥∥∥
X1

≤ 2	(t; g, h) exp(	(t; g, h)) (1 + e2ε∗t ) ‖ψ‖X1

+ 2

ε
1/2∗

	(t; g, h) exp(	(t; g, h)) (1 + e2ε∗t )
( ∫ t

0
‖KT h(s)‖2

X0 ds

)1/2

+ 2

ε
1/2∗

(1 + e2ε∗t )
( ∫ t

0
‖KT (g(s) − h(s))‖2

X0 ds

)1/2
,

where

	(t; g, h) = 2C�(‖g‖∞,1 + ‖h‖∞,1)

∫ t

0
‖g(τ ) − h(τ )‖X1 dτ ≤ C

∫ t

0
‖g(τ ) − h(τ )‖X1 dτ ≤ C,

(C.45)

with constants denoted byC > 0 being allowed to depend uponC�,CKT , ε∗, ‖ψ‖X1 ,
‖g‖∞,1, ‖h‖∞,1 and a < ∞. Thus, it follows from (C.45) and (B.42) that

‖g(t) − h(t)‖X1 ≤ C
∫ t

0
‖g(τ ) − h(τ )‖X1 dτ + C

( ∫ t

0
‖g(s) − h(s)‖2X0 ds

)1/2

.

Squaring this relation, one obtains by using Hölder’s inequality that

‖g(t) − h(t)‖2X1 ≤ C

( ∫ t

0
‖g(τ ) − h(τ )‖X1 dτ

)2

+ C
∫ t

0
‖g(s) − h(s)‖2X1 ds

≤ C
∫ t

0
‖g(s) − h(s)‖2X1 ds.

As a consequence, Gronwall’s inequality yields g(t) = h(t) for t ∈ [0, a]. From this
uniqueness, one obtains a maximal and continuous solution g : [0, T [→ X1

odd. Since
the arguments from Corollary C.3 can be applied on any compact subinterval [0, a]
of [0, T [, we even know that g(t) ∈ X2

odd and ‖g(t)‖X0 = 1 for t ∈ [0, T [, and in
addition t �→ �(g(t)) is monotone decreasing on [0, T [; in particular, this implies
that �(g(t)) ≤ �(g(0)) = �(ψ) ≤ λ∗ + ε∗ for t ∈ [0, T [.
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Suppose now that T < ∞. First we are going to show that in this case ψ∗ =
limt→T g(t)does exist in X1

odd. Let (t j ) ⊂ [0, T [be a sequence such that lim j→∞ t j =
T . W.l.o.g. we consider ti and t j such that ti > t j ≥ T/2. Then for δ > 0 small by
(C.7), (C.85), (C.78), (C.79), (B.42) and (C.85):

‖g(ti ) − g(t j )‖X1 ≤ ‖(W(ti , 0) − W(t j , 0))ψ‖X1 +
∥∥∥∥

∫ ti

t j
W(ti , s)KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t j−δ

0
(W(ti , s) − W(t j , s))KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t j

t j−δ
W(ti , s)KT g(s) ds

∥∥∥∥
X1

+
∥∥∥∥

∫ t j

t j−δ
W(t j , s)KT g(s) ds

∥∥∥∥
X1

≤ 2 (�2
1 + 1)

[ 1

ε∗t j
√
ti − t j + exp(2ε∗t j ) (ti − t j )

]
‖ψ‖X0

+ 2

ε
1/2∗

(1 + e2ε∗(ti−t j ))

( ∫ ti

t j
‖KT g(s)‖2

X0 ds

)1/2

+
∫ t j−δ

0
‖(W(ti , s) − W(t j , s))KT g(s)‖X1 ds

+ 4

ε
1/2∗

(1 + e2ε∗(ti−t j+δ)
)

( ∫ t j

t j−δ
‖KT g(s)‖2

X0 ds

)1/2

≤ 4 (�2
1 + 1)

[ 1

ε∗T
√
ti − t j + e2ε∗T (ti − t j )

]
‖ψ‖X0

+ 2

ε
1/2∗

(1 + e2ε∗T )CKT

(∫ ti

t j
‖g(s)‖2

X0 ds

)1/2

+ 2 (�2
1 + 1)CKT

∫ t j−δ

0

[ 1

ε∗(t j − s)

√
ti − t j

+ exp(2ε∗(t j − s)) (ti − t j )
]
‖g(s)‖X0 ds

+ 4

ε
1/2∗

(1 + e2ε∗(T+1))CKT

(∫ t j

t j−δ
‖g(s)‖2

X0 ds

)1/2

= 4 (�2
1 + 1)

[ 1

ε∗T
√
ti − t j + e2ε∗T (ti − t j )

]
‖ψ‖X0

+ 2

ε
1/2∗

(1 + e2ε∗T )CKT
√
ti − t j + 4

ε
1/2∗

(1 + e2ε∗(T+1))CKT
√

δ

+ 2 (�2
1 + 1)CKT

∫ t j−δ

0

[ 1

ε∗(t j − s)

√
ti − t j

+ exp(2ε∗(t j − s)) (ti − t j )
]
ds

≤ 4 (�2
1 + 1)

[ 1

ε∗T
√
ti − t j + e2ε∗T (ti − t j )

]
‖ψ‖X0

+ 4

ε
1/2∗

(1 + e2ε∗(T+1))CKT (
√
ti − t j + √

δ)

+ 2 (�2
1 + 1)CKT

[
ln

( T

δ

) √
ti − t j + 1

2ε∗
e2ε∗T (ti − t j )

]
. (C.46)
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So if we set for instance δ = √
ti − t j , this estimate proves that ψ∗ = limt→T g(t)

exists in X1
odd, and the function

g∗ : [0, T ] → X1
odd, g∗(t) =

{
g(t) : t ∈ [0, T [
ψ∗ : t = T

,

is continuous. Since � : X1
odd → R is continuous by Lemma C.9, one has

�(ψ∗) = lim
t→T

�(g(t)) ≤ λ∗ + ε∗.

Similarly, we also find that ‖ψ∗‖X0 = limt→T ‖g(t)‖X0 = 1. The estimate which
leads to (C.46) also yields that

‖g(t) − g(s)‖X1 ≤ 4 (�2
1 + 1)

[ 1

ε∗T
√
t − s + e2ε∗T (t − s)

]
‖ψ‖X0

+ 4

ε
1/2
∗

(1 + e2ε∗(T+1))CKT (
√
t − s + √

δ)

+ 2 (�2
1 + 1)CKT

[
ln

(T
δ

) √
t − s + 1

2ε∗
e2ε∗T (t − s)

]

for t, s ∈ [0, T [, t > s ≥ T/2. If δ = √
t − s ≤ 1, then −x ln x3/2 ≤ 3

2e for x ∈
[0, 1] shows that

‖g(t) − g(s)‖X1 ≤ Cδ + C
√

δ + C ln
(T

δ

)
δ

≤ Cδ + C
√

δ + Cδ1/3

≤ C∗δ1/3

= C∗(t − s)1/6,

where C∗ > 0 depend upon �1, CKT , ε∗, T , ‖ψ‖X0 . On the other hand, if δ =√
t − s ≥ 1, then

‖g(t) − g(s)‖X1 ≤ 2 ‖g∗‖∞,1 ≤ 2 ‖g∗‖∞,1 (t − s)1/6

for ‖g∗‖∞,1 = max {‖g∗(t)‖X1 : t ∈ [0, T ]} < ∞. In summary, we have verified that

‖g(t) − g(s)‖X1 ≤ C∗∗(t − s)1/6, C∗∗ = C∗ + 2 ‖g∗‖∞,1, (C.47)

for t, s ∈ [0, T ], t > s ≥ T/2; note that is was not possible to derive this estimate
directly from Corollary C.3(a), since a bound on ‖g(t)‖X1 for t ∈ [0, a] enters the
constants C1(g, a) and C2(g, a), and a priori we do not know that sup {‖g(t)‖X1 :
t ∈ [0, T [} < ∞. From (C.47) it follows that ψ∗ ∈ X2

odd: by (C.7), (C.68), (C.81),
(C.76) for A = CKTC∗∗, γ = 1/6, α = 2 and (C.77) one has
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‖ψ∗‖X2 ≤ ‖W(T, 0)ψ‖X2 +
∥∥∥∥

∫ T/2

0
W(T, s)KT g(s) ds

∥∥∥∥
X2

+
∥∥∥∥

∫ T

T/2
W(T, s)KT (g(s) − ψ∗) ds

∥∥∥∥
X2

+
∥∥∥∥
(∫ T

T/2
W(T, s) ds

)
KTψ∗

∥∥∥∥
X2

≤ e2ε∗T ‖ψ‖X2 + 4

ε∗
( 1√

T
+ e2ε∗T

)( ∫ T/2

0
‖KT g(s)‖2

X0 ds

)1/2

+ 4CKTC∗∗
ε∗

(T/2)1/6 + CKTC∗∗
ε
1/2∗

eε∗T (T/2)2/3

+ 1

ε∗
(2 + eε∗T ) ‖KTψ∗‖X0

< ∞ ;

recall that ‖ψ∗‖X0 = 1 and observe
∫ T/2
0 ‖KT g(s)‖2X0 ds ≤ C2

KT
∫ T/2
0 ‖g(s)‖2X0

ds = C2
KT (T/2). Therefore, we have shown that in fact ψ∗ ∈ X2

odd is verified.
Now consider the evolution equation

h(t) = W(T + t, T )ψ∗ +
∫ t

0
W(T + t, T + s)KT h(s) ds. (C.48)

Owing to ψ∗ ∈ X2
odd and �(ψ∗) ≤ λ∗ + ε∗, a fixed point argument analogous to the

proof of Lemma C.2 can be employed to show that there is δ > 0 and a continuous
solution h : [0, δ] → X1

odd of (C.48) such that �(h(t)) ≤ λ∗ + 2ε∗ for t ∈ [0, δ].
Define

g̃ : [0, T + δ] → X1
odd, g̃(t) =

{
g∗(t) : t ∈ [0, T ]

h(t − T ) : t ∈]T, T + δ] .

ThenW(T, T ) = id implies that g̃ is continuous, and furthermore �(g̃(t)) ≤ λ∗ +
2ε∗ for t ∈ [0, T + δ]. If t ∈ [0, T [, then

g̃(t) = g(t) = W(t, 0)ψ +
∫ t

0
W(t, s)KT g(s) ds = W(t, 0)ψ +

∫ t

0
W(t, s)KT g̃(s) ds

by (C.7) for g. On the other hand, if t ∈]T, T + δ], then owing to (C.7) at t = T and
(C.3):

g̃(t) = h(t − T )

= W(t, T )ψ∗ +
∫ t−T

0
W(t, T + s)KT h(s) ds

= W(t, T )

[
W(T, 0)ψ +

∫ T

0
W(T, s)KT g(s) ds

]
+

∫ t

T
W(t, τ )KT h(τ − T ) dτ

= W(t, 0)ψ +
∫ T

0
W(t, s)KT g(s) ds +

∫ t

T
W(t, τ )KT g̃(τ ) dτ

= W(t, 0)ψ +
∫ t

0
W(t, s)KT g̃(s) ds.
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This proves that in fact g̃ is a solution of (C.7) on [0, T + δ], which however con-
tradicts the definition of T . Therefore, we must have T = ∞ and the claims follow.

�

C.4 Compactness

The next result is well-known in principle; see Remark B.2(a) for the definition of
the space L2

sph, 1
|Q′ |

(K ) = X0.

Lemma C.5 The linear operator

K̃ : L2
sph, 1

|Q′ |
(K ) → L2

sph, 1
|Q′ |

(K ), K̃g = |Q′(eQ)|1/2 pr U ′
g(r),

is compact. Furthermore, |Q′(eQ)|1/2K̃g = Kg for K from (1.15) and (Kg)k =
|Q′(eQ)|1/2(K̃g)k for the Fourier coefficients.

Proof We closely follow [48, Lemma 2.2]. Let (g j ) ⊂ L2
sph, 1

|Q′ |
(K ) be bounded.

The associated densities ρg j have compact support supp ρg j ⊂ {x ∈ R
3 : |x | ≤ rQ}.

Furthermore, if we denote by maxK |v| < ∞ the maximal value of |v| for some
(x, v) ∈ K , then using Hölder’s inequality, (Q3) and e ∈ [UQ(0), e0]:

|ρg j (x)| =
∣∣∣∣
∫
maxK |v|

g j (x, v) dv

∣∣∣∣

≤
(∫

maxK |v|
|Q′(eQ)| dv

)1/2( ∫
R3

1

|Q′(eQ)| |g j (x, v)|2 dv

)1/2

≤ C(max
K

|v|)3/2 sup {|Q′(e)| : e ∈ [UQ(0), e0]}1/2
(∫

maxK |v|
1

|Q′(eQ)| |g j (x, v)|2 dv

)1/2

≤ C

(∫
maxK |v|

1

|Q′(eQ)| |g j (x, v)|2 dv

)1/2
.

Hence, we obtain

∫
R3

|ρg j (x)|2 dx ≤ C
∫∫

K

1

|Q′(eQ)| |g j (x, v)|2 dx dv = C‖g j‖2L2
sph, 1

|Q′ |
(K )

≤ C,

(C.49)
independently of j . Thus, (ρg j ) ⊂ L2(R3) is bounded, and therefore also

‖∇(∇Ugj )‖L2(R3)
≤ C‖∇(∇�−1ρg j )‖L2(R3)

≤ C‖ρg j ‖L2(R3)
≤ C.

In addition, by the Hardy-Littlewood-Sobolev inequality, we have
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‖∇Ugj ‖L2(R3)
≤ C‖∇�−1ρg j ‖L2(R3)

≤ C‖ρg j ‖L6/5(R3)
≤ C‖ρg j ‖L2(R3)

≤ C,

(C.50)
using (C.49) and the compact support of the ρg j . Accordingly, we have shown that
(∇Ugj ) ⊂ H 1(R3) is bounded, which means in particular that the sequence has a
convergent subsequence in any L2(BR(0)), R > 0, where BR(0) = {x ∈ R

3 : |x | <

R}. Next, if |x | ≥ 2rQ and |y − x | ≤ rQ , then |y| ≥ |x | − rQ ≥ |x |/2. From (1.14),
we find that for |x | ≥ 2rQ :

|∇Ugj (x)| ≤
∫

|y−x |≤rQ

|ρg j (y − x)|
|y|2 dy ≤ 4

|x |2 ‖ρg j ‖L1(R3)
≤ C

|x |2 .

Since
∫
|x |≥R

dx
|x |4 ≤ CR−1, due to the local compactness it is now straightforward to

prove that (∇Ugj ) ⊂ L2(R3) has a strong limit. This yields

‖K̃g j − K̃gk‖2L2
sph, 1

|Q′ |
(K )

=
∫∫

K

p2r |U ′
g j

(r) −U ′
gk (r)|2 dx dv

≤ (max
K

|v|)5
∫
R3

|∇Ugj (x) − ∇Ugk (x)|2 dx
→ 0, j, k → ∞,

which shows that (K̃g j ) ⊂ L2
sph, 1

|Q′ |
(K ) has a strongly convergent subsequence.

Next, K̃ is a bounded operator, since

‖K̃g‖2L2
sph, 1

|Q′ |
(K ) =

∫∫

K

p2r |U ′
g(r)|2 dx dv

≤ C(max
K

|v|)5 ‖∇Ug‖2L2(R3)
≤ C‖ρg‖2L2(R3)

≤ C‖g‖2L2
sph, 1

|Q′ |
(K )

,

cf. (C.50) and (C.49). The relation |Q′(eQ)|1/2K̃g = Kg is obvious and for
(Kg)k = |Q′(eQ)|1/2(K̃g)k for k ∈ Z it suffices to remark that e = eQ is independent
of θ. �

Corollary C.6 The linear operator

K : L2
sph, 1

|Q′ |
(K ) → L2

sph, 1
|Q′ |

(K ), Kg = |Q′(eQ)| pr U ′
g(r),

is compact.

Proof Since eQ ∈ [e0,UQ(0)], we have |Q′(eQ)| ≤ C . Due to Lemma C.5 we there-
fore obtain |Kg| = |Q′(eQ)|1/2|K̃g| ≤ C1/2|K̃g|, which implies that K is bounded
and compact. �
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Lemma C.7 Suppose that λ∗ + 3ε∗ ≤ δ21 is satisfied. Let (ψ j ) ⊂ X2
odd and (t j ) ⊂

]0,∞[ be sequences such that ‖ψ j‖X0 = 1 and �(ψ j ) ≤ λ∗ + ε∗ for j ∈ N, and
furthermore t j → ∞ as j → ∞. Denote by g j the solution of (C.7) with initial data
g j (0) = ψ j . Then

{g j (t j ) : j ∈ N} ⊂ X0

is relatively compact.

Proof Owing to Theorem C.4 one has ‖g j (t)‖X0 = 1 for all j ∈ N and t ∈ [0,∞[.
Moreover,

λ∗ ≤ �(g j (t)) ≤ �(g j (0)) = �(ψ j ) ≤ λ∗ + ε∗ (C.51)

for j ∈ N and t ∈ [0,∞[. Therefore by (C.6), and also using (B.42),

‖T g j (t)‖2X0 = �(g j (t)) + (KT g j (t), g j (t))X0

≤ λ∗ + ε∗ + ‖KT g j (t)‖X0 ‖g j (t)‖X0

≤ λ∗ + ε∗ + CKT ,

which says that {T g j (t) : j ∈ N, t ∈ [0,∞[} ⊂ X0 is bounded. Hence, according to
Lemma C.5, the set

{K̃T g j (t) : j ∈ N, t ∈ [0,∞[} ⊂ X0 = L2
sph, 1

|Q′ |
(K )

is relatively compact. By (C.7),

g j (t j ) = W(t j , 0)ψ j +
∫ t j

0
W(t j , s)KT g j (s) ds, j ∈ N.

For the initial data terms, (C.72) yields

‖W(t j , 0)ψ j‖2X0 = 16π3
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |Wk(t j , 0)(I, �)(ψ j )k(I, �)|2

≤ 16π3
∑
k �=0

exp(−2ε∗k2t j )
∫∫

D

d I d� �
1

|Q′(e)| |(ψ j )k(I, �)|2

≤ 16π3 exp(−2ε∗t j )
∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| |(ψ j )k(I, �)|2

= exp(−2ε∗t j ) ‖ψ j‖2X0 → 0, j → ∞.

Hence, it suffices to establish that

B =
{∫ t j

0
W(t j , s)KT g j (s) ds : j ∈ N

}
⊂ X0
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is relatively compact, where W(t j , s) = W(t j , s; g j ). For this we are going to use
Remark B.2(d) and we introduce

Sj (N ) = 16π3
∑
|k|≥N

∥∥∥∥
∫ t j

0
Wk(t j , s) (KT g j (s))k ds

∥∥∥∥
2

L2
1

|Q′ |
(D)

, j, N ∈ N.

Then (C.72), Lemma C.13, (B.42) and ‖g j (s)‖2X0 = 1 lead to

Sj (N ) = 16π3
∑
|k|≥N

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t j

0
Wk(t j , s)(I, �) (KT g j (s))k(I, �) ds

∣∣∣∣
2

≤ 16π3

ε∗

∑
|k|≥N

1

k2

∫ t j

0
ds e−ε∗k2(t j−s) ‖(KT g j (s))k‖2L2

1
|Q′ |

(D)

≤ 1

ε∗

∑
|k|≥N

1

k2

∫ t j

0
ds e−ε∗k2(t j−s) ‖KT g j (s)‖2X0

≤ 1

ε∗
C2
KT

∑
|k|≥N

1

k2

∫ t j

0
e−ε∗k2(t j−s) ds

≤ 1

ε2∗
C2
KT

∑
|k|≥N

1

k4
.

Taking N = 1 shows that

sup
j∈N

∥∥∥∥
∫ t j

0
W(t j , s)KT g j (s) ds

∥∥∥∥
2

X0

= sup
j∈N

Sj (1) < ∞,

so that B ⊂ X0 is bounded. In addition,

sup
j∈N

∑
|k|≥N

∥∥∥∥
∫ t j

0
Wk(t j , s) (KT g j (s))k ds

∥∥∥∥
2

L2
1

|Q′ |
(D)

≤ 1

16π3ε2∗
C2
KT

∑
|k|≥N

1

k4

will be smaller than ε2, if N = N (ε) is taken sufficiently large. It remains to validate
(iii) from Remark B.2(d), i.e., the fact that each

Bk =
{ ∫ t j

0
Wk(t j , s) (KT g j (s))k ds : j ∈ N

}
⊂ L2

1
|Q′ |

(D)

is relatively compact. Since (KT g j (s))k = |Q′(eQ)|1/2(K̃T g j (s))k by Lemma C.5,
this is equivalent to the statement that each
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B̃k =
{∫ t j

0
Wk(t j , s) (K̃T g j (s))k ds : j ∈ N

}
⊂ L2(D)

is relatively compact. As every projection πk : X0 → L2
1

|Q′ |
(D), πkg = gk , is contin-

uous, the above discussion implies that

C̃k = {(K̃T g j (t))k : j ∈ N, t ∈ [0,∞[} ⊂ L2
1

|Q′ |
(D)

is relatively compact. Due to (Q3) and e ∈ [UQ(0), e0], we have

‖φ‖2L2(D) =
∫∫

D

d I d� �
|Q′(e)|
|Q′(e)| |φ(I, �)|2

≤ sup {|Q′(e)| : e ∈ [UQ(0), e0]}1/2
∫∫

D

d I d� �
1

|Q′(e)| |φ(I, �)|2

≤ C‖φ‖2L2
1

|Q′ |
(D)

.

In other words, the identity map I : L2
1

|Q′ |
(D) → L2(D) is continuous, which in turn

yields that also

C̃k = {(K̃T g j (t))k : j ∈ N, t ∈ [0,∞[} ⊂ L2(D) (C.52)

is relatively compact. Next we write

Wk(t, s)(I, �) = exp
(

−
∫ t

s
[k2ω2

1(I, �) − �(g j (τ ))] dτ
)

= exp
(

−
∫ t

s
[δ21 − ε∗ − �(g j (τ ))] dτ

)
e−(t−s)ϕ(I,�)

for ϕ(I, �) = k2ω2
1(I, �) + ε∗ − δ21; then ε∗ ≤ ϕ(I, �) ≤ k2�2

1 + ε∗ for (I, �) ∈ D.
Consider the probability measure

dμ j = α j 1[0,t j ](s) e− ∫ t j
s [δ21−ε∗−�(g j (τ ))] dτ ds, α j =

( ∫ t j

0
e− ∫ t j

s [δ21−ε∗−�(g j (τ ))] dτ ds

)−1

.

This is well-defined: according to (C.51) we have

δ21 ≥ δ21 − λ∗ − ε∗ ≥ δ21 − ε∗ − �(g j (τ )) ≥ δ21 − λ∗ − 2ε∗ ≥ ε∗, (C.53)
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which shows that

1

2δ21
≤ 1

δ21
(1 − e−δ21 t j ) ≤ α−1

j ≤ 1

ε∗
(1 − e−δ21 t j ) ≤ 1

ε∗
,

at least if j is sufficiently large (as we may assume). By means of dμ j we may write
the elements φ j = ∫ t j

0 Wk(t j , s) (K̃T g j (s))k ds of B̃k at a point (I, �) ∈ D as

φ j (I, �) =
∫ t j

0
e− ∫ t j

s [δ21−ε∗−�(g j (τ ))] dτ e−(t j−s)ϕ(I,�) (K̃T g j (s))k(I, �) ds

=
∫
R

α−1
j e−(t j−s)ϕ(I,�) (K̃T g j (s))k(I, �) dμ j (s).

Due to Lemma C.19, we thus have

φ j ∈ co
{
α−1

j e−(t j−s)ϕ (K̃T g j (s))k : s ∈ [0, t j ]
}

⊂ co
{
βe−σϕχ : β ∈

[ 1

2δ21
,
1

ε∗

]
,σ ∈ [0, t j ],χ ∈ C̃k

}
⊂ L2(D),

cf. (C.52). As a consequence,

B̃k ⊂ co
{
βe−σϕχ : β ∈

[ 1

2δ21
,
1

ε∗

]
,σ ∈ [0,∞[,χ ∈ C̃k

}
⊂ L2(D). (C.54)

The set S = {. . .} ⊂ L2(D) is relatively compact. To see this, let (βi ) ⊂ [ 1
2δ21

, 1
ε∗ ],

(σi ) ⊂ [0,∞[ and (χi ) ⊂ C̃k be sequences. By passing to subsequences, if necessary,
wemay assume that βi → β0 ∈ [ 1

2δ21
, 1

ε∗ ], σi → σ0 ∈ [0,∞] andχi → χ0 in L2(D),

the latter by the relative compactness of C̃k . Case 1: σ0 = ∞. Then

‖βi e
−σiϕχi‖L2(D) ≤ βi e

−σi ε∗‖χi‖L2(D) ≤ Ce−σi ε∗ → 0, i → ∞,

so that βi e−σiϕχi → 0 in L2(D). Case 2: σ0 < ∞. Here, we have

‖βi e
−σiϕχi − β0 e

−σ0ϕχ0‖L2(D) ≤ ‖e−σiϕβiχi − e−σ0ϕβiχi‖L2(D)

+‖e−σ0ϕβiχi − e−σ0ϕβ0χ0‖L2(D)

≤ sup
(I,�)∈D

|e−σiϕ(I,�) − e−σ0ϕ(I,�)| ‖βiχi‖L2(D)

+ e−σ0ε∗‖βiχi − β0χ0‖L2(D).

So if we furthermore use the bound

|e−σi y − e−σ0 y | ≤ |1 − e−(σ0−σi )y| ≤ |σi − σ0| e|σ0−σi |(k2�2
1+ε∗)
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for y ∈ [ε∗, k2�2
1 + ε∗], it follows that βi e−σiϕχi → β0 e−σ0ϕχ0 in L2(D). There-

fore S ⊂ L2(D) is relatively compact, whence so is co S, which implies by (C.54)
that also B̃k ⊂ L2(D) is relatively compact. �

Theorem C.8 Suppose that λ∗ < δ21 . Then λ∗ is an eigenvalue of L.

Proof Let ε∗ > 0 be so small that λ∗ + 3ε∗ ≤ δ21 and ε∗ ≤ min{ 14 , δ21
2 } are satisfied.

From (C.58) in Lemma C.10, we know that

λ∗ = inf {�(g) : g ∈ X00
odd, ‖g‖X0 = 1}.

Hence for every j ∈ Nwe can fix a functionψ j ∈ X00
odd ⊂ X2

odd such that ‖ψ j‖X0 = 1
and �(ψ j ) ≤ λ∗ + 1/j . Then if j ≥ 1/ε∗ one has �(ψ j ) ≤ λ∗ + 1/j ≤ λ∗ + ε∗,
which we assume for simplicity to hold for j ≥ 1. Denote by g j the solution of (C.7)
with initial data g j (0) = ψ j . According to Theorem C.4 (i.e., Corollary C.3), one
then has g j (t) ∈ X2

odd and ‖g j (t)‖X0 = 1 as well as

g′
j (t) = −Lg j (t) + �(g j (t)) g j (t) (C.55)

and

�(g j (t)) − �(g j (s)) = −2
∫ t

s
‖g′

j (τ )‖2
X0 dτ (C.56)

for j ∈ N and t, s ∈ [0,∞[, t ≥ s. Since �(g j (·)) is monotone decreasing and

�(g j (t)) ≥ λ∗‖g j (t)‖2X0 = λ∗,

the limit l j = limt→∞ �(g j (t)) does exist. Hence, (C.56) leads to

∫ ∞

0
‖g′

j (t)‖2X0 dτ = 1

2
(�(ψ j ) − l j ) < ∞

for every j ∈ N. As ]0,∞[� t �→ g j (t) ∈ X2
odd is continuous, also the derivative

]0,∞[� t �→ g′
j (t) = −Lg j (t) + �(g j (t)) g j (t) ∈ X0

odd is continuous. As a conse-
quence, there must be a time t j ≥ j such that

‖g′
j (t j )‖X0 ≤ 1

j
. (C.57)

Then t j → ∞ as j → ∞ and

λ∗ ≤ �(g j (t j )) ≤ �(g j (0)) = �(ψ j ) ≤ λ∗ + 1

j
,

which implies that lim j→∞ �(g j (t j )) = λ∗; in particular, the sequence (g j (t j )) ⊂
X0 is a minimal sequence for λ∗. Using Lemma C.7, by passing to a subsequence
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(which is not relabeled), wemay furthermore assume that g j (t j ) → ϕ∗ in X0 as j →
∞, for some functionϕ∗ ∈ X0

odd. Owing to ‖g j (t j )‖X0 = 1we also have ‖ϕ∗‖X0 = 1.
Next we take the inner product of (C.55) at t = t j with an odd function h ∈ X00 to
obtain from Corollary B.19 that

−(g j (t j ), Lh)X0 = −(Lg j (t j ), h)X0

= (g′
j (t j ), h)

X0 − �(g j (t j )) (g j (t j ), h)X0 .

Recalling (C.57) we can pass to the limit j → ∞ and it follows that

(ϕ∗, Lh)X0 = λ∗(ϕ∗, h)X0

for any h ∈ X00 that is odd. Then Lemma C.11 implies that ϕ∗ ∈ X2
odd and Lϕ∗ =

λ∗ϕ∗, which completes the proof. �

C.5 Some Technical Lemmas

Lemma C.9 There is a C� > 0 such that for g, h ∈ X1
odd we have

|�(g)−�(h)| ≤ C�

[
(‖g‖X1+‖h‖X1 ) ‖g − h‖X1+(‖g‖X0 + ‖h‖X0 ) ‖g − h‖X0

]
.

In particular,

|�(g) − �(h)| ≤ 2C�(‖g‖X1 + ‖h‖X1) ‖g − h‖X1 .

Proof By means of Lemma B.8(a) and (B.42) we estimate

|�(g) − �(h)| =
∣∣∣‖T g‖2X0 − (KT g, g)X0 − ‖T h‖2X0 + (KT h, h)X0

∣∣∣
≤ (‖T g‖X0 + ‖T h‖X0)‖T (g − h)‖X0

+ |(KT g, g − h)X0 | + |(KT (g − h), h)X0 |
≤ �2

1 (‖g‖X1 + ‖h‖X1) ‖g − h‖X1

+CKT (‖g‖X0 + ‖h‖X0) ‖g − h‖X0 .

Thus, we can define C� = �2
1 + CKT . To obtain the second bound one just has to

apply Remark B.2(b). �

Lemma C.10 Let
λ̂ = inf {�(u) : u ∈ X1

odd, ‖u‖X0 = 1}.

Then λ̂ = λ∗, and hence �(u) ≥ λ∗‖u‖2X0 for u ∈ X1
odd. Moreover,
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λ∗ = inf {�(u) : u ∈ X00
odd, ‖u‖X0 = 1}. (C.58)

Proof Let ε > 0. By definition there is a function u ∈ X2
odd such that ‖u‖X0 =

1 and (Lu, u)X0 ≤ λ∗ + ε. Using (B.44) from Lemma B.19 we get λ∗ + ε ≥
(Lu, u)X0 = �(u) ≥ λ̂, so that λ∗ ≥ λ̂. Conversely, for ε > 0 there is u ∈ X1

odd

such that ‖u‖X0 = 1 and �(u) ≤ λ̂ + ε. If we write u = ∑
k∈Z uk eikθ and define

u(N ) = ∑
|k|≤N uk eikθ as in (B.5) from Remark B.2(c), then u(N ) ∈ X00 is odd

and ‖u(N ) − u‖X1 → 0 as N → ∞. Since in particular u(N ) ∈ X2
odd, the definition

of λ∗ and (B.44) imply that �(u(N )) = (Lu(N ), u(N ))X0 ≥ λ∗‖u(N )‖2X0 . Owing to
Lemma C.9 we have �(u(N )) → �(u) as N → ∞. Thus, passing to the limit we
infer that λ̂ + ε ≥ �(u) ≥ λ∗‖u‖2X0 = λ∗ for every ε > 0. To establish (C.58), let
λ̃ = inf {�(u) : u ∈ X00

odd, ‖u‖X0 = 1}. Since X00
odd ⊂ X1

odd we have λ̃ ≥ λ∗. To ver-
ify the converse, let ε > 0. Then there is a function u ∈ X1

odd such that ‖u‖X0 = 1
as well as �(u) ≤ λ∗ + ε. Let the associated u(N ) ∈ X00

odd be defined as above. Then
δN = ‖u(N ) − u‖X1 → 0 as N → ∞ and also

‖u(N )‖2Xα = 16π3
∑

|k|≤N

(1 + k2)
α ‖uk‖2L2 1

|Q′ |
(D)

≤ 16π3
∑
k∈Z

(1 + k2)
α ‖uk‖2L2 1

|Q′ |
(D)

= ‖u‖2Xα

(C.59)

for α = 0, 1. Next let A > 0. Then Au(N ) ∈ X00
odd, and from Lemma C.9 together

with the preceding estimate we get

|�(Au(N )) − �(u)| ≤ |�(Au(N )) − �(u(N ))| + |�(u(N )) − �(u)|
≤ 2C�(A + 1)|A − 1|‖u(N )‖2X1

+ 2C�(‖u(N )‖X1 + ‖u‖X1)‖u(N ) − u‖X1

≤ 2C�(A + 1)|A − 1| ‖u‖2X1 + 4C�‖u‖X1δN . (C.60)

Let

η = min
{1
2
,

ε

12C� ‖u‖2X1

}
.

Owing to ‖u‖X0 = 1 and u(N ) → u in X1 as N → ∞, we may fix an N ∈ N large
enough such that both conditions

δN ≤ ε

4C�‖u‖X1

and ‖u(N )‖X0 ≥ 1 − η

are verified; then1 − η ≤ ‖u(N )‖X0 ≤ 1holds, by (C.59).Nowwe take A = ‖u(N )‖−1
X0

to obtain Au(N ) ∈ X00
odd and ‖Au(N )‖X0 = 1. In addition,

|A − 1| = A |1 − ‖u(N )‖X0 | ≤ Aη ≤ 2η,
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and also A + 1 ≤ 3. Going back to (C.60), it follows that

|�(Au(N )) − �(u)| ≤ 2C�(A + 1)|A − 1| ‖u‖2X1 + 4C�‖u‖X1δN

≤ 12C� ‖u‖2X1η + 4C�‖u‖X1δN

≤ 2ε.

By definition, this shows that

λ̃ ≤ �(Au(N )) ≤ �(u) + |�(Au(N )) − �(u)| ≤ �(u) + 2ε ≤ λ∗ + 3ε

is verified for all ε > 0. Hence λ̃ ≤ λ∗, and consequently λ̃ = λ∗. �

The next result says that a weak solution to Lu = λu is also a strong solution.

Lemma C.11 Let λ > 0 and u ∈ X0
odd be such that (u, Lh)X0 = λ(u, h)X0 for all

h ∈ X00 that are odd. Then u ∈ X2
odd and Lu = λu.

Proof By assumption and by Lemma B.15(b), we have

(u,−T 2h)X0 = λ(u, h)X0 + (u,KT h)X0 = λ(u, h)X0 + (KT u, h)X0 .

Therefore, (B.21) and (B.42) lead to
∣∣∣∣16π3

∑
k �=0

∫∫

D

d I d� �
1

|Q′(e)| k
2ω2

1 uk hk

∣∣∣∣
= |(u,−T 2h)X0 | ≤ λ |(u, h)X0 | + |(KT u, h)X0 | ≤ (λ + CKT ) ‖u‖X0‖h‖X0

(C.61)

for all h ∈ X00 that are odd. For fixed N ∈ N we apply this estimate to h given by
hk = k2uk for 0 ≤ |k| ≤ N andhk = 0 for |k| ≥ N + 1, i.e.,h = ∑

0<|k|≤N k2uk eikθ.
Then (C.61) implies that

16π3δ21
∑

0<|k|≤N

k4 ‖uk‖2L2
1

|Q′ |
(D)

= 16π3δ21
∑

0<|k|≤N

∫∫

D

d I d� �
1

|Q′(e)| k
4 |uk |2

≤ 16π3
∑

0<|k|≤N

∫∫

D

d I d� �
1

|Q′(e)| k
4ω2

1 |uk |2

≤ (λ + CKT ) ‖u‖X0‖h‖X0 .

On the other hand,

‖h‖2X0 = 16π3
∑
k∈Z

‖hk‖2L2
1

|Q′ |
(D)

= 16π3
∑

0<|k|≤N

k4 ‖uk‖2L2
1

|Q′ |
(D)

,

and this in turn leads to
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16π3
∑
|k|≤N

(1 + k2)
2 ‖uk‖2L2

1
|Q′ |

(D)
= 16π3

∑
0<|k|≤N

(1 + k2)
2 ‖uk‖2L2

1
|Q′ |

(D)

≤ 64π3
∑

0<|k|≤N

k4 ‖uk‖2L2
1

|Q′ |
(D)

≤ 4

δ41
(λ + CKT )2 ‖u‖2X0

for every N ∈ N. As N → ∞, it follows that u ∈ X2
odd. Hence, (Lu, h)X0 =

(u, Lh)X0 = λ(u, h)X0 for all h ∈ X00 that are odd. Since X00 ⊂ X0 is dense accord-
ing to Remark B.2(c), we deduce that Lu = λu. �

Lemma C.12 Let h : J → X1
odd be continuous and such that �(h(t)) ≤ λ∗ + 2ε∗

for t ∈ J . Denote W(t, s) = W(t, s; h) and mk(t) = mk(t)(I, �) = k2ω2
1(I, �) −

�(h(t)). Then

ε∗k2 ≤ mk(t)(I, �) ≤ �2
1k

2, k ∈ Z \ {−1, 0, 1}, t ∈ J, (C.62)

and
− 2ε∗ ≤ mk(t)(I, �) ≤ �2

1, k = ±1, t ∈ J. (C.63)

In particular,

|Wk (t, s)(I, �)| ≤ exp(−ε∗k2(t − s)), k ∈ Z \ {−1, 0, 1}, t, s ∈ J, t ≥ s, (C.64)
|Wk (t, s)(I, �)| ≤ exp(2ε∗(t − s)), k = ±1, t, s ∈ J, t ≥ s, (C.65)∫ t

τ
|Wk (t, s)(I, �)| ds ≤ 1

ε∗k2
, k ∈ Z \ {−1, 0, 1}, t, τ ∈ J, t ≥ τ , (C.66)

∫ t

τ
|Wk (t, s)(I, �)| ds ≤ 1

2ε∗
e2ε∗(t−τ ), k = ±1, t, τ ∈ J, t ≥ τ , (C.67)

‖W(t, s)g‖Xα ≤ e2ε∗(t−s)‖g‖Xα , t, s ∈ J, t ≥ s, g ∈ Xα
odd. (C.68)

Furthermore, one has

|Wk(t + η, s)(I, �) − Wk(t, s)(I, �)|
≤ (�2

1 + 1)min{1, k2η} ×
{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

,

(C.69)

and moreover

|Wk(t + η, s)(I, �) − Wk(t, s)(I, �) + ηmk(t)(I, �)Wk(t, s)(I, �)|
≤ (�2

1 + 1)2η

(∣∣∣∣
exp(− ∫ t+η

t [�(h(t)) − �(h(τ ))] dτ ) − 1

η

∣∣∣∣ + k2 min{1, k2η}
)

×
{

exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗) exp(2ε∗(t − s)) : k = ±1

(C.70)
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for t + η, t, s ∈ J , η ∈]0, 1], t ≥ s.
If we assume that even λ∗ + 3ε∗ ≤ δ21 holds, then (C.62), (C.63) and (C.64),

(C.65) can be sharpened to

ε∗k2 ≤ mk(t)(I, �) ≤ �2
1k

2, k ∈ Z \ {0}, t ∈ J, (C.71)

and

|Wk(t, s)(I, �)| ≤ exp(−ε∗k2(t − s)), k ∈ Z \ {0}, t, s ∈ J, t ≥ s. (C.72)

Proof Since δ1 = inf ω1 and λ∗ ≤ δ21 by Lemma 3.18, we have for |k| ≥ 2

mk(t)(I, �) ≥ k2δ21 − λ∗ − 2ε∗ ≥ (k2 − 1)δ21 − 2ε∗ ≥ 1

2
(k2 + 2)δ21 − 2ε∗ ≥ ε∗k2,

which yields the lower bound in (C.62). If |k| = 1, then

mk(t)(I, �) ≥ δ21 − λ∗ − 2ε∗ ≥ −2ε∗

is the best we can get without assuming that λ∗ < δ21 . If, however, λ∗ + 3ε∗ ≤ δ21 is
verified as is the case for (C.71) and (C.72), then |k| = 1 entails

mk(t)(I, �) ≥ δ21 − λ∗ − 2ε∗ ≥ ε∗

also in this case. Next, using Lemma C.10, we have in particular that �(h(t)) ≥
0. Therefore, also mk(t)(I, �) ≤ �2

1k
2 by Theorem 3.5 for all k ∈ Z \ {0}. As

Wk(t, s)(I, �) = exp(− ∫ t
s mk(τ )(I, �) dτ ), (C.64)-(C.67) are a direct consequence

of (C.62) and (C.63), and also (C.71) and (C.72) are verified. Concerning (C.68), we
have |Wk(t, s)(I, �)| ≤ exp(2ε∗(t − s)) for all k ∈ Z \ {0}. It follows that

‖W(t, s)g‖2Xα = 16π3
∑
k∈Z

(1 + k2)
α ‖(W(t, s)g)k‖2L2

1
|Q′ |

(D)

= 16π3
∑
k∈Z

(1 + k2)
α ‖Wk(t, s)gk‖2L2

1
|Q′ |

(D)

≤ 16π3e4ε∗(t−s)
∑
k∈Z

(1 + k2)
α ‖gk‖2L2

1
|Q′ |

(D)

= e4ε∗(t−s)‖g‖2Xα .

To establish (C.69), one has

|Wk (t + η, s)(I, �) − Wk (t, s)(I, �)|
=

∣∣∣∣ exp
(

−
∫ t+η

s
mk (τ )(I, �) dτ

)
− exp

(
−

∫ t

s
mk (τ )(I, �) dτ

)∣∣∣∣
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=
[
1 − exp

(
−

∫ t+η

t
mk (τ )(I, �) dτ

)]
exp

(
−

∫ t

s
mk (τ )(I, �) dτ

)

≤ min
{
1,

∫ t+η

t
mk (τ )(I, �) dτ

}
×

{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

≤ (�2
1 + 1)min{1, k2η} ×

{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

,

where we used the bound 1 − e−x ≤ min{1, x} for x ≥ 0 together with (C.62) and
(C.63). Finally, by definition,

Wk(t + η, s)(I, �) − Wk(t, s)(I, �) + ηmk(t)(I, �)Wk(t, s)(I, �)

= exp
(

−
∫ t+η

s
mk(τ )(I, �) dτ

)
− exp

(
−

∫ t

s
mk(τ )(I, �) dτ

)

+ ηmk(t)(I, �) exp
(

−
∫ t

s
mk(τ )(I, �) dτ

)

=
[
exp

(
−

∫ t+η

t
mk(τ )(I, �) dτ

)
− 1 + ηmk(t)(I, �)

]
exp

(
−

∫ t

s
mk(τ )(I, �) dτ

)

= η

[ exp
(

− ∫ t+η
t [mk(τ )(I, �) − mk(t)(I, �)] dτ

)
exp(−ηmk(t)(I, �)) − 1

η

+mk(t)(I, �)

]
Wk(t, s)(I, �)

= η
exp

(
− ∫ t+η

t [�(h(t)) − �(h(τ ))] dτ
)

− 1

η
exp(−ηmk(t)(I, �))Wk(t, s)(I, �)

+ η

[
exp(−ηmk(t)(I, �)) − 1 + ηmk(t)(I, �)

η

]
Wk(t, s)(I, �).

Thus owing to (C.62)–(C.65):

|Wk (t + η, s)(I, �) − Wk (t, s)(I, �) + ηmk (t)(I, �)Wk (t, s)(I, �)|

≤ η

∣∣∣∣
exp(− ∫ t+η

t [�(h(t)) − �(h(τ ))] dτ ) − 1

η

∣∣∣∣
×

{
exp(−ε∗k2η) exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}

exp(2ε∗η) exp(2ε∗(t − s)) : k = ±1

+ ηmk (t)(I, �) f (ηmk (t)(I, �)) ×
{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

,

(C.73)

where f (x) = e−x−1+x
x for x ≥ 0. Now f (x) = x

∫ 1
0 (1 − τ )e−τ x dτ shows that

always f (x) ≤ x
∫ 1
0 (1 − τ ) dτ = x/2. On the other hand, f ′(x) ≥ 0 and

limx→∞ f (x) = 1 also yields f (x) ≤ 1, so that 0 ≤ f (x) ≤ min{1, x}. Since mk(t)
(I, �) ≤ �2

1k
2 in all cases, it follows from (C.73) that
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|Wk(t + η, s)(I, �) − Wk(t, s)(I, �) + ηmk(t)(I, �)Wk(t, s)(I, �)|
≤ η

∣∣∣∣
exp(− ∫ t+η

t [�(h(t)) − �(h(τ ))] dτ ) − 1

η

∣∣∣∣
×

{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}

exp(2ε∗) exp(2ε∗(t − s)) : k = ±1

+�2
1 (�2

1 + 1) k2η min{1, k2η} ×
{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

,

which implies (C.70). �

Lemma C.13 Let t1, t2, t3 ∈ J be such that t1 ≤ t2 ≤ t3. In addition, let g = g(s,λ)

denote an X0
odd-valued continuous function depending upon a parameter λ (which

itself is also allowed to depend upon t1, t2, t3). Then for k ∈ Z \ {0}:
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t2

t1

exp(−ε∗k2(t3 − s)) |gk(s,λ)(I, �)| ds
]2

≤ 1

ε∗k2
eε∗k2(t2−2t3) min {1, ε∗k2(t2 − t1)}

∫ t2

t1

ds eε∗k2s ‖gk(s,λ)‖2L2
1

|Q′ |
(D)

.

Similarly, if φ = φ(s,λ) ∈ L2
1

|Q′ |
(D), then

∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t2

t1

exp(2ε∗(t3 − s)) |φ(s,λ)(I, �)| ds
]2

≤ 1

4ε∗
e4ε∗t3 (e−4ε∗t1 − e−4ε∗t2)

∫ t2

t1

‖φ(s,λ)‖2L2
1

|Q′ |
(D)

ds. (C.74)

Proof Let A = A(t1, t2, t3, k,λ) denote the expression on the left-hand side. First
we apply Minkowski’s inequality [87, p. 271]. This yields

A ≤
[ ∫ t2

t1

ds

( ∫∫

D

d I d� �
1

|Q′(e)| exp(−2ε∗k2(t3 − s)) |gk(s,λ)(I, �)|2
)1/2]2

= e−2ε∗k2t3
[ ∫ t2

t1

ds eε∗k2s ‖gk(s,λ)‖L2
1

|Q′ |
(D)

]2

.

Next we will make use of Jensen’s inequality for the convex function f (x) = x2

and the probability measure dμ = σ1[t1,t2](s) eε∗k2s ds, where σ = ε∗k2(eε∗k2t2 −
eε∗k2t1)−1. It follows that
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A = e−2ε∗k2t3 σ−2

[ ∫
dμ ‖gk(s,λ)‖L2

1
|Q′ |

(D)

]2

≤ e−2ε∗k2t3 σ−2
∫

dμ ‖gk(s,λ)‖2L2
1

|Q′ |
(D)

= 1

ε∗k2
e−2ε∗k2t3 (eε∗k2t2 − eε∗k2t1)

∫ t2

t1

ds eε∗k2s ‖gk(s,λ)‖2L2
1

|Q′ |
(D)

≤ 1

ε∗k2
eε∗k2(t2−2t3) min {1, ε∗k2(t2 − t1)}

∫ t2

t1

ds eε∗k2s ‖gk(s,λ)‖2L2
1

|Q′ |
(D)

,

using the estimate 1 − e−x ≤ x for x ≥ 0 for the last step. To establish (C.74) we
proceed as above to get

A ≤ e4ε∗t3
[ ∫ t2

t1

ds e−2ε∗s ‖φ(s,λ)‖L2
1

|Q′ |
(D)

]2

,

where A stands for the left-hand side in (C.74). It remains to apply the Hölder
inequality in s. �

The following elementary observation will be used at several places.

Remark C.14 Let γ > 0, ε∗ > 0, and t ≥ s ≥ 0. The function f (x) = xγe−ε∗(t−s)x

for x > 0 attains its maximal value
(

γ

ε∗(t − s)

)γ

e−γ ≤
(

γ

ε∗(t − s)

)γ

at x = γ
ε∗(t0−s) . ♦

Lemma C.15 Let h : J → X1
odd be continuous and such that �(h(t)) ≤ λ∗ + 2ε∗

for t ∈ J . Denote W(t, s) = W(t, s; h).

(a) If α ∈ [1, 2[, then
∥∥∥∥

∫ t

0
W(t, s)g(s) ds

∥∥∥∥
2

Xα

≤ 2α

εα∗

∫ t

0

[ 1

(t − s)α−1
+ e4ε∗t

]
‖g(s)‖2X0 ds, (C.75)

(b) if τ ∈ J and ‖g(t) − g(s)‖X0 ≤ A(t − s)γ for t, s ∈ J such that t ≥ s ≥ τ and
α < 2(γ + 1), then

∥∥∥∥
∫ t

τ

W(t, s)[g(t) − g(s)] ds
∥∥∥∥
2

Xα

≤ 2αA2

(2(γ + 1) − α)εα∗
(t − τ )2(γ+1)−α

+ 2αA2

4(2γ + 1)ε∗
e4ε∗(t−τ ) (t − τ )2γ+1,

(C.76)
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(c) in addition one has for 0 ≤ τ ≤ t
∥∥∥∥

∫ t

τ

W(t, s)g(t) ds

∥∥∥∥
X2

≤ 1

ε∗
(2 + e2ε∗(t−τ )) ‖g(t)‖X0 , (C.77)

(d) if h > 0 and t + h ∈ J , then

∥∥∥∥
∫ t+h

t
W(t + h, s)g(s) ds

∥∥∥∥
2

X1

≤ 2

ε∗
(1 + e4ε∗h)

∫ t+h

t
‖g(s)‖2X0 ds, (C.78)

(e) if h, δ > 0, t + h, t − δ ∈ J , then

∥∥∥∥
∫ t

t−δ

W(t + h, s)g(s) ds

∥∥∥∥
2

X1

≤ 2

ε∗
(1 + e4ε∗(h+δ))

∫ t

t−δ

‖g(s)‖2X0 ds, (C.79)

(f) if δ > 0 and t − δ ∈ J , then

∥∥∥∥
∫ t

t−δ

W(t, s)g(s) ds

∥∥∥∥
2

X1

≤ 2

ε∗
(1 + e4ε∗δ)

∫ t

t−δ

‖g(s)‖2X0 ds, (C.80)

(g) and moreover

∥∥∥∥
∫ t/2

0
W(t, s)g(s) ds

∥∥∥∥
X2

≤ 4

ε∗

( 1√
t

+ e2ε∗t
)( ∫ t/2

0
‖g(s)‖2X0 ds

)1/2

,

(C.81)

for t ∈ J and g : J → X0
odd continuous.

Proof We start out somewhat more generally and fix t1, t2, t3 ∈ J such that t1 ≤
t2 ≤ t3. Let g = g(s,λ) denote an X0

odd-valued continuous function depending upon
a parameter λ (which itself is also allowed to depend upon t1, t2, t3). Then by (C.62)
and (C.63):

∥∥∥∥
∫ t2

t1
W(t3, s)g(s, λ) ds

∥∥∥∥
2

Xα

= 16π3
∑
k∈Z

(1 + k2)
α

∥∥∥∥
∫ t2

t1
Wk (t3, s)gk (s, λ) ds

∥∥∥∥
2

L2 1
|Q′ |

(D)

= 16π3
∑
k∈Z

(1 + k2)
α

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣∣
∫ t2

t1
Wk (t3, s)(I, �) gk (s, λ)(I, �) ds

∣∣∣∣
2

≤ 32π3 2α
∞∑
k=2

k2α
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t2

t1
exp(−ε∗k2(t3 − s)) |gk (s, λ)(I, �)| ds

]2

+ 32π3 2α
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t2

t1
exp(2ε∗(t3 − s)) |g1(s, λ)(I, �)| ds

]2
;
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recall that g−k = −gk . Hence, from Lemma C.13, we deduce that

∥∥∥∥
∫ t2

t1
W(t3, s)g(s, λ) ds

∥∥∥∥
2

Xα
≤ 32π3 2α

ε∗

∞∑
k=2

k2α−2 eε∗k2(t2−2t3) min {1, ε∗k2(t2 − t1)}

×
∫ t2

t1
ds eε∗k2s ‖gk (s, λ)‖2

L2 1
|Q′ |

(D)

+ 32π3 2α

4ε∗
e4ε∗t3 (e−4ε∗t1 − e−4ε∗t2 )

∫ t2

t1
‖g1(s, λ)‖2

L2 1
|Q′ |

(D)
ds.

(C.82)

Now to verify (C.75), we take t1 = τ , t2 = t3 = t , g(s,λ) = g(s, t), and α ∈ [1, 2[.
Hence,

∥∥∥∥
∫ t

τ
W(t, s)g(s, t) ds

∥∥∥∥
2

Xα
≤ 32π3 2α

ε∗

∞∑
k=2

k2α−2
∫ t

τ
ds e−ε∗k2(t−s) ‖gk (s, t)‖2L2 1

|Q′ |
(D)

+ 32π3 2α

4ε∗
e4ε∗t (e−4ε∗τ − e−4ε∗t )

∫ t

τ
‖g1(s, t)‖2L2 1

|Q′ |
(D)

ds.

From Remark C.14 one has k2α−2e−ε∗k2(t−s) ≤ ( 1
ε∗(t−s) )

α−1. As a consequence,

∥∥∥∥
∫ t

τ
W(t, s)g(s, t) ds

∥∥∥∥
2

Xα
≤ 32π3 2α

εα∗

∞∑
k=2

∫ t

τ
ds

1

(t − s)α−1 ‖gk (s, t)‖2L2 1
|Q′ |

(D)

+ 32π3 2α

4ε∗
e4ε∗t (e−4ε∗τ − e−4ε∗t )

∫ t

τ
‖g1(s, t)‖2L2 1

|Q′ |
(D)

ds

≤ 2α

εα∗

∫ t

τ
ds

1

(t − s)α−1 ‖g(s, t)‖2
X0

+ 2α

4ε∗
e4ε∗t (e−4ε∗τ − e−4ε∗t )

∫ t

τ
‖g(s, t)‖2

X0 ds. (C.83)

Thus if we take τ = 0 and g(s, t) = g(s), then we obtain (C.75) for α ∈ [1, 2[. To
prove (C.76), let g(s, t) = g(t) − g(s). Then by assumption

‖g(s, t)‖X0 = ‖g(t) − g(s)‖X0 ≤ A(t − s)γ, t ≥ s ≥ τ ,

and accordingly (C.83) leads to

∥∥∥∥
∫ t

τ

W(t, s)g(s, t) ds

∥∥∥∥
2

Xα

≤ 2αA2

εα∗

∫ t

τ

(t − s)2γ−α+1 ds

+ 2αA2

4ε∗
e4ε∗t (e−4ε∗τ − e−4ε∗t )

∫ t

τ

(t − s)2γ ds
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≤ 2αA2

(2(γ + 1) − α)εα∗
(t − τ )2(γ+1)−α

+ 2αA2

4(2γ + 1)ε∗
e4ε∗(t−τ ) (t − τ )2γ+1.

Next we turn to (C.77), where the argument is similar, but more direct. Here by
(C.66) and (C.67):

∥∥∥∥
∫ t

τ

W(t, s)g(t) ds

∥∥∥∥
2

X2

= 16π3
∑
k∈Z

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)| |gk(t)(I, �)|2
∣∣∣∣
∫ t

τ

Wk(t, s)(I, �) ds

∣∣∣∣
2

≤ 32π3

( ∞∑
k=2

(1 + k2)2
∫∫

D

d I d� �
1

|Q′(e)| |gk(t)(I, �)|2 1

ε2∗k4

+ 4
∫∫

D

d I d� �
1

|Q′(e)| |g1(t)(I, �)|2 1

4ε2∗
e4ε∗(t−τ )

)

≤ 1

ε2∗
(4 + e4ε∗(t−τ )) ‖g(t)‖2X0 .

What concerns (C.78), due to (C.82) with t1 = t , t2 = t + h, t3 = t + h, g(s,λ) =
g(s), and α = 1 it follows that

∥∥∥∥
∫ t+h

t
W(t + h, s)g(s) ds

∥∥∥∥
2

X1
≤ 64π3

ε∗

∞∑
k=2

∫ t+h

t
ds e−ε∗k2(t+h−s) ‖gk (s)‖2L2 1

|Q′ |
(D)

+ 64π3

4ε∗
e4ε∗(t+h) (e−4ε∗t − e−4ε∗(t+h))

∫ t+h

t
‖g1(s)‖2L2 1

|Q′ |
(D)

ds

≤ 64π3

ε∗

∞∑
k=2

∫ t+h

t
ds ‖gk (s)‖2L2 1

|Q′ |
(D)

+ 64π3

4ε∗
e4ε∗h

∫ t+h

t
‖g1(s)‖2L2 1

|Q′ |
(D)

ds

≤ 2

ε∗
(1 + e4ε∗h)

∫ t+h

t
‖g(s)‖2

X0 ds.

To establish (C.79), one takes t1 = t − δ, t2 = t , t3 = t + h, g(s,λ) = g(s), and
α = 1 in (C.82). This yields
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∥∥∥∥
∫ t

t−δ

W(t + h, s)g(s) ds

∥∥∥∥
2

X1

≤ 64π3

ε∗

∞∑
k=2

∫ t

t−δ

ds e−ε∗k2(t+2h−s) ‖gk(s)‖2L2
1

|Q′ |
(D)

+ 64π3

4ε∗
e4ε∗h (e4ε∗δ − 1)

∫ t

t−δ

‖g1(s)‖2L2
1

|Q′ |
(D)

ds

≤ 2

ε∗
(1 + e4ε∗(h+δ))

∫ t

t−δ

‖g(s)‖2X0 ds.

To show (C.80), we specialize (C.82) to t1 = t − δ, t2 = t3 = t , g(s,λ) = g(s), and
α = 1. In this way, we obtain

∥∥∥∥
∫ t

t−δ

W(t, s)g(s) ds

∥∥∥∥
2

X1

≤ 64π3

ε∗

∞∑
k=2

∫ t

t−δ

ds e−ε∗k2(t−s) ‖gk(s)‖2L2
1

|Q′ |
(D)

+ 64π3

4ε∗
(e4ε∗δ − 1)

∫ t

t−δ

‖g1(s)‖2L2
1

|Q′ |
(D)

ds

≤ 2

ε∗
(1 + e4ε∗δ)

∫ t

t−δ

‖g(s)‖2X0 ds.

Finally to verify (C.81), we use (C.82) with t1 = 0, t2 = t/2, t3 = t , g(s,λ) = g(s),
and α = 2. It follows that

∥∥∥∥
∫ t/2

0
W(t, s)g(s) ds

∥∥∥∥
2

X2
≤ 128π3

ε∗

∞∑
k=2

k2 e−ε∗k2t/2
∫ t/2

0
ds e−ε∗k2(t−s)‖gk(s)‖2L2

1
|Q′|

(D)

+ 128π3

4ε∗
e4ε∗t (1 − e−4ε∗t/2)

∫ t/2

0
‖g1(s)‖2L2

1
|Q′ |

(D)
ds.

FromRemark C.14 one has k2e−ε∗k2t/2 ≤ 2
ε∗t . Hence, the claim follows and the proof

is complete. �

Lemma C.16 Let h : J → X1
odd be continuous and such that �(h(t)) ≤ λ∗ + 2ε∗

for t ∈ J . Denote W(t, s) = W(t, s; h). Then

‖(W(t, 0) − W(0, 0))g‖X1 ≤ (�2
1 + 1) (t + t2)1/2 ‖g‖X2 (C.84)

for t ∈ J and g ∈ X2
odd. In addition,

‖(W(t + h, s) − W(t, s))g‖X1 ≤ 2 (�2
1 + 1)

[
1

ε∗(t − s)

√
h + exp(2ε∗(t − s)) h

]
‖g‖X0 (C.85)

and

‖(W(t + h, s) − W(t, s))g‖X2 ≤ 2 (�2
1 + 1)

[
2

ε
3/2∗ (t − s)3/2

√
h + exp(2ε∗(t − s)) h

]
‖g‖X0

(C.86)
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for t > s, h > 0, s, t, t + h ∈ J , and g ∈ X0
odd.

Proof By definition,

‖(W(t, s) − W(τ , s))g‖2Xα

= 16π3
∑
k∈Z

(1 + k2)
α ‖(Wk (t, s) − Wk (τ , s))gk‖2L2 1

|Q′ |
(D)

= 16π3
∑
k∈Z

(1 + k2)
α

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣(Wk (t, s)(I, �) − Wk (τ , s)(I, �)) gk (I, �)

∣∣∣2.

(C.87)

Write mk(σ) = mk(σ)(I, �) = k2ω2
1(I, �) − �(h(σ)) as before. Then by (C.62) for

|k| ≥ 2:

|Wk (t, s)(I, �) − Wk (τ , s)(I, �)| = exp

(
−

∫ τ

s
mk (σ) dσ

)∣∣∣∣ exp
(

−
∫ t

τ
mk (σ) dσ

)
− 1

∣∣∣∣
≤ exp(−ε∗k2(τ − s))

[
1 − exp

(
−

∫ t

τ
mk (σ) dσ

)]
,

where we have dropped the arguments (I, �) on the right-hand side. Similarly, if
k = ±1, then (C.63) yields

|Wk(t, s)(I, �) − Wk(τ , s)(I, �)| ≤ exp(2ε∗(τ − s))

[
1 − exp

(
−

∫ t

τ
mk(σ) dσ

)]
.

Since always mk(σ) ≤ �2
1k

2, we obtain the bound

|Wk(t, s)(I, �) − Wk(τ , s)(I, �)| ≤ exp(−ε∗k2(τ − s))
[
1 − exp(−�2

1k
2(t − τ ))

]

≤ exp(−ε∗k2(τ − s)) min{1, �2
1k

2(t − τ )}, |k| ≥ 2,

where in the last step we have used that 1 − e−x ≤ x for x ≥ 0. In the same way,

|Wk(t, s)(I, �) − Wk(τ , s)(I, �)| ≤ �2
1 exp(2ε∗(τ − s)) (t − τ ), k = ±1.

Thus, we deduce from (C.87):

‖(W(t, s) − W(τ , s))g‖2Xα

≤ 32π3
∞∑
k=2

(1 + k2)
α

∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣(Wk (t, s)(I, �) − Wk (τ , s)(I, �)) gk (I, �)

∣∣∣2

+ 32π3 2α
∫∫

D

d I d� �
1

|Q′(e)|
∣∣∣(W1(t, s)(I, �) − W1(τ , s)(I, �)) g1(I, �)

∣∣∣2
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≤ 32π3 2α
∞∑
k=2

k2α exp(−2ε∗k2(τ − s))min{1,�4
1k

4(t − τ )2} ‖gk‖2L2 1
|Q′ |

(D)

+ 32π3 2α�4
1 exp(4ε∗(τ − s)) (t − τ )2 ‖g1‖2L2 1

|Q′ |
(D)

. (C.88)

To establish (C.84)–(C.86), it follows from (C.88) for α ∈ {1, 2} that

‖(W(t + h, s) − W(t, s))g‖2Xα

≤ 32π3 2α (�4
1 + 1)

∞∑
k=2

k2α exp(−2ε∗k2(t − s))min{1, k4h2} ‖gk‖2L2
1

|Q′ |
(D)

+ 32π3 2α�4
1 exp(4ε∗(t − s)) h2 ‖g1‖2L2

1
|Q′ |

(D)

≤ 32π3 2α (�4
1 + 1)

[ h−1/2∑
k=2

k2α+4 h2 exp(−2ε∗k2(t − s)) ‖gk‖2L2
1

|Q′ |
(D)

+
∞∑

k=h−1/2

k2α exp(−2ε∗k2(t − s)) ‖gk‖2L2
1

|Q′ |
(D)

]

+ 32π3 2α�4
1 exp(4ε∗(t − s)) h2 ‖g1‖2L2

1
|Q′ |

(D)

≤ 32π3 2α (�4
1 + 1)

[ h−1/2∑
k=2

k2α+2 h exp(−2ε∗k2(t − s)) ‖gk‖2L2
1

|Q′ |
(D)

+
∞∑

k=h−1/2

k2α+2 h exp(−2ε∗k2(t − s)) ‖gk‖2L2
1

|Q′ |
(D)

]

+ 32π3 2α�4
1 exp(4ε∗(t − s)) h2 ‖g1‖2L2

1
|Q′ |

(D)

≤ 32π3 2α (�4
1 + 1) h

∞∑
k=2

k2α+2 exp(−2ε∗k2(t − s)) ‖gk‖2L2
1

|Q′ |
(D)

+ 32π3 2α�4
1 exp(4ε∗(t − s)) h2 ‖g1‖2L2

1
|Q′ |

(D)
. (C.89)

So if we takeα = 1, set s = t = 0 and replace h by t , then we obtain (C.84). Regard-
ing (C.85) and (C.86), from Remark C.14 one has k2α+2 exp(−2ε∗k2(t − s)) ≤
( α+1
2ε∗(t−s) )

α+1. Thus, we obtain by means of (C.89) that

‖(W(t + h, s) − W(t, s))g‖2Xα

≤ 32π3 2α (�4
1 + 1)

(
α + 1

2ε∗(t − s)

)α+1

h
∞∑
k=2

‖gk‖2L2
1

|Q′ |
(D)
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+ 32π3 2α�4
1 exp(4ε∗(t − s)) h2 ‖g1‖2L2

1
|Q′ |

(D)

≤ 2α (�4
1 + 1)

[(
α + 1

2ε∗(t − s)

)α+1

h + exp(4ε∗(t − s)) h2
]

‖g‖2X0 ,

which proves both (C.85) and (C.86). �

Lemma C.17 Let h1, h2 : J → X1
odd be continuous and such that�(h1(t)) ≤ λ∗ +

2ε∗ and �(h2(t)) ≤ λ∗ + 2ε∗ for t ∈ J . Then for t, s ∈ J such that t ≥ s:

|Wk (t, s; h1)(I, �) − Wk (t, s; h2)(I, �)| ≤ 	(t; h1, h2) exp(	(t; h1, h2)) exp(−ε∗k2(t − s))
(C.90)

for k ∈ Z \ {−1, 0, 1} and

|Wk (t, s; h1)(I, �) − Wk (t, s; h2)(I, �)| ≤ 	(t; h1, h2) exp(	(t; h1, h2)) exp(2ε∗(t − s)) (C.91)

for k = ±1. Here,

	(t; h1, h2) = 2C�(‖h1‖∞,1 + ‖h2‖∞,1)

∫ t

0
‖h1(τ ) − h2(τ )‖X1 dτ

with ‖g‖∞,1 = max {‖g(t)‖X1 : t ∈ J }.
Proof By definition and by means of Lemma C.12:

|Wk (t, s; h1)(I, �) − Wk (t, s; h2)(I, �)|
=

∣∣∣∣ exp
(

−
∫ t

s
[k2ω2

1(I, �) − �(h1(τ ))] dτ
)

− exp
(

−
∫ t

s
[k2ω2

1(I, �) − �(h2(τ ))] dτ
)∣∣∣∣

=
∣∣∣∣1 − exp

(
−

∫ t

s
[�(h1(τ )) − �(h2(τ ))] dτ

)∣∣∣∣ exp
(

−
∫ t

s
[k2ω2

1(I, �) − �(h1(τ ))] dτ
)

≤
∣∣∣∣1 − exp

(
−

∫ t

s
[�(h1(τ )) − �(h2(τ ))] dτ

)∣∣∣∣ ×
{
exp(−ε∗k2(t − s)) : k ∈ Z \ {−1, 0, 1}
exp(2ε∗(t − s)) : k = ±1

.

(C.92)

Now Lemma C.9 yields

|�(h1(τ )) − �(h2(τ ))| ≤ 2C�(‖h1(τ )‖X1 + ‖h2(τ )‖X1)‖h1(τ ) − h2(τ )‖X1

≤ 2C�(‖h1‖∞,1 + ‖h2‖∞,1)‖h1(τ ) − h2(τ )‖X1 ,

and consequently

∣∣∣∣ −
∫ t

s
[�(h1(τ )) − �(h2(τ ))] dτ

∣∣∣∣ ≤ 2C�(‖h1‖∞,1 + ‖h2‖∞,1)

∫ t

0
‖h1(τ ) − h2(τ )‖X1 dτ .
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Therefore, the inequality |1 − ex | ≤ |x |e|x | for x ∈ R in conjunction with (C.92)
leads to (C.90) and (C.91). �

Lemma C.18 Let h1, h2 : J → X1
odd be continuous and such that�(h1(t)) ≤ λ∗ +

2ε∗ and �(h2(t)) ≤ λ∗ + 2ε∗ for t ∈ J .

(a) If t ∈ J and g : J → X0
odd is continuous, then

∥∥∥∥
∫ t

0
[W(t, s; h1) − W(t, s; h2)] g(s) ds

∥∥∥∥
X1

≤ 2

ε
1/2∗

	(t; h1, h2) exp(	(t; h1, h2)) (1 + e2ε∗t )
( ∫ t

0
‖g(s)‖2X0 ds

)1/2
.

(b) If t ∈ J and ψ ∈ X1
odd, then

‖(W(t, 0; h1) − W(t, 0; h2))ψ‖X1 ≤ 2	(t; h1, h2) exp(	(t; h1, h2)) (1 + e2ε∗t ) ‖ψ‖X1 .

Here,

	(t; h1, h2) = 2C�(‖h1‖∞,1 + ‖h2‖∞,1)

∫ t

0
‖h1(τ ) − h2(τ )‖X1 dτ

with ‖g‖∞,1 = max {‖g(t)‖X1 : t ∈ J }.
Proof (a) By definition and by (C.90), (C.91) from Lemma C.17:

∥∥∥∥
∫ t

0
[W(t, s; h1) − W(t, s; h2)] g(s) ds

∥∥∥∥
2

X1

= 16π3
∑
k∈Z

(1 + k2)

∥∥∥∥
∫ t

0
[Wk (t, s; h1) − Wk (t, s; h2)] gk (s) ds

∥∥∥∥
2

L2 1
|Q′ |

(D)

= 16π3
∑
k∈Z

(1 + k2)
∫∫

D

d I d� �
1

|Q′(e)|

×
∣∣∣∣
∫ t

0
[Wk (t, s; h1)(I, �) − Wk (t, s; h2)(I, �)] gk (s)(I, �) ds

∣∣∣∣
2

≤ 32π3	(t; h1, h2)2 exp(2	(t; h1, h2))

×
∞∑
k=2

(1 + k2)
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(−ε∗k2(t − s)) |gk (s)(I, �)| ds

]2

+ 64π3	(t; h1, h2)2 exp(2	(t; h1, h2))

×
∫∫

D

d I d� �
1

|Q′(e)|
[ ∫ t

0
exp(2ε∗(t − s)) |g1(s)(I, �)| ds

]2
.
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If at this point we apply Lemma C.13, it follows that

∥∥∥∥
∫ t

0
[W(t, s; h1) − W(t, s; h2)] g(s) ds

∥∥∥∥
2

X1

≤ 32π3

ε∗
	(t; h1, h2)2 exp(2	(t; h1, h2))

∞∑
k=2

1 + k2

k2

∫ t

0
e−ε∗k2(t−s) ‖gk (s)‖2L2 1

|Q′ |
(D)

ds

+ 16π3

ε∗
	(t; h1, h2)2 exp(2	(t; h1, h2)) e4ε∗t (1 − e−4ε∗t )

∫ t

0
‖g1(s)‖2L2 1

|Q′ |
(D)

ds

≤ 2

ε∗
	(t; h1, h2)2 exp(2	(t; h1, h2)) (1 + e4ε∗t )

∫ t

0
‖g(s)‖2

X0 ds,

and this yields what is asserted.
(b) Here, we have similarly

‖(W(t, 0; h1) − W(t, 0; h2))ψ‖2
X1

= 16π3
∑
k∈Z

(1 + k2)
∫∫

D

d I d� �
1

|Q′(e)| |Wk (t, 0; h1)(I, �) − Wk (t, 0; h2)(I, �)|2 |ψk (I, �)|2

≤ 32π3	(t; h1, h2)2 exp(2	(t; h1, h2))
∞∑
k=2

(1 + k2) exp(−2ε∗k2t)
∫∫

D

d I d� �
1

|Q′(e)| |ψk (I, �)|2

+ 64π3	(t; h1, h2)2 exp(2	(t; h1, h2)) exp(4ε∗t)
∫∫

D

d I d� �
1

|Q′(e)| |ψ1(I, �)|2

≤ 64π3	(t; h1, h2)2 exp(2	(t; h1, h2)) (1 + e4ε∗ t )
∞∑
k=1

(1 + k2)
∫∫

D

d I d� �
1

|Q′(e)| |ψk (I, �)|2

≤ 4	(t; h1, h2)2 exp(2	(t; h1, h2)) (1 + e4ε∗ t ) ‖ψ‖2
X1

,

and this suffices to completes the proof.
�

Lemma C.19 Let (�,F ,μ) be a probability space and X a Banach space. Suppose
that f : � → X is (Bochner) integrable. Then

∫
�

f (ω) dμ(ω) ∈ co { f (ω) : ω ∈ �},

where co denotes the closure of the convex hull.

Proof See [13, Cor. 8, p. 48]. �



Appendix D
On Kato-Rellich Perturbation Theory

In this section, we derive a (likely non-optimal) result that might be known, although
we have not been able to find a suitable reference. Usually, Kato-Rellich perturbation
theory concerns analytic families of symmetric or self-adjoint operators Az that
are defined in an open neighborhood of z = 0, for instance, and depending on the
multiplicity of an eigenvalue μ0 of A0, the existence of branches of eigenvalues
and/or eigenfunctions close to z = 0 is discussed; see [44, 76], [71, Sect.XII.2] and
[65, Sect. 5].

However, in the application that we are aiming for (see Chapter 4), the family of
operators is analytic in � = C \ [δ21,∞[ for some δ1 > 0, but it only has a continu-
ous extension to z = δ21 , in the sense that Aδ21

:= limλ∈R,λ→δ21− Aλ does exist in the
operator norm. In this situation, one is not able to expand Az in a (real or complex)
neighborhood of z = δ21 .

Let H be a Hilbert space. By L(H) we denote the bounded linear operators in H ,
whereas K (H) will stand for the compact linear operators in H . The spectrum of an
operator A is σ(A), whereas ρ(A) = C \ σ(A) is its resolvent.

Lemma D.1 Let � = C \ [λ0,∞[ for some λ0 > 0 and suppose that Az is an ana-
lytic family of operators Az ∈ K (H) for z ∈ � such that Aλ0 := limλ∈R,λ→λ0− Aλ

does exist in the operator norm. In addition, we suppose that A∗
z = Az̄ for z ∈ � and

that
〈Aλ̃�,�〉 ≥ 〈Aλ�,�〉 ≥ 0 (D.1)

is satisfied for λ̃ ≥ λ, both in ] − ∞,λ0[, and � ∈ H. Define μ1(λ) to be the largest
eigenvalue of Aλ. Then there are sequences λk ↗ λ0, εk > 0 and �k,λ ∈ H for
λ ∈]λk − εk,λk + εk[ such that ‖�k,λ‖ = 1,

]λk − εk,λk + εk[� λ �→ �k,λ ∈ H

is real analytic for k ∈ N, and Aλ�k,λ = μ1(λ)�k,λ for k ∈ N andλ ∈]λk − εk,λk +
εk[. In addition, μ1 is real analytic in ]λk − εk,λk + εk[ and satisfies

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
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μ′
1(λ) = 〈A′

λ�k,λ, �k,λ〉 (D.2)

for λ ∈]λk − εk,λk + εk[.
Proof From the spectral theory of compact positive self-adjoint operators, see [35,
Sect. 6], it follows that the spectrumof each Aλ forλ ∈] − ∞,λ0] consists ofμ1(λ) ≥
μ2(λ) ≥ . . . → 0 (the eigenvalues are listed according to their finite multiplicities).
Furthermore, due to (D.1) and using theCourantmax-min principle,we haveμk(λ̃) ≥
μk(λ) for k ∈ N and λ̃ ≥ λ, both in ] − ∞,λ0]; also see the proof of Lemma 4.3(e).
Since ] − ∞,λ0[� λ �→ Aλ ∈ L(H) is real analytic, this map is in particular locally
Lipschitz continuous. From this fact, together with the Courant max-min principle,
we deduce that each μk :] − ∞,λ0[→]0,∞[ is a continuous function, which is
monotone increasing; once again cf. the proof of Lemma 4.3(e). Noting that μk(λ) ≤
μk(λ0) ≤ μ1(λ0), the limits limλ→λ0− μk(λ) do exist and are finite. Hence if we
define μk(λ0) = limλ→λ0− μk(λ), then the eigenvalues μk :] − ∞,λ0] →]0,∞[ are
continuous.

For the ‘Kato-Rellich-part’ of the argument we follow [65, Thm. 5.8]. Let m ∈ N

denote themultiplicity of the eigenvalueμ1(λ0) of Aλ0 . The casem = 1 is easier (and
in fact a better result can be obtained, see Lemma D.2 below), so we considerm ≥ 2.
For illustration, we restrict ourselves to m = 2, and the general case is not much
more difficult. Hence, we know that μ1(λ0) = μ2(λ0) > μ3(λ0) ≥ . . .. Let η > 0 be
such that μ1(λ0) − η > μ3(λ0) + η. From the continuity of μ1 and μ2, we infer that
there is ε > 0 with the property that μ1(λ),μ2(λ) ∈]μ1(λ0) − η,μ1(λ0)] for λ ∈
[λ0 − ε,λ0]. For k ≥ 3 and λ ∈] − ∞,λ0] we also have μk(λ) ≤ μk(λ0) ≤ μ3(λ0),
i.e., the eigenvalue groups {μ1(λ),μ2(λ)} and {μ3(λ), . . .} are strictly separated for
λ ∈ [λ0 − ε,λ0]. Let r = μ1(λ0) − (μ3(λ0) + η) > η > 0 and 
 = {z ∈ C : |z −
μ1(λ0)| = r}. Then μ1(λ),μ2(λ) are inside of 
, whereas μ3(λ), . . . are outside
of 
 for λ ∈ [λ0 − ε,λ0]; we have dist(μk(λ), 
) ≥ μ1(λ0) − μ3(λ0) − 2η > 0 for
k = 1, 2, whereas dist(μk(λ), 
) ≥ η for k ≥ 3. For λ ∈ [λ0 − ε,λ0] consider the
Riesz projection operator

Pλ = 1

2πi

∫



(Aλ − ζ)−1 dζ

on H . Since 
 ∩ σ(Aλ) = ∅, the resolvent RAλ
(ζ) = (Aλ − ζ)−1 is well-defined for

ζ ∈ 
; in fact RAλ
is analytic in a neighborhood of 
 and satisfies

‖RAλ
(ζ)‖ = dist(ζ,σ(Aλ))

−1 ≤ min{η,μ1(λ0) − μ3(λ0) − 2η}−1 =: C0

for λ ∈ [λ0 − ε,λ0] and ζ ∈ 
. Hence for λ, λ̃ ∈ [λ0 − ε,λ0] the second resolvent
identity yields

sup
ζ∈


‖RAλ
(ζ) − RAλ̃

(ζ)‖ = sup
ζ∈


‖RAλ
(ζ)(Aλ − Aλ̃)RAλ̃

(ζ)‖ ≤ C2
0‖Aλ − Aλ̃‖,
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which implies that [λ0 − ε,λ0] � λ �→ Pλ ∈ L(H) is continuous. Defining more
generally

Pz = 1

2πi

∫



(Az − ζ)−1 dζ,

it may moreover be shown as in analytic Kato-Rellich theory (see [44, Chapter 7,
Sect. 1], [71, Sect.XII.2], [65, Thm. 5.8]) that every λ ∈]λ0 − ε,λ0[ has a complex
neighborhoodUλ ⊂ C such thatUλ � z �→ Pz ∈ L(H) is well-defined and analytic.
The map Pλ0 : H → H is the orthogonal projection onto the eigenspace ker(Aλ0 −
μ1(λ0)), which is (m = 2)-dimensional; see [65, Cor. 5.6]. If λ ∈ [λ0 − ε,λ0[, then
σ(Aλ)∩]μ1(λ0) − η,μ1(λ0) + η[= {μ1(λ),μ2(λ)}. Denoting the spectral resolution
of the symmetric operator Aλ by E (λ), we thus have Pλ = E (λ)

μ1(λ0)+η − E (λ)

μ1(λ0)−η, and
in particular Pλ is an orthogonal projection; cf. [65, Prop. 5.5& Prop. 3.4]. Hence,
it follows from the continuity of [λ0 − ε,λ0] � λ �→ Pλ ∈ L(H) and [71, Lemma,
p. 14] that dim ran Pλ = 2 for λ < λ0 sufficiently close to λ0, which we can assume
to hold for λ ∈ [λ0 − ε,λ0[.

What is next is the reduction to a two-dimensional problem. According to [37,
Prop. 6.9] with σ1 = {μ1(λ),μ2(λ)}, we know that

PλAλ = AλPλ, σ(AλPλ) = {μ1(λ),μ2(λ)}, σ(Aλ(I − Pλ)) = {μ3(λ), . . .},

for λ ∈ [λ0 − ε,λ0]. Denoting Lλ = ran Pλ = PλH , thus Aλ : Lλ → Lλ is well-
defined and σ(Aλ|Lλ

) = {μ1(λ),μ2(λ)}. Let

Cλ = PλPλ0 + (I − Pλ)(I − Pλ0).

Then Cλ : H → H is an orthogonal projection and Cλ0 = I . Also Cλ : Lλ0 → Lλ

is well-defined. In fact, if � ∈ Lλ0 , then � = Pλ0� for some � ∈ H . There-
fore, (I − Pλ0)� = 0 andCλ� = PλP2

λ0
� = Pλ� ∈ Lλ. In addition, [λ0 − ε,λ0] �

λ �→ Cλ ∈ L(H) is continuous. Hence, by decreasing ε > 0 further if necessary, we
may assume that Cλ is invertible for λ ∈ [λ0 − ε,λ0]. In other words, Cλ is a lin-
ear bijection between the two-dimensional spaces Lλ0 and Lλ. Let {�1, �2} be an
orthonormal basis of Lλ0 = ker(Aλ0 − μ1(λ0)). Then {Cλ�1,Cλ�2} is a basis of
Lλ, and we obtain an orthonormal basis {ϕ1λ,ϕ2λ} of Lλ by the Gram-Schmidt
orthonormalization; explicitly,

ϕ1λ = 1

‖Cλ�1‖ Cλ�1,

ϕ2λ = 1

(‖Cλ�2‖2 − 〈Cλ�2,ϕ1λ〉2)1/2 (Cλ�2 − 〈Cλ�2,ϕ1λ〉ϕ1λ).

SinceCλ0�1 = �1 andCλ0�2 = �2,wehaveϕ1λ0 = �1 andϕ2λ0 = �2. Ifwedefine
a matrix A(λ) = (a jk(λ)) j,k=1,2 by means of

a jk(λ) = 〈Aλϕ jλ,ϕkλ〉, j, k = 1, 2,
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then A(λ) is symmetric and represents Aλ : Lλ → Lλ w.r. to the orthonormal basis
{ϕ1λ,ϕ2λ}. In particular, σ(A(λ)) = {μ1(λ),μ2(λ)}, and Aλ0� j = μ1(λ0)� j for
j = 1, 2 implies that A(λ0) = μ1(λ0)I2, with I2 denoting the identity matrix in two
dimensions. For a fixed λ ∈]λ0 − ε,λ0[ we can extend all of the above definitions
and relations analytically to z ∈ Uλ, the complex neighborhood of λ, where z �→ Pz
is analytic; in particular, z �→ A(z) is analytic on Uλ.

Let	 = {λ ∈ [λ0 − ε,λ0[: μ1(λ) �= μ2(λ)}. Case 1: λ0 is an accumulation point
of 	. Then there is a sequence (λk) ⊂]λ0 − ε,λ0[ such that λk ↗ λ0 and μ1(λk) >

μ2(λk) for k ∈ N. Thus, μ1(λk) is a simple eigenvalue of A(λk) for each k ∈ N.
Owing to a theorem by Rellich [76, p. 42], in particular there is εk > 0 such that
]λk − εk,λk + εk[� λ �→ μ1(λ) is real analytic, andmoreover there is a real analytic
function ]λk − εk,λk + εk[� λ �→ ξk(λ) ∈ R

2 such that A(λ)ξk(λ) = μ1(λ)ξk(λ)

and |ξk(λ)| = 1 for λ ∈]λk − εk,λk + εk[. Let

�̃k,λ = ξ(1)
k (λ)ϕ1λ + ξ(2)

k (λ)ϕ2λ ∈ Lλ ⊂ H, ξk = (ξ(1)
k , ξ(2)

k ). (D.3)

Then

Aλ�̃k,λ = ξ(1)
k (λ)Aλϕ1λ + ξ(2)

k (λ)Aλϕ2λ

= ξ(1)
k (λ)[a11(λ)ϕ1λ + a12(λ)ϕ2λ] + ξ(2)

k (λ)[a21(λ)ϕ1λ + a22(λ)ϕ2λ]
= [ξ(1)

k (λ)a11(λ) + ξ(2)
k (λ)a21(λ)]ϕ1λ + [ξ(1)

k (λ)a12(λ) + ξ(2)
k (λ)a22(λ)]ϕ2λ

= μ1(λ)ξ(1)
k ϕ1λ + μ1(λ)ξ(2)

k ϕ2λ

= μ1(λ)�̃k,λ

is verified. Since |ξk(λ)| = 1 we must have �̃k,λ �= 0, as {ϕ1λ,ϕ2λ} is linearly
independent. Thus is we define �k,λ = ‖�̃k,λ‖−1�̃k,λ, then we obtain the claim.
Case 2: λ0 is not an accumulation point of 	. Then there is a left-sided neigh-
borhood of λ0, which we assume to be [λ0 − ε,λ0], so that μ1(λ) = μ2(λ) for
all λ ∈ [λ0 − ε,λ0], i.e., the multiplicity of the first eigenvalue equals two over
the whole interval. Let (λk) ⊂]λ0 − ε,λ0[ be a sequence such that λk ↗ λ0. By
a theorem of Rellich [76, p. 42], in particular there are εk > 0 and real analytic
functions ]λk − εk,λk + εk[� λ �→ sk(λ), tk(λ) as well as real analytic functions
]λk − εk,λk + εk[� λ �→ ξk(λ), ζk(λ) ∈ R

2 such that

A(λ)ξk(λ) = sk(λ)ξk(λ), A(λ)ζk(λ) = tk(λ)ζk(λ),

and ξk(λ), ζk(λ) are orthonormal for λ ∈]λk − εk,λk + εk[. Using part (2) of
Rellich’s result, by decreasing εk further we can additionally make sure that
{sk(λ), tk(λ)} = σ(A(λ)) = {μ1(λ),μ2(λ)}, which means that actually sk(λ) =
tk(λ) = μ1(λ) holds for λ ∈]λk − ε,λk + ε[. Hence, we can proceed as in Case
1 with (D.3) to complete the argument.

The proof of (D.2), which was already used by Rellich [75, p. 471, footnote], is
well-known but included for completeness. In fact for μ1 to be differentiable at some
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λ and the formula to hold at λ, it suffices that the operator family is differentiable at
λ, but the eigenvalue family needs only be continuous at λ; we found this observation
in [3]. Let λ ∈]λk − εk,λk + εk[ and h > 0 be small. Then

〈(Aλ+h − Aλ)�k,λ+h, �k,λ〉 = μ1(λ + h)〈�k,λ+h, �k,λ〉 − 〈�k,λ+h, Aλ�k,λ〉
= (μ1(λ + h) − μ1(λ))〈�k,λ+h, �k,λ〉,

so dividing by h and taking the limit h → 0+ yields (D.2); recall that ‖�k,λ‖ = 1.
�

Lemma D.2 In the setting of Lemma D.1, suppose that additionally μ1(λ0) is a
simple eigenvalue of Aλ0 . Then there is ε > 0 such that ]λ0 − ε,λ0[� λ �→ μ1(λ) is
real analytic. In addition, there are�λ ∈ H satisfying ‖�λ‖ = 1, Aλ�λ = μ1(λ)�λ

and ]λ0 − ε,λ0[� λ �→ �λ is real analytic. Furthermore,

μ′
1(λ) = 〈A′

λ�λ, �λ〉 (D.4)

for λ ∈]λ0 − ε,λ0[.
Proof Since μ1(λ0) > μ2(λ0), there is η > 0 and ε > 0 such that μ1(λ0) − η >

μ2(λ0) + η, μ1(λ) ∈]μ1(λ0) − η,μ1(λ0)] as well as μk(λ) ≤ μ2(λ0) for λ ∈ [λ0 −
ε,λ0] and k ≥ 2; cf. the proof of LemmaD.1. Let r = μ1(λ0) − (μ2(λ0) + η) > η >

0 and
 = {z ∈ C : |z − μ1(λ0)| = r}. Then μ1(λ) is inside of
, whereas μ2(λ), . . .

are outside of 
 for λ ∈ [λ0 − ε,λ0]. Once again we consider the Riesz projection
operator

Pλ = 1

2πi

∫



(Aλ − ζ)−1 dζ

on H for λ ∈ [λ0 − ε,λ0]. Then λ ∈ [λ0 − ε,λ0] � λ �→ Pλ ∈ L(H) is continuous.
Defining more generally

Pz = 1

2πi

∫



(Az − ζ)−1 dζ,

it may moreover be shown that every λ ∈]λ0 − ε,λ0[ has a complex neighborhood
Uλ ⊂ C such thatUλ � z �→ Pz ∈ L(H) is well-defined and analytic. The map Pλ0 :
H → H is the orthogonal projection onto the one-dimensional eigenspace ker(Aλ0 −
μ1(λ0)). As before it follows that dim ran Pλ = 1 for λ < λ0 sufficiently close to λ0,
which we can assume to hold for λ ∈ [λ0 − ε,λ0[. For � ∈ H such that ‖�‖ = 1
and Aλ0� = μ1(λ0)� we define �̃λ = Pλ� for λ ∈ [λ0 − ε,λ0]. Then �̃λ ∈ ran Pλ

and

Pλ = 1

2πi

∫
|ζ−μ1(λ)|=δ

(Aλ − ζ)−1 dζ

for δ > 0 small, by the Cauchy theorem. From [71, Theorem XII.5(d)], it follows
that (Aλ − μ1(λ))n�̃λ = 0 for some n ∈ N. Since Aλ is symmetric, all eigenval-



202 Appendix D: On Kato-Rellich Perturbation Theory

ues are semisimple, which means that in fact (Aλ − μ1(λ))�̃λ = 0. Owing to � ∈
ran Pλ0 we have ‖�̃λ0‖ = ‖Pλ0�‖ = ‖�‖ = 1. Therefore, due to the continuity of
[λ0 − ε,λ0] � λ �→ Pλ ∈ L(H), we may suppose that �̃λ �= 0 for λ ∈ [λ0 − ε,λ0].
Thus if we define �λ = ‖�̃λ‖−1�̃λ, then we are done for what concerns the eigen-
functions, as ]λ0 − ε,λ0[� λ �→ Pλ ∈ L(H) is real analytic. To establish that μ1

is real analytic as well, let λ̂ ∈]λ0 − ε,λ0[. Then [71, Theprem XII.8] implies that
for z near λ̂, say z ∈ Vλ̂ ⊂ C, there is exactly one point E(z) ∈ σ(Az) near μ1(λ̂),
and this point is isolated and nondegenerate. In addition, the map Vλ̂ � z �→ E(z) is
analytic. Restricting to real z = λ ∈ Vλ̂∩]λ0 − ε,λ0[, the choice of ε above implies
that E(λ) = μ1(λ), which shows that μ1 is real analytic on Vλ̂∩]λ0 − ε,λ0[. The
relation (D.4) can be derived as before. �
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