Skip to main content

Circuital and Developmental Explanations for the Cortex

  • Chapter
  • First Online:
Neural Mechanisms

Part of the book series: Studies in Brain and Mind ((SIBM,volume 17))

  • 758 Accesses

Abstract

The cerebral cortex manifests a feature that puzzles researchers since early neuroscience: the functional repertoire of the cortex is incredibly vast despite its strikingly uniform structure. This work analyzes the phenomenon of the apparent clash between uniformity and variety of functions, and it pinpoints the sort of explanations that this phenomenon requests. A possible resolution of this tension has been proposed several times in terms of a basic neural circuit so successful to underlie all cortical functions. Circuital models have the virtue of belonging to the mechanistic framework of explanation, and they have greatly improved the understanding of computational properties of the cortex. However, they all lack explanations of the contrast between uniformity and multiplicity of functions in the cortex. A reason for this failure is neglecting the developmental aspect of the cortex, the most likely source of variation in functions. In biology, developmental explanations are receiving increasing attention, but they are often contrasted with the mechanistic ones. I contend that, in the case at hand, the explanandum of the development differs from the ones usually found in developmental biology, and developmental aspects in the cortex can be taken into account within a mechanistic explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A four-winged dinosaur bird species.

References

  • Anzai, A., Peng, X., & Van Essen, D. C. (2007). Neurons in monkey visual area V2 encode combinations of orientations. Nature Neuroscience, 10, 1313–1321.

    Article  Google Scholar 

  • Ashby, W. R. (1947). Principles of the self-organizing dynamic system. The Journal of General Psychology, 37, 125–128.

    Article  Google Scholar 

  • Baedke, J. (2018). Above the gene, beyond biology: Toward a philosophy of epigenetics. Pittsburgh: Pittsburgh University Press.

    Book  Google Scholar 

  • Bauer, A. J., & Just, M. A. (2015). Monitoring the growth of the neural representations of new animal concepts. Human Brain Mapping, 36, 3213–3226.

    Article  Google Scholar 

  • Bednar, J. A. (2009). Topographica: Building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics, 3, 8.

    Article  Google Scholar 

  • Bednar, J. A. (2014). Topographica. In: D. Jaeger & R. Jung (Eds.), Encyclopedia of computational neuroscience (pp. 1–5). Berlin: Springer.

    Google Scholar 

  • Berlin, R. (1858). Beitrag zur structurlehre der grosshirnwindungen. Ph.D. thesis, Medicinischen Fakultät zu Erlangen.

    Google Scholar 

  • Berlucchi, G., & Buchtel, H. (2009). Neuronal plasticity: Historical roots and evolution of meaning. Nature Reviews Neuroscience, 192, 307–319.

    Google Scholar 

  • Binzegger, T., Douglas, R. J., & Martin, K. A. (2004). A quantitative map of the circuit of cat primary visual cortex. Journal of Neuroscience, 24, 8441–8453.

    Article  Google Scholar 

  • Blumberg, M. S., Freeman, J. H., & Robinson, S. (Eds.). (2010). Oxford handbook of developmental behavioral neuroscience. Oxford: Oxford University Press.

    Google Scholar 

  • Bontempi, B., Silva, A., & Christen, Y. (Eds.). (2007). Memories: Molecules and circuits. Berlin: Springer.

    Google Scholar 

  • Braak, H. (1980). Architectonics of the human telencephalic cortex. Berlin: Springer.

    Book  Google Scholar 

  • Brazier, M. (1961). A history of the electrical activity of the brain: The first half-century. New York: Macmillan.

    Google Scholar 

  • Brigandt, I. (2015). Evolutionary developmental biology and the limits of philosophical accounts of mechanistic explanation. In: P. A. Braillard & C. Malaterre (Eds.), Explanation in biology – An enquiry into the diversity of explanatory patterns in the life sciences (pp. 135–173). Berlin: Springer.

    Chapter  Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirmrinde. Leipzig: Barth.

    Google Scholar 

  • Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.

    Article  Google Scholar 

  • Burnston, D. C. (2016). Computational neuroscience and localized neural function. Synthese, 193, 3741–3762.

    Article  Google Scholar 

  • Carandini, M., & Heeger, D. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13, 51–62.

    Article  Google Scholar 

  • Carlo, C. N., & Stevens, C. F. (2013). Structural uniformity of neocortex, revisited. Proceedings of the Natural Academy of Science, 110, 719–725.

    Google Scholar 

  • Casanova, M. F., & Opris, I. (Eds.). (2015). Recent advances on the modular organization of the cortex. Berlin: Springer.

    Google Scholar 

  • Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16, 6443–6453.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain: Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Craver, C. F., & Bechtel, W. (2007). Top-down causation without top-down causes. Behavioural Processes, 22, 547–563.

    Google Scholar 

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: Discoveries across the life sciences. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Cummins, R. (1975). Functional analysis. Journal of Philosophy, 72, 741–765.

    Article  Google Scholar 

  • Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.

    Article  Google Scholar 

  • Douglas, R. J., Martin, K. A., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.

    Article  Google Scholar 

  • Douglas, R. J., Markram, H., & Martin, K. (2004). Neocortex. In: G. M. Shepherd (Ed.), The synaptic organization of the brain (5th ed., pp. 499–558). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Drury, H. A., Van Essen, D. C., Anderson, C., Lee, C., Coogan, T., Lewis, J. W. (1996). Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience, 8, 1–28.

    Article  Google Scholar 

  • Edinger, L. (1904). Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere. Leipzig: Vogel.

    Book  Google Scholar 

  • Eliasmith, C., & Anderson, C. H. (2003). Neural engineering computation, representation, and dynamics in neurobiological systems. Cambridge, MA: MIT Press.

    Google Scholar 

  • Erö, C., Gewaltig, M. O., Keller, D., & Markram, H. (2018). A cell atlas for the mouse brain. Frontiers in Neuroinformatics, 12, Article 84.

    Google Scholar 

  • Fahle, M., & Poggio, T. (Eds.). (2002). Perceptual learning. Cambridge, MA: MIT Press.

    Google Scholar 

  • Feldman, D. E. (2000). Timing-based LPT and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron, 27, 45–56.

    Article  Google Scholar 

  • Ford, D. H., & Lerner, R. M. (1992). Developmental systems theory: An integrative approach. Newbury Park: Sage Publications.

    Google Scholar 

  • Fuchs, E., & Flügge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014, ID541870.

    Article  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic.

    Google Scholar 

  • Gao, W. J., & Pallas, S. (1999). Cross-modal reorganization of horizontal connectivity in auditory cortex without altering thalamocortical projections. Journal of Neuroscience, 19, 7940–7950.

    Article  Google Scholar 

  • Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C. F., Jenkinson, M., Smith, S. M., & Essen, D. C. V. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536, 171–182.

    Article  Google Scholar 

  • Goodhill, G. J. (2007). Contributions of theoretical modeling to the understanding of neural map development. Neuron, 56, 301–311.

    Article  Google Scholar 

  • Gottlieb, G. (1971). Development of species identification in birds: An inquiry into the prenatal determinants of perception. Chicago: Chicago University Press.

    Google Scholar 

  • Graybiel, A. M. (1984). Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience, 13, 1157–1187.

    Article  Google Scholar 

  • Griffiths, P. E., & Tabery, J. (2013). Developmental systems theory: What does it explain, and how does it explain it? Advances in Child Development and Behavior, 44, 65–94. JAI, Berlin

    Book  Google Scholar 

  • Haeusler, S., & Maass, W. (2007). A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models. Cerebral Cortex, 17, 149–162.

    Article  Google Scholar 

  • Haeusler, S., Schuch, K., & Maass, W. (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology, 21, 1229–1243.

    Google Scholar 

  • Haken, H. (1978). Synergetics – An introduction, nonequilibrium phase transitions and self-organization in physics, chemistry and biology (2nd ed.). Berlin: Springer.

    Google Scholar 

  • Harris, K. D., & Shepherd, G. M. (2015). The neocortical circuit: Themes and variations. Nature Neuroscience, 18, 170–181.

    Article  Google Scholar 

  • Haueis, P. (2012). The fuzzy brain. Vagueness and mapping connectivity of the human cerebral cortex. Frontiers in Neuroanatomy, 6, Article 37.

    Google Scholar 

  • Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., et al. (2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489, 391–399.

    Article  Google Scholar 

  • Hegdé, J., & Van Essen, D. C. (2007). A comparative study of shape representation in macaque visual areas V2 and V4. Cerebral Cortex, 17, 1100–1116.

    Article  Google Scholar 

  • Herculano-Houzel, S., Collins, C. E., Wong, P., Kaas, J. H., & Lent, R. (2008). The basic nonuniformity of the cerebral cortex. Proceedings of the Natural Academy of Science, 34, 12593–12598.

    Google Scholar 

  • Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  Google Scholar 

  • Hofstetter, S., Friedmann, N., & Assaf, Y. (2017). Rapid language-related plasticity: Microstructural changes in the cortex after a short session of new word learning. Brain Structure and Function, 222, 1231–1241.

    Article  Google Scholar 

  • Horton, J. C., & Adams, D. L. (2005). The cortical column: A structure without a function. Philosophical Transactions of the Royal Society B, 360, 837–862.

    Article  Google Scholar 

  • Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.

    Article  Google Scholar 

  • Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.

    Google Scholar 

  • Ito, M., & Komatsu, H. (2004). Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. Journal of Neuroscience, 24, 3313–3324.

    Article  Google Scholar 

  • Just, M. A., & Keller, T. A. (2019). Converging measures of neural change at the microstructural, informational, and cortical network levels in the hippocampus during the learning of the structure of organic compounds. Brain Structure and Function. https://doi.org/10.1007/s00429-019-01838-4:1-13

  • Kaas, J. H. (2012). Evolution of columns, modules, and domains in the neocortex of primates. Proceedings of the Natural Academy of Science USA, 109, 10655–10660.

    Google Scholar 

  • Kandel, E. R. (2000). Cellular mechanisms of learning and the biological basis of individuality. In: E. R. Kandel, J. H. Schwartz, & T. M. Jessel (Eds.), Principles of neural science (4th ed., pp. 1247–1279). Amsterdam: Elsevier.

    Google Scholar 

  • Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183, 339–373.

    Article  Google Scholar 

  • Kaplan, D. M., & Craver, C. F. (2011). Towards a mechanistic philosophy of neuroscience. In: S. French & J. Saatsi (Eds.), Continuum companion to the philosophy of science (pp. 268–292). London: Continuum Press.

    Google Scholar 

  • Karbowski, J. (2014). Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Frontiers in Neural Circuits, 8, 9.

    Article  Google Scholar 

  • Karlen, S. J., Hunt, D. L., & Krubitzer, L. (2010). Cross-modal plasticity in the mammalian neocortex. In: Blumberg et al. (2010 ) (pp. 357–374).

  • Kauffman, S. A. (1993). The origins of order – Self-organization and Selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Khazipov, R., & Buzsáki, G. (2010). Early patterns of electrical activity in the developing cortex. In: Blumberg et al. (2010 ) (pp. 161–177).

  • Kirchhoff, G. (1845). Ueber den Durchgang eines elektrischen Stromes durch eine Ebene, insbesonere durch eine kreisförmige. Poggendorff’s Annalen der Physik und Chemie, 64, 487–514.

    Google Scholar 

  • Kouh, M., & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427–1451.

    Article  Google Scholar 

  • Leuridan, B., & Lodewyckx, T. (2020). Diachronic causal constitutive relations. Synthese. https://doi.org/10.1007/s11229-020-02616-0:1--31

  • Li, Y., Chen, F., & Huang, W. (2016). Neural plasticity following abacus training in humans: A review and future directions. Neural Plasticity, 2016, ID 1213723.

    Google Scholar 

  • Lorente de Nó, R. (1938). Architectonics and structure of the cerebral cortex. In: J. Fulton (Ed.), Physiology of the nervous system (pp. 291–330). Oxford: Oxford University Press.

    Google Scholar 

  • Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S., & Schmiedek, F. (2010). A theoretical framework for the study of adult cognitive plasticity. Psychological Bulletin, 136, 659–676.

    Article  Google Scholar 

  • Marcus, G. F., Marblestone, A., & Dean, T. (2014). The atoms of neural computation. Science, 346, 551–552.

    Article  Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275, 213–215.

    Article  Google Scholar 

  • Markram, H., Muller, E., Ramaswamy, S., et al. (2015). Reconstruction and simulation of neocortical microcircuitry. Cell, 163, 456–492.

    Article  Google Scholar 

  • Marom, S. (2010). Neural timescales or lack thereof. Progress in Neurobiology, 90, 16–28.

    Article  Google Scholar 

  • Marr, D. (1970). A theory for cerebral neocortex. Proceedings of the Royal Society of London B, 176, 161–234.

    Google Scholar 

  • Martin, K. A. C. (1988). The Wellcome Prize lecture – From single cells to simple circuits in the cerebral cortex. Quarterly Journal of Experimental Physiology, 73, 637–702.

    Article  Google Scholar 

  • Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.

    Google Scholar 

  • Mc Manus, F. (2012). Development and mechanistic explanation. Studies in History and Philosophy of Biological and Biomedical Sciences, 43, 532–541.

    Article  Google Scholar 

  • Miikkulainen, R., Bednar, J., Choe, Y., & Sirosh, J. (2005). Computational maps in the visual cortex. New York: Springer-Science.

    Google Scholar 

  • Miller, K. D. (2016). Canonical computations of cerebral cortex. Current Opinion in Neurobiology, 37, 75–84.

    Article  Google Scholar 

  • Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions: Biological Sciences, 357, 1123–1136.

    Article  Google Scholar 

  • Minelli, A., & Pradeu, T. (2014). Theories of development in biology – Problems and perspectives. In: A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 1–14). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Molnár, Z. (2013). Cortical columns. In: J.L.R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Neural circuit development and function in the healthy and diseased brain (pp. 109–129). New York: Academic.

    Chapter  Google Scholar 

  • Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.

    Article  Google Scholar 

  • Nieuwenhuys, R. (1994). The neocortex. Anatomy and Embryology, 190, 307–337.

    Article  Google Scholar 

  • Nieuwenhuys, R. (2013). The myeloarchitectonic studies on the human cerebral cortex of the Vogt-Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Structure and Function, 218, 303–352.

    Article  Google Scholar 

  • Noack, R. A. (2012). Solving the “human problem”: The frontal feedback model. Consciousness and Cognition, 21, 1043–1067.

    Article  Google Scholar 

  • O’Keefe, J., & Recce, M. (1993). Phase relationship between hippocampal place units and the EEG theta rhytm. Hippocampus, 3, 317–330.

    Article  Google Scholar 

  • O’Leary, D. D., Chou, S. J., & Sahara, S. (2007). Area patterning of the mammalian cortex. Neuron. 56, 252–269.

    Article  Google Scholar 

  • O’Leary, D. D., Stocker, A., & Zembrzycki, A. (2013). Area patterning of the mammalian cortex. In: J. L. R. Rubenstein & P. Rakic (Eds.), Comprehensive developmental neuroscience: Patterning and cell type specification in the developing CNS and PNS (pp. 61–85). New York: Academic.

    Chapter  Google Scholar 

  • Parkkinen, V. P. (2014). Developmental explanation. In: M. C. Galavotti, D. Dieks, W. J. Gonzalez, S. Hartmann, T. Uebel, & M. Weber (Eds.), New directions in the philosophy of science (pp. 157–172). Berlin: Springer.

    Chapter  Google Scholar 

  • Paynter, H., & Beaman, J. J. (1991). On the fall and rise of the circuit concept. Journal of the Franklin Institute, 328, 525–534.

    Article  Google Scholar 

  • Peters, A., & Payne, B. R. (1993). Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cerebral Cortex, 64, 467–478.

    Google Scholar 

  • Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.

    Article  Google Scholar 

  • Plebe, A. (2018). The search of “canonical” explanations for the cerebral cortex. History and Philosophy of the Life Sciences, 40, 40–76.

    Article  Google Scholar 

  • Plebe, A., & Mazzone, M. (2016). Neural plasticity and concepts ontogeny. Synthese, 193, 3889–3929.

    Article  Google Scholar 

  • Potjans, T. C., & Diesmann, M. (2014). The cell-type specific cortical microcircuit: Relating structure and activity in a full-scale spiking network model. Cerebral Cortex, 24, 785–806.

    Article  Google Scholar 

  • Rakic, P. (1995). Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proceedings of the Natural Academy of Science USA, 92, 323–327.

    Google Scholar 

  • Rakic, P. (2008). Confusing cortical columns. Proceedings of the Natural Academy of Science USA, 34, 12099–12100.

    Google Scholar 

  • Rall, W. (1957). Membrane time constant of motoneurons. Science, 126, 454.

    Article  Google Scholar 

  • Ramón y Cajal, S. (1891). On the structure of the cerebral cortex in certain mammals. La Cellule, 7, 125–176.

    Google Scholar 

  • Ramón y Cajal, S. (1906). In: J. DeFelipe & E. G. Jones, Cajal on the cerebral cortex: An annotated translation of the complete writings. Oxford: Oxford University Press. 1988.

    Google Scholar 

  • Rathkopf, C. A. (2013). Localization and intrinsic function. Philosophy of Science, 80, 1–21.

    Article  Google Scholar 

  • Riesenhuber, M. (2012). Getting a handle on how the brain generates complexity. Network: Computation in Neural Systems, 23, 123–127.

    Article  Google Scholar 

  • Rockel, A., Hiorns, R., & Powell, T. (1980). The basic uniformity in structure of the neocortex. Brain, 103, 221–244.

    Article  Google Scholar 

  • Rockland, K. S. (2011). Five points on columns. Frontiers in Neuroanatomy, 4, Article 22.

    Google Scholar 

  • Roe, A. W., Garraghty, P., & Sur, M. (1987). Retinotectal W cell plasticity: Experimentally induced retinal projections to auditory thalamus in ferrets. Social Neuroscience Abstract, 13, 1023.

    Google Scholar 

  • Roe, A. W., Garraghty, P., Esguerra, M., & Sur, M. (1990). A map of visual space induced in primary auditory cortex. Science, 250, 818–820.

    Article  Google Scholar 

  • Rose, N., & Abi-Rached, J. M. (2013) Neuro: The new brain sciences and the management of the mind. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Rothschild, G., & Mizrahi, A. (2015). Global order and local disorder in brain maps. Annual Review of Neuroscience, 38, 247–268.

    Article  Google Scholar 

  • Schüz, A., & Miller, R. (Eds.). (2002). Cortical areas: Unity and diversity. London: Taylor & Francis.

    Google Scholar 

  • Sharma, J., Angelucci, A., & Sur, M. (2000). Induction of visual orientation modules in auditory cortex. Nature, 404, 841–847.

    Article  Google Scholar 

  • Sherman, S. M., & Guillery, R. W. (2006). Exploring the thalamus and its role in cortical function. Cambridge, MA: MIT Press.

    Google Scholar 

  • Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.

    Article  Google Scholar 

  • Squire, L., & Kandel, E. R. (1999). Memory: From mind to molecules. New York: Scientific American Library.

    Google Scholar 

  • Stevens, J. L. R., Law, J. S., Antolik, J., & Bednar J. A. (2013). Mechanisms for stable, robust, and adaptive development of orientation maps in the primary visual cortex. JNS, 33, 15747–15766.

    Google Scholar 

  • Thomson, A. M., West, D. C., Wang, Y., & Bannister, P. (2002). Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: Triple intracellular recordings and biocytin labelling in vitro. Cerebral Cortex, 12, 936–953.

    Article  Google Scholar 

  • Thomson Kelvin, W. (1855). On the theory of the electric telegraph. Proceedings of the Royal Society of London, 7, 382–399.

    Google Scholar 

  • Treloar, H. B., Feinstein, P., Mombaerts, P., & Greer, C. A. (2002). Specificity of glomerular targeting by olfactory sensory axons. Journal of Neuroscience, 22, 2469–2477.

    Article  Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.

    Google Scholar 

  • Ursino, M., & La Cara, G. E. (2004). Comparison of different models of orientation selectivity based on distinct intracortical inhibition rules. Vision Research, 44, 1641–1658.

    Article  Google Scholar 

  • Vogt, C., & Vogt, O. (1919). Allgemeine Ergebnisse unserer Hirnforschung. Journal of Psychology and Neurology, 25, 279–461.

    Google Scholar 

  • von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.

    Article  Google Scholar 

  • von der Malsburg, C. (1995). Network self-organization in the ontogenesis of the mammalian visual system. In: S. F. Zornetzer, J. Davis, C. Lau, & T, McKenna (Eds.), An introduction to neural and electronic networks (2nd ed., pp. 447–462). New York: Academic.

    Google Scholar 

  • von Economo, C., & Koskinas, G. N. (1925). Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Berlin: Springer.

    Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes: A discussion of some aspects of theoretical biology. London: George Allen and Unwin.

    Google Scholar 

  • Weinberger, N. M. (2007). Associative representational plasticity in the auditory cortex: A synthesis of two disciplines. Learning and Memory, 14, 1–16.

    Article  Google Scholar 

  • Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, B194, 431–445.

    Google Scholar 

  • Wright, L. (1976). Teleological explanations. Berkeley: University of California Press.

    Book  Google Scholar 

  • Ylikoski, P. (2013). Causal and constitutive explanation compared. Erkenntnis, 2, 277–297.

    Article  Google Scholar 

  • Young, M. P., Hilgetag, C. C., & Scannell, J. W. (2000). On imputing function to structure from the behavioural effects of brain lesions. Philosophical Transactions of the Royal Society B, 355, 147–161.

    Article  Google Scholar 

  • Zhang, J., Ackman, J., Xu, H. P., & Crair, M. C. (2011). Visual map development depends on the temporal pattern of binocular activity in mice. Nature Neuroscience, 71, 1141–1152.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Plebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plebe, A. (2021). Circuital and Developmental Explanations for the Cortex. In: Calzavarini, F., Viola, M. (eds) Neural Mechanisms. Studies in Brain and Mind, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-54092-0_4

Download citation

Publish with us

Policies and ethics