Skip to main content

A Bayesian Network Approach to Identity Climate Teleconnections Within Homogeneous Precipitation Regions in Ecuador

  • Conference paper
  • First Online:
Information and Communication Technologies of Ecuador (TIC.EC) (TICEC 2019)

Abstract

Reliable precipitation predictions require an understanding of climate teleconnections over precipitation. In Ecuador, these teleconnections were studied with correlation methods, but multivariate studies with several climatic indexes simultaneously has been less study. The objective of this work is to carry out a multivariate study using Bayesian networks to identify the influence of climate indexes in homogenous precipitation regions in Ecuador. The climate teleconnections, defined as the correlation between precipitation satellite data and climate indexes, as well as the regionalization of seasonality of precipitation were used to learn a Bayesian network in R software. It was characterized the structure and strength of the relationship between the teleconnections and the precipitation. Additionally, three types of belief propagation were used: regions to climate index, climate index to regions, and interactions between indexes. This was useful to determine whether the influence of a climate index is homogeneous throughout the country or varies by region, as well as to identify interactions between different indexes. The results of this study contribute to a better understanding of precipitation in Ecuador, and to promote making evidence-based water resource decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali, S., Jan, A., Manzoor, et al.: Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions. Agric. Water Manag. 210, 88–95 (2018). https://doi.org/10.1016/j.agwat.2018.08.009

    Article  Google Scholar 

  2. Sudha, V., Venugopal, K., Ambujam, N.K.: Reservoir operation management through optimization and deficit irrigation, 93–102 (2008). https://doi.org/10.1007/s10795-007-9041-3

    Article  Google Scholar 

  3. Engler, J., Von Wehrden, H., Baumgärtner, S.: Land use policy determinants of farm size and stocking rate in Namibian commercial cattle farming. Land Use Policy 81, 232–246 (2019). https://doi.org/10.1016/j.landusepol.2018.10.009

    Article  Google Scholar 

  4. Pratiwi, R., Sukardjo, S.: Effects of rainfall on the population of Shrimps Penaeus Monodon Fabricius in Segara Anakan lagoon, Central Java, Indonesia. 2(3), 156–169 (2018). https://doi.org/10.11598/btb.2018.25.3.830

  5. Abd-elhamid, H.F., Fathy, I., Zelen, M.: Flood prediction and mitigation in coastal tourism areas, a case study: Hurghada, Egypt (2018). https://doi.org/10.1007/s11069-018-3316-x

    Article  Google Scholar 

  6. Hamududu, B., Killingtveit, A., Engineering, E.: Assessing Climate Change Impacts on Global Hydropower, 305–322 (2012). https://doi.org/10.3390/en5020305

    Article  Google Scholar 

  7. Liu, Y.-C., Di, P., Chen, S.-H., DaMassa, J.: Relationships of rainy season precipitation and temperature to climate indexes in California: long-term variability and extreme events. J. Clim. 31(5), 1921–1942 (2018). https://doi.org/10.1175/JCLI-D-17-0376.1

    Article  Google Scholar 

  8. Fierro, A.O.: Relationships between California rainfall variability and large-scale climate drivers. Int. J. Climatol. 34(13), 3626–3640 (2014). https://doi.org/10.1002/joc.4112

    Article  Google Scholar 

  9. Konapala, G., Valiya, A., Ashok, V.: Teleconnection between low flows and large-scale climate indexes in Texas River basins. Stoch. Environ. Res. Risk Assess. (2017). https://doi.org/10.1007/s00477-017-1460-6

    Article  Google Scholar 

  10. De la Torre-Gea, G., Soto-Zarazua, G.M., Guevara-Gonzalez, R.G., Rico-Garcia, E.: Bayesian networks for defining relationships among climate factors. Int. J. Phys. Sci. 6(18), 4412–4418 (2011). https://doi.org/10.1016/j.jmaa.2015.01.055

    Article  Google Scholar 

  11. Lee, J.H., Lee, J., Julien, P.Y.: Global climate teleconnection with rainfall erosivity in South Korea. CATENA 167, 28–43 (2018). https://doi.org/10.1016/j.catena.2018.03.008

    Article  Google Scholar 

  12. Mendoza, D.E., Samaniego, E.P., Mora, D.E., Espinoza, M.J., Campozano, L.V.: Finding teleconnections from decomposed rainfall signals using dynamic harmonic regressions: a Tropical Andean case study. Clim. Dyn. 1–28 (2018). https://doi.org/10.1007/s00382-018-4400-3

    Article  Google Scholar 

  13. Correa, M., Bielza, C., Pamies-teixeira, J.: Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Syst. Appl. 36(3), 7270–7279 (2009). https://doi.org/10.1016/j.eswa.2008.09.024

    Article  Google Scholar 

  14. Das, M., Ghosh, S.K.: A probabilistic approach for weather forecast using spatio-temporal inter-relationships among climate variables. In: 9th International Conference on Industrial and Information Systems, ICIIS 2014 (2015). https://doi.org/10.1109/ICIINFS.2014.7036528

  15. Zeng, Z., Hsieh, W.W., Shabbar, A., Burrows, W.R.: Seasonal prediction of winter extreme precipitation over Canada by support vector regression. Hydrol. Earth Syst. Sci. 15(1), 65–74 (2011). https://doi.org/10.5194/hess-15-65-2011

    Article  Google Scholar 

  16. Duc, H.N., Rivett, K., MacSween, K., Le-Anh, L.: Association of climate drivers with rainfall in New South Wales, Australia, using Bayesian model averaging. Theor. Appl. Climatol. 127(1–2), 169–185 (2017). https://doi.org/10.1007/s00704-015-1622-8

    Article  Google Scholar 

  17. Ebert-Uphoff, I., Deng, Y.: A new type of climate network based on probabilistic graphical models: results of boreal winter versus summer. Geophys. Res. Lett. 39(19), L197011. 1–7 (2012)

    Article  Google Scholar 

  18. Vicente-Serrano, S.M., Aguilar, E., Martínez, R., et al.: The complex influence of ENSO on droughts in Ecuador. Clim. Dyn. 48(1–2), 405–427 (2017). https://doi.org/10.1007/s00382-016-3082-y

    Article  Google Scholar 

  19. Blunden, J., Arndt, D.S., Baringer, M.O., et al.: State of the climate in 2010. Bull. Am. Meteorol. Soc. 92(6), S1-S236 (2011). https://doi.org/10.1175/1520-0477-92.6.S1

    Article  Google Scholar 

  20. Ulloa, J., Ballari, D., Campozano, L., Samaniego, E.: Two-step downscaling of Trmm 3b43 V7 precipitation in contrasting climatic regions with sparse monitoring: the case of Ecuador in Tropical South America. Remote Sens. 9(7), 758 (2017). https://doi.org/10.3390/rs9070758

    Article  Google Scholar 

  21. Rodríguez, D., Dolado, J.: Redes Bayesianas en la ingeniería del software. CcUahEs 1–21 (2007). https://doi.org/10.2196/jmir.7.3.e31

    Article  Google Scholar 

  22. Ballari, D., Giraldo, R., Campozano, L., Samaniego, E.: Spatial functional data analysis for regionalizing precipitation seasonality and intensity in a sparsely monitored region: unveiling the spatio-temporal dependencies of precipitation in Ecuador. Int. J. Climatol. 38(8), 3337–3354 (2018). https://doi.org/10.1002/joc.5504

    Article  Google Scholar 

  23. Das, K., Vyas, O.P.: A suitability study of discretization methods for associative classifiers. Int. J. Comput. Appl. 5(10), 46–51 (2010). https://doi.org/10.5120/944-1322

    Article  Google Scholar 

  24. López, D.A.G.: Algoritmo de Discretización de Series de Tiempo Basado en Entropía y su Aplicación en Datos Colposcópicos (2007). http://cdigital.uv.mx/bitstream/123456789/32352/1/garcialopezdaniel.pdf

  25. Scutari, M.: Package ‘bnlearn’ (2019). https://cran.r-project.org/web/packages/bnlearn/bnlearn.pdf

  26. Højsgaard, S.: Graphical independence networks with the gRain package for R. J. Stat. Softw. 46(10), 37–44 (2012). https://doi.org/10.4324/9780429468872-4

    Article  Google Scholar 

  27. Nagarajan, R., Scutari, M., Lèbre, S.: Bayesian Networks in R (2013) https://doi.org/10.1007/978-1-4614-6446-4

    Book  Google Scholar 

  28. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  29. Russell, S., Norvig, P.: Artificial Intelligence A Modern Approach, 3rd edn (2010). https://doi.org/10.1017/S0269888900007724

    Article  Google Scholar 

  30. Carvalho, A.: Scoring functions for learning Bayesian networks. INESC-ID Technical report 54/2009, pp. 1–27 (2009). https://pdfs.semanticscholar.org/6efe/f4bacfb14cfe4c1ababae751904431b75cc9.pdf

Download references

Acknowledgements

This study has been financed by the Corporación Ecuatoriana para el Desarrollo de la Investigación y la Academia (CEDIA) through the project CEPRA XII “Spatial representation of climatic teleconnections in the precipitation of Ecuador”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ballari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ávila, R., Ballari, D. (2020). A Bayesian Network Approach to Identity Climate Teleconnections Within Homogeneous Precipitation Regions in Ecuador. In: Fosenca C, E., Rodríguez Morales, G., Orellana Cordero, M., Botto-Tobar, M., Crespo Martínez, E., Patiño León, A. (eds) Information and Communication Technologies of Ecuador (TIC.EC). TICEC 2019. Advances in Intelligent Systems and Computing, vol 1099. Springer, Cham. https://doi.org/10.1007/978-3-030-35740-5_2

Download citation

Publish with us

Policies and ethics