Skip to main content

Assistive Technology in Ecuador: Current Status of Myoelectric Prostheses of Upper Limbs

  • Conference paper
  • First Online:
Advances in Emerging Trends and Technologies (ICAETT 2019)

Abstract

Despite the academic research on myoelectric upper limb protheses conducted in Ecuador, there are no local companies manufacturing electromyography-controlled protheses. In addition, some local universities have developed their own prototypes. However, many of the components are expensive, need to be imported, and are difficult to acquire, such as the electromyography sensors. This literature survey covers relevant studies developed by the industry and the academia on the design of upper limb protheses, both locally and internationally, with the main objective of collecting information as a starting point for the manufacture of prostheses using low-cost materials in Ecuador. Document analysis techniques were applied, to the search of scientific databases. The results are justified and finally, the acquisition and advances of upper limb prostheses with electromyography sensors related to the local context is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrade, A.O., Pereira, A.A., Walter, S., Almeida, R., Loureiro, R., Compagna, D., Kyberd, P.J.: Bridging the gap between robotic technology and health care. Biomed. Sig. Process. Control 10, 65–78 (2014)

    Article  Google Scholar 

  2. Biddiss, E.A., Chau, T.T.: Upper limb prosthesis use and abandonment: a survey of the last 25 years. Prosthet. Orthot. Int. 31(3), 236–257 (2007)

    Article  Google Scholar 

  3. Biometrics: Surface EMG sensor, November 2018. http://www.biometricsltd.com/surface-emg-sensor.htm

  4. Bionicohand: Opensource myohand, November 2018. https://bionico.org/

  5. Bionics, T.: I-LIMB ultra, November 2018. http://touchbionics.com/products/active-prostheses/i-limb-ultra

  6. Brunelli, D., Tadesse, A., Vodermayer, B., Novak, M., Castellini, C.: Low-cost wearable multichannel surface EMG acquisition for prosthetic hand control. In: 2015 6th International Workshop on Advances in Sensors and Interfaces, pp. 1–6. IEEE (2015). https://doi.org/10.1109/IWASI.2015.7184964

  7. Cañizares, A., Pazos, J., Benítez, D.: On the use of 3D printing technology towards the development of a low-cost robotic prosthetic arm. In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing, pp. 1–6. IEEE (2017). https://doi.org/10.1109/ROPEC.2017.8261579

  8. Calderon-Cordova, C., Ramírez, C., Barros, V.: Una mano de esperanza para todos. Perspectivas de Investigación 10(1), 3 (2014)

    Google Scholar 

  9. Calderon-Cordova, C., Ramírez, C., Barros, V., Quezada-Sarmiento, P.A., Barba-Guamán, L.: EMG signal patterns recognition based on feedforward artificial neural network applied to robotic prosthesis myoelectric control. In: 2016 Future Technologies Conference, pp. 868–875. IEEE (2016). https://doi.org/10.1109/FTC.2016.7821705

  10. Clauss, C., Clauss, W.: Humanbiologie kompakt, 2nd edn. Springer, Heidelberg (2017)

    Google Scholar 

  11. Collahuazo, J., Ordoñez, E.: Design and construction of a robot hand activated by electromyographic signals. In: International Symposium on Robotic and Sensors Environments, pp. 25–30. IEEE (2012). https://doi.org/10.1109/ROSE.2012.6402629

  12. CONADIS: Estadísticas de discapacidad, October 2018. https://www.consejodiscapacidades.gob.ec/estadisticas-de-discapacidad/

  13. Controzzi, M.: D5.20: first robot hand development. Report, CogLaboration (2012). http://www.coglaboration.eu/node/33

  14. DARPA: Revolutionizing Prosthetics, November 2018. https://www.darpa.mil/program/revolutionizing-prosthetics

  15. Foody, J., Maxwell, K., Hao, G., Kong, X.: Development of a low-cost underactuated and self-adaptive robotic hand. In: 38th Mechanisms and Robotics Conference, p. 9. ASME (2014). https://doi.org/10.1115/DETC2014-35075

  16. Fougner, A., Stavdahl, O., Kyberd, P., Losier, Y., Parker, P.: Control of upper limb prostheses: terminology and proportional myoelectric control–a review. IEEE Trans. Neural Syst. Rehabil. Eng. 20(5), 663–677 (2012). https://doi.org/10.1109/TNSRE.2012.2196711

    Article  Google Scholar 

  17. Gámez, B., Flores, C., Cabrera, F., Cabrera, J.: Design of a biomechanics prosthesis for child. Ingeniería UC 23(1), 58–66 (2016)

    Google Scholar 

  18. Gretsch, K., Lather, H., Peddada, K., Deeken, C., Wall, L., Goldfarb, C.: Development of novel 3D-printed robotic prosthetic for transradial amputees. Prosthet. Orthot. Int. 40(3), 400–403 (2016). https://doi.org/10.1177/0309364615579317

    Article  Google Scholar 

  19. Imtiaz, U., Bartolomeo, L., Lin, Z., Sessa, S., Ishii, H., Saito, K., Zecca, M., Takanishi, A.: Design of a wireless miniature low cost EMG sensor using gold plated dry electrodes for biomechanics research. In: 2013 IEEE International Conference on Mechatronics and Automation, pp. 957–962. IEEE (2013). https://doi.org/10.1109/ICMA.2013.6618044

  20. INEC: Camas y egresos hospitalarios 2015, October 2015. http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios-2015/

  21. INEC: Camas y egresos hospitalarios 2016, October 2016. http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios-2016/

  22. INEC: Camas y egresos hospitalarios 2017. October 2018. http://www.ecuadorencifras.gob.ec/camas-y-egresos-hospitalarios/

  23. Inglis, T., MacEachern, L.: 3D printed prosthetic hand with intelligent EMG control. Report, Carleton University (2013). http://www.doe.carleton.ca/Course/4th_year_projects/Am4_Inglis_Timothy_2013.pdf-.pdf

  24. Iqbal, N.V., Subramaniam, K.: A review on upper-limb myoelectric prosthetic control. IETE J. Res. 64(6), 740–752 (2018)

    Article  Google Scholar 

  25. Jiang, Y., Sakoda, S., Hoshigawa, S., Ye, H., Yabuki, Y., Nakamura, T., Ishihara, M., Takagi, T., Takayama, S., Yokoi, H.: Development and evaluation of simplified EMG prosthetic hands. In: 2014 IEEE International Conference on Robotics and Biomimetics, ROBIO 2014, pp. 1368–1373. IEEE (2014)

    Google Scholar 

  26. Jones, G., Rosendo, A., Stopforth, R.: Prosthetic design directives: low-cost hands within reach. In: 2017 International Conference on Rehabilitation Robotics, pp. 1524–1530. IEEE (2017). https://doi.org/10.1109/ICORR.2017.8009464

  27. Khanna, P., Singh, K., Bhurchandi, K., Chiddarwar, S.: Design analysis and development of low cost underactuated robotic hand. In: 2016 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2002–2007. IEEE (2016)

    Google Scholar 

  28. Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M., Linkman, S.: Systematic literature reviews in software engineering-a tertiary study. Inf. Softw. Technol. 52(8), 792–805 (2010)

    Article  Google Scholar 

  29. Konrad, P.: The ABC of EMG A Practical Introduction to Kinesiological Electromyography, 1st edn. Noraxon, Scottsdale (2006)

    Google Scholar 

  30. Koprnicky, J., Najman, P., Safka, J.: 3D printed bionic prosthetic hands. In: 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, pp. 1–6 (2017). https://doi.org/10.1109/ECMSM.2017.7945898

  31. Geryes, M., Charara, J., Skaiky, A., Mcheick, A., Girault, J.: A novel biomedical application for the Myo gesture control armband. In: 2017 29th International Conference on Microelectronics, pp. 1–4. IEEE (2013). https://doi.org/10.1109/ICM.2017.8268823

  32. Mallik, S., Dutta, M.: A study on control of myoelectric prosthetic hand based on surface EMG pattern recognition. Int. J. Adv. Res. Sci. Eng. 6(07), 635–646 (2017)

    Google Scholar 

  33. Monar, M., Murillo, L.: Diseño y construcción de una prótesis biónica de mano de 7 grados de libertad utilizando materiales inteligentes y control mioeléctrico adaptada para varios patrones de sujeción. Report, Universidad de las Fuerzas Armadas (2015). http://repositorio.espe.edu.ec/xmlui/handle/21000/10187

  34. Morales, D.: Diseño e implementación del sistema de control de una prótesis biónica de 7 grados de libertad utilizando materiales inteligentes y control mioeléctrico adaptada para varios patrones de sujeción. Report, Universidad de las Fuerzas Armadas (2016). http://repositorio.espe.edu.ec/handle/21000/12449

  35. Nacher, V., Cáliz, D., Jaen, J., Martínez, L.: Examining the usability of touch screen gestures for children with down syndrome. Interact. Comput. 30(3), 258–272 (2018)

    Article  Google Scholar 

  36. Ottobock: Armamputation und rehabilitation, October 2018. https://www.ottobock.de/prothetik/informationen-fuer-amputierte/von-amputation-bis-rehabilitation/leben-mit-armamputation/

  37. Ottobock: Ottobock region andina - localidades, October 2018. https://www.ottobock.com.co/information-pages/locations.html

  38. Pasquina, P., Evangelista, M., Carvalho, A., Lockhart, J., Griffin, S., Nanos, G., McKay, P., Hansen, M., Ipsen, D., Vandersea, J.: First-in-man demonstration of fully implanted myoelectric sensors for control of an advanced electromechanical arm by transradial amputees. J. Neurosci. Methods 244, 85–93 (2015). https://doi.org/10.1016/j.jneumeth.2014.07.016

    Article  Google Scholar 

  39. Pasquina, P.F., Perry, B.N., Miller, M.E., Ling, G.S., Tsao, J.W.: Recent advances in bioelectric prostheses. Neurol: Clin. Pract. 5(2), 164–170 (2015)

    Google Scholar 

  40. Poveda, G., Trujillo Guerrero, M.F., Rosales, A.: Muscular biofeedback system for the rehabilitation of the upper extremity. In: 2018 International Conference on Information Systems and Computer Science, pp. 1–8 (2018). https://doi.org/10.1109/INCISCOS.2018.00008

  41. Prensilia, S.: Self-contained robotic hand, November 2018. https://www.prensilia.com/portfolio/ih2-azzurra/

  42. Prosthetic, L.: Cost, November 2018. http://thelondonprosthetics.com/consultation/cost/

  43. Prosthetics, T.: Doing more build confidence, November 2018. http://www.taskaprosthetics.com/

  44. Van der Riet, D., Stopforth, R., Bright, G., Diegel, O.: An overview and comparison of upper limb prosthetics. In: 2013 AFRICON, pp. 1–8. IEEE (2013). https://doi.org/10.1109/AFRCON.2013.6757590

  45. Sella, G.: Clinical utilization of surface electromyography and needle electromyography: a comparison of the two methodologies. Biofeedback 35(1), 38–42 (2007)

    Google Scholar 

  46. Sharmila, K., Sarath, T., Ramachandran, K.: EMG controlled low cost prosthetic arm. In: Distributed Computing, VLSI, Electrical Circuits and Robotics, pp. 169–172. IEEE (2016). https://doi.org/10.1109/DISCOVER.2016.7806239

  47. Smith, L.: Real-time simultaneous and proportional myoelectric control using intramuscular EMG. J. Neural Eng. 11, 2–14 (2014). https://doi.org/10.1088/1741-2560/11/6/066013

    Article  Google Scholar 

  48. Stuff: Kiwis engineer the world’s first waterproof prosthetic hand, January 2019. https://www.stuff.co.nz/business/innovation/94370766/kiwis-engineer-the-worlds-first-waterproof-prosthetic-hand

  49. Townsend, W.T., Hauptman, T., Crowell, A., Zenowich, B., Lawson, J., Krutik, V., Doo, B.: Intelligent, self-contained robotic hand, January 2007. https://patents.google.com/patent/US7168748B2/en. US Patent 7,168,748

  50. Trabajo: Ministerio del trabajo establece salario básico unificado 2019, December 2018. http://www.trabajo.gob.ec/incremento-del-salario-basico-unificado-2019/

  51. Yacelga, P., Paul, H.: Construcción de una mano robótica enfocado al control del movimiento de los dedos. Report, Universidad Técnica del Norte (2016). http://repositorio.utn.edu.ec/handle/123456789/5697

  52. Zuo, K., Olson, J.: The evolution of functional hand replacement: from iron prostheses to hand transplantation. Can. J. Plast. Surg. 22(1), 44–51 (2014). https://doi.org/10.1177/229255031402200111

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Center of the Espíritu Santo University in Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Washington Caraguay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caraguay, W., Sotomayor, M., Schlüter, C., Caliz, D. (2020). Assistive Technology in Ecuador: Current Status of Myoelectric Prostheses of Upper Limbs. In: Botto-Tobar, M., León-Acurio, J., Díaz Cadena, A., Montiel Díaz, P. (eds) Advances in Emerging Trends and Technologies. ICAETT 2019. Advances in Intelligent Systems and Computing, vol 1066. Springer, Cham. https://doi.org/10.1007/978-3-030-32022-5_31

Download citation

Publish with us

Policies and ethics