1 Introduction

The Wiener–Hopf problems (WHP) [1] is a mathematical method to solve systems of integral equations extensively used in the field of applied mathematics [2], specifically in optimization theory [3], control systems [4], electromagnetics [5], image processing [6], and cloud computing system [7]. The technique acts by developing the complex-holomorphic properties of transforming functions. The Wiener operator of absolutely convergent Taylor series of a complex variable is given by the formal

$$\displaystyle \begin{aligned}w(z)=\sum_{n\in \mathbb{N}} \, \omega_n z^n, \quad \mathtt{with}\quad \|w\|{}_{\mathfrak{W}}=\sum_{n\in \mathbb{N}} |\omega_n| < \infty. \end{aligned}$$

It has been studied in many infinite spaces such as Hilbert spaces [8] and Banach spaces [9]. The main stage in many WHP is to decompose an arbitrary function into two functions. Overall, this can be done by putting

$$\displaystyle \begin{aligned} {\displaystyle\varPsi _{+}(\zeta )={\frac {1}{2\pi i}}\int _{\varOmega_{1}}\varPsi (z){\frac {dz}{z-\zeta }}} \end{aligned} $$
(1)

and

$$\displaystyle \begin{aligned} {\displaystyle \varPsi _{-}(\zeta )=-{\frac {1}{2\pi i}}\int _{\varOmega_{2}}\varPsi (z){\frac {dz}{z-\zeta }},} \end{aligned} $$
(2)

where the contours Ω 1, Ω 2 are parallel to the real line, but move above and below the point z = ζ, respectively.

In this paper, we investigate some of the linear differential inequalities involving WHP. Our discussion is based on the concept of subordination: ϕ(z) ≺ ψ(z), where \(z \in U=\{z\in \mathbb {C}: |z|<1\}\) (the open unit disk), if there occurs a Schwartz function σ(z), σ(0) = 0, |σ(z)| < 1 such that ϕ(z) = ψ(σ(z)) . We shall show that the integrals (1) and (2) preserve analytic functions with a positive real part. Special generalizations are provided involving entire functions. Moreover, we illustrate a necessary and sufficient condition for some convex inequalities containing (1) and (2).

Let \(\mathfrak {H}=\mathfrak {H}(U)\) indicate the class of analytic functions in U. For a positive integer n and a complex number ϕ, let

$$\displaystyle \begin{aligned}\mathfrak{H}[\phi,n] = \{\varphi\in \mathfrak{H}: \varphi(z) =\phi+\phi_nz^n+\phi_{n+1}z^{n+1}+ \ldots \}.\end{aligned}$$

Define special classes of analytic functions

$$\displaystyle \begin{aligned}\mathfrak{P}_n=\{\varphi \in\mathfrak{H}[1,n]: \Re (\varphi(z)) \, >0, \, \mathtt{for}\,\, \, z \in U \}\end{aligned}$$
$$\displaystyle \begin{aligned}\mathfrak{H}[0,n] = \{\varphi\in \mathfrak{H}: \varphi(z) =\phi_nz^n+\phi_{n+1}z^{n+1}+ \ldots \},\end{aligned}$$

and

$$\displaystyle \begin{aligned}\mathfrak{A} _n = \{ \varphi \in \mathfrak{H}: \varphi(z)=z+\phi_nz^n+\phi_{n+1}z^{n+1}+\ldots\},\end{aligned}$$

where \(\mathfrak {A} _1=\mathfrak {A}\) is called the normalized class satisfying the normalized condition φ(0) = φ (0) − 1 = 0 and taking the form

$$\displaystyle \begin{aligned}\mathfrak{A} = \{ \varphi \in \mathfrak{H}: \varphi(z)=z+\phi_{2}z^{2}+\ldots\}.\end{aligned}$$

Since our study is in the open unit disk, we need to define the following W-H operator (WHO)

$$\displaystyle \begin{aligned} {\displaystyle W_\zeta(\varphi )(z)={\frac {1}{2\pi i}}\int _{0}^z\varphi (\xi){\frac {d \xi}{\xi-\zeta }}}, \end{aligned} $$
(3)

where \(\varphi \in \mathfrak {H}[1,n]\) taking the expansion

$$\displaystyle \begin{aligned}\varphi(z)= 1+\phi_nz^n+\phi_{n+1}z^{n+1}+ \ldots, \quad z \in U \end{aligned}$$

Denote W 0(φ)(z) = W(φ)(z).

Definition 1

The integral operator WHO is called averaging operator, if \(\varphi \in \mathfrak {K}\) (the class of convex function) satisfies

$$\displaystyle \begin{aligned}W(\varphi )(0=\varphi(0)), \quad W(\varphi )(U)\subset co \varphi(U).\end{aligned}$$

Remark 1

For the function \(\varphi \in \mathfrak {A}\) which is starlike (S ) on U, the operator WHO is also starlike. This result comes from equation (2.5–28) [10] when α = 1.

2 Results

Our first result is that W(φ) is closed in the space \( \mathfrak {H}[1,n].\)

Proposition 1

For analytic function \(\varphi \in \mathfrak {H}[1,n],\) the operator \(W(\varphi ) \in \mathfrak {H}[1,n].\)

Proof

Let φ(z) = 1 + ϕ nz n + ϕ n+1z n+1 + …

$$\displaystyle \begin{aligned} \begin{aligned} W(\varphi )(z)&={\frac {1}{2\pi i}}\int _{0}^z\varphi (\xi){\frac {d \xi}{\xi }} \\ & ={\frac {1}{2\pi i}}\int _{0}^z [1+\phi_n\xi^n+\phi_{n+1}\xi^{n+1}+ \ldots]{\frac {d \xi}{\xi }} \\ & ={\frac {1}{2\pi i}}\int _{0}^z [\dfrac{1}{\xi}+ \phi_n\xi^{n-1}+\phi_{n+1}\xi^{n}+ \ldots] d\xi. \\ \end{aligned} \end{aligned}$$

Since dzz is accurate in a cut plane, which means a plane eliminates some line moving from the origin to ∂U, we have

$$\displaystyle \begin{aligned}\int _{0}^z \dfrac{1}{\xi}d \xi= \int _{\partial U} \dfrac{1}{z}d z=2 \pi i.\end{aligned}$$

Moreover, we have

$$\displaystyle \begin{aligned}\int_0^z \xi^{m-1}d\xi= \dfrac{\xi^m}{m}\Big|{}^z_0= \dfrac{z^m}{m}.\end{aligned}$$

Hence, we attain

$$\displaystyle \begin{aligned} \begin{aligned} W(\varphi )(z)&=\frac {1}{2\pi i}[2\pi i+ \sum_{m\geq n}\dfrac{\phi_mz^m}{m}]\\ &= 1+ \sum_{m\geq n}\dfrac{\phi_m}{2m \pi i }\, z^m,\\ \end{aligned} \end{aligned}$$

which proves that W(φ) is analytic in U. In other words \(W(\varphi ) \in \mathfrak {H}[1,n]\) taking the expansion

$$\displaystyle \begin{aligned}W(\varphi )(z)= 1+ \omega_n z^{n}+ \omega_{n+1} z^{n+1}+ \ldots , \quad z \in U.\end{aligned}$$

Proposition 2

Let λ ≠ 0 be a complex number with \(\Re (\lambda )>0\) and let n be a positive integer. If \(\varphi \in \mathfrak { P}_n \) such that

$$\displaystyle \begin{aligned}\left| \Im \Big( \dfrac{\lambda \, W(\varphi )+z W(\varphi )^\prime }{\lambda \, W(\varphi )}\Big) \right| \leq n \Re(\dfrac{1}{\lambda}).\end{aligned}$$

Then \(W(\varphi )\in \mathfrak { P}_n.\)

Proof

Set the following functions

$$\displaystyle \begin{aligned}B(z)=\dfrac{1}{\lambda}, \quad C(z)= \dfrac{\lambda \, W(\varphi )+z W(\varphi )^\prime }{\lambda \, W(\varphi )}. \end{aligned}$$

Now,

$$\displaystyle \begin{aligned} \begin{aligned} \Re\Big( B(z) \, z W(\varphi )^\prime+ C(z) W(\varphi ) \Big)&= \Re\Big( \dfrac{1}{\lambda} \, z W(\varphi )^\prime+ \dfrac{\lambda \, W(\varphi )+z W(\varphi )^\prime }{\lambda \, W(\varphi )} W(\varphi ) \Big)\\ &= \Re\Big( \dfrac{\lambda \, W(\varphi )+2z W(\varphi )^\prime }{\lambda \, } \Big)\\ &=\Re\Big( W(\varphi )\Big)+ 2\Re\Big( \dfrac{z W(\varphi )^\prime }{\lambda \, } \Big)\\ &=\Re\Big(1+ \omega_n z^{n}+ \omega_{n+1} z^{n+1}+ \ldots \Big)\\ &+ 2\Re\Big( \dfrac{n \omega_n}{\lambda} z^{n}+ \dfrac{ (n+1)\omega_{n+1}}{\lambda} z^{n+1}+ \ldots \Big)\\ &=1+\Re\Big( (1+ \dfrac{2n}{\lambda} ) \omega_n z^{n}+ (1+ \dfrac{2(n+1)}{\lambda} ) \omega_{n+1} z^{n+1}+ \ldots \Big).\\ \end{aligned} \end{aligned}$$

By setting

$$\displaystyle \begin{aligned}\lambda= \dfrac{2m}{2\pi \, i m-1}, \quad m\geq n,\end{aligned}$$

we have

$$\displaystyle \begin{aligned}\Re\Big( B(z) \, z W(\varphi )^\prime+ C(z) W(\varphi ) \Big)=\Re(\varphi(z))>0.\end{aligned}$$

Hence, in view of Corollary 4.1a.1 in [10], we obtain \(W(\varphi )\in \mathfrak { P}_n.\)

Proposition 3

Let λ ≠ 0 be a complex number with \(\Re (\lambda )>-n,\) where n is a positive integer. Let \(\varphi \in \mathfrak {A}_n\) and

$$\displaystyle \begin{aligned}\Re\Big(\lambda+n- \dfrac{z W(\lambda\varphi )^ \prime (z)}{W(\lambda\varphi )(z) } \Big)>0. \end{aligned}$$

If |φ(z)| < M, M > 0, then \(W(\lambda \varphi )\in \mathfrak { A}_n\) and |W(λφ)(z)| < N, N > 0.

Proof

First, we show that \(W(\varphi )\in \mathfrak { A}_n.\) Let φ(z) = z + ϕ nz n + ϕ n+1z n+1 + …

$$\displaystyle \begin{aligned} \begin{aligned} W(\lambda\varphi )(z)&={\frac {1}{2\pi i}}\int _{0}^z\lambda\varphi (\xi){\frac {d \xi}{\xi }} \\ & ={\frac {\lambda}{2\pi i}}\int _{0}^z [\xi+\phi_n\xi^n+\phi_{n+1}\xi^{n+1}+ \ldots]{\frac {d \xi}{\xi }} \\ & ={\frac {\lambda}{2\pi i}}\int _{0}^z [1+ \phi_n\xi^{n-1}+\phi_{n+1}\xi^{n}+ \ldots] d\xi. \\ \end{aligned} \end{aligned}$$

By letting λ = 2πi, we have

$$\displaystyle \begin{aligned}W(\lambda\varphi )(z)= z+ \omega_nz^n+\ldots \in \mathfrak{ A}_n. \end{aligned}$$

Assume the following functions:

$$\displaystyle \begin{aligned}B(z)=1, \quad C(z)= \dfrac{\lambda W(\lambda\varphi )(z)-zW(\lambda\varphi )^\prime(z)}{W(\lambda\varphi )(z)}, \quad D(z)=\varphi(z)-\lambda W(\lambda\varphi )(z) \end{aligned}$$
$$\displaystyle \begin{aligned} \begin{aligned} &|B(z)zW(\lambda\varphi )^ \prime(z)+C(z)W(\lambda\varphi )(z)+D(z) |\\ &=\Big | zW(\lambda\varphi )^ \prime(z)+\dfrac{\lambda W(\lambda\varphi )(z)-zW(\lambda\varphi )^\prime(z)}{W(\lambda\varphi )(z)}W(\lambda\varphi )(z)+\varphi(z)-\lambda W(\lambda\varphi )(z)\Big|\\ &=|\varphi(z)|< M. \end{aligned} \end{aligned}$$

Hence, in view of Corollary 4.1b.1 in [10], we have

$$\displaystyle \begin{aligned}|W(\lambda\varphi )|< sup_{z \in U} \Big\{\dfrac{M+|D(z)|}{|nB(z)+C(z)|}\Big\}:= N.\end{aligned}$$

This completes the proof.

Proposition 4

Let n be a positive integer and let \(\varphi \in \mathfrak {H}[0,n]\) achieving

$$\displaystyle \begin{aligned}\Re\Big(n- \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) } \Big)\geq 0. \end{aligned}$$

If |φ(z)| < M, M > 0 and

$$\displaystyle \begin{aligned} \Big|n-\dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) }\Big| \geq \dfrac{2M}{N}\end{aligned}$$

then \(W(\varphi )\in \mathfrak { H}[0,n]\) and |W(φ)(z)| < N, N > 0.

Proof

First, we show that \(W(\varphi )\in \mathfrak { H}[0,n].\) Let φ(z) = ϕ nz n + ϕ n+1z n+1 + …

$$\displaystyle \begin{aligned} \begin{aligned} W(\varphi )(z)&={\frac {1}{2\pi i}}\int _{0}^z \varphi (\xi){\frac {d \xi}{\xi }} \\ & ={\frac {1}{2\pi i}}\int _{0}^z [\phi_n\xi^n+\phi_{n+1}\xi^{n+1}+ \ldots]{\frac {d \xi}{\xi }} \\ & ={\frac {1}{2\pi i}}\int _{0}^z [ \phi_n\xi^{n-1}+\phi_{n+1}\xi^{n}+ \ldots] d\xi. \\ \end{aligned} \end{aligned}$$

Thus, we obtain

$$\displaystyle \begin{aligned}W(\varphi )(z)= \omega_nz^n+\ldots \in \mathfrak{ H}[0,n]. \end{aligned}$$

Assume the following functions:

$$\displaystyle \begin{aligned}B(z)=1, \quad C(z)=- \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) }, \quad D(z)=\varphi(z) \end{aligned}$$
$$\displaystyle \begin{aligned} \begin{aligned} &|B(z)zW(\lambda\varphi )^ \prime(z)+C(z)W(\varphi )(z)+D(z) |\\ &=\Big | zW(\lambda\varphi )^ \prime(z)- \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) }W(\varphi )(z)+\varphi(z)\Big|\\ &=|\varphi(z)|< M. \end{aligned} \end{aligned}$$

Hence, in view of Theorem 4.1b in [10], we have |W(φ)(z)| < N. This completes the proof.

Proposition 5

Let M > 0, N > 0 and let \(\varphi \in \mathfrak {H}[0,1]\) achieving

$$\displaystyle \begin{aligned}\Big| \Im( \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) }) \Big|\geq \dfrac{M}{N}. \end{aligned}$$

Then \(W(\varphi )\in \mathfrak { H}[0,1]\) and |W(φ)(z)| < N.

Proof

It is clear that \(W(\varphi )\in \mathfrak { H}[0,1].\) Consider the following functions:

$$\displaystyle \begin{aligned}B(z)=1, \quad C(z)=- \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) } \end{aligned}$$
$$\displaystyle \begin{aligned} \begin{aligned} &|B(z)zW(\lambda\varphi )^ \prime(z)+C(z)W(\varphi )(z) |\\ &=\Big | zW(\lambda\varphi )^ \prime(z)- \dfrac{z W(\varphi )^ \prime (z)}{W(\varphi )(z) }W(\varphi )(z)\Big|\\ &=0< M. \end{aligned} \end{aligned}$$

Hence, in view of Theorem 4.1c in [10], we have

$$\displaystyle \begin{aligned}|W(\varphi )(z)|< N:= \sup_{z\in U} \{\dfrac{M}{|B(z).| |\Im C(z)/B(z) |}\}.\end{aligned}$$

This completes the proof.

Next, we discuss the upper bound of the WHO with respect to convex analytic function, by using the second-order differential subordination.

Theorem 1

Let h be convex in U and let \(\varphi \in \mathfrak { H}[h(0),1]\) satisfying the subordination

$$\displaystyle \begin{aligned}z^2W(\varphi )^ {\prime \prime}(z) + zW(\varphi )^ \prime(z)+W(\varphi )(z) \prec h(z)\end{aligned}$$

then W(φ)(z) ≺ h(z).

Proof

Since h is convex then it has the normalized property h(0) = 0 then we have \(W(\varphi )(z) \in \mathfrak { H}[0,1]\) (Proposition 5). Consider the following functions:

$$\displaystyle \begin{aligned}A=1, \quad B(z)= 1, \quad D(z)=0.\end{aligned}$$

Since \(\Re (B(z))=A=1\) then in view of Theorem 4.1f [10], we have W(φ)(z) ≺ h(z).

Theorem 2

Let \(\varphi \in \mathfrak { H}[0,1]\) satisfying the subordination

$$\displaystyle \begin{aligned}z^2W(\varphi )^ {\prime \prime}(z) + zW(\varphi )^ \prime(z)+W(\varphi )(z) \prec z\end{aligned}$$

then \(W(\varphi )(z)\prec \dfrac {z}{2}\) and z∕2 is the best (0,1)-dominant.

Proof

It is clear that \(W(\varphi )(z) \in \mathfrak { H}[0,1]\) (Proposition 5). Consider the following real numbers:

$$\displaystyle \begin{aligned}A=1, \quad B= 1, \quad C=1.\end{aligned}$$

Then in view of Theorem 4.1g [10], we have \(W(\varphi )(z)\prec \dfrac {z}{2}\) and z∕2 is the best (0,1)-dominant.

Theorem 3

Let n be a positive integer and \(\varphi \in \mathfrak { H}[1,n]\) satisfying the linear first differential subordination

$$\displaystyle \begin{aligned}zW(\varphi )^ \prime(z)+W(\varphi )(z) \prec [\dfrac{1+z}{1-z}]^\alpha\end{aligned}$$

then

$$\displaystyle \begin{aligned}W(\varphi )(z)\prec [\dfrac{1+z}{1-z}]^\beta\end{aligned}$$

where α := β + o(n) > 0.

Proof

It is clear that \(W(\varphi )(z) \in \mathfrak { H}[1,n]\) (Proposition 1). According to Theorem 3.1c [10], we have

$$\displaystyle \begin{aligned}W(\varphi )(z)\prec [\dfrac{1+z}{1-z}]^\beta.\end{aligned}$$

Theorem 4

Let λ be a real number with |λ|≤ 1. If \(\varphi \in \mathfrak { H}[1,n]\) satisfying \(\Re ( \varphi (z))>0\), then the generalized WHO achieves

$$\displaystyle \begin{aligned}\Re( W_\lambda(\varphi )(z))=\Re( {\frac {1}{2\pi i e^{\lambda z^n}}}\int _{0}^z\varphi (\xi)e^{\lambda \xi^n}{\frac {d \xi}{\xi }}) >0 \end{aligned}$$

such that

$$\displaystyle \begin{aligned}|\Im ({\frac {1}{2\pi i e^{\lambda z^n}}})^\prime| \leq n \Re({\frac {1}{2\pi i z \, e^{\lambda z^n}}}). \end{aligned}$$

Proof

According to the relation 4.2–6 [10], we have the desire inequality.

Note that W 0(φ)(z)) = W(φ)(z)).

Theorem 5

Let λ be a real number with |λ|≤ 1 and γ > 0. If \(\varphi \in \mathfrak { H}[1,n]\) satisfying \(\Re ( \varphi (z))>0\) then the generalized WHO achieves

$$\displaystyle \begin{aligned}\Re( W_{\lambda, \gamma}(\varphi )(z))=\Re( {\frac {1}{2\pi i z^{\gamma-1}\, \, e^{\lambda z^n}}}\int _{0}^z\varphi (\xi)\xi^{\gamma-1} \, e^{\lambda \xi^n}{\frac {d \xi}{\xi }}) >0. \end{aligned}$$

Proof

A direct application of the relation 4.2–4 [10], we have the desire inequality.

Note that W 0,1(φ)(z)) = W(φ)(z)). Theorems 4 and 5 show that the generalized WHO satisfies the relation

$$\displaystyle \begin{aligned}\varphi(z)\in \mathfrak{P}_n \Rightarrow W_{\lambda, \gamma}(\varphi )(z)) \in \mathfrak{P}_n. \end{aligned}$$

Theorem 6

Let φ be an analytic function in U with \(\varphi (0) = 1\,\,\, (\varphi \in \mathfrak { H}[1,n] )\) . If either of the following three conditions is achieved:

  • $$\displaystyle \begin{aligned}1+ \lambda \dfrac{z W(\varphi )(z)^\prime}{W(\varphi )(z)}\prec e^{z}, \quad \lambda > 1\end{aligned}$$
  • $$\displaystyle \begin{aligned}1+ \lambda \dfrac{z W(\varphi )(z)^\prime}{W(\varphi )(z)} \prec \dfrac{1+Az}{1+Bz}\end{aligned}$$
    $$\displaystyle \begin{aligned} \Big(-1 < B < A \leq1, \,\,\, |\lambda| \geq \, \dfrac{A - B}{1 - |B|}\Big)\end{aligned}$$
  • $$\displaystyle \begin{aligned}1+ \lambda \dfrac{z W(\varphi )(z)^\prime}{W(\varphi )(z)}\prec \sqrt{1+z}, \quad \lambda \geq 1 \end{aligned}$$

then

$$\displaystyle \begin{aligned}W(\varphi )(z)\prec e^z.\end{aligned}$$

Proof

According to Proposition 1, we have \(W(\varphi )(z)\in \mathfrak { H}[1,n].\) Let h(z) be the convex univalent function defined by h(z) = e z . Then, obviously λ z (h(z)) is starlike. The main aim of the proof reads on the information that if the subordination

$$\displaystyle \begin{aligned}1+ \lambda \dfrac{z W(\varphi )(z)^\prime}{W(\varphi )(z)}\prec 1+ \lambda \dfrac{ \, z \, (h(z) )^{\prime}}{h(z)}=1+\lambda z:=\varTheta(z)\end{aligned}$$

is achieved, then W(φ)(z) ≺ h(z) (see Corollary 3.4h.1, p. 135 [10]). By Remark 2.1 in [11] and the first condition, we obtain

$$\displaystyle \begin{aligned}h(z) \prec\varTheta(z)\Longrightarrow W(\varphi )(z) \prec h(z).\end{aligned}$$

Now, let \(\psi (z):= \dfrac {1+Az}{1+Bz}\) then \(\psi ^{-1}(\eta )=\dfrac {\eta -1}{A-B\eta }. \) But ψ(z) ≺ h(z) means z ≺ ψ −1(Θ(z)) and

$$\displaystyle \begin{aligned}|\psi^{-1}(\varTheta(e^{it})| = |\dfrac{\lambda\, e^{it}}{(A-B)-\lambda \, B \, e^{it}}| \geq \dfrac{\lambda}{A-B+\lambda|B|} \geq1 \end{aligned}$$

for λ ≥ (A − B)(1 −|B|). Hence,

$$\displaystyle \begin{aligned}h(z) \prec\varTheta(z)\Longrightarrow W(\varphi )(z) \prec h(z).\end{aligned}$$

Finally, let \(\varLambda (z)= \sqrt {1+z}\), where Λ(U) ⊂ Θ(U) then if λ ≥ 1, we attain

$$\displaystyle \begin{aligned}h(z) \prec\varTheta(z)\Longrightarrow W(\varphi )(z) \prec h(z).\end{aligned}$$

A direct application of Lemma 4.4b in [10], we get the following outcome:

Theorem 7

Let \(\varphi \in \mathfrak {K}\) such that φ(0) = 0 and \(h \in \mathfrak {K}\) such that φ(z) ≺ h(z). Then the WHO is averaging operator on \(\mathfrak {K}\) satisfying W(φ)(z) ≺ h(z).

Next, we discuss the case φ is not convex.

Theorem 8

Let \(\varphi \in \mathfrak {H}(U)\) and \(h \in \mathfrak {K}\) such that φ(z) ≺ h(z) and

$$\displaystyle \begin{aligned}\Re \Big( - \dfrac{W(\varphi )(z)- \varphi(z)}{z W(\varphi )(z)^ \prime}\Big)>0.\end{aligned}$$

Then the WHO is averaging operator on \(\mathfrak {K}\) satisfying W(φ)(z) ≺ h(z).

Proof

Since \(\varphi \in \mathfrak {H}(U)\) then we obtain \( W(\varphi ) \in \mathfrak {H}(U).\) A computation leads to

$$\displaystyle \begin{aligned} \begin{aligned} W(\varphi )(z) - \dfrac{W(\varphi )(z)- \varphi(z)}{z W(\varphi )(z)^ \prime}.zW(\varphi )(z)^ \prime= \varphi(z)\prec h(z). \end{aligned} \end{aligned}$$

In view of Theorem 3.1a in [10], we get

$$\displaystyle \begin{aligned} \varphi(z)\prec h(z) \Longrightarrow W(\varphi )(z) \prec h(z),\end{aligned}$$

which implies that WHO is averaging operator on \(\mathfrak {K}\).

Theorem 9

Let \(\varphi \in \mathfrak {H}(U)\) and h is starlike on U. If φ(z) ≺ h(z), then

$$\displaystyle \begin{aligned}W(\varphi )(z) \prec\, W(h )(z).\end{aligned}$$

Proof

By Remark 1, W(h)(z) is starlike on U. Suppose that \(W(\varphi )(z) \nprec \, W(h )(z),\) then there occur some points z 0 ∈ U and η 0 ∈ ∂U such that W(φ)(z 0) = W(h)(η 0) and W(φ)(U 0) ⊂ W(h)(U). Thus, by Lemma 2.2c [10], we obtain

$$\displaystyle \begin{aligned}z_0 \, W(\varphi )(z_0)^ \prime = k\eta_0 W(h )^ \prime (\eta_0), \quad k\geq 1.\end{aligned}$$

This implies that

$$\displaystyle \begin{aligned}\varphi(z_0) = k \, h(\eta_0) \notin \,h(U), \end{aligned}$$

which contradicts the assumption φ(z) ≺ h(z). Hence, W(φ)(z) ≺ W(h)(z).