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Preface

There are three reasons for the study of inequalities: practical,
theoretical, and aesthetic

—Richard Bellman (1920–1984)

Differential and Integral Inequalities presents a number of papers written by
some eminent mathematicians who have greatly contributed in the vast domain
of inequalities. These inequalities play an instrumental role both as a separate
domain of research and as a tool for the understanding and solution of a number of
other problems deriving from real and complex analysis, operator theory, functional
analysis, differential geometry, metric geometry, and related subjects.

The chapters of this book focus mainly on Cauchy–Schwarz inequality, Fejer
inequalities, Hardy–Sobolev inequalities, Taylor-type representations, weighted
inequalities for Riemann–Stieltjes integral, Poincaré-type inequalities, inequalities
connected with generating functions, error estimates of approximations for the
complex-valued integral transforms, operator inequalities, Hermite–Hadamard-type
integral inequalities, multiple Hardy–Littlewood integral operator norm inequalities,
Levin–Steckin inequality, Lyapunov-type inequalities, inequalities in statistics and
information measures, norm inequalities for generalized fractional integral oper-
ators, variational inequalities, integral equations and inequalities, exact bounds on
the zeros of solutions of second-order differential inequalities, double-sided Taylor’s
approximations, Meir–Keeler sequential contractions, inequalities for harmonic-
exponential convex functions, and multidimensional half-discrete Hardy–Hilbert-
type inequalities with a general homogeneous kernel.

We would like to thank all the contributors of papers in this volume who,
throughout this collective effort, made this publication possible. Last but not least,
we would like to acknowledge the superb assistance of the Springer staff for the
publication of this work.

Cluj-Napoca, Romania Dorin Andrica
Athens, Greece Themistocles M. Rassias
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Convexity Variants and Fejer Inequalities
with General Weight

Shoshana Abramovich

Abstract Some recent results related to convexity, superquadracity and Fejer type
inequalities, in particular with generalized weight functions are discussed in this
presentation.

1 Introduction

The Hermite–Hadamard inequality says that for any convex function f : I → R, I

an interval, and for a, b ∈ I

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (t) dt ≤ f (a)+ f (b)
2

(1)

holds, and the Fejer inequality reads

f

(
a + b

2

)∫ b

a

p (x) dx ≤
∫ b

a

f (t) p(t)dt ≤ f (a)+ f (b)
2

∫ b

a

p (x) dx,

(2)

when f is convex and p : [a, b] → R is non-negative, integrable and symmetric
around the midpoint x = a+b

2 .
One of many developments related to these inequalities is to replace the notion

of classical convexity by other variants and generalizations of convexity. An early
paper is that by Dragomir et al. [12], see also [5, 6, 11, 15, 17] and [19].

In particular, in the book [16] by C. Niculescu and L.E. Persson, several
generalizations, variants and applications are described and are placed into a more
general context of convexity. On this subject see also the book by Pečarić et al. [17].
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2 S. Abramovich

The development presented here deals with and emphasizes the Fejer and other
types of inequalities with weight function p not necessarily symmetric around the
mid point x = a+b

2 of the interval [a, b], for convex, superquadratic,N -quasiconvex

functions, and functions ϕ for which ϕ
′
(x) /p (x) is increasing.

We start with quoting some definitions and lemmas that we mention in the
theorems presented in the sequel:

Definition 1 A function ϕ : [0, B) → R is superquadratic provided that for all
x ∈ [0, B) there exists a constant Cϕ (x) ∈ R such that the inequality

ϕ (y) ≥ ϕ (x)+ Cϕ (x) (y − x)+ ϕ (|y − x|)

holds for all y ∈ [0, B) , (see [7, Definition 2.1], there [0,∞) instead [0, B)).

Lemma 1 ([7, Inequality 1.2]) The inequality

∫
ϕ (f (s)) dμ (s) ≥ ϕ

(∫
f dμ

)
+
∫
ϕ

(∣∣∣∣f (s)−
∫
f dμ

∣∣∣∣
)
dμ (s)

holds for all probability measures μ and all non-negative, μ−integrable functions
f if and only if ϕ is superquadratic.

Lemma 2 ([7, Lemma 2.1]) Let ϕ be a superquadratic function with Cϕ (x) as in
Definition 1.

(i) Then ϕ (0) ≤ 0.
(ii) If ϕ (0) = ϕ ′ (0) = 0, then Cϕ (x) = ϕ ′ (x) whenever ϕ is differentiable on

[0, B) .
(iii) If ϕ ≥ 0, then ϕ is convex and ϕ (0) = ϕ ′ (0) = 0.

Corollary 1 Suppose that f is superquadratic. Let 0 ≤ xi < B, i = 1, . . . , n and
let x =∑n

i=1 aixi, where ai ≥ 0, i = 1, . . . , n and
∑n
i=1 ai = 1. Then

n∑
i=1

aif (xi)− f (x) ≥
n∑
i=1

aif (|xi − x|) . (3)

If f is non-negative, it is also convex and the inequality refines Jensen’s inequality.
In particular, the functions f (x) = xr , x ≥ 0, r ≥ 2 are superquadratic and
convex, and equality holds in (3) when r = 2.

Lemma 3 ([7, Lemma 3.1]) Suppose ϕ : [0, B) → R is continuously differen-
tiable and ϕ (0) ≤ 0. If ϕ

′
is superadditive or ϕ

′
(x) /x is non-decreasing, then ϕ is

superquadratic and Cϕ (x) = ϕ ′ (x) with Cϕ (x) as in Definition 1.

Definition 2 ([5]) Let N ∈ N. A real-valued function ψN defined on an interval
[a, b) with 0 ≤ a < b ≤ ∞ is called N -quasiconvex if it can be represented as the
product of a convex function ϕ and the function p (x) = xN . For N = 0, ψ0 = ϕ
and for N = 1 the function ψ1 (x) = xϕ (x) is called 1-quasiconvex function.
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This presentation is organized as follows: After this introductory section we
discuss in Section 2 results proved in [6] and [14] about Fejer type inequalities
where the weight function is not symmetric around a+b

2 . Section 3 deals with
Hermite–Hadamard and Fejer type inequalities for N -quasiconvex functions that
appear in [5] which can also be seen as Fejer type inequalities for convex functions
with non-symmetric weight functions. Section 4 discusses the monotonicity of some
functions related to the Fejer inequality proved in [6, 8], and [13]. Section 5 quotes
from [1–3, 9, 10] and [18] which deal with normalized Jensen functional and their
bounds.

2 Fejer Type Inequalities with Non-symmetric Weight
Functions

Firstly, Fejer’s inequality for special convex functions is presented by replacing the
non-negative symmetric function p = p (x) in (2) with monotone functions.

Theorem 1 ([6, Theorem 5 ]) Let ϕ : [a, b] → R be a differentiable and
convex function. Let p : [a, b] → R be a non-negative, integrable and monotone
function.

(a) Let p
′
(x) ≤ 0, a ≤ x ≤ b and ϕ (a) ≤ ϕ (b). Then

∫ b

a

ϕ (t) p(t)dt ≤ ϕ (a)+ ϕ (b)
2

∫ b

a

p (x) dx. (4)

(b) Let p
′
(x) ≥ 0, a ≤ x ≤ b and ϕ (a) ≤ ϕ ( a+b2

)
. Then

ϕ

(
a + b

2

)∫ b

a

p (x) dx ≤
∫ b

a

ϕ (t) p(t)dt. (5)

(c) If p
′
(x) ≥ 0, a ≤ x ≤ b and ϕ (a) ≥ ϕ (b), then (4) holds.

(d) If p
′
(x) ≤ 0, a ≤ x ≤ b and ϕ (a) ≥ ϕ ( a+b2

)
, then (5) holds.

Remark 1 In particular cases (a) and (b) hold when ϕ is increasing and cases (c)
and (d) hold when ϕ is decreasing.

Secondly, we quote three Hermite–Hadamard and Fejer type inequalities result-

ing from functions ϕ and weight function p where ϕ
′
p

is non-decreasing. These
theorems appear in [14] where the following is proved:

Theorem 2 ([14, Corollary 2.3]) Let ϕ : [0, b] → R be a differentiable function

and let p : [a, b] → (0,∞) be an integrable function. If ϕ
′
p

is increasing, then
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1∫ b
a
p (x) dx

∫ b

a

ϕ (x) p (x) dx ≤ ϕ (a)+ ϕ (b)
2

. (6)

Theorem 3 ([14, Theorem 2.6]) Let ϕ : [a, b] → R be a convex function and let
p : [a, b] → (0,∞) be an integrable function. If ϕ and p are monotonic in the
same direction, then

∫ b

a

ϕ (x) p (x) dx ≥ ϕ
(
a + b

2

)∫ b

a

p (x) dx.

Theorem 4 ([14, Theorem 2.11]) Let ϕ : [a, b] → R be a convex function and let
p : [a, b] → (0,∞) be a continuous function. If the function ϕ and p are monotonic
in the opposite directions, then

1∫ b
a
p (x) dx

∫ b

a

ϕ (x) p (x) dx ≤ ϕ (a)+ ϕ (b)
2

−
(

1

2
− G

b − a
)
δϕ

where

G = 1∫ b
a
p (x) dx

∫ b

a

∣∣∣∣x − a + b2

∣∣∣∣p (x) dx,

and

δϕ = ϕ (a)+ ϕ (b)− 2ϕ

(
a + b

2

)
.

In the next three corollaries we choose p that appears in the three Theorems 2, 3
and 4 to be p (x) = x. As it is given in these three theorems that p (x) ≥ 0, we deal
now with x ≥ 0.

Corollary 2 From Theorem 2 we get that for a differentiable function ϕ : [a, b)→
R, 0 ≤ a < b, for which ϕ

′
(x)
x

is increasing, inequality (6) is

1

b − a
∫ b

a

ϕ (x) xdx ≤ ϕ (a)+ ϕ (b)
2

a + b
2
. (7)

Remark 2 Inequality (7) in Corollary 2 is satisfied for a large set of those
superquadratic functions that satisfy Lemma 3.

From Theorem 3 we get when p (x) = x ≥ 0:

Corollary 3 Let ϕ : [a, b] → R, 0 ≤ a ≤ x ≤ b be a convex increasing function.
Then,
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1

b − a
∫ b

a

ϕ (x) xdx ≥ ϕ
(
a + b

2

)(
a + b

2

)

Corollary 4 follows from Theorem 4 for p (x) = x ≥ 0 and it says that

Corollary 4 If ϕ is a convex decreasing function on [a, b], 0 ≤ a < b, then

1

b − a
∫ b

a

ϕ (x) xdx

≤
(
ϕ (a)+ ϕ (b)

4
+ 1

2
ϕ

(
a + b

2

))
a + b

2

holds.

3 On Fejer Type Inequalities for N -Quasiconvex Functions
and More on Non-symmetric Weight Functions

We quote from [5] some refined Hermite–Hadamard and Fejer type inequalities for
N -quasiconvex functions that are used in the theorems in the sequel, in particular in
Section 4 for N = 1 and in Section 5. On this subject see also [1] and [4].

In Section 2 Fejer type inequalities where the weight function p is not symmetric
are presented. Therefore we emphasize also here that the results about Hermite–
Hadamard and Fejer type Inequalities can be seen as Hermite–Hadamard and Fejer
type inequalities for the convex functions ϕ where the general weight function is
q (x) = xNp (x) , N = 0, 1, . . . , , x ≥ 0, and for the N -quasiconvex function
ψN (x) = xNϕ (x) the weight function is q (x) = p (x) , where p (x) is symmetric
around x = a+b

2 .
This is the reason that the theorems and the examples in this section are presented

in two forms, first as inequalities related to N -quasiconvex functions and then as
inequalities related to convex functions.

The N -quasiconvex form of Fejer type inequalities with symmetric weight
function p reads:

Theorem 5 ([5, Theorem1 and Corollary 1]) Let ϕ : [a, b] → R, a ≥ 0 be
differentiable, convex and ψN (x) = xNϕ (x) , N = 0, 1, 2, . . .. Let p : [a, b] → R

be non-negative, integrable and symmetric around x = a+b
2 .

Then,

∫ b

a

ψN (x) p (x) dx

≥ ψN
(
a + b

2

)∫ b

a

p (x) dx
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+
∫ b

a

(
x − a + b

2

)2 N∑
k=1

xk−1ψ
′
N−k

(
a + b

2

)
p (x) dx

and

∫ b

a

ψN (x) p (x) dx

≤ ψN (a)+ ψN (b)
2

∫ b

a

p (x) dx

− 1

(b − a)
N∑
k=1

∫ b

a

bk−1 (x − a) (b − x)2 ψ ′
N−k (x) p (x) dx

− 1

(b − a)
N∑
k=1

∫ b

a

ak−1 (x − a)2 (b − x)ψ ′
N−k (x) p (x) dx.

In particular if ϕ : [a, b] → R, a ≥ 0, is a differentiable and convex function and
ψ1 (x) = xϕ (x), then

ψ1

(
a + b

2

)∫ b

a

p (x) dx + ψ ′
0

(
a + b

2

)∫ b

a

(
x − a + b

2

)2

p (x) dx (8)

≤
∫ b

a

ψ1 (x) p (x) dx

≤ ψ1 (a)+ ψ1 (b)

2

∫ b

a

p (x) dx −
∫ b

a

ψ
′
0 (x) (b − x) (x − a) p (x) dx,

where ϕ = ψ0.

The convex form of Theorem 5 with the weight function xNp (x) reads:

Theorem 5* Let ϕ : [a, b] → R, a ≥ 0 be differentiable, convex and N =
1, 2, . . .. Let p : [a, b] → R be non-negative, integrable and symmetric around
x = a+b

2 . Then,

∫ b

a

ϕ (x)
(
xNp (x)

)
dx

≥ ϕ
(
a + b

2

)((
a + b

2

)N ∫ b

a

p (x) dx

)

+
∫ b

a

(
x − a + b

2

)2
((

∂

∂x

(
xN − xN
x − x ϕ (x)

)
|
x= a+b2

)
p (x)

)
dx,
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and

∫ b

a

ϕ (x)
(
xNp (x)

)
dx

≤ a
Nϕ (a)+ bNϕ (b)

2

∫ b

a

p (x) dx

− 1

(b − a)
∫ b

a

[
(x − a) (b − x)2 ∂

∂x

(
bN − xN
b − x ϕ (x)

)

+ (x − a)2 (b − x) ∂
∂x

(
xN − aN
x − a ϕ (x)

)]
p (x) dx.

In particular if ϕ : [a, b] → R, a ≥ 0, is a differentiable and convex function,
then

ϕ

(
a + b

2

)(
a + b

2

)∫ b

a

p (x) dx + ϕ ′
(
a + b

2

)∫ b

a

(
x − a + b

2

)2

p (x) dx

≤
∫ b

a

ϕ (x) (xp (x)) dx

≤ aϕ (a)+ bϕ (b)
2

∫ b

a

p (x) dx −
∫ b

a

ϕ
′
(x) (b − x) (x − a) p (x) dx.

The 1-quasiconvex form of (8) with the weight function p (x) = 1 reads:

Example 1 ([5, Example 1]) If ϕ : [a, b] → R, a ≥ 0, is differentiable, convex,
ψ1 (x) = xϕ (x) and ψ0 = ϕ, then

ψ1

(
a + b

2

)
+ 1

12
ψ
′
0

(
a + b

2

)
(b − a)2

≤ 1

b − a
∫ b

a

ψ1 (x) dx

≤ ψ1 (a)+ ψ1 (b)

2
− 1

b − a
∫ b

a

ψ
′
0 (x) (b − x) (x − a) dx.

This is a refinement of the Hermite–Hadamard inequality (1) when ψ0 = ϕ is
increasing.

The convex form of Example 1 with the weight function q (x) = x reads:

Example 1* ([5, Example 1]) If ϕ : [a, b] → R, a ≥ 0, is differentiable and
convex, then
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ϕ

(
a + b

2

)(
a + b

2

)
+ 1

12
ϕ
′
(
a + b

2

)
(b − a)2

≤ 1

b − a
∫ b

a

ϕ (x) xdx

≤ aϕ (a)+ bϕ (b)
2

− 1

b − a
∫ b

a

ϕ
′
(x) (b − x) (x − a) dx.

This is a Fejer type inequality when the weight function is q (x) = x.

It is proved also in [5] that:

Theorem 6 Let ϕ : [a, b] → R, a ≥ 0, be a differentiable, convex function and let
N = 1, 2, 3, . . . ,. Then forψ1 (x) = xϕ (x) and ϕ = ψ0 we get that the inequalities

1

b − a
∫ b

a

ψ1 (x) dx

≤ b − a
6
ψ0 (b)+ b + 2a

3

1

b − a
∫ b

a

ψ0 (x) dx

≤ (b − a) (ψN (a)+ ψN (b))
6(bN − aN)

+ (b
N+1 − aN+1)+ 2ab(bN−1 − aN−1)

3(bN − aN)
1

b − a
∫ b

a

ψ0 (x) dx

≤ ψ1 (a)+ ψ1 (b)

6
+ (b + a)

3

1

b − a
∫ b

a

ψ0 (x) dx

≤ ψ1 (a)+ ψ1 (b)

2
− (b − a) (ψ0 (b)− ψ0 (a))

6
(9)

hold, which are Hermite–Hadamard refinements of (1) for ψ1 when ψ0 (b) −
ψ0 (a) ≥ 0.

The convex form of Theorem 6 with a non-symmetric weight function is:

Theorem 6* Let ϕ : [a, b] → R, a ≥ 0, be a differentiable, convex function and
let N = 1, 2, 3, . . . ,. Then we get that the inequalities

1

b − a
∫ b

a

ϕ (x) xdx

≤ b − a
6
ϕ (b)+ b + 2a

3

1

b − a
∫ b

a

ϕ (x) dx

≤ (b − a)
(
aNϕ (a)+ bNϕ (b))
6(bN − aN)
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+ (b
N+1 − aN+1)+ 2ab(bN−1 − aN−1)

3(bN − aN)
1

b − a
∫ b

a

ϕ (x) dx

≤ aϕ (a)+ bϕ (b)
6

+ (b + a)
3

1

b − a
∫ b

a

ϕ (x) dx

≤ aϕ (a)+ bϕ (b)
2

− (b − a) (ϕ (b)− ϕ (a))
6

hold, which are Fejer type inequalities for the convex function ϕ and the monotone
weight function q (x) = x.

4 Monotonicity of Some Functions Related to the Fejer
Inequality

In this section we present in Theorems 9 and 10 some of the results obtained in
[6]. It is shown there that when ψ is 1 -quasiconvex, that is, ψ (x) = xϕ (x) , ϕ is
convex and ϕ

′ ≥ 0, then

P (t) =
∫ b

a

ψ

(
tx + (1− t) a + b

2

)
p (x) dx (10)

and

Q(t) = 1

2

∫ b

a

[
ψ

(
1+ t

2
a + 1− t

2
x

)
p

(
x + a

2

)
(11)

+ψ
(

1+ t
2
b + 1− t

2
x

)
p

(
x + b

2

)]
dx

are non-decreasing in t, 0 ≤ t ≤ 1 when p = p (x) is non-negative, differentiable
and symmetric around x = a+b

2 . Replacing ψ with ψ (x) = ϕ (x) x, as in Section
3, P (t) and Q(t) in Theorems 9 and 10 stated in the end of this section can be
represented by the convex function ϕ and the weight function q (x) = xp (x).
Therefore these theorems can be seen as variants and analogs of the monotonicity
results in the following theorems F and G (proved in [13]) for the convex increasing
ϕ and the general weight function q (x) = xp (x).

In the proofs of Theorems 9 and 10, in which ψ is 1-quasiconvex function,
similar techniques as those used in the following theorems F and G for Wright-
convex functions and in Theorems 7 and 8 (proved in [8]), for superquadratic
functions are employed.

Theorem F ([13, Theorem 2.5]) Let f : [a, b)→ R be a Wright-convex function
and p : [a, b)→ R be a non-negative, integrable and symmetric around x = a+b

2 ,

then
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P (t) =
∫ b

a

f (tx + (1− t) a + b
2
)p (x) dx, 0 ≤ t ≤ 1

is Wright-convex and increasing on [0, 1] and

f

(
a + b

2

)∫ b

a

p (x) dx = P (0) ≤ P(t) ≤ P (1) =
∫ b

a

f (x) p (x) dx.

Also, in the same paper it was proved that for :

Q(t) =
∫ b
a

[
f
(

1+t
2 a + 1−t

2 x
)
p
(
x+a

2

)+ f ( 1+t
2 b + 1−t

2 x
)
p
(
x+b

2

)]
dx

2
.

the following holds:

Theorem G ([13, Theorem 2.7]) Let f and p be defined as in Theorem F. ThenQ
is Wright-convex and increasing on [0, 1] and

∫ b

a

f (x) p (x) dx = Q(0) ≤ Q(t) ≤ Q(1) = f (a)+ f (b)
2

∫ b

a

p (x) dx.

Theorem 7 ([8, Theorem 1]) Let f be a superquadratic integrable function on
[0, b] and let p (x) be nonnegative, integrable and symmetric about x = a+b

2 ,

0 ≤ a < b. Let P (t) be

P (t) =
∫ b

a

f

(
tx + (1− t) a + b

2

)
p (x) dx, t ∈ [0, 1] .

Then for 0 ≤ s ≤ t ≤ 1, t > 0

P (s) ≤ P (t)−
∫ b

a

t + s
2t
f

(
(t − s)

(∣∣∣∣a + b2
− x

∣∣∣∣
))
p (x) dx (12)

−
∫ b

a

t − s
2t
f

(
(t + s)

(∣∣∣∣a + b2
− x

∣∣∣∣
))
p (x) dx.

Corollary 5 ([8, Corollary 1]) For p (x) = 1 we get that

(b − a) f
(
a + b

2

)
+
∫ b

a

f

(
t

∣∣∣∣a + b2
− x

∣∣∣∣
)
≤
∫ b

a

f

(
tx + (1− t) a + b

2

)
dx

≤
∫ b

a

f (x) dx −
∫ b

a

1+ t
2
f

(
(1− t)

∣∣∣∣x − a + b2

∣∣∣∣
)
dx

−
∫ b

a

1− t
2
f

(
(1+ t)

∣∣∣∣x − a + b2

∣∣∣∣
)
dx
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≤ (b − a) f (a)+ f (b)
2

− 1

b − a
∫ b

a

((b − t) f (t − a)+ (t − a) f (b − t)) dt

−
∫ b

a

1+ t
2
f

(
(1− t)

∣∣∣∣x − a + b2

∣∣∣∣
)
dx −

∫ b

a

1− t
2
f

(
(1+ t)

∣∣∣∣x − a + b2

∣∣∣∣
)
dx.

Theorem 8 ([8, Theorem 2]) Let f (x) and p(x) be defined as in Theorem 7. Let
Q(t) be

Q(t) =
∫ b
a

[
f
(

1+t
2 a + 1−t

2 x
)
p
(
x+a

2

)+ f ( 1+t
2 b + 1−t

2 x
)
p
(
x+b

2

)]
dx

2
.

Then, if 0 ≤ s ≤ t ≤ 1, we get that

Q(s)−Q(t) ≤ −1

2

∫ b

a

[ (b − x)+
t+s

2 (x − a)
b − x + t (x − a) f

(
t − s

2
(x − a)

)

+
t−s

2 (x − a)
b − x + t (x − a)f

(
(b − x)+ t + s

2
(x − a)

)
]p
(
x + a

2

)
dx

−1

2

∫ b

a

[ (x − a)+
t+s

2 (b − x)
x − a + t (b − x) f

(
t − s

2
(b − x)

)

+
t−s

2 (b − x)
x − a + t (b − x)f

(
(x − a)+ t + s

2
(b − x)

)
]p
(
x + b

2

)
dx

= −
∫ b

a

p (x)
(
1− t+s

2

) |2x − a − b|
(1− t) |2x − a − b| + t (b − a)f

(
t − s

2
(b − a − |a + b − 2x|)

)
dx

−
∫ b

a

p (x) t+s2 (b − a)
(1− t) |2x − a − b| + t (b − a)f

(
t − s

2
(b − a − |a + b − 2x|)

)
dx

−
∫ b

a

p (x) t−s2 (b − a) f ((1− t+s
2

) |2x − a − b| + t+s
2 (b − a))

(1− t) |2x − a − b| + t (b − a) dx

+
∫ b

a

p (x) t−s2 |a + b − 2x| f ((1− t+s
2

) |2x − a − b| + t+s
2 (b − a))

(1− t) |2x − a − b| + t (b − a) dx.

Corollary 6 ([8, Corollary 2]) In the case that f is superquadratic and also
positive, and therefore according to Lemma 2 is also convex, as in the case of
xp, p ≥ 2, x ≥ 0, Theorem 7 and Theorem 8 refine Theorem F and Theorem G,
respectively, for convex functions.

Example 2 For the special case that s = 0 and t = 1 we get

Q(0)−Q(1)
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=
∫ b

a

f (x) p(x)dx −
∫ b

a

f (a)+ f (b)
2

p(x)dx

≤ −
∫ b

a

|2x − a − b| + (b − a)
2 (b − a) f

(
b − a − |a + b − 2x|

2

)
p(x)dx

−
∫ b

a

(b − a − |a + b − 2x|)
2 (b − a) f

( |2x − a − b| + (b − a)
2

)
p(x)dx

= −
∫ a+b

2

a

(b − x)
(b − a)f (x − a) p(x)dx −

∫ b

a+b
2

x − a
b − a f (b − x) p(x)dx

−
∫ a+b

2

a

x − a
b − a f (b − x) p(x)dx −

∫ b

a+b
2

b − x
b − a f (x − a) p(x)dx

= −
∫ b

a

(
x − a
b − a f (b − x)+

b − x
b − a f (x − a)

)
p(x)dx.

The monotonicity result in Theorem 9 is a refinement of the result stated in
Theorem F which says that P (s) ≤ P (t) for the convex function ψ with symmetric
weight function p, because when ϕ is convex increasing, ψ is convex too. It can also
be seen as an analog of Theorem F, this time with a non-symmetric weight function
q (x) = xp (x). It reads:

Theorem 9 ([6, Theorem 2]) Let ψ be 1-quasiconvex function on [a, b] , a ≥ 0,
that is ψ (x) = xϕ (x). Let ϕ be a differentiable convex function satisfying ϕ

′ ≥ 0.
Let p = p (x) be non-negative, integrable and symmetric around x = a+b

2 , then,
for 0 ≤ s ≤ t ≤ 1, t > 0,

P (s)

≤ P (t)−
(
t2 − s2

) ∫ b

a

(
x − a + b

2

)2

ϕ
′
(
sx + (1− s) a + b

2

)
p (x) dx

≤ P (t) ,

where P is defined in (10).

Next we present the following further refinement of the Fejer inequality (2) for
1-quasiconvex functions:

Corollary 7 ([6, Corollary 1]) Assume that the conditions of Theorem 9 on ψ and
p hold. Then

ψ

(
a + b

2

)∫ b

a

p (x) dx + s2ϕ
′
(
a + b

2

)∫ b

a

(
x − a + b

2

)2

p (x) dx
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≤
∫ b

a

ψ

(
sx + (1− s) a + b

2

)
p (x) dx

≤
∫ b

a

ψ (x) p (x) dx

−
(

1− s2
) ∫ b

a

(
x − a + b

2

)2

ϕ
′
(
sx + (1− s) a + b

2

)
p (x) dx

≤ ψ (a)+ ψ (b)
2

∫ b

a

p (x) dx −
∫ b

a

ϕ
′
(x) (b − x) (x − a) p (x) dx

−
(

1− s2
) ∫ b

a

(
x − a + b

2

)2

ϕ
′
(
sx + (1− s) a + b

2

)
p (x) dx.

The corresponding result for the functionQ defined in (11) reads:

Theorem 10 ([6, Theorem 3]) Let ψ and p be defined as in Theorem 9. If 0 ≤ s ≤
t ≤ 1, then a refinement of Theorem G is as follows.

Q(s) ≤ Q(t)−Δ(s, t) ,

where

Δ(s, t) =
∫ a+b

2

a

(
ϕ
′
((1− s) x + sa)+ ϕ ′ ((1− s) (a + b − x)+ sb)

)

× (t − s) (x − a) (a + b − 2x + (t + s) (x − a)) p (x) dx.

Example 3 ([6, Example 2]) In the special case that s = 0, t = 1 we have that

Q(0) =
∫ b

a

ψ (x) p (x) dx ≤ Q(1)−Δ(0, 1)

= ψ (a)+ ψ (a)
2

∫ b

a

p (x) dx

−
∫ a+b

2

a

(
ϕ
′
(x)+ ϕ ′ (a + b − x)

)
(x − a) (b − x) p (x) dx

= ψ (a)+ ψ (a)
2

∫ b

a

p (x) dx −
∫ b

a

ϕ
′
(x) (x − a) (b − x) p (x) dx,

which is the same as the right-hand side of (8). Hence, Theorem 10 implies in
particular a further refinement of the Fejer inequality (2).
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5 Convexity, Superquadracity and Extended Normalized
Jensen Functional

In this section we present Jensen type inequalities appeared in [1–3, 9, 10] and [18]
related to the Jensen functional

Jn (f, x,p) =
n∑
i=1

pif (xi)− f
(
n∑
i=1

pixi

)

We start with some theorems that appeared in these papers where we quote results
about bounds of difference between specific Jensen functional and another Jensen
functional for which the function involved is convex (Theorem 11), superquadratic
(Theorem 12) and N -quasiconvex (Theorem 13).

In [9] similar results to those proved in Theorem 11 and in Theorem 12 are proved
when f is a convex function and when f is a superquadratic function.

Theorem 11 ([10]) Consider the normalized Jensen functional where f : C −→
R is a convex function on the convex set C in a real linear space, x = (x1, . . . , xn) ∈
Cn, and p = (p1, . . . , pn) , q = (q1, . . . , qn) are non-negative n-tuples satisfying∑n
i=1 pi = 1,

∑n
i=1 qi = 1, qi > 0, i = 1, . . . , n. Then

MJn (f, x,q) ≥ Jn (f, x,p) ≥ mJn (f, x,q) ,

provided

m = min
1≤i≤n

(
pi

qi

)
, M = max

1≤i≤n

(
pi

qi

)
.

Theorem 12 ([3, Theorem 3]) Under the same conditions and definitions on p, q,
x, m andM as in Theorem 11, if f : [0, b)→ R, 0 < b ≤ ∞, is a superquadratic
function,

∑n
j=1 pjxj = xp and

∑n
j=1 qjxj = xq , x ∈ [0, b)n , then the following

inequalities hold:

Jn (f, x,p)−mJn (f, x,q) ≥ mf
(∣∣xq − xp∣∣)+

n∑
i=1

(pi −mqi) f
(∣∣xi − xp∣∣) ,

and

Jn (f, x,p)−MJn (f, x,q) ≤ −
n∑
i=1

(Mqi − pi) f
(∣∣xi − xq ∣∣)− f (∣∣xq − xp∣∣) .
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As in the former sections the following theorem can be seen as a theorem
related to the convex function ϕ, where we replace pi and qi with xipi and xiqi ,
respectively, i = 1, . . . , n and

∑n
i=1 pi =

∑n
i=1 qi = 1.

Theorem 13 ([1, Theorem 18]) Suppose that ψN : [a, b) → R, 0 ≤ a < b ≤ ∞,
is N -quasiconvex function, that is ψN = xNϕ (x) , N = 1, 2, . . . , when ϕ is convex
on [a, b) . Let p, q, x, m, M, xp, xq and xi , i = 1, . . . , n be as in Theorem 12.
Then,

Jn (ψN, x,p)−mJn (ψN, x,q)

≥
n∑
i=1

(pi −mqi)
(
xi − xp

)2 ∂

∂xp

(
xNi − xNp
xi − xp ϕ

(
xp
))

+m (xq − xp)2
(
xNq − xNp
xq − xp ϕ

(
xp
))
,

and

Jn (ψN, x,p)−mJn (ψN, x,q)

≤
n∑
i=1

(pi −Mqi)
(
xi − xq

)2 ∂

∂xq

(
xNi − xNq
xi − xq ϕ

(
xq
))

−M (
xq − xp

)2 ∂

∂xq

(
xNq − xNp
xq − xp ϕ

(
xq
))
.

For N = 1 we get that

Jn (ψ1, x,p)−mJn (ψ1, x,q)

≥ ϕ ′ (xp)
(
Jn

(
x2, x,p

)
−mJn

(
x2, x,q

))

and

Jn (ψ1, x,p)−MJn (ψ1, x,q)

≤ ϕ ′ (xq)
(
Jn

(
x2, x,p

)
−MJn

(
x2, x,q

))
.

The following theorems deal with bounds of difference between specific Jensen
functional and the sum of N other functionals when

0 ≤ pi,1 ≤ 1, 0 < qi ≤ 1,
n∑
i=1

pi,1 =
n∑
i=1

qi = 1.
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For this purpose we denote:

m1 = min
(
pi,1
qi

)
, i = 1, . . . , n, s1 is equal to the number of i-th for which m1

occurs,

pi,k = {pi,k−1 −mk−1qi, mk−1 �= pi,k−1
qi

1
sk−1
mk−1, mk−1 = pi,k−1

qi

, k = 2, . . . (13)

mk−1 = min
1≤i≤n

(
pi,k−1
qi

)
, k = 2, . . . , ,

sk−1 is the number of cases for which mk−1 occurs.
Let also xi,1 ∈ (a, b) , i = 1, . . . , n be

xi,k = { xi,k−1, mk−1 �= pi,k−1
qi∑n

i=1 qixi,k−1, mk−1 = pi,k−1
qi

, (14)

i = 1, . . . n, k = 2, . . . ,.
With these notations the following theorem is obtained:

Theorem 14 ([2, Theorem 5]) Suppose that f : [a, b) → R, a < b ≤ ∞ is a
convex function. Then, for every integer N,

Jn (f, x1,p1)−
N∑
k=1

mkJn (f, xk,q) ≥ 0, (15)

where p1 = (
p1,1, . . . , pn,1

)
,q = (q1, . . . , qn) , xk = (

x1,k, . . . , xn,k
)
, k =

1, . . . , N , pi,k ,mk, xi,k, are as denoted in (13) and (14),
∑n
i=1 pi,1 =

∑n
i=1 qi = 1,

and pi,1 ≥ 0, qi > 0, i = 1, . . . , n, m1 = min
1≤i≤n

(
pi,1
qi

)
.

Corollary 8 Under the conditions of Theorem 14, if

pi,N = qi, i = 1, . . . , n (16)

we get an equality in (15).

Replacing qi, i = 1, . . . , n by 1
n

in Theorem 14 and Corollary 8 we get
Theorem 15 in [18, Theorem 1] and in [18, Theorem 2]:

Theorem 15 ([18, Theorem 1]) Let f : I → R, (I is an interval) be convex,
and let x1 =

(
x1,1, . . . , xn,1

) ⊂ In, p1=
(
p1,1, . . . , pn,1

) ⊂ (0, 1)n be such that∑n
i=1 pi,1 = 1. Then for every N ∈ N we have

n∑
i=1

pi,1f
(
xi,1
)− f

(
n∑
i=1

pi,1xi,1

)
(17)
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−
N∑
k=1

mk

(
n∑
i=1

1

n
f
(
xi,k
)− f

(
n∑
i=1

1

n
xi,k

))
≥ 0,

where mk = min
1≤i≤n

(
pi,k
qi

)
and qi = 1

n
, i = 1, .., n, k = 1, . . . , N.

If pi,N = 1
n

, we get equality in (17).

We extend now the left-hand side inequality in Theorem 11.
We denote

p1 =
(
p1,1, . . . , p1,n

)
, q = (q1, . . . , qn) , (18)

xk =
(
x1,k, . . . , xn,k

)
, k = 1, . . . , N

pi,1 ≥ 0, qi > 0, i = 1, . . . , n,
n∑
i=1

pi,1 =
n∑
i=1

qi = 1,

M1 = Max
(
pi,1

qi

)
= pj,1
qj
, i = 1, . . . , n,

where j is a fixed specific integer for whichM1 holds.
We also denote

pi,1 = p∗i,1, x∗i,1 = xi.1, i = 1, . . . , n,

p∗i,k = p∗i,k−1 −Mk−1qi, x
∗
i,k = x∗i,k−1, when:

Mk−1 �=
p∗i,k−1

qi
, k = 2, . . . , N;

p∗i,k = p∗i,k−1 −Mk−1qi, x
∗
i,k = x∗i,k−1, when:

Mk−1 =
p∗i,k−1

qi
, i �= jk, k = 2, . . . , N;

p∗jk,k = Mk−1, x
∗
j,k =

n∑
i=1

qix
∗
i,k−1, whenMk−1 =

p∗jk,k−1

qjk−1

,

Mk = Max
1≤i≤n

(
p∗i,k
qi

)
= p

∗
jk,k

qjk
, k = 1, . . . , N, (19)

where jk is a specific index for whichMk holds.
With the notations and conditions in (18) and (19) we get:

Theorem 16 Let f : [a, b)→ R, a ≤ b ≤ ∞, be a convex function, and let (18)
and (19) hold. Then, for every integer N

Jn (f, x1,p1)−
N∑
k=1

MkJn (f, xk,q) ≤ 0,
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and

Mk = pj1,1
qkj1

, k = 1, . . . , N

hold, where j1 is a fixed specific integer for whichM1 = pj1,1

qj1
is satisfied.

Theorem 17 extends Theorem 13 and Theorem 14 for 1-quasiconvex functions,
and Theorem 18 extends Theorem 12 for superquadratic functions:

Theorem 17 ([2, Theorem 7]) Let ψ1 : [a, b) → R, 0 ≤ a < b ≤ ∞ be a
1-quasiconvex function where ψ1 (x) = xϕ (x) , and ϕ is a differentiable convex
function. Let xpk =

∑n
i=1 pi,kxi,k and xqk =

∑n
i=1 qixi,k , k = 1, . . . , N . Then

under the same notations and conditions as used in Theorem 14 for pi,k, xi,k, mk ,
p1, q, k = 1, . . . , N, i = 1, . . . n we get:

Jn (ψ1, x1,p1)−
N∑
k=1

mkJn (ψ1, xk,q) (20)

≥ ϕ ′ (xp1

) ( n∑
i=1

pi,N+1x
2
i,N+1 −

(
xpN

)2)

= ϕ ′ (xp1

) (
Jn

(
x2, x1,p1

)
−

N∑
k=1

mkJn

(
x2, xk,q

))
.

If ϕ is also increasing, then (20) refines Theorem 11 and Theorem 14.
In particular, for N = 1 we get that

Jn (ψ1, x1,p1)−m1Jn (ψ1, x1,q) (21)

≥ ϕ ′ (xp1

) (
Jn

(
x2, x1,p1

)
−m1Jn

(
x2, x1,q

))
.

Inequality (21) appears also in Theorem 13.
Similarly, we get for superquadratic functions (see Definition 1) the following

theorem which extends Theorem 12:

Theorem 18 ([2, Theorem 8]) Let f : [0, b) → R, 0 < b ≤ ∞ be a
superquadratic function. Let pi,k , xi,k , mk and sk , k = 1, . . . , N , i = 1, . . . , n
satisfy (13) and (14). Let xpj =

∑n
i=1 pi,j xi,j and xqj =

∑n
i=1 qixi,j , j =

1, . . . , N, pi,1 ≥ 0, qi > 0, i = 1, . . . , n, x = (xi, . . . , xn) ∈ [0, b)n . Then

Jn (f, x1,p1)−
N∑
k=1

mkJn (f, xk,q) ≥
n∑
i=1

pi,N+1f
(∣∣xi,N+1−xp1

∣∣)
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If f is also non-negative, then f is convex and (16) refines Theorem 12.
In particular for N = 1 we get that

Jn (f, x1,p1)−mJn (f, x1,q)

≥ mf (∣∣xq − xp1

∣∣)+
n∑
i=1

(pi −mqi) f
(∣∣xi − xp1

∣∣) .
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Error Estimates of Approximations
for the Complex Valued Integral
Transforms

Andrea Aglić Aljinović

Abstract In this survey paper error estimates of approximations in complex domain
for the Laplace and Mellin transform are given for functions f which vanish beyond
a finite domain [a, b] ⊂ [0,∞〉 and whose derivative belongs to Lp [a, b]. New
inequalities involving integral transform of f , integral mean of f and exponential
and logarithmic mean of the endpoints of the domain of f are presented. These
estimates enable us to obtain two associated numerical quadrature rules for each
transform and error bounds of their remainders.

1 Introduction

1.1 Laplace and Mellin Transform

The Laplace transform L (f ) of Lebesgue integrable mapping f : [a, b] → R is
defined by

L (f ) (z) =
∫ ∞

0
f (t) e−ztdt (1)

for every z ∈ C for which the integral on the right-hand side of (1) exists, i.e.∣∣∫∞
0 f (t) e−ztdt

∣∣ <∞.
The Mellin transform M (f ) of Lebesgue integrable mapping f : [0,∞〉 → R

is defined by

M (f ) (z) =
∫ ∞

0
f (t) tz−1dt (2)
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for every z ∈ C for which the integral on the right-hand side of (2) exists, i.e.∣∣∫∞
0 f (t) tz−1dt

∣∣ <∞.
If f : [a, b] → R is Lebesgue integrable mapping which vanishes beyond a finite

domain, where [a, b] ⊂ [0,∞〉 instead of (1) and (2), we have the finite Laplace
and finite Mellin transform

L (f ) (z) =
∫ b

a

f (t) e−ztdt M (f ) (z) =
∫ b

a

f (t) tz−1dt.

The Laplace and Mellin transform not only are widely used in various branches
of mathematics (for instance, for solving boundary value problem or Laplace
equation, for summation of infinite series) but also have significant applications in
the field of physics and engineering, particularly in computer science (in image
recognition because of its scale invariance property). More about the Laplace,
Mellin, and other integral transforms can be found in [5].

1.2 Weighted Montgomery Identity for a Complex
Valued Weight Function

Montgomery identity states (see [6]):

f (x) = 1

b − a
∫ b

a

f (t) dt +
∫ b

a

P (x, t) f ′ (t) dt, (3)

where P (x, t) is the Peano kernel, defined by

P (x, t) =

⎧⎪⎨
⎪⎩
t−a
b−a , a ≤ t ≤ x,
t−b
b−a x < t ≤ b.

The weighted Montgomery identity states (given by Pečarić in [7])

f (x)− 1∫ b
a
w (t) dt

∫ b

a

f (t) w (t) dt =
∫ b

a

Pw (x, t) f
′ (t) dt (4)

where w : [a, b] → R is a weight function, i.e. integrable function such that∫ b
a
w (t) dt �= 0, W (x) = ∫ xa w (t) dt , x ∈ [a, b] and Pw (x, t) the weighted Peano

kernel, defined by

Pw (x, t) =
⎧⎨
⎩
W(t)
W(b)

, a ≤ t ≤ x,
W(t)
W(b)

− 1, x < t ≤ b.
(5)
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Obviously, weighted Montgomery identity (4) for uniform normalized weight
function w (t) = 1

b−a , t ∈ [a, b] reduces to the Montgomery identity (3).
It is easy to check that the weighted Montgomery identity holds also for a

complex valued weight function w : [a, b] → C such that
∫ b
a
w (t) dt �= 0.

Let us check the last condition for the kernels w (t) = e−zt t ∈ [a, b] and
w (t) = tz−1, t ∈ [a, b] of the Laplace and Mellin transform. Since

∫ b
a
e−ztdt =

1
z

(
e−za − e−zb), by using notation z = x + iy we have

e−za = e−zb
e−xa (cos (−ya)+ i sin (−ya)) = e−xb (cos (−yb)+ i sin (−yb))

a = b

and obviously
∫ b
a
w (t) dt �= 0 holds for the kernel of the Laplace transform.

Also, it holds that d
dt
tz = ztz−1 for z ∈ C and

∫ b
a
tz−1dt = bz−az

z
. Using notation

z = x + iy we have

bz = az

ez ln a = ez ln b

ex ln a (cos (y ln a)+ i sin (y ln a)) = ex ln b (cos (y ln b)+ i sin (y ln b))

a = b.

For the kernel of the Mellin transform w (t) = tz−1, t ∈ [a, b] we can also conclude∫ b
a
w (t) dt �= 0.

1.3 Difference Between Two Weighted Integral Means

By subtracting two weighted Montgomery identities (4), one for the interval [a, b]
and the other for [c, d] ⊆ [a, b], the next result is obtained (see [2, 3]).

Lemma 1 Let f : [a, b] → R be an absolutely continuous function on [a, b], w :
[a, b] → C and u : [c, d] → C some weight functions, such that

∫ b
a
w (t) dt �= 0,∫ d

c
u (t) dt �= 0 and

W (x) =
⎧⎨
⎩

0, t < a,∫ x
a
w (t) dt, a ≤ t ≤ b,∫ b

a
w (t) dt, t > b,

U (x) =
⎧⎨
⎩

0, t < c,∫ x
c
u (t) dt c ≤ t ≤ d,∫ d

c
u (t) dt, t > d,
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and [c,d] ⊆ [a, b]. Then the next formula is valid

1∫ b
a
w (t) dt

∫ b

a

w (t) f (t) dt − 1∫ d
c
u (t) dt

∫ d

c

u (t) f (t) dt =
∫ b

a

K (t) f ′ (t) dt

(6)
where

K (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−W(t)
W(b)

, t ∈ [a, c] ,

−W(t)
W(b)

+ U(t)
U(d)

, t ∈ 〈c, d〉 ,

1− W(t)
W(b)

, t ∈ [d, b] .

(7)

Remark 1 The result of the previous lemma for real-valued weight functions has
been proved in [4].

2 Error Estimates of Approximations in Complex Domain
for the Laplace Transform

In this chapter error estimates of approximations complex domain for the Laplace
transform are given for functions which vanish beyond a finite domain [a, b] ⊂
[0,∞〉 and such that f ′ ∈ Lp [a, b]. New inequalities involving Laplace transform
of f , integral mean of f and exponential mean of the endpoints of the domain of f
are presented. In the next chapter these inequalities are used to obtain two associated
numerical rules and error bounds of their remainders in each case. These results are
published in [1].

Here and hereafter the symbol Lp [a, b] (p ≥ 1) denotes the space of p-power
integrable functions on the interval [a, b] equipped with the norm

‖f ‖p =
(∫ b

a

|f (t)|p dt

) 1
p

and L∞ [a, b] denotes the space of essentially bounded functions on [a, b] with the
norm

‖f ‖∞ = ess sup
t∈[a,b]

|f (t)| .

Exponential mean E (z,w) of z and w is given by

E (z,w) =
⎧⎨
⎩
ez−ew
z−w , if z �= w,
ew, if z = w.

z,w ∈ C (8)
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Definition 1 We say (p, q) is a pair of conjugate exponents if 1 < p, q < ∞ and
1
p
+ 1
q
= 1; or if p = 1 and q = ∞; or if p = ∞ and q = 1.

The next theorem was proved in [5]:

Theorem 1 Let g : [a, b] → R be an absolutely continuous mapping on [a, b].
Then for all x �= 0 we have the inequality

∣∣∣∣F (g) (x)− E (−2πixa,−2πixb)
∫ b

a

g (s) ds

∣∣∣∣

≤

⎧⎪⎪⎨
⎪⎪⎩

1
3 (b − a)2

∥∥g′∥∥∞ , if g′ ∈ L∞ [a, b] ,

2
1
q

[(q+1)(q+2)]
1
q

(b − a)1+ 1
q
∥∥g′∥∥

p
, if g′ ∈ Lp [a, b] ,

(b − a) ∥∥g′∥∥1 if g′ ∈ L1 [a, b] .

where F (g) (x) is Fourier transform

F (g) (x) =
∫ b

a

g (t) e−2πixtdt.

and E (z,w) is given by (8).

Next, we apply identity for the difference of the two weighted integral means (6)
with two special weight functions: uniform weight function and kernel of the
Laplace transform. In such a way new generalizations of the previous results are
obtained.

Theorem 2 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous, f ′ ∈ Lp [a, b] and c, d ∈ [a, b], c < d. Then for Re z ≥ 0
and 1 < p ≤ ∞ we have inequalities

∣∣∣∣d − cb − aL (f ) (z)− E (−za,−zb)
∫ d

c

f (t) dt

∣∣∣∣

≤ e−a Re z (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p

≤ (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,

while for p = 1 we have
∣∣∣∣d − cb − aL (f ) (z)− E (−za,−zb)

∫ d

c

f (t) dt

∣∣∣∣
≤ 2e−a Re z (d − c) ∥∥f ′∥∥1 ≤ 2 (d − c) ∥∥f ′∥∥1 ,

where E (z,w) is exponential mean of z and w given by (8).
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Proof If we apply identity (6) with w (t) = e−zt , t ∈ [a, b] and u (t) = 1
d−c , t ∈

[c, d], we have W (t) = (t − a)E (−za,−zt), t ∈ [a, b]; U (t) = t−c
d−c , t ∈ [c, d]

and

1

(b − a)E (−za,−zb)L (f ) (z)− 1

d − c
∫ d

c

f (t) dt =
∫ b

a

K (t) f ′ (t) dt.

Since [c, d] ⊆ [a, b] we use (7) so

K (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−W(t)
W(b)

, t ∈ [a, c] ,

−W(t)
W(b)

+ t−c
d−c , t ∈ 〈c, d〉 ,

1− W(t)
W(b)

, t ∈ [d, b] .

Thus

d − c
b − aL (f ) (z)− E (−za,−zb)

∫ d

c

f (t) dt = d − c
b − aW (b)

∫ b

a

K (t) f ′ (t) dt

and by taking the modulus and applying Hölder inequality we obtain

∣∣∣∣d − cb − aL (f ) (z)− E (−za,−zb)
∫ d

c

f (t) dt

∣∣∣∣ ≤
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥
q

∥∥f ′∥∥
p
.

Now, for 1 < p ≤ ∞ (for 1 ≤ q <∞) we have

∥∥∥∥d − cb − aW (b)K (t)
∥∥∥∥
q

=
(∫ c

a

∣∣∣∣d − cb − aW (t)
∣∣∣∣
q

dt

+
∫ d

c

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣
q

dt +
∫ b

d

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
q

dt

)

and since Re z ≥ 0 we have |W (t)| =
∣∣∣∫ ta e−zsds

∣∣∣ ≤ ∫ t
a

∣∣e−zs∣∣ ds =∫ t
a

∣∣e−s Re z
∣∣ ds ≤ (t − a) e−a Re z for t ∈ [a, b], thus

∫ c

a

∣∣∣∣ d − cb − aW (t)
∣∣∣∣
q

dt ≤
∫ c

a

(
e−a Re z d − c

b − a (t − a)
)q

dt = e−aq Re z
(
d − c
b − a

)q
(c − a)q+1

(q + 1)
,

∫ d

c

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣
q

dt ≤
∫ d

c

(∣∣∣∣d − cb − aW (t)
∣∣∣∣+

∣∣∣∣ t − cb − aW (b)
∣∣∣∣
)q

dt
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≤ e−aq Re z
∫ d

c

(
d − c
b − a (t − a)+ t − c

)q
dt

=
(
e−a Re z

b − a
)q ∫ d

c

((b − a + d − c) t − c (b − a)− a (d − c))q dt.

If we denote

λ (t) = (b − a + d − c) t − c (b − a)− a (d − c)
we have λ (c) = (d − c) (c − a) and λ (d) = (d − c) (b + d − 2a) so

(
e−a Re z

b − a
)q ∫ d

c

((b − a + d − c) t − c (b − a)− a (d − c))q dt

= e−aqs Re z
(
λ (d)q+1 − λ (c)q+1)

(b − a)q (q + 1) (b − a + d − c)

= e
−aq Re z (d − c)q+1 ((b + d − 2a)q+1 − (c − a)q+1)

(b − a)q (q + 1) (b − a + d − c) ≤ e
−aq Re z2q (d − c)q (b − a)

(q + 1)
.

Also

∫ b

d

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
q

dt =
∫ b

d

∣∣∣∣d − cb − a
∫ b

t

e−zsds
∣∣∣∣
q

dt

≤ e−aq Re z
∫ b

d

(
d − c
b − a (b − t)

)q
dt = e−aq Re z

(
d − c
b − a

)q
(b − d)q+1

(q + 1)
.

Thus
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥
q

≤ e−a Re z

((
d − c
b − a

)q
(c − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)
+
(
d − c
b − a

)q
(b − d)q+1

(q + 1)

) 1
q

≤ e−a Re z

((
d − c
b − a

)q
(b − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)

) 1
q

= e−a Re z (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q
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and since e−a Re z ≤ 1 inequalities in case 1 < p ≤ ∞ are proved. For p = 1 we
have

∥∥∥∥d − cb − aW (b)K (t)
∥∥∥∥∞ = max

{
sup
t∈[a,c]

∣∣∣∣d − cb − aW (t)
∣∣∣∣ ,

sup
t∈[c,d]

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣ , sup
t∈[d,b]

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
}

and

sup
t∈[a,c]

∣∣∣∣d − cb − aW (t)
∣∣∣∣ ≤ e−a Re z (d − c) (c − a)

(b − a) ,

sup
t∈[c,d]

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣ ≤ sup
t∈[c,d]

{∣∣∣∣d − cb − aW (t)
∣∣∣∣+

∣∣∣∣ t − cb − aW (b)
∣∣∣∣
}

≤ e−a Re z d − c
b − a (d − a)+ e

−a Re z (d − c) = e−a Re z (d − c) b + d − 2a

b − a ,

sup
t∈[d,b]

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣ ≤ e−a Re z (d − c) (b − d)
(b − a) .

Thus
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥∞ ≤ e−a Re z d − c
b − a max {(c − a) , (b + d − 2a) , (b − d)}

≤ e−a Re z2 (d − c)

and since e−a Re z ≤ 1 the proof is completed.

Remark 2 The inequalities from the previous theorem hold for Re z ≥ 0. Similarly
it can be proved that in case Re z < 0 and 1 < p ≤ ∞ we have the inequality

∣∣∣∣d − cb − aL (f ) (z)− E (−za,−zb)
∫ d

c

f (t) dt

∣∣∣∣

≤ e−bRe z (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,
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while for Re z < 0 and p = 1 we have

∣∣∣∣d − cb − aL (f ) (z)− E (−za,−zb)
∫ d

c

f (t) dt

∣∣∣∣ ≤ e−bRe z2 (d − c) ∥∥f ′∥∥1 .

Theorem 3 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous, f ′ ∈ Lp [a, b] and c, d ∈ [a, b], c < d. Then for Re z ≥ 0
and 1 < p ≤ ∞, we have inequalities

∣∣∣∣d − cb − aE (−zc,−zd)
∫ b

a

f (t) dt −
∫ d

c

e−ztf (t) dt

∣∣∣∣

≤ e−cRe z (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p

≤ (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,

while for p = 1 we have

∣∣∣∣d − cb − aE (−zc,−zd)
∫ b

a

f (t) dt −
∫ d

c

e−ztf (t) dt

∣∣∣∣
≤ e−cRe z2 (d − c) ∥∥f ′∥∥1

≤ 2 (d − c) ∥∥f ′∥∥1 ,

where E (z,w) is exponential mean of z and w given by (8).

Proof By applying identity (6) with w (t) = 1
b−a , t ∈ [a, b] and u (t) = e−zt ,

t ∈ [c, d] and proceeding in the similar manner as in the proof of the Theorem 2.

Remark 3 The inequalities from the previous theorem hold for Re z ≥ 0. Similarly
it can be proved that in case Re z < 0 and 1 < p ≤ ∞ we have the inequality

∣∣∣∣d − cb − aE (−zc,−zd)
∫ b

a

f (t) dt −
∫ d

c

e−ztf (t) dt

∣∣∣∣

≤ e−d Re z (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,

while for Re z < 0 and p = 1 we have

∣∣∣∣d − cb − aE (−zc,−zd)
∫ b

a

f (t) dt −
∫ d

c

e−ztf (t) dt

∣∣∣∣ ≤ e−d Re z2 (d − c) ∥∥f ′∥∥1 .
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Corollary 1 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous and f ′ ∈ Lp [a, b]. Then for all Re z ≥ 0 and 1 < p ≤ ∞,
we have the inequality

∣∣∣∣E (−za,−zb)
∫ b

a

f (t) dt −L (f ) (z)

∣∣∣∣ ≤ (b − a)1+ 1
q

(
2q + 1

q + 1

) 1
q ∥∥f ′∥∥

p
,

while for p = 1 we have
∣∣∣∣E (−za,−zb)

∫ b

a

f (t) dt −L (f ) (z)

∣∣∣∣ ≤ 2 (b − a) ∥∥f ′∥∥1 .

Proof By applying Theorem 2 or 3 in the special case when c = a and d = b.

Corollary 2 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous and f ′ ∈ Lp [a, b]. Then for all Re z ≥ 0, for any c ∈ [a, b]
and 1 < p ≤ ∞, we have the inequality

|L (f ) (z)− (b − a)E (−za,−zb) f (c)|

≤ (b − a)1+ 1
q

(
2q + 1

q + 1

) 1
q ∥∥f ′∥∥

p
,

while for p = 1 we have

|L (f ) (z)− (b − a)E (−za,−zb) f (c)| ≤ 2 (b − a) ∥∥f ′∥∥1 .

Proof By applying the proof of the Theorem 2 in the special case when c = d.
Since f is absolutely continuous, it is continuous, thus as a limit case we have
limc→d 1

d−c
∫ d
c
f (t) dt = f (c).

3 Numerical Quadrature Rules for the Laplace Transform

In this section we use two previous corollaries to obtain two numerical quadrature
rules.

Let In : a = t0 < t1 < · · · < tn−1 < tn = b be a division of the interval [a, b],
hk := tk+1 − tk , k = 0, 1, . . . , n− 1 and ν (h) := maxk {hk}. Define the sum

E (f, In, z) =
n−1∑
k=0

E (−ztk,−ztk+1)

∫ tk+1

tk

f (t) dt (9)

where Re z ≥ 0.
The following approximation theorem holds.
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Theorem 4 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] →
R be absolutely continuous function on [a, b], f ′ ∈ Lp [a, b]. Then we have the
quadrature rule

L (f ) (z) = E (f, In, z)+ R (f, In, z)

where Re z ≥ 0, E (f, In, z) is given by (9) and for 1 < p ≤ ∞ the reminder
R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
,

while for p = 1

|R (f, In, z)| ≤ 2ν (h)
∥∥f ′∥∥1 .

Proof For 1 < p ≤ ∞ by applying the Corollary 1 with a = tk , b = tk+1 we have

∣∣∣∣E (−ztk,−ztk+1)

∫ tk+1

tk

f (t) dt −
∫ tk+1

tk

e−ztf (t) dt

∣∣∣∣

≤ (tk+1 − tk)1+
1
q

(
2q + 1

q + 1

) 1
q
(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

.

Summing over k from 0 to n−1 and using generalized triangle inequality, we obtain

|R (f, In, z)| = |L (f ) (z)− E (f, In, z)|

≤
n−1∑
k=0

(hk)
1+ 1

q

(
2q + 1

q + 1

) 1
q
(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

.

Using the Hölder discrete inequality, we get

(
2q + 1

q + 1

) 1
q
n−1∑
k=0

(hk)
1+ 1

q

(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

≤
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

(
(hk)

1+ 1
q

)q] 1
q

⎡
⎣n−1∑
k=0

((∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

)p⎤
⎦

1
p

=
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
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and the first inequality is proved. For p = 1 we have

|R (f, In, z)| ≤
n−1∑
k=0

2hk

(∫
k+1

tk

∣∣f ′ (t)∣∣ dt
)

≤ 2ν (h)
n−1∑
k=0

(∫ tk+1

tk

∣∣f ′ (t)∣∣ dt
)
= 2ν (h)

∥∥f ′∥∥1

and the proof is completed.

Corollary 3 Suppose that all assumptions of Theorem 4 hold. Additionally suppose

E (f, In, z) =
∫ a+(k+1)· b−an
a+k· b−a

n

f (t) dt

·
n−1∑
k=0

E

(
−z
(
a + k · b − a

n

)
,−z

(
a + (k + 1) · b − a

n

))
.

Then we have the quadrature rule

L (f ) (z) = E (f, In, z)+ R (f, In, z)

where Re z ≥ 0 and for 1 < p ≤ ∞ the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
,

while for p = 1 we have

|R (g, In, z)| ≤ 2 (b − a)
n

∥∥f ′∥∥1 .

Proof If we apply Theorem 4 with equidistant partition of [a, b].

Now, define the sum

A (f, In, z) =
n−1∑
k=0

(tk+1 − tk) E (−ztk,−ztk+1) f

(
tk+1 + tk

2

)
(10)

where Re z ≥ 0.
The following approximation theorem also holds.
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Theorem 5 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] →
R be absolutely continuous function on [a, b], f ′ ∈ Lp [a, b]. Then we have the
quadrature rule

L (f ) (z) = A (f, In, z)+ R (f, In, z)

where Re z ≥ 0, A (f, In, z) is given by (10) and for 1 < p ≤ ∞ the reminder
R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
,

while for p = 1

|R (f, In, z)| ≤ 2ν (h)
∥∥f ′∥∥1 .

Proof By applying the Corollary 2 with a = tk , b = tk+1, c = tk+1+tk
2 and then

summing over k from 0 to n − 1, we obtain results similarly as in the proof of the
Theorem 4.

Corollary 4 Suppose that all assumptions of Theorem 5 hold. Additionally suppose

A (f, In, z) = b − a
n
f

(
a + k (k + 1) (b − a)

2n

)

·
n−1∑
k=0

E

(
−z
(
a + k · b − a

n

)
,−z

(
a + (k + 1) · b − a

n

))
.

Then we have the quadrature rule

L (f ) (z) = A (f, In, z)+ R (f, In, z)

where Re z ≥ 0 and for 1 < p ≤ ∞ the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
,

while for p = 1 we have

|R (g, In, z)| ≤ 2 (b − a)
n

∥∥f ′∥∥1 .

Proof By applying Theorem 5 with equidistant partition of [a, b].



34 A. Aglić Aljinović

Remark 4 For both numerical quadrature formulae in case Re z < 0, for 1 < p ≤
∞, the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ e−bRe z
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
,

while for p = 1

|R (f, In, z)| ≤ e−bRe z2ν (h)
∥∥f ′∥∥1 .

For equidistant partition of [a, b] and for 1 < p ≤ ∞ we have

|R (f, In, z)| ≤ e−bRe z
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
,

while for p = 1

|R (f, In, z)| ≤ e−bRe z 2 (b − a)
n

∥∥f ′∥∥1 .

4 Error Estimates of Approximations in Complex
Domain for the Mellin Transform

In this chapter error estimates of approximations complex domain for the Laplace
transform are given for functions which vanish beyond a finite domain [a, b] ⊂
[0,∞〉 and such that f ′ ∈ Lp [a, b]. New inequalities involving Laplace transform
of f , integral mean of f , exponential and logarithmic means of the endpoints of the
domain of f are presented. In the next section these inequalities are used to obtain
two associated numerical rules and error bounds of their remainders in each case.
These results are published in [3].

Logarithmic mean L (a, b) is given by

L (a, b) =
⎧⎨
⎩

a−b
ln a−ln b , if a �= b,

a, if a = b,
a, b ∈ R. (11)

Theorem 6 Assume (p, q) is a pair of conjugate exponents, that is 1
p
+ 1
q
= 1.

Let f : [a, b] → R be absolutely continuous, [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b] and
[c,d] ⊆ [a, b]. Then for Re z ≥ 1 and 1 < p ≤ ∞ the following inequality holds:
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∣∣∣∣d − cb − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt

∣∣∣∣

≤ b(Re z)−1 (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p

while for p = 1 it holds

∣∣∣∣d − cb − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt

∣∣∣∣ ≤ 2b(Re z)−1 (d − c) ∥∥f ′∥∥1 .

Here E (z,w) is exponential mean given by (8) and L (a, b) is logarithmic mean
given by (11).

Proof Taking w (t) = tz−1, t ∈ [a, b] and u (t) = 1
d−c , t ∈ [c, d], we have

W (t) =
∫ t

a

tz−1dt = t
z − az
z

= e
z ln t − ez ln a

z

= e
z ln t − ez ln a

z ln t − z ln a
· ln t − ln a

t − a (t − a) = E (z ln a, z ln t)

L (a, t)
(t − a)

for all t ∈ [a, b] and U (t) = t−c
d−c for all t ∈ [c, d]. Now, we apply identity (6) with

these weight functions

L (a, b)

(b − a)E (z ln a, z ln b)
M (f ) (z)− 1

d − c
∫ d

c

f (t) dt =
∫ b

a

K (t) f ′ (t) dt.

Since [c, d] ⊆ [a, b] we use (7) so

K (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−W(t)
W(b)

, t ∈ [a, c] ,

−W(t)
W(b)

+ t−c
d−c , t ∈ 〈c, d〉 ,

1− W(t)
W(b)

, t ∈ [d, b] .

Thus

d − c
b − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt = d − c
b − aW (b)

∫ b

a

K (t) f ′ (t) dt
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and by taking the modulus and applying Hölder inequality we obtain

∣∣∣∣d − cb − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt

∣∣∣∣ ≤
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥
q

∥∥f ′∥∥
p
.

Now, for 1 < p ≤ ∞ (for 1 ≤ q <∞) we have

∥∥∥∥d − cb − aW (b)K (t)
∥∥∥∥
q

=
(∫ c

a

∣∣∣∣d − cb − aW (t)
∣∣∣∣
q

dt

+
∫ d

c

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣
q

dt +
∫ b

d

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
q

dt

) 1
q

.

Using notation x = Re z, y = s Im z, since x ≥ 1 we have |W (t)| =∣∣∣∫ ta e(x−1+iy) ln sds
∣∣∣ ≤ ∫ t

a

∣∣e(x−1+iy) ln s
∣∣ ds = ∫ t

a

∣∣e(x−1) ln s
∣∣ ds ≤ (t − a) e(x−1) ln b

= (t − a) b(x−1) for t ∈ [a, b], thus

∫ c

a

∣∣∣∣d − cb − aW (t)
∣∣∣∣
q

dt ≤
∫ c

a

(
b(x−1) d − c

b − a (t − a)
)q

dt = bq(x−1)
(
d − c
b − a

)q
(c − a)q+1

(q + 1)
,

∫ d

c

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣
q

dt ≤
∫ d

c

(∣∣∣∣d − cb − aW (t)
∣∣∣∣+

∣∣∣∣ t − cb − aW (b)
∣∣∣∣
)q

dt

≤ bq(x−1)
∫ d

c

(
d − c
b − a (t − a)+ t − c

)q
dt

=
(
bq(x−1)

b − a
)q ∫ d

c

((b − a + d − c) t − c (b − a)− a (d − c))q dt.

If we denote

λ (t) = (b − a + d − c) t − c (b − a)− a (d − c) (12)

we have λ (c) = (d − c) (c − a) ≥ 0 and λ (d) = (d − c) (b + d − 2a) ≥ 0 so

(
bq(x−1)

b − a
)q ∫ d

c

((b − a + d − c) t − c (b − a)− a (d − c))q dt

= bq(x−1)
(
λ (d)q+1 − λ (c)q+1)

(b − a)q (q + 1) (b − a + d − c)

= b
q(x−1) (d − c)q+1 ((b + d − 2a)q+1 − (c − a)q+1)

(b − a)q (q + 1) (b − a + d − c) ≤ b
q(x−1)2q (d − c)q (b − a)

(q + 1)
.
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Also

∫ b

d

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
q

dt =
∫ b

d

∣∣∣∣d − cb − a
∫ b

t

e(x−1+iy) ln sds

∣∣∣∣
q

dt

≤ bq(x−1)
∫ b

d

(
d − c
b − a (b − t)

)q
dt = bq(x−1)

(
d − c
b − a

)q
(b − d)q+1

(q + 1)
.

Thus
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥
q

≤ b(x−1)

((
d − c
b − a

)q
(c − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)
+
(
d − c
b − a

)q
(b − d)q+1

(q + 1)

) 1
q

≤ b(x−1)

((
d − c
b − a

)q
(b − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)

) 1
q

= b(x−1) (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q

and the first inequality is proved. For p = 1 we have

∥∥∥∥d − cb − aW (b)K (t)
∥∥∥∥∞ = max

{
sup
t∈[a,c]

∣∣∣∣d − cb − aW (t)
∣∣∣∣ ,

sup
t∈[c,d]

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣ , sup
t∈[d,b]

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣
}

and

sup
t∈[a,c]

∣∣∣∣d − cb − aW (t)
∣∣∣∣ ≤ b(x−1) (d − c) (c − a)

(b − a) ,

sup
t∈[c,d]

∣∣∣∣d − cb − aW (t)−
t − c
b − aW (b)

∣∣∣∣ ≤ sup
t∈[c,d]

{∣∣∣∣d − cb − aW (t)
∣∣∣∣+

∣∣∣∣ t − cb − aW (b)
∣∣∣∣
}

≤ b(x−1) d − c
b − a (d − a)+ b

(x−1) (d − c) = b(x−1) (d − c) b + d − 2a

b − a ,

sup
t∈[d,b]

∣∣∣∣d − cb − aW (t)−
d − c
b − aW (b)

∣∣∣∣ ≤ b(x−1) (d − c) (b − d)
(b − a) .
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Thus
∥∥∥∥d − cb − aW (b)K (t)

∥∥∥∥∞ ≤ b(x−1) d − c
b − a max {(c − a) , (b + d − 2a) , (b − d)}

≤ b(x−1)2 (d − c)

and the proof is completed.

Remark 5 The inequalities from the previous theorem hold for Re z ≥ 1. Similarly
it can be proved that in case Re z < 1 and 1 < p ≤ ∞ the following inequality
holds:

∣∣∣∣d − cb − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt

∣∣∣∣

≤ a(Re z)−1 (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p

while for Re z < 1 and p = 1 it holds

∣∣∣∣d − cb − aM (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ d

c

f (t) dt

∣∣∣∣ ≤ 2a(Re z)−1 (d − c) ∥∥f ′∥∥1 .

Remark 6 In case a = 0 and Re z ≥ 1 proceeding in the same way as in the previous

proof and using the fact that 0z = 0 and thus bz−az
z(b−a) = bz−1

z
we obtain

∣∣∣∣d − cb M (f ) (z)− b
z−1

z

∫ d

c

f (t) dt

∣∣∣∣ ≤ b(Re z)−1 (d − c)
(
(2q + 1) (b)

(q + 1)

) 1
q ∥∥f ′∥∥

p

and

∣∣∣∣d − cb M (f ) (z)− b
z−1

z

∫ d

c

f (t) dt

∣∣∣∣ ≤ 2b(Re z)−1 (d − c) ∥∥f ′∥∥1 .

Theorem 7 Assume (p, q) is a pair of conjugate exponents, that is 1
p
+ 1
q
= 1.

Let f : [a, b] → R be absolutely continuous, [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b] and
c, d ∈ [a, b], c < d. Then for Re z ≥ 1 and 1 < p ≤ ∞ the following inequality
holds:

∣∣∣∣ (d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt

∣∣∣∣

≤ d(Re z)−1 (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,
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while for p = 1 we have

∣∣∣∣ (d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt

∣∣∣∣ ≤ d(Re z)−12 (d − c) ∥∥f ′∥∥1 ,

where E (z,w) is given by (8) and L (a, b) is logarithmic mean given by (11).

Proof If we apply identity (6) with w (t) = 1
b−a , t ∈ [a, b] and u (t) = tz−1,

t ∈ [c, d], we haveW (t) = t−a
b−a , t ∈ [a, b]; U (t) = E(z ln c,z ln t)

L(c,t)
(t − c), t ∈ [c, d]

and

1

(b − a)
∫ b

a

f (t) dt − L (c, d)

(d − c)E (z ln c, z ln d)

∫ d

c

tz−1f (t) dt =
∫ b

a

K (t) f ′ (t) dt.

Since [c, d] ⊆ [a, b] we use (7) so

K (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− t−a
b−a , t ∈ [a, c] ,

U(t)
U(d)

− t−a
b−a , t ∈ 〈c, d〉 ,

b−t
b−a , t ∈ [d, b] .

Thus

(d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt = U (d)
∫ b

a

K (t) f ′ (t) dt

and by taking the modulus and applying Hölder inequality we obtain

∣∣∣∣ (d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt

∣∣∣∣ ≤ ‖U (d)K (t)‖q ∥∥f ′∥∥p .
Now, for 1 < p ≤ ∞ (for 1 ≤ q <∞) we have

‖U (d)K (t)‖q =
(∫ c

a

∣∣∣∣ t − ab − aU (d)
∣∣∣∣
q

dt

+
∫ d

c

∣∣∣∣U (t)− t − a
b − aU (d)

∣∣∣∣
q

dt +
∫ b

d

∣∣∣∣ b − tb − aU (d)
∣∣∣∣
q

dt

) 1
q

.
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Using notation x = Re z, y = s Im z, we have x ≥ 1. Since |U (t)| =∣∣∣∫ tc e(x−1+iy) ln sds
∣∣∣ ≤ ∫ t

c

∣∣e(x−1+iy) ln s
∣∣ ds = ∫ t

c

∣∣e(x−1) ln s
∣∣ ds ≤ (t − c) e(x−1) ln d

= (t − c) d(x−1) for t ∈ [c, d], we have

∫ c

a

∣∣∣∣ t − ab − a U (d)
∣∣∣∣
q

dt ≤ d(x−1)q
∫ c

a

(
t − a
b − a (d − c)

)q
dt = d(x−1)q

(
d − c
b − a

)q
(c − a)q+1

(q + 1)
,

∫ d

c

∣∣∣∣U (t)− t − a
b − aU (d)

∣∣∣∣
q

dt ≤
∫ d

c

(
|U (t)| +

∣∣∣∣ t − ab − aU (d)
∣∣∣∣
)q

dt

≤ d(x−1)q
∫ d

c

(
t − c + d − c

b − a (t − a)
)q

dt

≤ d(x−1)q

(b − a)q
∫ d

c

((b − a + d − c) t − c (b − a)− a (d − c))q dt

= d(x−1)q

(
λ (d)q+1 − λ (c)q+1)

(b − a)q (q + 1) (b − a + d − c)

= d(x−1)q (d − c)q+1 ((b + d − 2a)q+1 − (c − a)q+1)
(b − a)q (q + 1) (b − a + d − c) ≤ d(x−1)q 2q (d − c)q (b − a)

(q + 1)
,

where λ (t) is given by (12) and

∫ b

d

∣∣∣∣ b − tb − a U (d)
∣∣∣∣
q

dt ≤ d(x−1)q
∫ b

d

(
b − t
b − a (d − c)

)q
dt = d(x−1)q

(
d − c
b − a

)q
(b − d)q+1

(q + 1)
.

Thus

‖U (d)K (t)‖q

≤ d(x−1)

((
d − c
b − a

)q
(c − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)
+
(
d − c
b − a

)q
(b − d)q+1

(q + 1)

) 1
q

≤ d(x−1)

((
d − c
b − a

)q
(b − a)q+1

(q + 1)
+ 2q (d − c)q (b − a)

(q + 1)

) 1
q

= d(x−1) (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q

and the first inequality is proved. For p = 1 we have

‖U (d)K (t)‖∞ = max

{
sup
t∈[a,c]

∣∣∣∣ t − ab − aU (d)
∣∣∣∣ ,
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sup
t∈[c,d]

∣∣∣∣U (t)− t − a
b − aU (d)

∣∣∣∣ , sup
t∈[d,b]

∣∣∣∣ b − tb − aU (d)
∣∣∣∣
}

and

sup
t∈[a,c]

∣∣∣∣ t − ab − aU (d)
∣∣∣∣ ≤ d(x−1) (c − a) (d − c)

(b − a) ,

sup
t∈[c,d]

∣∣∣∣U (t)− t − a
b − aU (d)

∣∣∣∣ = sup
t∈[c,d]

{
|U (t)| +

∣∣∣∣ t − ab − aU (d)
∣∣∣∣
}

≤ d(x−1) sup
t∈[c,d]

∣∣∣∣d − c + d − ab − a (d − c)
∣∣∣∣ = d(x−1) (d − c) b + d − 2a

b − a ,

sup
t∈[d,b]

∣∣∣∣ b − tb − aU (d)
∣∣∣∣ ≤ d(x−1) (b − d) (d − c)

(b − a) .

Thus

‖U (d)K (t)‖∞ ≤ d(x−1) d − c
b − a max {(c − a) , (b + d − 2a) , (b − d)} ≤ d(x−1)2 (d − c)

and the proof is completed.

Remark 7 The inequalities from the previous theorem hold for Re z ≥ 1. Similarly
it can be proved that in case Re z < 1 and 1 < p ≤ ∞ the following inequality
holds:

∣∣∣∣ (d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt

∣∣∣∣

≤ c(Re z)−1 (d − c)
(
(2q + 1) (b − a)

(q + 1)

) 1
q ∥∥f ′∥∥

p
,

while for Re z < 1 and p = 1 it holds

∣∣∣∣ (d − c)E (z ln c, z ln d)

(b − a)L (c, d)
∫ b

a

f (t) dt −
∫ d

c

tz−1f (t) dt

∣∣∣∣ ≤ c(Re z)−12 (d − c) ∥∥f ′∥∥1 .

Remark 8 In case a = c = 0 and Re z ≥ 1 all the inequalities from the

Theorem 7 holds with a term dz−1

z
instead of E(z ln c,z ln d)

L(c,d)
.
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Corollary 5 Assume (p, q) is a pair of conjugate exponents, that is 1
p
+ 1
q
= 1. Let

f : [a, b] → R be absolutely continuous and [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b]. Then
for all Re z ≥ 1 and 1 < p ≤ ∞ we have the inequality

∣∣∣∣M (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ b

a

f (t) dt

∣∣∣∣ ≤ b(Re z)−1 (b − a)1+ 1
q

(
2q + 1

q + 1

) 1
q ∥∥f ′∥∥

p

while for p = 1 we have
∣∣∣∣M (f ) (z)− E (z ln a, z ln b)

L (a, b)

∫ b

a

f (t) dt

∣∣∣∣ ≤ 2b(Re z)−1 (b − a) ∥∥f ′∥∥1 .

Proof By applying the proof of the Theorem 6 or 7 in the special case when c = a
and d = b.

Corollary 6 Assume (p, q) is a pair of conjugate exponents, that is 1
p
+ 1
q
= 1. Let

f : [a, b] → R be absolutely continuous and [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b]. Then
for all Re z ≥ 1, for any c ∈ [a, b] and 1 < p ≤ ∞ we have the inequality

∣∣∣∣M (f ) (z)− (b − a) E (z ln a, z ln b)

L (a, b)
f (c)

∣∣∣∣ ≤ b(Re z)−1 (b − a)1+ 1
q

(
2q + 1

q + 1

) 1
q ∥∥f ′∥∥

p

while for p = 1 we have
∣∣∣∣M (f ) (z)− (b − a) E (z ln a, z ln b)

L (a, b)
f (c)

∣∣∣∣ ≤ 2b(Re z)−1 (b − a) ∥∥f ′∥∥1 .

Proof By applying the proof of the Theorem 6 in the special case when c = d.
Since f is absolutely continuous, it is continuous, thus as a limit case we have
limc→d 1

d−c
∫ d
c
f (t) dt = f (c).

5 Numerical Quadrature Rules for the Mellin Transform

Since the exponents of the term (b − a)1+ 1
q in the inequalities from the last two

corollaries are greater than 1, these inequalities can be useful to obtain numerical
quadrature formulae. Using Corollaries 5 and 6 we obtain the following two
numerical rules.

Let In : a = t0 < t1 < · · · < tn−1 < tn = b be a division of the interval [a, b],
hk := tk+1 − tk , k = 0, 1, . . . , n− 1 and ν (h) := maxk {hk}. Define the sum

E (f, In, z) =
n−1∑
k=0

E (z ln tk, z ln tk+1)

L (tk, tk+1)

∫ tk+1

tk

f (t) dt (13)

where Re z ≥ 1.
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The following approximation theorem holds.

Theorem 8 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous function on [a, b], [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b]. Then we
have the quadrature rule

M (f ) (z) = E (f, In, z)+ R (f, In, z)
where Re z ≥ 1, E (f, In, z) is given by (13) and for 1 < p ≤ ∞ the reminder
R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ b(Re z)−1
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
, (14)

while for p = 1

|R (f, In, z)| ≤ 2b(Re z)−1ν (h)
∥∥f ′∥∥1 . (15)

Proof For 1 < p ≤ ∞ by applying the Corollary 5 with a = tk , b = tk+1 we have
∣∣∣∣E (z ln tk, z ln tk+1)

L (tk, tk+1)

∫ tk+1

tk

f (t) dt −
∫ tk+1

tk

t z−1f (t) dt

∣∣∣∣

≤ (tk+1)
x−1 (tk+1 − tk)1+

1
q

(
2q + 1

q + 1

) 1
q
(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

≤ bx−1 (tk+1 − tk)1+
1
q

(
2q + 1

q + 1

) 1
q
(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

where x = Re z. Summing over k from 0 to n − 1 and using generalized triangle
inequality, we obtain

|R (f, In, z)| = |M (f ) (z)− E (f, In, z)|

≤ bx−1
(

2q + 1

q + 1

) 1
q
n−1∑
k=0

(hk)
1+ 1

q

(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

.

Using the Hölder discrete inequality, we get

n−1∑
k=0

(hk)
1+ 1

q

(∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

≤
[
n−1∑
k=0

(
(hk)

1+ 1
q

)q] 1
q

⎡
⎣n−1∑
k=0

((∫ tk+1

tk

∣∣f ′ (t)∣∣p dt

) 1
p

)p⎤
⎦

1
p

=
[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
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and the inequality (14) is proved. For p = 1 we have

|R (f, In, z)| ≤
n−1∑
k=0

2bx−1hk

(∫
k+1

tk

∣∣f ′ (t)∣∣ dt
)

≤ 2bx−1ν (h)

n−1∑
k=0

(∫ tk+1

tk

∣∣f ′ (t)∣∣ dt
)
= 2bx−1ν (h)

∥∥f ′∥∥1

and the proof is completed.

Corollary 7 Suppose that all assumptions of Theorem 8 hold. Additionally suppose

E (f, In, z) =
n−1∑
k=0

∫ a+(k+1)· b−an
a+k· b−a

n

f (t) dt (16)

· E
(
z ln

(
a + k · b−a

n

)
, z ln

(
a + (k + 1) · b−a

n

))
L
((
a + k · b−a

n

)
,
(
a + (k + 1) · b−a

n

)) .

Then we have the quadrature rule

M (f ) (z) = E (f, In, z)+ R (f, In, z)

where Re z ≥ 1 and for 1 < p ≤ ∞ the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ b(Re z)−1
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
, (17)

while for p = 1 we have

|R (g, In, z)| ≤ b(Re z)−1 2 (b − a)
n

∥∥f ′∥∥1 . (18)

Proof If we apply Theorem 8 with equidistant partition of [a, b], tj = a + j · b−an ,
j = 0, 1, . . . , n, we have (16) and hk = b−a

n
, k = 0, 1, . . . , n− 1. For 1 < p ≤ ∞

we obtain

|R (f, In, z)| ≤
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
=
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
,

while for p = 1, ν (h) = b−a
n

and the claim immediately follows.
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Now, define the sum

A (f, In, z) =
n−1∑
k=0

(tk+1 − tk) E (z ln tk, z ln tk+1)

L (tk, tk+1)
f

(
tk+1 + tk

2

)
(19)

where Re z ≥ 1.
Also the following approximation theorem holds.

Theorem 9 Assume (p, q) is a pair of conjugate exponents. Let f : [a, b] → R be
absolutely continuous function on [a, b], [a, b] ⊂ 〈0,∞〉, f ′ ∈ Lp [a, b]. Then we
have the quadrature rule

M (f ) (z) = A (f, In, z)+ R (f, In, z)

where Re z ≥ 1, A (f, In, z) is given by (19) and for 1 < p ≤ ∞ the reminder
R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ b(Re z)−1
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
, (20)

while for p = 1

|R (f, In, z)| ≤ 2b(Re z)−1ν (h)
∥∥f ′∥∥1 . (21)

Proof By applying the Corollary 6 with a = tk , b = tk+1, c = tk+1+tk
2 and then

summing over k from 0 to n − 1, we obtain results similarly as in the proof of the
Theorem 8.

Corollary 8 Suppose that all assumptions of Theorem 9 hold. Additionally suppose

A (f, In, z) =
n−1∑
k=0

b − a
n
f

(
a + k (k + 1) (b − a)

2n

)

· E
(
z ln

(
a + k · b−a

n

)
, z ln

(
a + (k + 1) · b−a

n

))
L
((
a + k · b−a

n

)
,
(
a + (k + 1) · b−a

n

)) .

Then we have the quadrature rule

M (f ) (z) = A (f, In, z)+ R (f, In, z)

where Re z ≥ 1 and for 1 < p ≤ ∞ the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ b(Re z)−1
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
, (22)
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while for p = 1 we have

|R (g, In, z)| ≤ b(Re z)−1 2 (b − a)
n

∥∥f ′∥∥1 . (23)

Proof By applying Theorem 9 with equidistant partition of [a, b].

Remark 9 Both numerical quadrature formulae hold also in case a = 0 with the

term
tz−1
1
z

instead of E(z ln a,z ln t1)
L(a,t1)

in the first approximation sum (13) and the second
approximation sum (19).

Remark 10 For both numerical quadrature formulae in case Re z < 1, for 1 < p ≤
∞, the reminder R (f, In, z) satisfies the estimate

|R (f, In, z)| ≤ a(Re z)−1
(

2q + 1

q + 1

) 1
q

[
n−1∑
k=0

h
q+1
k

] 1
q ∥∥f ′∥∥

p
,

while for p = 1

|R (f, In, z)| ≤ 2a(Re z)−1ν (h)
∥∥f ′∥∥1 .

For equidistant partition of [a, b] and for 1 < p ≤ ∞ we have

|R (f, In, z)| ≤ a(Re z)−1
(

2q + 1

q + 1

) 1
q (b − a)1+ 1

q

n

∥∥f ′∥∥
p
,

while for p = 1

|R (f, In, z)| ≤ a(Re z)−1 2 (b − a)
n

∥∥f ′∥∥1 .

Remark 11 It is easy to see that in all these numerical rules estimate tends to zero
as n tends to infinity.
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Convexity Revisited: Methods, Results,
and Applications

Dorin Andrica, Sorin Rădulescu, and Marius Rădulescu

Abstract We present some new aspects involving strong convexity, the pointwise
and uniform convergence on compact sets of sequences of convex functions, circular
symmetric inequalities and bistochastic matrices with examples and applications,
the convexity properties of the multivariate monomial, and Schur convexity.

2010 AMS Subject Classification 41A36; 26D20

1 Introduction

A function f : D → R defined on a nonempty subset D of a real linear space E is
called convex, if the domainD of the function is convex and for every x, y ∈ D and
every t ∈ [0, 1] one has

f (tx + (1− t)y) ≤ tf (x)+ (1− t)f (y).

If the above inequality is strict whenever x �= y and 0 < t < 1, f is called strictly
convex. A function f such that −f is convex is called concave.

The simplest example of a convex function is an affine function f (x) = aT x+b.
This function clearly is convex on the entire space R

n, and the convexity inequality
for it is equality. The affine function is also concave. One can easily prove that the
function which is both convex and concave on the entire space is an affine function.
Other examples of convex functions are given by the norms on the space R

n, i.e.
the real-valued functions which are nonnegative everywhere, positive outside of

D. Andrica (�)
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the origin, homogeneous and satisfy the triangle inequality. The most important
examples of norms are the so-called lp-norms, 1 ≤ p ≤ ∞, defined by

‖x‖p =
(
n∑
k=1

|xk|p
)1/p

.

Three members of the above family of norms are very well-known:
the Euclidean norm

‖x‖ = ‖x‖2 =
√
xT x =

√√√√
(
n∑
k=1

|xk|2
)
,

the l1-norm or the Cartesian norm

‖x‖1 =
n∑
k=1

|xk|,

and the l∞-norm or the Tchebychev norm

‖x‖∞ = max
1≤k≤n |xk|.

Convex functions and their generalizations have been used in a variety of fields
such as economics business administration, engineering, statistics, applied sciences,
and numerical mathematics. Some new characterizations of convex functions in
various contexts are presented in the paper [31]. There are generalized concepts
of convex functions, such as: quasi-convex, midpoint-convex, strong convex, loga-
rithmically convex, Schur convex, etc. Also many classes of convex functions are
studied in the complex plane in connection with some geometric properties. There
is a huge literature devoted to the study of convex functions in various contexts with
numerous applications. We mention here only the monographs [35, 42], and [52].

The present chapter is organized into five sections. In Sect. 2 we introduce a
new class of functions called (h1, h2)-convex functions. This class contains the
class of strong convex functions and the class of strong concave functions. The new
class of functions is used for improving some algebraic and geometric inequalities.
Also, we have included the results of [6] showing the proofs of four fundamental
results, two on convex functions and two in approximation theory. Strong-convexity
and strong-concavity with respect to a function with applications to Korovkin type
results are presented in Sects. 2.4–2.6. Section 3 contains some generalizations of
a result given in [26] about the pointwise and uniform convergence on compact
sets of sequences of convex functions. Some new results on circular symmetric
inequalities and bistochastic matrices are given in Sect. 4. The main result is
contained in Theorem 4.2 and examples and applications are presented in Sect. 4.2.
The convexity properties of the multivariate monomial are studied in Sect. 5. If
a = (a1, a2, . . . , an) is a vector in R

n, we denote by fa the multivariate monomial
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with exponents equal to the entries of vector a. We determine conditions that
should be satisfied by the parameter a = (a1, a2, . . . , an) such that the multivariate
monomial fa is a convex, concave, logarithmically convex, logarithmically concave,
quasi-convex, quasi-concave, subadditive, or super-additive function. Conditions
for convexity of fa may be found in Crouzeix [18]. The proof given in the third
subsection is different from the Crouzeix’s proof from [18]. The convexity and
concavity necessary and sufficient conditions for the multivariate monomial may be
stated simply as follows. The multivariate monomial is convex if and only if all the
exponents are negative or one exponent is positive, the rest of exponents are negative
and the sum of all exponents is greater or equal than one. The multivariate monomial
is concave if and only if all the exponents are positive and the sum of all exponents
is smaller or equal than one. Section 6 is devoted to the study of the class of n-Schur
functions. A study of the n-Schur functions for values of n greater than 3 is made
in the second subsection while a detailed study of the 3-Schur functions is given
in the third subsection. In the fourth subsection is studied the class of the 5-Schur
functions. In the fifth subsection we introduce two general classes of functions, that
are connected with the class of the n-Schur functions.

2 (h1, h2)-Convex Functions and Some Applications

Strong convexity is one of the most important concepts in optimization, especially
for guaranteeing a linear convergence rate of many gradient descent type algorithms.
In this section we shall present some useful results on strong convexity with
applications to the improvement of some algebraic and geometrical inequalities.
Also, we discuss some connections with the approximation theory by linear and
positive operators. Let us first begin with a definition. A differentiable function
f : D ⊂ R

n → R, where D is convex with nonempty interior, is strongly convex
with respect to the real number α > 0 if

f (y) ≥ f (x)+∇f (x)T (y − x)+ α
2
‖y − x‖2 (2.1)

for all x, y ∈ D. Here ‖ · ‖ denotes the standard Euclidean norm in R
n. Strong

convexity condition does not necessarily require the function to be differentiable,
and the gradient is replaced by the sub-gradient when the function is non-smooth.

The following property is very useful in applications: The differentiable function
f is strongly-convex with constant α > 0 if and only if the function

g(x) = f (x)− α
2
‖x‖2

is convex. It follows from the first-order condition for convexity of g, i.e., it is
convex if and only if

g(y) ≥ g(x)+ ∇g(x)T (y − x) for all x, y ∈ D.
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These remarks motivate us to introduce a new class of functions in a general
context. Let E be a real linear space, D be a convex subset of D and let h1 : D →
R ∪ {−∞}, h2 : D→ R ∪ {+∞} be two functions with the property that h2 − h1is
convex. We say that the function f : D → R is (h1, h2)-convex if the functions
f − h1 and h2 − f are both convex.

A special case which is of considerable interest is the following. Let E be an
inner product space, D be a convex subset of E, and -∞ ≤ m < M ≤ +∞. A map
f : D→ R belongs to the set C (m,M) if the functions

g (x) = f (x)− m
2
‖x‖2 , x ∈ D

and

h (x) = M
2
‖x‖2 − f (x) , x ∈ D

are both convex. If m > 0 andM = +∞, then functions from C (m,M) are called
strong convex. If m = −∞ and M < 0, then functions from C (m,M) are called
strong concave. If f is two times differentiable, D is open and convex, then f
belongs to C (m,M) if and only if

m ‖u‖2 ≤ f ′′ (x) (u, u) ≤ M ‖u‖2 , x ∈ D, u ∈ E

2.1 Improving Some Classical Inequalities

In this subsection we use the property that every strictly convex function in C2[a, b]
is strongly convex and strongly concave on the interval [a, b] with respect to some
constants. We use this property to improve some classical algebraic and geometric
inequalities.

Let [a, b] be a fixed interval of the real line. For x1, . . . , xn ∈ [a, b] and
p1, . . . , pn≥0 with p1 + . . .+ pn = 1, let us denote

x = (x1, . . . , xn), p = (p1, . . . , pn), S1(x, p) = 0 (2.2)

and

Sn(x, p) =
n∑

i,j=1
i<j

pipj (xi − xj )2 for n ≥ 2. (2.3)

For a function f ∈ C2[a, b] we consider the numbers

m2(f ) = min
t∈[a,b] f

′′(t), M2(f ) = max
t∈[a,b] f

′′(t) (2.4)
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The following result is a refinement of the Jensen’s inequality and it was proved
in [11] and used to improve some algebraic inequalities. A nice application to the
Shannon and Rényi’s entropy is given in the paper [22].

Theorem 2.1 If f ∈ C2[a, b] and x1, . . . , xn ∈ [a, b], p1, . . . , pn ≥ 0, p1 + . . .+
pn = 1, then the following inequalities hold:

1

2
m2(f )Sn(x, p) ≤

n∑
i=1

pif (xi)− f
(
n∑
i=1

pixi

)
≤ 1

2
M2(f )Sn(x, p) (2.5)

Proof Consider the mapping

g : [a, b] → R, g(x) = f (x)− 1

2
m2(f )x

2.

Then g is twice differentiable on (a, b) and

g′(x) = f ′(x)−m2(f )x, x ∈ (a, b),
g′′(x) = f ′′(x)−m2(f ), x ∈ (a, b),

which shows that the mapping g is convex on [a, b].
Applying Jensen’s discrete inequality for the convex mapping g, i.e.,

g

(
p∑
i=1

pixi

)
≤

n∑
i=1

pig(xi),

to obtain

f

(
n∑
i=1

pixi

)
− 1

2
m2(f )

(
n∑
i=1

pixi

)2

≤
n∑
i=1

pi

[
f (xi)− 1

2
m2(f )x

2
i

]

=
n∑
i=1

pif (xi)− 1

2
m2(f )

n∑
i=1

pix
2
i ,

which is equivalent to

n∑
i=1

pif (xi)− f
(
n∑
i=1

pixi

)
≥ 1

2
m2(f )

⎡
⎣ n∑
i=1

pix
2
i −

(
n∑
i=1

pixi

)2
⎤
⎦

= 1

4
m2(f )

n∑
i,j=1

pipj (xi − xj )2

and the first inequality in (4) is proved.
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The proof of the second inequality goes likewise for the mapping

h : [a, b] → R, h(x) = 1

2
M2(f )x

2 − f (x)

which is convex on [a, b]. We omit the details. ��
Note that in the proof of the above result we have used the property that every

function f ∈ C2[a, b] is (h1, h2)-convex, where h1(x) = 1
2m2(f )x

2 and h2(x) =
1
2M2(f )x

2, where the coefficients m2(f ) andM2(f ) are defined in (2.4).
Now, consider the classical means:

1. The weighted arithmetic mean An(w, a)

An(w, a) := 1

Wn

n∑
i=1

wiai, whereWn =
n∑
i=1

wi.

2. The weighted geometric mean Gn(w, a)

Gn(w, a) :=
(
n∏
i=1

a
wi
i

) 1
Wn

.

3. The weighted harmonic mean Hn(w, a)

Hn(w, a) = Wn
n∑
i=1

wi

ai

, where ai, wi > 0 (i = 1, . . . , n).

The following inequality is well known in the literature as the arithmetic mean–
geometric mean–harmonic mean inequality

An(w, a) ≥ Gn(w, a) ≥ Hn(w, a). (2.6)

The equality holds in (2.6) if and only if a1 = . . . = an.
In the following corollary we shall use strong convexity to find estimations of

the ratios between arithmetic and geometric means and between geometric and
harmonic means.

Corollary 2.1 Let ai, wi > 0 (i = 1, . . . , n). If 0 < m ≤ ai ≤ M < ∞ (i =
1, . . . , n), then we have the inequalities:

1 ≤ exp

⎡
⎣ 1

4M2
· 1

W 2
n

n∑
i,j=1

wiwj (ai − aj )2
⎤
⎦
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≤ An(w, a)
Gn(w, a)

≤ exp

⎡
⎣ 1

4m2 ·
1

W 2
n

n∑
i,j=1

wiwj (ai − aj )2
⎤
⎦ (2.7)

and

1 ≤ exp

⎡
⎣1

4
m2 · 1

W 2
n

n∑
i,j=1

wiwj (ai − aj )2
a2
i a

2
j

⎤
⎦

≤ Gn(w, a)
Hn(w, a)

≤ exp

⎡
⎣1

4
M2 · 1

W 2
n

n∑
i,j=1

wiwj (ai − aj )2
a2
i a

2
j

⎤
⎦ . (2.8)

Equality holds in both (2.7) and (2.8) if and only if a1 = . . . = an.
Proof The proof follows by Theorem 2.1, choosing f (x) = − ln x. For this
mapping we have

f ′′(x) = 1

x2 ∈
[

1

M2 ,
1

m2

]
,

and if we assume that pi = wi
Wn

, xi = ai , then, by Theorem 2.1, we deduce (2.7).

The inequality (2.8) follows by (2.7) applied for 1
ai

instead of ai (i = 1, . . . , n).
We omit the details. ��

2.2 Improving Some Geometric Inequalities

In what follows we will use the inequalities (2.5) to improve the following geometric
inequalities [1, 3]:

sin
A

2
sin
B

2
sin
C

2
≤ 1

8
(2.9)

R ≥ 2r (2.10)

sinA+ sinB + sinC ≤ 3
√

3

2
, (2.11)
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where A,B,C are the angles of a triangle ABC, R is the circumradius, and r is the
inradius.

Considering the function f : (0, π) → R, f (x) = ln sin x, after a simple
computation we have

M2(f ) = −1.

Applying the right-hand side inequality in (2.5) with

x1 = A
2
, x2 = B

2
, x3 = C

2
, p1 = p2 = p3 = 1

3

one obtains

sin
A

2
sin
B

2
sin
C

2
≤ 1

8
exp{− 1

24
[(A− B)2 + (B − C)2 + (C − A)2]},

(2.12)
inequality which improves the inequality (2.9). Using the well-known relation

sin
A

2
sin
B

2
sin
C

2
= r

4R
,

from (2.12) we derive the inequality

R ≥ 2r exp{ 1

24
[(A− B)2 + (B − C)2 + (C − A)2]}, (2.13)

which is a refinement of the Euler’s inequality (2.10).
For the function f : [0, π ] → R, f (x) = sin x, we have

m2(f ) = −1, M2(f ) = 0.

Using the inequalities (2.5) with x1 = A, x2 = B, x3 = C, p1 = p2 = p3 = 1

3
, we

obtain the inequalities

3
√

3

2
− 1

6
[(A−B)2+(B−C)2+(C−A)2]≤sinA+ sinB+ sinC ≤ 3

√
3

2
. (2.14)

The left side in (2.14) is a complementary inequality for (2.11).
Applying Theorem 2.1 for the function f : [0, π2 ] → R, f (x) = cos x, with

x1, x2, x3, p1, p2, p3 as in (2.14), and using the well-known relation

cosA+ cosB + cosC = 1+ r

R
,
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we obtain that for every acute angled triangle ABC the following inequality holds:

r

R
≥ 1

2
− 1

6
[(A− B)2 + (B − C)2 + (C − A)2]. (2.15)

The inequality (2.15) is a complementary inequality to Euler’s (2.10) written in the
equivalent form 1

2 ≥ r
R

. Other improvements to Euler’s inequality (2.10) are given
in [9].

2.3 Jensen’s and Jessen’s Inequality and Convexity Preserving
in Approximation Theory

It is well-known that a continuous real-valued function defined on a compact
interval [a, b] of the real axis can be uniformly approximated by polynomials.
Many constructive examples of approximating sequences of polynomial operators
are provided by the famous test function theorem of Korovkin which is a very
important and now classic result in Approximation Theory.

An interesting approach for obtaining approximation results is based on con-
vexity (see Popoviciu [47]). For instance, the behavior of the classical Bernstein
polynomials on the class of convex functions was considered by many authors (see
the bibliography compiled by Stark [54] and Gonska and Meier [25]). A result in
this direction is the fact, observed first by Popoviciu [46], that Bernstein operator is
a convexity-preserving operator, i.e. Bn(f, ·) of a convex function f ∈ C[a, b] is
also a convex function. This property and the apparently unrelated well-known fact
that Bernstein polynomials are approximating operators, i.e. for every f ∈ C[a, b]
we have Bn(f ; x) → f (x) uniformly as n → ∞, make the proof of Theorem
1 of Bojanic and Roulier [14] very simple. Thus it appears that the existence of
a sequence of approximating and convexity-preserving positive linear polynomial
operators which reproduces the affine functions (as Bernstein operators do) has a
certain importance. The existence of a such sequence may be of interest in statistics.
Indeed, if we consider the interpolation operators

Ln(f ; x) =
m(n)∑
k=0

wnk(x)f (xnk)

where m(n) may be finite or not, and moreover for k = 0, 1, . . . , and n = 1, 2, . . . ,
we have

(a) 0 ≤ wnk(x) ≤ 1, x ∈ [a, b];
(b)

m(n)∑
k=0

wnk(x) = 1,
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then Ln(f ; x) is the mathematical expectation of a certain discrete univariate
variable and the fact that mathematical expectation preserves the convexity of
the data will probably be of importance to the statisticians. For example, the
convexity-preserving property of Bernstein polynomials has been used in statistics
by Wegmüller [58]. Keeping in mind that the class of convex functions is charac-
terized by the well-known inequality of Jensen, the following question arises in a
natural way:

What are the implications between the Jensen’s inequality in C[a, b], the
existence of a sequence of approximating and convexity-preserving positive linear
polynomial operators which reproduce the affine functions, and Korovkin’s theo-
rem?

The aim of this subsection is to show that the three above-mentioned basic results
and a certain generalization of Jensen’s inequality due to Jessen [27] considered
in C[a, b] are connected. This property emphasizes the role of convexity and of
convexity-preserving operators in the theory of approximation by positive linear
operators.

2.4 Statement of the Results

Let C[a, b] be the linear space of all real-valued and continuous functions defined
on [a, b] and the functions en ∈ C[a, b] given by

en(x) = xn, n = 0, 1, 2, . . .

We denote by Bn the n-th classical Bernstein operator on [a, b], i.e.,

Bn(f ; x) = 1

(b − a)n
n∑
k=0

(
n

k

)
(x − a)k(b − x)n−kf

(
a + k b − a

n

)
. (2.16)

If ‖ · ‖ is the supremum norm in C[a, b], it is well-known that

lim
n→∞‖Bnf − f ‖ = 0,

for every function f ∈ C[a, b], i.e. Bernstein polynomials are approximating
operators, and Bn is a convexity-preserving operator (see, for instance, Popoviciu
[47, pp. 126]).

Korovkin’s theorem states that if {Ln}, n = 1, 2, . . . is a sequence of positive
linear operators on C[a, b] such that

lim
n→∞‖Lnei − ei‖ = 0 for i = 0, 1, 2,
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then

lim
n→∞‖Lnf − f ‖ = 0 for every f ∈ C[a, b].

If the function f ∈ C[a, b] is convex on [a, b], then for xk ∈ [a, b], pk ≥ 0,

k = 1, 2, . . . , m, with
m∑
k=1

pk = 1 we have

f

(
m∑
k=1

pkxk

)
≤

m∑
k=1

pkf (xk). (2.17)

The inequality (2.17) is the well-known Jensen’s inequality in C[a, b] (see
also Sect. 2.2). A generalization of Jensen’s inequality involving isotonic linear
functionals is due to Jessen [27]. A short proof of this generalization and other
related result may be found in the paper of Beesack and Pećarić [13].

In fact, in this subsection we shall consider only the following quite particular
form of Jessen’s inequality: If A : C[a, b] → R is a linear, positive (and thus
isotonic) functional with A(e0) = 1, then for every convex function f ∈ C[a, b]

f (A(e1)) ≤ A(f ). (2.18)

It is worth mentioning that this inequality and other similar inequalities appear
in the works of Slater [53], Pećarić [44], Pećarić and Andrica [45]. In what follows
by Jessen’s inequality we shall understand the inequality (2.18).

Recall that the function f : [a, b] → R is midpoint convex if

f

(
x1 + x2

2

)
≤ x1 + x2

2
,

for every x1, x2 ∈ [a, b]. The following result shows that midpoint convexity,
convexity, and Jessen’s convexity are equivalent for the functions in C[a, b].
Lemma 2.1 Let f ∈ C[a, b]. The following properties are equivalent:

10. f is midpoint convex;
20. f is convex;
30. f is Jessen convex, i.e. it satisfies the inequality (2.18) for every linear positive

functional A : C [a, b] → R with A (e0) = 1.

Proof The equivalence of 10 and 20 is a well-known property (see the monograph
[43, Theorem 1.1.4]).

In order to prove the implication 20 ⇒ 30 suppose that f is convex. It is well-
known that f ′+(y) exists for every y ∈ (a, b) and for every x ∈ [a, b]

f (x) ≥ f (y)+ f ′+(y)(x − y) (2.19)
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(see Roberts and Varberg [52, p. 12]). If we substitute y = A (e1) in the above
inequality, we obtain:

f (x) ≥ f (A (e1))+ f ′+ (A (e1)) (A (e1)− x) , x ∈ [a, b]

Applying the linear and positive functional A to the preceding inequality we obtain
inequality (2.18).

In order to prove the implication 30 ⇒ 20, suppose that 20 holds. For x1, x2 ∈
[a, b] define the functional

A (f ) = f (x1)+ f (x2)

2

Note that

A (e1) = e1 (x1)+ e1 (x2)

2
= x1 + x2

2

By 30 it follows that inequality (2.18) holds hence

f

(
x1 + x2

2

)
≤ f (x1)+ f (x2)

2

Since a continuous midpoint convex function is convex it follows that the function
f is convex. ��

The next result is an improvement of the Jessen’s inequality (2.18) when the
function f is (h1, h2)-convex.

Theorem 2.2 Consider the functions h1, h2 ∈ C[a, b] with the property that
h2 − h1 is convex, and let f ∈ C[a, b] be a (h1, h2)-convex function. Then for
every linear positive functional A : C [a, b] → R with A (e0) = 1, the following
inequalities hold:

A(h2)− h2(A(e1)) ≥ A(f )− f (A(e1)) ≥ A(h1)− h1(A(e1)).

Proof Applying Jessen’s inequality for the convex function f − h1 we get the right
inequality. Similarly, applying Jessen’s inequality for the convex function h2 − f
we obtain the left inequality. ��

The following result is the general version of the quadratic mean-arithmetic mean
inequality.

Lemma 2.2 Consider the linear positive functional A : C [a, b] → R with
A (e0) = 1. Then, for every function f ∈ C [a, b], the following inequality holds:

A(f 2) ≥ A2(f ).
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Proof Because (f − A(f ))2 ≥ 0, it follows A((f − A(f ))2) ≥ 0, that is

A(f 2)− 2A(f )A(f )+ A2(f ) ≥ 0,

hence A(f 2) ≥ A2(f ). ��
We have seen that every function f ∈ C2[a, b] is (h1, h2)-convex, with h1(x) =

m2(f )
2 x2 and h2(x) = M2(f )

2 x2, where the coefficientsm2(f ) andM2(f ) are defined
in (2.4). From Theorem 2.2 we get the inequalities

M2(f )

2
(A(e2)− A2(e1)) ≥ A(f )− f (A(e1)) ≥ m2(f )

2
(A(e2)− A2(e1)),

where by Lemma 2.2 we have A(e2) − A2(e1) ≥ 0. The result in Theorem 2.1
is a special case obtained for the discrete functional A(f ) = ∑n

i=1 pif (xi). We
mention that the quantity DA = A(e2) − A2(e1) is the dispersion of the functional
A.

The main results of this subsection are proved in the paper [6] and connect the
following properties:

(i) there is a sequence of approximating and convex-preserving positive linear
polynomial operators which reproduce the affine functions;

(ii) Korovkin’s theorem in the space C[a, b];
(iii) Jessen’s inequality for positive linear functionals on C[a, b].
Proof of (ii) Using (iii) Let {Ln}, n = 1, 2, . . ., be a sequence of positive linear
operators on C[a, b] with

lim
n→∞‖Lnei − ei‖ = 0, i = 0, 1, 2.

Because

lim
n→∞‖Lne0 − e0‖ = 0

we can assume that Ln(e0; x) > 0 and Ln(e0; x) < k for every x ∈ [a, b] and all
positive integers n ≥ n0.

For a fixed x ∈ [a, b] we consider the functionals

An : C[a, b] → R, An(f ) = Ln(f ; x)/Ln(e0; x), n ≥ n0.

It is obvious that An is linear positive and we have An(e0) = 1.
If f ∈ C2[a, b] let us denote by

m2 = min
t∈[a,b] f

′′(t), M2 = max
t∈[a,b] f

′′(t).
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Now we can apply (iii) for the above-defined functionals An and for the convex
functions

f1 = f − 1

2
m2e2, f2 = 1

2
M2e2 − f.

We get immediately

1

2
· m2

Ln(e0; x) [Ln(e0; x)Ln(e2; x)− L2
n(e1; x)]

≤ Ln(f ; x)− Ln(e0; x) · f
(
Ln(e1; x)
Ln(e0; x)

)

≤ 1

2
· M2

Ln(e0; x) [Ln(e0; x)Ln(e2; x)− L2
n(e1; x)]

for every x ∈ [a, b] and for every n ≥ n0. By Lemma 2.2 for f = e1 we obtain
Ln(e0; x)Ln(e2; x) ≥ L2

n(e1; x), for every n ≥ n0. Therefore, from the above
inequalities, we get

|Ln(f ; x)− Ln(e0; x)f (Ln(e1; x)/Ln(e0; x))|

≤ ‖f ′′‖
2Ln(e0; x) [Ln(e0; x)Ln(e2; x)− L2

n(e1; x)]. (2.20)

Using the triangle inequality, we have

|Ln(f ; x)− f (x)| ≤
∣∣∣∣f (x)− Ln(e0; x)f

(
Ln(e1; x)
Ln(e0; x)

)∣∣∣∣
+
∣∣∣∣Ln(f ; x)− Ln(e0; x)f

(
Ln(e1; x)
Ln(e0; x)

)∣∣∣∣ ,
and from (2.20) we conclude that

|Ln(f ; x)− f (x)| ≤
∣∣∣∣f (x)− f

(
Ln(e1; x)
Ln(e0; x)

)∣∣∣∣+ ‖f ‖|Ln(e0; x)− 1|

+ ‖f ′′‖
2Ln(e0; x) [Ln(e0; x)Ln(e2; x)− L2

n(e1; x)]. (2.21)

Because f is continuous on [a, b] it is also uniformly continuous on [a, b] so

|f (x)− f (Ln(e1; x)/Ln(e0; x))| → 0

uniformly as n→∞.
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On the other hand, using the fact that {e0, e1, e2} is a set of test functions, we have

[Ln(e0; x)Ln(e2; x)− L2
n(e1; x)]/Ln(e0; x)→ 0

uniformly as n→∞. From these remarks and (2.21) we deduce that

lim
n→∞‖Lnf − f ‖ = 0 for every f ∈ C2[a, b].

For every f ∈ C[a, b] we have

|Ln(f ; x)| ≤ ‖f ‖Ln(e0; x) ≤ k‖f ‖
so ‖Lnf ‖ ≤ k‖f ‖ and we obtain ‖Ln‖ ≤ k for every n ≥ n0. It follows

‖Ln(f )− f ‖ ≤ ‖Ln(f − g)− (f − g)‖ + ‖Ln(g)− g‖ ≤

‖Ln‖‖f − g‖ + ‖Ln(g)− g‖ ≤ k‖f − g‖ + ‖Ln(g)− g‖, n ≥ n0,

therefore

lim sup ‖Ln(f )− f ‖ ≤ k‖f − g‖,

for every g ∈ C2[a, b]. Because C2[a, b] is a dense subspace in C[a, b], the proof
is complete.

Remark 2.1

(1) The construction of the functions f1 and f2 has been used by Lupaş [32] in
Approximation Theory and to obtain the improvements of some inequalities
based upon convex functions by Raşa [51], Andrica and Raşa [11] (see also the
above Sects. 2.1 and 2.2). The same idea appeared in Andrica et al. [12].

(2) Using the same method of proof one may find a more general class than the
class of approximating positive linear interpolation operators. This may be done
by using Jensen–Steffensen’ inequality (see Mitrinović [40, p. 109]) instead of
Jensen’s inequality which is equivalent to Jessen’ s inequality by Lemma 2.1.

Proof of (i) Using (ii) BecauseBnek = ek , k = 0, 1, andBn(e2) = e2+ e1 − e2

n
, we

get by Korovkin’s theorem that Bernstein operators are approximating operators. In
the same time Bn is a convexity-preserving polynomial operator (see, for instance,
Popoviciu [47, p. 126]) which reproduces the affine functions.

Proof of (iii) Using (i) Let {Ln}, n = 1, 2, . . ., be a sequence of approximating
and convexity-preserving positive linear polynomial operators which preserves the
affine functions. The existence of a such sequence is guaranteed by (i).

Let f be a convex function of C2[a, b]. Using the Taylor’s formula we get

f (x) ≥ f (t)+ (x − t)f ′(t)
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for every x, t ∈ [a, b]. Applying the functional A with respect to x, for t = A(e1),
it follows

A(f ) ≥ f (A(e1)) (2.22)

for every convex function f ∈ C2[a, b]. For these functions we have similarly
Ln(f ; x) ≥ f (x). However, this inequality holds for an arbitrary convex function
f ∈ C[a, b]. Indeed, if f is convex on [a, b], then Lmf ∈ C2[a, b] is also a
convex function and thus Ln(Lmf ; x) ≥ f (x). Letting m tends to infinity we get
that Ln(f ; x) ≥ f (x), for every convex function f ∈ [a, b].

Finally we complete the proof of Jessen’s inequality (2.22) by using an idea of
Andrica [2]. Let f ∈ C[a, b] be a convex function. Using the last inequality and the
fact that the operators Ln are approximating we find that for every ε > 0 there is a
positive integer N = N(ε) such that for all n ≥ N we have

0 ≤ Ln(f ; x)− f (x) < ε, x ∈ [a, b].

Thus

A(Lnf ) ≤ A(f )+ ε, n = 1, 2, . . . (2.23)

Because Lnf ∈ C2[a, b] is also a convex function we find, using (2.22), that

Ln(A(e1)) ≤ A(Lnf ), n = 1, 2, . . . (2.24)

Hence from (2.23) and (2.24) we have

Ln(A(e1)) ≤ A(f )+ ε, n = 1, 2, . . . (2.25)

and because the operators Ln are approximating we get

f (A(e1)) ≤ A(f )+ ε

for every ε > 0. Consequently, Jessen’s inequality is proved.

Final Remark

From the above proof we see that we may replace (i) by the weaker assertion:

(i’) there is a sequence of approximating and convex-preserving positive linear
operators {Ln} which reproduce the affine functions and which verify the
condition Lnf ∈ C2[a, b], n = 1, 2, . . ., for every convex function f .
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Also, we may extend the result of the theorem to an infinite interval by replacing
Bernstein operators with those of Szász-Mirakjan.

2.5 Strong-Convexity and Strong-Concavity with Respect
to a Function

LetX be a real normed space endowed with the norm ‖·‖ and letX∗ be the algebraic
topological dual of X. Consider D ⊆ X a convex set, and the continuous function
h : D ×D→ R+ satisfying for every x ∈ D the condition h(x, x) = 0.

Definition 2.1 The real function f : D→ R is called h-strong convex if there exist
a function g(1)f : D → X∗ and a real number m > 0, such that for every x, y ∈ D
the following inequality is verified:

f (x) ≥ f (y)+ g(1)f (y)(x − y)+mh(x, y). (2.26)

Definition 2.2 The function f : D → D is h-strong concave if there exists a
function g(2)f : D→ X∗ and a real numberM < 0, such that for every x, y ∈ D the
following relation is true:

f (x) ≤ f (y)+ g(2)f (y)(x − y)+Mh(x, y). (2.27)

Some particular situations of h-strong convexity for real functions defined on an
interval [a, b] are studied in the papers [11] and [8]. Other results concerning the
refinement of some inequalities related to classical convex functions are obtained in
[7] and [8].

Remark 2.2

(1) Recall that the subdifferential of f at the point y ∈ D is defined by

∂f (y) = {a∗ ∈ X∗ : f (x) ≥ f (y)+a∗(y)(x−y) for every x ∈ D}. (2.28)

If ∂f (y) �= ∅ for every y ∈ D, then (2.26) is satisfied by considering

g
(1)
f (y) = a∗(y) ∈ X∗.

Thus every function f : D → R with ∂f (y) �= ∅, y ∈ D is a 0-strong convex
function (see [45] for more details).

(2) Let f : D → R be a Lipschitz function, i.e. f satisfies for every x, y ∈ D the
inequality

|f (x)− f (y)| ≤ k‖x − y‖.



66 D. Andrica et al.

That is, the following relations are verified:

− k‖x − y‖ + f (y) ≤ f (x) ≤ f (y)+ k‖x − y‖. (2.29)

It follows that f is h-strong convex and concave function, where

h(x, y) = ‖x − y‖,

g
(1)
f (y) = g(2)f (y) = 0 ∈ X∗, m = −k, M = k,

the Lipschitz constant.

Denote by C(D) = C(D,R) the real vector space of all continuous functions
defined on D. Let us remark that if the function f : D→ R is h-strong convex and
h-strong concave on D, then it is continuous on D. This assertion follows from the
inequalities

mh(x, y)+g(1)f (y)(x−y) ≤ f (x)−f (y) ≤ g(2)f (y)(x−y)+Mh(x, y) (2.30)

by using the continuity of the functionals g(1)f (y), g
(2)
f (y) ∈ X∗, the continuity of h

and the hypothesis h(x, x) = 0.
Let us denote by Ch(D) the set of all h-strong convex and concave functions on

D. Taking into account the above remark one obtains Ch(D) ⊂ C(D) as a linear
subspace of C(D).

Consider X a pre-Hilbert space endowed with the inner product 〈·, ·〉. If D ⊂ X
is a convex, compact subset of X having nonempty interior, let us denote by C2(D)

the space of allC2-differentiable real functions f : D→ R. It is clear thatC2(D) ⊂
C(D).

Theorem 2.3 With the above notations, the following inclusion holds:

C2(D) ⊂ Ch(D), (2.31)

where h : D ×D→ R is given by

h(x, y) = ‖x − y‖2.

That is, every C2-differentiable function on D is h-strong convex and h-strong
concave on D.

Proof From the well-known Taylor formula one obtains:

f (x) = f (y)+ (df )(x − y)+ 1

2
(d2f )ξ (x − y, x − y) (2.32)
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where

ξ = ξx,y ∈ [x, y] = {tx + (1− t)y : t ∈ [0, 1]} ⊂ D.

Let us denote

k
(2)
f = max{‖(d2f )z‖ : z ∈ D},

where d2f : D → L(X,L(X;R)) � L2(X,X;R) represents the second
differential of f . Using the Schwarz inequality it follows:

|(d2f )(x − y, x − y)| = |〈(d2f )ξ (x − y), x − y〉|
≤ ‖(d2f )ξ (x − y)‖ · ‖x − y‖
≤ ‖(d2f )ξ‖ · ‖x − y‖2

≤ k(2)f · ‖x − y‖2.

From (2.32) one obtains

−1

2
k
(2)
f ‖x − y‖2 + (df )y(x − y)+ f (y) ≤ f (x)

≤ f (y)+ (df )y(x − y)+ 1

2
k
(2)
f ‖x − y‖2.

Therefore the inequalities (2.30) are verified with

g
(1)
f = g(2)f = df, m = −1

2
k
(2)
f , M = 1

2
k
(2)
f .

��

2.6 Markov Operators

Consider X a real normed space and let D ⊂ X be a convex and compact subset of
X. Let C(D) be the Banach space of all continuous real functions on D, endowed
with the maximum norm.

Definition 2.3 A Markov operator on C(D) is a positive linear operator L :
C(D)→ C(D) such that L(e0) = e0, where e0(x) = 1, x ∈ D, i.e. L preserves the
constant functions.

It is known (see [10, Lemma 1]) that if L is a Markov operator acting on C(D),
then ‖L‖ = 1.
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If (Ln)n≥1 is a sequence of Markov operators acting on C(D), let

αn(x) = Ln(h(·, x); x) (2.33)

for all x ∈ D and n = 1, 2, . . ., where Ch(D) is the subspace of h-strong convex
and h-strong concave functions on D.

For f ∈ Ch(D) consider the functions G(1)f,y,G
(2)
f,y : D→ R given by

G
(j)
f,y(x) = g(j)f (y)(x), j = 1, 2,

where g(1)f , g
(2)
f are the mappings satisfying the inequalities (2.30).

The main result in this section was proved in the paper [5] (see also [4]) and it is
contained in the following Korovkin type theorem.

Theorem 2.4 Let (Ln)n≥1 be a sequence of Markov operators acting on C(D).
Suppose that the following conditions are satisfied:

(i) αn(x)→ 0, uniformly with respect to x ∈ D;
(ii) Ln(G

(j)
f,y)→ G

(j)
f,y in the uniform norm of C(D), for any f ∈ Ch(D) and for

every point y ∈ D;
(iii) Ch(D) is a dense subspace of C(D).

Then (Ln(f ))n≥1 converges uniformly to f for all f ∈ C(D).
Proof Let f ∈ Ch(D). The inequalities (2.30) can be rewritten in the form:

mh(x, y)+ g(1)f (y)(x)− g(1)f (y)(y) ≤ f (x)− f (y)
≤ g(2)f (y)(x)− g(2)f (y)(y)+Mh(x, y).

Applying to these inequalities the operator Ln with respect to x and taking into
account the positivity of Ln, one obtains:

mLn(h(·, y); x)+ Ln(G(1)f,y; x)− g(1)f (y)(y) ≤ Ln(f ; x)− f (y)
≤ Ln(G(2)f,y; x)− g(2)f (y)(y)+MLn(h(·, y); x).

Consider β(j)n (x, y) = Ln(G(j)f,y; x) − G(j)f,y(x), and from the above inequalities it
follows:

mLn(h(·, y); x)+ g(1)f (y)(x)− g(1)f (y)(y)+ β(1)n (x, y) ≤ Ln(f ; x)− f (y)
≤ g(2)f (y)(x)− g(2)f (y)(y)+ β(2)n (x, y)+MLn(h(·, y); x).
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Considering y = x one obtains:

mαn(x)+ β(1)n (x, x) ≤ Ln(f, x)− f (x) ≤ β(2)n (x, x)+Mαn(x). (2.34)

From (2.34) it follows that Ln(f ; ·) → f , uniformly for every f ∈ Ch(D). Using
the hypothesis (iii) and the mentioned fact that

‖Ln‖ = 1, n = 1, 2, . . . ,

the conclusion is obtained via the well-known Banach–Steinhaus theorem. ��
As an application we consider the following situation. Let X be a Hilbert space

with the inner product 〈·, ·〉 and letD ⊂ X be a convex, compact subset ofX having
nonempty interior. Consider the functions ea, e : D→ R, where

ea(x) = 〈a, x〉, e(x) = 〈x, x〉 = ‖x‖2, a ∈ X.

Corollary 2.2 Let (Ln)n≥1 be a sequence of Markov operators acting on C(D).
Suppose that Ln(ea) = ea , i.e. (Ln)n≥1 preserves the functions contained in the
family {ea}a∈X and Ln(e) → e in the uniform form of C(D). Then (Ln(f ))n≥1
converges uniformly to f , for all f ∈ C(D).
Proof Let f ∈ C2(D). According to Theorem 2.3 it follows that f ∈ Ch(D), where

h(x, y) = ‖x − y‖2 = 〈x − y, x − y〉
= 〈x, x〉 − 2〈x, y〉 + 〈y, y〉
= e(x)− 2ey(x)+ 〈y, y〉.

Let us verify the conditions (i)–(iii) in Theorem 2.4. First, observe that

αn(x) = Ln(h(·, x); x)
= Ln(e, x)− 2ex(x)+ e(x)
= Ln(e; x)− e(x)→ 0,

uniformly with respect to x ∈ D.
From the proof of Theorem 2.3 we have g(1)f = g(2)f = df . Thus

G
(j)
f,y(x) = (df )y(x), y ∈ D.

Taking into account the well-known Riesz representation theorem one obtains

G
(j)
f,y(x) = (df )(x) = 〈(∇f )y, x〉 = e(∇f )y (x),
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where (∇f )y ∈ X is the gradient of f at the point y ∈ D. It follows that

Ln(G
(j)
f,y; x) = G(j)f,y

for every f ∈ C2(D) and for every y ∈ D.
Because C2(D) is a dense subspace of C(D) it follows that Ch(D) has also

this property. Therefore we can apply Theorem 2.4 and the desired conclusion is
obtained. ��

In the case X = R
n, endowed with the usual Euclidean inner product, from

Corollary 2.2 one obtains a result contained in Corollary 2 of the paper [7]. For
n = 2 it follows the result contained in [32] and [57].

2.7 A Density Result Involving the Subspace Ch(D)

It is natural to find some reasonable sufficient conditions on the function h : D ×
D → R in order that the hypothesis (iii) in the above Theorem 2.4 is satisfied. In
what follows we consider that the continuous function h : D×D→ R satisfies the
following conditions:

(a) h is symmetric, i.e. h(x, y) = h(y, x) for every x, y ∈ D;
(b) h is positively-nondegenerate, i.e. h(x, x) = 0 for every x ∈ D; h(x, y) > 0 if

x �= y.

Let us denote by C[h](D) the vector space of all real-valued functions defined on
D satisfying the condition:

|f (x)− f (y)| ≤ Kf h(x, y) (2.35)

for every x, y ∈ D, where Kf ≥ 0 is a real number depending on f .
Our main result is the following:

Theorem 2.5 Suppose that the continuous mapping h : D × D → R satisfies the
conditions (a) and (b) and for every z ∈ D the function hz : D → R, x �→ h(z, x),
belongs to C[h](D). Then the subspace Ch(D) is dense in C(D) with respect to the
uniform norm.

Proof Let us note firstly that the following inclusions hold:

C[h](D) ⊆ Ch(D) ⊂ C(D) (2.36)

because from (2.35) one obtains

−Kf h(x, y) ≤ f (x)− f (y) ≤ Kf h(x, y)
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therefore f is a h-strong convex and concave function onD, where for every y ∈ D,

g
(1)
f (y) = g(2)f (y) = 0 ∈ X∗, m = −Kf , M = Kf ,

the constant given by (2.35). The continuity of f follows from the continuity of h
with respect to the norm topology on D. The assertion of the theorem will follow
from inclusions (2.36) and from the well-known Stone–Weierstrass theorem if we
shall show that C[h](D) is a subalgebra of C(D) containing the constant functions
and separating the points of D.

It is clear that C[h](D) is a linear subspace of C(D). If f1, f2 ∈ C[h](D), then

|(f1f2)(x)− (f1f2)(y)| ≤ |f1(x)||f2(x)− f2(y)| + |f1(x)− f1(y)|
≤ (‖f1‖Kf2 + ‖f2‖Kf1)g(x, y),

for all x, y ∈ D, where Kf1,Kf2 are the constants given by the inequalities (2.35)
and ‖f1‖, ‖f2‖ are the uniform norms. Therefore f1f2 ∈ C[h](D).

As the constant functions are obviously in C[h](D) to finish the proof we have
only to show that the algebra C[h](D) separates the points of D. For y, z ∈ D,
y �= z, let us consider the function hz : D → R, x �→ h(z, x). From the hypothesis
of the theorem one obtains hz ∈ C[h](D).
Moreover, we have hz(z)=h(z, z)=0, hz(y)=h(z, y)>0, therefore hz(z) �=hz(y).

��
Corollary 2.3 If the continuous function h : D ×D→ R is a distance on D, then
the subspace Ch(D) is dense in C(D) with respect to the uniform norm.

Proof In this situation the conditions (a), (b) are satisfied and one obtainsC[h](D) =
Lip[h](D), where Lip[h](D) denotes the vector space of all real valued Lipschitz
functions defined on D with respect to the distance h. Let us show that for every
z ∈ D, the function hz : D → R, x �→ h(z, x), belongs to Lip[h](D). If x, y ∈ D
one obtains

|hz(x)− hz(y)| = |h(z, x)− h(z, y)| ≤ h(x, y)

therefore hz ∈ Lip[h](D) and Khz = 1. ��

3 Pointwise and Uniform Convergence on Compact
Sets of Sequences of Convex Functions

In Hiriart–Urruty [26, p. 105] the following theorem was proved:

Theorem 3.1 Let the convex functions fn : Rk → R converge pointwise for n →
∞ to f : Rk → R. Then f is convex and for each compact set K , the convergence
of fn to f is uniform on K .
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In this section we shall prove and generalize the above result in several directions.
We shall prove that Theorem 3.1 holds in Banach spaces of arbitrary dimension.
Also we can relax the hypothesis that all fn are convex with the hypothesis that all
fn are locally convex on an open set D. We investigate the validity of Theorem 3.1
in case the open convex set D is replaced with a compact set.

Another result from [26] that asserts that if (fn)n≥1is a pointwise convergent
sequence of convex Fréchet differentiable functions defined on the m-dimensional
Euclidean space that converges to a Fréchet differentiable function f , then the
sequence (∇fn)n≥1 converges uniformly on every compact to ∇f , is generalized.

Theorem 3.2 Let (X, d), (Y, ρ) be two metric spaces, f, fn : X → Y , n ≥ 1,
η : [0,∞)→ [0,∞) be an increasing function such that

η(0) = lim
t↓0
η(t) = 0.

Suppose that:

(i) X is compact.
(ii) lim

n→∞ fn(x) = f (x), x ∈ X.

(iii) ρ(fn(x), fn(y)) ≤ η(d(x, y)), for every x, y ∈ X, n ≥ 1.

Then the sequence (fn)n≥1 converges uniformly to f on X.

Proof It suffices to consider the case X is infinite. Since X is compact then X is
separable. Let M = {xn | n ≥ 1} be a countable subset of X which is dense in
X. For every r ≥ 1 let Mr = {x1, x2, . . . , xr }. Consider x ∈ X and let r ≥ 1 and
k ∈ {1, 2, . . . , r} be such that

d(x, xk) = min
1≤j≤r d(x, xj ) = d(x,Mr).

Note that

ρ(fn(x), f (x)) ≤ ρ(fn(x), fn(xk))+ ρ(fn(xk), f (xk))+ ρ(f (xk), f (x))
≤ η(d(x, xk))+ max

1≤j≤r[ρ(fn(xj ), f (xj ))] + η(d(x, xk))

= 2η(d(x,Mr))+ max
1≤j≤r[ρ(fn(xj ), f (xj ))]

hence

sup
x∈X
[ρ(fn(x), f (x))] ≤ 2η

(
sup
x∈X

d(x,Mr)

)
+ max

1≤j≤r[ρ(fn(xj ), f (xj ))].

Letting n→∞ in the above inequality we obtain
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lim sup
n→∞

[
sup
x∈X
[ρ(fn(x), f (x))]

]
≤ 2η

(
sup
x∈X
[d(x,Mr)]

)
.

Denote

ar = sup
x∈X
[d(x,Mr)], r ≥ 1.

Note that the sequence (ar )r≥1 is decreasing. For every r ≥ 1 let yr ∈ X be such
that ar = d(yr ,Mr). Since X is compact there exists a convergent subsequence
(yrp )p≥1 of (yr )r≥1. Let

y = lim
p→∞ yrp .

Consider the following inequality

0 ≤ arp = d(yrp ,Mrp ) ≤ d(yrp , y)+ d(y,Mrp )

and let p→∞. We obtain

lim
p→∞ arp = 0.

Since (ar )r≥1 is decreasing it follows that

lim
r→∞ ar = 0.

Consequently the sequence (fn)n≥1 converges uniformly to f on X. ��
Lemma 3.1 ([52, p. 93]) Let E be a linear normed space, D be a subset of E, and
f : D→ R be a convex function. If f is bounded from above in a neighborhood of
a point of D, then f is continuous on D.

If E is a linear normed space, a ∈ E and r > 0, we shall denote with B(a, r) the
open ball with center at x = a of radius r . By B[a, r] will be denoted the closed
ball of center x = a and radius r .

Lemma 3.2 Let E be a Banach space, D be an open convex subset of E, and f :
D→ R be a convex lower semicontinuous function. Then f is continuous.

Proof f is lower semicontinuous if and only if for every c ∈ R the set

{x ∈ D | f (x) > c}

is open. Suppose by absurd that f is not continuous. From Lemma 3.1 it follows
that for all c ∈ R the set {x ∈ D | f (x) > c} is a dense open subset of D. If
x1 ∈ A1, then there exists r1 > 0 such that B(x1, r1) ⊂ B[x1, r1] ⊂ A1. Let
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x2 ∈ B(x1, r1) ∩ A1. Since B(x1, r1) ∩ A1 is an open set it follows that there exists
r2 > 0 such that B(x2, r2) ⊂ B[x2, r2] ⊂ A2 ∩ B(x1, r1). If we iterate the above
argument we obtain a sequence (xn)n≥1 with xn ∈ An for all n ≥ 1 such that
B(xn, rn) ⊂ B[xn, rn] ⊂ B(xn−1, rn−1). Since E is a Banach space it follows that

∞⋂
i=1

B[xi, ri] �= ∅.

Let

x0 ∈
∞⋂
i=1

B[xi, ri] ⊂
∞⋂
i=1

Ai.

We note that f (x0) > n for every n ≥ 1, which is a contradiction. Consequently f
is a continuous function. ��
Lemma 3.3 Let E be a linear normed space, R > 0, x0 ∈ E, f : B(x0, R) → R

be a convex function with the property

m ≤ f (x) ≤ M for every x ∈ B(x0, R).

Then for every r ∈ (0, R) the following inequality holds:

|f (x)− f (y)| ≤ M −m
R − r ‖x − y‖, x, y ∈ B(x0, r).

Proof Let r ∈ (0, R), x, y ∈ B(x0, r), x �= y, z = y + R − r
‖x − y‖ (y − x). Note that

we have z ∈ B(x0, R), hence f (z) ≤ M . Let

a = ‖y − x‖
R − r + ‖y − x‖ , b =

R − r
R − r + ‖y − x‖ .

Note that we have a, b ≥ 0, a + b = 1 and y = az+ bx. We obtain

f (y)− f (x) ≤ af (z)+ bf (x)− f (x) = a(f (z)− f (x))

≤ a(M −m) ≤ M −m
R − r ‖y − x‖.

By changing x with y and y with x in the preceding inequality we obtain the
inequality from the statement. ��

Let E be a linear normed space and let D be an open subset of E. A function
f : D → R is called locally convex if for every a ∈ D there exists r > 0 such that
the restriction of f to B(a, r) is convex.

The following result can be found in [30, Corollary 2.4].
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Lemma 3.4 ([30]) Let E be a linear normed space and D be an open subset of E.
Then every locally convex function f : D → R is convex on each convex subset
of D.

Theorem 3.3 Let E be a Banach space, D be an open subset of E. Consider the
functions fn, f : D→ R, n ≥ 1. Suppose that:

(i) f and fn, n ≥ 1 are locally convex and continuous;
(ii) lim

n→∞ fn(x) = f (x) for every x ∈ D.

Then the sequence (fn)n≥1 converges uniformly to f on every compact subset K
of D.

Proof We shall prove the following assertion:

Statement A For every x0 ∈ D there exists r > 0 such that B(x0, r) ⊂ D and
(fn)n≥1 converges uniformly to f on every compact K in B[x0, r].
Proof of Statement A Let

g(x) = sup
n≥1
fn(x), x ∈ D.

Note that g is locally convex and lower semicontinuous. By Lemmas 3.2 and 3.4, g
is continuous.

Let x0 ∈ D. Then there exists R > 0 such that B[x0, R] is included inD and g is
bounded on B[x0, R]. LetM > 0 be such that |g(x)| ≤ M for every x ∈ B[x0, R].
Hence fn(x) ≤ M for every x ∈ B[x0, R]. Since (fn(x0))n≥1 is convergent it
follows that there exists m1 ∈ R such that fn(x0) ≥ m1 for every n ≥ 1.

Let x ∈ B[x0, R] and x′ = 2x0 − x. Note that x′ ∈ B[x0, R] and

fn(x) ≥ 2fn(x0)− fn(x′) ≥ 2m1 −M.

Let m = 2m1 − M . We have m ≤ fn(x) ≤ M for every x ∈ B[x0, R]. From

Lemma 3.5 it follows that fn is
M −m
R − r Lipschitz on B[x0, r], n ≥ 1.

LetK be a compact subset of B[x0, r]. Since (fn)n≥1 is pointwise convergent on
K , from Theorem 3.2 it follows that (fn)n≥1 is uniformly convergent on K . Thus
Statement A is proved.

LetK be a compact subset ofD. By Statement A it follows that for every x0 ∈ K
there exists r(x0) > 0 such that (fn)n≥1 is uniformly convergent on every compact

subset of B[x0, r(x0)]. Since K ⊂
⋃
x0∈K

B(x0, r(x0)) it follows that there exists a

finite covering B[xi, r(xi)] of K , i = 1, 2, . . . , m, with balls with centers in K .
Since (fn)n≥1 is uniformly convergent on every compact K ∩ B[xi, r(xi)], i =
1, 2, . . . , m, it follows that (fn)n≥1 is uniformly convergent to f on K .

��
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Lemma 3.5 Let f : [a, b] → R be a convex function. Then the following inequality
holds:

|f (x)−f (y)| ≤ 2 max

(
f (a)− f

(
a + b

2

)
, f (b)− f

(
a + b

2

))
, x, y ∈ [a, b].

Proof LetM = max(f (a), f (b)). Note that

2f

(
a + b

2

)
−M ≤ f (x) ≤ M for every x ∈ [a, b].

The above inequalities can be proved as follows. Let x ∈ [a, b], x′ = a + b − x.
Note that x′ ∈ [a, b] and

2f

(
a + b

2

)
−M = 2f

(
x + x′

2

)
−M ≤ f (x)+ f (x′)−M ≤ f (x) ≤ M.

If x, y ∈ [a, b], then

|f (x)− f (y)| ≤ M −
(

2f

(
a + b

2

)
−M

)
= 2

(
M − f

(
a + b

2

))

= 2 max

(
f (a)− f

(
a + b

2

)
, f (b)− f

(
a + b

2

))
.

��
Theorem 3.4 Let f, fn : [0, 1] → R, n ≥ 1 be convex functions. Suppose that f is
continuous and (fn)n≥1 converges pointwise to f on [0, 1]. Then (fn)n≥1 converges
uniformly on [0, 1] to f .

Proof Since f is uniformly continuous on [0, 1] there exists η : [0,∞)→ [0,∞)
increasing such that

η(0) = η(0+ 0) = 0 and |f (x)− f (y)| ≤ η(|x − y|), x, y ∈ [0,∞).

Let Δ : 0 = x0 < x1 < . . . < xm = 1 be a division of the interval [0, 1]. If
x ∈ [0, 1] consider i ∈ {1, 2, . . . , m} such that x ∈ [xi−1, xi]. Note that

|fn(x)− f (x)| ≤ |fn(x)− fn(xi)| + |fn(xi)− f (xi)| + |f (xi)− f (x)|

≤ 2 max

(
fn(xi)− fn

(
xi + xi−1

2

)
, fn(xi−1)− fn

(
xi + xi−1

2

))

+ max
1≤j≤m |fn(xj )− f (xj )| + η(|xi − x|).
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Let ‖Δ‖ = max
1≤i≤m(xi − xi−1) be the norm of division Δ. Then

sup
x∈[0,1]

|fn(x)− f (x)|

≤2 max

(
fn(xi)− fn

(
xi + xi−1

2

)
, fn(xi−1)− fn

(
xi + xi−1

2

))
+ η(‖Δ‖).

Letting n→∞ we obtain that

lim sup
n→∞

[
sup
x∈[0,1]

|fn(x)− f (x)|
]

≤ 2 max

(
f (xi)− f

(
xi + xi−1

2

)
, f (xi−1)− f

(
xi + xi−1

2

))
+ η(‖Δ‖)

≤ 2η(‖Δ‖)+ η(‖Δ‖) = 3η(‖Δ‖).

Now, letting ‖Δ‖ → 0 we obtain that (fn)n≥1 is uniformly convergent to f on the
interval [0, 1]. ��
Proposition 3.1 Let m ≥ 1,

B = {(x1, x2, . . . , xm) ∈ R
m | x2

1 + x2
2 + . . .+ x2

m ≤ 1}

and f : B → R, f (x) = 0 for x ∈ B. Consider the functions fn : B → R, n ≥ 1.

fn(x1, x2, . . . , xm) = mn2 ·max

(
x1 + x2 + x3 + . . .+ xm

n
− 1, 0

)
,

where (x1, x2, . . . , xm) ∈ B. Then (fn)n≥1 is pointwise convergent to f but (fn)n≥1
is not uniformly convergent to f on B.

Proof Note that if x = (x1, x2, . . . , xm) ∈ B and x1 < 1 then there exists n(x1) ≥ 1
such that fn(x) = 0 for all n ≥ n(x1). Since fn(1, 0, 0, . . . , 0) = 0 for every n ≥ 1
it follows that (fn)n≥1 converges pointwise to f on B.

Consider the sequence of vectors xn = (xn1, xn2, . . . , xnm),

xn1 = n√
n2 +m− 1

, xn2 = xn3 = . . . = xnm = 1√
n2 +m− 1

, n ≥ 1.
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Note that xn ∈ B for all n ≥ 1. More precisely ‖xn‖ = 1 for all n ≥ 1. We consider
on R

m the Euclidean norm. Note that for all n ≥ 1, we have

fn(xn) = mn2 ·max

(
n√

n2 +m− 1
+ m− 1

n
√
n2 +m− 1

− 1, 0

)

= mn2·max

(√
n2 +m− 1

n
− 1, 0

)
= mn2·

√
n2 +m− 1− n

n
= mn· m− 1√

n2 +m− 1+ n
.

Since lim
n→∞ fn(xn) =

m(m− 1)

2
it follows that (fn)n≥1 is not uniformly convergent

to f on B. ��
Theorem 3.5 Let D be an open set of R and f, fn : D → R, n ≥ 1 be convex,
differentiable functions. If (fn)n≥1 converges pointwise to f on D, then (f ′n)n≥1
converges pointwise to f on D.

Proof Let a ∈ D, r > 0 be such that (a − r, a + r) ⊂ D. For every n ≥ 1 consider
the function un : (−r, r)→ R

un(h) =
⎧⎨
⎩
fn(a + h)− fn(a)

h
, h ∈ (−r, 0) ∪ (0, r)

f ′n(a), h = 0

Since fn are convex it follows that un are increasing, hence

un(−h) ≤ un(0) ≤ un(h), h ∈ (0, r), n ≥ 1.

Thus

|un(h)− un(0)| ≤ |un(h)− un(−h)|, h ∈ (0, r), n ≥ 1.

Let u(h) = lim
n→∞ un(h), h ∈ (−r, r). Then for h ∈ (−r, 0) ∪ (0, r) we have

|f ′n(a)− f ′(a)| ≤ |f ′n(a)− un(h)| + |un(h)− u(h)| + |u(h)− f ′(a)|
= |un(0)− un(h)| + |un(h)− u(h)| + |u(h)− u(0)|
≤ |un(h)− un(−h)| + |un(h)− u(h)| + |u(h)− u(0)|.

Letting n→∞ we obtain

lim sup
n→∞

|f ′n(a)− f ′(a)| ≤ |u(h)− u(−h)| + |u(h)− u(0)|.

Letting h→ 0 we obtain that (f ′n)n≥1 converges pointwise to f on D. ��
In Kosmol [30] the following two theorems were proved.
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Theorem 3.6 ([30]) Let (X, d), (Y, ρ) be two metric spaces, fn : X → Y , n ≥ 1
be continuous functions. Suppose that there exists f : X → Y such that (fn)n≥1 is
pointwise convergent to f . Then the following assertions are equivalent:

(1) (fn)n≥1 is an equicontinuous family of functions.
(2) (fn)n≥1 converges uniformly on every compact set of X to f .

Theorem 3.7 ([30]) Let D be an open subset of Rm and let fn : D → R
m, n ≥ 1

be a sequence of continuous monotone operators that is pointwise convergent on D
to a continuous operator f : D→ R

m.
Then (fn)n≥1 is equicontinuous on D.

Here by a monotone operator on D we understand a function g : D → R
m such

that

〈g(x)− g(y), x − y〉 ≥ 0 for every x, y ∈ D.

From Theorems 3.6 and 3.7 we obtain

Theorem 3.8 Let D be an open subset of Rm and let fn : D → R
m, n ≥ 1 be a

sequence of continuous monotone operators that is pointwise convergent on D to
the continuous operator f : D → R

m. Then (fn)n≥1 is uniformly convergent to f
on every compact subset K of D.

In [26, Corollary 6.2.8], the following result is proved.

Theorem 3.9 Let fn, f : Rm → R be Fréchet differentiable convex functions. If
(fn)n≥1 converges pointwise to f , then (∇fn)n≥1 converges to ∇f uniformly on
every compact set of Rm.

The next result is a generalization of the preceding theorem.

Theorem 3.10 Let E be a Banach space, D be an open subset of E, and f, fn :
D → R, n ≥ 1 be locally convex functions that are Fréchet differentiable. Suppose
that (fn)n≥1 is pointwise convergent to f on D. Then the following assertions
hold:

(1) For every x ∈ D and every compact K of E we have

lim
n→∞ sup

h∈K
|f ′n(x)(h)− f ′(x)(h)| = 0.

(2) If E is finite dimensional, then (f ′n)n≥1 converges uniformly on every compact
subset K of D to f ′.

Proof In order to prove assertion (1) let x ∈ D and let r > 0 be such that B(x, r) ⊂
D. Let h ∈ B(0, r). Consider the functions

u(t) = f (x + th), t ∈ [−1, 1],
un(t) = fn(x + th), t ∈ [−1, 1], n ≥ 1.
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Note that all the functions un are convex and (un)n≥1 converges pointwise to u on
[−1, 1]. From Theorem 3.5 it follows that

lim
n→∞ u

′
n(0) = u′(0)

hence

lim
n→∞ f

′
n(x)(h) = f ′(x)(h).

Consider the functions

ϕn(h) = f ′n(x)(h), n ≥ 1

and

ϕ(h) = f ′(x)(h), h ∈ B(0, r).

Note that ϕn, n ≥ 1 are convex and (ϕn)n≥1 converges pointwise to ϕ. From
Theorem 3.3 it follows that for every compact set K of E we have

lim
n→∞ sup

h∈K
|f ′n(x)(h)− f ′(x)(h)| = 0.

In order to prove the second assertion let E be a finite dimensional space. Since
(fn)n≥1 is pointwise convergent to f it follows from assertion (1) that (f ′n(x))n≥1
converges uniformly on B[0, 1] to f ′(x). This can be written as follows:

lim
n→∞ sup

h∈B[0,1]
|f ′n(x)(h)− f ′(x)(h)| = lim

n→∞‖f
′
n(x)− f ′(x)‖ = 0.

Since f ′(x) and f ′n(x), n ≥ 1 are continuous monotone operators, from Theo-
rem 3.9 it follows that (f ′n)n≥1 converges uniformly to f ′ on every compact subset
of D. ��

4 A Generalization of Schur Convexity and Applications

IfA is a square matrix with complex entries, we shall denote by fA the characteristic
polynomial of A, that is fA (t) = det (tIn − A) . An n× n real matrix A = (aij ) is
called bistochastic if all its entries are nonnegative and the following equalities hold
(for details we refer to the reference [38]):



Convexity Revisited: Methods, Results, and Applications 81

n∑
j=1

aij = 1, for every i ∈ {1, 2, . . . , n}

n∑
i=1

aij = 1, for every j ∈ {1, 2, . . . , n}

The set of bistochastic matrices will be denoted with BSMn(R).
We will use the following notations. For the matrices A = (aij ), B = (bij ) ∈

Mn(R), we write

1. A ≤ B if and only if for all i, j = 1, . . . , n, we have aij ≤ bij ;
2. A < B if and only if for all i, j = 1, . . . , n, we have aij < bij ;

Let E be real linear space and A = (aij ) be an n× n real matrix. We define the
linear application A : En→ En as follows:

A (x1, x2, . . . , xn) =
⎛
⎝ n∑
j=1

a1j xj ,

n∑
j=1

a2j xj , . . . ,

n∑
j=1

anj xj ,

⎞
⎠ , (x1, x2, . . . , xn) ∈ En

Let A be a subset of BSMn(R). A subset D of En will be called A invariant if
A (D) ⊂ D for every A ∈ A . A subset D of En will be called circular symmetric
invariant if for every (x1, x2, . . . , xn) ∈ D we have (x2, x3, . . . , xn, x1) ∈ D. A
function f : D → R where D is circular symmetric invariant is called circular
symmetric if

f (x1, x2, . . . , xn) = f (x2, x3, . . . , xn, x1), for every (x1, x2, . . . , xn) ∈ D;

Let D be a convex subset of En that is A invariant. A function f : D → R is
called A -Schur convex if f

(
Ax
) ≤ f (x) for every x ∈ D and for every A ∈ A .

In case A = BSMn(R), then the set of A -Schur convex functions is equal to the
set of Schur convex functions. A function f : D → R is called A -Schur concave
If −f is A -Schur convex.

Remark 4.1 Let A be a subset of BSMn(R), D be a convex subset of En that is
A invariant and f : D → R be A -Schur convex. Then the following assertions
hold:

1. The function f is ˇA -Schur convex where with ˇA we denoted the multiplicative
monoid generated by A .

2. The set of A -Schur convex functions is a convex cone of BSMn(R).
3. Every Schur convex function is a A -Schur convex function.
4. If I is an interval of the real axis and φ : I → R is an increasing function, then
φ ◦ f is A -Schur convex.
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Remark 4.2 Suppose A ⊂ B are subsets of BSMn(R) such that D is a convex
subset of En that is B-invariant. If f : D → R is B-Schur convex, then f is
A -Schur convex.

Remark 4.3 Let n ≥ 3 be a natural number and e1, e2, . . . , en be the canonical base
of Rn. Consider the matrices

T2 =
( 1

2
1
2

1
2

1
2

)
(4.1)

Un =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 . . . 0
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
. . . . . . . . .

0 0 0 0 0 . . . 1
1 0 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

Tn = diag(T2, In−2) ∈ BSMn(R). (4.3)

Then the following assertions hold:

1. Un = e1e
T
2 + e2e

T
3 + · · · + en−1e

T
n + eneT1 ∈ BSMn(R).

2. If Un ∈ A and D is a convex subset of En that is circular symmetric invariant
and f : D→ R is A -Schur convex, then f is circular symmetric.

3. If Tn ∈ A , then and D is a convex subset of En such that D is A invariant and
f : D→ R is A -Schur convex, then

f

(
x1 + x2

2
,
x1 + x2

2
, x3, . . . , xn

)
≤ f (x1, x2, . . . , xn), for every (x1, x2, . . . , xn) ∈ D.

4.1 The Strong Mixing Variables Method

We shall apply the concept of A -Schur convex functions for proving a generaliza-
tion of the following theorem from Andrica and Mare [8].

Theorem 4.1 Let n ≥ 2 be a natural number, I be an interval of the real axis, and
f : In→ R be a symmetric continuous function. If

f

(
x1 + x2

2
,
x1 + x2

2
, x3, x4, . . . , xn

)
≤ f (x1, x2, . . . , xn) , (x1, x2, . . . , xn) ∈ In

then

f (x, x, . . . , x, ) ≤ f (x1, x2, . . . , xn) , (x1, x2, . . . , xn) ∈ In
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where

x = x1 + x2 + . . .+ xn
n

(4.4)

We shall prove that the above result holds for a more general class of functions,
that is for the class of circular symmetric functions. We refer to the papers [33]
and [34] for the theory of symmetric functions in this context (see also [37, 38]
and [40]). The above theorem is called also the Strong Mixing Variables Method.
See also [15, 29, 48], Cvetkovski [19], and Venkatachala [56]. An application of the
Strong Mixing Variables Method to an estimation of graph entropy can be found in
Eliasi [23].

Our generalization of Theorem 4.1 will be based on the following result:

Proposition 4.1 Consider A ∈ BSMn(R). Then the following assertions hold:

1◦ The matrix A is of rank 1 if and only if A = 1
n
eeT , where e ∈ Mn,1(R) is the

vector with all entries equal to 1 and eT denotes the transpose of e;
2◦ If there is a positive integer r with Ar > On, then the relation

lim
p→∞A

p = 1

n
eeT

holds.

Proof 1◦ Because A is of rank 1, we have A = uvT , for some vectors u, v ∈
Mn,1(R). From the property that A is bistochastic, it follows Ae = e and AT e =
e. One obtains the relations

uvT e = e and vuT e = e,

hence we get

eT uvT e = eT e = n

u = 1

eT v
e and v = 1

eT u
e.

Finally, we obtain

A = uvT = 1

eT v
· 1

eT u
eeT = 1

n
eeT ,

and the conclusion follows.
2◦ Applying the Perron–Frobenius Theorem, it follows lim

p→∞A
p = B, for some

matrix B ∈ BSMn(R) of rank 1. From assertion 1◦, we obtain B = 1
n
eeT , and

we are done.
��
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Theorem 4.2 Let E be a real Hausdorff linear topological space, D be a closed
convex subset of En, A be a subset of BSMn(R) and A ∈ ˇA . Suppose that the
following conditions hold:

1◦ Ap > 0 for some natural number p ≥ 1.
2◦ The set D is A -invariant.

If f : D→ R is a continuous function that is A -Schur convex, then the following
inequality holds:

f (x, x, . . . , x, ) ≤ f (x1, x2, . . . , xn) , (x1, x2, . . . , xn) ∈ D

where x is defined in (4).

Proof Note that for every x ∈ D, x = (x1, x2, . . . , xn), we have:

f
(
A
k
x
)
≤ f

(
A
k−1
x
)
≤ . . . ≤ f (Ax) ≤ f (x)

By Proposition 4.1 we have lim
k→∞A

k = 1
n
eeT . Letting k → ∞ in the above

sequence of inequalities we obtain

f (x, x, . . . , x, ) = f
(

1

n
eeT x

)
≤ f (x1, x2, . . . , xn) .

��
Lemma 4.1 Let A ∈ BSMn(R) be a bistochastic matrix satisfying the following
properties:

(1) The eigenvalues of A are pairwise distinct;
(2) If λ is an eigenvalue of A such that |λ| = 1, then λ = 1.

Then Ap > On, for some positive integer p.

Proof Because A is bistochastic, it follows that every eigenvalue λ of A satisfies
the inequality |λ| ≤ 1. Using the assumptions from the hypothesis, we can write the
spectrum of A as

σ(A) = {λ1, λ2, . . . , λn},

where λ1 = 1 and |λi | < 1 for i = 2, . . . , n. Because the matrix A has distinct
eigenvalues, it follows A is diagonalizable. That is A = SDS−1 for some invertible
matrix S ∈ Mn(C) and some matrix D ∈ Mn(C) with D = diag(λ1, λ2, . . . , λn).

We have

lim
p→∞A

p = lim
p→∞(SDS

−1)p = S( lim
p→∞D

p)S−1 = Se1e
T
1 S

−1 = B,
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where e1 denotes the n-dimensional vector with the first entry equal to one and the
rest of the entries equal to zero. Therefore, the limit matrix B has the rank 1. From
Proposition 4.1, it follows B = 1

n
eeT > On, i.e. Ap > On for some positive integer

p. ��
Lemma 4.2 Let n ≥ 3 be a natural number, Un and Tn be the matrices defined by
(4.2) and (4.3). Consider the matrix

An = UnTn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 0 0 0 . . . 0

0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
. . . . . . . . .

0 0 0 0 0 . . . 1
1
2

1
2 0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Then the following assertions hold:

(1) An ∈ BSMn(R) and fAn (t) = det(tIn − An) = tn − 1
2 t
n−1 − 1

2 t;
(2) The polynomial fAn has distinct roots;
(3) The roots of fAn satisfy |t | ≤ 1;
(4) If for a root of fAn we have |t | = 1, then t = 1;
(5) Apn > On, for some positive integer p.

Proof

(1) It is clear that An is a bistochastic matrix. A simple computation with
determinants shows that

fAn (t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

t − 1
2 − 1

2 0 0 . . . 0
0 t −1 0 . . . 0
0 0 t −1 . . . 0
. . . . . . . . .

0 0 0 0 . . . −1
− 1

2 − 1
2 0 0 . . . t

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (t − 1

2
)an + 1

2
bn,

where

an =

∣∣∣∣∣∣∣∣∣∣∣

t −1 0 . . . 0 0
0 t −1 . . . 0 0
. . . . . . . .

0 0 0 . . . t −1
− 1

2 0 0 . . . 0 t

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

t − 1 −1 0 . . . 0 0
t − 1 t −1 . . . 0 0
. . . . . . . .

t − 1 0 0 . . . t −1
t − 1

2 0 0 . . . 0 t

∣∣∣∣∣∣∣∣∣∣∣
,

We obtain the recursive formula an = tn−2(t − 1)+ an−1 and immediately

an = tn−1 − 1

2
.
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Also, we have

bn =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0 . . . 0 0
0 t −1 0 . . . 0 0
0 0 t −1 . . . 0 0
. . . . . . . . .

0 0 0 0 . . . t −1
− 1

2 0 0 0 . . . 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −1

2
.

It follows

fAn(t) = (t −
1

2
)an + 1

2
bn = (t − 1

2
)(tn−1 − 1

2
)− 1

4
= tn − 1

2
tn−1 − 1

2
t.

(2) Considering the polynomial g(t) = tn−1 − 1
2 t
n−2 − 1

2 , we note that the system
g(t) = 0, g′(t) = 0 has no solution.

(3) BecauseAn∈BSMn(R) it follows that every eigenvalue λ ofAn satisfies |λ|≤1.
(4) Assume fAn(t) = 0 and |t | = 1. From tn − 1

2 t
n−1 − 1

2 t = 0, we obtain

|t − 1

2
| = |tn − 1

2
tn−1| = |1

2
t | = 1

2
.

On the other hand, we have

1

4
= |t − 1

2
|2 = |t |2 − 1

2
(t + t)+ 1

4
,

hence t + t = 2. Because t = 1
t
, from the last relation it follows t2 + 1 = 2t ,

that is t = 1.
(5) Because An has distinct eigenvalues, it follows that An is diagonalizable.

Therefore,A = SDS−1 for some invertible matrix S ∈ Mn(C) and some matrix
D ∈ Mn(C) of the form D = diag(λ1, λ2, . . . , λn), where λ1 = 1 and |λj | < 1
for j = 2, 3, . . . , n. Applying the result from Lemma 4.1. we have Ap > On,
for some positive integer p.

��
Theorem 4.3 Let n ≥ 3 be a natural number, E be a real Hausdorff topological
linear space, and D be a closed convex subset of En that is circular symmetric
invariant. Consider 2 ≤ r ≤ n − 1, A = (aij ) ∈ BSMr(R) and f : D → R a
continuous function with the following properties:

(1) There exists a natural number p ≥ 1 such that the following inequality holds:

a
(p)
12 a

(p)
21

(
r∏
i=1

a
(p)
ii

)
> 0, (4.5)

Here we have denoted by a(p)ij the entries of the matrix Ap.
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(2) The function f is circular symmetric, i.e.

f (x1, x2, . . . , xn) = f (x2, x3, . . . , xn, x1),

for every (x1, x2, . . . , xn) ∈ D;
(3) The following inequality holds:

f (

r∑
j=1

a1j xj ,

r∑
j=1

a2j xj , . . . ,

r∑
j=1

arj xj , xr+1, . . . , xn) ≤ f (x1, x2, . . . , xn),

for every (x1, x2, . . . , xn) ∈ D.

Then, for every (x1, x2, . . . , xn) ∈ D the following inequality holds:

f (x, x, . . . , x) ≤ f (x1, x2, . . . , xn), (4.6)

where x is defined by (4.4).

Proof Let B = diag (A, In−r ) and Tr = diag(T2, Ir−2), where the matrix T2 is
defined in (4.1). From (4.5) it follows that Ap ≥ cTr , for some positive integer p
and some real number c ∈ (0, 1). Note that properties (2) and (3) are equivalent to
f (Unx) = f (x) and f (Bx) ≤ f (x), for every x ∈ D. This is equivalent with f is
A -Schur convex where A = {Un,B} . From Ap ≥ cTr it follows that Bp ≥ cTn
hence UnBp ≥ cUnTn By Lemma 4.2 it follows that (UnTn)q > 0 for some natural
number q ≥ 1. Hence (UnBp)

q ≥ cq (UnTn)q > 0. Since UnBp ∈ ˇA it follows by
Theorem 4.2 that f is ˇA -Schur convex, hence inequality (4.6) holds.

Applying Lemma 4.2, it follows (UnÃp)q > On, for some positive integer q,
therefore lim

m→∞(UnÃ
p)m = 1

n
eeT . Because the inequality f (UnÃpx) ≤ f (x), for

every x ∈ Dn, and the continuity of function f , we obtain f ( 1
n
eeT x) ≤ f (x), for

every x ∈ Dn, and the conclusion follows. ��
Remark 4.4 The condition (1) in the above theorem is satisfied if Ap > On for
some positive integer p.

Corollary 4.1 Let n ≥ 3 be a natural number, E be a Hausdorff topological vector
space and D be a convex subset of En. Consider a continuous function f : D→ R

satisfying the following properties:

(1) For every (x1, x2, . . . , xn) ∈ D, the following inequality holds:

f

(
x1 + x2

2
,
x1 + x2

2
, x3, . . . , xn

)
≤ f (x1, x2, . . . , xn); (4.7)

(2) D is circular symmetric invariant and f is circular symmetric.

Then for every (x1, x2, . . . , xn) ∈ D inequality (4.6) holds.
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Proof Take in Theorem 4.3, r = 2, A = Tr . ��
Corollary 4.2 Let n ≥ 3 and 2 ≤ r ≤ n− 1 be positive integers, E be a Hausdorff
topological vector space and D be a convex subset of En. Consider a continuous
function f : D→ R satisfying the following properties:

(1) For every (x1, x2, . . . , xn) ∈ D, the following inequality holds:

f

(
x1 + x2 + . . .+ xr

r
, . . . ,

x1 + x2 + . . .+ xr
r

, xr+1, . . . , xn

)
≤ f (x1, x2, . . . , xn)

(2) D is circular symmetric invariant and f is circular symmetric.

Then for every (x1, x2, . . . , xn) ∈ D inequality (4.6) holds.

Theorem 4.4 Let n ≥ 3 be a positive integer, E, F be two Hausdorff topological
linear spaces, D1 be a convex subset of E, D2 be a convex subset of F , and let
φ : D1 → D2 be a bijective homeomorphism. Consider a continuous function
f : Dn1 → R satisfying the following properties:

(1) For every (x1, x2, . . . , xn) ∈ Dn1 , the inequality holds

f (φ−1
(
φ (x1)+ φ (x2)

2

)
, φ−1

(
φ (x1)+ φ (x2)

2

)
, x3, . . . , xn) ≤ f (x1, x2, . . . , xn);

(2) f is circular symmetric.

Then for every (x1, x2, . . . , xn) ∈ D inequality (4.6) holds with

x = φ−1
(
φ (x1)+ φ (x2)+ . . .+ φ (xn)

2

)
. (4.8)

Proof Consider the function

g (y1, y2, . . . , yn) = f
(
φ−1 (y1) , φ

−1 (y2) , . . . , φ
−1 (yn)

)
, (y1, y2, . . . , yn) ∈ Dn2

Let xi = φ−1 (y1) , i = 1, 2, . . . , n. Note that

g

(
y1 + y2

2
,
y1 + y2

2
, y3, . . . , yn

)

= g
(
φ (x1)+ φ (x2)

2
,
φ (x1)+ φ (x2)

2
, φ (x3) , . . . , φ (xn)

)
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= f
(
φ−1

(
φ (x1)+ φ (x2)

2

)
, φ−1

(
φ (x1)+ φ (x2)

2

)
, x3, . . . , xn

)

≤ f (x1, x2, . . . , xn) = g (y1, y2, . . . , yn) .

By Corollary 4.2 we obtain that for every (y1, y2, . . . , yn) ∈ Dn2 the following
inequality holds:

g (y, y, . . . , y) ≤ g (y1, y2, . . . , yn) , (4.9)

where

y = y1 + y2 + . . .+ yn
n

Inequality (4.9) is equivalent with inequality (4.6) with x defined by (4.8). ��
Corollary 4.3 Let n ≥ 3 be a positive integer. Consider the continuous function
f : (0,∞)n→ R satisfying the following properties:

(1) For every x1, x2, . . . , xn ∈ (0,∞), the following inequality holds:

f
(√
x1x2,

√
x1x2, x3, . . . , xn

) ≤ f (x1, x2, . . . , xn);

(2) f is circular symmetric.

Then for every x1, x2, . . . , xn ∈ (0,∞) the following inequality holds:

f (̃x, x̃, . . . , x̃) ≤ f (x1, x2, . . . , xn),

where x̃ = n
√
x1x2 · · · xn.

Proof We apply the preceding theorem for φ (t) = ln t, t ∈ (0,∞) . ��
Corollary 4.4 Let n ≥ 3 be a positive integer and p ∈ R − {0}. Consider a
continuous function f : (0,∞)n→ R satisfying the following properties:

(1) For every x1, x2, . . . , xn ∈ (0,∞), the following inequality holds:

f

⎛
⎝
(
x
p

1 + xp2
2

)1/p

,

(
x
p

1 + xp2
2

)1/p

, x3, . . . , xn

⎞
⎠ ≤ f (x1, x2, . . . , xn);

(2) f is circular symmetric.

Then for every x1, x2, . . . , xn ∈ (0,∞) the following inequality holds:

f (̃x, x̃, . . . , x̃) ≤ f (x1, x2, . . . , xn),
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where

x̃ =
(
x
p

1 + xp2 + . . .+ xpn
n

)1/p

Proof We apply Theorem 4.4 for φ (t) = tp, t ∈ (0,∞) . ��

4.2 Examples and Applications

In the following is given an example of a function circular symmetric which is not
symmetric but it satisfies the desired inequality.

Example 4.1 Let (E,<,>) be an inner product space and let f : E4 → R be the
function defined by

f (x1, x2, x3, x4) = [(〈x1, x3〉 − 〈x2, x4〉)2 − (〈x2, x3〉 − 〈x1, x4〉)2]2

· [(〈x1, x3〉 − 〈x2, x4〉)2 − (〈x1, x2〉 − 〈x3, x4〉)2]2.

The function f is not symmetric, it is circular symmetric and it satisfies the
inequality

f

(
x1 + x2

2
,
x1 + x2

2
, x3, x4

)
≤ f (x1, x2, x3, x4),

for every x1, x2, x3, x4 ∈ E.
Proposition 4.2 Let φ : (0,∞)→ R be a convex function. Consider the function:

f (x1, x2, . . . , xn) =
φ

(
n∑
i=1
xi

)
−

n∑
i=1
φ (xi)

n∑
i=1
xi

, (x1, x2, . . . , xn) ∈ (0,∞)n .

Then the inequality (4.6) holds where x is defined by (4.4).

Proof Note that for every (x1, x2, . . . , xn) ∈ (0,∞)n the following inequality
holds:

f

(
x1 + x2

2
,
x1 + x2

2
, x3, . . . , xn

)
≤ f (x1, x2, . . . , xn)

By Corollary 4.1 it follows that the inequality (4.6) holds. ��



Convexity Revisited: Methods, Results, and Applications 91

The following corollary is useful in the estimation of graphs entry (see the paper of
Eliasi [23]).

Corollary 4.5 The following inequality holds:

0 ≤ ln

(
n∑
i=1

xi

)
−

n∑
i=1
xi ln xi

n∑
i=1
xi

≤ ln n, (x1, x2, . . . , xn) ∈ (0,∞)n . (4.10)

Proof Let φ (t) = t ln t, t > 0. Note that φ′′ (t) = 1
t
, t > 0, hence φ is convex.

Consider the function

f (x1, x2, . . . , xn) = ln

(
n∑
i=1

xi

)
−

n∑
i=1
xi ln xi

n∑
i=1
xi

Note that

f (x, x, . . . , x) = ln (nx)− nx ln (x)

nx
= ln n

By Proposition 4.2 the inequality (4.10) holds. ��
Lemma 4.3 Let p ∈ [2,∞). Then for every x ∈ [1,∞) the following inequality
holds:

p(x + 1)p−1(x − 1) ≤ 2p−1(xp − 1). (4.11)

Proof Considering the function

h(x) = 2p−1(xp − 1)− p(x + 1)p−1(x − 1), x ∈ [1,∞),

we have

h′ (x) = p[2p−1xp−1 − (x + 1)p−2 (px + 2− p)].

Because h′(1) = 0, in order to prove the desired inequality it suffices to show that
h′(x) ≥ 0, x ∈ [1,∞). Applying the AM-GM inequality, it follows

(x+1)p−2(px+2−p) ≤
(
(p − 2)(x + 1)+ px + 2− p

p − 1

)p−1

= (2x)p−1, x ∈ [1,∞)

One can easily see that the preceding inequality is equivalent to h′(x) ≥ 0, for every
x ∈ [1,∞). ��
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Lemma 4.4 Let p ∈ [2,∞). Then the following inequalities hold:

(1) p coshp−1 t · sinh t ≤ sinh(pt), t ∈ R+;
(2) p(coshp t − 1) ≤ cosh(pt)− 1, t ∈ R.

Proof Dividing by x
p
2 , from the inequality (4.11) we obtain

p

(√
x + 1√

x

)p−1 (√
x − 1√

x

)
≤ 2p−1

(
x
p
2 − 1

x
p
2

)
, x ∈ [1,∞).

The inequality (1) is obtained from the preceding inequality with the notation

√
x = et .

In order to prove (2), we use the inequality (1) and observe that for every t ∈ R+,
we have

p(coshp t − 1) = p
∫ t

0
p coshp−1 s · sinh sds ≤ p

∫ t

0
sinh(ps)ds = cosh(pt)− 1.

Because the function cosh is even, the desired inequality follows. ��
Lemma 4.5 Let p ∈ [2,∞). Then for every x, y ∈ (0,∞), the following inequality
holds:

(p+1)2p+1(x2p+y2p)−8p(xp+yp)(x+y)p+2p+2(3p−1)xpyp ≥ 0. (4.12)

Proof With z = x
y

the inequality (4.12) is equivalent to

(p+ 1)2p+1
(
zp + 1

zp

)
− 8p

(√
z
p + 1√

z
p

)(√
z+ 1√

z

)
+ 2p+2(3p− 1) ≥ 0,

for every z ∈ (0,∞). Denote
√
z = et , t ∈ R, and write the inequality above in the

equivalent form

(p + 1)2p+1(2 cosh 2t)− 8p(2 coshpt)(2 cosh t)p + 2p+2(3p − 1) ≥ 0, t ∈ R.

The last inequality is equivalent to

(p+1)2p+2(2 cosh 2pt)−2p+4p(2 coshpt)(cosh t)p+2p+2(3p−1) ≥ 0, t ∈ R.

Using the well-known formula cosh 2t = 2 cosh t2 − 1, t ∈ R, we obtain

(p + 1) cosh2(pt)− 2p coshpt(cosh t)p coshp t + p − 1 ≥ 0, t ∈ R.
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From Lemma 4.4 we have cosh(pt) ≥ 1− p + p cosh tp, hence we can write

(p + 1) cosh2(pt)− 2p coshpt(cosh t)p coshp t + p − 1

= (p + 1)

[(
cosh(pt)− p

p + 1
coshp t

)2

− p2

(p + 1)2
cosh2p t + p2 − 1

(p + 1)2

]

≥ (p+ 1)

[(
1− p + p coshp t − p

p + 1
coshp t

)2

− p2

(p + 1)2
cosh2p t + p2 − 1

(p + 1)2

]

≥ (p + 1)

[(
1− p2(coshp t − 1)

p + 1

)2

− p2

(p + 1)2
cosh2p t + p2 − 1

(p + 1)2

]

= 1

p + 1
(p4 − p2)(coshp t − 1)2 ≥ 0, t ∈ R,

and we are done. ��
The following result is an interpolation to the power mean inequality.

Theorem 4.5 Let p ∈ [2,∞). For every x = (x1, . . . , xn) ∈ (0,∞)n, the following
inequality holds:

An(x)
p ≤ (p + 1)n2

(p + 1)n2 + 4p − 4
An(x

p)+ 4p − 4

(p + 1)n2 + 4p − 4
Hn(x

p) ≤ An(xp),

where xp = (x
p

1 , . . . , x
p
n ) ∈ (0,∞)n, and An(x) and Hn(x) are the arithmetic

mean and harmonic mean of the entries of vector x, respectively, that is

An (x) = x1 + x2 + . . .+ xn
n

Hn (x) = n

1
x1
+ 1
x2
+ . . .+ 1

xn

.

Proof Denote

u(x, y) = (p+ 1)2p+1(x2p + y2p)− 8p(xp + yp)(x + y)p + 2p+2(3p− 1)xpyp.

For n = 1, the inequality from the statement is obvious.
For n = 2, using the preceding Lemma 4.5, we have

4p + 4

8p
A2(x

p)+ 4p + 4

8p
H2(x

p)− A2(x)
p = u(x1, x2)

2p−3p(x
p

1 + xp2 )
≥ 0.
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For n ≥ 3, consider the function f : (0,∞)n→ R, defined by

f (x) = (p + 1)n2

(p + 1)n2 + 4p − 4
An(x

p)+ 4p − 4

(p + 1)n2 + 4p − 4
Hn(x

p)− An(x)p.

If x = (x1, x2, . . . , xn) ∈ (0,∞)n and B =
n∑
i=3

1

x
p
i

, then

Hn(x
p

1 , x
p

2 , . . . , x
p
n )−Hn

((
x1 + x2

2

)p
,

(
x1 + x2

2

)p
, x
p

3 , . . . , x
p
n

)

= n

1
x
p
1
+ 1
x
p
2
+ B −

n

2
(
x1+x2

2 )p
+ B =

2p+1

(x1+x2)
p − 1

x
p
1
− 1
x
p
2(

1
x
p
1
+ 1
x
p
2
+ B

)(
2p+1

(x1+x2)
p + B

)

≥
2p+1

(x1+x2)
p − 1

x
p
1
− 1
x
p
2

( 1
x
p
1
+ 1
x
p
2
) 2p+1

(x1+x2)
p

,

therefore, in our case

f (x1, x2, . . . , xn)− f
(
x1 + x2

2
,
x1 + x2

2
, x3, . . . , xn

)

= (p + 1)n2

(p + 1)n2 + 4p − 4

[
An(x

p)− An
((
x1 + x2

2

)p
,

(
x1 + x2

2

)p
, x
p
3 , . . . , x

p
n

)]

+ 4p − 4

(p + 1)n2 + 4p − 4

[
Hn(x

p)−Hn
((
x1 + x2

2

)p
,

(
x1 + x2

2

)p
, x
p
3 , . . . , x

p
n

)]

−
[
An(x)

p − An
(
x1 + x2

2
,
x1 + x2

2
, x3, . . . , xn

)]

≥ (p + 1)n

(p + 1)n2 + 4p − 4
· 2p−1(x

p

1 + xp2 )− (x1 + x2)
p

2p−1

+ (4p − 4)n

(p + 1)n2 + 4p − 4
·

2p+1

(x1+x2)
p − 1

x
p
1
− 1
x
p
2(

1
x
p
1
+ 1
x
p
2

)
2p+1

(x1+x2)
p

= (p + 1)n

(p + 1)n2 + 4p − 4
· u(x1, x2)

2p+1(x
p

1 + xp2 )
≥ 0.
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Because the function f is circular symmetric, applying Corollary 4.2, we obtain that
for every x = (x1, x2, . . . , xn) ∈ (0,∞)n, the inequality (4.6) holds. ��
Corollary 4.6 For every real numbers x, y, z ≥ 0, the following inequality holds:

(x + y)2(y + z)2(z+ x)2 ≥ 4(x2 + yz)(y2 + zx)(z2 + xy)+ 32x2y2z2.

Proof To prove the above inequality, we consider the function f : [0,∞)3 → R,
defined by

f (x, y, z) = (x+y)2(y+ z)2(z+x)2−4(x2+yz)(y2+ zx)(z2+xy)−32x2y2z2.

Clearly, the function f is circular symmetric and, after a simple computation, we
have

f (x, y, z)− f (√xy,√xy, z)
= (√x −√y)2[(√x +√y)2(4xyz2 + (x − z)2(y − z)2 + 4xyz(xy + z2))] ≥ 0.

From Corollary 4.3 it follows that for every real numbers x, y, z ≥ 0, the inequality

f (x, y, z) ≥ f ( 3
√
xyz, 3

√
xyz, 3

√
xyz)

holds. Since f ( 3
√
xyz, 3

√
xyz, 3

√
xyz) = 0 the inequality from the statement holds.

��
Theorem 4.6 The following inequality holds:

(x + y + z)6 ≥ 27
(
x2 + y2 + z2

)
(xy + yz+ zx)2 , x, y, z ≥ 0.

Proof Consider the function

f (x, y, z) =
(
x2 + y2 + z2

)
(xy + yz+ zx)2

(x + y + z)6 , (x, y, z) ∈ (0,∞)3 .

Denoting x + y = s and xy = p, we obtain

f (x, y, z)− f
(
x + y

2
,
x + y

2
, z

)
=
(
x2 + y2 + z2

)
(xy + yz+ zx)2

(x + y + z)6 −

−
(
s2

2 + z2
) (
sz+ s2

4

)2

(x + y + z)6 =

= 4p − s2

32 (s + z)6
[
−16p2 + p

(
8z2 − 32sz+ 4s2

)
+ 16sz3 − 14s2z2 + 8s3z+ s4

]
.
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Consider the function g :
[
0, s

2

4

]
→ R,

g (t) = −16t2+ t
(

8z2 − 32sz+ 4s2
)
+16sz3−14s2z2+8s3z+s4, t ∈

[
0,
s2

4

]
.

Note that g is concave, hence

g (t) ≥ min

(
g (0) , g

(
s2

4

))
, t ∈

[
0,
s2

4

]
.

Note that

g (0) = s
(

16z3 − 14sz2 + 8s2z+ s3
)
= 2sz

(
8z2 − 7sz+ 4s2

)
+ s4 ≥ 0,

and

g

(
s2

4

)
= 16sz3 − 12s2z2 + s4.

If h (t) = 16t3 − 12st2 + s4, t ∈ [0,∞), then observe that h′ (t) ≤ 0 for
t ∈ [0, s2 ], and h′ (t) ≥ 0 for t ∈ [ s2 ,∞). Therefore, we have h (t) ≥ h

(
s
2

) =
0, t ∈ [0,∞). Thus g

(
s2

4

)
= sh (z) ≥ 0. Consequently, g (t) ≥ 0 for every

t ∈
[
0, s

2

4

]
. Finally we obtain

f (x, y, z) ≤ f
(
x + y

2
,
x + y

2
, z

)
, (x, y, z) ∈ (0,∞)3 .

By Corollary 4.1 we obtain

f (x, y, z) ≤ f (a, a, a) = f (1, 1, 1) = 1

27

where x+y+z3 = a, and the inequality in the statement is proved. ��

5 Convexity Properties of the Multivariate Monomial

Let n ≥ 2, a = (a1, a2, . . . , an) ∈ R
n. Suppose that

ai �= 0 for every i ∈ {1, 2, . . . , n} . (5.1)
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The multivariate monomial in n variables of exponent a = (a1, a2, . . . , an) is
defined as follows

fa (x1, x2, . . . , xn) = xa1
1 x

a2
2 . . . .x

an
n , x1, x2, . . . , xn ∈ (0,∞) . (5.2)

Without loss of generality we may suppose that

a1 ≥ a2 ≥ . . . ≥ an. (5.3)

The multivariate monomial is connected with the Cobb–Douglas production func-
tion. In 1928, Cobb and Douglas [17] introduced a famous two-factor production
function, nowadays called Cobb–Douglas production function, in order to describe
the distribution of the national income by help of production functions. The
production function is widely used to represent the technological relationship
between the amounts of two or more inputs (particularly physical capital and labor)
and the amount of output that can be produced by those inputs. The Cobb-Douglas
function was developed and tested against statistical evidence by Charles Cobb and
Paul Douglas during 1927–1947. In its most standard form for production of a single
good with two factors, the function is

Y = ALβKα

where:

• Y = total production (the real value of all goods produced in a year or 365.25
days)

• L= labor input (the total number of person-hours worked in a year or 365.25
days)

• K = capital input (the real value of all machinery, equipment, and buildings)
• A= total factor productivity and your usual depreciation by utility in day after
• α and β are the output elasticities of capital and labor, respectively. These values

are constants determined by available technology.

In its generalized form, the Cobb–Douglas function models more than two goods.
The generalized Cobb–Douglas function (see Chen [16]) may be written as

ua (x1, x2, . . . , xn) = Axa1
1 x

a2
2 . . . .x

an
n , x1, x2, . . . , xn ∈ [0,∞)

where:

• A is an efficiency parameter
• n is the total number of goods
• x1, x2, . . . , xn are the (nonnegative) quantities of good consumed, produced, etc.
• ai is an elasticity parameter for good i
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The Cobb–Douglas function is often used as a utility function. If the consumer
has a finite wealth, the utility maximization takes the form:

max
x
ua (x) = max

x

n∏
i=1

x
ai
i subject to the constraint

n∑
i=1

pixi = w

where w is the wealth of the consumer and pi are the prices of the goods. Other
inequalities related to rearrangements of powers and symmetric polynomials are
given in the paper [28].

In the following subsection we shall compute a determinant of a matrix which is
necessary for determination of conditions that should be satisfied by the parameter
a = (a1, a2, . . . , an) such that the multivariate monomial fa be a convex, concave,
logarithmically convex, logarithmically concave, quasi-convex, quasi-concave, sub-
additive or superadditive function. Conditions for convexity of fa may be found
in Crouzeix [18]. The proof given in the third subsection is different from the
Crouzeix’s proof from [18]. The convexity and concavity necessary and sufficient
conditions for the multivariate monomial may be stated simply as follows. The
multivariate monomial is convex if and only if all the exponents are negative or one
exponent is positive, the rest of exponents are negative and the sum of all exponents
is greater or equal than one.

The multivariate monomial is concave if and only if all the exponents are positive
and the sum of all exponents is smaller or equal than one.

In the third section we shall suppose that all the exponents are non-null and are
ranked in decreasing order.

5.1 Computation of a Determinant

The following lemma is known as the matrix determinant lemma.

Lemma 5.1 Let A be a square matrix of dimension n, u, v ∈Rn. Then

det
(

A+ uvT
)
= det (A)+ vT adj (A) u

where adj(A) is the adjugate of the matrix A.

Lemma 5.2 Let B = (bij ) be a square matrix of dimension n and consider a =
(a1, a2, . . . , an) ∈ R

n. Suppose that bij = ai (ai − 1) if i = j and bij = aiaj if
i �= j. Then

det (B) = (−1)n a1a2 . . . an

(
1−

n∑
i=1

ai

)
.

Proof Note that B = aaT−diag(a). Denote C = −diag(a). By the preceding
lemma we obtain
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det (B) = det
(

C+ aaT
)
= det (C)+ aT adj (C) a

If ai �= 0 for all i, then the matrix C is invertible and we have

adj (C) = (det C)C−1.

Note that

det (B) = det (C)+ det (C)
[
aTC−1a

]
= det (C)

[
1+ aTC−1 a

]
.

Since aTC−1a =−
n∑
i=1
ai , it follows that

det (B) = det (C)

(
1−

n∑
i=1

ai

)
= (−1)n a1a2 . . . an

(
1−

n∑
i=1

ai

)

��

5.2 Main Results

Let n ≥ 2 be a positive integer and let a = (a1, a2, . . . , an) ∈ R
n. In the following

we shall suppose that the entries of vector a satisfy conditions (5.1) and (5.3) and
that fa is the multivariate monomial defined in (5.2).

Theorem 5.1 The following two assertions are equivalent:

1◦ fa is a convex function;

2◦ a1 < 0 or (a1 > 0 > a2 and
n∑
i=1
ai ≥ 1).

Proof One can easily see that the Hessian matrix of fa is

Hfa(x) =

⎡
⎢⎢⎢⎢⎢⎣

a1(a1−1)fa(x)
x2

1

a1a2fa(x)
x1x2

. . .
a1anfa(x)
x1xn

a2a1fa(x)
x2x1

a2(a2−1)fa(x)
x2

2
. . .

a2anfa(x)
x2xn

...
...

...
ana1fa(x)
ana1

ana2fa(x)
ana2

. . .
an(an−1)fa(x)

a2
n

⎤
⎥⎥⎥⎥⎥⎦
.

Denote by K the family of all nonempty subsets of the set {1, 2, . . . , n}. For every
K ∈ K consider the submatrix of Hfa(x) given by

HKfa(x) =
(
∂2fa(x)

∂xi∂xj

)
i,j∈K

.

Denote Δk(x) = det[HKfa(x)].
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For x ∈ (0,∞)n and K = {i1, i2, . . . , ik} ∈ K consider the diagonal matrix:

CK(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
xi1

0 . . . 0

0 1
xi2

...

...
...
. . .

...

0 0 . . . 1
xik

⎤
⎥⎥⎥⎥⎥⎥⎦
.

If

aij =

⎧⎪⎪⎨
⎪⎪⎩

ai(ai − 1)

x2
i

if i = j
aiaj

xixj
if i �= j

then consider the matrix AK(x) = (aij (x))i,j∈K .
Let B = (bij ) be the matrix defined in the statement of Lemma 5.2. For every
K ∈ K denote BK = (bij )i,j∈K . Note that AK(x) = CK(x)BKCK(x). If k = |K|,
then we have

ΔK(x) = [fa(x)]k det[AK(x)]
= [fa(x)]k det[CK(x)BKCK(x)]
= [fa(x)]k det(Bk)[det(CK(x))]2

= [fa(x)]k det(BK)

(∏
i∈K
xi

)−2

= (−1)k[fa(x)]k ·
∏
i∈K
ai

(
1−

∑
i∈K
ai

)
.

In the following we shall prove the implication 2◦ ⇒ 1◦. Suppose that conditions
from assertion 2◦ hold.
If 1 �∈ K , then ai < 0 for every i ∈ K and

(−1)k
(∏
i∈K
ai

)(
1−

∑
i∈K
ai

)
> 0.

From the above inequality it follows that ΔK(x) ≥ 0.
If 1 ∈ K , then we have

(−1)k
∏
i∈K
ai =

∏
i∈K
(−ai) < 0.
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Since

1−
∑
i∈K
ai ≤ 1−

n∑
i=1

ai ≤ 0

it follows that ΔK(x) ≥ 0. Consequently, fa is a convex function.
Now, we shall prove the implication 1◦ ⇒ 2◦. Suppose that fa is a convex

function. Then

∂2fa

∂x2
i

= ai(ai − 1)fa(x)

x2
i

≥ 0

for every x ∈ (0,∞)n and i ∈ {1, 2, . . . , n}. Hence, we obtain ai(ai − 1) ≥ 0 for
every i ∈ {1, 2, . . . , n}. Thus ai ∈ (−∞, 0) ∪ [1,∞) for every i ∈ {1, 2, . . . , n}. If
a1 < 0, then the condition from assertion 2◦ is satisfied.

We shall study now the case a1 > 0.
If a1 ≥ a2 > 0, then from a1, a2 ∈ (−∞, 0) ∪ [1,∞) it follows that a1 ≥ a2 ≥ 1.
Consider the function

g(x1, x2) = fa(x1, x2, 1, 1, . . . , 1) = xa1
1 x

a2
2 , x1, x2 > 0.

The function g is convex since fa is convex. The Hessian matrix of g is

Hg(x1, x2) =

⎡
⎢⎢⎣
a1(a1 − 1)g(x1, x2)

x2
1

a1a2g(x1, x2)

a1a2
a1a2g(x1, x2)

a1a2

a2(a2 − 1)g(x1, x2)

x2
2

⎤
⎥⎥⎦ .

Note that

det[Hg(x1, x2)] = a1a2g
2(x1, x2)

x2
1x

2
2

(1− a1 − a2) < 0.

The last inequality shows that g is not convex. It follows that the case a1 ≥ a2 > 0
is not possible. We shall consider now the case a1 > 0 > a2. Since fa is convex it
follows

0 ≤ det[Hfa(x)] =
(−1)na1a2 . . . an[fa(x)]n

(
1−

n∑
i=1

ai

)

x2
1x

2
2 . . . x

2
n

=
[fa(x)]n · a1(−a2)(−a3) . . . (−an)

(
n∑
i=1

ai − 1

)

x2
1x

2
2 . . . x

2
n

,
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hence

n∑
i=1

ai ≥ 1.

��
Theorem 5.2 Let n ≥ 2 be a positive integer and a = (a1, a2, . . . , an) ∈ R

n.
Then the following assertions are equivalent:

1◦ fa is a concave function.

2◦ 1 ≥ a1 ≥ a2 ≥ . . . ≥ an > 0 and
n∑
i=1

ai ≤ 1.

Proof Keeping the notations in the proof of the preceding theorem we have

ΔK(x) = (−1)k[fa(x)]k
(∏
i∈K
ai

)(
1−

∑
i∈K
ai

)

for every K ∈ K . We denoted |K| = k.
Suppose that the conditions from assertion 2◦ hold. Then for every K ∈ K we

have

(−1)kΔK(x) = [fa(x)]k
(∏
i∈K
ai

)(
1−

∑
i∈K
ai

)

≥ [fa(x)]k
(
n∏
i=1

ai

)(
1−

n∑
i=1

ai

)
≥ 0.

Therefore, the function fa is concave. Thus we have proved the implication 2◦ ⇒
1◦.

Suppose now that fa is concave. Then

∂2fa

∂x2
i

≤ 0 for every i ∈ {1, 2, . . . , n},

hence we have

ai(ai − 1) ≤ 0 for every i ∈ {1, 2, . . . , n}.

Thus ai ∈ (0, 1] for every i ∈ {1, 2, . . . , n}. Because the function fa is concave
it follows that (−1)|K|ΔK(x) ≥ 0 for every K ∈ K , x ∈ (0,∞)n. If K =
{1, 2, . . . , n}, then the above inequality is equivalent to
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(−1)nΔK(x) = [fa(x)]n
(
n∏
i=1

ai

)(
1−

n∑
i=1

ai

)
≥ 0,

hence

n∑
i=1

ai ≤ 1.

Thus the implication 1◦ ⇒ 2◦ is proved. ��
Theorem 5.3 LetE be a linear space,D a convex set ofE, n ≥ 2 a positive integer,
ui : D→ R, i = 1, 2, . . . , n, and

ga(x) = [u1(x)]a1 [u2(x)]a2 . . . [un(x)]an, x ∈ D.
Then the following assertions hold:

1◦ If a1 < 0 and all ui are concave, then the function ga is convex.

2◦ If a1 > 0 > a2,
n∑
i=1

ai ≥ 1, u1 is convex and u2, u3, . . . , un are concave, then

the function ga is convex.

3◦ If ai ∈ (0, 1] for every i ∈ {1, 2, . . . , n},
n∑
i=1

ai ≤ 1, and all ui are concave, then

the function ga is concave.

Proof

1◦ The inequality a1 < 0 implies ai < 0 for every i ∈ {1, 2, . . . , n}, hence fa is
decreasing in each variable. Note also that fa is convex. Since

ga(x) = fa(u1(x), u2(x), . . . , un(x)), x ∈ D,

it follows that ga is convex.

2◦ Conditions a1 > 0 > a2 and
n∑
i=1

ai ≥ 1 imply that fa is convex. Note that fa is

increasing in the first variable and decreasing in the rest of variables. It follows
that ga is convex.

3◦ Conditions ai ∈ (0, 1], i ∈ {1, 2, . . . , n}, and
n∑
i=1

ai ≤ 1 imply that fa is concave.

Note that fa is increasing in all variables. Hence ga is concave.
��

Proposition 5.1 The following two assertions hold:

1◦ fa is logarithmically convex if and only if a1 < 0.
2◦ fa is logarithmically concave if and only if an > 0.
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Proof The above assertions follow at once from the identity

ln[fa(x1, x2, . . . , xn)] =
n∑
i=1

ai ln xi.

��
Theorem 5.4 The following assertions are equivalent:

1◦ fa is quasi-convex.

2◦ a1 < 0 or (a1 > 0 > a2 and
n∑
i=1

ai ≥ 0).

Proof We shall prove first the implication 1◦ ⇒ 2◦. Suppose that fa is quasi-
convex. We shall consider the following three cases.

Case 1 a1 ≥ a2 > 0. From the inequality

fa

(
x1 + y1

2
,
x2 + y2

2
, 1, 1, . . . , 1

)
≤ max[fa(x1, x2, 1, 1, . . . , 1), fa(y1, y2, 1, 1, . . . , 1)]

we obtain

(x1 + y1)
a1(x2 + y2)

a2 ≤ 2a1+a2 ·max(xa1
1 x

a2
2 , y

a1
1 y

a2
2 ), xi, yi > 0, i = 1, 2.

If we let x1 → 0 and y2 → 0 in the preceding inequality, we obtain

y
a1
1 x

a2
2 ≤ 0.

This contradicts with y1 > 0 and x2 > 0.
Case 2 a1 > 0 > a2. We have to check in this case that

s =
n∑
i=1

ai ≥ 0.

Since fa is quasi-convex it follows that

fa

(
x + y

2

)
≤ max(fa(x), fa(y)), x, y ∈ (0,∞)n,

hence

(x1+ y1)
a1(x2+ y2)

a2 . . . (xn+ yn)an ≤ 2s ·max(xa1
1 x

a2
2 . . . x

an
n , y

a1
1 y

a2
2 . . . y

an
n ).
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If we let y1 → 0 in the preceding inequality, we obtain

x
a1
1 (x2 + y2)

a2(x3 + y3)
a3 . . . (xn + yn)an ≤ 2sxa1

1 x
a2
2 . . . x

an
n .

Letting y2 → 0, y3 → 0, . . ., yn→ 0 in the inequality above, we obtain

fa(x1, x2, . . . , xn) ≤ 2sfa(x1, x2, . . . , xn)

hence 2s ≥ 1. Thus s ≥ 0.
Case 3 a1 < 0. In this case the condition from assertion 2◦ is verified.

In the following we shall prove the implication 2◦ ⇒ 1◦.

Suppose that assertion 2◦ holds. If a1 < 0, then fa is convex (cf. Theorem 3.1),
whence fa is quasi-convex.

Suppose now that a1 > 0 > a2. We shall study two cases.

Case 1 s =
n∑
i=1

ai > 0. Let t ≥ 1

s
and observe that

n∑
i=1

tai ≥
n∑
i=1

ai

s
= 1.

By Theorem 5.1, the function f ta = fta is convex. Hence f ta is quasi-convex. Let
u(z) = z1/t , z > 0 and observe that u is increasing and we have fa = u ◦ f ta .
Therefore, the function fa is quasi-convex.

Case 2 s =
n∑
i=1

ai = 0. Consider the sequence of vectors (ak)k≥1, where

ak = (ak1, ak2, . . . , akn), aki = ai + 1

k
, i ∈ {1, 2, . . . , n}, k ≥ 1.

Note that if k ≥ 1

|a2| , then ak2 < 0 < ak1, and

n∑
i=1

aki = sk = s + n
k
> 0.

By the preceding case the functions fak are quasi-convex for every k ≥ 1

|a2| .
Since fa(x) = lim

k→∞ fak (x) for every x ∈ (0,∞)n, it follows that fa is quasi-
convex.

��
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Theorem 5.5 The following assertions are equivalent:

1◦ fa is quasi-concave.

2◦ an > 0 or (an−1 > 0 > an and
n∑
i=1

ai ≤ 0).

Proof The proof of the above statement follows at once from the result below: f is
quasi-concave if and only if 1/f is quasi-convex. ��
Lemma 5.3 Let f, g : (0,∞)n → R+ be two functions with the following
properties:

f (x + y) ≤ f (x)+ f (y), x, y ∈ (0,∞)n
g(x + y) ≤ min(g(x), g(y)), x, y ∈ (0,∞)n.

Then the function h = f · g is sub-additive.

Proof For every x, y ∈ (0,∞)n, we have

h(x+y) = f (x+y)g(x+y) ≤ (f (x)+f (y))g(x+y) ≤ f (x)g(x)+f (y)g(y) = h(x)+h(y).

��
Theorem 5.6 The following assertions are equivalent:

1◦ fa is sub-additive.

2◦ a2 < 0 and
n∑
i=1

ai ≤ 1.

Proof In order to prove the implication 1◦ ⇒ 2◦, suppose that fa is sub-additive
and consider s =∑n

i=1 ai . It follows

2s = fa(2, 2, . . . , 2) ≤ 2fa(1, 1, . . . , 1) = 2,

hence s ≤ 1. Suppose that a2 > 0. Letting y1 → 0 in the inequality

(x1 + y1)
a1(x2 + y2)

a2 . . . (xn + yn)an ≤ xa2
1 x

a2
2 . . . x

an
n + ya1

1 y
a2
2 . . . y

an
n

we obtain

x
a1
1 (x2 + y2)

a2 . . . (xn + yn)an ≤ xa2
1 x

a2
2 . . . x

an
n .

Letting y2 → ∞ in the preceding inequality we obtain a contradiction. Hence
a2 < 0.



Convexity Revisited: Methods, Results, and Applications 107

In the following we shall prove the implication 2◦ ⇒ 1◦.

Case 1 a1 < 0. Then fa(x+ y) ≤ fa(x) ≤ fa(x)+fa(y), hence fa is sub-additive.
Case 2 a1 ∈ (0, 1). Consider the functions:

g(x1, x2, . . . , xn) = xa1
1 , h(x1, x2, . . . , xn) = xa2

2 x
a3
3 . . . x

an
n .

Note that fa = g · h, g > 0, is sub-additive and

h(x + y) ≤ min(h(x), h(y)), x, y ∈ (0,∞)n (5.4)

By the preceding lemma fa is sub-additive.

Case 3 a1 ∈ [1,∞). Let t = a1 − 1

−a2 − a3 − . . .− an and note that t ∈ (0, 1] and we

have

a1 + t (a2 + a3 + . . .+ an) = 1.

Consider the functions:

g(x1, x2, . . . , xn) = xa1
1 x

ta2
2 . . . xtann

h(x1, x2, . . . , xn) = x(1−t)a2
2 x

(1−t)a3

3 . . . x(1−t)ann .

Note that fa = g · h and h satisfies the condition (5.4). From Theorem 5.1
it follows that g is convex. The function g is 1-homogeneous, hence g is sub-
additive. By the preceding lemma fa is sub-additive.

��
Theorem 5.7 The following two assertions are equivalent:

1◦ fa is super-additive.

2◦ an > 0 and
n∑
i=1

ai ≥ 1.

Proof In order to prove the implication 1◦ ⇒ 2◦ suppose that fa is super-additive.
Then fa(2x) ≥ 2fa(x) for every x ∈ (0,∞)n. If we replace x1 = x2 = . . . = xn =
1 in the preceding inequality we obtain 2s ≥ 2, where s =

n∑
i=1

ai . Hence s ≥ 1.

Suppose now that an < 0 and let yn→ 0 in the inequality

fa(x1 + y1, x2 + y2, . . . , xn + yn) ≥ fa(x1, x2, . . . , xn)+ fa(y1, y2, . . . , yn).

We obtain a contradiction. Hence an > 0.
In the following we shall prove the implication 2◦ ⇒ 1◦.
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If s =
n∑
i=1

ai , then ga = (fa)
1/s = fa/s . Note that ai/s ∈ (0, 1) for every i ∈

{1, 2, . . . , n} and
n∑
i=1

ai

s
= 1. By Theorem 5.2 it follows that ga is concave. Note

that

fa(x + y) = fa

(
2 · x + y

2

)
= 2sfa

(
x + y

2

)

= 2s · gsa
(
x + y

2

)
≥ 2s ·

(
ga(x)+ ga(y)

2

)s

= (ga(x)+ aa(y))s ≥ gsa(x)+ gsa(y)
= fa(x)+ fa(y),

that is fa is super-additive. ��

6 On the Class of n-Schur Functions

The following inequality is known as the Schur inequality.

Theorem 6.1 Let x, y, z be nonnegative real numbers. Then for every r > 0 the
following inequality holds:

xr (x − y) (x − z)+ yr (y − z) (y − x)+ zr (z− x) (z− y) ≥ 0 (6.1)

Equality holds if and only if x = y = z or if two of x, y, z are equal and the third is
zero.

In case the exponent r is an even number, then inequality (6.1) holds for every x, y, z
real numbers.

One of the reasons for which Schur’s inequality is studied is related to its
applications to geometric programming. Geometric programming is a part of
nonlinear programming where both the objective function and constraints are
polynomials with positive coefficients (posynomials), that is

P (x1, x2, . . . , xn) =
∑
|α|≤m

aαx
α1
1 x

α2
2 . . . xαnn ,

where α = (α1, α2, . . . , αn) is a n-dimensional vector with components natural
numbers, |α| = α1+α2+. . . .+αn, and all coefficients aα are nonnegative numbers.
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Expanding terms in (6.1) we get

∑
xr+2 + xyz

(∑
xr−1

)
≥
∑
xr+1y +

∑
xr+1z,

therefore Schur’s inequality is equivalent to an inequality between two posynomials.
Starting from Schur’s inequality one can introduce the class of 3-Schur functions.

Definition 6.1 Let D be a subset of R containing at least two elements and f :
D→ R be a map. Denote by S3(f, x, y, z) the sum

f (x) (x − y) (x − z)+ f (y) (y − z) (y − x)+ f (z) (z− x) (z− y) .

We shall say that a function f : D → R belongs to the class S3(D) of Schur
functions if the following inequality holds:

S3(f, x, y, z) ≥ 0 for every x, y, z ∈ D. (6.2)

One can easily see that all the functions from S3(D) are nonnegative. A more
general definition of a Schur class of functions is given below.

Let D be a subset of the real axis R which has more than two elements and let
D0 = {x ∈ D : there exist x1, x2 ∈ D such that x1 < x < x2}. For every map
f : D→ R and a positive integer n ≥ 2, denote

Sn (f, x1, x2, . . . , xn) =
∑
f (x1) (x1 − x2) (x1 − x3) . . . (x1 − xn)

The above sum has n terms and its terms are obtained by circular permutations.
For every positive integer n ≥ 2 we shall say that f is an n-Schur function if
Sn (f, x1, x2, . . . , xn) ≥ 0 for every x1, x2, . . . , xn ∈ D. For a positive integer
n ≥ 2 denote by Sn (D) the set of all n-Schur functions, that is

Sn (D) = {f : D→ R : Sn (f, x1, x2, . . . , xn) ≥ 0 for every x1, x2, . . . , xn ∈ D}

One interesting problem connected with the class of n-Schur functions was
proposed at the International Mathematical Olympiad in 1971.

Problem 6.1 (IMO 1971 [20]) Prove that the following statement is true for n = 3
and for n = 5, and false for all other n > 2 : For any real numbers a1, a2, . . . , an,

(a1 − a2) (a1 − a3) . . . (a1 − an)+ (a2 − a1) (a2 − a3) . . . (a2 − an)+ . . .

+ (an − a1) (an − a2) . . . (an − an−1) ≥ 0.

One can easily see that a reformulation of the above problem is the following: The
Problem 6.1 reformulation is the following: The constant function f (t) = 1, t ∈ R,
belongs to Sn (R) if and only if n = 3 or n = 5.
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A different approach to solve this problem is given in the paper [7].
Our goal is to give characterizations of the functions from Sn (D) . A study of n-

Schur functions is made in the second subsection while a detailed study of 3-Schur
functions is made in the third section. In the fourth section is studied the class of 5-
Schur functions. The fifth section is devoted to the definition of two general classes
of functions, that are connected with the class of n-Schur functions.

6.1 A Study of n-Schur Functions

Theorem 6.2 The following relation holds:

S2 (D) = {f : D→ R :f is monotone increasing on D} .

Proof Observe that for every x, y ∈ D we have the relation 0 ≤ S2 (f, x, y) =
(f (x)− f (y)) (x − y) . ��
Theorem 6.3 Denote a = infD, b = supD and consider the maps f0, fc,d :
D→ R, f0 (x) = 0 and

fc,d (x) =
{

0 if x ∈ D − {c}
d if x = c.

Suppose n ≥ 4 is an even number and f ∈ Sn (D). Then the following assertions
hold:

1◦ If a /∈ D, then f (x) ≥ 0 for every x ∈ D.
2◦ If b /∈ D, then f (x) ≤ 0 for every x ∈ D.
3◦ f (x) = 0 for every x ∈ D0.
4◦ If a /∈ D and b /∈ D then Sn (D) = {f0}.
5◦ If a /∈ D and b ∈ D, then Sn (D) =

{
fb,d : d ≥ 0

}
.

6◦ If a ∈ D and b /∈ D, then Sn (D) =
{
fa,d : d ≤ 0

}
.

7◦ If a ∈ D and b ∈ D, then

Sn (D) = {g : D→ R : g (a) ≤ 0, g (b) ≥ 0, g (x) = 0 for every x ∈ D − {a, b}}

Proof To prove 1◦ suppose that a /∈ D and there exists x0 ∈ D such that f (x0) < 0.
Take y ∈ D, such that y < x0. One can easily see that

0 ≤ Sn (f, x0, y, y, . . . , y) = f (x0) (x0 − y)n−1 < 0. (6.3)

The contradiction we have obtained shows that f (x) ≥ 0 for every x ∈ D.
To prove 2◦ suppose that b /∈ D and there exists x0 ∈ D such that f (x0) >

0.Take y ∈ D, such that y > x0. One can easily see that (6.1) holds. The
contradiction we have obtained shows that f (x) ≤ 0 for every x ∈ D.
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Assertion 3◦ follows at once from assertions 1◦ and 2◦. If a /∈ D and b /∈ D
then D = D0 hence Sn (D) = Sn (D0) = {f0}. We have proved thus 4◦. The rest
of the assertions follows at once from the preceding assertions. ��
Lemma 6.1 Let f : D→ R, k ≥ 2, n ≥ k + 2. For every t ∈ D consider the map

gt (x) = f (x) (x − t)n−k , x ∈ D.
If xk+1 = xk+2 = . . . = xk+1 = xn = t , then

Sn
(
f, x1, x2, . . . xk, xk+1, . . . , xn

) = Sn (f, x1, x2, . . . xk, t, t, . . . , t
) = Sk (gt , x1, x2, . . . xk

)
.

Proof Obvious. ��
Theorem 6.4 Let n ≥ 3 be an odd number and f ∈ Sn (D). Suppose that D has
more than 3 elements. Then the following assertions hold:

1◦ f (x) ≥ 0 for every x ∈ D.
2◦ If n ≥ 7, then f (x) = 0 for every x ∈ D0.

3◦ If infD = −∞, then f is increasing.
4◦ If supD = +∞, then f is decreasing.
5◦ If infD = −∞ and supD = +∞, then f is a nonnegative constant map.

Proof If we take x1 = x, x2 = y, x3 = x4 = . . . = xn = z, then

0≤ Sn (f, x1, x2, x3, . . . , xn) = (x − y)
[
f (x) (x − z)n−2 − f (y) (y − z)n−2

]
= g (x, y, z) .

By 0 ≤ g (x, y, y) = f (x) (x − y)n−1 for every x, y ∈ D it follows that f (x) ≥ 0
for every x ∈ D.Thus assertion 1◦ was proved. To prove 2◦ for every t ∈ D consider
the map

ht (x) = f (x) (x − t)3 x ∈ D

By the preceding lemma we have

Sn
(
f, x1, x2, . . . xn−3, t, t, t

) = Sn−3 (ht , x1, x2, x3, . . . , xn−3)

hence ht ∈ Sn−3 (D) . Note that n − 3 ≥ 4 and n − 3 is an even number. By
Theorem 6.3., assertion 3◦, it follows that f (x) = 0 for every x ∈ D0.

To prove 4◦ suppose that supD = +∞. Let (zk)k≥1 be a sequence from D such
that lim

k→∞zk = ∞. By

0 ≤ lim
k→∞

g (x, y, zk)

zn−2
k

= (x − y) (f (y)− f (x))

it follows that f is a monotone decreasing map.
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To prove 3◦ suppose that infD = −∞. Let (zk)k≥1 be a sequence from D such
that lim

k→∞zk = −∞. By

0 ≥ lim
k→∞

g (x, y, zk)

zn−2
k

= lim
t→∞

g (x, y,−t)
(−t)n−2

= − lim
t→∞

(x − y) [f (x) (x + t)n−2 − f (y) (y + t)n−2]
tn−2

= − (x − y) (f (x)− f (y))

it follows that f is a monotone increasing map. Assertion 5◦ follows at once from
the preceding assertions. ��

6.2 Literature Review of the Godunova–Levin-3–Schur
Functions

Definition 6.2 Let D be a subset of R containing at least two elements and f :
D→ R be a map. Denote by S3(f, x, y, z) the sum

f (x) (x − y) (x − z)+ f (y) (y − z) (y − x)+ f (z) (z− x) (z− y) . (6.4)

We shall say that a function f : D → R belongs to the class S3(D) of Schur
functions if the following inequality holds:

S3(f, x, y, z) ≥ 0 for every x, y, z ∈ D. (6.5)

One can easily see that all the functions in S3(D) are nonnegative.
In [59] Wright has generalized the Schur’s inequality, showing that the inequality

(6.2) holds if the function f (x) = xr is replaced with a nonnegative convex
function or with a nonnegative monotone function. Consequently, nonnegative
convex functions and nonnegative monotone functions belong to the class of 3-Schur
functions defined on some interval D.

In 1985 Godunova and Levin [24] introduced the following class of functions: If
D is an interval of R a function f : D→ R is said to belong to the classQ(D) if it
is nonnegative and for all x, y ∈ D and t ∈ (0, 1), the following inequality holds:

f ((1− t) x + ty) ≤ f (x)
1− t +

f (y)

t
. (6.6)

Of course, one can extend the definition of the Godunova and Levin class of
functions Q(D) in the case D is a subset of R containing at least two elements.
Therefore we shall say that a function f : D → R is said to belong to the class
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Q(D) if it is nonnegative and for all x, y ∈ D and t ∈ (0, 1), such that (1− t) x +
ty ∈ D the inequality (6.6) holds.

In the paper [24] Godunova and Levin have shown that S3(D), the class of all 3-
Schur functions defined onD coincides with the Godunova–Levin class of functions
Q(D). For the sake of completeness we shall include a proof of the above statement.

Theorem 6.5 Let f : D → R be a map. Then the following assertions are
equivalent:

1◦ f is a 3-Schur map on D.

2◦ f (αx + βy) ≤ f (x)
α

+ f (y)
β

, for every x, y ∈ D and α, β ∈ (0, 1), α+β = 1,

such that αx + βy ∈ D.
Proof Let S3 be the map defined in (6.1), x, y, z ∈ D, x < z < y, α, β ∈ (0, 1),
α+β = 1, z = αx+βy. Then one can easily see that the following equality holds:

S3(f, x, y, z) = αβ (x − y)2
[
f (x)

α
+ f (y)

β
− f (z)

]
. (6.7)

Then the equivalence of the assertions from the statement of the above theorem
follows at once from identity (6.7). ��

In the following we shall denote by D a subset of R containing at least
two elements. We shall denote with S3(D) the class of Godunova–Levin-Schur
functions defined on D. The class of the Godunova–Levin-Schur functions was
intensively studied in a series of papers [21, 41], [42, pp. 410–413], [49, 55], and
[50].

In the paper [55] Varošanec has introduced a very general class of functions
known as the class of h-convex functions. More precisely, let I be an interval of
R and h : (0, 1)→ R be a nonnegative function with the property that there exists
t0 ∈ (0, 1) such that h (t0) > 0. A function f : I → R is called a h-convex function
if f is nonnegative and for all x, y ∈ I, α ∈ (0, 1) we have

f (αx + (1− α) y) ≤ h (α) f (x)+ h (1− α) f (y) . (6.8)

If inequality in (6.6) is reversed, then f is said to be h-concave. Denote by SX (h, I )
the class of all h-convex functions. The notion of h-convex function is of course
more general than the notion of Godunova–Levin–Schur function. The class of h-
convex functions contains in case that special selections are made for the function
h some important classes of functions. Obviously, if h (α) = α, α ∈ (0, 1), then
all nonnegative convex functions are h-convex functions. If h (α) = 1

α
, α ∈ (0, 1),

then SX (h, I ) = S3(I ). If h (α) = 1, α ∈ (0, 1), then SX (h, I ) contains the
class P (I) of all P−functions defined on I . By a P−function we understand a
nonnegative function f I → R with the property that

f (αx + (1− α) y) ≤ f (x)+ f (y) for all x, y ∈ I
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The paper [55] contains many interesting properties of the h-convex functions.
In the paper [41], it is proved the following version of the famous Jensen

inequality for convex functions.

Theorem 6.6 Let D be an interval of R, n ≥ 2, w1, w2, . . . , wn be real numbers
and f ∈ S3(D). If vn = w1 + w2 + . . . + wn, then for every x1, x2, . . . , xn ∈ I
the following inequality holds

f

(
1

vn

n∑
i=1

wixi

)
≤ vn

n∑
i=1

f (xi)

wi

Let I = [a0, bo] be an interval of the real line, a, b ∈ I, a < b and f I → R be
a convex function. The following inequality is known as the Hadamard’s inequality:

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x) dx ≤ f (a)+ f (b)
2

In [21] were proved two sharp integral inequalities of Hadamard type for the
Godunova–Levin–Schur functions.

Theorem 6.7 ([21]) Let I be an interval of R, a, b ∈ I, a < b and let f ∈ S3(I )

be a function integrable on [a, b] .Then the following inequalities hold:

f

(
a + b

2

)
≤ 4

b − a
∫ b

a

f (x) dx (6.9)

and

1

b − a
∫ b

a

p (x) f (x) dx ≤ f (a)+ f (b)
2

where

p (x) = (b − x) (x − a)
(b − a)2 , x ∈ I.

The constant 4 in (6.9) is the best possible.

In [49] were proved the following properties of the Godunova–Levin–Schur func-
tions:

Proposition 6.1 ([49]) The following assertions hold:

1◦ If f ∈ S3(D), then f ≥ 0.
2◦ If f ∈ S3(D) and for some a, b ∈ D, a < b, we have f (a) = f (b) = 0, then
f (x) = 0 for every x ∈ [a, b] ∩D.
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3◦ If there exists a, b ∈ D, a < b, such that a+b2 ∈ D and

f

(
a + b

2

)
> 2f (a)+ 2f (b) (6.10)

then f /∈ S3(D).

Proof Note that the map S3(f, x, y, z) is a symmetric map. In order to prove 1◦
consider f ∈ S3(D) and take two distinct elements of D, x, y ∈ D. Then

0 ≤ S3 (f, x, y, y) = f (x) (x − y)2 ,

hence f ≥ 0.
To prove 2◦ let f ∈ S3(D), a, b ∈ D, a < b, f (a) = f (b) = 0. Then

0 ≤ S3 (f, x, a, b) = f (x) (x − a) (x − b)

for every x ∈ [a, b] ∩ D. Suppose that there exists x0 ∈ [a, b] ∩ D such that
f (x0) > 0. This implies (x0 − a) (x0 − b) < 0, hence S3 (f, x0, a, b) < 0. We
have obtained a contradiction. It follows that f = 0 on [a, b] ∩D.

If f satisfies (6.10), then

S3

(
f,
a + b

2
, a, b

)
= (a − b)

2

4

(
2f (a)+ 2f (b)− f

(
a + b

2

))
< 0

(6.11)
hence f /∈ S3(D). Thus we proved assertion 3◦. ��

6.3 The Class of 3-Schur Functions

Proposition 6.2 ([50]) Let f : D → R be a map. Suppose that there exist two
positive constants m,M such that:

0 < m ≤ f (x) ≤ M ≤ 4m for every x ∈ D.

Then f is a 3-Schur map on D.

Proof Let x, y ∈ I, α, β ∈ (0, 1), α + β = 1 such that αx + βy ∈ D. Then

f (αx + βy) ≤ M ≤ 4m ≤ m

αβ
= m
α
+ m
β
≤ f (x)

α
+ f (y)

β
.

By Theorem 6.5 it follows that f is a 3-Schur map on D. ��
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Proposition 6.3 ([49]) Let f : D → R, be a map. Suppose that there exist two
positive constants m,M such that:

0 < m ≤ f (x) ≤ M for every x ∈ D.

For every a ≥ 0 consider the map fa : D→ R, fa (x) = f (x)+ a, x ∈ D.

Then for every a ≥ max
(
M−4m

3 , 0
)

the map fa is a 3-Schur map on D.

Proof Note that a ≥ max
(
M−4m

3 , 0
)

implies that

0 < m+ a ≤ fa (x) ≤ M + a ≤ 4 (m+ a) for every x ∈ D

By the preceding proposition fa is a 3-Schur map on D. ��
In the following we shall give a definition of a quasi-convex map which is a slight

more general than the classical one.

Definition 6.3 A map f : D→ R is quasi-convex if

f (αx + βy) ≤ max (f (x) , f (y))

for every x, y ∈ D, α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D.
Recall that in the classical definition of a quasi-convex map one supposes that

the set D is convex.

Corollary 6.1 The following assertions hold:

1◦ Every nonnegative quasiconvex map is a 3-Schur map.
2◦ Every nonnegative map which is a sum of two nonnegative monotone maps is a

3-Schur map.

Proof Consider x, y ∈ D,α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D. If f
is a nonnegative quasi-convex map, then

f (αx + βy) ≤ max (f (x) , f (y)) ≤ f (x)
α

+ f (y)
β
.

By Theorem 6.5, it follows that f is a 3-Schur map on D.
Suppose that f = u1 + u2, ui ≥ 0, ui monotone i = 1, 2. Then one can easily see
that

ui (αx + βy) ≤ max (ui (x) , ui (y)) ≤ ui (x)+ui (y) ≤ ui (x)
α

+ ui (y)
β

i = 1, 2.

By Theorem 6.5, f is a 3-Schur map on D. ��
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Theorem 6.8 Let f : D→ R+ be a map with the property

f (αx + βy) ≤
(√
f (x)+√f (y))2

for every x, y ∈ D, α, β ∈ (0, 1), α + β = 1 such that αx + βy ∈ D. Then f is a
3-Schur map on D.

Proof The assertion of the theorem follows at once from the inequalities:

f (αx + βy) ≤
(√
f (x)+√f (y))2 ≤ f (x)

α
+ f (y)

β

for every x, y ∈ D,α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D. ��
Theorem 6.9 Let f : D→ R+ be a map andM a positive constant. Suppose that
the following inequality holds:

f (αx + βy)− f (x)
α

− f (y)
β

≤ M

for every x, y ∈ D,α, β ∈ (0, 1) , α + β = 1 such that αx + βy ∈ D. For every
a ≥ 0 consider the map fa : D → R, fa (x) = f (x) + a, x ∈ D. Then for every
a ≥ M

3 we have fa ∈ S3(D).

Proof Let a ≥ M

3
. Then for every x, y ∈ D, α, β ∈ (0, 1), α + β = 1 such that

αx + βy ∈ D, we have

fa (αx + βy)− fa (x)
α

− fa (y)
β

= f (αx + βy)− f (x)
α

− f (y)
β

+ a
(

1− 1

αβ

)
≤ M + a(1− 4) = M − 3a ≤ 0.

By Theorem 6.5, it follows that fa is a 3-Schur map on D. ��
Theorem 6.10 Let f : D → R+ be a map. For every a ≥ 0 consider the map
fa : D → R, fa (x) = f (x) + a, x ∈ D. If f /∈ S3(D), then there exists a0 > 0
such that for every a ∈ (0, a0) we have fa /∈ S3(D).

Proof Suppose that f /∈ S3(D). Then by Theorem 6.5, there exist x0, y0 ∈ D,
α0, β0 ∈ (0, 1), α0 + β0 = 1, such that α0x0 + β0y0 ∈ D and

A (f ) = f (α0x0 + β0y0)− f (x0)

α0
− f (y0)

β0
> 0
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Take

a0 = A (f )

1
α0β0

− 1
.

Note that if a ∈ [0, a0) then

A (fa) = fa (α0x0 + β0y0)− fa (x0)

α0
− fa (y0)

β0

= A (f )+ a
(

1− 1

α0β0

)
> A(f )+ a0

(
1− 1

α0β0

)
= 0

Consequently fa /∈ S3(D). ��
Proposition 6.4 Let f (x) = (x2 − 1

)2
, x ∈ R,ψ : [0, 1] → R,

ψ (t) = (1− t) (1+ t)2
1+ t + t2 + t3 + t4 , t ∈ [0, 1] .

Denote

Q =
{
(α, β) ∈ R2 : α, β ∈ (0, 1) , α + β = 1

}
, γ0 = max

(α,β)∈Q [ψ (α)+ ψ (β)] .

For every x, y ∈ R, (α, β) ∈ Q define

g (x, y, α, β) = f (αx + βy)− f (x)
α

− f (y)
β
.

Then the following inequalities hold:

36

31
≤ γ0 < 2, g (x, y, α, β) ≤ γ0 + 1 ≤ 3.

Proof Note that f is decreasing on (−∞,−1] and increasing on [−1, 0] . Hence
the restriction of f to (−∞, 0] is quasiconvex. Thus if x, y ≤ 0 and (α, β) ∈ Q,
then

g (x, y, α, β) = f (αx + βy)− f (x)
α

− f (y)
β

≤ max (f (x) , f (y))− f (x)
α

+ f (y)
β

≤ 0

Since f is decreasing on [0, 1] and increasing on (1,∞] it follows that the
restriction of f to [0,∞) is quasiconvex. Thus if x, y ≥ 0 and (α, β) ∈ Q, then
g (x, y, α, β) ≤ 0.
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Now we shall consider the case x ≥ 0, y ≤ 0. Let z = −y.We shall prove that

g (x,−z, α, β) ≤ 1+ γ0 < 3.

Consider the maps:

φ1 (t, x) = t
5 − 1

t
x4 + 2

(
1− t3)
t

x2 − 1

t
, t ∈ (0, 1) , x ∈ R,

φ2 (x) = ax4 + bx2 + c, x ∈ R.

Note that a < 0 and b > 0 implies that

φ2 (x) ≤ φ2

(√
− b

2a

)
= 4ac − b2

4a
for every x ∈ R.

If in the preceding inequality we take

a = t
5 − 1

t
, b = 2

(
1− t3)
t

, t ∈ (0, 1) ,

we obtain

φ1 (t, x) ≤ φ2

(√
− b

2a

)
= 4ac − b2

4a
= t

2
(
2− t2 − t3)
t5 − 1

= ψ (t)− 1. (6.12)

Let x, z ≥ 0. Then

g (x,−z, α, β) = f (αx − βz)− f (x)
α

− f (−z)
β

= (αx − βz)4 − x
4

α
− z

4

β
− 2 (αx − βz)2 + 2x2

α
+ 2z2

β
+ 1− 1

α
− 1

β

=
(
α4 − 1

α

)
x4 +

(
2

α
− 2α2

)
x2 − 1

α
+
(
β4 − 1

β

)
z4 +

(
2

β
− 2β2

)
z2 − 1

β

+8α2β2x2z2 − 4α3βx3z− 4αβ3xz3 − 2α2β2x2z2 + 4αβxz+ 1

= φ1 (α, x)+ φ1 (β, z)− 4αβxz (αx − βz)2 − 2α2β2x2z2 + 4αβxz+ 1

≤ φ1 (α, x)+ φ1 (β, z)+ 3 ≤ ψ (α)− 1+ ψ (β)− 1+ 3

= ψ (α)+ ψ (β)+ 1 ≤ γ0 + 1.
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Thus we proved that x ≥ 0, y ≤ 0 implies g (x, y, α, β) ≤ γ0+1 ≤ 3. Analogously
one can prove the same inequality for x ≤ 0, y ≥ 0. ��
Proposition 6.5 Let f (x) = (x2 − 1

)2
, x ∈ R. For every a ≥ 0 consider the map

fa : R→ R,

fa (x) = f (x)+ a, x ∈ R.

Then the following assertions hold:

1◦ For every a ∈
[
0, 1

3

)
, fa /∈ S3(R).

2◦ For every a ∈ [1,∞), fa ∈S3(R).
3◦ For every a ∈ R, fa is not quasi-convex and is not the sum of two positive

monotone functions.

Proof To prove 1◦ take α0 = β0 = 1
2 , x0 = −1, y0 = 1. Then

α0x0 + β0y0 = 0,

A (f ) = f (α0x0 + β0y0)− f (x0)

α0
− f (y0)

β0
= f (0)−2f (−1)−2f (1) = 1 > 0

and

a0 = A (f )

1
α0β0

− 1
= 1

3
.

By Theorem 6.10, fa /∈ S3(R) for every a ∈ [0, 1
3 ).The assertion from 2◦ follows

at once from Theorem 6.9 and Proposition 6.4.
Note that fa is not monotone and there does not exist u0 ∈ R such that fa is

decreasing on (−∞, u0] and increasing on [u0,∞). Therefore, the function fa is
not quasi-convex. ��
Proposition 6.6 Let φ : R→ R be a map with the property that f ◦ φ ∈ S3(R)

for every f ∈ S3(R). Then φ is monotone.

Proof Suppose contrary that φ is not a monotone map. Then there exist x < y < z
such that

max (φ (x) , φ (z)) < φ (y) .

Let λ ∈ (max (φ (x) , φ (z)) , φ (y)) . For every a, b > 0 consider the map

fa,b (t) =
{
a if t ∈ (−∞, λ]
b if t ∈ (λ,+∞).
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Note that all maps fa,b are monotone, hence they are 3-Schur maps. Since y ∈ (x, z)
it follows that there exist α, β ∈ (0, 1) , α + β = 1 such that y = αx + βz.
By hypothesis fa,b ◦ φ ∈ S3(R). Therefore

b = (fa,b ◦ φ) (y) = fa,b (φ (αx + βz)) ≤ fa,b (φ (x))
α

+fa,b (φ (z))
β

= a

α
+ a
β
= a

αβ
.

By the preceding inequality it follows that αβ ≤ a
b

for every a, b > 0. The
contradiction we have obtained proves that the map φ must be monotone. ��
Proposition 6.7 Let f :

[
0, 2

3

]
→ R, f (x) = x − x2, x ∈

[
0, 2

3

]
. Then f ∈

S3

([
0, 2

3

])
.

Proof Let α, β ∈ (0, 1), α + β = 1,

g(x, y, α, β) = f (αx + βy)− f (x)
α

− f (y)
β
, x, y ∈

[
0,

2

3

]
.

Note that

−αβg (x, y, α, β) =
(
α3β − β

)
x2 +

(
β − α2β

)
x

+
(
αβ3 − α

)
y2 +

(
α − αβ2

)
y + 2α2β2xy

Observe that the coefficients of x2 and y2 from the right-hand side of the above
identity, that is α3β − β and αβ3 − α are strictly negative. Moreover, the matrix

(
α3β − β α2β2

α2β2 αβ3 − α
)

is negative definite. Consequently the map hα,β (x, y) = −αβg (x, y, α, β) is
concave. Hence

−αβg (x, y, α, β) ≥ min

(
hα,β (0, 0) , hα,β

(
0,

2

3

)
, hα,β

(
2

3
, 0

)
, hα,β

(
2

3
,

2

3

))
.

Since all the arguments of min are nonnegative it follows that g (x, y, α, β) ≤ 0.

This implies that f ∈ S3

([
0, 2

3

])
. ��

Proposition 6.8 Let D be a subset of R with more than three elements and f :
D → R be an increasing 3−Schur map. Consider x, y, z ∈ D distinct elements.
Then S3 (f, x, y, z) = 0 if and only if one of the following situations occurs:

1◦ All x, y, z are equal, that is x = y = z.
2◦ Two of x, y, z are equal and the third is a zero of f.
3◦ All three x, y, z are zeros of f.
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Proof Without any loss of generality we may suppose that x ≥ y ≥ z. Denote

A (f, x, y, z) = (x − y) [f (x) (x − y)+ (f (x)− f (y)) (y − z)]

B (f, x, y, z) = f (z) (x − z) (y − z)

Note that S3 (f, x, y, z) = A (f, x, y, z) + B (f, x, y, z) . and A (f, x, y, z) ≥ 0
and B (f, x, y, z) ≥ 0. Consequently S3 (f, x, y, z) = 0 implies the relations
A (f, x, y, z) = B (f, x, y, z) = 0.

We shall study two cases.

Case 1 x = y. In this case we have A (f, x, y, z) = 0. From B (f, x, y, z) = 0 it
follows that y = z or f (z) = 0. Thus case 1 reduces to situation 1◦ or 2◦.

Case 2 x > y. From A (f, x, y, z) = 0 it follows that f (x) = 0 and

(f (x)− f (y)) (y − z) = 0.

Hence f (y) = 0 or y = z. From B (f, x, y, z) = 0 it follows that f (z) = 0 or
y = z.

��
Proposition 6.9 Let I be an open interval of the real axis, a ∈ I , f ∈ S3(I ). If
f (a) = 0, then f has one sided limits at every point of I − {a}.
Proof Let g(x) = (x − a)f (x), x ∈ I . Since f ∈ S3(I ) it follows that for every
x, y ∈ I we have

0 ≤ S3(f, x, y, a) = (x − y)(g(x)− g(y)).

Hence g is monotone increasing and has one sided limits at every point x0 ∈ I .
Thus the function

f (x) = g(x)

x − a , x ∈ I − {a}

has one sided limits at every point in I − {a}. ��

6.4 A Study of 5-Schur Functions

Theorem 6.11 The following inequality

S5 (f, x1, x2, . . . , x5) =
∑
(x1 − x2) (x1 − x3) (x1 − x4) (x1 − x5) ≥ 0

holds for every x1, x2, x3, x4, x5 ∈ R.
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Proof Without any loss of generality we can suppose that x1 ≥ x2 ≥ x3 ≥
x4 ≥ x5. Denote u (x) = (x − x3) (x − x4) (x − x5) , v (x) = (x − x1) (x − x2)

(x − x3) , x ∈ R.

Then

S5 (f, x1, x2, . . . , x5) =
∑
(x1 − x2) (x1 − x3) (x1 − x4) (x1 − x5)

= (x1 − x2) [(x1 − x3) (x1 − x4) (x1 − x5)− (x2 − x3) (x2 − x4) (x2 − x5)]

+ (x4 − x5) [(x4 − x1) (x4 − x2) (x4 − x3)− (x5 − x1) (x5 − x2) (x5 − x3)]

+ (x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5) = (x1 − x2) (u(x1)− u(x2))

+ (x4 − x5) (v(x4)− v(x5))+ (x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5) .

Since

(x1 − x2) (u(x1)− u(x2)) ≥ 0, (x4 − x5) (v(x4)− v(x5)) ≥ 0

and

(x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5) ≥ 0

it follows that

∑
(x1 − x2) (x1 − x3) (x1 − x4) (x1 − x5) ≥ 0.

��
Theorem 6.12 If infD = −∞ and supD = +∞, then

S5 (D) = {f : D→ R : ∃ c ≥ 0 such that f (x) = c for every x ∈ D} .

Proof The equality from the statement follows at once from the preceding theorem
and Lemma 6.1. ��
Proposition 6.10 Let f ∈ S5 (D) , D0 = {x ∈ D : there exist x1, x2 ∈ D such
that x1 < x < x2} and a ∈ D0. If f (a) = 0, then f (x) = 0 for every x ∈ D0.

Proof Let g (x) = f (x) (x − a) , x ∈ D. Note that g ∈ S4 (D) hence g = 0 on
D0. Consequently f = 0 on D0. ��
Theorem 6.13 Let R∗+ be the set of positive numbers. Suppose that f ∈ S5

(
R
∗+
)
.

For every t > 0 consider the maps

ft (x) = f (x) (x − t)3 , gt (x) = f (x) (x − t)2 , x ∈ R
∗+.
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Consider the map h (x) = 1

x3 f

(
1

x

)
, x ∈ R

∗+.

Then the following assertions hold:

1◦ h ∈ S5
(
R
∗+
)
.

2◦ f ≥ 0 on R
∗+ and f is monotone decreasing.

3◦ ft is a monotone increasing map for every t > 0.
4◦ gt ∈ S3

(
R
∗+
)

for every t > 0.
5◦ If x0 ∈ R

∗+ and f (x0) = 0 then f = 0 on R
∗+.

6◦ f is continuous on R
∗+.

Proof Assertion 1◦ follows at once from the identity

S5

(
f,

1

x1
,

1

x2
, . . . ,

1

x5

)
= 1

x1x2 . . . x5
S5 (h, x1, x2, . . . , x5)

Assertion 2◦ follows at once from assertions 1◦ and 4◦ of Theorem 6.4.
From the identity S5 (f, x, y, t, t, t) = S2 (ft , x, y) it follows that ft ∈ S2

(
R
∗+
)
.

Assertion 3◦ follows now from Theorem 6.4.
Assertion 4◦ follows from the identity S5 (f, x, y, z, t, t) = S3 (gt , x, y, z) .

To prove 5◦ note that gt (t) = gt (x0) = 0 and gt ∈ S3
(
R
∗+
)
. If t �= x0, then by

assertion 2◦ of Proposition 6.1 we have gt = 0 on the interval with the endpoints t
and x0.
To prove 6◦ we shall use assertion 20 and 30 of the present theorem. By assertion 30

we have

ft (x − 0) ≤ ft (x) ≤ ft (x + 0) for every x, t > 0

hence

f (x − 0) (x − t)3 ≤ f (x) (x − t)3 ≤ f (x + 0) (x − t)3 for every x > t > 0.

By the preceding sequence of inequalities it follows that

f (x − 0) ≤ f (x) ≤ f (x + 0) for every x > 0.

Taking into account that f is monotone decreasing it follows that f is continuous
on R

∗+. ��
Theorem 6.14 Let D ⊂ R be a bounded set, a = infD, b = supD, and f : D→
R. For every α, β, γ ∈ D we define

gα,β,γ (x) = f (x) (x − α) (x − β) (x − γ ) , x ∈ D.

If for every a < γ < β <′ alpha < b, the function gα,β,γ is increasing on [a, γ ]∩D
and on [α, b] ∩D, then f ∈ S5(D).
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Proof Choose x1 ≥ x2 ≥ . . . ≥ x5 > 0. Note that

S5 (f, x1, x2, . . . , x5) = (x1 − x2) [f (x1) (x1 − x3) (x1 − x4) (x1 − x5)

−f (x2) (x2 − x3) (x2 − x4) (x2 − x5)]

+f (x3) (x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5)

+ (x4 − x5) [f (x4) (x4 − x1) (x4 − x2) (x4 − x3)

−f (x5) (x5 − x1) (x5 − x2) (x5 − x3)]

= (x1 − x2)
[
gx3,x4,x5 (x1)− gx3,x4,x5 (x2)

]

+f (x3) (x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5)

+ (x4 − x5)
[
gx1,x2,x3 (x4)− gx1,x2,x3 (x5)

]
.

Since

(x1 − x2)
[
gx3,x4,x5 (x1)− gx3,x4,x5 (x2)

] ≥ 0,

f (x3) (x3 − x1) (x3 − x2) (x3 − x4) (x3 − x5) ≥ 0

and

(x4 − x5)
[
gx1,x2,x3 (x4)− gx1,x2,x3 (x5)

] ≥ 0

it follows that

S5 (f, x1, x2, . . . , x5) ≥ 0

hence f ∈ S5 (D) . ��
Lemma 6.2 Let a ≥ b ≥ c > 0, α ∈ [0, 3]. Consider the function

gα (x) = 1

xα
(x − a) (x − b) (x − c) , x ∈ (0,∞) .

Then gα is increasing on the intervals (0, c] and [a,∞) .
Proof Denote σ1 = a + b + c, σ2 = ab + bc + ac, σ3 = abc.
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Note that for every x ∈ (0,∞) we have:

gα (x) = x3−α − σ1x
2−α + σ2x

1−α − σ3x
−α,

g′α (x) = (3− α) x2−α − σ1 (2− α) x1−α + σ2 (1− α) x−α + ασ3x
−α−1.

Let hα (x) = xα+1gα (x) . Note that

hα (x) = −α (x − a) (x − b) (x − c)+ 3x3 − 2σ1x
2 + σ2x.

In the following we shall study two cases.

Case 1 x ∈ (0, c] . Let φ (t) = t−1h0 (t) = 3t2 − 2σ1x + σ2, t > 0.

Since
σ1

3
≥ c it follows that φ is decreasing on (0, c]. Consequently

φ (x) ≥ φ (c) = (c − a) (c − b) > 0,

hence hα (x) ≥ h0 (x) ≥ 0.Thus gα is increasing on (0, c] .
Case 2 x ∈ [a,∞) . Note that

h3 (x) = σ1x
2 − 2σ2x + 3σ3,

h′3 (x) = 2σ1x − 2σ2 ≥ h′3 (a) = 2
(
a2 − bc

)
> 0.

Hence hα (x) ≥ h3 (x) ≥ h3 (a) = a (a − b) (a − c) ≥ 0.

Thus gα is increasing on [a,∞) . ��
Corollary 6.2 For α ∈ [1, 2] and fα (x) = x−α, x ∈ (0,∞) we have fα ∈
S5

(
R
∗+
)
.

Proof The assertion follows at once from Theorem 6.14. and Lemma 6.2. ��
Proposition 6.11 Let D be a subset of R such that |D| ≥ 3. Denote

c = inf(D), d = sup(D) and D0 = D − {c, d}.

If f ∈ S5(D), then f is continuous on D0.

Proof Let x0 ∈ D0. If x0 ∈ D0 is an isolated point of D, then f is continuous at
x = x0. For every t ∈ D consider the function

ft (x) = (x − t)3f (x), x ∈ D.
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If f ∈ S5(D) and a, x1, x2 ∈ D, then

0 ≤ S5(f, x1, x2, a, a, a) = (x1 − x2)(fa(x1)− fa(x2)).

Hence fa is increasing. If there exists a sequence (xn)n≥1 in D such that xn ↑ x0,
then the left limit of fa at x = x0 exists (that is fa(x0 − 0) exists).

If x0 < a then (x0 − a)3 < 0 then

fa(x0 − 0) = (x0 − a)3f (x0 − 0) ≤ (x0 − a)3f (x0) = fa(x0).

Thus f (x0 − 0) ≥ f (x0).
If x0 > a, then (x0 − a)3 > 0 hence from fa(x0 − 0) ≤ fa(x0) it follows

f (x0 − 0) ≤ f (x0).

Consequently f (x0 − 0) = f (x0). ��
Theorem 6.15 Let D ⊂ R be a bounded set,

a = infD, b = supD, f : D→ R,

u(x) = f (x)(x − a)3, x ∈ D,
v(x) = f (x)(x − b)3, x ∈ D.

Then the following assertions are equivalent:

1◦ u, v are increasing;
2◦ f ∈ S5(D).

Proof For the implication 2◦ �⇒ 1◦ note that f ∈ S5(D) implies

S5(f, x1, x2, t, t, t) = (x1 − x2)[f (x1)(x1 − t)3 − f (x2)(x2 − t)3] ≥ 0,

hence for every t ∈ D, the function

ft (x) = f (x)(x − t)3, x ∈ D

is increasing. Thus u and v are increasing.
Implication 1◦ �⇒ 2◦. Let a < γ < β < α < b, α, β, γ ∈ D and

g(x) = f (x)(x − α)(x − β)(x − γ ), x ∈ D.

Observe that the function

g(x) = u(x)x − α
x − a ·

x − β
x − a ·

x − γ
x − a , x ∈ [a, b] ∩D



128 D. Andrica et al.

is increasing on [α, b] ∩D as a product of positive increasing functions. Note that

g(x) = −
(
−v(x) · α − x

b − x ·
β − k
b − x ·

γ − x
b − x

)
, x ∈ [a, γ ] ∩D

is increasing on [a, γ ] ∩D. By Theorem 6.14 it follows that f ∈ S5(D). ��
Corollary 6.3 Let D ⊂ R be a set with the following properties:

(i) a = inf(D) ∈ R.
(ii) There exists (xn)n≥1 in D such that lim

n→∞ xn = +∞.

Then the following two assertions are equivalent:

1◦ f ∈ S5(D);
2◦ f is monotone decreasing and

u(x) = (x − a)3f (x), x ∈ D

is monotone increasing.

Proof Proof of the implication 1◦ �⇒ 2◦. Suppose f ∈ S5(D).
For every t ∈ D ∪ {a} and for every b > a, b ∈ D consider the function

ft (x) = (x − t)3f (x), x ∈ D ∩ [a, b].

Note that ft is monotone increasing for every t ∈ D ∪ {a}.
Note that for every t ∈ (0,∞) ∩D the function

gt (x) = 1

t3
ft (x), x ∈ D

is monotone increasing. Since

g(x) = lim
t→∞ gt (x) = −f (x), x ∈ D

is monotone increasing it follows that f is monotone decreasing.
Proof of the implication 2◦ �⇒ 1◦. Suppose that f satisfies conditions from
assertion 2◦. In order to prove that f ∈ S5(D) it suffices to prove that f ∈
S5(D ∩ [a, b]) for every b ∈ D, b > a.
Note that

fb(x) = (x − b)3f (x), x ∈ D ∩ [a, b]

is monotone increasing since

−fb(x) = (b − x)3f (x), x ∈ D
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is the product of two positive monotone decreasing functions. Since fa is monotone
increasing it follows that f is positive.
By the preceding theorem we obtain f ∈ S5(D ∩ [a, b]). ��
Theorem 6.16 Let p ∈ (0,∞), a ∈ R, fa,p : [0, 1] → R,

fa,p(x) = xp + a, x ∈ [0, 1].

Then the following assertions hold:

1◦ If p ∈ (1,∞), then a ≥ 1
3

(
p−1
p+3

)p−1
if and only if fa,p ∈ S5([0, 1]).

2◦ if p = 1, then a ≥ 1
3 if and only if fa,1 ∈ S5([0, 1]).

3◦ If p ∈ (0, 1), then fa,p �∈ S5([0, 1]) for every a ∈ R.

Proof Proof of assertion 1◦. Let p ∈ (1,∞) and fa,p ∈ S5([0, 1]). Then

u(x) = x3fa,p(x), x ∈ [0, 1], v(x) = (x − 1)3fa,p(x), x ∈ [0, 1]

are monotone increasing. Hence

0 ≤ u′ (x) = x2[(p + 3)xp + 3a]

and

0 ≤ v′ (x) = (x − 1)2 [3fa,p(x)+ (x − 1)f ′a,p(x)]
= (x − 1)2[3xp + 3a + p(x − 1)xp−1].

From the first inequality we obtain

a ≥ sup
x∈[0,1]

[
−p + 3

3
xp
]
= 0.

From the second inequality we obtain

a ≥ sup
x∈[0,1]

[
ϕ(x)

3

]
= 1

3

(
p − 1

p + 3

)p−1

where ϕ(x) = pxp−1 − (p + 3)xp, x ∈ R.
Proof of assertion 2◦. Let p = 1. From assertion 1◦ it follows that fa,p ∈ S5([0, 1])
if and only if

a ≥ 1

3
lim
p↓1

(
p − 1

p + 3

)p−1

= 1

3
.
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Proof of assertion 3◦. Suppose p ∈ (0, 1). Since

v′ (x) = (x − 1)2 [(3+ p)xp − pxp−1 + 3a], x ∈ [0, 1]

it follows that

lim
x↓0
v′(x) = 3a − p lim

x↓0
xp−1 = −∞.

Hence v is not increasing on [0, 1]. Consequently fa,p �∈ S5([0, 1]). ��

6.5 The n − u-Schur Functions

In the following we shall introduce two classes of functions that generalize the class
of n-Schur functions.

Let D ⊂ R, |D| ≥ 3, n ≥ 2, u : R→ R, f : D→ R. Consider the function

Tn(f, u, x1, x2, . . . , xn) =
∑
f (x1)u(x1 − x2)u(x1 − x3) . . . u(x1 − xn),

x1, x2, . . . , xn ∈ D.

The class of functions T (1)
n,u (D) is defined as the set of functions f : D → R that

satisfy the condition

Tn(f, u, x1, x2, . . . , xn) ≥ 0 for every x1, x2, . . . , xn ∈ D.

If |D| ≥ n, the class of functions T (2)
n,u (D) is defined as the set of all functions

f : D→ R that satisfy the condition

Tn(f, u, x1, x2, . . . , xn) ≥ 0

for every distinct x1, x2, . . . , xn ∈ D.
Note that if u(t) = t , t ∈ R then we have T (1)

n,u (D) = Sn(D).

In case u(t) = 1

t
, t ∈ R \ {0}, then

Tn(f, u, x1, x2, . . . , xn) = f [x1, x2, . . . , xn],

where f [x1, x2, . . . , xn] is the divided difference of f at points x1, x2, . . . , xn. In
this case T (2)

n,u (D) is the set of n-convex functions defined on D.
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Theorem 6.17 Let D ⊆ R, |D| ≥ 3 and u : R → R be a function with the
following properties:

(i) u is increasing on (0,∞);
(ii) u(t) > 0 for every t ∈ (0,∞);

(iii) u(−t) = −u(t), t ∈ R.

If f : D→ R is quasi-convex, then f ∈ T (1)
3,u (D).

Proof Let x, y, z ∈ D, x > y > z. Since f is quasi-convex we have

f (y) ≤ max(f (x), f (z)) ≤ f (x)+ f (z)

≤ f (x)u(x − z)
u(y − z) + f (z)

u(x − z)
u(x − y) .

We used the monotony of u on (0,∞).
From the preceding inequality it follows that f ∈ T (1)

3,u (D). ��
Theorem 6.18 LetD ⊂ R, |D| ≥ 3, f : D→ R, u : R→ R and v : (0,∞)→ R,
v(t) = tu(t), t ∈ (0,∞). Suppose that u satisfies conditions (ii) and (iii).
Then the following assertions hold:

(1) If f ∈ T (2)
3,u (D), f is bounded below on D and v is monotone decreasing, then

f is convex.
(2) If f : D → R is nonnegative, convex and v is monotone increasing, then

f ∈ T (2)
3,u (D).

Proof In order to prove assertion (1), let x, y, z ∈ D, x > y > z. If t = x − y
x − z ,

then t ∈ (0, 1) and y = (1 − t)x + tz. Suppose f ∈ T (2)
3,u (D) and f (t) ≥ m, for

every t ∈ D.
Let f1(t) = f (t)+ |m|, t ∈ D. Note that f1(t) ≥ 0, t ∈ D. We obtain

f1((1− t)x + tz) = f1(y) ≤ u(x − z)
u(y − z)f1(x)+ u(x − z)

u(x − y)f1(z)

= v(x − z)
v(y − z) ·

y − z
x − zf1(x)+ v(x − z)

v(x − y) ·
x − y
x − z f1(z)

≤ y − z
x − zf1(x)+ x − y

x − z f1(z) = (1− t)f1(x)+ tf1(z).

It follows that f1 is a convex function. Thus f is a convex function.
In order to prove assertion (2) suppose that f is convex and v is increasing.
Let x, y, z ∈ D, x > y > z. Since v is monotone increasing it follows that

v(x − z)
v(y − z) ≥ 1 and

v(x − z)
v(x − y) ≥ 1.
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Since f is convex it follows that

f (y) ≤ y − z
x − zf (x)+

x − y
x − z f (z)

≤ y − z
x − z ·

v(x − z)
v(y − z)f (x)+

x − y
x − z ·

v(x − z)
v(x − y)f (z)

= u(x − z)
u(y − z)f (x)+

u(x − z)
u(x − y)f (z).

From the above inequalities it follows that f ∈ T (2)
3,u (D). ��
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21. S.S. Dragomir, J. Pečarić, L.E. Persson, Some inequalities of Hadamard type. Soochow J.
Math. 21, 335–341 (1995)
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application for the Shannon and Rényi’s entropy. J. Ksiam 6(2), 31–42 (2002)

23. M. Eliasi, On extremal properties of general graph entropies. MATCH Commun. Math.
Comput. Chem. 79, 645–657 (2018)

24. E.K. Godunova, V.I. Levin, Neravenstva dlja funkcii širokogo klassa, soderžaščego vypuklye,
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Some New Methods for Generating
Convex Functions

Dorin Andrica, Sorin Rădulescu, and Marius Rădulescu

Abstract We present some new methods for constructing convex functions. One of
the methods is based on the composition of a convex function of several variables
which is separately monotone with convex and concave functions. Using several
well-known results on the composition of convex and quasi-convex functions we
build new convex, quasi-convex, concave, and quasi-concave functions. The third
section is dedicated to the study of convexity property of symmetric Archimedean
functions. In the fourth section the asymmetric Archimedean function is considered.
A classical example of such a function is the Bellman function. The fifth section is
dedicated to the study of convexity/concavity of symmetric polynomials. In the sixth
section a new proof of Chandler–Davis theorem is given. Starting from symmetric
convex functions defined on finite dimensional spaces we build several convex
functions of hermitian matrices. The seventh section is dedicated to a generalization
of Muirhead’s theorem and to some applications of it. The last section is dedicated
to the construction of convex functions based on Taylor remainder series.
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1 Introduction

Convexity testing for an arbitrary function may be non-trivial in some cases. One
widely used test for convexity is to check the function’s Hessian. A continuous,
twice-differentiable function is convex if its Hessian is positive semidefinite every-
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Institute of Mathematical Statistics and Applied Mathematics, Bucharest, Romania
e-mail: mradulescu@csm.ro

© Springer Nature Switzerland AG 2019
D. Andrica, T. M. Rassias (eds.), Differential and Integral Inequalities,
Springer Optimization and Its Applications 151,
https://doi.org/10.1007/978-3-030-27407-8_4

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27407-8_4&domain=pdf
mailto:dandrica@math.ubbcluj.ro
mailto:mradulescu@csm.ro
https://doi.org/10.1007/978-3-030-27407-8_4


136 D. Andrica et al.

where in interior of the convex set. For details we refer to the monographs [53]
and [65].

The aim of the present chapter is to build several convex and concave functions
(some of them defined on convex subsets of linear spaces) starting from some
elementary results of the theory of convex functions. Direct checking of the
convexity of the functions resulted from our constructions by computing the Hessian
matrix is in the great majority of the cases a very difficult task. One of the methods
used for generating convex functions is based on the composition of a convex
function of several variables which is separately monotone with convex and concave
functions.

Let n ≥ 2 be a natural number, I and J be two intervals of the real axis, and
φ : I → J be a bijective function. We suppose that J = [0,∞) or J = (0,∞).
Consider the function Sφ : In→ I

Sφ (x1, x2, . . . , xn) = φ−1 (φ (x1)+ φ (x2)+ . . .+ φ (xn)) , (x1, x2, . . . , xn) ∈ In

We shall call Sφ the symmetric Archimedean function generated by the function
φ. The symmetric Archimedean functions occur in the study of Copula functions
which describe the dependence structure between random variables with arbitrary
marginal distribution functions. Copula Theory is a chapter of Probability Theory.

Let D = {(x1, x2, . . . , xn) ∈ In : φ (x1) > φ (x2)+ . . .+ φ (xn)} and define
Aφ : D→ I as follows:

Aφ (x1, x2, . . . , xn) = φ−1 (φ (x1)− φ (x2)− . . .− φ (xn)) , (x1, x2, . . . , xn) ∈D.

Aφ will be called the asymmetric Archimedean function generated by the func-
tion φ.

The structure of the chapter is as follows. The second section contains statements
of several well-known results on the composition of convex and quasi-convex
functions. These results help us to build convex, quasi-convex, concave, and
quasi-concave functions. The third section is dedicated to the convexity study
of symmetric Archimedean functions. Several corollaries are given. In the fourth
section is considered the asymmetric Archimedean function. A classical example of
such a function is the Bellman function

fp (x1, x2, . . . , xn) =
(
x
p

1 − xp2 − . . .− xpn
) 1
p , (x1, x2, . . . , xn) ∈ Dp

where

Dp =
{
(x1, x2, . . . , xn) ∈ R

n : xi ≥ 0, i = 1, 2, . . . , n, x
p
1 ≥ xp2 + . . .+ xpn

}
if p > 0

and

Dp =
{
(x1, x2, . . . , xn) ∈ R

n : xi > 0, i = 1, 2, . . . , n, x
p
1 > x

p
2 + . . .+ xpn

}
if p < 0
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In 1957 Bellman [5] proved that fp is concave if p ∈ [1,∞). Several references
on Bellman function can be found in Losonczi and Pales [43]. In the fourth section
are studied convexity properties of the asymmetric Archimedean function. The fifth
section is dedicated to the study of convexity/concavity of symmetric polynomials.
In the sixth section a new proof of Chandler–Davis theorem is given. Starting
from symmetric convex functions defined on finite dimensional spaces we build
several convex functions of hermitian matrices. The seventh section is dedicated
to a generalization of Muirhead’s theorem and to some applications of it. The
eighth section is dedicated to the construction of convex functions based on Taylor
remainder series.

2 Convexity of Composite Functions

In this section we shall recall several basic results on the convexity and quasi-
convexity of composite functions. Let E be a linear space over R andD be a convex
subset of E.

Theorem 2.1 Let I be an interval of the real axis, u : D → I , g : I → R,

f (x) = g (u (x)) , x ∈ D. Then the following assertions hold:

10 If g is increasing and convex, u is convex, then f is convex.
20 If g is increasing and concave, u is concave, then f is concave.
30 If g is decreasing and convex, u is concave, then f is convex.
40 If g is decreasing and concave, u is convex, then f is concave.

Corollary 2.2 Let u : D→ R. Then the following assertions hold:

10 If u is convex on D, then eu is convex.
20 If u > 0 on D is concave, then ln (u) is concave and 1

u
is convex.

30. If u > 0 on D is concave and p ∈ (0, 1], then up is concave.
40. If u > 0 on D is convex and p ∈ [1,∞), then up is convex.

Theorem 2.3 Let n ≥ 1 be a natural number, Ik , k = 1, 2, . . . , n be intervals
of the real axis, J = {1, 2, . . . , n} , J1 ⊂ J, J2 = J1. Consider the functions
g : I1 × I2 × . . .× In→ R, uk : D→ Ik, k = 1, 2, . . . , n, f : D→ R,

f (x) = g (u1 (x) , u2 (x) , . . . , un (x)) , x ∈ D. (2.1)

Suppose that the following conditions hold:

(i) g is monotone increasing in the i-th variable for every i ∈ J1.

(ii) g is monotone decreasing in the i-th variable for every i ∈ J2.
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Then the following assertions hold:

10. If g is convex, ui is convex for every i ∈ J1, ui is concave for every i ∈ J2,,
then f is convex.

20. If g is concave, ui is convex for every i ∈ J2, ui is concave for every i ∈ J1,,
then f is concave.

Theorem 2.4 Let I be an interval of the real axis, u : D → I , g : I → R,

f (x) = g (u (x)) , x ∈ D. Then the following assertions hold:

10 If g is increasing and u is quasi-convex, then f is quasi-convex.
20 If g is increasing and u is quasi-concave, then f is quasi-concave.
30 If g is decreasing and u is quasi-concave, then f is quasi-convex.
40 If g is decreasing and u is quasi-convex, then f is quasi-concave.

Theorem 2.5 Let n ≥ 1 be a natural number, Ik , k = 1, 2, . . . , n be intervals
of the real axis, J = {1, 2, . . . , n} , J1 ⊂ J, J2 = J1.Consider the functions
g : I1 × I2 × . . .× In → R, uk : D → Ik, k = 1, 2, . . . , n, f : D → R defined
as in (2.1).

Suppose that the following conditions hold:

(i) g is monotone increasing in the i-th variable for every i ∈ J1.

(ii) g is monotone decreasing in the i-th variable for every i ∈ J2.

Then the following assertions hold:

10. If ui is quasi-convex for every i ∈ J1, ui is quasi-concave for every i ∈ J2,,
then f is quasi-convex.

20. If ui is quasi-convex for every i ∈ J2, ui is quasi-concave for every i ∈ J1,,
then f is quasi-concave.

3 A Study of Convexity of Symmetric Archimedean
Functions

Symmetric Archimedean functions appear in the theory of Archimedean copulas
[78] and in the theory of Archimedean t-norms [35] and [79]. In probability
theory and statistics, a copula is a multivariate probability distribution for which
the marginal-probability distribution of each variable is uniform. Copulas are
used to describe the dependence between random variables. Archimedean copulas
is an important class of copulas—because of the ease with which they can be
constructed and the nice properties they possess. In this section we shall investigate
the convexity, quasi-convexity, concavity, and quasi-concavity of the symmetric
Archimedean functions

Theorem 3.1 Let n ≥ 2 be a natural number, I, J be two intervals of the real
axis, and φ : I → J be a two times differentiable bijective function. Denote by I1
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(resp. J1) the interior of I (resp. J ). Suppose that J = [0,∞) or J = (0,∞) and
φ′(t) �= 0, φ′′(t) �= 0 for every t ∈ I1. Consider the functions

gn : In→ I, gn(x1, x2, . . . , xn) = φ−1(φ(x1)+ φ(x2)+ . . .+ φ(xn)),
x1, x2, . . . , xn ∈ I,

v : J1 → J1, v(t) = φ
′2(φ−1(t))

φ′′−1(t))
, t ∈ J1.

Then the following assertions hold:

1◦ If φ′′(t) > 0, φ′(t) > 0 for every t ∈ I1,

v(t + s) ≥ v(t)+ v(s), t, s ∈ J1,

then gn is convex on In.
2◦ If φ′′(t) > 0, φ′(t) < 0 for every t ∈ I1,

v(t + s) ≥ v(t)+ v(s), t, s ∈ J1,

then gn is concave on In.
3◦ If φ′′(t) < 0, φ′(t) > 0 for every t ∈ I1,

v(t + s) ≤ v(t)+ v(s), t, s ∈ J1,

then gn is concave on In.
4◦ If φ′′(t) < 0, φ′(t) < 0 for every t ∈ I1,

v(t + s) ≤ v(t)+ v(s), t, s ∈ J1,

then gn is convex on In.

Proof We shall prove the assertions in the case n = 2. Denote g = g2. Thus

g(x, y) = φ−1(φ(x)+ φ(y)), x, y ∈ I1.

Taking partial differentials in the equality

φ(g(x, y)) = φ(x)+ φ(y)

we obtain:

φ′(g(x, y))g′x(x, y) = φ′(x)
φ′(g(x, y))g′y(x, y) = φ′(y)
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hence since φ′(t) �= 0 for every t ∈ I1 we have

g′x(x, y) =
φ′(x)

φ′(g(x, y))
, g′y(x, y) =

φ′(y)
φ′(g(x, y))

.

Further computations give us:

g′′xx(x, y) =
φ′2(g(x, y))φ′′(x)− φ′2(x)φ′′(g(x, y))

φ′3(g(x, y))

g′′xx(x, y) =
φ′′(x)[v(φ(x)+ φ(y))− v(φ(x))]
φ′(g(x, y))v(φ(x)+ φ(y))

g′′yy(x, y) =
φ′′(y)[v(φ(x)+ φ(y))− v(φ(y))]
φ′(g(x, y))v(φ(x)+ φ(y))

g′′xy(x, y) = −
φ′(x)φ′(y)

φ′(g(x, y))v(φ(x)+ φ(y)) .

Denote by H(x, y) the determinant of the Hessian matrix of g. Note that

H(x, y) = g′′xx(x, y)g′′yy(x, y)− [g′′xy(x, y)]2

= φ
′′(x)φ′′(y)[v(φ(x)+ φ(y))− v(φ(x))− v(φ(y))]

φ′2(g(x, y))v(φ(x)+ φ(y)) .

From conditions on φ from assertion 1◦ it follows that

g′′xx ≥ 0, g′′yy ≥ 0, H ≥ 0

on I 2
1 , hence g is convex. One can easily check that the other assertions hold in the

case n = 2.
We return to the study of the case n ≥ 2. Note that

gn(x1, x2, . . . , xn) = gn−1(g2(x1, x2), x3, x3, . . . , xn)

and gn is separately increasing, that is it is increasing in each variable.
Suppose that g2 is convex. Then from equation

g3(x1, x2, x3) = g2(g2(x1, x2), x3) (3.1)

it follows that g3 is convex. By induction we obtain that gn is convex for every
n ≥ 2.
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Suppose now that g2 is concave. Then from Eq. (3.1) and from Theorem 2.3 it
follows that g3 is concave. By induction we obtain that gn is concave for every
n ≥ 2. ��
Corollary 3.2 Let n ≥ 1, Jp = [0,∞) if p ∈ (0,∞) and Jp = (0,∞) if p ∈
(−∞, 0). For every p ∈ R

∗ = R− {0} consider the functions:

fp : Jnp → Jp, fp(x1, x2, . . . , xn) =
(
n∑
i=1

x
p
i

)1/p

, (3.2)

(x1, x2, . . . , xn) ∈ Jnp
and

g : Rn→ R, g(x1, x2, . . . , xn) = ln(ex1 + ex2 + . . .+ exn), (3.3)

(x1, x2, . . . , xn) ∈ R
n.

Then the following assertions hold:

1◦ If p ∈ [1,∞), then fp is convex on Jnp .
2◦ If p ∈ (−∞, 0) ∪ (0, 1], then fp is concave on Jnp .
3◦ g is convex on R

n.

Proof For every p ∈ R
∗ consider the function

φp : Jp → Jp, φp(t) = tp, t ∈ Jp.

Note that φp is bijective,

φ−1
p (t) = t1/p, φ−1

p (t) = t1/p, φ′p(t) = ptp−1,

φ′′p(t) = p(p − 1)tp−2, t ∈ Jp.

For every p ∈ R
∗ − {1} we have

vp(t) =
φ′2p (φ−1

p (t))

φ′′p(φ−1
p (t))

= φ
′2
p (t

1/p)

φ′′p(t1/p)
= p2(t1/p)p−2

p(p − 1)(t1/p)p−2 =
p

p − 1
t, t ∈ Jp.

Note that

vp(t + s) = vp(t)+ vp(s), s, t ∈ Jp, p ∈ R
∗ − {1}.

If p = 1, then fp is convex and concave.
If p ∈ (1,∞), then φ′p(t) > 0, φ′′p(t) > 0, t ∈ Jp. By assertion 1◦ of

Theorem 3.1 it follows that fp is convex.
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If p ∈ (0, 1), then φ′p(t) > 0, φ′′p(t) < 0, t ∈ Jp. By assertion 3◦ of Theorem 3.1
it follows that fp is concave.

If p ∈ (−∞, 0), then φ′p(t) < 0, φ′′p(t) > 0, t ∈ Jp. By assertion 2◦ of
Theorem 3.1 it follows that fp is concave.

Let φ : R→ (0,∞), φ(t) = et , t ∈ R. Note that φ is bijective and we have

φ′(t) > 0, φ′′(t) > 0,

v(t) = φ
′2(φ−1(t))

φ′′−1(t))
= t, t ∈ R.

By assertion 1◦ of Theorem 3.1 it follows that g is convex on R
n. ��

Corollary 3.3 Let Jp = [0,∞) if p ∈ (0,∞) and Jp = (0,∞) if p ∈ (−∞, 0).
Suppose that E is a linear space and D is a convex subset of E. For every p ∈ R

∗
consider the functions uk,p : D→ Jp, k = 1, 2, . . . , n, and fp : Jnp → R,

fp(x1, x2, . . . , xn) = (up1,p(x)+ up2,p(x)+ . . .+ upn,p(x))1/p, x ∈ D.

Let ui : D→ R, i = 1, 2, . . . , n, and g : D→ R,

g(x) = ln(eu1(x) + eu2(x) + . . .+ eun(x)), x ∈ D.

Then the following assertions hold:

1◦ If p ∈ [1,∞), ui,p are convex for i = 1, 2, . . . , n, then fp is convex.
2◦ If p ∈ (−∞, 0) ∪ (0, 1), ui,p are concave for every i = 1, 2, . . . , n, then fp is

concave.
3◦ If ui are convex for i = 1, 2, . . . , n, then g is convex.

Proof The validity of the assertions follows at once from the preceding corollary
and from Theorem 2.3. ��
Corollary 3.4 For every p, pi ∈ (0,∞), i = 1, 2, . . . , n, consider the functions

gp(x1, x2, . . . , xn) =
(
n∑
i=1

|xi |pi
)1/p

, (x1, x2, . . . , xn) ∈ R
n

hp(x1, x2, . . . , xn) =
(
n∑
i=1

x
pi
i

)1/p

, (x1, x2, . . . , xn) ∈ [0,∞)n.

For every p, pi ∈ (−∞, 0) consider the function

wp(x1, x2, . . . , xn) =
(
n∑
i=1

x
pi
i

)1/p

, (x1, x2, . . . , xn) ∈ (0,∞)n.
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Let p1, p2, . . . , pn ∈ R
∗. Denote

a = min
1≤i≤n(pi), b = max

1≤i≤n(pi).

Then the following assertions hold:

1◦ If p1, p2, . . . , pn ∈ [1,∞), p ∈ (0, a], then gp is convex.
2◦ If p1, p2, . . . , pn ∈ (0, 1], p ∈ [b,∞), then hp is concave.
3◦ If p1, p2, . . . , pn ∈ (−∞, 0), p ∈ (−∞, a], then wp is concave.

Proof Let fp be the function defined by (3.2). Suppose that hypotheses of assertion
1◦ hold. Note that a ∈ [1,∞). By Corollary 3.2 it follows that fa is convex. For
every i = 1, 2, . . . , n let

ui : Rn→ R, ui(x1, x2, . . . , xn) = |xi |pi/a, (x1, x2, . . . , xn) ∈ R
n.

Consider the function

u : Rn→ R
n, u(x) = (u1(x), u2(x), . . . , un(x)), x ∈ R

n.

Note that

gp(x1, x2, . . . , xn) =
(
n∑
i=1

|xi |pi
)1/p

=
(
n∑
i=1

[ui(x)]a
)1/p

= [fa(u(x))]
a/p ,

x = (x1, x2, . . . , xn) ∈ R
n.

Since all ui are convex and fa is convex, by Theorem 3.2 it follows that fa ◦ u is

convex. Since
a

p
≥ 1 it follows that gp is convex.

Suppose that hypotheses of assertion 2◦ hold. Note that b ∈ (0, 1]. By
Corollary 3.2, function fb is concave. For every i = 1, 2, . . . , n let

vi(x1, x2, . . . , xn) = xpi/bi , (x1, x2, . . . , xn) ∈ [0,∞)n.

Consider the function

v(x) = (v1(x), v2(x), . . . , vn(x)), x ∈ [0,∞)n.

Note that all vi are concave and

hp(x) =
(
n∑
i=1

[vi(x)]b
)1/p

= [fb(v(x))]b/p, x ∈ [0,∞)n.
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By Theorem 3.2 the function fb ◦ v is concave. Since
b

p
≤ 1 it follows that hp is

concave. Suppose that hypotheses of assertion 3◦ hold. By Corollary 3.2 the function

fa is concave. Since
pi

a
≤ 1 it follows that ui are concave on (0,∞)n. Note that

wp(x) = [fa(u(x))]a/p, x ∈ (0,∞)n.

By Theorem 3.2 the function fa ◦ u is concave on (0,∞)n. Since
a

p
≤ 1 it follows

that wp is concave. ��
Corollary 3.5 Let pi > 0, i = 1, 2, . . . , n. Then the function

f : (0,∞)n→ R, f (x1, x2, . . . , xn) = ln(x−p1
1 + x−p2

2 + . . .+ x−pnn ),

(x1, x2, . . . , xn) ∈ (0,∞)n

is convex.

Proof Let g be the function defined by (3.3). For every i = 1, 2, . . . , n consider the
function

ui(x1, x2, . . . , xn) = −pi ln(xi), (x1, x2, . . . , xn) ∈ (0,∞)n.

Note that

f (x) = g(u1(x), u2(x), . . . , un(x)), x ∈ (0,∞)n

and all ui are convex.
Since g is convex it follows from Corollary 3.3 that f is convex. ��

Corollary 3.6 Let n ≥ 1 and P : Rn → R be a polynomial function with positive
coefficients. Then the function

f (x1, x2, . . . , xn) = ln(P (ex1 , ex2 , . . . , exn)), (x1, x2, . . . , xn) ∈ R
n

is convex.

Proof Let αk = (αk1, αk2, . . . , αkn) ∈ N
n, ak > 0, k = 1, 2, . . . , m and

P(x1, x2, . . . , xn) =
m∑
k=1

akx
αk1
1 x

αk2
2 . . . xαknn .

If

uk(x1, x2, . . . , xn) = αk1x1 + αk2x2 + . . .+ αknxn + ln(ak),

(x1, x2, . . . , xn) ∈ R
n
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then

f (x1, x2, . . . , xn) = ln[P(ex1 , ex2 , . . . , exn)]

= ln

[
m∑
k=1

ak exp

(
n∑
i=1

αkixi

)]
= ln

[
m∑
k=1

exp(uk(x1, x2, . . . , xn))

]
.

If g is the function defined by (3.3), then

f (x) = g(u1(x), u2(x), . . . , un(x)), x ∈ R
n.

Since g is convex and all ui are convex, by Theorem 2.3 it follows that f is also
convex. ��
Lemma 3.7 Let I, J be two intervals of the real axis, φ : I → J be a bijective, two
times differentiable function. Suppose that φ′(t) �= 0, φ′′(t) �= 0 for every t ∈ I .
Consider the functions

u : I → R, u(t) = 1

φ′(t)
, t ∈ I

v(t) = φ
′2(φ−1(t))

φ′′−1(t))
, t ∈ J.

Then the following assertions hold:

1◦ If u is convex, then v ◦ φ is increasing.
2◦ If u is concave, then v ◦ φ is decreasing.

Proof Note that

u′(t) = − 1

v(φ(t))
, t ∈ I.

If u is convex, then u′ is increasing, hence v ◦ φ is increasing.
If u is concave, then u′ is decreasing, hence v ◦ φ is decreasing. ��

Theorem 3.8 Let I, I1, J, J1, φ be as in the statement of Theorem 3.1. Suppose that

φ′(t) �= 0, φ′′(t) �= 0, t ∈ I1.

Consider the functions

gn(x1, x2, . . . , xn) = φ−1(φ(x1)+ φ(x2)+ . . .+ φ(xn)), x1, x2, . . . , xn ∈ I
(3.4)

u : I1 → R, u(t) = 1

φ′(t)
, t ∈ I1
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v : J1 → J1, v(t) = φ
′2(φ−1(t))

φ′′−1(t))
, t ∈ J1.

Then the following assertions hold:

1◦ If u is convex on I1, then gn is separately convex (i.e. gn is convex in each
variable).

2◦ If u is concave on I1, then gn is separately concave (i.e. gn is concave in each
variable).

Proof Note that for i = 1, 2, . . . , n we have

∂gn

∂xi
(x) = φ′(xi)

φ′(gn(x))
,

∂gn

∂x2
i

(x) = φ
′′(xi)φ′(gn(x))− φ′2(xi)φ′′(gn(xi))

φ′3(gn(x))

= φ
′′(gn(x))φ′′(xi)[v(φ(gn(x)))− v(φ(xi))]

φ′3(gn(x))
,

x = (x1, x2, . . . , xn) ∈ In1 .

Suppose that u is convex. By Lemma 3.7 it follows that v ◦ φ is increasing.
If φ′ > 0 on I1, then φ−1 is increasing hence v is increasing. Note that

∂2gn

∂x2
i

≥ 0 on In1 . (3.5)

If φ′ < 0 on I1, then φ−1 is decreasing, hence v is decreasing. Note that (3.5)
holds again. We proved that gn is separately convex on In1 . Since gn is continuous it
follows that gn is separately convex on In.

Assertion 2◦ follows with a similar argument. ��
Theorem 3.9 Let n ≥ 2 be a natural number, I, J be two intervals of the real axis.
Suppose that J = [0,∞) or J = (0,∞). Let φ : I → J be a bijective continuous
function and gn : In → I be the function defined by (3.4). Then the following
assertions hold:

1◦ If φ is increasing and convex, then gn is quasi-convex.
2◦ If φ is increasing and concave, then gn is quasi-concave.
3◦ If φ is decreasing and convex, then gn is quasi-concave.
4◦ If φ is decreasing and concave, then gn is quasi-convex.
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Proof Let

ψn(x1, x2, . . . , xn) = φ(x1)+ φ(x2)+ . . .+ φ(xn), x1, x2, . . . , xn ∈ I.

Note that we have gn = φ−1 ◦ ψn.
In order to prove assertion 1◦ suppose that φ is increasing and convex. Then ψn

is convex and φ−1 is increasing. By Theorem 2.4 it follows that gn is quasi-convex.
The other assertions can be proved by a similar argument. ��

Theorem 3.10 Let n ≥ 2 be a natural number, I, J be two intervals of the real
axis, and φ : I → J be a bijective differentiable function. Consider the function
gn : In → I defined by (3.4). Suppose that φ′(t) �= 0 for every t ∈ I . Then the
following assertions hold:

1◦ If φ′ > 0 on I and φ is convex, then gn is Schur-convex.
2◦ If φ′ < 0 on I and φ is convex, then gn is Schur-concave.
3◦ If φ′ > 0 on I and φ is concave, then gn is Schur-concave.
4◦ If φ′ < 0 on I and φ is concave, then gn is Schur-convex.

Proof Note that gn is symmetric. In order to decide the Schur-convexity or Schur-
concavity of gn we have to study the sign of

A(x) = (x1 − x2)

(
∂gn

∂x1
(x)− ∂gn

∂x2
(x)

)
, x = (x1, x2, . . . , xn) ∈ In.

Note that

A(x) = (x1 − x2)(φ
′(x1)− φ′(x2))

φ′(gn(x))
, x = (x1, x2, . . . , xn) ∈ In.

All the assertions from the statement of the theorem follow at once by computing
the sign of A(x). ��

4 A Study of Convexity of Asymmetric Archimedean
Functions

Theorem 4.1 Let I, J be two intervals of the real axis and φ : I → J be a
differentiable bijective function. Denote by I1 (resp. J1) the interior of I (resp. J ).
Suppose that J = [0,∞) or J = (0,∞) and φ′(t) �= 0, φ′′(t) �= 0 for every t ∈ I1.
Let v : J1 → J1,

v(t) = φ
′2(φ−1(t))

φ′′−1(t))
, t ∈ J1 (4.1)
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D = {(x, y) ∈ I 2 : φ(x) > φ(y)},

g : D→ I, g(x, y) = φ−1(φ(x)− φ(y)), (x, y) ∈ D.

Then the following assertions hold:

1◦ If φ′′(t) > 0 , φ′(t) > 0 for every t ∈ I1 and

v(t + s) ≥ v(t)+ v(s), t, s ∈ J1

then g is concave on D.
2◦ If φ′′(t) > 0, φ′(t) < 0 for every t ∈ I1 and

v(t + s) ≥ v(t)+ v(s), t, s ∈ J1

then g is convex on D.
3◦ If φ′′(t) < 0, φ′(t) > 0 for every t ∈ I1 and

v(t + s) ≤ v(t)+ v(s), t, s ∈ J1

then g is convex on D.
4◦ If φ′′(t) < 0, φ′(t) < 0 for every t ∈ I1 and

v(t + s) ≤ v(t)+ v(s), t, s ∈ J1

then g is concave on D.

Proof Note that D is a convex subset of I 2,

φ(g(x, y)) = φ(x)− φ(y), v(φ(x)) = φ
′2(x)
φ′′(x)

g′x(x, y) =
φ′(x)

φ′(g(x, y))
, g′y(x, y) = −

φ′(y)
φ′(g(x, y))

g′′xx(x, y) =
φ′′(x)(v(φ(x)− φ(y))− v(φ(x)))
φ′(g(x, y))v(φ(x)− φ(y))

g′′yy(x, y) = −
φ′′(y)(v(φ(y))+ v(φ(x)− φ(y)))
φ′(g(x, y))v(φ(x)− φ(y))

g′′xy(x, y) =
φ′(x)φ′(y)

φ′(g(x, y))v(φ(x)− φ(y))
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Let Hg be the determinant of the Hessian matrix of g. Note that

Hg(x, y) = g′′xx(x, y)g′′yy(x, y)− [g′′xy(x, y)]2

= φ
′′(x)φ′′(y)[v(φ(x))− v(φ(x)− φ(y))][v(φ(y))+ v(φ(x)− φ(y))] − φ′2(x)φ′2(y)

φ′2(g(x, y))v2(φ(x)− φ(y))

= φ
′′(x)φ′′(y)[v(φ(x))− v(φ(y))− v(φ(x)− φ(y))]

φ′2(g(x, y))v(φ(x)− φ(y))

A direct check shows that assertions 1◦–4◦ hold. ��
Theorem 4.2 Let I, J, I1, J1, φ, v be defined as in the statement of Theorem 4.1.
For every natural number n ≥ 2 let

D = {(x1, x2, . . . , xn) ∈ In | φ(x1) > φ(x2)+ . . .+ φ(xn)}
and gn : D→ I ,

gn(x1, x2, . . . , xn) = φ−1(φ(x1)− φ(x2)− . . .− φ(xn)), (x1, x2, . . . , xn) ∈ D.
If U is a convex subset of D, then the following assertions hold:

1◦ If φ′′(t) > 0, φ′(t) > 0 for t ∈ I1 and

v(t + s) ≥ v(t)+ v(s), s, t ∈ J1,

then D is convex and gn is concave on D.
2◦ If φ′′(t) > 0, φ′(t) < 0 for t ∈ I1 and

v(t + s) ≥ v(t)+ v(s), s, t ∈ J1,

then D is convex and gn is convex on D.
3◦ If φ′′(t) < 0, φ′(t) > 0 for t ∈ I1and

v(t + s) ≤ v(t)+ v(s), s, t ∈ J1,

then gn is convex on D.
4◦ If φ′′(t) < 0, φ′(t) < 0 for t ∈ I1and

v(t + s) ≤ v(t)+ v(s), s, t ∈ J1,

then gn is concave on D.

Proof For every n ≥ 2 let

un(x1, x2, . . . , xn) = φ−1(φ(x1)+ φ(x2)+ . . .+ φ(xn)),
(x1, x2, . . . , xn) ∈ In.
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Note that

gn(x1, x2, . . . , xn) = g2(x1, un−1(x2, x3, . . . , xn)) (4.2)

Suppose that the hypotheses of assertion 1◦ hold. Note that

D = {(x1, x2, . . . , xn) ∈ In | x1 > φ
−1(φ(x2)+ . . .+ φ(xn))}

= {(x1, x2, . . . , xn) ∈ In | x1 > un−1(x1, x2, . . . , xn)}.

By Theorem 3.1, un−1 is convex, hence D is convex. Note that g2 is concave,
is increasing in the first argument and decreasing in the second argument. By
Theorem 2.3, gn is concave.

Suppose now that the hypotheses of assertion 2◦ hold. Note that

D = {(x1, x2, . . . , xn) ∈ In | x1 < φ
−1(φ(x2)+ . . .+ φ(xn))}

= {(x1, x2, . . . , xn) ∈ In | x1 < un−1(x2, x3, . . . , xn)}.

By Theorem 3.1, un−1 is concave, henceD is convex. By Theorem 4.1, g2 is convex.
By (4.2) and by Theorem 2.3, it follows that gn is convex. Similar arguments apply
for the proof of assertions 3◦ and 4◦. ��
Corollary 4.3 Let

Dp = {(x, y) ∈ [0,∞)2 | x > y} if p ∈ (0,∞) and

Dp = {(x, y) ∈ (0,∞)2 | x < y} if p ∈ (−∞, 0).

For p ∈ R
∗ = R− {0} consider the function

fp(x, y) = (xp − yp)
1
p , (x, y) ∈ Dp.

Then the following assertions hold:

1◦ If p ∈ [1,∞), then fp is concave on Dp.
2◦ If p ∈ (−∞, 0) ∪ (0, 1], then fp is convex on Dp.

Proof Note that for every p ∈ R
∗ the set Dp is convex. If p = 1, then fp is convex

and concave. Suppose that p ∈ (1,∞) and let

φp(t) = tp, t ∈ [0,∞) (4.3)

vp(t) =
φ′2p (φ−1

p (t))

φ′′p(φ−1
p (t))

, t ∈ (0,∞). (4.4)
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Note that

φ′p(t) > 0, φ′′p(t) > 0, vp(t + s) = vp(t)+ vp(s), t, s ∈ (0,∞).

By Theorem 4.1 it follows that fp is concave on Dp.
Suppose that p ∈ (0, 1). Note that

φ′p(t) > 0, φ′′p(t) < 0, t ∈ (0,∞)

and vp is additive on (0,∞). By Theorem 4.1 it follows that fp is convex on Dp.
Suppose that p ∈ (−∞, 0). Note that

φ′p(t) < 0, φ′′p(t) > 0, t ∈ (0,∞)

and vp is additive on (0,∞). By Theorem 4.1 fp is convex on Dp. ��
Theorem 4.4 Let Jp = [0,∞) if p ∈ (0,∞) and Jp = (0,∞) if p ∈ (−∞, 0).
For every p ∈ R

∗ consider the set

Dp = {(x1, x2, . . . , xn) ∈ Jnp | xp1 > xp2 + xp3 + . . .+ xpn }
and the function fp : Dp → R,

fp(x1, x2, . . . , xn) = (xp1 − xp2 − . . .− xpn )
1
p , (x1, x2, . . . , xn) ∈ Dp. (4.5)

Then the following assertions hold:

1◦ Dp is convex for p ∈ (−∞, 0) ∪ [1,∞).
2◦ If p ∈ [1,∞), then fp is concave on Dp.
3◦ If p ∈ (−∞, 0), then fp is convex on Dp.
4◦ If p ∈ (0, 1), then fp is convex on every convex subset of Dp.
5◦ If p ∈ (0, 1), then Dp is convex if and only if n = 2.

Proof Let φp and vp be defined as in (4.3) and (4.4). Note that

φ′p(t) = ptp−1, φ′′p(t) = p(p − 1)tp−2, vp(t) = t

p − 1
, t ∈ Jp.

Consider the function

ψp(x1, x2, . . . , xn−1) = (xp1 + xp2 + . . .+ xpn−1)
1
p , (x1, x2, . . . , xn−1) ∈ Jn−1

p .

If p ∈ [1,∞), then ψp is convex. Note that the function

up(x1, x2, . . . , xn) = ψp(x2, x3, . . . , xn)− x1, (x1, x2, . . . , xn) ∈ Dp
is convex and Dp = {x ∈ Jnp | up(x) < 0}. Hence Dp is convex.
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If p ∈ (−∞, 0), then ψp and up are concave and

Dp = {x ∈ Jnp | up(x) > 0}.

Consequently Dp is convex.
Suppose that p ∈ (1,∞). Note that

φ′p(t) > 0, φ′′p(t) > 0, vp(t + s) = vp(t)+ vp(s), t, s ∈ (0,∞).

From Theorem 4.2 it follows that fp is concave on Dp.
If p ∈ (−∞, 0), then φ′p(t) < 0, φ′′p(t) > 0, t ∈ (0,∞) and vp is additive. From

Theorem 4.2 it follows that fp is convex.
If p ∈ (0, 1), then φ′p > 0, φ′′p < 0, vp is additive on (0,∞). If U is a convex

subset of Dp, then from Theorem 4.2 it follows that fp is convex on U .

In order to prove assertion 5◦ let p ∈ (0, 1) and a ∈
(

1, 2
1−p
p

)
. If n = 2 one can

easily see that Dp is convex. If n ≥ 3 let

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), z = (z1, z2, . . . , zn) ∈ R
n,

x1 = a, x2 = 0, x3 = 1, y1 = a, y2 = 1, y3 = 0, xi = yi = 0 for i ∈ {4, 5, ..n} .

Note that x ∈ Dp if and only if y ∈ Dp which is equivalent with a > 1. Now,

observe that z = 1

2
(x + y) does not belong to Dp. Hence Dp is not convex. ��

Theorem 4.5 For every p ∈ R
∗ let Jp be defined as in the statement of the

preceding Theorem. Let E be a linear space, D be a convex subset of E. For every
p ∈ R

∗ consider

ui,p : D→ Jp, i = 1, 2, . . . , n,

Up = {x ∈ D | up1,p(x) > up2,p(x)+ . . .+ upn,p(x)},

gp(x) = (up1,p(x)− up2,p(x)− . . .− upn,p(x))
1
p , x ∈ Up,

hp(x) = ln[up1,p(x)− up2,p(x)− . . .− upn,p(x)], x ∈ Up,
wp = (up1,p(x)− up2,p(x)− . . .− upn,p(x))a, x ∈ Up.

Then the following assertions hold:

1◦ If p ∈ [1,∞), a ∈ (−∞, 0), u1,p is concave and ui,p are convex for i ∈
{2, 3, . . . , n}, then gp and hp are concave on Up and wp is convex.

2◦ If a, p ∈ (−∞, 0), ap ∈ [1,∞), u1,p is convex and ui,p are concave for every
i ∈ {2, 3, . . . , n}, then wp is convex on Up.
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Proof Let fp be defined as in (4.5). Suppose that p ∈ [1,∞) and a ∈ (−∞, 0).
Note that

gp(x) = fp(u1(x), u2(x), . . . , un(x)), x ∈ Up.

By Theorem 4.4 it follows that fp is concave. By Theorem 2.3 it follows that gp is
concave. By Corollary 2.2 it follows that hp is concave and wp is convex.

Suppose that the hypotheses of assertion 2◦ hold. Note that

wp(x) = [fp(u1(x), u2(x), . . . , un(x))]ap, x ∈ Up.

By Theorem 4.4 it follows that fp is convex. Using Theorem 2.3 it follows that gp
is convex. By Corollary 2.2 it follows that wp is convex on Up. ��
Corollary 4.6 Let n ≥ 2, p ≥ 1, E be a linear normed space, D be a convex
subset of E, and v : En→ R be a linear function. Consider the set

Up =
⎧⎨
⎩(x1, x2, . . . , xn) ∈ Dn | v(x1, x2, . . . , xn) >

(
n∑
i=2

‖xi‖p
) 1
p

⎫⎬
⎭

and the function gp : Up → R,

gp(x1, x2, . . . , xn) =
(
[v(x1, x2, . . . , xn)]p −

n∑
i=2

‖xi‖p
) 1
p

,

(x1, x2, . . . , xn) ∈ Up.

Then gp is concave on Up.

Proof Let

u1 = v, ui(x1, x2, . . . , xn) = ‖xi‖, i = 2, 3, . . . , n, (x1, x2, . . . , xn) ∈ Dn.

Consider the function

u(x) = (u1(x), u2(x), . . . , un(x)), x ∈ Dn.

Note that u1 is concave and u2, u3, . . . , un are convex. If fp is defined by (4.5), then

gp(x) = fp(u(x)), x ∈ Up.

By Theorem 4.5 it follows that gp is concave on Up. ��
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Corollary 4.7 For every p ∈ R
∗ let

Up =
{
(z1, z2, . . . , zn) ∈ C

n | Re(z1) > (|z2|p + |z3|p + . . .+ |zn|p)
1
p

}
,

gp(z1, z2, . . . , zn) = (|Re(z1)|p − |z2|p − |z3|p − . . .− |zn|p)
1
p ,

(z1, z2, . . . , zn) ∈ Up.

If p ∈ [1,∞), then gp is concave on Up.

Proof Let

u1(z1, z2, . . . , zn) = Re(z1), uk(z1, z2, . . . , zn) = |zk|,

k ∈ {2, 3, . . . , n}, (z1, z2, . . . , zn) ∈ C
n.

Let fp be defined by (4.5). Note that

gp(z) = fp(u1(z), u2(z), . . . , un(z)), z ∈ Up
and u1 is concave and u2, u3, . . . , un are convex. By the preceding Corollary 4.6 it
follows that gp is concave on Up. ��
Corollary 4.8 For every n ≥ 2, p ∈ [1,∞), a < 0 consider

Dp,n = {(x1, x2, . . . , xn) ∈ [0,∞)n | xp1 > xp2 + xp3 + . . .+ xpn }

Up,n =
{
(x1, x2, . . . , xn) ∈ [0,∞)n |

(
n∑
i=1

xi

)p
>

n∑
i=1

x
p
i

}

g1,p,n(x1, x2, . . . , xn) = ln(xp1 − xp2 − . . .− xpn ), (x1, x2, . . . , xn) ∈ Dp,n
g2,p,n(x1, x2, . . . , xn) = (xp1 − xp2 − . . .− xpn )a, (x1, x2, . . . , xn) ∈ Dp,n

g3,p,n(x1, x2, . . . , xn)= ln

[(
n∑
i=1

xi

)p
−
(
n∑
i=1

x
p
i

)]
, (x1, x2, . . . , xn) ∈ Up,n

g4,p,n(x1, x2, . . . , xn)=
[(

n∑
i=1

xi

)p
−
(
n∑
i=1

x
p
i

)]a
, (x1, x2, . . . , xn) ∈ Up,n.
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If p ∈ [1,∞) then the following assertions hold:

1◦ Dp,n and Up,n are convex sets.
2◦ g1,p,n and g3,p,n are concave.
3◦ g3,p,n and g4,p,n are convex.

Proof For every k ≥ 1 let hk,p : [0,∞)k → R be defined as follows:

hk,p(x1, x2, . . . , xk) = (xp1 + xp2 + . . .+ xpk )
1
p , (x1, x2, . . . , xk) ∈ [0,∞)k.

By Corollary 3.2, hk,p is convex. Since

Dp,n = {(x1, x2, . . . , xn) ∈ [0,∞)n | x1 > hn−1,p(x2, x3, . . . , xn)}

Up,n =
{
(x1, x2, . . . , xn) ∈ [0,∞)n |

n∑
i=1

xi > hn,p(x1, x2, . . . , xn)

}

it follows that Dp,n and Up,n are convex sets.
By Theorem 4.5 it follows that g1,p is concave and g2,p is convex. Since

g3,p,n(x1, x2, . . . , xn) = g1,p

(
n∑
i=1

xi, x1, x2, . . . , xn

)

and

g4,p,n(x1, x2, . . . , xn) = g2,p,n+1

(
n∑
i=1

xi, x1, x2, . . . , xn

)

it results that g3,p,n is concave and g4,p,n is convex. ��
Theorem 4.9 Let n ≥ 2, pi > 0, i = 1, 2, . . . , n, p > 0 and a = min

2≤i≤n(pi).
Consider the set

D =
⎧⎨
⎩(x1, x2, . . . , xn) ∈ R

n | x1 >

(
n∑
i=2

|xi |pi
) 1
p1

⎫⎬
⎭

and the function gp : D→ R,

gp(x1, x2, . . . , xn) = (|x1|p1 − |x2|p2 − . . .− |xn|pn)
1
p , (x1, x2, . . . , xn) ∈ D.

If a ≥ 1 and p1 ≤ a ≤ p, then D is a convex set and gp is concave on D.
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Proof Let h : Rn−1 → R,

h(x1, x2, . . . , xn−1) =
(
n−1∑
i=1

|xi |pi+1

) 1
p1

, (x1, x2, . . . , xn−1) ∈ R
n−1.

By Corollary 3.4, h is convex. Since

D = {(x1, x2, . . . , xn) ∈ R
n | x1 > h(x2, x3, . . . , xn)}

it follows that D is a convex set.
Let fp be defined as in (4.5). Note that

gp(x) = [fa(u1(x), u2(x), . . . , un(x))]
a
p , x ∈ D.

By Theorem 4.4 it follows that fa is concave. By Theorem 2.3, gp is concave. ��
Theorem 4.10 Let pi < 0, i = 1, 2, . . . , n, p < 0, a = min

2≤i≤n(pi),

D =
⎧⎨
⎩(x1, x2, . . . , xn) ∈ (0,∞)n | x1 <

(
n∑
i=2

x
pi
i

) 1
p1

⎫⎬
⎭

gp(x1, x2, . . . , xn) = (xp1
1 − xp2

2 − . . .− xpnn )
1
p , (x1, x2, . . . , xn) ∈ D.

If p1 ≤ a ≤ p, then D is a convex set and gp is convex on D.

Proof Let h : (0,∞)n−1 → R,

h(x1, x2, . . . , xn−1) =
(
n−1∑
i=1

x
pi+1
i

) 1
p1

, (x1, x2, . . . , xn−1) ∈ (0,∞)n−1.

By Corollary 3.4, h is concave on (0,∞)n−1. Since

D = {(x1, x2, . . . , xn) ∈ (0,∞)n | x1 < h(x2, x3, . . . , xn)}

it follows that D is a convex set.
Let uk : D→ R, k = 1, 2, . . . , n be defined as follows:

u1(x1, x2, . . . , xn) = xp1/a

1 ,

uk(x1, x2, . . . , xn) = xpk/ak , k = 2, 3, . . . , n, (x1, x2, . . . , xn) ∈ D.

Since p1/a ≥ 1 it follows that u1 is convex.
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Since pk/a ∈ (0, 1], k = 2, 3, . . . , n it follows that uk , k = 2, 3, . . . , n are
concave.

Let u(x) = (u1(x), u2(x), . . . , un(x)), x ∈ D. Denote with fp the function
defined by (4.5). Note that

gp(x) = [fa(u(x))]a/p, x ∈ D.

By Theorem 4.5, fa is convex. By Theorem 2.3 it follows that gp is convex on D.
��

Theorem 4.11 Let

D = {(x1, x2, . . . , xn) ∈ R
n | x1 > ln(ex2 + ex3 + . . .+ exn)}, a < 0,

f (x1, x2, . . . , xn) = ln(ex1 − ex2 − . . .− exn), (x1, x2, . . . , xn) ∈ D,
g(x1, x2, . . . , xn) = (ex1 − ex2 − . . .− exn)a, (x1, x2, . . . , xn) ∈ D.

h(x1, x2, . . . , xn) = ln(ex1+x2+...+xn − ex1 − ex2 − . . .− exn), (x1, x2, . . . , xn)∈ (0,∞)n

Then D is a convex set, f is concave on D, g is convex on D and h is concave
on (0,∞)n .
Proof Let

h(x1, x2, . . . , xn−1) = ln(ex1 + ex2 + . . .+ exn−1), (x1, x2, . . . , xn) ∈ R
n−1.

By Corollary 3.3 it follows that h is convex. Since

D = {(x1, x2, . . . , xn) ∈ R
n | x1 > h(x2, x3, . . . , xn)}

it follows that D is a convex set.
Let φ(t) = et , t ∈ R. Note that

v(t) = φ
′2(φ−1(t))

φ′′−1(t))
= t, φ′(t) > 0, φ′′(t) > 0, t ∈ R.

By Theorem 4.2 it follows that f is concave on D. Since g = exp(af ) it follows
from Corollary 2.2 that g is a convex function. The concavity of h follows from
Theorem 2.3. and from the concavity of f. ��
Theorem 4.12 Let E be a linear space, D be a convex subset of E and uk : D →
R, k = 1, 2, . . . , n. Suppose that u1 is concave and u2, u3, . . . , un are convex. Let
a < 0,

U = {x ∈ D | u1(x) > ln(eu2(x) + eu3(x) + . . .+ eun(x))}
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and f, g : U → R,

f (x) = ln(eu1(x) − eu2(x) − . . .− eun(x)), x ∈ U,

g(x) = (eu1(x) − eu2(x) − . . .− eun(x))a, x ∈ U.

Then U is a convex set, f is concave and g is convex.

Proof Let h(x) = ln(eu2(x) + eu3(x) + . . . + eun(x)), x ∈ D. By Corollary 3.3 it
follows that h is convex on D. Since

U = {x ∈ D | u1(x) > h(x)}

it follows that U is a convex set. By the preceding theorem and by Theorem 2.3 it
follows that f is concave and g is convex. ��
Theorem 4.13 Let P : Rn→ R be a function. Suppose that

P = P1 − P2

where

P1(x1, x2, . . . , xn) = d0x
a1
1 x

a2
2 . . . x

an
n

P2(x1, x2, . . . , xn) =
m∑
r=1

drx
br1
1 x

br2
2 . . . xbrnn ,

ai ≥ 0, bri ≥ 0, dr > 0, i ∈ {1, 2, . . . , n}, r ∈ {0, 1, . . . , m}.

Denote

ci = max
1≤r≤m(bri), i ∈ {1, 2, . . . , n},

D1 = {x ∈ (0,∞)n | P(x) > 0}

D2 = {(x1, x2, . . . , xn) ∈ R
n | P(ex1 , ex2 , . . . , exn) > 0}.

Consider the functions gi : Di → R, i = 1, 2,

g1(x) = ln[P(x)], x ∈ D1

g2(x1, x2, . . . , xn) = ln[P(ex1 , ex2 , . . . , exn)], (x1, x2, . . . , xn) ∈ D2.
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Then the following assertions hold:

1◦ If ai ≥ ci for every i ∈ {1, 2, . . . , n}, then D1 is a convex set and g1 is concave
on D1.

2◦ The set D2 is convex and g2 is concave on D2.

Proof Suppose that ai ≥ ci for every i ∈ {1, 2, . . . , n}.
For r ∈ {1, 2, . . . , m} let

Qr(x1, x2, . . . , xn) = xbr1−a1
1 x

br2−a2
2 . . . xbrn−ann .

Consider

Q(x) =
m∑
r=1

dr

d0
Qr(x).

Note that

Q(x) = P2(x)

P1(x)
, x ∈ (0,∞)n

and

D1 = {x ∈ (0,∞)n | P(x) < 0} = {x ∈ (0,∞)n | Q(x) < 1}.

Since bri − ai ≤ 0 for every i ∈ {1, 2, . . . , n}, r ∈ {1, 2, . . . , m} it follows that all
functionsQr are convex. HenceQ is convex and D1 is a convex set. Note that

g1(x) = ln[P(x)] = ln[P1(x)(1−Q(x))] = ln[P1(x)] + ln[1−Q(x)]

= ln(d0)+
n∑
i=1

ai ln(xi)+ ln(1−Q(x)),

x = (x1, x2, . . . , xn) ∈ D1.

Since all the terms in the right hand side of the preceding equation are concave it
follows that g1 is concave on D1. Let

w(x1, x2, . . . , xn) = a1x1 + a2x2 + . . .+ anxn + ln(d0),

ur(x1, x2, . . . , xn) = br1x1 + br2x2 + . . .+ brnxn + ln(dr ), r ∈ {1, 2, . . . , m},

v(x) = ln

[
m∑
r=1

exp(ur(x))

]
− w(x), x ∈ D2.
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Note that

P(ex1 , ex2 , . . . , exn) = exp(u1(x1, x2, . . . , xn))−
m∑
r=1

exp(ur(x1, x2, . . . , xn)).

One can easily see that

D2 = {x ∈ R
n | P(ex1 , ex2 , . . . , exn) > 0} = {x ∈ R

n | v(x) < 0}.

Since v is convex it follows that D2 is convex. Note that

g2(x) = ln[exp(w(x))− exp(v(x)+ w(x))], x ∈ D2.

Since w is concave and v + w is convex, from Theorem 4.12 it follows that g2 is
concave on D2. ��
Lemma 4.14 Let p ≥ 1, 0 ≤ b ≤ a,

f (x) = (x + a)p − (x + b)p, x ∈ [0,∞).

Then f is increasing.

Proof Note that f ′ (x) = p [(x + a)p−1 − (x + b)p−1
] ≥ 0, x ∈ [0,∞). ��

Lemma 4.15 Let n ≥ 2, p ≥ 1, x1, x2, . . . , xn ≥ 0. If

n∑
i=1

xi ≥ 2 max(x1, x2, . . . , xn)

then

(
n∑
i=1

xi

)p
≥ 2p−1

(
n∑
i=1

x
p
i

)
. (4.6)

Proof Without loss of generality we may suppose that

0 ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ x1 + x2 + . . .+ xn−1.

Let n = 2. Then inequality (4.6) becomes

(x1 + x2)
p ≥ 2p−1(x

p

1 + xp2 ) if x1 = x2.

Thus inequality (4.6) holds in the case n = 2. Suppose now that n ≥ 3. Denote

A = x1 + x2 + . . .+ xn−2.
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Let f be defined as in the statement of the preceding lemma. Take

x = A+ xn−1, a = xn, b = xn−1.

Since A+ xn−1 ≥ xn, from the preceding lemma we have that

(A+ xn−1 + xn)p − (A+ 2xn−1)
p = f (A+ xn−1) ≥ f (xn)

= (2xn)p − (xn + xn−1)
p (4.7)

In the following we propose to prove the inequality

(
n∑
i=1

xi

)p
− 2p−1

(
n∑
i=1

x
p
i

)

≥
[(

n−2∑
i=1

xi

)
+ 2xn−1

]p
− 2p−1

[(
n−2∑
i=1

x
p
i

)
+ 2xpn−1

]
(4.8)

Using inequality (4.7) we obtain:

(
n∑
i=1

xi

)p
− 2p−1

(
n∑
i=1

x
p
i

)
−
[(

n−2∑
i=1

xi

)
+ 2xn−1

]p

+2p−1

[(
n−2∑
i=1

x
p
i

)
+ 2xpn−1

]

= (A+ xn−1 + xn)p − (A+ 2xn−1)
p − 2p−1(x

p
n − xpn−1)

≥ (2xn)p − (xn + xn−1)
p − 2p−1(x

p
n − xpn−1)

= 2p−1(x
p

n−1 + xpn )− (xn−1 + xn)p ≥ 0.

Thus we have proved inequality (4.8).
In the following we propose to prove the inequality

[(
n−2∑
i=1

xi

)
+ 2xn−1

]p
− 2p−1

[(
n−2∑
i=1

x
p
i

)
+ 2xpn−1

]
≥ 0 (4.9)

From the Bernoulli inequality it follows that

(A+ 2xn−1)
p ≥ (2xn−1)

p + pA(2xn−1)
p−1 (4.10)
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From the above inequality we obtain

[(
n−2∑
i=1

xi

)
+ 2xn−1

]p
− 2p−1

[(
n−2∑
i=1

x
p
i

)
+ 2xpn−1

]

= (A+ 2xn−1)
p − (2xn−1)

p − 2p−1

(
n−2∑
i=1

x
p
i

)

≥ pA(2xn−1)
p−1 − 2p−1

(
n−2∑
i=1

x
p
i

)
= 2p−1

[
n−2∑
i=1

xi(px
p−1
n−1 − xp−1

i )

]
≥ 0.

Thus we have proved inequality (4.9). Inequality (4.6) follows at once from
inequalities (4.8) and (4.9). ��
Theorem 4.16 Let n ≥ 3, p ∈ [1,∞), a ∈ (−∞, 0),

D =
{
(x1, x2, . . . , xn) ∈ [0,∞)n |

n∑
i=1

xi ≥ 2 max(x1, x2, . . . , xn)

}
,

U =
{
(x1, x2, . . . , xn) ∈ D |

(
n∑
i=1

xi

)p
> 2p−1

(
n∑
i=1

x
p
i

)}
,

f (x1, x2, . . . , xn)=
[(

n∑
i=1

xi

)p
−2p−1

(
n∑
i=1

x
p
i

)]1/p

, (x1, x2, . . . , xn) ∈ D,

g(x1, x2, . . . , xn)= ln

[(
n∑
i=1

xi

)p
− 2p−1

(
n∑
i=1

x
p
i

)]
, (x1, x2, . . . , xn) ∈ U,

h(x1, x2, . . . , xn) =
[(

n∑
i=1

xi

)p
− 2p−1

(
n∑
i=1

x
p
i

)]a
, (x1, x2, . . . , xn) ∈ U.

Then the following assertions hold:

1◦ D and U are convex sets.
2◦ f is concave on D.
2◦ g is concave on U .
4◦ h is convex on U .
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Proof Let

v(x1, x2, . . . , xn) = 2 max(x1, x2, . . . , xn), (x1, x2, . . . , xn) ∈ [0,∞)n,

w(x1, x2, . . . , xn) = 21− 1
p

(
n∑
i=1

x
p
i

)1/p

, (x1, x2, . . . , xn) ∈ [0,∞)n,

u(x1, x2, . . . , xn) =
n∑
i=1

xi .

Note that v − u is a convex function and

D = {x ∈ [0,∞)n | v(x)− u(x) ≤ 0}.

Hence D is a convex set. Note that w − u is a convex function and

U = {x ∈ D | w(x)− u(x) < 0}.

Hence U is a convex set. By Lemma 4.15 the function f is well defined. Note that
u is concave, w is convex,

f (x) = [up(x)− wp(x)]1/p, x ∈ D.

By Corollary 4.3 and Theorem 2.3 it follows that f is concave on D. Since

g(x) = ln[f (x)], x ∈ U,

by Corollary 2.2 it follows that g is concave on U . Since

h(x) = exp(ag(x)), x ∈ U,

by Corollary 2.2 it follows that h is convex on U . ��
Theorem 4.17 Let a < 0, E be a linear space, D be a convex subset of E and
v, u1, u2, . . . , un : D → [0,∞) be such that u1, u2, . . . , un are concave functions
and v is a convex function. Consider the set

U = {x ∈ D | u1(x)u2(x) . . . un(x) > v
n(x)}

and the functions

f (x) = n
√
u1(x)u2(x) . . . un(x)− vn(x), x ∈ U

g(x) = ln[u1(x)u2(x) . . . un(x)− vn(x)], x ∈ U
h(x) = [u1(x)u2(x) . . . un(x)− vn(x)]a, x ∈ U.
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Then the following assertions hold:

1◦ U is convex set.
2◦ The functions f and g are concave on U .
3◦ If a < 0, then the function h is convex on U .

Proof Consider the function

u(x) = n
√
u1(x)u2(x) . . . un(x), x ∈ U.

Note that u is concave and v − u is convex. Since

U = {x ∈ D | v(x)− u(x) < 0}

it follows that U is a convex set. Note that

f (x) = [un(x)− vn(x)]1/n, x ∈ U

g(x) = ln[un(x)− vn(x)], x ∈ U

h(x) = [un(x)− vn(x)]a, x ∈ U.

By Corollary 4.3 it follows that f is concave. Since

g(x) = n · ln[f (x)] and h(x) = exp(ag(x)), x ∈ U

it follows that g is concave and h is convex on U . ��
Corollary 4.18 Let c1, c2 ∈ R, ai, bi > 0, i = 1, 2, . . . , n be such that

a1a2 . . . an > c
n
1 , b1b2 . . . bn > c

n
2 .

Then the following inequality holds:

n
√
(a1 + b1)(a2 + b2) . . . (an + bn)− (c1 + c2)n

≥ n

√
a1a2 . . . an − cn1 + n

√
b1b2 . . . bn − cn2 .

Proof Let D = {(x1, x2, . . . , xn, y) ∈ R
n+ × R | x1x2 . . . xn > y

n}.
Note that D is a convex set. Consider the function

f (x1, x2, . . . , xn, y) = n
√
x1x2 . . . xn − yn, (x1, x2, . . . , xn, y) ∈ D.
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By Theorem 4.17 the function f is concave on D. Hence

f

(
a1 + b1

2
,
a2 + b2

2
, . . . ,

an + bn
2

)

≥ 1

2
[f (a1, a2, . . . , an, c1)+ f (b1, b2, . . . , bn, c2)].

The inequality from the statement follows at once from the above inequality. ��
Corollary 4.19 Let zi ∈ R, xi, yi ∈ (0,∞), i = 1, 2.

If xiyi − z2
i > 0 for i = 1, 2, then the following inequality holds:

8

(x1 + x2)(y1 + y2)− (z1 + z2)2
≤ 1

x1y1 − z2
1

+ 1

x2y2 − z2
2

.

Proof Let

D = {(x, y, z) ∈ R
3 | x > 0, y > 0, xy − z2 > 0}

and

f (x, y, z) = 1

xy − z2
, (x, y, z) ∈ D.

Note that D is a convex set. By Theorem 4.17 it follows that f is convex on D.
Hence

f

(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
≤ 1

2
[f (x1, y1, z1)+ f (x2, y2, z2)].

The inequality from the statement of the corollary follows at once from the above
inequality. ��

The inequality from the statement was proposed at the International Mathemati-
cal Olympiad in 1969 ( see [4] and [17]). A different proof is given in [3].

Theorem 4.20 Let E be a linear space,D be a convex subset of E, a > 0, u, v,w :
D→ (0,∞),

U1 = {x ∈ D | u(x) > v(x)},
U2 = {x ∈ D | u(x)v(x) > w2(x)},

f1(x) = u(x)v(x)

(ua(x)+ va(x))1/a , x ∈ D,

f2(x) = u(x)v(x)

(ua(x)− va(x))1/a , x ∈ U1,
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f3(x) = w(x)
√
u(x)v(x)√

u(x)v(x)− w2(x)
, x ∈ U2,

f4(x) = u(x)v(x)w2(x)

u(x)v(x)− w2(x)
, x ∈ U2.

Then the following assertions hold:

1◦ If u, v are concave, then f1 is concave.
2◦ If u is concave and v is convex, then U1 is a convex set and f2 is convex on U1.
3◦ If u, v are concave and w is convex, then U2 is a convex set and f3 and f4 are

convex on U2.

Proof Let p < 0. Consider the functions

g1(x, y) = (xp + yp)1/p, (x, y) ∈ (0,∞)2,

g2(x, y) = (xp − yp)1/p, (x, y) ∈ (0,∞)2, x < y.

By Corollary 3.2, g1 is concave. By Corollary 4.3, g2 is convex.
Suppose that u, v are concave and p = −a. Note that

f1(x) = g1(u(x), v(x)), x ∈ (0,∞)2.

By Theorem 2.3, f1 is concave.
Suppose that u is concave and v is convex and p = −a. Note that

f2(x) = g2(v(x), u(x)), x ∈ U1.

By Theorem 2.3, f is convex.
Suppose u, v are concave, w is convex and p = −a. Note that

√
uv is concave,

f3(x) = g2

(
w(x),

√
u(x)v(x)

)
, x ∈ U2,

f4(x) = f 2
3 (x), x ∈ U2.

By Theorem 2.3, f3 and f4 are convex on U2. ��

5 Convexity of Symmetric Functions

An n-variable function f is called symmetric if it does not change by any permuta-
tion of its variables. A class of symmetric functions that have many applications
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in various domains is the class of symmetric polynomials. The symmetric n-
variable polynomials form a ring that plays an important role in mathematics
and mathematical physics [68, 69]. Symmetric polynomials are widely used in
many fields such as algebra [1, 7, 14, 64, 84], linear algebra [18–20], algebraic
geometry [54], representation theory [26], combinatorics [2, 11, 25, 77], statistics
[31, 46], mechanics [26], physics [8, 44], discrete mathematics [74], geometry [28],
information theory [32] and many others. For the basic properties of symmetric
polynomials, see [45] and for references on recent studies on symmetric polynomi-
als, we refer to [21].

In this section we shall study the convexity and concavity of symmetric functions
which are defined as multivariate monomials or ratios or powers of elementary
symmetric polynomials. We prove some “power” generalizations of Marcus–Lopes
inequality [48] concerning elementary symmetric polynomials. Our results extend
some recent results obtained by Sra [76] and Lachaume [36].

In the second part of this section we study the convexity and concavity of the
functions of the type f (x) = [σr (x)]a [σs (x)]b, g (x) = [σk (xp)]

a , and h (x) =
ln (σk (xp)), where x ∈ (0,∞)n.

For n ≥ 2 and for every k ∈ {1, 2, . . . , n} , (x1, x2, . . . , xn) ∈ (0,∞)n we denote
by σk,n (x1, x2, . . . , xn) the k−th elementary symmetric polynomial.

σk,n (x1, x2, . . . , xn) =
∑

1≤i1<i2<...<ik≤n
xi1xi2 . . . xik

We set σ0,n (x1, x2, . . . , xn) = 1. In the case no confusion may arise we shall write
σk instead σk,n.

If p ∈ R, x = (x1, x2, . . . , xn) ∈ (0,∞)n, we shall denote by xp the vector(
x
p

1 , x
p

2 , . . . , x
p
n

)
.

A well-known result concerning the concavity of σk is the Marcus–Lopes
inequality [48]

σk (x+ y)
σk−1 (x+ y)

≥ σk (x)
σk−1 (x)

+ σk (y)
σk−1 (y)

, 1 ≤ k ≤ n, x, y ∈ (0,∞)n

The above inequality can be used to prove the following inequalities

[σk (x+ y)]
1
k ≥ [σk (x)]

1
k + [σk (y)]

1
k , 1 ≤ k ≤ n, x, y ∈ (0,∞)n

and

[
σk (x+ y)
σk−r (x+ y)

] 1
r ≥

[
σk (x)
σk−r (x)

] 1
r +

[
σk (y)
σk−r (y)

] 1
r

, x ∈ (0,∞)n , 1 ≤ r ≤ k ≤ n.

The above inequalities can be reformulated as follows:
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Theorem 5.1 ([48]) If 1 ≤ r ≤ k ≤ n, then the functions

f (x) = σk (x)
σk−1 (x)

, x ∈ (0,∞)n ,

g (x) = [σk (x)]
1
k , x ∈ (0,∞)n ,

h (x) =
[
σk (x)
σk−r (x)

] 1
r

, x ∈ (0,∞)n

are concave.

The above theorem may be used to prove concavity and convexity of several sym-
metric functions constructed with the help of elementary symmetric polynomials.
Recent results concerning the concavity of such functions can be found in Sra [76]
and Lachaume [36]. The next three theorems present some important contributions
from the above two mentioned papers.

Theorem 5.2 (Sra [76]) If 1 ≤ r ≤ k ≤ n and p ∈ [0, 1] , then the functions

f (x) =
[
σk (xp)
σk−1 (xp)

] 1
p

, x ∈ (0,∞)n

g (x) =
[
σk (xp)
σk−r (xp)

] 1
rp

, x ∈ (0,∞)n

h (x) = [σk (xp)] 1
kp , x ∈ (0,∞)n

are concave.

Theorem 5.3 (Lachaume [36]) Let n ≥ 2, ai ≥ 0, i ∈ {0, 1, 2} ,

f (x) = √a0 + a1σ1 (x)+ a2σ2 (x), x ∈ (0,∞)n

If na2
1 − 2 (n− 1) a0a2 ≥ 0, then f is concave.

Theorem 5.4 (Lachaume [36]) Let 2 ≤ k ≤ n, a ≥ 0, b ≥ 0,

f (x) = (aσk−1 (x)+ bσk (x)) 1
k , x ∈ (0,∞)n

Then f is concave.

Theorem 5.5 Let n ≥ 2, r, s ∈ {1, 2, . . . , n}, r < s, a ∈ R,

f (x) =
[
σs(x)

σr(x)

]a
, x ∈ (0,∞)n

g(x) = ln[σs(x)] − ln[σr(x)], x ∈ (0,∞)n.
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Then the following assertions hold:

1◦ If a ∈
[

0,
1

s − r
]

, then f is concave.

2◦ If a ∈ (−∞, 0], then f is convex.
3◦ g is concave.

Proof Let

h(x) =
[
σs(x)

σr(x)

] 1
s−r
, x ∈ (0,∞)n.

For every t ∈ {r + 1, r + 2, . . . , s} let

gt (x) = σt (x)

σt−1(x)
, x ∈ (0,∞)n.

By the Marcus–Lopes theorem (Theorem 5.1) all the functions gt are concave.

Hence h = (gr+1gr+2 . . . gs)
1
s−r is concave. Suppose a ∈

[
0,

1

s − r
]

. Since h

is concave, f = ha(s−r) and a(s − r) ∈ [0, 1] it follows that f is concave. Since

g(x) = (s − r) ln[h(x)], x ∈ (0,∞)n

it follows that g is concave. Suppose a ∈ (−∞, 0]. Then ag is convex. Since f =
eag it follows that f is convex. ��
Theorem 5.6 Let n ≥ 2, r, s ∈ {1, 2, . . . , n}, r < s, a, b ∈ R,

f (x) = [σr(x)]a[σs(x)]b, x ∈ (0,∞)n.

Then f is convex if and only if b ≤ 0 and a + b ≤ 0.

Proof Suppose b ≤ 0 and a + b ≤ 0. Then

ln[f (x)] = a ln[σr(x)] + b ln[σs(x)]

= b(ln[σs(x)] − ln[σr(x)])+ (a + b) ln[σr(x)], x ∈ (0,∞)n.

By the preceding theorem ln(f ) is convex, hence f = eln(f ) is convex.
Suppose now that f is convex. Let xs+1 = xs+2 = . . . = xn = 0 in the equation
that defined f . Then

g(x1, x2, . . . , xs) = f (x1, x2, . . . , xs, 0, 0, . . . , 0)

= [σr(x1, x2, . . . , xs, 0, 0, . . . , 0)]a(x1x2 . . . xs)
b.
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Let x1 = x, x2 = y, x3 = x4 = . . . = xs = 1 in the above equation. Then

g(x, y, 1, 1, . . . , 1) = [c(xy + αx + αy + β)]a(xy)b, (x, y) ∈ (0,∞)2

for some c > 0, α > 0, β > 0.
Since f is convex it follows that the function

h(x, y) = (xy + αx + αy + β)a(xy)b, (x, y) ∈ (0,∞)2

is convex. Since h is symmetric it follows that h is Schur convex.
Let

u(x, y) = axy(y + α)+ by(xy + αx + αy + β), (x, y) ∈ (0,∞)2.

Note that

h′x(x, y) = (xy + αx + αy + β)a−1(xy)b−1u(x, y)

h′y(x, y) = (xy + αx + αy + β)a−1(xy)b−1u(y, x)

u(x, y)− u(y, x) = (y − x)[(a + b)xy + b(αx + αy + β)]

hx(x, y)− hy(x, y) = (xy + αx + αy + β)a−1(xy)b−1(u(x, y)− u(y, x)).

Since h is Schur convex it follows that

(x − y)(h′x(x, y)− h′y(x, y)) ≥ 0 for every (x, y) ∈ (0,∞)2

hence

(a + b)xy + αb(x + y)+ bβ ≥ 0 for every (x, y) ∈ (0,∞)2.

If we put x = y in the preceding inequality we obtain

(a + b)x2 + 2αbx + bβ ≤ 0 for every x ∈ (0,∞)

hence b ≤ 0 and a + b ≤ 0. ��
Theorem 5.7 Let n ≥ 2, r, s ∈ {1, 2, . . . , n}, r < s, a, b ∈ R,

f (x) = [σr(x)]a[σs(x)]b, x ∈ (0,∞)n.

Then f is concave if and only if a + b ∈ [0, 1], b ∈ [0, 1] and ar + bs ∈ [0, 1].



Some New Methods for Generating Convex Functions 171

Proof Suppose that f is concave. Let xs+1 = xs+2 = . . . = xn = 0 in the equation
that defines f . Then

g(x1, x2, . . . , xs) = f (x1, x2, . . . , xs, 0, 0, . . . , 0)

= [σr(x1, x2, . . . , xs, 0, 0, . . . , 0)]a(x1x2 . . . xs)
b

is concave. Let x1 = t , x2 = x3 = . . . = xs = 1 in the preceding equation. We
obtain

g(t, 1, 1, . . . , 1) =
[
Cr−1
n−1

(
t + n− r

r

)]a
tb.

Denote α = n− r
r

and consider the function

h(t) = (t + α)atb, t ∈ (0,∞).

Since g is concave it follows that h is concave. Note that

h′′a−2tb + 2ab(t + α)a−1tb−1 + b(b − 1)(t + α)atb−2

= (t + α)a−2tb−2[a(a − 1)t2 + 2abt (t + α)+ b(b − 1)(t + α)2].

Since h′′ ≤ 0 it follows that

(a + b)(a + b − 1)t2 + 2αb(a + b − 1)t + (b2 − b)α2 ≤ 0, t ∈ (0,∞).

From the above inequality it follows that b ∈ [0, 1], a + b ∈ [0, 1].
If in the equation that defines f we put x1 = x2 = . . . = xn = t we obtain

w(t) = f (t, t, . . . , t) = ctar+bs, t ∈ (0,∞)

is concave. Hence ar + bs ∈ [0, 1].
Suppose now that a + b ∈ [0, 1], b ∈ [0, 1] and ar + bs ∈ [0, 1].
Consider the functions

u(x) = [σr(x)] 1
r , v(x) =

[
σs(x)

σr(x)

] 1
s−r
, x ∈ (0,∞)n.

Note that

f (x) = [u(x)](a+b)r · [v(x)]b(s−r), x ∈ (0,∞)n.
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By Theorem 5.1 (Marcus–Lopes theorem), u and v are concave. Since

(a + b)r ≥ 0, b(s − r) ≥ 0

and

(a + b)r + b(s − r) = ar + bs ∈ [0, 1]
it follows that f is concave. ��
Corollary 5.8 Let r, s ∈ {1, 2, . . . , n}, n ≥ 2,

f (x) = σr(x)
σs(x)

, x ∈ (0,∞)n.

Then the following assertions hold:

1◦ f is convex if and only if s ∈ {r, r + 1, . . . , n}.
2◦ f is concave if and only if s ∈ {r − 1, r}.
Theorem 5.9 Let n ≥ 2, k ∈ {1, 2, . . . , n}, p ≥ n+ 1,

f (x) = σ1(x
p)

σk(x)
, x ∈ (0,∞)n.

Then f is convex.

Proof Consider the functions

g(x, y) = xpy−k, (x, y) ∈ (0,∞)2,
u(x) = [σ1(x

p)] 1
p , v(x) = [σk(x)] 1

k , x ∈ (0,∞)n.

Note that u, g are convex, v is concave and

f (x) = g(u(x), v(x)), x ∈ (0,∞)n.

By Theorem 2.3 it follows that f is convex. ��
Theorem 5.10 Let 2 ≤ k ≤ n, a, b ≥ 0, p ∈ [0, 1],

f (x) = k
√
a[σk−1(x)]p + b[σk(x)]p, x ∈ (0,∞)n.

Then f is concave.

Proof Let

g1(x) = [σ1(x)]p, gk(x) = a + b
[
σk(x)

σk−1(x)

]p
, x ∈ (0,∞)n.
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For every r ∈ {2, 3, . . . , k − 1} let

gr(x) =
[
σr(x)

σr−1(x)

]p
, x ∈ (0,∞)n.

By Theorem 5.1 all gr are concave. Since

f = [g1g2 . . . gk] 1
k

it follows that f is concave. One can easily see that the above theorem is a
generalization of Theorem 5.4. ��
Theorem 5.11 Let n ≥ 2, k ∈ {1, 2, . . . , n}, p ∈ R,

f (x) = ln[σk(xp)], x ∈ (0,∞)n.

Then the following assertions hold:

1◦ f is convex if and only if p ∈ (−∞, 0].
2◦ If k = n, then f is concave if and only if p ∈ [0,∞).
3◦ k ≤ n− 1, then f is concave if and only if p ∈ [0, 1].
Proof Suppose f is convex. Then

g(t) = f (t, t, . . . , t) = ln(αtkp) = kp ln(αt), t ∈ (0,∞)

is convex. Hence p ∈ (−∞, 0].
Suppose now that p ∈ (−∞, 0]. If K ⊂ {1, 2, . . . , n} let

uK(x1, x2, . . . , xn) = p
∑
i∈K

ln(xi), (x1, x2, . . . , xn) ∈ (0,∞)n.

Note that all functions uk are convex. From Corollary 3.2 it follows that

f (x) = ln[σk(xp)] = ln

⎛
⎝∑
|K|=k

exp(uK(x))

⎞
⎠ , x ∈ (0,∞)n

is convex. Thus assertion 1◦ is proved.
If k = n, then

f (x) = ln(x1x2 . . . xn)
p = p

n∑
i=1

ln(xi).

Thus f is concave if and only if p ∈ [0,∞).
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Suppose now that k ≤ n− 1 and f is concave. Then there exist α, β > 0 such that

h(t) = f (t, 1, 1, . . . , 1) = ln(αtp + β), t ∈ (0,∞)

is concave. Note that

h′(t) = αptp−1

αtp + β , h
′′p−2 (p − 1)β − αtp

(αtp + β)2 , t ∈ (0,∞).

One can easily see that h′′ ≤ 0 if and only if p ∈ [0, 1]. We proved that f is concave
implies p ∈ [0, 1].
Suppose now that p ∈ [0, 1]. By Theorem 5.1 the function

v(x) = [σk(x)] 1
k , x ∈ (0,∞)

is concave. Since

f (x1, x2, . . . , xn) = k ln[v(xp1 , xp2 , . . . , xpn )], (x1, x2, . . . , xn) ∈ (0,∞)n

from Theorem 2.3 it follows that f is concave. ��
Theorem 5.12 Let n ≥ 2,

A = {(a, p) ∈ R
2 | (ap − 1)(p − 1) ≥ 0 and ap(ap − 1) ≥ 0},

B = {(a, p) ∈ R
2 | ap ∈ [0, 1] and p ∈ (−∞, 1]}.

For every (a, p) ∈ R
2 consider the functions

sp(x1, x2, . . . , xn) = xp1 + xp2 + . . .+ xpn , (x1, x2, . . . , xn) ∈ (0,∞)n,
f (x) = [sp(x)]a, x ∈ (0,∞)n.

Then the following assertions hold:

1◦ f is convex if and only if (a, p) ∈ A.
2◦ f is concave if and only if (a, p) ∈ B.

Proof The proof of the theorem will be made in two steps: the case n = 2 and the
case n ≥ 2.

Suppose that n = 2. Let u(x, y) = xp + yp, (x, y) ∈ (0,∞)2. Then f = ua .
Note that

f ′x = aua−1u′x, f ′y = aua−1u′y, f ′′xx = a(a − 1)ua−2u′2x + aua−1u′′xx

f ′′xy = a(a − 1)ua−2u′xu′y

f ′′yy = a(a − 1)ua−2u′2y + aua−1u′′yy.
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Denote by H the determinant of the Hessian matrix of f . Then

H = f ′′xxf ′′yy − (f ′′xy)2

= a2u2a−4[(a − 1)u′2x + uu′′xx][(a − 1)u′2y + uu′′yy] − a2u2a−4(a − 1)2u′2x u′2y

= a2u2a−3[(a − 1)(u′2x u′′yy + u′2y u′′xx)+ uu′′xxu′′yy].

Denote

H1 = H

a2u2a−3 .

Then

H1(x, y) = (a − 1)[p2x2p−2p(p − 1)yp−2 + p2y2p−2p(p − 1)xp−2]

+(xp + yp)p2(p − 1)2xp−2yp−2 = p2xp−2yp−2(xp + yp)(ap − 1)(p − 1)

f ′′xx(x, y) = a(xp + yp)a−2[(a − 1)p2x2p−2 + (xp + yp)p(p − 1)xp−2]

= apxp−2(xp + yp)a−2[(ap − 1)xp + (p − 1)yp].

Note that f ′′xx ≥ 0 on (0,∞)2 if and only if (a, p) ∈ A. This also implies that
f ′′yy ≥ 0 and H ≥ 0. Hence assertion 1◦ is proved.

Note that f ′′xx ≤ 0 on (0,∞)2 if and only if (a, p) ∈ B. This also implies that
f ′′yy ≤ 0 and H ≥ 0. Hence assertion 2◦ is proved.

In the following we shall study the case n ≥ 2. Let

v(x, y) = (xp + yp)a, (x, y) ∈ (0,∞)2.

Note that v(x, y) equals to

(a) the limit of f (x, y, x3, x3, . . . , xn) when p > 0 and xi → 0 for i ∈
{3, 4, . . . , n};

(b) the limit of f (x, y, x3, x4, . . . , xn) when p < 0 and xi → +∞ for i ∈
{3, 4, . . . , n}.

From the above remark it follows that if f is convex (resp. concave) then v is
convex (resp. concave).

Hence if f is convex (resp. concave) then (a, p) ∈ A (resp. (a, p) ∈ B).
Suppose now that (a, p) ∈ A. This is equivalent with the fact that (a, p) satisfies

one of the following two conditions:

(i) ap ∈ (−∞, 0] and p ∈ (−∞, 1];
(ii) ap ∈ [1,∞) and p ∈ [1,∞).
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If (i) holds then g = (sp)1/p is concave hence h = ln(g) is concave. Since aph
is convex and f = eaph it follows that f is convex.

If (ii) holds then g is convex hence f = gap is convex. Thus assertion 1◦ is
proved.

Suppose now that (a, p) ∈ B. It follows that g is concave hence f = gap is
concave. Thus assertion 2◦ is proved. ��
Lemma 5.13 Let 2 ≤ k ≤ n, ap > 0,

f (x) = [σk(xp)]a, x ∈ (0,∞)n.

Then f is not convex.

Proof If p > 0 let xi → 0, i ∈ {k + 1, k + 2, . . . , n} in the equation that defines f .
It follows that

f (x1, xn, . . . , xk, 0, 0, . . . , 0) = [σk(xp1 , xp2 , . . . , xpk , 0, 0, . . . , 0)]a

= (x1x2 . . . xk)
ap, (x1, x2, . . . , xk) ∈ (0,∞)k.

Since k ≥ 2, the multivariate monomial from the right-hand side of the above
equation is not convex. Hence f is not convex.

If p < 0 let xi → +∞, i ∈ {k + 1, k + 2, . . . , n} in the equation that defines f .
We obtain that

f (x1, x2, . . . , xk,+∞,+∞, . . . ,+∞) = (x1x2 . . . xk)
ap,

(x1, x2, . . . , xk) ∈ (0,∞)k.

Since the multivariate monomial from the right-hand side of the above equation is
not convex it follows that f is not convex. ��
Lemma 5.14 Let 1 ≤ k ≤ n− 1, a, p ∈ R, ap �= 0,

f (x) = [σk(xp)]a, x ∈ (0,∞)n.

If (ap − 1)(p − 1) < 0, then f is neither convex nor concave.

Proof Note that there exist α, β > 0 such that

g(t) = f (t, 1, 1, . . . , 1) = (αtp + β)a, t ∈ (0,∞).

The first two derivatives of g are:

g′p + β)a−1,

g′′p + β)a−2tp−2[α(ap − 1)tp + β(p − 1)], t ∈ (0,∞).
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One can easily see that (ap − 1)(p − 1) < 0 implies that g′′ has no constant sign.
Consequently f is neither convex nor concave. ��
Theorem 5.15 Let 2 ≤ k ≤ n− 1,

A1 = {(a, p) ∈ R
2 | a ∈ (−∞, 0) and p ∈ [0, 1]},

A2 = {(a, p) ∈ R
2 | a ∈ [0,∞) and p ∈ (−∞, 0]}, A = A1 ∪ A2,

f (x) = [σk(xp)]a, x ∈ (0,∞)n.

Then f is convex if and only if (a, p) ∈ A.

Proof Suppose (a, p) ∈ A. Let

g(x) = ln[σk(xp)], x ∈ (0,∞)n.

If (a, p) ∈ A1 then by Theorem 5.11, g is concave. Hence ag and f = eag are
convex.

If (a, p) ∈ A2 then by Theorem 5.11, g is convex. Hence ag and f = eag are
convex.

We proved that (a, p) ∈ A implies f is convex. Suppose now that f is convex.
Then there exists a > 0 such that

h(t) = f (t, t, . . . , t) = αtakp, t ∈ (0,∞).

Since f is convex it follows that akp ∈ (−∞, 0]∪[1,∞). By Lemma 5.14 it follows
that ap ∈ (−∞, 0].

We shall study two cases: a ≤ 0 and a ≥ 0.
If a ∈ (−∞, 0], then p ∈ [0,∞). By Lemma 5.14 it follows that p ≤ 1. Hence

p ∈ [0, 1] and (a, p) ∈ A1.
If a ∈ [0,∞), then p ∈ (−∞, 0], hence (a, p) ∈ A2. Because f is convex it

follows (a, p) ∈ A. ��
Definition 5.16 Let A be a subset of R∗ = R \ {0}. A function u : [0,∞)n →
[0,∞) will be called A-concave if for every p ∈ A the function

up(x) = [u(xp)]
1
p , x ∈ (0,∞)n

is concave.

Lemma 5.17 Let n ≥ 2, A = [−1, 0) ∪ (0,∞) and

f (x) = σn(x)

σn−1(x)
, x ∈ (0,∞)n.

Then f is A-concave.
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Proof From Corollary 3.2 it follows that the function

gp(x) = [σ1(x
p)] 1

p , x ∈ (0,∞)n

is concave for every p ∈ (−∞, 0) ∪ (0, 1]. Let q = −p. Then

gp(x) = [σ1(x
−q)]− 1

q =
[
σn(x

q)

σn−1(xq)

] 1
q = [f (xq)] 1

q , x ∈ (0,∞)n.

Since p ∈ (−∞, 0)∪ (0, 1] is equivalent with q ∈ A it follows that f is A-concave.
��

Lemma 5.18 Let B = (−∞, 0) ∪ (0, 1] and u, v : (0,∞)n → (0,∞) be two
B-concave functions. Then the function

w = uv

u+ v
is B-concave.

Proof Note that:

wp(x) = [w(xp)]
1
p =

[
u(xp)v(xp)

u(xp)+ v(xp)
] 1
p

= [u(xp)] 1
p [v(xp)] 1

p

{[u(xp) 1
p ]p + [v(xp) 1

p ]p} 1
p

= up(x)vp(x)

{[up(x)]p + [vp(x)]p}
1
p

.

If p ∈ B then up and vp are concave. By Theorem 4.20 it follows thatwp is concave
for every p ∈ B. Hence w is B-concave. ��
Lemma 5.19 Let

B = (−∞, 0) ∪ (0, 1], u1, u2, . . . , um : (0,∞)n→ (0,∞).

If u1, u2, . . . , um are B-concave, then u = u1 + u2 + . . .+ um is B-concave.

Proof For every p ∈ R
∗ let

vi,p(x) = [ui(xp)]
1
p , x ∈ (0,∞)n, i = 1, 2, . . . , m.

Note that

wp(x) = [u(xp)]
1
p =

(
m∑
i=1

[vi,p(x)]p
) 1
p

, x ∈ (0,∞)n.
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Since vi,p are concave for every i ∈ {1, 2, . . . , m} and p ∈ B, from Corollary 3.2 it
follows that wp is concave for every p ∈ B. Consequently u is B-concave. ��
Lemma 5.20 Let 2 ≤ k ≤ n and φ : (0,∞)2 → R,

φ(x, y) = xy

x + y , (x, y) ∈ (0,∞)
2.

If x = (x1, x2, . . . , xn) ∈ (0,∞)n, i ∈ {1, 2, . . . , n} we denote

x′i = (x1, x2, . . . , x̂i , . . . , xn) ∈ (0,∞)n−1.

Here the notation x̂i means that xi is missing from the components of the vector.
Then the following equality holds:

σk,n(x)
σk−1,n(x)

= 1

k

n∑
i=1

φ

(
xi,
σk−1,n−1(x′i )
σk−2,n−1(x′i )

)
, x = (x1, x2, . . . , xn) ∈ (0,∞)n.

Proof One can easily see that for every i ∈ {1, 2, . . . , n} we have

σk,n(x) = xiσk−1,n−1(x′i )+ σk,n−1(x′i )

and

n∑
i=1

σk,n−1(x′i ) = (n− k)σk,n(x).

Note that

σk,n(x)
σk−1,n(x)

= 1

n

n∑
i=1

σk,n(x)
σk−1,n(x)

= 1

n

n∑
i=1

xiσk−1,n−1(x′i )+ σk,n−1(x′i )
σk−1,n(x)

= 1

n

n∑
i=1

xiσk−1,n−1(x′i )
σk−1,n(x)

+ 1

nσk−1,n(x)

n∑
i=1

σk,n−1(x′i )

= 1

n

n∑
i=1

xiσk−1,n−1(x
′
i )

σk−1,n(x)
+ (n− k)σk,n(x)

nσk−1,n(x)
.

From the above sequence of equalities we obtain

σk,n(x)
σk−1,n(x)

− (n− k)σk,n(x)
nσk−1,n(x)

= 1

n

n∑
i=1

xiσk−1,n−1(x′i )
σk−1,n(x)
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hence

σk,n(x)
σk−1,n(x)

= 1

k

n∑
i=1

xiσk−1,n−1(x′i )
xiσk−2,n−1(x′i )+ σk−1,n−1(x′i )

= 1

k

n∑
i=1

φ

(
xi,
σk−1,n−1(x′i )
σk−2,n−1(x′i )

)
.

��
Theorem 5.21 Let n ≥ 2, 1 ≤ k ≤ n− 1, C = [−1, 0) ∪ (0, 1],

fk,n(x) = σk,n(x)
σk−1,n(x)

, x ∈ (0,∞)n.

Then fk,n is C-concave. We supposed that σ0,n(x) ≡ 1.

Proof We shall prove that if k ≥ 1 then fk,n is C-concave for every n ≥ k. If k = 1
then fk,n(x) = σ1,n(x), x ∈ (0,∞)n. From Corollary 3.2 it follows that

wp(x) = [fk,n(xp)]
1
p = [σ1(xp)]

1
p , x ∈ (0,∞)n

is concave for every p ∈ C. This implies that fk,p is C-concave.
Suppose now that fk−1,n is C-concave. By Lemma 5.20 it follows that

fk,n+1(x) = 1

k

n∑
i=1

φ(xi, fk−1,n(x)).

By Lemma 5.18 all the functions

ψi(x) = φ(xi, fk−1,n(x)), x ∈ (0,∞)n

are C-concave. By Lemma 5.19 it follows that fk+1,n is C-concave. ��
Theorem 5.22 let 2 ≤ k ≤ n, p ∈ [−1, 0) ∪ (0, 1],

f (x) = [σk(xp)]1/kp, x ∈ (0,∞)n.

Then f is concave.

Proof Let σ0(x) ≡ 1. For every r ∈ {1, 2, . . . , n} let

gr(x) =
[
σr(xp)
σr−1(xp)

] 1
p

, x ∈ (0,∞)n.
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By the preceding theorem, gr is concave for every r ∈ {1, 2, . . . , n}. Since

f = (g1g2 . . . gk)
1
k

it follows that f is concave. ��
In the following we shall recall two definitions.

Definition 5.23 Let E be a linear space over R. A subset C of E is called a convex
cone if the following conditions are verified:

(i) If x ∈ C then tx ∈ C for every t ∈ [0,∞).
(ii) If x, y ∈ C then x + y ∈ C.

Definition 5.24 Let E be a linear space over R, C be a convex cone in E and
f : C → R. The function f is called positive homogeneous of degree a ∈ R if

f (tx) = taf (x) for every t ∈ (0,∞) and x ∈ C.

Theorem 5.25 Let E be a real linear space, C be a convex cone in E and f :
C → [0,∞) be a positive homogeneous function of degree one. Then the following
assertions hold:

1◦ If f is quasi-convex, then f is convex.
2◦ If f is quasi-concave, then f is concave.

Proof Let x, y ∈ C and (an)n≥1, (bn)n≥1 be two sequences of positive numbers
such that

lim
n→∞ an = f (x) and lim

n→∞ bn = f (y).

Suppose f is quasi-convex. Then

f (x + y) = (an + bn)f
(
x + y
an + bn

)
= f

(
an

an + bn ·
x

an
+ bn

an + bn ·
y

bn

)

≤ (an + bn)max

(
f

(
x

an

)
, f

(
y

bn

))

= (an + bn)max

(
f (x)

an
,
f (y)

bn

)
, n ≥ 1.

If we let n→∞ we obtain

f (x + y) ≤ f (x)+ f (y).

Since f is positive homogeneous of degree one it follows that f is convex.
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Suppose now that f is quasi-concave. Then

f (x + y) = (an + bn)f
(

an

an + bn ·
x

an
+ bn

an + bn ·
y

bn

)

≥ (an + bn)min

(
f (x)

an
,
f (y)

bn

)
.

If we let n→∞ we obtain

f (x + y) ≥ f (x)+ f (y).
Since f is positive homogeneous of degree one it follows that f is concave. ��
Corollary 5.26 Let E be a real linear space, let C be a convex cone in E, a ∈
R
∗ = R \ {0} and let ui : C → R+, i = 1, 2, . . . , n, be positive homogeneous

functions of degree a. Consider the function:

f (x) =
(
n∑
i=1

ui(x)

) 1
a

, x ∈ C.

Then the following assertions hold:

1◦ If all ui are convex and a ∈ [1,∞), then f is convex.
2◦ If all ui are concave and a ∈ (0, 1], then f is concave.
3◦ If all ui are convex and a ∈ (−∞, 0), then f is concave.

Proof Note that f is positive homogeneous of degree one. Let

φ(t) = ta, t ∈ (0,∞), u =
n∑
i=1

ui.

Suppose that all ui are convex and a ∈ [1,∞). Then u is convex, hence u is quasi-
convex. Since φ is increasing and f = φ(u) it follows that f is quasi-convex. By
the preceding theorem it follows that f is convex.

Suppose now that all ui are concave and a ∈ (0, 1]. Then u is concave, hence
u is quasi-concave. Since φ is increasing and f = φ(u) it follows that f is quasi-
concave. By the preceding theorem f is concave.

Suppose now that all ui are convex and a ∈ (−∞, 0). Then u is convex, hence
quasi-convex. Since φ is decreasing it follows that f = φ(u) is quasi-concave. By
the preceding theorem f is concave. ��
Remark If in the preceding corollary we take E = R

n, C = [0,∞)n,

ui = (x1, x2, . . . , xn) = xpi , (x1, . . . , xn) ∈ C,

then the validity of assertions 1◦ and 2◦ of Corollary 3.2 follows.



Some New Methods for Generating Convex Functions 183

Theorem 5.27 Let n ≥ 2, 1 ≤ k ≤ n, a, p ∈ R,

f (x) = [σk(xp)]a, x ∈ (0,∞)n.

Then f is concave if and only if ap ∈
[

0,
1

k

]
and p ∈ (−∞, 1].

Proof Suppose that f is concave. Then

g(t) = f (t, t, . . . , t) = ctakp, t ∈ (0,∞)

is concave. Hence akp ∈ [0, 1]. By Lemma 5.14 it follows that p ∈ (−∞, 1].
Suppose now that ap ∈

[
0,

1

k

]
and p ∈ (−∞, 1]. Let

h(x) = [σk(xp)]
1
kp , x ∈ (0,∞)n, φ(t) = t 1

kp , t ∈ (0,∞).

If p ∈ [0, 1] then by Theorem 5.22, h is concave, hence f = hakp is concave.
If p ∈ (−∞, 0] then u(x) = σk(xp), x ∈ (0,∞)n is convex, hence quasi-

convex. Since φ is decreasing it follows that h = φ(u) is quasi-concave. Note that
h is positive homogeneous of degree one. From Theorem 5.25 it follows that h is
concave. Since akp ∈ [0, 1] it follows that f = hakp is concave. ��

6 A Generalization of Davis Theorem and Applications

In this section we shall give a generalization of Davis theorem and we shall make
various applications of this theorem. Let n ≥ 2.

Recall that a square matrix with complex entries A = (
aij
)

is called Hermitian

if A = A∗. Here by A∗ we denoted the adjoint of A.We have A∗ = _
A
T = (_

aji
)
.

All eigenvalues of a Hermitian matrix are real. A Hermitian matrix is called
positive definite if all its eigenvalues are positive. A square matrixQ is called unitary
if QQ∗ = Q∗Q = In. If Q is a real matrix, then Q is unitary if and only if Q is an
orthogonal matrix, that isQQT = QTQ = In.

Denote by Hn (C) the set of n × n hermitian matrices, Pn (C) the set of n ×
n Hermitian matrices with positive eigenvalues, Un (C) the set of n × n unitary
matrices, Sn (R) the set of n × n real symmetric matrices, Pn (R) the set of n × n
positive definite matrices and byOn (R) the set of n× n orthogonal matrices. In the
following we shall give several definitions.

A subset K of Hn (C) is called unitary invariant if for every A ∈ K we have
UAU∗ ∈ K for every U ∈ Un (C) .

A subsetK of Sn (R) is called orthogonally invariant if for every A ∈ K we have
UAUT ∈ K for every U ∈ On (R) .
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Let K be a unitary invariant subset of Hn (C) . A function F : K → R is called
a unitary invariant if F (UAU∗) = F (A) for every A ∈ K and U ∈ Un (C) .

Let K be an orthogonally invariant subset of Sn (R) . A function F : K → R is
called a unitary invariant if F

(
UAUT

) = F (A) for everyA ∈ K and U ∈ On (R) .
Unitary invariant and orthogonally invariant functions are called also spectral

functions because they are functions of eigenvalues. They depend only on the
spectrum of the operator A. All the results we present in this paper have parallel
versions both for unitarily invariant functions on the space of Hermitian matrices
and for orthogonally invariant functions defined on the space of real symmetric
matrices. The proofs are essentially identical.

A spectral function is symmetric since it is invariant to permutation matrices
(which are a special case of unitary matrices). There are many papers studying spec-
tral functions (see, for example, Borwein and Lewis [9], Borwein and Vanderwerff
[10], Lewis [38–40], Lewis and Overton[41], Lewis and Sendov [42], Meyer [51],
Niculescu and Persson [58], and Seeger [72]).

Spectrally defined functions arise in various areas of applied mathematics:
optimality criteria in experimental design theory (Pazman [59], Hoang and Seeger
[29]), barrier functions in matrix optimization (Nesterov and Nemirovskii [57],
Lewis [38]), matrix updates in quasi-Newton methods (Fletcher [22], Wolkowicz
[83]), potential energy densities for isotropic elastic materials (Section 2.3 of
Curnier et al. [13]), etc.

Spectral functions may be encountered also in quantum mechanics (Kemble [33]
and Schiff [67]), nonlinear elasticity (Lehmich et al. [37], Spector [75], Šilhavý [73],
and Gao et al. [23]). Nowadays they are an inseparable part of optimization (Lewis
and Overton [41]) and matrix analysis (Horn and Johnson [30]).

Spectral functions like log det(A), λmax (A) the largest eigenvalue of the matrix
argument A, λmin (A) the smallest eigenvalue of the matrix argument A,tr(Ap) the
trace of power p of matrix A or the constraint that A must be positive definite, etc.
appear in semidefinite programming (Vandenberghe et al. [82]),

Remarkably, many properties of the function f defined by f (x) = F (diag (x))
are inherited by the spectral function F . For example, this holds for differentiability
and convexity (Lewis [38]), various types of generalized differentiability (Lewis
[39]), analyticity (Tsing et al. [81]), various second-order properties (Torki [80]),
etc.

For every A ∈ Hn (C) let λ1 (A) ≥ λ2 (A) ≥ . . . ≥ λn (A) be the eigenvalues of
A arranged in descending order. Let Λ : Hn (C)→ R be the function defined by

Λ(A) = (λ1 (A) , λ2 (A) , . . . , λn (A)) A ∈ Hn (C)

A subset C of Rn is called permutation invariant if
(
xσ(1), xσ(2), . . . , xσ(n)

) ∈ C
for every (x1, x2, . . . , xn) ∈ C and for every permutation σ ∈ Sn.A function f :
C → R is called symmetric if f

(
xσ(1), xσ(2), . . . , xσ(n)

) = f (x1, x2, . . . , xn) for
every (x1, x2, . . . , xn) ∈ C and for every permutation σ ∈ Sn.

Let K be a unitary invariant subset of Hn (C) and F : K → R be a spectral
function. Let C = {x ∈ R

n : diag (x) ∈ K} . Then C is a permutation invariant
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subset of Rn and the function f (x) = F (diag (x)) x ∈ C is permutation invariant.
Spectral decomposition theorem shows that

F (A) = f (Λ (A)) = f (λ1 (A) , λ2 (A) , . . . , λn (A)) , A ∈ K

Here we denoted by diag(x) the diagonal matrix having the entries of vector x on
the diagonal.

In the paper of Davis [15] was proved the following result:

Theorem 6.1 Let K be a unitary invariant subset of Hn (C) , F : K → R be a
spectral function, C = {x ∈ R

n : diag (x) ∈ K} and f (x) = F (diag (x)) x ∈ C.
Then F is convex if and only if its associated symmetric function f is convex.

In the monograph of Niculescu and Persson [58] the following remark was
made: The Davis’s result remains valid in the framework of log-convex functions,
log-concave functions, concave functions, quasi-convex functions, quasi-concave
functions. The authors provide a proof of Davis theorem that is for the case the
function implied is convex. Unfortunately the case when the function is quasi-
convex is not studied.

In the following we shall state and prove a generalization of Davis theorem. We
shall recall some definitions from Hardy–Littlewood–Polya theory of majorization.
If x = (x1, x2, . . . , xn) ∈ R

n, we shall denote by x[1] ≥ x[2] ≥ . . . ≥ x[n] the
components of x in descending order. Thus x[k] is the k−th largest component of x.
If x, y ∈ R

n we say that x is majorized by y if

k∑
i=1

x[i] ≤
k∑
i=1

y[i] for k = 1, 2, . . . , n

and
n∑
i=1

x[i] =
n∑
i=1

y[i]

If x is majorized by y we shall write x ≺HLP y. The basic result relating majoriza-
tion and convexity is the Hardy–Littlewood–Polya inequality of majorization:

Theorem 6.2 If x, y ∈ R
n and x ≺HLP y then

n∑
i=1

f (xi) ≤
n∑
i=1

f (yi)

for every continuous convex function whose domain includes the components of x
and y. Conversely if the above inequality holds for every continuous convex function
whose domain includes the components of x and y then x ≺HLP y.



186 D. Andrica et al.

Theorem 6.3 Let x, y ∈ R
n. Then the following assertions are equivalent:

(a) x ≺HLP y
(b) x = Py for a suitable doubly stochastic matrix P ∈ Mn (R) .

For a proof of the following theorem, see the monograph of Niculescu and
Persson [58].

Theorem 6.4 Let C be a permutation invariant subset of Rn and f : C → R be
a symmetric quasi-convex function. Then f is Schur convex, that is x, y ∈ C and
x ≺HLP y implies f (x) ≤ f (y) .

Schur [71] has proved that the diagonal elements a11, a22, . . . , ann of a Hermitian
n×nmatrixA = (aij ) are majorized by the eigenvalues λ1 (A) , λ2 (A) , . . . , λn (A)

that is

(a11, a22, . . . , ann) ≺HLP (λ1 (A) , λ2 (A) , . . . , λn (A))

The following theorem is a slightly modified version of Schur’s theorem that will
be used for the proof of a generalization of Davis theorem.

Theorem 6.5 Let uj ∈ C
n, j = 1, 2, . . . , n be an orthonormal basis in C

n, that is
uTj ūk = δjk for j, k ∈∈ {1, 2, . . . , n} . If A ∈ Hn (C) then

(
uT1 Aū1, u

T
2 Aū2, . . . , u

T
n Aūn

)
≺HLP (λ1 (A) , λ2 (A) , . . . , λn (A))

LetE be a linear space over R and C be a convex subset ofE. For every (p, q) ∈
[0, 1]2 consider the set A (p, q, C) of quasi-convex functions f : C → R with the
following property

f ((1− p) x + py) ≤ (1− q) [(1− p) f (x)+ pf (y)]+ q max (f (x) , f (y))

for every x, y ∈ C

If M is a subset of [0, 1]2 denote by B (M,C) the set of quasi-convex functions
f : C → R with the property that f ∈ A (p, q, C) for every (p, q) ∈ M.

Note that

10. IfM = [0, 1]× {0}, then B (M,C) is the set of convex functions on C.
20. IfM = [0, 1]× {1}, then B (M,C) is the set of quasi-convex functions on C.

30. IfM =
{(

1
2 , 0

)}
, then B (M,C) is the set of mid-convex functions on C

The following theorem is a generalization of Davis theorem. It includes only the
nontrivial implication from the original theorem.

Theorem 6.6 Let C be a permutation invariant convex subset of Rn, f : C → R

be a symmetric quasi-convex function and M be a subset of [0, 1]2 . Consider the
set
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K = {A ∈ Hn (C) : �(A) ∈ C} , and the function f̃ : K → R,

f̃ (A) = f (λ1 (A) , λ2 (A) , . . . , λn (A)) A ∈ K

If f ∈ B (M,C), then f̃ ∈ B (M,K) .

Proof Let (p, q) ∈ M , f ∈ A (p, q, C), A,B ∈ K,D = (1− p)A+pB. Denote
by uj ∈ C

n, j = 1, 2, . . . , n the eigenvectors of the eigenvalues of the matrix D,
that is Duj =. λj (D) uj , j = 1, 2, . . . , n. By applying Theorems 6.4. and 6.5 we
obtain:

f̃ (D) = f (λ1 (D) , λ2 (D) , . . . , λn (D)) = f
(
uT1Dū1, u

T
2Dū2, . . . , u

T
n Dūn

)
=

=f
(
(1− p) uT1 Aū1 + puT1 Bū1, (1− p) uT2 Aū2 + puT2 Bū2, . . . , (1− p) uTn Aūn

+puTn Būn
)
≤

≤ (1− q)
[
(1− p) f

(
uT1 Aū1, u

T
2 Aū2, . . . , u

T
n Aūn

)

+pf
(
uT1 Bū1, u

T
2 Bū2, . . . , u

T
n Būn

)]
+

+q max
(
f
(
uT1 Aū1, u

T
2 Aū2, . . . , u

T
n Aūn

)
, f

(
uT1 Bū1, u

T
2 Bū2, . . . , u

T
n Būn

))
≤

≤ (1− q) [(1− p) f (λ1 (A) , λ2 (A) , . . . , λn (A))

+pf (λ1 (B) , λ2 (B) , . . . , λn (B))]+

+q max ((f (λ1 (A) , λ2 (A) , . . . , λn (A)) , f (λ1 (B) , λ2 (B) , . . . , λn (B)))) =

= (1− q) [(1− p) f̃ (A)+ pf̃ (B)]+ q max
(
f̃ (A) , f̃ (B)

)

Thus f̃ ∈ A (p, q, C). Consequently the conclusion of the theorem follows. ��
Examples
1. If C = R

n and f1 (x1, x2, . . . , xn) = x1 + x2 + . . . + xn, (x1, x2, . . . , xn) ∈ C
then f̃1 (A) = λ1 (A)+ λ2 (A)+ . . .+ λn (A)=Tr(A) , A ∈ Sn (R)

2. If C = R
n and f2 (x1, x2, . . . , xn) = x1x2 . . . xn, (x1, x2, . . . , xn) ∈ C then

f̃2 (A) = λ1 (A) λ2 (A) . . . λn (A)=det(A) , A ∈ Sn (R)
3. IfC = (0,∞)n and f3 (x1, x2, . . . , xn) = 1

x1
+ 1
x2
+. . . .+ 1

xn
, (x1, x2, . . . , xn) ∈

C then f̃3 (A) = 1
λ1(A)

+ 1
λ2(A)

+ . . . + 1
λn(A)

= λ1
(
A−1

) + λ2
(
A−1

) + . . . +
λn
(
A−1

)
=Tr

(
A−1

)
, A ∈ Sn (R)
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4. If 1 ≤ k ≤ n and C = R
n and f4 (x1, x2, . . . , xn) = σk (x1, x2, . . . , xn) =

the k−th elementary symmetric polynomial then f̃4 (A) = σ̃k (A) =the sum of
principal minors of A of order k.
If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two vectors from R

n we
shall write x ≤ y if xi ≤ yi for every i ∈ {1, 2, . . . , n} . Let C be a subset of Rn A
function h : C → R is called monotonic increasing if x, y ∈ C and x ≤ y implies
h (x) ≤ h (y) . Note that h is monotone increasing if and only if it is separately
monotone increasing.

Theorem 6.7 Let n ≥ 2, 1 ≤ k ≤ n, C be a convex permutation invariant subset of
R
n, Pk : Rn → R

k , Pk (x1, x2, . . . , xn) = (x1, x2, . . . , xk) , (x1, x2, . . . , xn) ∈ R
n,

Ck = Pk (Rn) .
If x = (x1, x2, . . . , xn) ∈ R

n, we denote by x[1] ≥ x[2] ≥ . . . ≥ x[n] the
components of x in descending order. Consider the functions hi : Ck → R, i = 1, 2
and f, g : C → R defined as follows:

f (x1, x2, . . . , xn) = h1
(
x[1], x[2], . . . , x[k]

)
, (x1, x2, . . . , xn) ∈ C (6.1)

g (x1, x2, . . . , xn) = h2
(
x[n], x[n−1], . . . , x[n−k+1]

)
, (x1, x2, . . . , xn) ∈ C

(6.2)
Suppose that the following conditions hold:

10. h1 and h2 are symmetric and monotone increasing.
20. h1 is convex and h2 is concave.

Then f is convex and g is concave.

Proof For every permutation σ ∈ Sn and i = 1, 2 let

ui,σ (x1, x2, . . . , xn) = hi
(
xσ(1), xσ(2), . . . , xσ(k)

)
, (x1, x2, . . . , xn) ∈ C.

Note that for every permutation σ ∈ Sn , u1,σ is convex and u2,σ is concave. One
can easily see that

f (x) = sup
σ∈Sn

[
u1,σ (x)

]
, x ∈ C,

g (x) = inf
σ∈Sn

[
u2,σ (x)

]
, x ∈ C,

and f and g are symmetric. Since the maximum of convex functions is a convex
function it follows that f is convex. Since the minimum of concave functions is a
concave function it follows that g is concave. Note that (6.1) and (6.2) hold. ��
Corollary 6.8 For every matrix A let λ1 (A) ≥ λ2 (A) ≥ . . . ≥ λn (A) be the
eigenvalues of A arranged in descending order. For every 1 ≤ k ≤ n consider the
functions:
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f1,k (A) =
k

Σ
r=1
λr (A) , A ∈ Hn (C)

f2,k (A) =
k−1
Σ
r=0
λn−r (A) , A ∈ Hn (C)

f3 (A) = λ1 (A) , A ∈ Hn (C)

f4 (A) = λn (A) , A ∈ Hn (C)

f5,k (A) = k
√
λn (A) λn−1 (A) . . . λn−k+1 (A), A ∈ Pn (C)

f6 (A) = n
√

det (A), A ∈ Pn (C)

Then f1,k , f3 are convex and f2,k , f4, f5,k and f6 are concave.

Proof Let hk (x1, x2, . . . , xk) = x1 + x2 + . . . + xk, (x1, x2, . . . , xn) ∈ R
k. Note

that hk is convex and concave. By Theorem 6.7. it follows that

g1,k (x1, x2, . . . , xn) = hk
(
x[1], x[2], . . . , x[k]

)
, (x1, x2, . . . , xn) ∈ R

n

is convex and

g2,k (x1, x2, . . . , xn) = hk
(
x[n], x[n−1], . . . , x[n−k+1]

)
, (x1, x2, . . . , xn) ∈ R

n

is concave. Note that

f1,k (A) = g̃1,k (A) , A ∈ Hn (C)

f2,k (A) = g̃2,k (A) , A ∈ Hn (C)

By the Davis theorem it follows that f1,k is convex and f2,k is concave. Since
f3 = f1,1 and f4 = f2,1 it follows that f3 is convex and f4 is concave. Let
uk (x1, x2, . . . , xn) = k

√
x1x2 . . . xk, (x1, x2, . . . , xn) ∈ (0,∞)n . By applying the

preceding theorem and the Davis theorem we obtain that f5 is concave. Note that
f6 = ũn. By Davis theorem it follows that f6 is concave. ��
Lemma 6.9 Let E be a linear normed space, D be a convex open subset of E, and
f be a two times differentiable function. For every a ∈ D and h ∈ E let ε (a, h) >
0, J (a, h) = {t ≥ 0 : a + th ∈ D} = [0, ε (a, h)), ua,h (t) = f (a + th), t ∈
J (a, h) . Then f is convex if and only if u′′a,h (0) ≥ 0 for every a ∈ D and h ∈ E.
Proof The conclusion of the lemma follows at once from the equality u′′a,h (0) =
f ′′ (a) (h, h) , a ∈ D and h ∈ E. ��
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Lemma 6.10 Let B, C be two n×n positive semidefinite matrices, A ∈ Pn (R) and

w (t) =Tr
(
C
(
A−1B + tIn

)2
A−1

)
, t ∈ R. Then the following assertions hold:

10. w (t) ≥ 0 for every t ∈ R.

20.
[
Tr
(
CA−1BA−1

)]2 ≤Tr
(
CA−1

)
Tr
(
C
(
A−1B

)2
A−1

)

Proof Let Q(t) = B + tA, t ∈ R. There exists a positive semidefinite matrix
E such that C = EE and exists a D ∈ Pn (R) such that A−1 = DD. Denote
S (t) = EDDQ(t)D, t ∈ R. Then

w (t) = Tr

(
C
[
A−1 (B + tA)

]2
A−1

)
= Tr

(
CA−1Q(t)A−1Q(t)A−1

)
=

= Tr (EEDDQ(t)DDQ(t)DD) = Tr (ES (t)DQ (t)DD) =

= Tr (S (t)DQ (t)DDE) = Tr
(
S (t) S (t)T

)
≥ 0

Thus assertion 10 is proved. Note that

w (t) = t2Tr
(
CA−1

)
+ 2t · Tr

(
CA−1BA−1

)
+ Tr

(
C
(
A−1B

)2
A−1

)

Since the quadratic polynomial in t has constant sign it follows that its discriminant
is negative. Hence the inequality from assertion 20 holds. ��
Theorem 6.11 Let C ∈ Pn (R) . Then the function

f (A) = 1

Tr
(
CA−1

) , A ∈ Pn (R)

is concave.

Proof Let B ∈ Hn (R) , A ∈ Pn (R) . Then there exists ε = ε (A,B) > 0 such
that A + tB is invertible for every t ∈ (−ε, ε). Let v (t) = (A+ tB)−1 and
u (t) =Tr(Cv (t)) , t ∈ (−ε, ε) .Note that u (t) > 0 for every t ∈ (−ε, ε) and

(
1

u

)′′
= 2u u′ − u u′′

u3
.

Hence the function 1
u

is concave if and only if u u′′ − 2u u′ ≥ 0
Note that v (0) = A−1. If we differentiate with respect to t the identity

(A+ tB) v (t) = In we obtain Bv (t) + (A+ tB) v′ (t) = 0, hence v′ (t) =
−v (t) Bv (t) .If we differentiate again the last identity we obtain

v′′ (t) = −v′ (t) Bv (t)− v (t) Bv′ (t) = 2v (t) Bv (t) Bv (t)
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Note that

u′′ (t) = Tr
(
Cv′′ (t)

) = 2Tr (Cv (t) Bv (t) Bv (t))

By the preceding lemma we obtain

u (t) u′′ (t)− 2u (t) u′ (t) =2Tr (Cv (t))Tr (Cv (t) Bv (t) Bv (t))

− 2 [Tr (Cv (t) Bv (t))]2 ≥ 0

By Lemma 6.9 it follows that f is concave. ��
The Bergstrom Inequality [6]
For every n × n matrix A and k ∈ {1, 2, . . . , n} denote by Ak the matrix obtained
fromA by deleting the k-th row and the k-th column ofA. In the paper of Bergstrom
[6] the following inequality was proved:

det (A+ B)
det (Ak + Bk) ≥

det (A)

det (Ak)
+ det (B)

det (Bk)
, A,B ∈ Pn (R)

One can easily see that Bergstrom inequality is equivalent with the concavity of the
function

f (A) = det (A)

det (Ak)
, A ∈ Pn (R)

A generalization of the Bergstrom inequality can be obtained from Theorem 6.11.

Theorem 6.12 Let c1, c2, . . . , cn be nonnegative numbers such that
n∑
i=1
ci > 0.

Then the function

f (A) = det (A)
n∑
i=1
ci det (Ai)

, A ∈ Pn (R)

is concave.

Proof It suffices to prove the concavity of f in the case all ci > 0. Note that if
C =diag(c1, c2, . . . , cn) then

Tr
(
CA−1

)
=

n∑
i=1

ci
det (Ai)

det (A)

hence by Theorem 6.11.
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f (A) = 1

Tr
(
CA−1

) = det (A)
n∑
i=1
ci det (Ai)

, A ∈ Pn (R)

is concave. ��
Theorem 6.13 Let n ≥ 2, 1 ≤ k ≤ ñ, a ∈ R. Then the function

f (A) = [̃σk (A)]
a , A ∈ Pn (R)

is concave if and only if ap ∈
[
0, 1
k

]
and p ∈ (−∞, 1].

Proof Let g (x) = [σk (xp)]
a , x ∈ (0,∞)n . Note that by Theorem 5.27. g is

concave if and only if ap ∈
[
0, 1
k

]
and p ∈ (−∞, 1]. By the Davis theorem f = g̃

is concave if and only if ap ∈
[
0, 1
k

]
and p ∈ (−∞, 1]. ��

In the paper of Sra [76], Corollary 3.4., the following result is stated:

Theorem 6.14 If 1 ≤ k ≤ n and p ∈ (−1, 0) then the function

fk,p (A) = 1

σ̃k (A)
, A ∈ Pn (R)

is concave.

Taking into account Theorem 6.13. one can easily see that fk,p is concave if and
only if k = 1. Consequently Sra’s result holds only in the presence of supplementary
hypotheses. One complete statement is that the condition 1 ≤ k ≤ n and p ∈[
− 1
k
, 0
]

implies that fk,p is concave.

Theorem 6.15 Let n ≥ 2, 1 ≤ k ≤ n.Consider the functions

f1,k (A) = σ̃k+1 (A)

σ̃k (A)
, A ∈ Pn (R) , k ≤ n− 1

f2,k (A) = [̃σk (A)]
1/k , A ∈ Pn (R)

f3,k (A) = ln [̃σk (A)] , A ∈ Pn (R) , k ≤ n− 1

f4,k (A) = ln
[
σ̃k

(
A−1

)]
, A ∈ Pn (R)

Then f1,k , f2,k , f3,k are concave and f4,k is convex.

Proof Concavity of f1,k and f2,k follows from Theorem 5.1. and from Davis
theorem. Concavity of f3,k and convexity of f4,k follow from Theorem 5.11. and
from Davis theorem. Convexity of f4,k was proved with variational techniques in
the paper of Muir [55]. ��
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Corollary 6.16 Let n ≥ 3 and p ∈ R. Consider the functions:

f1 (A) = [det (A)]p , A ∈ Pn (R)

f2 (A) = ln [det (A)] , A ∈ Pn (R)

f3 (A) = 3
√

[Tr (A)]3 + 2Tr
(
A3
)− 3Tr

(
A2
)

Tr (A), A ∈ Pn (R) .

Then the following assertions hold:

10. If p ∈
[
0, 1
n

]
, then f1 is concave.

20. f2 and f3 are concave.
30. If p ∈ (−∞, 0], then f1 is convex.

Proof Note that f1 (A) =
{
[̃σn (A)]1/n}pn , A ∈ Pn (R) .If p ∈

[
0, 1
n

]
, then pn ∈

[0, 1] hence f1 is concave. Note also that f2 (A) = ln [̃σn (A)] and f3 (A) =
3
√

6 3
√
σ̃3 (A) A ∈ Pn (R) . By the preceding theorem the functions f2 and f3

are concave. Suppose now that p ∈ (−∞, 0]. Then the function g defined below is
convex.

g (A) = ln (f1 (A)) = p ln [det (A)] = pf2 (A) , A ∈ Pn (R)

Since f1 = eg it follows that f1 is convex. ��
Theorem 6.17 Let n ≥ 2 and p ∈ R

∗ = R− {0}. Consider the functions

f1,p (A) =
[
Tr
(
Ap
)]1/p

, A ∈ Pn (R)

f2,p (A) = ln
[
Tr
(
Ap
)]
, A ∈ Pn (R)

f3,p (A) =
{
[Tr (A)]p − Tr

(
Ap
)}1/p

, A ∈ Pn (R)

Then the following assertions hold:

10. If p ∈ [1,∞), then f1,p is convex.
20. p ∈ (−∞, 0) ∪ (0, 1] then f1,p is concave.
30. If p ∈ (−∞, 0), then f2,p is convex.
40. If p ∈ (0, 1], then f2,p is concave.
50. If p ∈ [1,∞), then f3,p is concave.

Proof Let gp (x) = [σ1 (x
p)]1/p, x ∈ (0,∞)n. By Corollary 3.2. gp is convex for

p ∈ [1,∞) and gp is concave for p ∈ (−∞, 0) ∪ (0, 1] The validity of assertions
10. and 20. follow from the equality f1,p = g̃p and from the Davis theorem. Let
hk,p (x) = ln [σk (xp)], x ∈ (0,∞)n , k ∈ {1, 2, . . . , n} . By Theorem 5.11 it
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follows that hk,p is convex for p ∈ (−∞, 0) and hk,p is concave for k = n and
p ∈ [0,∞) or for k ≤ n − 1 and p ∈ [0, 1] . The validity of assertions 30. and 40.

follows from the equality f2,p = h̃k,p and from the Davis theorem.
Let up (x) = [σ1 (x)]p − σ1 (x

p), x ∈ (0,∞)n . By Corollary 4.8 it follows that
up is concave for p ∈ [1,∞). By the Davis theorem f3,p = ũp is concave. ��
Theorem 6.18 Let n ≥ 2 and p, q ∈ R

∗ = R− {0} . Consider the functions:

f1,p (A) = Tr (Ap)

det (A)
, A ∈ Pn (R)

f2,p,q (A) = Tr (Ap)

[Tr (A)]q
, A ∈ Pn (R)

f3,p,q (A) = Tr (Ap)

Tr (Aq)
, A ∈ Pn (R) .

Then the following assertions hold:

10. If p ∈ [n+ 1,∞), then f1,p is convex.
20. If p ≥ q + 1 and q ≥ 0, then f2,p,q is convex.
30. If p ≥ q + 1 and q ∈ (0, 1], then f3,p,q is convex.

Proof Let u (A) = [Tr (Ap)]1/p , v (A) = [det (A)]1/n , A ∈ Pn (R) . If
p ∈ [n + 1,∞), then the function h (x, y) = xpy−n, (x, y) ∈ (0,∞)2, is
convex. By Theorem 6.17. u is convex. By Corollary 6.16. v is concave. Hence
f1,p (A) = h (u (A) , v (A)) , A ∈ Pn (R) is convex. If p ≥ q + 1 and
q ≥ 0, then g (x, y) = xpy−q , (x, y) ∈ (0,∞)2 is convex. Since f2,p,q (A) =
g (u (A) ,Tr (A)) , A ∈ Pn (R) it follows that f2,p,q is convex. If p ≥ q + 1
and q ∈ (0, 1], then w (A) = [Tr (Aq)]1/q , A ∈ Pn (R) is concave hence
f3,p,q (A) = g (u (A) ,w (A)) , A ∈ Pn (R) is convex. ��
Theorem 6.19 Let n ≥ 2 and p, q ∈ R. Consider the function

f (A) = [Tr (A)]p [det (A)]q , A ∈ Pn (R)

Then the following assertions hold:

10. If p + q ≤ 0 and q ≤ 0, then f is convex.
20. If p + q ∈ [0, 1] , q ∈ [0, 1] , p + nq ∈ [0, 1], then f is concave.

Proof g (x) = [σ1 (x)]p [σn (x)]q , x ∈ (0,∞)n .If p + q ≤ 0 and q ≤ 0, then
by Theorem 5.6. it follows that g is convex. By Davis theorem f = g̃ is convex. If
p + q ∈ [0, 1] , q ∈ [0, 1] , p + nq ∈ [0, 1], then by Theorem 5.7 it follows that g
is concave. By Davis theorem f = g̃ is concave. ��
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Theorem 6.20 Let n ≥ 2, D = {A ∈ Hn (C) : exp (Tr (A)) > Tr (exp (A))} ,
f1 (A) = ln

[
Tr (exp (A))

]
, A ∈ Hn (C)

f2 (A) = ln
[
exp (Tr (A))− Tr (exp (A))

]
, A ∈ D.

Then the following assertions hold:

10. f1 is convex.
20. D is convex.
30. f2 is concave.

Proof Let u (x1, x2, . . . xn) = ln

(
n∑
i=1

exi
)
, (x1, x2, . . . xn) ∈ R

n. By Corol-

lary 3.2 it follows that u is convex. By Davis theorem f1 = ũ is convex. Let
v (A) = f1 (A)−Tr(A) , A ∈ Hn (C) . Note that v is convex and D =
{A ∈ Hn (C) : v (A) < 0} . Hence D is convex. Let

U =
{
(x1, x2, . . . xn) ∈ R

n : exp

(
n∑
i=1

xi

)
−

n∑
i=1

exi > 0

}

w (x1, x2, . . . xn) = ln

[
exp

(
n∑
i=1

xi

)
−

n∑
i=1

exi

]
, (x1, x2, . . . xn) ∈ U

By Theorem 4.12 the function w is concave. By the Davis theorem f2 = w̃ is
concave on D. ��
Corollary 6.21 Let n ≥ 2. Then the following inequalities hold:

10. [det (A+ B)]1/n ≥ [det (A)]1/n + [det (B)]1/n , A,B ∈ Pn (R) ;
20. det (A+ B) ≥ det (A)+ det (B) , A,B ∈ Pn (R) ;
30. Tr

(
eA+B

) ≥Tr
(
eA
) ·Tr

(
eB
)
, A,B ∈ Sn (R) ;

40.

kn+1

det (A1 + A2 + . . .+ Ak) ≤
1

det (A1)
+ 1

det (A2)
+ . . .+ 1

det (Ak)
, (6.3)

for every A1, A2, . . . , Ak ∈ Pn (R)
Proof The first inequality follows from the concavity of the function f (A) =
[det (A)]1/n , A ∈ Pn (R) . The second inequality follows at once from the first
inequality.

From Theorem 6.20 it follows that the function g (A) = ln
[
Tr (exp (A))

]
, where

A ∈ Hn (C), is convex. Hence

ln

[
Tr

(
exp

(
A+ B

2

))]
= g

(
A+ B

2

)
≤ g (A)+ g (B)

2
= ln

(√
g (A) g (B)

)
.
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Thus

Tr (exp (A+ B)) ≤
[

Tr

(
exp

(
A+ B

2

))]2

≤ Tr
(
eA
)
·Tr
(
eB
)
, A,B ∈ Sn (R) .

By Corollary 6.16. the function

h (A) = 1

det (A)
, A ∈ Pn (R)

is convex. By Jensen inequality applied to function h we obtain inequality (6.3). In
the case k = n = 2 the inequality (6.3) becomes:

8

det (A1 + A2)
≤ 1

det (A1)
+ 1

det (A2)
, A1, A2 ∈ P2 (R) .

If

Aj =
(
xj yj

yj zj

)
, j = 1, 2,

then the above inequality becomes

8

(x1 + x2) (z1 + z2)− (y1 + y2)
2 =

8

det (A1 + A2)
≤

≤ 1

det (A1)
+ 1

det (A2)
= 1

x1z1 − y2
1

+ 1

x2z2 − y2
2

,

where xj zj − y2
j > 0, xj > 0, zj > 0, j = 1, 2. The above inequality is the

inequality from the statement of Corollary 4.19. ��
Proposition 6.22 Let n ≥ 2, f : Hn (C) → R, f (A) = [Tr (A)]2 −
4 det (A) , A ∈ Hn (C) . Then f is convex if and only if n = 2.

Proof LetB (t) =diag(t, t, . . . , t) , t ∈ R. If f is convex, then g (t) = f (B (t)) =
n2t2 − 4tn, t ∈ R, is convex. Note that

g′′ (t) = 2n2 − 4n (n− 1) tn−2 = 4n (n− 1)

[
n

2 (n− 1)
− tn−2

]
, t ∈ R.

If n ≥ 3, then g′′ change its sign on R.This shows that n = 2. Note that h (x, y) =
(x + y)2 − 4xy = (x − y)2 , x, y ∈ R is convex and if n = 2 we have f = h̃. By
the Davis theorem it follows that f is convex. ��
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7 A Generalization of Muirhead Theorem and Applications

The Muirhead’s inequality, also known as the “bunching” method, generalizes
the inequality between arithmetic and geometric means. It was named after its
author Robert Franklin Muirhead, a Scottish mathematician who lived between 1860
and 1941. The inequality is between two homogeneous symmetric polynomials of
several variables. It is often useful in proofs involving inequalities between homo-
geneous symmetric polynomials. For example, Newton’s inequality for elementary
symmetric functions can be proved with Muirhead’s inequality.

Theorem 7.1 (Muirhead) Let x = (x1, x2, . . . , xn) ∈ (0,∞)n , a =
(a1, a2, . . . , an), b = (b1, b2, . . . , bn)∈ R

nand a ≤HLPb. Then the following
inequality holds

∑
σ∈Sn

x
a1
σ(1)x

a2
σ(2) . . . x

an
σ(n) ≤

∑
σ∈Sn

x
b1
σ(1)x

b2
σ(2) . . . x

bn
σ(n) (7.1)

In his original paper Muirhead [56] has considered the case where the exponents
ai and bi are positive integers. The extension of Muirhead result to real exponents
was done by Hardy, Littlewood, and Polya in the book [27]. Proofs of Muirhead’s
inequality can be found in the monographs of Niculescu and Persson [58], Marshall
Olkin and Arnold [49], Garling [24], and Manfrino et al. [47].

A more complete statement of Muirhead theorem is the following (see the
references [27] and [47]):

Theorem 7.2 (Schulman [70]) Let a = (a1, a2, . . . , an),,b = (b1, b2, . . . , bn)

∈ R
n. Then inequality (7.1) holds for every x = (x1, x2, . . . , xn) ∈ (0,∞)n if and

only if a ≤HLPb. Equality takes place only when a = b or when all the xi-s are
equal.

There are several generalizations of the Muirhead’s inequality. Marshall and
Proschan proved in [50] an inequality for the expectation of permutation-invariant
and convex functions of permutation-invariant random variables. Muirhead’s the-
orem can be obtained as a special case of their result. A different generalization
of Muirhead’s theorem was given by Proschan and Sethuraman [63]. In this
generalization the multivariate monomials were replaced with the product of log-
convex functions. Their result states:

Theorem 7.3 For every i ∈ {1, 2, . . . , n} let ψi : R → (0,∞) be log-convex
functions. If a = (a1, a2, . . . , an),,b = (b1, b2, . . . , bn)∈ R

nand a ≤HLPb, then

∑
σ∈Sn

(
n∏
i=1

ψσ(i) (ai)

)
≤
∑
σ∈Sn

(
n∏
i=1

ψσ(i) (bi)

)

In case that in the above theorem we take ψi (z) = xzi , z ∈ R we obtain Muirhead’s
inequality.
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A continuous analog of Muirhead’s inequality was proved by Ryff [66]. Muir-
head’s majorization inequality was extended by Rado to the case of arbitrary
permutation groups (that is subgroups of the permutations group Sn). A general-
ization of Muirhead’s inequality considering such subgroups of permutations was
given by Daykin [16]. In Kimelfeld [34] was defined the function

F(z) =
∑
g∈G

exp (ξ (gz)) ,

where G is a finite group of linear transformations acting on a real linear space E
and ξ is a linear functional on E. With the help of this function was formulated
a generalization of Muirhead’s theorem. In the paper of Schulman [70] Muirhead’s
inequality was further generalized to compact groups and their linear representations
over the reals. Several discussions about Muirhead’s inequality can be found in the
paper of Pecaric, Proschan, and Tong [61] and in the monograph of Marshall, Olkin,
Arnold [49].

In this section we shall give a different generalization of Muirhead theorem and
we shall present various applications of the main result. Let n ≥ 2. Let E be a real
linear space and A = (aij ) be an n× n matrix with real entries. We shall define the
linear application Ã : En→ En,

Ã (x1, x2, . . . , xn) =
⎛
⎝ n∑
i=1

a1j xj ,

n∑
i=1

a2j xj , . . . ,

n∑
i=1

anj xj

⎞
⎠ , (x1, x2, . . . , xn) ∈ En

In the following we shall introduce a majorization preorder on the vectors of En.
Let E be a real linear space and x = (x1, x2, . . . , xn) ∈ En, y = (y1, y2, . . . , yn) ∈
En.We shall say that x majorize y and we shall write x ≥HLPy or y ≤HLPx if there
exists a double stochastic matrix A = (aij ) of order n such that y=Ãx.

Theorem 7.4 Let E be a real linear space, D be a convex subset of En and f :
D → R be a quasi-convex function. Suppose that D is permutation invariant that
is if (x1, x2, . . . , xn) ∈ D then

(
xσ(1), xσ(2), . . . , xσ(n)

) ∈ D for every permutation
σ ∈ Sn and f is symmetric. Then for every x, y ∈ D, x ≥HLPy we have f (x) ≥
f (y) .

Proof Let x, y ∈ D be such that x ≥HLPy. Then there exists a double stochastic
matrix A = (

aij
)

of order n such that y=Ãx. By Birkhoff theorem there exist m

permutation matrices Pj , j = 1, 2, . . . , m such that A =
m∑
j=1
λjPj where λj ≥ 0,

j = 1, 2, . . . , m and
m∑
j=1
λj = 1. Note that

f (y) = f
(
Ãx
)
= f

⎛
⎝ m∑
j=1

λj P̃jx

⎞
⎠ ≤ max

1≤j≤mf
(
P̃jx

)
= f (x)

��
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The following two theorems will be called Generalized Muirhead theorems.

Theorem 7.5 Let E be a real linear space, D be a convex subset of E and f :
D→ R be a convex function. Denote

Δ =
{
(a1, a2, . . . , an) ∈ R

n :
n∑
i=1

ai = 1, ai ≥ 0, i = 1, 2, . . . , n

}

Then the following assertions hold:

10. If a = (a1, a2, . . . , an) ,b = (b1, b2, . . . , bn) ∈ Δ with a ≥HLP b, then for
every (x1, x2, . . . , xn) ∈ Dn the following inequality holds:

∑
σ∈Sn

f

(
n∑
i=1

aixσ(i)

)
≥
∑
σ∈Sn

f

(
n∑
i=1

bixσ(i)

)
(7.2)

20. If a = (a1, a2, . . . , an) ,b = (b1, b2, . . . , bn)∈ [0,∞)n, D is a convex cone
and a ≥HLPb, then for every (x1, x2, . . . , xn) ∈ Dn inequality (7.2) holds.

30 If a = (a1, a2, . . . , an) ,b = (b1, b2, . . . , bn)∈ R
n, D = E and a ≥HLPb, then

for every (x1, x2, . . . , xn) ∈ Dn inequality (7.2) holds.

Proof For every x=(x1, x2, . . . , xn) ∈ Dn consider the function

Fx (a1, a2, . . . , an) =
∑
σ∈Sn

f

(
n∑
i=1

aixσ(i)

)
, (a1, a2, . . . , an) ∈ R

n

Note that for every (x1, x2, . . . , xn) ∈ Dn the function Fx is convex and symmetric
on Δ. By Theorem 7.4., if a = (a1, a2, . . . , an) ,b = (b1, b2, . . . , bn) ∈ Δ, a ≥HLP
b, then for every (x1, x2, . . . , xn) ∈ Dn the inequality (7.2) holds.

If D is a convex cone, then for every (x1, x2, . . . , xn) ∈ Dn the function Fx is
convex and symmetric on [0,∞)n. Applying Theorem 7.4., if a = (a1, a2, . . . , an) ,

b = (b1, b2, . . . , bn)∈[0,∞)n,with a ≥HLPb, then for every (x1, x2, . . . , xn) ∈ Dn
the inequality (7.2) holds.

If D = E, then for every (x1, x2, . . . , xn) ∈ Dn the function Fx is
convex and symmetric on R

n. By Theorem 7.4. if a = (a1, a2, . . . , an) ,

b = (b1, b2, . . . , bn)∈Rn, and a ≥HLPb, then for every (x1, x2, . . . , xn) ∈ Dn

the inequality (7.2) holds. ��

Theorem 7.6 Let D1be a subset of (0,∞)m, f : D1 → R. Consider the set

D2 =
{
(x1, x2, . . . , xm) ∈ R

m : (ex1 , ex2 , . . . , exm
) ∈ D1

}
.
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Suppose that U is a convex subset of D2, and g : U → R,

g (x1, x2, . . . , xm) = f
(
ex1 , ex2 , . . . , exm

)
, (x1, x2, . . . , xm) ∈ U

is a convex function. If a = (a1, a2, . . . , an),,b = (b1, b2, . . . , bn)∈ R
nand

a ≤HLPb then for every xi =
(
xi,1, xi,2, . . . , xi,n

) ∈ (0,∞)n, i = 1, 2, . . . , m,
the following inequality holds

∑
σ∈Sn

f
(
x
a1
σ(1),1x

a2
σ(2),1 . . . x

an
σ(n),1, x

a1
σ(1),2x

a2
σ(2),2 . . . x

an
σ(n),2, . . . , x

a1
σ(1),mx

a2
σ(2),m . . .

x
an
σ(n),m,

)
≤

≤
∑
σ∈Sn

f
(
x
b1
σ(1),1x

b2
σ(2),1 . . . x

bn
σ(n),1, x

b1
σ(1),2x

b2
σ(2),2 . . . x

bn
σ(n),2, . . . , x

b1
σ(1),mx

b2
σ(2),m . . .

x
bn
σ(n),m

)
.

Proof Since the function g is convex, by the Generalized Muirhead theorem
(Theorem 7.5), we have

∑
σ∈Sn

g
(
a1yσ(1)+a2yσ(2)+ . . .+ anyσ(n)

) ≤∑
σ∈Sn

g
(
b1yσ(1)+b2yσ(2)+ . . .+bnyσ(n)

)

for yi =
(
yi,1, yi,2, . . . , yi,n

) ∈ R
n, i = 1, 2, . . . , m. This is equivalent to

∑
σ∈Sn

g

⎛
⎝ n∑
j=1

ajyσ(j),1,

n∑
j=1

ajyσ(j),2, . . . ,

n∑
j=1

ajyσ(j),m

⎞
⎠ ≤

≤
∑
σ∈Sn

g

⎛
⎝ n∑
j=1

bjyσ(j),1,

n∑
j=1

bjyσ(j),2, . . . ,

n∑
j=1

bjyσ(j),m

⎞
⎠ ,

hence

∑
σ∈Sn

f

⎛
⎝exp

⎛
⎝ n∑
j=1

ajyσ(j),1

⎞
⎠ , exp

⎛
⎝ n∑
j=1

ajyσ(j),2

⎞
⎠ , . . . , exp

⎛
⎝ n∑
j=1

ajyσ(j),m

⎞
⎠
⎞
⎠ ≤

≤
∑
σ∈Sn

f

⎛
⎝exp

⎛
⎝ n∑
j=1

bjyσ(j),1

⎞
⎠ , exp

⎛
⎝ n∑
j=1

bjyσ(j),2

⎞
⎠ , . . . , exp

⎛
⎝ n∑
j=1

bjyσ(j),m

⎞
⎠
⎞
⎠ .

Denote xi,j = exp
(
yi,j
)
. Taking into account that
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exp

⎛
⎝ n∑
j=1

ajyσ(j),i

⎞
⎠ = n

Π
j=1

[
exp

(
yσ(j),i

)]aj = n

Π
j=1
x
aj
σ(j),i

we obtain the inequality from the statement. ��
Theorem 7.7 Letm ≥ 2, n ≥ 2, a = (a1, a2, . . . , an),,b = (b1, b2, . . . , bn)∈ R

n,
xij ∈ (0,∞), i = 1, 2, . . . , n, j = 1, 2, . . . , m. Then the following assertions
hold:

10. If a ≤HLPb, then

∏
σ∈Sn

⎛
⎝ m∑
j=1

x
a1
σ(1),j x

a2
σ(2),j . . . x

an
σ(n),j

⎞
⎠ ≤ ∏

σ∈Sn

⎛
⎝ m∑
j=1

x
b1
σ(1),j x

b2
σ(2),j . . . x

bn
σ(n),j

⎞
⎠

20. If a ≤HLPb and for every σ ∈ Sn we have

x
a1
σ(1),1x

a2
σ(2),1 . . . x

an
σ(n),1 >

m∑
j=2

x
a1
σ(1),j x

a2
σ(2),j . . . x

an
σ(n),j

and

x
b1
σ(1),1x

b2
σ(2),1 . . . x

bn
σ(n),1 >

⎛
⎝ m∑
j=2

x
b1
σ(1),j x

b2
σ(2),j . . . x

bn
σ(n),j

⎞
⎠

then the following inequality holds

∏
σ∈Sn

⎛
⎝xa1

σ(1),1x
a2
σ(2),1 . . . x

an
σ(n),1 −

m∑
j=2

x
a1
σ(1),j x

a2
σ(2),j . . . x

an
σ(n),j

⎞
⎠ ≥

≥
∏
σ∈Sn

⎛
⎝xb1

σ(1),1x
b2
σ(2),1 . . . x

bn
σ(n),1 −

⎛
⎝ m∑
j=2

x
b1
σ(1),j x

b2
σ(2),j . . . x

bn
σ(n),j

⎞
⎠
⎞
⎠ .

Proof Let f1 (x1, x2, . . . , xm) = ln (x1 + x2 + . . .+ xm) , (x1, x2, . . . , xm) ∈
(0,∞)m . Note that

g1 (x1, x2, . . . , xm) = f1
(
ex1 , ex2 , . . . , exm

) =

= ln
(
ex1 + ex2 + . . .+ exm) , (x1, x2, . . . , xm) ∈ R

m

is a convex function. By Theorem 7.6. it follows the first assertion holds.
Let D1 =

{
(x1, x2, . . . , xm) ∈ (0,∞)m : x1 > x2 + . . .+ xm

}
, and



202 D. Andrica et al.

f2 (x1, x2, . . . , xm) = ln (x1 − x2 + . . .+ xm) , (x1, x2, . . . , xm) ∈ D1.

Let

D2 =
{
(x1, x2, . . . , xm) ∈ R

m : ex1 > ex2 + ex3 + . . .+ exm}

g2 (x1, x2, . . . , xm) = f2
(
ex1 , ex2 , . . . , exm

) =
= ln

(
ex1 − ex2 − . . .− exm) , (x1, x2, . . . , xm) ∈ D2

Note that g2 is concave. By Theorem 7.6. it follows the second assertion holds. ��
Theorem 7.8 Let n ≥ 2, a = (a1, a2, . . . , an),,b = (b1, b2, . . . , bn)∈ R

n,
xi, yi ∈ (0,∞), i = 1, 2, . . . , n. If a ≤HLPb then the following inequalities hold:

∏
σ∈Sn

(
x
a1
σ(1)x

a2
σ(2) . . . x

an
σ(n) + ya1

σ(1)y
a2
σ(2) . . . y

an
σ(n)

)
≤

≤
∏
σ∈Sn

(
x
a1
σ(1)x

a2
σ(2) . . . x

an
σ(n) + ya1

σ(1)y
a2
σ(2) . . . y

an
σ(n)

)

n

√√√√ n∏
i=1

(xi + yi) ≥ n
√
x1x2 . . . xn + n

√
y1y2 . . . yn.

Proof The first inequality is a special case of the first inequality from the preceding
theorem. In the case we replace y1 = y2 = . . . = yn = 1 in the first inequality
we obtain an inequality from [12]. The second inequality (known as the Huygens

inequality) follows from the first inequality in the special case a =
(

1
n
, 1
n
, 1
n
, . . . 1

n

)
,

b = (1, 0, 0, . . . , 0) . ��
Corollary 7.9 Let xi, yi ∈ (0,∞), i = 1, 2, 3. Then the following inequality holds

[(
x3

1 + y3
1

) (
x3

2 + y3
2

) (
x3

3 + y3
3

)]2 ≥
(
x2

1x2 + y2
1y2

) (
x2

1x3 + y2
1y3

) (
x2

2x1 + y2
2y1

) (
x2

2x3 + y2
2y3

)
(
x2

3x1 + y2
3y1

) (
x2

3x2 + y2
3y2

)
≥

≥ (x1x2x3 + y1y2y3)
6

Proof Let a = (3, 0, 0) ,b = (2, 1, 0) , c = (1, 1, 1) . Note that a ≥HLPb ≥HLPc and
apply the first inequality from the statement of the preceding theorem. ��
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Theorem 7.10 Let n ≥ 2, a = (a1, a2, . . . , an),b = (b1, b2, . . . , bn)∈ R
n,

ai, bi, xi, yi ∈ (0,∞), i = 1, 2, . . . , n. If a ≤HLPb and xi ≥ yi , i = 1, 2, . . . , n,
then the following inequalities hold

∏
σ∈Sn

(
x
a1
σ(1)x

a2
σ(2) . . . x

an
σ(n) − ya1

σ(1)y
a2
σ(2) . . . y

an
σ(n)

)
≥

≥
∏
σ∈Sn

(
x
a1
σ(1)x

a2
σ(2) . . . x

an
σ(n) − ya1

σ(1)y
a2
σ(2) . . . y

an
σ(n)

)

n

√√√√ n∏
i=1

(xi − yi) ≥ n
√
x1x2 . . . xn − n

√
y1y2 . . . yn

Proof The proof is similar with the proof of the preceding theorem. ��
Corollary 7.11 Let xi > yi > 0, i = 1, 2, 3. Then the following inequality holds

[(
x3

1 − y3
1

) (
x3

2 − y3
2

) (
x3

3 − y3
3

)]2 ≥

(
x2

1x2 − y2
1y2

) (
x2

1x3 − y2
1y3

) (
x2

2x1 − y2
2y1

) (
x2

2x3 − y2
2y3

)
(
x2

3x1 − y2
3y1

) (
x2

3x2 − y2
3y2

)
≥

(x1x2x3 − y1y2y3)
6

Let E be a real linear space, D be a convex set ofE, n ∈ N, n ≥ 1, k ∈ {1, 2, . . . , n},
f : D→ R, x = (x1, . . . , xn) ∈ Dn. We define the mixed mean of order k, n:

f k,n(x) =
1(
n
k

) ∑
1≤i1<···<ik≤ n

f

(
xi1 + · · · + xik

k

)

The following theorem is a refinement of Jensen’s inequality without weights.
For a proof we refer to the papers of Mitrinović and Pečarić [52], Pečaric and
Volenec [62] (see also Pečarić [60]).
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Theorem 7.12 Let E be a real linear space,D be a convex set ofE, f : D→ R be
a convex function. Then for every x = (x1, . . . , xn) ∈ Dn the following inequalities
hold:

f

(
x1 + . . .+xn

n

)
=f n,n(x) ≤ f n−1,n(x) ≤ · · · ≤ f 1,n(x)=

1

n

n∑
i=1

f (xi) .

In the following we shall give a proof of Theorem 7.12. by using the Generalized
Muirhead’s inequality (Theorem 7.5).

Proof of Theorem 7.12. Consider the n-dimensional vectors

a1 =
(
a1,1, a1,2, . . . , a1,n

) = (1, 0, 0, . . . , 0)

a2 =
(
a2,1, a2,2, . . . , a2,n

) =
(

1

2
,

1

2
, 0, . . . , 0

)

. . . . . . . . . .

an =
(
an,1, an,2, . . . , an,n

) =
(

1

n
,

1

n
,

1

n
, . . . .,

1

n

)

Note that for every k ∈ {1, 2, . . . , n} we have

f k,n(x) =
1

n!
∑
σ∈Sn

f
(
ak,1xσ(1) + ak,2xσ(2) + . . .+ ak,nxσ(n)

)

and

a1 ≥HLP a2 ≥HLP . . . . ≥HLP an

By the Theorem 7.5 (the generalized Muirhead’s theorem) the sequence of inequal-
ities from the statement of Theorem 7.12. holds. ��

The following result is a corollary of the preceding theorem.

Theorem 7.13 Let n ≥ 2. For every k ∈ {1, 2, . . . , n} denote by σk the k−th
elementary symmetric polynomial in n variables. If x = (x1, . . . , xn) ∈ (0,∞)n
and p ∈ R, we shall write

σk
(
xp
) = σk (xp1 , xp2 , . . . , xpn )
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Then for every x = (x1, . . . , xn) ∈ (0,∞)n the following inequalities hold:

10.

σ1 (x)(
n
1

) ≥ σ2
(
x1/2

)
(
n
2

) ≥ . . . ≥ σk
(
x1/k

)
(
n
k

) ≥ . . . ≥ σn
(
x1/n

)
(
n
n

)

20

σk

(
xk+1

)( n

k + 1

)
≥ σk+1

(
xk
)(n
k

)
k = 1, 2, . . . , n− 1

Proof Let f (t) = et , t ∈ R. If y = (y1, y2, . . . yn) ∈(0,∞)n , then

f k,n(y) =
1(
n
k

) ∑
1≤i1<···<ik≤n

f

(
yi1 + · · · + yik

k

)

Denote f (yi) = xi , i ∈ {1, 2, . . . , n} . Then

f k,n(y) =
1(
n
k

) ∑
1≤i1<···<ik≤n

[
f
(
yi1
)]1/k [

f
(
yi2
)]1/k

. . .
[
f
(
yik
)]1/k =

= 1(
n
k

) ∑
1≤i1<···<ik≤n

x
1/k
i1
x

1/k
i2
. . . x

1/k
ik

= σk
(
x1/k

)
(
n
k

)

Since f is convex, by Theorem 7.12. it follows that

f 1,n(y) ≥ f 2,n(y) ≥ . . . ≥ f n,n(y)

Thus the first inequality was proved. The second inequality follows from the first
inequality performing a substitution, ��
Corollary 7.14 Let E be a linear normed space, x1, x2, . . . , xn ∈ E and p ≥ 1.
Then the following sequence of inequalities holds:

n∑
i=1
‖xi‖p
(
n
1

) ≥

n∑
i<j

∥∥xi + xj
∥∥p

2p
(
n
2

) ≥

n∑
i<j<k

∥∥xi + xj + xk
∥∥p

3p
(
n
3

) ≥ . . .

≥ ‖x1 + x2 + . . .+ xn‖p
np
(
n
n

)

Proof Note that f (x) = ‖x‖p , x ∈ E is a convex function. The inequality from the
statement follows by applying Theorem 7.12. to function f . ��
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Corollary 7.15 Let xi, yi ∈ [0,∞), i = 1, 2, . . . , n. Then the following inequali-
ties hold:

n∑
i=1

√
xiyi

(
n
1

) ≤

n∑
i<j

√(
xi + xj

) (
yi + yj

)
(
n
2

) ≤

≤

n∑
i<j<k

√(
xi + xj + xk

) (
yi + yj + yk

)

3
(
n
3

) ≤ . . . . ≤

≤
√
(x1 + x2 + . . .+ xn) (y1 + y2 + . . .+ yn)

n
(
n
n

)

and

[
n∏
i=1

(xi + yi)
]1/(n1)

≥
⎡
⎣∏
i<j

(√
xixj +√yiyj

)
⎤
⎦

1/(n2)

≥

≥
⎡
⎣ ∏
i<j<k

(
3
√
xixj xk +√yiyj yk

)⎤⎦
1/(n3)

≥ . . . ≥

≥ ( n√x1x2 . . . xn + n
√
y1y2 . . . yn

)1/(nn) .
Proof In order to prove the first sequence of inequalities we apply Theorem 7.12.
to the concave function f (x, y) = √

xy, x, y ∈ (0,∞)2 . Consider the function
g (x, y) = ln (ex + ey) , (x, y) ∈ R

2. By Corollary 3.3 g is convex. If we apply
Theorem 7.12. to function g we obtain:

n∑
i=1

ln
(
eai + ebi )
(
n
1

) ≥

n∑
i=1

ln
(

exp
(
ai+ai

2

)+ exp
(
bi+bj

2

))
(
n
2

) ≥ . . . ≥

≥
ln
[
exp

(
a1+a2+...+an

n

)+ exp
(
b1+b2+...+bn

n

)]
(
n
n

)

for ai, bi ∈ R, i = 1, 2, . . . , n. If we put xi = exp (ai) , yi = exp (bi) , i =
1, 2, . . . , n in the last sequence of inequalities we obtain the second sequence of
inequalities from the statement. ��
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Corollary 7.16 Let xi, yi ∈ (0,∞), i = 1, 2, . . . , n. Then the following assertions
hold:

10. If p ∈ [0, 1], then

[
n∏
i=1

(
x
p
i + ypi

)]1/(n1)

≤ 1

2p

⎧⎨
⎩
∏
i<j

[(
xi + xj

)p + (yi + yj )p]
⎫⎬
⎭

1/(n2)

≤

≤ 1

3p

⎧⎨
⎩
∏
i<j<k

[(
xi + xj + xk

)p + (yi + yj + yk)p]
⎫⎬
⎭

1/(n3)

≤

≤ . . . . ≤ 1

np

[(
n∑
i=1

xi

)p
+
(
n∑
i=1

yi

)p]1/(nn)

.

20. If p ∈ (−∞, 0), then the above sequence of inequalities holds with the reversed
sign of inequalities.

Proof For every p ∈ R consider the function

fp (x, y) = ln
(
xp + yp) , (x, y) ∈ (0,∞)2 .

Note that fp is concave if p ∈ [0, 1] and fp is convex if p ∈ (−∞, 0). Inequalities
from the statement follow at once from Theorem 7.12. ��
Lemma 7.17 Let ai, αi ∈ (0,∞) , i = 1, 2, . . . , n, x0 ∈ R, and consider the
function f : R→ R,

f (x) =

⎛
⎜⎜⎝

n∑
i=1
αia

x
i

n∑
i=1
αia

x0
i

⎞
⎟⎟⎠

1/(x−x0)

if x ∈ R− {x0}

with

f (x0) =

n∑
i=1
αia

x0
i ln ai

n∑
i=1
αia

x0
i

.

Then f is increasing on R.
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Proof Let g (x) = ln

(
n∑
i=1
αia

x
i

)
, x ∈ R. Note that

g′ (x) =

n∑
i=1
αia

x
i ln ai

n∑
i=1
αia

x
i

, x ∈ R

and

g′′ (x) =

(
n∑
i=1
αia

x
i ln2 ai

)(
n∑
i=1
αia

x
i

)
−
(
n∑
i=1
αia

x
i ln ai

)2

(
n∑
i=1
αia

x
i

)2 , x ∈ R.

By the Cauchy–Schwarz inequality it follows that g′′ ≥ 0. Let

h (x) = g (x)− (x0)

x − x0
, x ∈ R− {x0}

and

h (x0) = g′ (x0) .

Since g is convex it follows that h is increasing, hence f = eh is increasing. ��
Theorem 7.18 Let ai ∈ [1,∞), i = 1, 2, . . . , n, a = a1+2a2+3a3+ . . .+nan.
Then for every x ∈ (0,∞)n the following inequalities hold:

[σn (x)]a/n ≤
(
σ1 (x)(
n
1

)
)a1

(
σ2 (x)(
n
2

)
)a2

. . .

(
σn (x)(
n
n

)
)an

≤ σ1 (xa)
n

.

Proof From the first sequence of inequalities in Theorem 7.12. we obtain

σ1 (x)(
n
1

) ≥ σk
(
x1/k

)
(
n
k

) ≥ σn
(
x1/n

)
(
n
n

) ,

hence by a substitution we get

σ1
(
xk
)

(
n
1

) ≥ σk (x)(
n
k

) ≥ σn
(
xk/n

)
(
n
n

) = [σn (x)]k/n .
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By the preceding lemma we have

[
σ1
(
xkak

)
n

]1/kak

≤
[
σ1 (xa)
n

]1/a

,

hence

σ1
(
xkak

)
n

≤
[
σ1 (xa)
n

]kak/a

From the preceding inequalities we obtain

[
σ1 (xa)
n

]kak/a
≥ σ1

(
xkak

)
n

≥
[
σ1
(
xk
)

n

]ak
≥

≥
[
σk (x)(
n
k

)
]ak

≥ [σn (x)]kak/n .

If we multiply the preceding inequalities for k = 1, 2, . . . , n, then we get the
inequality in the statement. ��
Theorem 7.19 Let n ≥ 3, m ≥ 2, J = {1, 2, . . . , n} . For every k ∈
J and every x ∈ (0,∞)n let p (k, x) = σk(x)

(nk)
. If a = (a1, a2, . . . , am), b =

(b1, b2, . . . , bm)∈Jm, a ≥HLPb, then for every x ∈ (0,∞)n the following inequality
holds

p (a1, x) p (a2, x) . . . p (am, x) ≤ p (b1, x) p (b2, x) . . . p (bm, x) .

Proof For x ∈ (0,∞)n let fx (k) = ln [p (k, x)] , k ∈ J. By Newton inequalities
we have that fx is concave, that is 2fx (k) ≥ fx (k − 1) + fx (k + 1) , k ∈
{2, 3, . . . , n− 1} . Let f̃x :[1, n] → R be the piecewise affine continuation of fx,
that is

f̃x (t)= (t−k) fx (k+1)+ (k+1−t) fx (k) , t ∈ [k, k + 1] , k ∈ {1, 2, . . . , n− 1}

Note that f̃ is concave. If

Fx (c1, c2, . . . , cm) = f̃x (c1)+ f̃x (c2)+ . . .+ f̃x (cm) , (c1, c2, . . . , cm) ∈ [1, n]m ,

then Fx is symmetric and concave, hence Fx is Schur concave. Therefore, the
inequality in the statement holds. ��
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Theorem 7.20 Let m, n ≥ 2, k ∈ {1, 2, . . . , n} . For every x= (x1, . . . , xn)∈
(0,∞)n, let

qk,x (t) = σk
(
xt
) = ∑

|K|=k

∏
i∈K
xti , t ∈ R.

If a = (a1, a2, . . . , am),,b = (b1, b2, . . . , bm)∈ R
m and a ≤HLPb, then for every

x ∈ (0,∞)n the following inequality holds:

qk,x (a1) qk,x (a2) . . . ql,x (am) ≤ qk,x (b1) qk,x (b2) . . . qk,x (bm) .

Proof For every K ⊂ {1, 2, . . . , n} and x = (x1, . . . , xn)∈ (0,∞)n let

uK (x1, . . . , xn) =
∑
i∈K

ln (xi) .

Note that

vk,x (t) = ln
[
qk,x (t)

] = ln

⎡
⎣ ∑
|K|=k

exp (tuK (x))

⎤
⎦ , t ∈ R

is convex. For every k ∈ {1, 2, . . . , n} and x ∈ (0,∞)n, let

fk,x (c1, c2, . . . , cm) = ln
[
qk,x (c1)

]+ ln
[
qk,x (c2)

]+ . . .+ ln
[
qk,x (cm)

]
,

where (c1, c2, . . . , cm) ∈ R
m. Note that for every k ∈ {1, 2, . . . , n} and x ∈ (0,∞)n

the function fk,x is convex and symmetric, hence fk,x is Schur convex. Thus
fk,x (a) ≤ fk,x (b) . This is equivalent with the inequality from the statement. ��
Corollary 7.21 Let n ≥ 2. Then for every (x1, . . . , xn)∈ (0,∞)n the following
inequalities hold:

(
n∑
i=1

xi

)(
n∑
i=1

x2
i

)(
n∑
i=1

x9
i

)
≥
(
n∑
i=1

x3
i

)(
n∑
i=1

x4
i

)(
n∑
i=1

x5
i

)

⎛
⎝ n∑
i<j

xixj

⎞
⎠
⎛
⎝ n∑
i<j

x2
i x

2
j

⎞
⎠
⎛
⎝ n∑
i<j

x9
i x

9
j

⎞
⎠ ≥

⎛
⎝ n∑
i<j

x3
i x

3
j

⎞
⎠
⎛
⎝ n∑
i<j

x4
i x

4
j

⎞
⎠
⎛
⎝ n∑
i<j

x5
i x

5
j

⎞
⎠

Proof Note that (9, 2, 1) ≥HLP (5, 4, 3) and then apply the result in preceding the
theorem. ��
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8 Construction of Convex Functions Based
on Taylor Remainder

In this section we shall prove the convexity or the concavity of some functions with
the help of Taylor remainder of power function and exponential function.

If f : I → R is a k times differentiable function, then it can be written as

f (x) = Tkf (x)+ Rkf (x) , x ∈ I.

Here Tkf (x) is the Taylor polynomial of f andRkf (x) is the corresponding Taylor
remainder. If f is the power function or the exponential function we shall prove
that the function g (x) = f−1 (Rkf (x)) is concave. Two conjectures related with
concavity of functions built with the help of Taylor remaiders are formulated.

Let I be an interval of the real axis x0, x1, . . . , xn ∈ I and let f : I → R be
a function. Denote by f [x0, x1, . . . , xn] the divided difference of f at the distinct
points x0, x1, . . . , xn. In case f is n-times differentiable then f [x0, x1, . . . , xn] is
defined for all x0, x1, . . . , xn ∈ I not necessarily distinct.

The Hermite–Genocchi formula is presented in the following theorem.

Theorem 8.1 Let I be an interval of the real axis x0, x1, . . . , xn ∈ I and f : I →
R be a function of class Cn. Denote byΔn the n-dimensional standard simplex, that
is

Δn =
{
(t0, t1, . . . , tn) ∈ R

n+1 : ti ≥ 0 for i = 0, 1, 2, . . . , n and
n∑
i=0

ti = 1

}
.

Then

f [x0, x1, . . . , xn] =
∫
Δn

f (n) (t0x0 + t1x1 + . . .+ tnxn) dt0dt1 . . . dtn.

Theorem 8.2 Let n ≥ 1 be a natural number, I be an open interval of the real axis,
a ∈ I and f : I → R be a function of class Cn. Consider the function g : I → R:

g (x) = f (x)− f (a)− f
′ (a) x−a1! − . . .− f (n−1) (a)

(x−a)n−1

(n−1)!
(x − a)n , x ∈ I − {a}

(8.1)
and

g (a) = f
(n) (a)

n! .

If f (n) is a convex function, then g is a convex function.
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Proof If x0, x1, . . . , xn ∈ I let f [x0, x1, . . . , xn] be the divided difference of f at
the points x0, x1, . . . , xn. Let

h (x0, x1, . . . , xn) = f [x0, x1, . . . , xn] , (x0, x1, . . . , xn) ∈ In+1 (8.2)

Note that

g (x) = h (x, a, a, . . . , a) , x ∈ I − {a}

The number of a in the argument of h is equal to n. By the Hermite–Genocchi
formula we obtain:

g (x) =
∫
Δn

f (n) (t0x + (t1 + t2 + . . .+ tn) a) dt0dt1 . . . dtn (8.3)

Since f (n) is convex it follows that g is convex. ��
Corollary 8.3 Let n ≥ 1 be a natural number, c ∈ (0, 1) , I = (c,∞) and f :
I → R be a function of class Cn. If f (n)is convex, then the function u : I → R

u (x)=f (x+1)−f (1)−f ′ (1) x1!−f ′′ (1) x2

2! − − . . .− f (n−1) (1) x
n−1

(n−1)!
xn

, x ∈ I

is convex.

Proof Consider the function g defined by (8.1) and substitute x → x+1 and a = 1.
Note that

u (x) = g (x + 1) x ∈ I

Since f (n) is convex, by Theorem 8.2., it follows that the function g is convex, hence
u is convex. ��
Corollary 8.4 Let n ≥ 1 be a natural number and p ∈ R. For every positive integer
k define the generalized binomial coefficient as follows:

(
n

k

)
= p (p − 1) (p − 2) . . . (p − k + 1)

k! .

If k = 0 we shall put
(
n
k

) = 1. Consider the functions

g (x) = (1+ x)
p − (p0)− (p1)x − (p2)x2 − . . .− ( p

n−1

)
xn−1

xn
, x ∈ (0,∞)

(8.4)
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h (x) = (1+ x)
−p − (p−1

0

)+ (p1)x − (p+1
2

)
x2 + . . .+ (−1)n−1 (p+n−2

n−1

)
xn−1

xn
,

x ∈ (0,∞) .

Then the following assertions hold:

10. If p ≥ n+ 1, then g is convex.
20. If p ∈ (0,∞), then (−1)n h is convex.

Proof Suppose that p ≥ n + 1 and let f1 (x) = xp, x ∈ (0,∞) .Note
that f (n+2)

1 (x) = p (p − 1) . . . (p − n− 1) xp−n−2 ≥ 0, x ∈ (0,∞) . By
Corollary 8.3., g is a convex function.

Suppose that p ∈ [0,∞) and let f2 (x) = x−p, x ∈ (0,∞). Note that
(−1)n f (n+2)

2 (x) = p (p + 1) . . . (p + n+ 1) x−p−n−2 ≥ 0, x ∈ (0,∞). By
Corollary 8.3., (−1)n h is a convex function. ��
Corollary 8.5 Let n ≥ 1 be a natural number. Consider the functions g, h : R→ R

g (x) = e
x − 1− x

1! − x2

2! − . . .− xn−1

(n−1)!
xn

, x ∈ R− {0}

with

g (0) = 1

n!
and

h (x) = 1− e−x − x
1! + x2

2! − . . .+ (−1)n−1 xn−1

(n−1)!
xn

, x ∈ R− {0}

with

h (0) = 1

n! .

Then g and (−1)n+1 h are convex.

Proof If we apply Theorem 8.2 for a = 0 and f (x) = ex , x ∈ (0,∞), then we
obtain that g is convex. In order to prove that (−1)n+1 h is convex consider the
function f (x) = (−1)n+1 (1− e−x) , x ∈ R, and then apply Theorem 8.2. ��
Theorem 8.6 Let (X,Σ,μ) be a space with measure, E be a real linear space, D
be a convex subset of E, and u : D × X → R. Suppose that u (·, y) is convex for
every y ∈ X and exp (u (x, ·)) is integrable for every x ∈ D. Then the function

f (x) = ln

[∫
X

exp (u (x, y)) dμ (y)

]
, x ∈ D

is convex.
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Proof Let a, b ≥ 0, a + b = 1. Then for every x1, x2 ∈ D, we have:

f (ax1 + bx2) = ln

[∫
X

exp (u (ax1 + bx2, y)) dμ (y)

]
≤

≤ ln

[∫
X

exp (au (x1, y)+ bu (x2, y)) dμ (y)

]
=

= ln

[∫
X

exp (au (x1, y)) exp (bu (x2, y)) dμ (y)

]
≤

≤ ln

[∫
X

[
exp (au (x1, y))

]1/a
dμ (y)

]a
ln

[∫
X

[
exp (bu (x2, y))

]1/b
dμ (y)

]b
=

= a ln

[∫
X

exp (u (x1, y)) dμ (x)

]
+ b ln

[∫
X

exp (u (x2, y)) dμ (x)

]
=

= af (x1)+ bf (x2) .

Consequently, f is convex. ��
Corollary 8.7 Let n ≥ 1 be a natural number, I be an interval of the real axis,
f : I → R be an n times differentiable function such that f (n) > 0 on I. If
u = ln

(
f (n)

)
is convex, then the function

g (x0, x1, . . . , xn) = ln (f [x0, x1, . . . , xn]) , (x0, x1, . . . , xn) ∈ In+1

is convex.

Proof By the Genocchi–Hadamard theorem we have:

g (x0, x1, . . . , xn) = ln

(∫
Δn

f (n) (t0x0 + t1x1 + . . .+ tnxn) dt0dt1 . . . dtn
)
=

= ln

(∫
Δn

exp (u (t0x0 + t1x1 + . . .+ tnxn)) dt0dt1 . . . dtn
)

By the preceding theorem it follows that g is convex on In+1. ��
Corollary 8.8 Let n ≥ 1 be a natural number. Then the function g : (0,∞) → R

defined by

g (x) = ln

⎛
⎝ex − 1− x

1! − x2

2! − . . .− xn−1

(n−1)!
xn

⎞
⎠ , x ∈ (0,∞)

is convex.
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Proof Let f (x) = ex, x ∈ (0,∞). Note that ln
(
f (n) (x)

) = x, x ∈ (0,∞) is
convex. Since

g (x) = ln (f [x, 0, 0, . . . , 0])

by the preceding Corollary 8.7 it follows that g is convex. ��
Corollary 8.9 Let n ≥ 1 be a natural number and p ∈ R. Consider the function:

g (x) = ln

(
(1+ x)p − (p0)− (p1)x − (p2)x2 − . . .− ( p

n−1

)
xn−1

xn

)
, x ∈ (0,∞)

Then the following assertions hold:

10. If p (p − 1) (p − 2) . . . (p − n+ 1) > 0 and p < n, then the function g is
convex.

20. If p (p − 1) (p − 2) . . . (p − n− 1) ≤ 0, then g is concave.

Proof In order to prove 10 suppose that p (p − 1) (p − 2) . . . (p − n+ 1) > 0 and
p < n Consider the function f (x) = xp, x ∈ (0,∞) . Note that

f (n) (x) = p (p − 1) (p − 2) . . . (p − n+ 1) xp−n, x ∈ (0,∞)

f (n) > 0 and ln
(
f (n)

)
is convex on (0,∞). By Corollary 8.7. it follows that g is

convex.
In order to prove 20 suppose that p (p − 1) (p − 2) . . . (p − n− 1) ≤ 0. Note

that

f (n+2) (x) = p (p − 1) (p − 2) . . . (p − n− 1) xp−n−2, x ∈ (0,∞)

and f (n) is concave on (0,∞) . By Corollary 8.3 the function defined by (8.4) is
concave. Hence the function g is concave. ��
Lemma 8.10 For every natural number k ≥ 0, consider the functions:

vk (x) = ex − 1− x

1! −
x2

2! − . . .−
xk

k! , x ∈ (0,∞) (8.1)

fk (x) = k! (k − x) vk (x)− xk+1, x ∈ (0,∞) (8.2)

Then fk (x) ≤ 0 for every x ∈ (0,∞) .
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Proof Note that for every x ∈ (0,∞) we have successively

fk (x) = k! (k − x)
(
xk+1

(k + 1)! +
xk+2

(k + 2)! + . . . .
)
− xk+1 =

= (k − x)
[
xk+1

k + 1
+ xk+2

(k + 1) (k + 2)
+ . . . .

]
− xk+1 =

=
(

k

k + 1
− 1

)
xk+1 +

(
k

(k + 1) (k + 2)
− 1

k + 1

)
xk+2+

+
(

k

(k + 1) (k + 2) (k + 3)
− 1

(k + 1) (k + 2)

)
xk+3 + . . . . =

= − x
k+1

k + 1
− 2xk+2

(k + 1) (k + 2)
− 3xk+2

(k + 1) (k + 2) (k + 3)
− . . . ≤ 0

��
Theorem 8.11 For every k ≥ 0 let vk be the function defined in (8.1). Then the
function gk (x) = ln [vk (x)] , x ∈ (0,∞) is concave.

Proof A direct computation of the second derivative shows that g1 and g2 are
concave. If k ≥ 2, then

v′k = vk−1, v
′′
k = vk−2, g

′
k =

v′k
vk

g′′k =
vkv

′′
k −

(
v′k
)2

v2
k

= vkvk−2 − v2
k−1

v2
k

Let

wk (x) = vk (x) v′′k (x)−
[
v′k (x)

]2
, x ∈ (0,∞) .

Note that gk is concave if and only if wk ≤ 0. From the above lemma we obtain:

wk (x) = vk (x) vk−2 (x)− [vk−1 (x)]
2 =

= vk (x)
[
vk (x)+ xk−1

(k − 1)! +
xk

k!
]
−
(
vk (x)+ x

k

k!
)2

=

= vk (x)
(
xk−1

(k − 1)! −
xk

k!
)
− x2k

(k!)2 =
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= x
k−1

(k!)2
[
k! (k − x) vk (x)− xk+1

]
≤ 0 if x ∈ (0,∞) .

This proves that gk is concave. ��
Lemma 8.12 For a, b ∈ [0, 1] consider the functions u (x) = ex − a − bx and
f (x) = ln [u (x)] , where x ∈ (0,∞) . If b ≤ 1−√1− a, then f is concave.

Proof Note that f is concave if and only if v = uu′′−
(
u
′)2 ≤ 0 By b ≤ 1−√1− a

it follows that −a + 2b ≤ b2, hence

v (x) = (ex − a − bx) ex−(ex − b)2== ex(b2 − bx
)
−b2 = bex (b − x − be−x).

Since e−x ≥ 1− x it follows that

v (x) ≤ bex [b − x − b (1− x)] = b (b − 1) xex ≤ 0.

Consequently, f is concave. ��
Theorem 8.13 Let n ≥ 2 be a natural number,

σ2 (x1, x2, . . . , xn) =
∑

1≤i<j≤n
xixj , (x1, x2, . . . , xn) ∈ (0,∞)n .

Then the function

f (x1, x2, . . . , xn)= ln

[
exp

(
n∑
i=1

xi

)
−
(
n∑
i=1

exi

)
+n−1−σ2 (x1, x2, . . . , xn)

]
,

where (x1, x2, . . . , xn) ∈ (0,∞)n is separately concave.

Proof Since f is symmetric it suffices to prove the concavity of it in the first
variable. Fix

(
x2, x3, . . . , xn

) ∈ (0,∞)n−1 and let

s = x2 + x3 + . . .+ xn,

q1 =
∑

2≤i<j≤n
xixj ,

q2 =
n∑
i=2

(
exi − 1

)
,

a = q1 + q2

es − 1
, b = s

es − 1
,
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ψ (t) = ln
(
et − a − bt) , t ∈ (0,∞) ,

and

α =
n∑
i=2

φ (xi) .

Note that we have the relations

q1 + q2 = q1 +
n∑
i=2

(
xi + x

2
i

2
+ φ (xi)

)
= s + s

2

2
+ α,

hence a, b ∈ [0, 1]. One can easily see that

f (x1, x2, . . . , xn) = ln
[
ex1
(
es − 1

)− q2 − sx1 − q1
] =

ln
(
es − 1

)+ ln

[
ex1 − q1 + q2

es − 1
− s

es − 1
x1

]
= ln

(
es − 1

)+ ln
[
ex1 − a − bx1

]

= ψ (x1) .

We shall prove that −a + 2b ≤ b2, hence b ≤ 1 − √1− a. By Lemma 8.12. we
obtain that ψ is concave, hence f will be separately concave. Note that

−a+2b−b2 = − s +
s2

2 + α
es − 1

+ 2s

es − 1
−
(

s

es − 1

)2

=
(
s − s2

2 − α
)
(es − 1)− s2

(es − 1)2

=
(
s − s2

2

)
(es − 1)− s2 − α (es − 1)

(es − 1)2
=

s
2 [(2− s) es − 2− s]− α (es − 1)

(es − 1)2
.

Let v (t) = (2− t) et − t − 2, t ∈ [0,∞). Note that v (0) = 0, and v is decreasing.
Hence v (t) ≤ 0 if t ∈ [0,∞). Thus

−a + 2b − b2 =
s
2v (s)− α (es − 1)

(es − 1)2
≤ 0

��
For every a ∈ R denote by [a] the greatest integer smaller or equal than a.
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Theorem 8.14 For every p ∈ (1,∞), k ∈ {0, 1, 2, . . . , [p]+ 1}, consider the
function

fk,p (x) =
(
k∑
i=0

(
p

i

)
xi

)1/p

, x ∈ (0,∞).

Then the following assertions hold:

10. If k ∈ {0, 1, 2, . . . , [p]}, then fk,p is concave.
20. If k = [p]+ 1, then fk,p is convex.

Proof Let

uk,p (x) =
k∑
i=0

(
p

i

)
xi, x ∈ [0,∞).

Note that

fk,p =
(
uk,p

)1/p
, f ′

k,p =
1

p

(
uk,p

)(1/p)−1
u′k,p

and

f ′′
k,p =

1

p2

(
uk,p

)(1/p)−2
[
puk,pu

′′
k,p − (p − 1)

(
u′k,p

)2
]
.

One can easily see that fk,p is concave if and only if

vk,p = (p − 1)
(
u′k,p

)2 − puk,pu′′k,p ≥ 0.

Note that

u′k,p = puk−1,p−1, u
′′
k,p = p (p − 1) uk−2,p−2,

hence

vk,p = p2 (p − 1)
[(
uk−1,p−1

)2 − uk,puk−2,p−2

]
.

Thus (
uk−1,p−1 (x)

)2 − uk,p (x) uk−2,p−2 (x) =

=
((
p − 1

0

)
+
(
p − 1

1

)
x + . . .+

(
p − 1

k − 1

)
xk−1

)2

−



220 D. Andrica et al.

−
((
p

0

)
+
(
p

1

)
x + . . .+

(
p

k − 1

)
xk
)((

p − 2

0

)
+
(
p − 2

1

)
x + . . .

+
(
p − 2

k − 2

)
xk−2

)
=

= c0 + c1x + . . .+ c2k−2x
2k−2.

One notes that

c2k−r−1 = r

p − 1

(
p − 1

k

)(
p − 1

k − r
)
, r ∈ {1, 2, . . . , k}

cr = 0, r ∈ {0, 1, 2 . . . ., k − 2} .

If k ∈ {0, 1, 2, . . . , [p]}, then we have vk,p ≥ 0, hence fk,p is concave. If k =
[p]+ 1, then vk,p ≤ 0, hence fk,p is convex. ��
Conjecture A For every natural number p ≥ 2 and k ∈ {0, 1, 2, . . . , [p2 ]− 1

}
consider the function

gk,p (x) =
[
(1+ x)p −

k∑
i=0

(
p

i

)(
xi + xp−i

)]1/p

, x ∈ (0,∞)

Then gk,p is concave.

Note that

gk,p (x) =
⎛
⎝p−k−1∑
i=k+1

(
p

i

)
xi

⎞
⎠

1/p

, x ∈ (0,∞)

The following lemma contains a classical result from matrix theory.

Lemma 8.15 Let A be an n × n matrix with complex entries. Denote by A∗ the
adjugate of A. If x, y ∈ R

n and A = In + xyT , then the following equalities hold:

det (A) = 1+ xT y

A∗ =
(

1+ xT y
)
In − xyT

A−1 = In − 1

1+ xT y xy
T if 1+ xT y �= 0
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Lemma 8.16 Let x, y, u, v ∈ R
n. Then the following equality holds:

det
(
In + xyT + uvT

)
=
(

1+ xT y
) (

1+ uT v
)
−
(
xT v

) (
yT u

)

Proof Let A = In + xyT . Then

det
(
In + xyT + uvT

)
= det

(
A+ uvT

)
= det (A)+ vT A∗u =

= det (A)+ vT
[(

1+ xT y
)
In − xyT

]
u =

=
(

1+ xT y
) (

1+ uT v
)
−
(
xT v

) (
yT u

)
.

��
Theorem 8.17 Let n ≥ 2 be a natural number. Then the function

f (x1, x2, . . . , xn) = ln

[
exp

(
n∑
i=1

xi

)
−
(
n∑
i=1

exi

)
+ n− 1

]
,

(x1, x2, . . . , xn) ∈ (0,∞)n

is concave.

Proof Let φ : (0,∞)→ R be a two times differentiable function and

u (x1, x2, . . . , xn) = φ
(
n∑
i=1

xi

)
−
(
n∑
i=1

φ (xi)

)
, (x1, x2, . . . , xn) ∈ (0,∞)n

Suppose that u > 0 on (0,∞)n and φ′′ > 0 on (0,∞) . Note that

∂u

∂xi
(x) = φ′

(
n∑
r=1

xr

)
− φ′ (xi)

∂2u

∂x2
i

(x) = φ′′
(
n∑
r=1

xr

)
− φ′′ (xi)

∂2u

∂xi∂xj
(x) = φ′′

(
n∑
r=1

xr

)
.
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Let A (x) = (
aij (x)

)
1≤i,j≤n be the Jacobian matrix of g = ln (u) . Denote s =

n∑
r=1
xr . Then

aij (x) =
(
φ′′ (s)− φ′′ (xi)

)
δij u (x)−

(
φ′ (s)− φ′ (xi)

) (
φ′ (s)− φ′ (xj )) ,

where we have denoted by δij the Kronecker symbol. Note that g is concave if and
only if the matrix

(
aij (x)

u2 (x)

)

is negative semidefinite. Let

bij (x) = δij − φ′′ (s)
φ′′ (xi)

+
(
φ′ (s)− φ′ (xi)

) (
φ′ (s)− φ′ (xj ))

u (x) φ′′ (xi)
.

Note that g is concave if and only if the matrix B (x) = (bij (x))1≤i,j≤n is positive
semidefinite. For every m ∈ {1, 2, . . . , n} consider the matrix

Bm (x) =
(
bij (x)

)
1≤i,j≤m

Note that g is concave if and only for every m ∈ {1, 2, . . . , n} we have
det (Bm (x)) ≥ 0

Let m ∈ {1, 2, . . . , n} . Consider the m-dimensional vectors

α =

⎛
⎜⎜⎜⎜⎜⎝

φ′′(s)
φ′′(x1)

.

.

.
φ′′(s)
φ′′(xm)

⎞
⎟⎟⎟⎟⎟⎠
, β =

⎛
⎜⎜⎜⎜⎜⎝

−1
.

.

.

−1

⎞
⎟⎟⎟⎟⎟⎠
, γ =

⎛
⎜⎜⎜⎜⎜⎝

φ′(s)−φ′(x1)
u(x)φ′′(x1)

.

.

.
φ′(s)−φ′(xm)
u(x)φ′′(xm)

⎞
⎟⎟⎟⎟⎟⎠
,

δ =

⎛
⎜⎜⎜⎜⎜⎝

φ′ (s)− φ′ (x1)

.

.

.

φ′ (s)− φ′ (xm)

⎞
⎟⎟⎟⎟⎟⎠
.

By the preceding lemma we obtain

det (Bm (x))= det
(
Im+αβT+γ δT

)
=
(

1+ αT β
) (

1+ γ T δ
)
−
(
αT δ

) (
βT γ

)
=
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1−
m∑
i=1

φ′′ (s)
φ′′ (xi)

+
m∑
i=1

(
φ′ (s)− φ′ (xi)

)2
u (x) φ′′ (xi)

−

(
m∑
i=1

φ′′ (s)
φ′′ (xi)

)(
m∑
i=1

(
φ′ (s)− φ′ (xi)

)2
u (x) φ′′ (xi)

)
+

(
m∑
i=1

φ′′ (s)
(
φ′ (s)− φ′ (xi)

)
φ′′ (xi)

)(
m∑
i=1

φ′ (s)− φ′ (xi)
u (x) φ′′ (xi)

)
.

Note that

u (x) det (Bm (x)) = u (x)
(

1−
m∑
i=1

φ′′ (s)
φ′′ (xi)

)
+

+
m∑
i=1

(
φ′ (s)− φ′ (xi)

)2
φ′′ (xi)

−
(
m∑
i=1

φ′′ (s)
φ′′ (xi)

)(
m∑
i=1

(
φ′ (s)− φ′ (xi)

)2
φ′′ (xi)

)
+

+φ′′ (s)
(
m∑
i=1

φ′ (s)− φ′ (xi)
φ′′ (xi)

)2

=

=
(

1−
m∑
i=1

φ′′ (s)
φ′′ (xi)

)(
u (x)+

m∑
i=1

(
φ′ (s)− φ′ (xi)

)2
φ′′ (xi)

)
+

+φ′′ (s)
(
m∑
i=1

φ′ (s)− φ′ (xi)
φ′′ (xi)

)2

.

Let pm =
m∑
i=1
e−xi , qr =

r∑
i=1
exi , r ∈ {1, 2, . . . , m} , cm = qn−qm. If φ (t) = et −1,

where t ∈ (0,∞), then

u (x) det (Bm (x)) =
(
1− espm

) [
es − qn + n− 1+

m∑
i=1

(es − exi )2
exi

]
+

+es
(
m∑
i=1

es − exi
exi

)2

=
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= (1− espm)
(
es − qn + n− 1+ e2spm − 2mes + qm

)
+ es (pmes −m)2 =

= es
[
(m− 1)2 − pm (n− 1− cm)+ e−s (n− 1− cm)

]
.

Note that

cm − n+ 1 ≥ n−m− n+ 1 = 1−m,

0 ≤ pm − e−s ≤ m− 1,

(
pm − e−s

)
(cm − n+ 1) ≥ (pm − e−s) (1−m) ,

hence

e−su (x) det (Bm (x)) = (m− 1)2 + (pm − e−s) (cm − n+ 1) ≥

≥ (m− 1)2 + (pm − e−s) (1−m) = (m− 1)
(
m− 1− pm + e−s

) ≥ 0.

We proved that det (Bm (x)) ≥ 0 for every m ∈ {1, 2, . . . , n} . Thus the function
g = f is concave. ��
Corollary 8.18 Let ai, bi ∈ [1,∞), i = 1, 2, . . . , n. Then the following inequality
holds:

[
a2

1a
2
2 . . . a

2
n −

(
n∑
i=1

a2
i

)
+ n− 1

]
·
[
b2

1b
2
2 . . . b

2
n −

(
n∑
i=1

b2
i

)
+ n− 1

]
≤

≤
(
a1a2 . . . anb1b2 . . . bn −

(
n∑
i=1

aibi

)
+ n− 1

)2

.

Theorem 8.19 Let n ≥ 2 be a natural number. For i, k ≥ 0 natural numbers
consider the functions

qi,n (x1, x2, . . . , xn) =

(
n∑
r=1
xr

)i
−
(
n∑
r=1
xir

)

i! ,

uk,n (x1, x2, . . . , xn) = exp

(
n∑
r=1

xr

)
−
(
n∑
r=1

exr

)
−

k∑
i=0

qi,n (x1, x2, . . . , xn) ,

where (x1, x2, . . . , xn) ∈ (0,∞)n. Then for every natural number k ≥ 0 the function
fk,n = ln

(
uk,n

)
is Schur concave on (0,∞)n .
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Proof Note that we have q0,n (x1, x2, . . . , xn) = 1 − n, q1,n (x1, x2, . . . , xn) = 0,
q2,n (x1, x2, . . . , xn) = ∑

1≤i<j≤n
xixj . If k = 0, then

f0,n (x1, x2, . . . , xn) = ln

(
exp

(
n∑
r=1

xr

)
−
(
n∑
r=1

exr

)
+ n− 1

)
,

(x1, x2, . . . , xn) . ∈ (0,∞)n

Note that

(x1 − x2)

(
∂f0,n

∂x1
(x)− ∂f0,n

∂x2
(x)
)
=

= (x1 − x2)

u0,n (x)

(
∂u0,n

∂x1
(x)− ∂u0,n

∂x2
(x)
)
=

= − (x1 − x2)

u0,n (x)

(
ex1 − ex2

) ≤ 0

hence f0,n is Schur concave. If k ≥ 1 is a natural number, then

∂uk,n

∂xj
(x) = exp

(
n∑
r=1

xr

)
− exj −

k−1∑
i=0

(
n∑
r=1
xr

)i
− xij

i!

hence if we denote

w (t) = et −
k−1∑
i=0

t i

i! , t ∈ (0,∞)

we have

(x1 − x2)

(
∂fk,n

∂x1
(x)− ∂fk,n

∂x2
(x)
)
= − (x1 − x2)

uk,n (x)
[w (x1)− w (x2)] ≤ 0.

Consequently, fk,n is Schur concave on (0,∞)n . ��
We conclude this section with the following conjecture.

Conjecture B Let n ≥ 2 be a natural number. Then for every natural number k ≥ 0
the function

fk,n (x1, x2, . . . , xn)= ln

(
exp

(
n∑
r=1

xr

)
−
(
n∑
r=1

exr

)
−

k∑
i=0

qi,n (x1, x2, . . . , xn)

)
,
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where (x1, x2, . . . , xn) ∈ (0,∞)n is concave. Here the functions qi,n are defined in
the statement of Theorem 8.19.

Recall that until now we proved the following results:

(i) f2,n is separately concave (cf. Theorem 8.13);
(ii) f0,n is concave (cf. Theorem 8.17);

(iii) fk,n is Schur concave (cf. Theorem 8.19).

References

1. M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S.
Hsiao, I.M. Isaacs, A. Jedwab, et al., Supercharacters, symmetric functions in noncommuting
variables, and related Hopf algebras. Adv. Math. 229(4), 2310–2337 (2012)

2. E.E. Allen, The descent monomials and a basis for the diagonally symmetric polynomials. J.
Algebra Combin. 3, 5–16 (1994)

3. D. Andrica, M.O. Drimbe, On some inequalities involving isotonic functionals. Math. Anal.
Numer. Theorie Approx. 17(1), 1–7 (1988)

4. M. Becheanu, International Mathematical Olympiads 1959–2000, Problems, Solutions,
Results (Academic Distribution Center, Freeland, 2001)

5. R. Bellman, On an inequality concerning an indefinite form. Am. Math. Mon. 63, 108–109
(1957)

6. H. Bergstrom, A triangle inequality for matrices, in Den Ilte Skandinauiske Matematik-
erkongress (1949), pp. 264–267

7. C. Bertone, The Euler characteristic as a polynomial in the Chern classes. Int. J. Algebra 2,
757–769 (2008)

8. E.C. Boadi, Symmetric Polynomials, Combinatorics and Mathematical, Master Thesis, Univer-
sity of Ottawa, Canada, 2016. Physicsmysite.science.uottawa.ca/hsalmasi/report/thesis-evans.
pdf

9. J.M. Borwein, A.S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Exam-
ples (Springer, Berlin, 2010)

10. J.M. Borwein, J.D. Vanderwerff, Convex Functions: Constructions, Characterizations and
Counterexamples (Cambridge University Press, Cambridge, 2010)

11. W.Y.C. Chen, C. Krattenthaler, A.L.B. Yang, The flagged Cauchy determinant. Graphs
Combin. 21, 51–62 (2005)

12. K.M. Chong, Spectral order preserving matrices and Muirhead’s theorem. Trans. Am. Math.
Soc. 200, 437–444 (1974)

13. A. Curnier, Q.C. He, P. Zysset, Conewise linear elastic materials. J. Elasticity 37, 1–38 (1995)
14. Z. Cvetkovski, Inequalities.Theorems, Techniques and Selected Problems (Springer, Berlin,

2012)
15. C. Davis, All convex invariant functions of Hermitian matrices. Arch. Math. 8(4), 276–278

(1957)
16. D.E. Daykin, Generalisation of the Muirhead-Rado inequality. Proc. Am. Math. Soc. 30(1),

84–86 (1971)
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Harmonic Exponential Convex Functions
and Inequalities

Muhammad Uzair Awan, Muhammad Aslam Noor, and Khalida Inayat Noor

Abstract In this chapter, we intend to introduce and study a new class of harmonic
exponential h-convex functions. We show that this class includes several new
and previously known classes of harmonic convex functions. We derive several
Hermite–Hadamard type integral inequalities. Numerous special cases are also
discussed.

1 Introduction

The significance and importance of the convexity theory can be imagined through
its applications in different fields of pure and applied sciences. Ideas explaining
the convexity theory lead to the developments of new, novel, and powerful tech-
niques to solve linear and nonlinear problems. It has been shown that convexity
theory provides us the most natural, direct, simple, and efficient framework for
unified treatment of unrelated problems. In recent years, convex sets and convex
functions have been generalized and extended in various directions using innovative
techniques and ideas, for example, see [19, 21]. An important aspect of convexity
theory is its close relationship with theory of inequalities. Many inequalities are
direct consequences of the applications of convex functions. There are two types of
the inequalities, namely variational inequalities and integral inequalities. Variational
inequalities are closely related to the optimization theory. In fact, it is worth
mentioning that the minimum u ∈ K of a differentiable convex functions can be
characterized by an inequality of the type

〈f ′(u), v − u〉 ≥ 0, ∀v ∈ K,
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which is known as the variational inequality, introduced and considered by Stam-
pacchia [41]. Variational inequalities can be viewed as natural extension of the
variational principle, the origin of which can be traced back to Euler, Lagrange,
and Newton. It is remarkable that the applications of variational inequalities and
techniques have played a crucial role in the developments of various fields of pure
and applied sciences such as Nash equilibria, dynamical systems, transportation,
structural analysis, and sensibility analysis. For the applications, formulation,
numerical methods, sensitivity analysis, neural network, and other aspects of
variational inequalities and related area, see [6, 14, 19, 22–27, 29, 30, 41] and the
references therein.

Integral inequalities play important part in estimating the upper and lower bounds
of the integral of the functions. It has been shown that by Hermite and Hadamard
that a function is convex function if, and only if, it satisfies the inequality of the type

f (
a + b

2
) ≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

,∀a, b ∈ I = [a, b].

which is known as Hermite–Hadamard type inequality. For the applications of
Hermite–Hadamard type inequalities and their generalizations, see [1–4, 8, 9, 11,
12, 18, 20, 21, 28, 31, 33, 35, 37–39] and the references therein.

In recent years, various extensions and generalizations of the convex sets and
convex functions have been introduced and studied. Motivated and inspired by the
research activities in the convexity theory, Varosanec [42] introduced the notion of
h-convex functions. It has been shown that under some suitable assumptions this
class enjoys some nice properties which the classical convex functions have. It is
worth mentioning that the class of h-convex functions generalizes not only the class
of classical convex functions but also several other classes of convex functions such
as Breckner type of s-convex functions [7], Godunova-Levin functions [15], P -
functions [13], and Godunova–Levin–Dragomir type of functions [10]. In recent
years, a considerable number of research articles have been devoted to the study
of h-convex functions. For more details about this fascinating class of h-convex
functions, see [42]. İscan [16] introduced the notion of harmonically convex func-
tions. Motivated by this, Noor et al. [34] extended the class of harmonically convex
functions and hconvex functions. They introduced the notion of harmonically
h-convex functions, which generalizes different classes of harmonically convex
functions.

Inspired and motivated by the ongoing research in the convex analysis, Awan et
al. [5] introduced the concept of exponential convex functions and derived some
integral inequalities. In this chapter, we consider and investigate the harmonic
exponential convex functions involving an arbitrary non-negative function h. It is
shown that harmonic exponential h-convex functions are more general and unifying
ones. For different and appropriate choice of the arbitrary function, one can obtain
a wide class of new and known classes of convex and harmonic convex functions.
We derive a wide class of integral inequalities via harmonic exponential h-convex
functions. Several new and special cases will also be discussed in detail. It is
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expected the ideas and technique of this paper may be a starting point for exploring
the applications of the harmonic exponential convex functions in various branches
of pure and applied sciences.

2 Preliminaries

In this section, we discuss previously known concepts and results.

Definition 1 ([40]) A set H ⊂ R+ is said to be harmonic convex, if

xy

tx + (1− t)y ∈H , ∀x, y ∈H , t ∈ [0, 1]. (1)

We now define the class of harmonic h-convex function.

Definition 2 ([34]) Let h : (0, 1) ⊆ J → R be a real function. A function f :
H → R is said to be harmonic h-convex function, if

f

(
xy

tx + (1− t)y
)
≤ h(1− t)f (x)+ h(t)f (y), ∀x, y ∈H , t ∈ (0, 1). (2)

Note that, if t = 1
2 , then we have Jensen’s type of harmonic h-convex function

f

(
2xy

x + y
)
≤ h

(
1

2

)
[f (x)+ f (y)], ∀x, y ∈H .

Now we discuss some special cases of Definition 2.

I. If h(t) = t in (2), then Definition 2 reduces to the definition of harmonic convex
functions.

Definition 3 ([16]) A function f : H → R is said to be harmonic convex
function, if

f

(
xy

tx + (1− t)y
)
≤ (1− t)f (x)+ tf (y), ∀x, y ∈H , t ∈ [0, 1].

Noor and Noor [29] have shown that the optimality conditions of differentiable
harmonic convex functions can be characterized by a class of variational inequal-
ities, which is called the harmonic variational inequalities. Harmonic variational
inequality is an interesting problem for future research. This field is new one and
needs further efforts.

II. If h(t) = t s in (2), then Definition 2 reduces to the definition of Breckner type
of harmonic s-convex function.
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Definition 4 ([34]) A function f : H → R is said to be Breckner type of
harmonic s-convex function, where s ∈ (0, 1], if

f

(
xy

tx + (1− t)y
)
≤ (1− t)sf (x)+ t sf (y), ∀x, y ∈H , t ∈ [0, 1].

III. If h(t) = 1 in (2), then Definition 2 reduces to the definition of harmonic
P -function.

Definition 5 ([34]) A function f :H → R is said to be harmonic P -function, if

f

(
xy

tx + (1− t)y
)
≤ f (x)+ f (y), ∀x, y ∈H , t ∈ [0, 1].

IV. If h(t) = 1
t

in (2), then we have

Definition 6 ([34]) A function f : H ⊂ R+ → R is said to be harmonic
Godunova–Levin function, if

f

(
xy

tx + (1− t)y
)
≤ 1

1− t f (x)+
1

t
f (y), ∀x, y ∈ Ih, t ∈ (0, 1).

V. If h(t) = 1
t s

in (2), then Definition 2 reduces to the definition of Godunova–
Levin type of harmonic s-convex function.

Definition 7 ([32]) A function f :H → R is said to be Godunova–Levin type of
harmonic s-convex function, where s ∈ [0, 1], if

f

(
xy

tx + (1− t)y
)
≤ 1

(1− t)s f (x)+
1

t s
f (y), ∀x, y ∈H , t ∈ (0, 1).

We now recall some special functions, which will be helpful in our coming results.

Definition 8 ([17]) The gamma function Γ : R+ → R is defined as

Γ (x) =
∫ ∞

0
e−xtx−1dt,

Definition 9 ([17]) The beta function B is a function of two variables defined as

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt = Γ (x)Γ (y)

Γ (x + y) .

The hypergeometric function is defined as:

2F1[a, b; c; z] = 1

B(b, c − b)
∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt,

where |z| < 1, c > b > 0.
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3 Harmonically Exponential h-Convex Functions

We now introduce a new class of convex functions, which is called “exponentially
h-convex functions.”

Definition 10 Let h : (0, 1)→ R be a real function. A function f : H ⊆ R+ →
R is said to be harmonically exponential h-convex function, if

f

(
xy

tx + (1− t)y
)
≤ h(1− t)eαxf (x)+ h(t)eαyf (y),

for all x, y ∈H , t ∈ (0, 1) and α ∈ R. If the above inequality holds in the reversed
sense, then f is said to be harmonically exponential h-concave function.

It is worth to mention here that if α = 0, then the class of harmonically exponential
h-convex functions reduces to the class of classical h-convex function.

We now discuss some special cases of Definition 10

I. If we suppose h(t) = t in Definition 10, then, we have a new definition of
harmonically exponential convex functions.

Definition 11 A function f : H ⊆ R+ → R is said to be harmonically
exponential convex function, if

f

(
xy

tx + (1− t)y
)
≤ (1− t)eαxf (x)+ teαyf (y),

for all x, y ∈H , t ∈ [0, 1] and α ∈ R.

II. If we suppose h(t) = t s in Definition 10, then, we have a new definition of
harmonically exponential s-convex functions of Breckner type.

Definition 12 A function f : H ⊆ R+ → R is said to be harmonically
exponential s-convex function of Breckner type, if

f

(
xy

tx + (1− t)y
)
≤ (1− t)seαxf (x)+ t seαyf (y),

for all x, y ∈H , t ∈ [0, 1], s ∈ (0, 1) and α ∈ R.

III. If we suppose h(t) = t−s in Definition 10, then, we have a new definition of
harmonically exponential s-convex functions of Godunova–Levin-Dragomir type.

Definition 13 A function f : H ⊆ R+ → R is said to be harmonically
exponential s-convex function of Godunova–Levin-Dragomir type, if

f

(
xy

tx + (1− t)y
)
≤ (1− t)−seαxf (x)+ t−seαyf (y),

for all x, y ∈H , t ∈ (0, 1), s ∈ [0, 1] and α ∈ R.
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IV. If we suppose h(t) = t−1 in Definition 10, then, we have a new definition of
harmonically exponential Godunova–Levin functions.

Definition 14 A function f : H ⊆ R+ → R is said to be harmonically
exponential Godunova–Levin function, if

f

(
xy

tx + (1− t)y
)
≤ (1− t)−1eαxf (x)+ t−1eαyf (y),

for all x, y ∈H , t ∈ (0, 1) and α ∈ R.

V. If we suppose h(t) = 1 in Definition 10, then, we have a new definition of
harmonically exponential P -functions.

Definition 15 A function f : H ⊆ R+ → R is said to be harmonically
exponential P -function, if

f

(
xy

tx + (1− t)y
)
≤ eαxf (x)+ eαyf (y),

for all x, y ∈H , t ∈ (0, 1) and α ∈ R.

4 Integral Inequalities

In this section, we derive some new Hermite–Hadamard like inequalities via
harmonically exponential h-convex functions.

Theorem 1 (Hermite–Hadamard like inequality) Let f : I ⊂ R+ → R be an
integrable harmonically exponential h-convex function, then, for h

( 1
2

) �= 0, we have

1

2h
( 1

2

)f
(

2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2 dx ≤ [eαcf (c)+ eαdf (d)]
1∫

0

h(t)dt.

Proof Let f be a harmonically exponentially h-convex function. Then

1

h
( 1

2

)f
(

2xy

x + y
)
≤ eαxf (x)+ eαyf (y).

Changing the variables, we get

1

h
( 1

2

)f
(

2cd

c + d
)
≤ eα

(
cd

(1−t)c+td
)
f

(
cd

(1− t)c + td
)
+ eα

(
cd

tc+(1−t)d
)
f

(
cd

tc + (1− t)d
)
.
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Integrating with respect to t on [0, 1], we have

1

2h
( 1

2

)f
(

2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2 dx. (3)

Also, we have

f

(
cd

tc + (1− t)d
)
≤ h(1− t)eαcf (c)+ h(t)eαdf (d).

Integrating with respect to t on [0, 1], we have

cd

d − c
d∫
c

eαxf (x)

x2
dx ≤ [eαcf (c)+ eαdf (d)]

1∫
0

h(t)dt. (4)

Combining inequalities (3) and (4) completes the proof. ��
Remark 1 Note that, if α = 0 in Theorem 1, then we have Hermite–Hadamard like
inequality for harmonically h-convex functions obtained by Noor et al. [34].

We now discuss some more new special cases of Theorem 1.

I. If h(t) = t in Theorem 1, then we have Hermite–Hadamard like inequality for
harmonically exponential convex function. The result reads as:

Corollary 1 Let f : I ⊂ R+ → R be an integrable harmonically exponential
convex function, then

f

(
2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2
dx ≤ e

αcf (c)+ eαdf (d)
2

.

If we assume α = 0 in Corollary 1, then we have classical Hermite–Hadamard
inequality obtained via harmonic convex functions [16].

II. If h(t) = t s in Theorem 1, then we have Hermite–Hadamard like inequality for
harmonically exponential s-convex function of Breckner type. The result reads as:

Corollary 2 Let f : I ⊂ R+ → R be an integrable harmonically exponential
s-convex function of Breckner type, then

1

21−s f
(

2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2 dx ≤ e
αcf (c)+ eαdf (d)

1+ s .
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If we assume α = 0 in Corollary 2, then we have classical Hermite–Hadamard
inequality obtained via harmonic s-convex functions of Breckner type [34].

III. If h(t) = t−s in Theorem 1, then we have Hermite–Hadamard like inequality
for harmonically exponential s-convex function of Godunova–Levin-Dragomir
type. The result reads as:

Corollary 3 Let f : I ⊂ R+ → R be an integrable harmonically exponential
s-convex function of Godunova–Levin-Dragomir type, then

1

21+s f
(

2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2 dx ≤ e
αcf (c)+ eαdf (d)

1− s .

If we assume α = 0 in Corollary 3, then we have classical Hermite–Hadamard
inequality obtained via harmonic s-convex functions of Godunova–Levin type [32].

IV. If h(t) = 1 in Theorem 1, then we have Hermite–Hadamard like inequality for
harmonically exponential P -functions. The result reads as:

Corollary 4 Let f : I ⊂ R+ → R be an integrable harmonically exponential
P -function, then

1

2
f

(
2cd

c + d
)
≤ cd

d − c
d∫
c

eαxf (x)

x2 dx ≤ eαcf (c)+ eαdf (d).

If we assume α = 0 in Corollary 4, then we have classical Hermite–Hadamard
inequality obtained via harmonic P -functions [34].

We now derive Hermite–Hadamard like inequality via product of two harmoni-
cally exponential h-convex functions.

Theorem 2 Let f, g : I ⊂ R+ → R be two integrable harmonically exponential
hconvex functions, then for h2

( 1
2

) �= 0, we have

1

2h2
( 1

2

)f
(

2cd

c + d
)
g

(
2cd

c + d
)

−eα(c+d)
⎡
⎢⎣M(c, d; e)

1∫
0

h(t)h(1− t)dt + 1

2
N(c, d; e)

1∫
0

[h2(t)+ h2(1− t)]dt
⎤
⎥⎦

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2
dx ≤ M(c, d; e)

1∫
0

h2(t)dt +N(c, d; e)
1∫

0

h(t)h(1− t)dt,
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where

M(c, d; e) := eαcf (c)g(c)+ eαdf (d)g(d), (5)

and

N(c, d; e) := eα(c+d) [f (d)g(c)+ f (c)g(d)] , (6)

respectively.

Proof Since it is given that f and g are harmonically exponential h-convex
functions, then

1

h2
( 1

2

)f
(

2xy

x + y
)
g

(
2xy

x + y
)

≤ {(eαxf (x)+ eαyf (y))} {(eαxg(x)+ eαyg(y))} .
This implies

1

h2
( 1

2

)f
(

2cd

c + d
)
g

(
2cd

c + d
)

≤
{(
e
α
(

cd
tc+(1−t)d

)
f

(
cd

tc + (1− t)d
)
+ eα

(
cd

(1−t)c+td
)
f

(
cd

(1− t)c + td
))}

×
{(
e
α
(

cd
tc+(1−t)d

)
g

(
cd

tc + (1− t)d
)
+ eα

(
cd

(1−t)c+td
)
g

(
cd

(1− t)c + td
))}

.

Integrating with respect to t on [0, 1], we have

1

h2
( 1

2

)f
(

2cd

c + d
)
g

(
2cd

c + d
)

≤ 2cd

d − c
d∫
c

e2αx f (x)g(x)

x2 dx

+eα(c+d)
1∫

0

[{
h(1− t)eαcf (c)+ h(t)eαdf (d)

}

×
{
h(t)eαcg(c)+ h(1− t)eαdg(d)

}
+
{
h(t)eαcf (c)+ h(1− t)eαdf (d)

}

×
{
h(1− t)eαcg(c)+ h(t)eαdg(d)

}]
dt.
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This implies

1

2h2
( 1

2

)f
(

2cd

c + d
)
g

(
2cd

c + d
)

−eα(c+d)
⎡
⎣M(c, d; e)

1∫
0

h(t)h(1− t)dt + 1

2
N(c, d; e)

1∫
0

[h2(t)+ h2(1− t)]dt
⎤
⎦

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2 dx. (7)

Also it is given that f and g are harmonically exponential h-convex functions, we
have

f

(
cd

(1− t)c + td
)
g

(
cd

(1− t)c + td
)

≤
[
h(t)eαcf (c)+ h(1− t)eαdf (d)

] [
h(t)eαcf (c)+ h(1− t)eαdf (d)

]
.

Integrating with respect to t on [0, 1], we have

cd

d − c
d∫
c

e2αxf (x)g(x)

x2
dx ≤ M(c, d; e)

1∫
0

h2(t)dt +N(c, d; e)
1∫

0

h(t)h(1− t)dt. (8)

Combining inequalities (7) and (8) completes the proofcqed ��
It is worth to mention here that if we take α = 0 in Theorem 2, then we have a result
for classical harmonically h-convex functions.

We now discuss some new special cases of Theorem 2.

I. If we take h(t) = t , in Theorem 2, then we have result for harmonically
exponential convex functions.

Corollary 5 Let f, g : I ⊂ R+ → R be two integrable harmonically exponential
hconvex functions, then we have

2f

(
2cd

c + d
)
g

(
2cd

c + d
)

−eα(c+d)
[

1

6
M(c, d; e)+ 1

3
N(c, d; e)

]

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2 dx ≤ 1

3
M(c, d; e)+ 1

6
N(c, d; e),

whereM(c, d; e) and N(c, d; e) are given by (5) and (6) respectively.
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II. If we take h(t) = t s , in Theorem 2, then we have result for harmonically
exponential s-convex functions of Breckner type.

Corollary 6 Let f, g : I ⊂ R+ → R be two integrable harmonically exponential
s-convex functions of Breckner type, then we have

1

21−2s f

(
2cd

c + d
)
g

(
2cd

c + d
)

−eα(c+d)
[
B(s + 1, s + 1)M(c, d; e)+ B(2s + 1, 2s + 1)

2
N(c, d; e)

]

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2 dx ≤ 1

1+ 2s
M(c, d; e)+ B(s + 1, s + 1)N(c, d; e),

whereM(c, d; e) and N(c, d; e) are given by (5) and (6) respectively.

III. If we take h(t) = t−s , in Theorem 2, then we have result for harmonically
exponential s-convex functions of Godunova–Levin type.

Corollary 7 Let f, g : I ⊂ R+ → R be two integrable harmonically exponential
s-convex functions of Godunova–Levin type, then we have

1

21+2s
f

(
2cd

c + d
)
g

(
2cd

c + d
)

−eα(c+d)
[
B(1− s, 1− s)M(c, d; e)+ B(1− 2s, 1− 2s)

2
N(c, d; e)

]

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2
dx ≤ 1

1− 2s
M(c, d; e)+ B(1− s, 1− s)N(c, d; e),

whereM(c, d; e) and N(c, d; e) are given by (5) and (6) respectively.

IV. If we take h(t) = 1, in Theorem 2, then we have result for harmonically
exponential P -convex functions.

Corollary 8 Let f, g : I ⊂ R+ → R be two integrable harmonically exponential
P -convex functions, then we have

1

2
f

(
2cd

c + d
)
g

(
2cd

c + d
)
− eα(c+d) [M(c, d; e)+N(c, d; e)]

≤ cd

d − c
d∫
c

e2αxf (x)g(x)

x2
dx ≤ M(c, d; e)+N(c, d; e),

whereM(c, d; e) and N(c, d; e) are given by (5) and (6) respectively.
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5 Differentiable Harmonic h-Convex Functions

In this section, we derive some new Hermite–Hadamard like inequalities via
differentiable harmonically exponential h-convex functions. For this, we need three
following auxiliary results. For the sake of completeness and to convey the main
idea, we include the proofs of these auxiliary results.

Lemma 1 ([16]) Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I , c < d and f ′ ∈ L[c, d], then

f (c)+ f (d)
2

− cd

d − c
∫ d

c

f (x)

x2 dx

= cd(d − c)
2

∫ 1

0

1− 2t

A2
t

f ′
(
cd

At

)
dt, (9)

where At = (1− t)c + td.

Proof It suffices to show that

∫ 1

0

1− 2t

((1− t)c + td)2 f
′
(

cd

(1− t)c + td
)

dt

= f (c)+ f (d)
cd(d − c) − 2

cd(d − c)
1∫

0

f

(
cd

(1− t)c + td
)

dt

= f (c)+ f (d)
cd(d − c) − 2

cd(d − c)
cd

d − c
d∫
c

f (x)

x2
dx.

Multiplying both sides of above equation by cd(d−c)
2 completes the proofcqed ��

Lemma 2 ([36]) Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I , c < d and f ′ ∈ L[c, d], then

cd

d − c
∫ d

c

f (x)

x2 dx − f
(

2cd

c + d
)

= cd(d − c)
[∫ 1/2

0

t

A2
t

f ′
(
cd

At

)
dt +

∫ 1

1/2

t − 1

A2
t

f ′
(
cd

At

)
dt

]
, (10)

where At = (1− t)c + td.
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Proof Let

L1 + L2 =
∫ 1/2

0

t

((1− t)c + td)2 f
′
(

cd

(1− t)c + td
)

dt

+
∫ 1

1/2

t − 1

((1− t)c + td)2 f
′
(

cd

(1− t)c + td
)

dt. (11)

Now

L1 =
∫ 1/2

0

t

((1− t)c + td)2 f
′
(

cd

(1− t)c + td
)

dt

= −1

2
f

(
2cd

c + d
)
+ 1

cd(d − c)

1/2∫
0

f

(
cd

(1− t)c + td
)

dt. (12)

Similarly

L2 =
∫ 1

1/2

t − 1

((1− t)c + td)2 f
′
(

cd

(1− t)c + td
)

dt

= −1

2
f

(
2cd

c + d
)
+ 1

cd(d − c)
1∫

1/2

f

(
cd

(1− t)c + td
)

dt. (13)

Summation of (11), (12), and (13) completes the proof. ��
Lemma 3 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d. If f ′ ∈ L[c, d], then

1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

= cd(d − c)

×
⎡
⎣

1∫
0

(
1

2
− t
)(

1

(1− t)c + (1+ t)d
)2

f ′
(

2cd

(1− t)c + (1+ t)d
)

dt

+
1∫

0

(
t − 1

2

)(
1

(1+ t)c + (1− t)d
)2

f ′
(

2cd

(1+ t)c + (1− t)d
)

dt

⎤
⎦ .
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Proof Let

V1 =
1∫

0

(
1

2
− t
)(

1

(1− t)c + (1+ t)d
)2

f ′
(

2cd

(1− t)c + (1+ t)d
)

dt

= 1

4cd(d − c)f (c)+
1

4cd(d − c)f
(

2cd

c + d
)
− cd

cd(d − c)2

2cd
c+d∫
c

f (x)

x2 dx. (14)

Similarly

V2 =
1∫

0

(
t − 1

2

)(
1

(1+ t)c + (1− t)d
)2

f ′
(

2cd

(1+ t)c + (1− t)d
)

dt

= 1

4cd(d − c)f (d)+
1

4cd(d − c)f
(

2cd

c + d
)
− cd

cd(d − c)2
d∫

2cd
c+d

f (x)

x2 dx. (15)

Combining (14) and (15) and then multiplying by cd(d − c) completes the proof.
��

Theorem 3 Let f : I ⊆ R+ → R be a differentiable function on I 0 such that
f ′ ∈ L[c, d], where c, d ∈ I 0 with c < d. If |f ′|q , q > 1 is harmonically
exponential h-convex, then

∣∣∣∣f (c)+ f (d)2
− cd

d − c
∫ d

c

f (x)

x2
dx

∣∣∣∣
≤ cd(d − c)

2
μ

1− 1
q (c, d)

(
|eαcf ′(c)|q

∫ 1

0
|1− 2t |h(t)A−2

t dt

+|eαdf ′(d)|q
∫ 1

0
|1− 2t |h(1− t)A−2

t dt

)1/q

, (16)

where

μ(c, d) = c−2
[

2F1

(
2, 2; 3; 1− d

c

)
− 2F1

(
2, 1; 2; 1− d

c

)

+1

2
2F1

(
2, 1; 3; 1

2

(
1− d

c

))]
,

and At = (1− t)c + td.
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Proof Using Lemma 1, the power mean inequality and the harmonic h-convexity of
|f ′|q , we have

∣∣∣∣f (c)+ f (d)2
− cd

d − c
∫ d

c

f (x)

x2 dx

∣∣∣∣
≤ cd(d − c)

2

∫ 1

0

|1− 2t |
A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt

≤ cd(d − c)
2

(∫ 1

0

|1− 2t |
A2
t

dt

)1−1/q (∫ 1

0

|1− 2t |
A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣
q

dt

)1/q

≤ cd(d − c)
2

μ1−1/q(c, d)

×
(∫ 1

0

|1− 2t |
A2
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

= cd(d − c)
2

μ1−1/q(c, d)

(
|eαcf ′(c)|q

∫ 1

0
|1− 2t |h(t)A−2

t dt

+|eαdf ′(d)|q
∫ 1

0
|1− 2t |h(1− t)A−2

t dt

)1/q

,

where

μ(c, d) =
∫ 1

0

|1− 2t |
A2
t

dt = c−2
[

2F1

(
2, 2; 3; 1− d

c

)
− 2F1

(
2, 1; 2; 1− d

c

)

+1

2
2F1

(
2, 1; 3; 1

2

(
1− d

c

))]
.

This completes the proof. ��
We now discuss some new special cases of Theorem 3.

I. If h(t) = t s and the function f is Breckner type of harmonically exponential
s-convex, then inequality (16) becomes

∣∣∣∣f (c)+ f (d)2
− cd

d − c
∫ d

c

f (x)

x2
dx

∣∣∣∣
≤ cd(d − c)

2
μ1−1/q(c, d)

[
μ1(s; c, d)|eαcf ′(c)|q + μ2(s; c, d)|eαdf ′(d)|q

]1/q
,
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where

μ1(s; c, d) = c−2
[

2

s + 2
2F1

(
2, s + 2; s + 3; 1−

⊎ d

c

)

− 1

s + 1
2F1

(
2, s + 1; s + 2; 1− d

c

)

+ 1

2s(s + 1)(s + 2)
2F1

(
2, s + 1; s + 3; 1

2

(
1− d

c

))]
,

and

μ2(s; c, d) = c−2
[

2

(s + 1)(s + 2)
2F1

(
2, 2; s + 3; 1− d

c

)

− 1

s + 1
2F1

(
2, 1; s + 2; 1− d

c

)

+1

2
2F1

(
2, 1; 3; 1

2

(
1− d

c

))]
.

II. If h(t) = t−s and the function f is Breckner type of harmonically exponential
s-Godunova–Levin function, then inequality (16) becomes
∣∣∣∣f (c)+ f (d)2

− cd

d − c
∫ d

c

f (x)

x2
dx

∣∣∣∣
≤ cd(d − c)

2
μ1−1/q(c, d)

[
ν1(s; c, d)|eαcf ′(c)|q + ν2(s; c, d)|eαdf ′(d)|q

]1/q
,

where

ν1(s; c, d) = c−2
[

2

2− s 2F1

(
2, 2− s; 3− s; 1− d

c

)

− 1

1− s 2F1

(
2, 1− s; 2− s; 1− d

c

)

+ 2s

(1− s)(2− s) 2F1

(
2, 1− s; 3− s; 1

2

(
1− d

c

))]
,

and

ν2(s; c, d) = c−2
[

1

(1− s)(2− s) 2F1

(
2, 2; 3− s; 1− d

c

)

− 1

1− s 2F1

(
2, 1; 2− s; 1− d

c

)

+1

2
2F1

(
2, 1; 3; 1

2

(
1− d

c

))]
.
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Theorem 4 Let f : I ⊆ R+ → R be a differentiable function on I 0 such that
f ′ ∈ L[c, d], where c, d ∈ I 0 with c < d. If the function |f ′|q , q > 1 is harmonic
h-convex, then we have

∣∣∣∣ cdd − c
∫ d

c

f (x)

x2 dx − f
(

2cd

c + d
)∣∣∣∣

≤ cd(d − c)
[
ψ

1−1/q
1 (c, d)

(∫ 1/2

0

t

A2
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

+ψ1−1/q
2 (c, d)

(∫ 1

1/2

1− t
A2
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q]
, (17)

where

ψ1(c, d) = 1

8c2 2F1

[
2, 2; 3; 1

2

(
1− d

c

)]
,

ψ2(c, d) = 1

2(c + d)2 2F1

[
2, 1; 3; c − d

c + d
]
,

and At = (1− t)c + td.

Proof From Lemma 2, the power mean inequality and the harmonic h-convexity of
|f ′|q , with q > 1, we have

∣∣∣∣ cdd − c
∫ d

c

f (x)

x2
dx − f

(
2cd

c + d
)∣∣∣∣

≤ cd(d − c)
[∫ 1/2

0

t

A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt +
∫ 1

1/2

|t − 1|
A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt
]

≤ cd(d − c)
[(∫ 1/2

0

t

A2
t

dt

)1−1/q (∫ 1/2

0

t

A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣
q

dt

)1/q

+
(∫ 1

1/2

1− t
A2
t

dt

)1−1/q (∫ 1

1/2

1− t
A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣
q

dt

)1/q]

≤ cd(d − c)
[
ψ1(c, d)

1−1/q
(∫ 1/2

0

t

A2
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

+ψ2(c, d)
1−1/q

(∫ 1

1/2

1− t
A2
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q]
,
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where

ψ1(c, d) =
∫ 1/2

0

t

A2
t

dt = 1

8c2 2F1

(
2, 2; 3; 1

2

(
1− d

c

))

and

ψ2(c, d) =
∫ 1

1/2

1− t
A2
t

dt = 1

2(c + d)2 2F1

(
2, 1; 3; c − d

c + d
)
.

This completes the proof. ��
Theorem 5 Let f : I ⊆ R+ → R be a differentiable function on I 0 such that
f ′ ∈ L[c, d], where c, d ∈ I 0 with c < d. If the function |f ′|q , q > 1 is harmonic
h-convex, then

∣∣∣∣f (c)+ f (d)2
− cd

d − c
∫ d

c

f (x)

x2
dx

∣∣∣∣
≤ cd(d − c)

2(p + 1)1/p

(
|eαcf ′(c)|q

∫ 1

0
h(t)A

−2q
t dt

+|eαdf ′(d)|q
∫ 1

0
h(1− t)A−2q

t dt

)1/q

, (18)

where At = (1− t)c + td, 1
p
+ 1
q
= 1.

Proof Using Lemma 1, Hölder’s inequality, and the harmonic h-convexity of |f ′|q ,
we have∣∣∣∣∣
f (c)+ f (d)

2
− cd

d − c
∫ d
c

f (x)

x2
dx

∣∣∣∣∣
≤ cd(d − c)

2

∫ 1

0

|1− 2t |
A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt

≤ cd(d − c)
2

K
1/p
1

(∫ 1

0

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

≤ cd(d − c)
2(p + 1)1/p

(
|eαcf ′(c)|q

∫ 1

0
h(t)A

−2q
t dt + |eαdf ′(d)|q

∫ 1

0
h(1− t)A−2q

t dt

)1/q

,

where

K1 =
∫ 1

0
|1− 2t |dt = 1

p + 1
.

This completes the proof. ��
We discuss some special cases of Theorem 5.
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I. If h(t) = t s and the function f is harmonic s-convex and inequality (18) reduces
to ∣∣∣∣f (c)+ f (d)2

− cd

d − c
∫ d

c

f (x)

x2 dx

∣∣∣∣
≤ d(d − c)

2c

(
1

p + 1

)1/p ( 1

s + 1

)1/q

×
(

2F1

(
2q, s + 1; s + 2; 1− d

c

)
|eαcf ′(c)|q

+2F1

(
2q, 1; s + 2; 1− d

c

)
|eαdf ′(d)|q

)1/q

,

where 1
p
+ 1
q
= 1.

II. If h(t) = t−s and the function f is harmonic s-Godunova–Levin function, then
the inequality (18) reduces to the following new result.

∣∣∣∣∣
f (c)+ f (d)

2
− cd

d − c
∫ d
c

f (x)

x2
dx

∣∣∣∣∣

≤ d(d − c)
2c

(
1

p + 1

)1/p ( 1

1− s
)1/q (

2F1

(
2q, 1− s; 2− s; 1− d

c

)
|eαcf ′(c)|q

+ 2F1

(
2q, 1; 2− s; 1− d

c

)
|eαdf ′(d)|q

)1/q
,

where 1
p
+ 1
q
= 1.

Theorem 6 Let f : I ⊆ R+ → R be a differentiable function on I 0 such that
f ′ ∈ L[c, d], where c, d ∈ I 0 with c < d. If |f ′|q with q > 1 is harmonic h-convex
function, then

∣∣∣∣ cdd − c
∫ d

c

f (x)

x2 dx − f
(

2cd

c + d
)∣∣∣∣

≤ cd(d − c)
2

(
1

2(p + 1)

)1/p

×
⎡
⎣
(∫ 1/2

0

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

+
(∫ 1

1/2

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q
⎤
⎦ ,

where At = (1− t)c + td and 1
p
+ 1
q
= 1.
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Proof From Lemma 2, Hölder’s inequality, and the harmonic h-convexity of |f ′|q ,
we get

∣∣∣∣ cdd − c
∫ d

c

f (x)

x2 dx − f
(

2cd

c + d
)∣∣∣∣

≤ cd(d − c)
[∫ 1/2

0

t

A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt +
∫ 1

1/2

t − 1

A2
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣ dt
]

≤ cd(d − c)
⎡
⎣
(∫ 1/2

0
tpdt

)1/p (∫ 1/2

0

1

A
2q
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣
q

dt

)1/q

+
(∫ 1

1/2
|t − 1|pdt

)1/p (∫ 1

1/2

1

A
2q
t

∣∣∣∣f ′
(
cd

At

)∣∣∣∣
q

dt

)1/q
⎤
⎦

≤ cd(d − c)
[(

1

2p+1(p + 1)

)1/p

×
(∫ 1/2

0

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

+
(

1

2p+1(p + 1)

)1/p

×
(∫ 1

1/2

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q
⎤
⎦

= cd(d − c)
2

(
1

2(p + 1)

)1/p

×
⎡
⎣
(∫ 1/2

0

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q

+
(∫ 1

1/2

1

A
2q
t

(
h(t)|eαcf ′(c)|q + h(1− t)|eαdf ′(d)|q

)
dt

)1/q
⎤
⎦ .

This completes the proof. ��
Now using Lemma 3 as an auxiliary result, we derive our coming results.
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Theorem 7 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′| is harmonic h-convex function, then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

≤ cd(d − c)
⎡
⎣{|eαcf ′(c)| + |eαdf ′(d)|}

⎧⎨
⎩

1∫
0

∣∣∣∣t − 1

2

∣∣∣∣ (ν1 + ν2) (ν3 + ν4) dt

⎫⎬
⎭
⎤
⎦ ,

where

ν1 = h
(

1+ t
2

)
(19)

ν2 = h
(

1− t
2

)
(20)

ν3 = 1

((1− t)c + (1+ t)d)2 , (21)

and

ν4 = 1

((1+ t)c + (1− t)d)2 . (22)

Proof Using Lemma 3, the harmonic h-convexity of |f ′|, we have

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2
dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣cd(d − c)

⎡
⎣

1∫
0

(
1

2
− t
)(

1

(1− t)c + (1+ t)d
)2

f ′
(

2cd

(1− t)c + (1+ t)d
)

dt

+
1∫

0

(
t − 1

2

)(
1

(1+ t)c + (1− t)d
)2

f ′
(

2cd

(1+ t)c + (1− t)d
)⎤
⎦
∣∣∣∣∣∣
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≤ cd(d − c)

×
⎡
⎣

1∫
0

∣∣∣∣t − 1

2

∣∣∣∣
(

1

(1− t)c + (1+ t)d
)2 ∣∣∣∣f ′

(
2cd

(1− t)c + (1+ t)d
)∣∣∣∣ dt

+
1∫

0

∣∣∣∣t − 1

2

∣∣∣∣
(

1

(1+ t)c + (1− t)d
)2 ∣∣∣∣f ′

(
2cd

(1+ t)c + (1− t)d
)∣∣∣∣ dt

⎤
⎦

≤ cd(d − c)

×
[ 1∫

0

∣∣∣∣t − 1

2

∣∣∣∣
(

1

(1− t)c + (1+ t)d
)2

×
{
h

(
1+ t

2

)
|eαcf ′(c)| + h

(
1− t

2

)
|eαdf ′(d)|

}
dt

+
1∫

0

∣∣∣∣t − 1

2

∣∣∣∣
(

1

(1− t)c + (1+ t)d
)2

×
{
h

(
1− t

2

)
|eαcf ′(c)| + h

(
1+ t

2

)
|eαdf ′(d)|

}
dt

]

= cd(d − c)

×
[
{|eαcf ′(c)| + |eαdf ′(d)|}

{ 1∫
0

∣∣∣∣t − 1

2

∣∣∣∣
(
h

(
1+ t

2

)
+ h

(
1− t

2

))

×
(

1

((1− t)c + (1+ t)d)2 +
1

((1+ t)c + (1− t)d)2
)

dt

}
.

This completes the proof. ��
We now discuss some special cases of Theorem 7. It is worth to mention here that
all these special cases also appear to be new in the literature.

I. If h(t) = t in Theorem 7, then we have result for harmonic convex functions.

Corollary 9 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′| is harmonic convex function, then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣
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≤ cd(d − c)
2(c + d)2

[
|eαcf ′(c)| + |eαdf ′(d)|

]
(ϕ1 + ϕ2) ,

where

ϕ1 = 2F1

(
2, 2; 3; c − d

c + d
)
− 2F1

(
2, 1; 2; c − d

c + d
)
+ 1

4
2F1

(
2, 1; 3; c − d

c + d
)

and

ϕ2 = 2F1

(
2, 2; 3; d − c

c + d
)
− 2F1

(
2, 1; 2; d − c

c + d
)
+ 1

4
2F1

(
2, 1; 3; d − c

c + d
)
.

II. If h(t) = t s in Theorem 7, then we have result for harmonic s-convex functions.

Corollary 10 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′| is harmonic s-convex function, then
for s ∈ (0, 1), we have

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣
≤ cd(d − c)

[
|eαcf ′(c)| + |eαdf ′(d)|

]
(I1 + I2) ,

where

I1 =
∫ 1/2

0

(
1

2
− t
) (
ν∗1 + ν∗2

) (
ν∗3 + ν∗4

)
dt = J1 + J2 + J3 + J4,

with

J1 =
∫ 1/2

0

(
1

2
− t
)
ν∗1ν∗3 dt

J2 =
∫ 1/2

0

(
1

2
− t
)
ν∗1ν∗4 dt

J3 =
∫ 1/2

0

(
1

2
− t
)
ν∗2ν∗3 dt

= 1

2s+3d2

[
2

s + 2
2F1

(
2, s + 2; s + 3; d − c

2d

)
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− 1

s + 1
2F1

(
2, s + 1; s + 2; d − c

2d

)

+ 1

2s+1(s + 1)(s + 2)
2F1

(
2, s + 1; s + 3; d − c

4d

)]
,

J4 =
∫ 1/2

0

(
1

2
− t
)
ν∗2ν∗4 dt

= 1

2s+3c2

[
2

s + 2
2F1

(
2, s + 2; s + 3; c − d

2c

)

− 1

s + 1
2F1

(
2, s + 1; s + 2; c − d

2c

)

+ 1

2s+1(s + 1)(s + 2)
2F1

(
2, s + 1; s + 3; c − d

4c

)]
,

and

I2 =
∫ 1

1/2

(
t − 1

2

) (
ν∗1 + ν∗2

) (
ν∗3 + ν∗4

)
dt = K1 +K2 +K3 +K4

with

K1 =
∫ 1

1/2

(
t − 1

2

)
ν∗1ν∗3 dt

K2 =
∫ 1

1/2

(
t − 1

2

)
ν∗1ν∗4 dt

K3 =
∫ 1

1/2

(
t − 1

2

)
ν∗2ν∗3 dt

= 1

22s+4d2(s + 1)(s + 2)
2F1

(
2, 2; s + 3; d − c

4d

)
,

K4 =
∫ 1

1/2

(
t − 1

2

)
ν∗2ν∗4 dt

= 1

22s+4c2(s + 1)(s + 2)
2F1

(
2, 2; s + 3; c − d

4c

)
.
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III. If h(t) = t−s in Theorem 7, then we have result for harmonic s-Godunova–
Levin convex functions.

Corollary 11 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′| is harmonic s-Godunova–Levin
convex function, then for s ∈ [0, 1], we have

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣
≤ cd(d − c)

[
|eαcf ′(c)| + |eαdf ′(d)|

] (
I ∗1 + I ∗2

)
,

where

I ∗1 =
∫ 1/2

0

(
1

2
− t
)(
ν
�
1 + ν�2

) (
ν
�
3 + ν�4

)
dt = J ∗1 + J ∗2 + J ∗3 + J ∗4 ,

with

J ∗1 =
∫ 1/2

0

(
1

2
− t
)
ν
�
1ν
�
3dt

J ∗2 =
∫ 1/2

0

(
1

2
− t
)
ν
�
1ν
�
4dt

J ∗3 =
∫ 1/2

0

(
1

2
− t
)
ν
�
2ν
�
3dt

= 1

2−s+3d2

[
2

−s + 2
2F1

(
2,−s + 2;−s + 3; d − c

2d

)

− 1

−s + 1
2F1

(
2,−s + 1;−s + 2; d − c

2d

)

+ 1

2−s+1(−s + 1)(−s + 2)
2F1

(
2,−s + 1;−s + 3; d − c

4d

)]

J ∗4 =
∫ 1/2

0

(
1

2
− t
)
ν
�
2ν
�
4dt

= 1

2s+3c2

[
2

s + 2
2F1

(
2, s + 2; s + 3; c − d

2c

)
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− 1

s + 1
2F1

(
2, s + 1; s + 2; c − d

2c

)

+ 1

2s+1(s + 1)(s + 2)
2F1

(
2, s + 1; s + 3; c − d

4c

)]
,

and

I ∗2 =
∫ 1

1/2

(
t − 1

2

)(
ν
�
1 + ν�2

) (
ν
�
3 + ν�4

)
dt = K∗1 +K∗2 +K∗3 +K∗4 ,

with

K∗1 =
∫ 1

1/2

(
t − 1

2

)
ν
�
1ν
�
3dt

K∗2 =
∫ 1

1/2

(
t − 1

2

)
ν
�
1ν
�
4dt

K∗3 =
∫ 1

1/2

(
t − 1

2

)
ν
�
2ν
�
3dt

= 1

2−2s+4d2(−s + 1)(−s + 2)
2F1

(
2, 2;−s + 3; d − c

4d

)

K∗4 =
∫ 1

1/2

(
t − 1

2

)
ν
�
2ν
�
4dt

= 1

2−2s+4c2(−s + 1)(−s + 2)
2F1

(
2, 2;−s + 3; c − d

4c

)
.

Theorem 8 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′|q is harmonic h-convex function
where q > 1, 1

p
+ 1
q
= 1, then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

≤ cd(d − c)
(

1

2p(1+ p)
) 1
p
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×

⎡
⎢⎢⎣
⎛
⎝

1∫
0

ν
q

3

{
ν1|eαcf ′(c)|q + ν2|eαdf ′(d)|q

}
dt

⎞
⎠

1
q

+
⎛
⎝

1∫
0

ν
q

4

{
ν2|eαcf ′(c)|q + ν1|eαdf ′(d)|q

}
dt

⎞
⎠

1
q

⎤
⎥⎥⎦ ,

where ν1, ν2 are given by (19), (20) and

ν
q

3 = 1

((1− t)c + (1+ t)d)2q , (23)

and

ν
q

4 = 1

((1+ t)c + (1− t)d)2q . (24)

Proof Using Lemma 3, Holder’s inequality, and the fact that |f ′|q is harmonic h-
convex function, we have

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣cd(d − c)

⎡
⎣

1∫
0

(
1

2
− t
)(

1

(1− t)c + (1+ t)d
)2

f ′
(

2cd

(1− t)c + (1+ t)d
)

dt

+
1∫

0

(
t − 1

2

)(
1

(1+ t)c + (1− t)d
)2

f ′
(

2cd

(1+ t)c + (1− t)d
)⎤⎦
∣∣∣∣∣∣

≤ cd(d − c)

⎡
⎢⎢⎣
⎛
⎝

1∫
0

∣∣∣∣t − 1

2

∣∣∣∣
p

dt

⎞
⎠

1
p

×
⎛
⎝

1∫
0

1

((1− t)c + (1+ t)d)2q
∣∣∣∣f ′
(

2cd

(1− t)c + (1+ t)d
)∣∣∣∣ dt

⎞
⎠

1
q
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+
⎛
⎝

1∫
0

∣∣∣∣t − 1

2

∣∣∣∣
p

dt

⎞
⎠

1
p

×
⎛
⎝

1∫
0

1

((1− t)c + (1+ t)d)2q
∣∣∣∣f ′
(

2cd

(1− t)c + (1+ t)d
)∣∣∣∣ dt

⎞
⎠

1
q

⎤
⎥⎥⎦

≤ cd(d − c)
(

1

2p(1+ p)
) 1
p

×
⎡
⎣
⎛
⎝

1∫
0

(
1

((1− t)c + (1+ t)d)2q
)

×
[
h

(
1+ t

2

)
|eαcf ′(c)|q + h

(
1− t

2

)
|eαdf ′(d)|q

]
dt

) 1
q

+
⎛
⎝

1∫
0

(
1

((1− t)c + (1+ t)d)2q
)

×
[
h

(
1− t

2

)
|eαcf ′(c)|q + h

(
1+ t

2

)
|eαdf ′(d)|q

]
dt

) 1
q

]

= cd(d − c)
(

1

2p(1+ p)
) 1
p

×

⎡
⎢⎢⎣
⎛
⎝

1∫
0

ν
q

3

{
ν1|eαcf ′(c)|q + ν2|eαdf ′(d)|q

}
dt

⎞
⎠

1
q

+
⎛
⎝

1∫
0

ν
q

4

{
ν2|eαcf ′(c)|q + ν1|eαdf ′(d)|q

}
dt

⎞
⎠

1
q

⎤
⎥⎥⎦ .

This completes the proof. ��
Now we discuss some special cases of Theorem 8.
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I. If h(t) = t in Theorem 8, then we have result for harmonic convex functions.

Corollary 12 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′|q is harmonic convex function where
q > 1, 1

p
+ 1
q
= 1, then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2
dx

∣∣∣∣∣∣

≤ cd(d − c)
(

1

2p(1+ p)
) 1
p (
φ

1/q
1 + φ1/q

2

)
,

where

φ1 =
1∫

0

ν
q
3

{
ν1|eαcf ′(c)|q + ν2|eαdf ′(d)|q

}
dt

= 1

2(c + d)2q
{
|eαcf ′(c)|q

[
2F1

(
2q, 1; 2; c − d

c + d
)
+ 1

2 2F1

(
2q, 2; 3; c − d

c + d
)]

+1

2
|eαdf ′(d)|q 2F1

(
2q, 1; 3; c − d

c + d
)}
,

and

φ2 =
1∫

0

ν
q

4

{
ν2|eαcf ′(c)|q + ν1|eαdf ′(d)|q

}
dt

= 1

2(c + d)2q
{

1

2
|eαcf ′(c)|q 2F1

(
2q, 1; 3; d − c

c + d
)

+|eαdf ′(d)|q
[

2F1

(
2q, 1; 2; d − c

c + d
)
+ 1

2
2F1

(
2q, 2; 3; d − c

c + d
)]}

.

II. If h(t) = t s in Theorem 8, then we have result for harmonic s-convex functions.

Corollary 13 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′|q is harmonic s-convex function,
where q > 1, 1

p
+ 1
q
= 1, s ∈ (0, 1), then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

≤ cd(d − c)
(

1

2p(1+ p)
) 1
p (
η

1/q
1 + η1/q

2

)
,
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where

η1 =
1∫

0

ν
q

3

{
ν1|eαcf ′(c)|q + ν2|eαdf ′(d)|q

}
dt = |eαcf ′(c)|qM1 + |eαdf ′(d)|qM2

with

M1 =
∫ 1

0
ν1ν

q

3 dt = 1

2s(c + d)2q
∫ 1

0
(1+ t)s

(
1− c − d

c + d t
)−2q

dt

M2 =
∫ 1

0
ν2ν

q

3 dt

= 1

2s(c + d)2q
∫ 1

0
(1− t)s

(
1− c − d

c + d t
)−2q

dt

= 1

2s(s + 1)(c + d)2q 2F1

(
2q, 1; s + 2; c − d

c + d
)
,

and

η2 =
1∫

0

ν
q

4

{
ν2|eαcf ′(c)|q + ν1|eαdf ′(d)|q

}
dt = |eαcf ′(c)|qN1 + |eαdf ′(d)|qN2,

with

N1 =
∫ 1

0
ν2ν

q

4 dt

= 1

2s(c + d)2q
∫ 1

0
(1− t)s

(
1− d − c

c + d t
)−2q

dt

= 1

2s(s + 1)(c + d)2q 2F1

(
2q, 1; s + 2; d − c

c + d
)

N2 =
∫ 1

0
ν1ν

q

4 dt

= 1

2s(c + d)2q
∫ 1

0
(1+ t)s

(
1− d − c

c + d t
)−2q

dt.

III. If h(t) = t−s in Theorem 8, then we have result for harmonic s-Godunova–
Levin convex functions.
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Corollary 14 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′|q is harmonic s-Godunova–Levin
convex function where q > 1, 1

p
+ 1
q
= 1, s ∈ [0, 1], then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

≤ cd(d − c)
(

1

2p(1+ p)
) 1
p (
ψ

1/q
1 + ψ1/q

2

)
,

where

ψ1 =
1∫

0

ν
q

3

{
ν1|eαcf ′(c)|q + ν2|eαdf ′(d)|q

}
dt= |eαcf ′(c)|qM∗

1 + |eαdf ′(d)|qM∗
2 ,

with

M∗
1 =

∫ 1

0
ν1ν

q

3 dt = 1

2−s(c + d)2q
∫ 1

0
(1+ t)−s

(
1− c − d

c + d t
)−2q

dt

M∗
2 =

∫ 1

0
ν2ν

q

3 dt

= 1

2−s(c + d)2q
∫ 1

0
(1− t)−s

(
1− c − d

c + d t
)−2q

dt

= 1

2−s(−s + 1)(c + d)2q 2F1

(
2q, 1;−s + 2; c − d

c + d
)
,

and

ψ2 =
1∫

0

ν
q

4

{
ν2|eαcf ′(c)|q + ν1|eαdf ′(d)|q

}
dt= |eαcf ′(c)|qN∗1 + |eαdf ′(d)|qN∗2 ,

with

N∗1 =
∫ 1

0
ν2ν

q

4 dt

= 1

2−s(c + d)2q
∫ 1

0
(1− t)−s

(
1− d − c

c + d t
)−2q

dt

= 1

2−s(−s + 1)(c + d)2q 2F1

(
2q, 1;−s + 2; d − c

c + d
)
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N∗2 =
∫ 1

0
ν1ν

q

4 dt = 1

2−s(c + d)2q
∫ 1

0
(1+ t)−s

(
1− d − c

c + d t
)−2q

dt.

IV. If h(t) = 1 in Theorem 8, then we have result for harmonic P -functions.

Corollary 15 Let f : I ⊆ R+ → R be a differentiable function on I 0, where
c, d ∈ I with c < d and f ′ ∈ L[c, d]. If |f ′|q is harmonic P -function where,
q > 1, 1

p
+ 1
q
= 1, then

∣∣∣∣∣∣
1

2

[
f (c)+ f (d)

2
+ f

(
2cd

c + d
)]
− cd

d − c
d∫
c

f (x)

x2 dx

∣∣∣∣∣∣

≤ cd(d − c)
(c + d)2

(
1

2p(1+ p)
) 1
p

×
(
|eαcf ′(c)|q + |eαdf ′(d)|q

)1/q
[

2F1

(
2q, 1; 2; c − d

c + d
)
+ 2F1

(
2q, 1; 2; d − c

c + d
)]1/q

.
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42. S. Varošanec, On h-convexity. J. Math. Anal. Appl. 326, 303–311 (2007)



On the Hardy–Sobolev Inequalities

Athanase Cotsiolis and Nikos Labropoulos

Abstract In this paper, we present a short survey on the Hardy–Sobolev inequal-
ities, considering the classical case and the fractional as well, by collecting some
important known results in the area and some new results where the concept of
symmetry plays an important role.

1 Introduction

Hardy–Sobolev inequalities are among the most important functional inequalities in
analysis because of their very interesting autonomous existence and also because of
their strong connection with the solvability of a large number of nonlinear partial
differential equations. As it is known, Hardy-type and Sobolev-type inequalities
constitute essential tools in Analysis, in the study of partial differential equations,
and in the Calculus of variations. In addition, we can find various applications in
Geometry, in Mathematical Physics, and in Astrophysics.

In this paper, we present a short survey on Hardy–Sobolev inequalities by
collecting some important known results in the area and some new results where
the concept of symmetry plays an important role.

The paper is organized as follows: In Sects. 1.1–1.4 we give a short survey,
concluding some important results, concerning firstly the Sobolev and secondly the
Hardy inequalities. In Sect. 2, we present the Hardy–Sobolev inequalities (old and
new results). Section 3 is devoted to the concept of symmetry of the view of the
analysis to the sharp Hardy–Sobolev inequality.
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1.1 Sobolev Inequalities

We consider the Euclidean space Rn, n ≥ 3. The Sobolev embeddingW 1,2(Rn) ↪→
L2∗(Rn), where 2∗ = 2n

n−2 , proved by Sobolev in 1938 [60], asserts that for every
u ∈ W 1,2(Rn) exists a positive constant Cn such that

⎛
⎝∫
Rn

|u|2∗ dx
⎞
⎠

1
2∗

� Cn

⎛
⎝∫
Rn

|∇u|2 dx
⎞
⎠

1
2

. (1)

Also, by Sobolev embedding theorem arises that for any p ∈ [1, n) exists a positive
constant Cn,p such that for every u ∈ W 1,p(Rn)

⎛
⎝∫
Rn

|u|p∗ dx
⎞
⎠

1
p∗

� Cn,p

⎛
⎝∫
Rn

|∇u|p dx
⎞
⎠

1
p

, (2)

where p∗ = np
n−p , is the critical exponent for this inequality in the sense that it

cannot become lower nor higher and the inequality be in effect, and | · | denotes the
standard Euclidean norm on R

n.
W 1,p(Rn) is the classical Sobolev space, that is

W 1,p(Rn) = {u ∈ Lp(Rn) : ∇u ∈ Lp(Rn)},
which is defined for any integer n ≥ 1 and for all real numbers p ≥ 1. Here, Lp(Rn)
is the usual Lebesgue space of order p, and∇ stands for the gradient operator, acting
on the distribution space D ′(Rn), where D(Rn) = C∞0 (Rn).

Recall that the best constant in front of the gradient term in inequality (2) is
defined to be

C−1
n,p = inf

u∈Lp∗(Rn)\{0}
∇u∈Lp(Rn)

∫
Rn
|∇u|pdx(∫

Rn
|u|p∗dx) pp∗ , (3)

and it has been proven that

Cn,1 = 1

n

(
n

ωn−1

) 1
n

, (4)

Cn,p = 1

n

(
n (p − 1)

n− p
)1− 1

p

⎛
⎝ Γ (n+ 1)

Γ
(
n
p

)
Γ
(
n+ 1− n

p

)
ωn−1

⎞
⎠

1
p

, (5)

where ωn−1 is the area of the unit sphere in R
n and Γ is the gamma function.
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In this case, i.e. when 1 < p < n, the value of Cn,1 was explicitly computed
independently by Aubin [1] and Talenti [64] and is attained by the functions

ϕ(x) = c(λ+ |x − x0|
p
p−1 )

1− n
p , (6)

where c ∈ R, λ > 0 and x0 ∈ R
n are fixed constants.

In particular by (5) for p = 2 arises that

Cn,2 = 1

n (n− 2) π

(
Γ (n)

Γ
(
n
2

)
) 2
n

(7)

and the extremal functions are

ϕ(x) = c
(
λ+ |x − x0|2

)− n−2
2
. (8)

In the special case where p = 1, the sharp form of the Sobolev inequality in R
n is

of the form

⎛
⎝∫
Rn

|f | nn−1 dx

⎞
⎠
n−1
n

� Cn,1

∫
Rn

|∇f | dx, (9)

where the constant Cn,1 is defined by (4).
Federer, Fleming, and Rishel in [27] and [29] by using the Coarea Formula

have proved that the above inequality arises from the usual isoperimetric inequality,
(see [27, 29] and [26]). The exact value of Cn,1 was computed by Federer and
Fleming [27] and by Maz’ya [52], and the extremal functions in this case are the
characteristic functions of the balls of Rn.

Concerning the values of the best constants, it is worth mentioning that Aubin
[2] proved that the constant Cn,1 is obtained as a limit of Cn,p as p tends to 1+, and
that Talenti’s proof is also based on the Coarea Formula and follows implicitly that
sharp Sobolev inequality for p = 1 reduces to the isoperimetric inequality.

By completing this brief survey on Sobolev inequalities, i.e. where one wants to
control the size of a function in terms of the size of its gradient, we consider it useful
to point out that the inequalities of this type first appeared long before the time of
Sobolev. In particular, Steklov in 1896 [61] proved that the inequality

a∫
0

u2 (x)dx �
(

1

π

)2 a∫
0

∣∣u′ (x)∣∣2 dx (10)

holds for all functions which are continuously differentiable on [0, a] and they have
zero mean there. The inequality (10) was among the earliest inequalities with sharp
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constant that appeared in Mathematical Physics. The fact that the constant in (10) is
sharp was emphasized by Steklov in [63].

The next year (1897), Steklov published the article [62], in which the following
analogue of the inequality (10) was proved:

∫
Ω

u2dx � C
∫
Ω

|∇u|2 dx. (11)

Here, ∇ stands for the gradient operator and the integral on the right-hand side is
called the Dirichlet integral. The assumptions made by Steklov are as follows: Ω is
a bounded three-dimensional domain whose boundary is piecewise smooth and u is
a real C1-function on Ω̄ vanishing on ∂Ω . Again, the inequality (11) was obtained
by Steklov with the sharp constant equal to λ−1

1 , where λ1 is the smallest eigenvalue
of the Dirichlet Laplacian in Ω .

For a complete study on the best constants in Sobolev inequalities, see in the
books [2, 19, 41, 53, 59] and for a short survey in [47].

1.2 Hardy Inequalities

The classical Hardy inequality was established by Hardy in the 1920s and in the
continuous form it informs us that:

If 1 < p < ∞ and f is a non-negative p-integrable function on (0,∞), then f
is integrable over the interval (0, x) for each positive x and

∞∫
0

⎛
⎝ 1

x

x∫
0

f (t) dt

⎞
⎠
p

dx �
(

p

p − 1

)p ∞∫
0

f p (x) dx. (12)

The constant
(
p
p−1

)p
in (12) is sharp, i.e. it cannot be replaced with a smaller

number such that (12) remains true for all relevant functions, respectively, and
equality holds only if f = 0.

The inequality (12) was established by Hardy in [37] and was first highlighted in
the famous book [39] of Hardy, Littlewood, and Polya or in the original article of
Hardy [38], which also showed that the constant is not attained, i.e. the variational
problem has no minimizer. A proof of the above inequality was given by Landau,
in a letter to Hardy, which was officially published in [48]. For a short but very
informative presentation of the prehistory of Hardy’s inequality see in [46].

Coming back to the inequality (12), if we set u (x) =
x∫
0
f (t) dt , we obtain the

inequality
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∞∫
0

(
u (x)

x

)p
dx �

(
p

p − 1

)p ∞∫
0

(
u′ (x)

)p
dx, (13)

which is the most popular form of the classical Hardy inequality in contemporary
literature.

The following Hardy inequality is the classical generalization of Hardy inequal-
ity (13) to higher dimensions and asserts that for n > 1, 1 ≤ p < ∞ with p �= n
and for all u ∈ C∞0 (Rn\{0}, it holds (see [39] or [57])

∫
Rn

|u(x)|p
|x|p dx �

(
p

|n− p|
)p ∫

Rn

|∇u(x))p dx. (14)

The constant
(

p
|n−p|

)p
is sharp and is not attained in the corresponding Sobolev

spaces, which is W 1,p (Rn) when 1 ≤ p < n and W 1,p (Rn\ {0}) when n < p <
∞. If p = 1, equality holds for any symmetric decreasing function. For p = 2 and
n > 2, this inequality is also called “the uncertainty principle.”

We note here that in the one-dimensional case, it was proved by Hardy in 1925
that for all p-integrable, p > 1 on (0, 1), functions u, it holds

1∫
0

|u(x)|p
d
p

(0,1)(x)
dx �

(
p

p − 1

)p 1∫
0

∣∣u′ (x)∣∣p dx, (15)

where d(0,1)(x) = min(x, 1 − x) (see in [37, 38] and [9]). In addition, Hardy
showed that the constant is not attained, i.e. the variational problem has no
minimizer. Furthermore, inequality (15) confirms that in the one-dimensional case
no geometrical assumption is required on the domain.

In regard to Hardy inequalities for domains in R
n, n � 2 the situation is far

more complicated than in the one-dimensional case and in general the best constant
in (14) depends on the domain.

In aim to establish it in domains it is necessary first to establish it in the half
space R

n+ = R
n−1 × (0,∞). If we denote by x = (

x′, xn
)

a point in R
n, where

x′ = (x1, . . . , xn−1), the Hardy inequality in the half space Rn+ asserts that if p > 1,
then for all u ∈ C∞0

(
R
n+
)

∫
R
n+

|u|p
x
p
n

dx �
(

p

p − 1

)p ∫
R
n+

|∇u|p dx, (16)

where the constant
(
p
p−1

)p
is sharp and is not attained inW 1,2

0 (Rn+) [56, 57].
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As a direct generalization of inequality (14) on domains in R
n, n ≥ 2 we can

take the following: Let Ω be a domain in R
n, n ≥ 2 with nonempty boundary and

1 ≤ p <∞. GivenΩ , let dΩ(x) be the distance from x to the boundary ∂Ω , that is
dΩ (x) = min {|x − y| : y /∈ Ω} . Then, the Hardy inequality in higher dimensions
should be of the type

∫
Ω

|u|p
d
p
Ω

dx � μ
∫
Ω

|∇u|p dx, (17)

which means that there exists a positive constant μ such that the inequality (17)
is valid for all u belonging to some suitable space. And if that is so, does it valid
unconditionally on Ω , or are some prerequisites necessary, and if so, which ones?
Maz’ya has shown in 1960 that the validity of the Hardy inequality depends on
measure theoretical conditions on the domain [52, 53]. Additionally, Hardy-type
inequalities in R

n, n � 2, appeared by Nĕcas in 1962 [56] in the context of
Lipschitz domains. However, in regard to Hardy inequalities for domains Ω in
R
n, n � 2, the best constant in (17) depends on the domain Ω and no universal

Hardy constant exists.
Regarding the study on the best constants in Hardy inequalities, see in the books

[4, 35, 57], in the paper [5] and the references of it. For a short survey in [13].

1.3 Fractional Sobolev Inequalities

We recall the definition of the Fourier transform of a distribution. Consider the
Schwartz space J (Rn) of rapidly decaying C∞ functions in R

n and J ′(Rn) be
the set of all tempered distributions, that is the topological dual of it (see in [17] for
details).

For any u ∈J (Rn), we denote by

û (ξ) = 1

(2π)
n
2

∫
Rn

e−ix·ξ u (x)dx, ξ ∈ R
n (18)

the Fourier transform of u.
Let Ω be a general, possibly nonsmooth, open set in R

n and a fix fractional
exponent σ ∈ (0, 1). Then, for any p ∈ [1,+∞), we define the fractional Sobolev
spaceWσ,p(Ω) as follows:

Wσ,p (Ω) =
{
u ∈ Lp (Ω) : |u (x)− u (y)|

|x − y| np+σ
∈ Lp (Ω ×Ω)

}
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endowed with the natural norm

‖u‖Wσ,p(Ω) =
⎛
⎝∫
Ω

|u|p dx +
∫∫
Ω×Ω

|u (x)− u (y)|p
|x − y|n+pσ dxdy,

⎞
⎠

1
p

,

where the term

[u]Wσ,p(Ω) =
⎛
⎝ ∫∫
Ω×Ω

|u (x)− u (y)|p
|x − y|n+pσ dxdy

⎞
⎠

1
p

(19)

is the so-called Gagliardo (semi)norm of u.
We note at this point that although we have defined the space Wσ,p (Ω) for any

σ ∈ (0, 1), this definition, with an appropriate procedure, can be extended for each
σ > 0 (see in [17] for details).

As in the classic case with σ being an integer, for any σ > 0, the space C∞0 (Rn)
of smooth functions with compact support is dense inWσ,p(Rn) (see [17]).

We define also the space Wσ,p

0 (Ω) denote the closure of C∞0 (Ω) in the norm
‖u‖Wσ,p(Ω), defined above. Note, that Wσ,p

0 (Rn) = Wσ,p(Rn), but in general, for

Ω ⊂ R
n, Wσ,p

0 (Ω) �= Wσ,p(Ω). The spaces Wσ,2(Rn) and Wσ,2
0 (Rn) as Hilbert

spaces are usually denoted by Hσ (Rn) and Hσ0 (R
n), respectively.

We introduce now the Dirichlet fractional Laplacian which will be denoted by
(−Δ)σ , σ ∈ (0, 1). Let u ∈ J (Rn). (If x ∈ Ω , we extend the function u in all of
the R

n by setting u(x) = 0 for any x �∈ Ω). Then, the fractional Laplacian (−Δ)σ
is defined via Fourier transform by

(
(−Δ)σ u)∧ (ξ) = |ξ |2σ û (ξ) , u ∈ C∞0 (

R
n
)
. (20)

We can easily verify that ‖∇u‖2 = ‖(−Δ) 1
2 u‖2. Using this notation, for any σ > 0

we can define, again, the Sobolev spaces Hσ (Rn) by

Hσ
(
R
n
) = {u ∈ L2 (

R
n
) : ∥∥∥(−Δ)σ2 u∥∥∥

2
<∞

}
.

The following sharp fractional Sobolev inequality consists the direct generalization
of (1) for functions which belong to the spaceHσ (Rn) and it asserts that if 0 < σ <
n
2 , then for all u ∈ Hσ (Rn),

⎛
⎝∫
Rn

|u (x)| 2n
n−2σ dx

⎞
⎠
n−2σ
n

� Sn,σ

∫
Rn

∣∣∣(−Δ)σ2 u (x)∣∣∣2dx, (21)
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where

Sn,σ = 1

(4π)σ
Γ
(
n−2σ

2

)

Γ
(
n+2σ

2

)
(
Γ (n)

Γ
(
n
2

)
) 2σ

n

, (22)

and, the equality in (21) holds if and only if u is an Aubin-Talenti type function, i.e.:

u (x) = c
(
μ2 + (x − x0)

2
)− n−2σ

2
, x ∈ R

n, (23)

where c ∈ R, μ > 0 and x0 ∈ R
n are fixed constants.

The best constant Sn,σ and the extremal functions were computed by Cotsiolis
and Tavoularis in [15]. Note that for σ = 1 we obtain the inequality (1) and for
σ = 1

2 the best value for S
n, 1

2
is calculated by Lieb and Loss (see [49]).

Coming back to the operator (−Δ)σ , σ ∈ (0, 1), we can define it as follows (see
in [32, 55] and [17]):

∥∥∥(−Δ)σ2 u∥∥∥2

2
=
∫
Rn

|ξ |2σ ∣∣û(ξ)∣∣2 dξ = Sn,σ

∫∫
Rn×Rn

(u (x)− u (y))2
|x − y|n+2σ dxdy. (24)

Under the above last considerations the fractional Sobolev inequality of order σ ∈
(0, 1) (with the additional assumption σ < 1

2 if n = 1) is exactly the inequality (21).
Thus, its best constant Sn,σ (Rn) remains the same as computed in [15].

Here, Hσ (Rn) denotes the space of all real valued functions u on R
n such that

[u]2
Hσ (Rn) =

∫∫
Rn×Rn

(u (x)− u (y))2
|x − y|n+2σ

dxdy < +∞.

Frank, Jin, and Xiong in [33], as well as Musina and Nazarov in [55] studied the
fractional Sobolev inequality on the half-space. In this case we need to define the
appropriate Sobolev space. In particular, we define the Sobolev spaceWσ,p

0 (Rn+) as
the completion of C∞0 (R

n+) with respect to the

[u]Wσ,p(Rn+) =
∫∫

R
n+×Rn+

|u (x)− u (y)|p
|x − y|n+pσ dx′dy′, (25)

and setWσ,2
0 (Rn+) = Hσ0 (Rn+).
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1.4 Fractional Hardy Inequalities

We recall the Hardy-type inequality (see in [32])

∫
Rn

|u(x)|2
|x|2σ dx ≤ C−1

n,σ

∫
Rn

|ξ |2σ |û(ξ)|2dξ, for all ∈ C∞0 (Rn), (26)

valid for 0 < 2σ < n. Here, û (ξ) is the Fourier transform of u defined by (18).
The sharp constant in (26)

Cn,σ = 22σ
Γ 2
(
n+2σ

4

)

Γ 2
(
n−2σ

4

) (27)

has been found independently by Herbst [43] and Yafaev [65].
For n ≥ 1 and 0 < σ < 1 we consider the homogeneous Sobolev spaces

W
σ,p

0 (Rn) andWσ,p

0 (Rn \{0}) defined as the completion with respect to [u]Wσ,p(Rn)
(defined by (19)) of C∞0 (Rn) for 1 ≤ p < n

σ
and of C∞0 (Rn \ {0}) for p > n

σ
,

respectively.
The fractional analog of Hardy inequality (14) is obtained if the term∫

Rn
|∇u(x))p dx on the right-hand side of it is replaced by [u]Wσ,p(Rn), for some

0 < σ < 1. So, in this case we have the sharp fractional Hardy inequality on R
n,

n ≥ 1

∫
Rn

|u (x)|p
|x|pσ dx � C−1

n,p,σ

∫∫
Rn×Rn

|u (x)− u (y)|p
|x − y|n+pσ dxdy. (28)

The best constant Cn,p,σ was computed in [30].
If p = 1, equality holds if and only if u is proportional to a symmetric-decreasing

function. It is worth mentioning the very important contribution of Maz’ya and
Shaposhnikova [54], and of Bourgain et al. [7], since in these works the bases for
calculating the optimum constant Cn,p,σ were set.

The fractional Hardy inequality in the half-space R
n+ states that for 0 < σ < 1

and 1 < p <∞ with pσ �= 1 there is a positive constant Dn,p,σ such that

∫
R
n+

|u (x)|p
x
pσ
n

dx � D−1
n,p,σ

∫∫
R
n+×Rn+

|u (x)− u (y)|p
|x − y|n+pσ dxdy, (29)

for all u ∈ C∞0
(
R
n+
)

if pσ < 1 and for all u ∈ C∞0
(
R
n+
)

if pσ > 1.
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The sharp value of the constant DN,p,σ for p = 2 and 2σ = α (this last
substitution has been made by the authors) is calculated in [6] to be equal to

Dn,2,σ = Dn,α =
π
n−1

2 Γ
(

1+α
2

)
Γ
(
n+α

2

) B
(

1+α
2 ,

2−α
2

)
− 2α

α2α−1 , (30)

where Γ , B are the gamma and the beta functions, respectively.
For arbitrary p, the best constant Dn,p,σ and the extremal functions are calculated

in [31].
Dyda in [20] investigated the following integral inequality

∫
Ω

|u (x)|p
daΩ (x)

dx � C(Ω)
∫∫
Ω×Ω

|u (x)− u (y)|p
|x − y|n+α dxdy, (31)

where α, p > 0, Ω ⊂ R
n, n ≥ 1 is a Lipschitz domain or its complement or

a complement of a point, and dΩ (x) = min {|x − y| : y /∈ Ω} . In this paper, the
author gives sufficient conditions on Ω for the validity of (31) for same C(Ω) >
0. In addition, counterexamples for cases where (31) is not hold are given. Also,
another case of the fractional Hardy inequality with a remainder term studied in [21].

Bogdan and Dyda in [6] conjectured that ifΩ is a convex, open subset of Rn and
α ∈ (0, 2) then the largest number C (Ω) such that

∫
Ω

u2 (x)

daΩ (x)
dx � C (Ω)

∫∫
Ω×Ω

(u (x)− u (y))2
|x − y|n+α dxdy, (32)

is equal to Dn,α , defined by (30).
Loss and Sloane in [50] proved a sharp Hardy inequality for fractional integrals

for functions that are supported in a general domain. The constant is the same as the
one for the half-space and hence their result settles the conjecture of Bogdan and
Dyda. In the same paper, a weaker form of (31) was established for p > 1. However
the sharp constant remains the same as the sharp constant for the Hardy inequality
for the half-space, i.e. Dn,p,σ , computed in [31]. For 0 < p ≤ 1 the inequality
remains valid (see [20]), however, the sharp constant is not known.

We mention here that by Dyda and Vähäkangas a general framework for
fractional Hardy inequalities [22], a Maz’ya type characterization [23] are provided.
Also, Ihnatsyeva, Lehrbäck, Tuominen, and Vähäkangas proved in [44] fractional
order Hardy inequalities on open sets under a combined fatness and visibility
condition on the boundary. Concluding this part we refer that Brasco and Cinti in [8]
give a quick overview on Hardy inequality and prove a Hardy inequality on convex
sets, for fractional Sobolev-Slobodeckiĭ spaces of order (s, p).
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2 Hardy–Sobolev Type Inequalities

2.1 Hardy–Sobolev Inequalities

It is well known that for any 1 < p < n and for all u ∈ W 1,p
0 (Rn), the following

Sobolev and Hardy inequalities hold, respectively,

⎛
⎝∫
Rn

|u|p∗ dx
⎞
⎠

1
p∗

� Cn,p

⎛
⎝∫
Rn

|∇u|pdx
⎞
⎠

1
p

, (33)

∫
Rn

|u|p
|x|p dx �

(
p

n− p
)p ∫

Rn

|∇u|p dx, (34)

whereW 1,p
0 (Rn) is the completion of C∞0 (Rn) with respect to the norm

‖u‖p
W 1,p(Rn)

=
∫
Rn

|∇u|p dx +
∫
Rn

|u|p dx.

Interpolating between these two inequalities, i.e. (33) and (34), we obtain the
Hardy–Sobolev inequality which is a particular case of the family of functional
inequalities obtained by Caffarelli et al. [11]. In this case the Hardy–Sobolev
Inequality states as follows:

⎛
⎝∫
Rn

|u|p∗(s)|x|−sdx
⎞
⎠

1
p∗(s)

�
(

p

n− p
) p

p∗(s)
C
n(p−s)
p(n−s)
n,p

⎛
⎝∫
Rn

|∇u|pdx
⎞
⎠

1
p

, (35)

for all u ∈ W 1,p
0 (Rn), (i.e., see in [16]).

We can extend now the inequality (35) for any domain Ω in R
n (see [35],

Theorem 15.1.1). Then for any p ∈ (1, n), s ∈ (0, p) and p∗(s) = p n−s
n−p , there

exists a constant C(p, s,Ω) > 0 such that

⎛
⎝∫
Ω

|u|p∗(s)|x|−sdx
⎞
⎠

1
p∗(s)

� C(p, s,Ω)

⎛
⎝∫
Ω

|∇u|pdx
⎞
⎠

1
p

for all u ∈ W1,p
0 (Ω) .

(36)

In addition, ifΩ is bounded, then the inequality holds with p∗(s) replaced by any q
with p ≤ q ≤ p∗(s).
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Note that, for s = 0 (resp., s = p), (36) is just the Sobolev (resp., the Hardy)
inequality. We therefore have to only consider the case where 0 < s < p.

Regarding the best constants, it is well known that the cases s = 0 and s = p
have been studied extensively during the last few years. At this time we will give
the meaning of the critical exponent. The exponent p∗(s) = p(n−s)

n−p is critical in the
following sense:

The Sobolev space W
1,p
0 (Ω) is continuously embedded in the weighted

Lebesgue space
(
Lp(Ω), |x|−s) (i.e., the space of all functions u : Ω → R

such that |u|p · |x|−s ∈ L1(Ω)) if and only if 1 ≤ p ≤ p∗(s), and the embedding
is compact if and only if 1 ≤ p < p∗(s). These results are derived directly from
the generalizations of Theorems 3 and 4 (see Sect. 3 bellow) in arbitrary bounded
domains in Rn.

We will now define the best Hardy–Sobolev constant μs(Ω) to all cases, i.e. for
any s ∈ [0, p],

μs(Ω) = inf

⎧⎨
⎩

∫
Ω
|∇u|pdx(∫

Ω
|u|p∗(s)|x|−sdx) p

p∗(s)
; u ∈ W 1,p

0 (Ω) \ {0}
⎫⎬
⎭ .

By definition it follows that μs(Ω) > 0. At this point, in the spirit of Robert [58],
we present some known results concerning the value of μs(Ω) and the existence of
extremals for it. In this case, i.e. when s ∈ (0, p) the extremals functions are of the
form (see Theorem 15.2.2 [35])

uα (x) =
[
α (n− s)

(
n− p
p − 1

)p−1
] n−p
p(p−s) (

α + |x| p−sp−1

)− n−p
p−s
, (37)

where α is any positive real number.
In this case, when s ∈ (0, p), it is remarkable that the Hardy–Sobolev inequality

inherits the singularity at 0 from the Hardy inequality and the critical exponent from
the Sobolev inequality. Due to the singularity at 0, the situation will depend on the
location of 0 with respect toΩ . However, concerning general open subsets of Rn so
that 0 ∈ Ω , for all Ω open subsets of Rn holds

μs(Ω) = μs(Rn). (38)

This last assertion can be proved by a direct generalization of the studied case by
Robert (see [58]). In addition, if there is an extremal for μs(Ω), then it is also an
extremal for μs(Rn). In particular, there is no extremal for μs(Ω) if Ω is bounded.

When 0 �∈ Ω̄ andΩ is bounded, then
(
Lp

∗(s)(Ω), |x|−s
)
= Lp∗(s)(Ω) and since

1 ≤ p∗(s) < np
n−p the embedding W 1,p

0 (Ω) ↪→ Lp
∗(s)(Ω) is compact and thus, by

the standard minimization methods we can prove the existence of extremals for
μs(Ω), however, we cannot find the exact value of it in general.
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The remaining case 0 ∈ ∂Ω is the most complicated, but particularly interesting.
In this case, since 0 belongs to the boundary ∂Ω of Ω we can “roughly” say
that, around 0, Ω looks like the half space R

n− = {x ∈ R
n : xn < 0} and not

the whole space R
n as it happens in the case where 0 ∈ Ω . This ascertainment

obliges us to compare the optimal constant μs(Ω) with μs(Rn−) and not with
μs(R

n), which means that we need to take Ω ⊂ R
n−. Indeed, for a such Ω ,

mimicking and generalizing the arguments used by Robert in [58] we can obtain
that μs(Ω) ≤ μs(Rn−), and by definition of μs(Ω) arises that μs(Ω) ≥ μs(Rn−).
Thus, for Ω ⊂ R

n−,

μs(Ω) = μs(Rn−). (39)

Moreover, if Ω is bounded, then there is no extremal for μs(Ω). Assuming that Ω
is a subset of half the space R

n− immediately we put a hypothesis of convexity for
Ω at 0. In particular, this hypothesis is satisfying for balls.

Remaining in the same case when 0 ∈ ∂Ω but in the special case p = 2, we
present some important results as well as some very useful comments by Robert
(collected from [58]), without convexity assumptions onΩ , but strongly influenced
by geometry.

Egnell in [24] proved that if C = {rθ : r > 0, θ ∈ D} is the cone based at 0
induced by D, where D is a nonempty connected domain (not necessarily smooth
at 0) of Sn−1, the unit sphere in R

n, then there are extremals for μs(C). Moreover,
it is proved that there are extremals for μs(Rn−), but we do not know the value of
μs(R

n−).
Ghoussoub and Kang in [34] proved that ifΩ is a smooth bounded domain of Rn

with 0 ∈ ∂Ω and such that μs(Ω) < μs(Rn−), then there are extremals for μs(Ω).
Also, in the same paper, it is proved that for a such Ω , if the principal curvatures at
0 are all negative (i.e.,Ω is locally concave at 0) and n ≥ 4, then there are extremals
for μs(Ω).

Ghoussoub and Robert in [36] proved that if Ω is a smooth bounded domain of
R
n such that 0 ∈ ∂Ω and if the mean curvature of ∂Ω at 0 is negative and n ≥ 3,

then there are extremals for μs(Ω). These last results clearly include the immediate
preceding. Qualitatively, the last result tells us that there are extremals for μs(Ω)
when the domain is rather concave than convex at 0 in the sense that the negative
principal directions dominate quantitatively the positive principal directions. This
allows us to exhibit new examples either convex or concave for which the extremals
exist. Note that this result does not tell anything about the value of the best constant.

Hashizume in [40] proved that the size of domain affects the attainability of
μs(Ω). More precisely it is proved that if ∂Ω has a smoothness which the Sobolev
embeddings hold and if Ω is sufficiently small, i.e., such that

|Ω|
(∫
Ω

|x|−sdx
)− 2

2∗(s) ≤ μs(Ω), (40)
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then μs(Ω) is attained, where |Ω| is the n-dimensional Lebesgue measure of
domainΩ . In addition, it is proved that there is a positive constantM which depends
on only Ω such that μs(rΩ) is never attained if r > M .

Remark 1 We note here that Filippas, Maz’ya, and Tertikas in [28] studied the
following inequality (the so-called Hardy–Sobolev–Maz’ya inequality) (see in [53],
Edition 1985, Corollary 3, p. 97)

∫
Rn

|∇u|2dx −
(
k − 2

2

)2 ∫
Rn

|u (x)|2
d2 dx ≥ C

⎛
⎝∫
Rn

|u| 2n
n−2 dx

⎞
⎠
n−2
n

, (41)

for all u ∈ C∞0 (Rn\K), where K = {x ∈ R
n : x1 = x2 = · · · = xk = 0} , 1 ≤

k ≤ n− 1 and d(x) = dist(x,K).
The Hardy–Sobolev–Maz’ya inequality has been not only the motivation but also

the basis for a particularly extensive study in functional inequalities and in the PDEs.

2.2 Fractional Hardy–Sobolev Inequalities

In this subsection some new representative results on Fractional Hardy–Sobolev
inequalities are presented, which can be used as a basis for further study in the area.

Yang in [66] showed that the minimizing problem

Λσ,α = inf
u∈Hσ0 (Rn), u�≡0

∫
Rn

∣∣∣(−Δ)σ2 u (x)∣∣∣2 dx
(∫

Rn
|u(x)|2∗σ,α
|x|α dx

) 2
2∗σ,α

(42)

is achieved by a positive, radially symmetric, and strictly decreasing function
provided 0 < σ < n

2 , 0 < α < 2σ and 2∗σ,α = n−α
n−2σ .

Marano and Mosconi in [51] established the existence of optimizers u in the
space Wσ,p(Rn), with differentiability order σ ∈ (0, 1) for the Hardy–Sobolev
inequality through concentration-compactness. In particular, the scale-invariant,
nonlocal functional inequality

⎛
⎝ ∫

Rn

|u (x)|q
|x|α dx

⎞
⎠

1
q

� C

⎛
⎝ ∫∫
Rn×Rn

|u (x)− u (y)|p
|x − y|n+pσ dxdy

⎞
⎠

1
p

(43)

for some constant C > 0. Here, n > α ≥ 0, q > p ≥ 1, and σ ∈ (0, 1)

are determined by scale invariance. The asymptotic behavior u (x) � |x|− n−pσp−1 as
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|x| → +∞ and the summability information u ∈ Wσ,γ

0 (Rn) for all γ ∈
(
n(p−1)
n−σ , p

]
are then obtained.

We refer here to Sobolev–Hardy inequality considered by Frank, Lieb, and
Seiringer in [32]. Firstly, we need to define the form

hs[u] =
∫
Rn

|ξ |2s ‖û(ξ)‖2dξ − Cs,n

∫
Rn

|u (x)|2
|x|2s dx, (44)

where the constant Cs,n is as defined by (27). It should be noted here that the
fractional exponent (see (20)) in the minuend of the second part of (44) is the same
as the exponent of the weight the subtrahend in the same part of it.

We present now two theorems concerning the local and the global Sobolev–
Hardy inequalities.

Theorem 1 (Local Sobolev–Hardy Inequality ([32], Theorem 2.3)) Let 0 < s <
min{1, n2 } and 1 ≤ q < 2∗ = 2n

n−2s . Then there exists a constant Cq,n,s > 0 such
that for any domain Ω ⊂ R

n with finite measure |Ω| one has

⎛
⎝∫
Rn

|u (x)|q dx
⎞
⎠

2
q

� Cq,n,s |Ω|2
(

1
q
− 1

2∗
)
hs [u] , u ∈ C∞0 (Ω) . (45)

Note that the exponent q is strictly smaller than the critical exponent 2∗ = 2n
n−2s .

We refer that the analogue of Theorem 1 in the local case s = 1 is proved in [10].

Theorem 2 (Global Sobolev–Hardy Inequality ([32], Corollary 2.5)) Let 0 <
s < min{1, n2 } and 1 ≤ q < 2∗ = 2n

n−2s . Then there exists a constant C′q,n,s > 0
such that

⎛
⎝∫
Rn

|u (x)|q dx
⎞
⎠

2
q

� C′q,n,s

⎛
⎝hs [u]+

∫
Rn

|u (x)|2 dx
⎞
⎠ , u ∈ C∞0

(
R
n
)
. (46)

3 Hardy–Sobolev Inequalities: The Influence of Symmetries

In this part, we are interested in the case s ∈ (0, p) with supercritical exponent, in
particular with the critical of the supercritical one. For this purpose, it is necessary
to incorporate the symmetry of Ω into the analysis. So, we consider the optimal
Hardy–Sobolev inequalities on smooth bounded domains of the Euclidean space
in the presence of symmetries. Our model domain is the solid torus because of its
particular interest in terms both of the geometry and of the analysis, however we
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could also study the cases of the spheroid or the cylinder as well as the punctured
ones.

The prevailing perception about the concept of symmetry is that this has to
do with the shape of an object in the space or the shape of the boundary of a
domain and generally with the sense of the beauty, of the perfection. This view
has been expressed by the ancient Greeks and dominates as perception even in
mathematical texts sometimes directly and other times indirectly. In this research we
will try to make clear that the symmetry has a deeper and more meaningful sense.
Specifically, in the case of Euclidean domains, the symmetry property is intrinsic
characterizing the whole domain, and what we see traditionally called as symmetry
is nothing but the effect of it in the appearance of the boundary of the domain. So,
any classification, from a geometrical point, of the various domains based on the
shape of their boundaries specifically is interesting (i.e., the curvature), but in terms
of the analysis, especially of the PDEs does not offer something substantial as it
referred in the boundary, namely in a set of zero measure, and not in the domain
itself consistently disregarded the internal structure of the whole domain.

Let T be the solid ring torus in R
3 with minor radius r and major radius R. This

is the “doughnut-shaped” domain generated by rotating a disk of radius r about a
co-planar axis at a distance R from the center of the disk, and it is represented by

T =
{
x = (x1, x2, x3) ∈ R

3 :
(√
x2

1 + x2
2 − R

)2

+ x2
3 < r

2, R > r > 0

}
.

Before we explain the symmetry the torus presents we introduce some background
material from the geometry. Consider a group G acting on a set X. The orbit of a
point x in X is the set of elements of X to which x can be moved by the elements
of G. (Just as gravity moves a planet around its orbit, the group action moves an
element around its orbit.)

A brief explanation concerning the symmetry presented by the torus we are
working as follows: Consider an arbitrary plane Π containing the axis x′3x3 which
forms with the positive semi-axis Ox1 angle θ , θ ∈ R, and the interval I =
[θ, θ + 2π), (or I = (θ, θ + 2π ]). We also denote D the unit disk centered on the
beginning of the axes and consider the transformation ξ : T \ {T ∩Π} → I ×D,
defined to be ξ(x) = ξ(x1, x2, x3) = (ω, t1, t2), with ω ∈ I and such that for any
function u defined on T we define the function φ = u◦ ξ−1, which does not depend
on the variable ω, i.e. it holds that

φ(t) = φ(t1, t2) = (u ◦ ξ−1)(ω, t1, t2). (47)

Because of the C-symmetry of the torus, each point P of it belongs to only one
orbit. Thus, by rotating the torus around the x′3x3 axis all the points of this orbit will
pass through the point P . Thus, if we know the value of a function u at the point P ,
then we know that at each point of this orbit the value of u remains the same as at P .
On the other hand, we consider that the space is isotropic and then the orientation
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does not play a role. Thus, when we refer to points of the torus T , we may identify
each P ∈ T with its image on the disk Dr = {(μ, ν) ∈ R

2 : μ2 + ν2 < r2},
the intersection of an arbitrary plane Π containing the axis x′3x3 with the torus T .
Therefore, when we refer to points of the torus T whether they are in its interior
or on its boundary we can assume that they belong to the interior of the disk Dr
or on its boundary. However, for calculational purposes of convenience only in the
definition of the transformation ξ we identify the points of the torus T with the
points of the unit diskD and not with the points of the diskDr . So, in the following
when we refer to points of the torus T , we can assume that they belong to the disk
D. Due to the above, we need to use functions whose values do not depend on the
orientation in the x1x2-plane and therefore must be of the form

u(x1, x2, x3) = u(
√
x2

1 + x2
2 , 0, x3) = u(0,

√
x2

1 + x2
2 , x3). (48)

Note that these functions play the same role for the torus as the radial functions
do for the sphere or for the whole isotropic Euclidian space (for more details, see
in [13] or [14] and in [41] for further consideration). Thus, according to the above
analysis, the solid torus T = T ∪ ∂T is invariant under the action of the subgroup
G = O(2)×I of the isometry groupO(3) and so we must rely on spaces containing
functions which are invariant under the action of G.

LetW 1,p(T ), p ≥ 1, be the classical Sobolev space, andW 1,p
0 (T ) be the closure

of C∞0 (T ) in W 1,p(T ). Since the solid torus T is an open bounded domain in R
3

and its boundary is smooth, in order to study the Hardy–Sobolev inequality it seems
that the suitable functional space to be used isW 1,p(T ). We denote by,W 1,p(T ) =
H
p

1 (T ), where Hp1 (T ) is the completion of C∞(T ) with respect to the norm

‖u‖p
H
p
1 (T )

=
∫
T

|∇u|p dx +
∫
T

|u|p dx.

Therefore, it would be natural to work in Hp1 (T ). However, as referred above the
solid torus T = T ∪ ∂T is invariant under the action of the group G = O(2) × I
and so we must rely on spaces containing functions which are invariant under the
action ofG. Thus, the largest and most suitable space of functions that must be used
in the case of the solid torus is the one that contains the G-invariant functions, i.e.
the Sobolev space

H
p

1,G(T ) =
{
u ∈ Hp1 (T ) : u ◦ g = u , ∀ g ∈ G

}
.

We refer here two lemmas which are the keys to incorporate the geometry into
the analysis. (For the proofs see in [14]).

Lemma 1 For any x,∈ T , holds |x| = r|t |, where |x| is the distance of the point
x ∈ T to the circle CR = {x = (x1, x2, 0) ∈ T : x2

1 + x2
2 = R2}.
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Lemma 2 For any function u ∈ Hp1,G(T ), the following equalities hold:

∫
T

|u|pdx = 2πr2
∫
D

|φ|p (R + rt1) dt, (49)

∫
T

|u|p|x|−sdx = 2πr2−s
∫
D

|φ|p|t |−s (R + rt1) dt, (50)

∫
T

|∇u|pdx = 2πr2−p
∫
D

|∇φ|p (R + rt1) dt, (51)

where the function φ is as defined by (47), i.e. φ(t) = φ(t1, t2) = (u◦ξ−1)(ω, t1, t2).

We need now to present two basic theorems (the proofs are presented in [14]).

Theorem 3 (Sobolev Embedding Theorem) Let T be a solid torus, 1 ≤ p < 2,
0 ≤ s ≤ p and p∗(s) = p(2−s)

2−p . Then, the embedding H 1,p
G (T ) ↪→ (

Lq(T ), |x|−s)
is continuous for all q ∈ [1, p∗(s)].
Theorem 4 (Kondrakov Embedding Theorem) Let T be a solid torus, 1 ≤
p < 2, 0 ≤ s < p and p∗(s) = p(2−s)

2−p . Then, the embedding H 1,p
G (T ) ↪→(

Lq(T ), |x|−s) is compact for all q ∈ [1, p∗(s)).
The proofs (see in [14]) of the Theorems 3 and 4 based on the Theorems 1.1.1 and

1.1.2 of [45]. In fact, these two theorems regarding the Sobolev spaces constitute a
generalization of the aforementioned theorems and for the domains a limination of
them.

We are now in a position to explain why the exponent p∗(s) is supercritical.
As we have mentioned in the previous paragraph the Sobolev space W 1,p

0 (Ω) is
continuously embedded in the weighted Lebesgue space

(
Lp(Ω), |x|−s) if and only

if 1 ≤ p ≤ p∗(s), and the embedding is compact if and only if 1 ≤ p < p∗(s).
Hence, the critical exponent for this embedding in the n-dimensional case is

p∗(s) = p(n− s)
n− p .

Thus, if Ω ∈ R
3 the critical exponent is

p∗(s) = p(3− s)
3− p .

As it was mentioned above, the symmetry presented by the torus allows us to take it
into consideration, and due to Lemma 2 it becomes absolutely clear that eventually
we will have to work in two dimensions. Hereafter, if 1 < p < 2, 0 ≤ s ≤ p then
the critical exponent of the Sobolev embedding H 1,p

G (T ) ↪→ (
Lq(T ), |x|−s) is
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p∗(s) = p(2− s)
2− p

and since

p∗(s) = p(2− s)
2− p >

p(3− s)
3− p ,

arises that it is a supercritical exponent and indeed the critical of the supercritical
one.

Under the above considerations, we improved the best constant in the inequal-
ity (36) for 0 < s < p exploiting the symmetries that the domainΩ presents. More
precisely, we established the Hardy–Sobolev inequality using as a model domain
the solid torus T , and we calculated (see [14]) its best constant to be equal to

[μs,G(T )]−1 = 1

[2π(R − r)] p−s
p(2−s)

[
μs

(
R

2
)]−1

= 1

[2π(R − r)] p−s
p(2−s)

(
p

2− p
) s
p∗(s)

C
2(p−s)
p(2−s)

2,p ,

where 2π(R − r) is the length of the orbit with minimum radius R − r .
We note here that in [12] we calculated the best constant in the case of the solid

torus T for s = 0. In particular, we proved that for any p ∈ (1, 2) the best constant
in the resulting supercritical Sobolev inequality is equal to

μ0(T ) =
(

C2,p√
2π(R − r)

)−1

.

We, also, proved in [13] that if s = p then

μp(T ) =
(
p − 1

p

)p
,

i.e., the best constant in the Hardy inequality is the same as the standard Hardy
best constant which appears in convex domains although the solid torus has no
convex boundary but it has all kinds of curvature. In this research our results are
obtained without any assumption concerning the “shape” (i.e., some convexity) of
the boundary and both of the used techniques that exploit the symmetry presented
by the solid torus and the clarity of the results confirm that:

The symmetry of a domain is an intrinsic property which determines its structure
and characterizes both the interior and its boundary. Regarding the “shape” of the
boundary, it is also determined by the symmetry of the domain and is not the one
that can determine the behavior of the whole domain.
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Our first result concerns the supercritical Hardy–Sobolev inequality in the case
of the solid torus. (All results and proofs of this part are presented in detail in [14]).
Firstly, we have to prove the following proposition.

Proposition 1 Let T be the 3-dimensional solid torus, 1 < p < 2, 0 ≤ s < p and
p∗(s) = p(2−s)

2−p . Then, for any ε > 0 there exists B = B(p, ε) > 0 such that for all

u ∈ Hp1,G(T ),
⎛
⎝∫
T

|u|p∗(s)|x|−sdx
⎞
⎠

1
p∗(s)

�
[
[μs,G(T )]−1 + ε

]⎛⎝∫
T

|∇u|pdx
⎞
⎠

1
p

+ B
⎛
⎝∫
T

|u|pdx
⎞
⎠

1
p

.

(52)

In addition,

(μs,G(T ))
−1 = 1

[2π(R − r)] p−s
p(2−s)

(
p

2− p
) s
p∗(s)

C
2(p−s)
p(2−s)

2,p

is the best constant for this inequality.

We address now the following question: If we set ε = 0 to (52) does this
inequality remain valid? Concerning this question we note that the parameter ε
that appeared in Proposition 1 controls in some sense the thinness of the cover
that we use in each case through the related partition of unity. Thus, its existence
is absolutely necessary because we do not know if the inequality is valid without
this parameter. Although in some cases, Sobolev inequalities exist without ε
(see [12, 18, 25, 42]), but in general we cannot make it disappear. For instance,
regarding the classical Sobolev inequality, Aubin conjectured a positive answer.
This conjecture was first proved for p = 2 by Hebey and Vaugon [42], and for any p
by Druet [18] and by Aubin and Li [3]. On Riemannian manifolds without boundary
in the presence of symmetries a positive answer is given by Faget [25]. In the case
of the solid torus a positive answer is, also, given by Cotsiolis and Labropoulos [12].
Unfortunately, in our case it does not seem possible to use the same arguments as
those used in the above cases. However, we can give a possible positive answer to
the above question in the following sense: We cannot find ε > 0, arbitrarily small
such that the inequality (52) to remain valid for all u ∈ Hp1,G(T ). In particular, we
can state the following theorem:

Theorem 5 Let T be the 3-dimensional solid torus, 1 < p < 2, 0 ≤ s < p and
p∗(s) = p(2−s)

2−p . Then, there exists B = B(p) > 0 such that for all u ∈ Hp1,G(T ),
⎛
⎝∫
T

|u|p∗(s)|x|−sdx
⎞
⎠

p

p∗(s)

� [μs,G(T )]−p
∫
T

|∇u|pdx + B
∫
T

|u|pdx. (53)

In addition, (μs,G(T ))−p is the best constant for this inequality.
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The Hardy–Sobolev inequalities with supercritical exponent allow us to solve
nonlinear elliptic problems with supercritical nonlinearity, i.e as the following

(P) Δpu+ a(x)up−1 = f (x)u
p∗(s)−1

|x|s , u > 0 on T , u = 0 on ∂T ,

1 < p < 2, 0 ≤ s ≤ p and p∗(s) = p(2− s)
2− p ,

as well as some variants of it (i.e., see [14]).
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Two Points Taylor’s Type
Representations with Integral
Remainders

Silvestru Sever Dragomir

Abstract In this chapter we establish some two points Taylor’s type representations
with integral remainders and apply them for the logarithmic and exponential
functions. Some inequalities for weighted arithmetic and geometric means are
provided as well.

1991 Mathematics Subject Classification 26D15, 26D10

1 Introduction

The following theorem is well known in the literature as Taylor’s formula or Taylor’s
theorem with the integral remainder.

Theorem 1 Let I ⊂ R be a closed interval, c ∈ I and let n be a positive integer. If
f : I −→ C is such that the n-derivative f (n) is absolutely continuous on I , then
for each y ∈ I

f (y) = Tn (f ; c, y)+ Rn (f ; c, y) , (1.1)

where Tn (f ; c, y) is Taylor’s polynomial, i.e.,

Tn (f ; c, y) :=
n∑
k=0

(y − c)k
k! f (k) (c) . (1.2)
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Note that f (0) := f and 0! := 1 and the remainder is given by

Rn (f ; c, y) := 1

n!
∫ y

c

(y − t)n f (n+1) (t) dt. (1.3)

A simple proof of this theorem can be achieved by mathematical induction using
the integration by parts formula in the Lebesgue integral.

For related results, see [1–5, 11–14, 18, 19] and [22].
Let a, b > 0, then we have the equality:

ln b − ln a =
n∑
k=1

(−1)k−1 (b − a)k
kak

+ (−1)n
∫ b

a

(b − t)n
tn+1

dt, n ≥ 1. (1.4)

Indeed, if we consider the function f : (0,∞) −→ R, f (x) = ln x, then,

f (n) (x) = (−1)n−1 (n− 1)!
xn

, n ≥ 1, x > 0,

Tn (ln; a, x) = ln a +
n∑
k=1

(−1)k−1 (x − a)k
kak

, a > 0

and

Rn (ln; a, x) = (−1)n
∫ x

a

(x − t)n
tn+1

dt.

Now, using (1.1), we have the equality,

ln x = ln a +
n∑
k=1

(−1)k−1 (x − a)k
kak

+ (−1)n
∫ x

a

(x − t)n
tn+1 dt.

Choosing in the last equality x = b, we get (1.4).
Consider the function f : R −→ (0,∞) , f (y) = exp y. Then for any c ∈ R

we have

Tn (exp; c, y) =
n∑
k=0

(y − c)k
k! exp c

and

Rn (exp; c, y) := 1

n!
∫ y

c

(y − t)n exp tdt.
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On applying Taylor’s formula (1.1) we have

exp y − exp c −
n∑
k=1

(y − c)k
k! exp c = 1

n!
∫ y

c

(y − t)n exp tdt (1.5)

for any c, y ∈ R.
If we take y = ln x, c = ln a where x, a > 0, then we get

x − a − a
n∑
k=1

(ln x − ln a)k

k! = 1

n!
∫ ln x

ln a
(ln x − t)n exp tdt.

By using the change of variable, s = exp t, we have

∫ ln x

ln a
(ln x − t)n exp tdt =

∫ x

a

(ln x − ln s)n ds

giving that

b − a − a
n∑
k=1

(ln b − ln a)k

k! = 1

n!
∫ b

a

(ln b − ln s)n ds, (1.6)

for any b, a > 0.
Now, if n ≥ 2, then by (1.6) we have

b − a
a

−
n∑
k=1

(ln b − ln a)k

k! = 1

n!a
∫ b

a

(ln b − ln s)n ds,

namely

ln b − ln a = b − a
a

−
n∑
k=2

(ln b − ln a)k

k! − 1

n!a
∫ b

a

(ln b − ln s)n ds, (1.7)

for any b, a > 0.
By taking in (1.4) and (1.7) n = 2m + 1, we get the following equalities of

interest

ln b − ln a =
2m+1∑
k=1

(−1)k−1 (b − a)k
kak

−
∫ b

a

(b − t)2m+1

t2m+2 dt, m ≥ 0 (1.8)
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and

ln b − ln a

= b − a
a

−
2m+1∑
k=2

(ln b − ln a)k

k! − 1

(2m+ 1)!a
∫ b

a

(ln b − ln s)2m+1 ds, m ≥ 1.

(1.9)

Since for any a, b > 0

∫ b

a

(b − t)2m+1

t2m+2
dt ≥ 0 and

∫ b

a

(ln b − ln s)2m+1 ds ≥ 0,

then we have from (1.8) that

ln b − ln a ≤ b − a
a

+
2m+1∑
k=2

(−1)k−1 (b − a)k
kak

, m ≥ 1 (1.10)

and from (1.9) that

ln b − ln a ≤ b − a
a

−
2m+1∑
k=2

(ln b − ln a)k

k! , m ≥ 1. (1.11)

The case m = 1 provides the following inequalities

ln b − ln a ≤ b − a
a

− (b − a)
2

2a2
+ (b − a)

3

3a3
(1.12)

and

ln b − ln a ≤ b − a
a

− (ln b − ln a)2

2
− (ln b − ln a)3

6
(1.13)

for any a, b > 0.
Now, if 0 < a < b, then by (1.7) we have

ln b − ln a ≤ b − a
a

−
n∑
k=2

(ln b − ln a)k

k! (1.14)

for any n ≥ 2.
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If 0 < a < b and n = 2m, then by (1.4) we have

ln b − ln a ≥
2m∑
k=1

(−1)k−1 (b − a)k
kak

, m ≥ 1 (1.15)

while in the case n = 2m+ 1 we have

ln b − ln a ≤
2m+1∑
k=1

(−1)k−1 (b − a)k
kak

, m ≥ 0. (1.16)

In this chapter we establish some two points Taylor’s type representations with
integral remainders and apply them for the logarithmic and exponential functions.
Some inequalities for weighted arithmetic and geometric means are provided as
well.

2 Some Two Points Identities

The following identity can be stated:

Theorem 2 Let f : I → C be n-time differentiable function on the interior I̊ of
the interval I and f (n), with n ≥ 1, be locally absolutely continuous on I̊ . Then for
each distinct x, a, b ∈ I̊ and for any λ ∈ R\ {0, 1} we have the representation

f (x) = (1− λ) f (a)+ λf (b) (2.1)

+
n∑
k=1

1

k!
[
(1− λ) f (k) (a) (x − a)k + (−1)k λf (k) (b) (b − x)k

]

+ Sn,λ (x, a, b) ,

where the remainder Sn,λ (x, a, b) is given by

Sn,λ (x, a, b) (2.2)

:= 1

n!
[
(1− λ) (x − a)n+1

∫ 1

0
f (n+1) ((1− s) a + sx) (1− s)n ds

+ (−1)n+1 λ (b − x)n+1
∫ 1

0
f (n+1) ((1− s) x + sb) snds

]
.
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Proof Using Taylor’s representation with the integral remainder (1.1) we can write
the following two identities:

f (x) =
n∑
k=0

1

k!f
(k) (a) (x − a)k + 1

n!
∫ x

a

f (n+1) (t) (x − t)n dt (2.3)

and

f (x) =
n∑
k=0

(−1)k

k! f (k) (b) (b − x)k + (−1)n+1

n!
∫ b

x

f (n+1) (t) (t − x)n dt
(2.4)

for any x, a, b ∈ I̊ .
For any integrable function h on an interval and any distinct numbers c, d in that

interval, we have, by the change of variable t = (1− s) c + sd, s ∈ [0, 1] that

∫ d

c

h (t) dt = (d − c)
∫ 1

0
h ((1− s) c + sd) ds.

Therefore,∫ x

a

f (n+1) (t) (x − t)n dt

= (x − a)
∫ 1

0
f (n+1) ((1− s) a + sx) (x − (1− s) a − sx)n ds

= (x − a)n+1
∫ 1

0
f (n+1) ((1− s) a + sx) (1− s)n ds

and

∫ b

x

f (n+1) (t) (t − x)n dt

= (b − x)
∫ 1

0
f (n+1) ((1− s) x + sb) ((1− s) x + sb − x)n ds

= (b − x)n+1
∫ 1

0
f (n+1) ((1− s) x + sb) snds.

The identities (2.3) and (2.4) can then be written as

f (x) =
n∑
k=0

1

k!f
(k) (a) (x − a)k (2.5)

+ 1

n! (x − a)
n+1

∫ 1

0
f (n+1) ((1− s) a + sx) (1− s)n ds
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and

f (x) =
n∑
k=0

(−1)k

k! f (k) (b) (b − x)k (2.6)

+ (−1)n+1 (b − x)n+1

n!
∫ 1

0
f (n+1) ((1− s) x + sb) snds.

Now, if we multiply (2.5) with 1 − λ and (2.6) with λ and add the resulting
equalities, a simple calculation yields the desired identity (2.1). ��
Remark 1 If we take in (2.1) x = a+b

2 , with a, b ∈ I̊ ,, then we have for any
λ ∈ R\ {0, 1} that

f

(
a + b

2

)
= (1− λ) f (a)+ λf (b) (2.7)

+
n∑
k=1

1

2kk!
[
(1− λ) f (k) (a)+ (−1)k λf (k) (b)

]
(b − a)k

+ S̃n,λ (a, b) ,

where the remainder S̃n,λ (a, b) is given by

S̃n,λ (a, b) (2.8)

:= 1

2n+1n! (b − a)
n+1

[
(1− λ)

∫ 1

0
f (n+1)

(
(1− s) a + s a + b

2

)
(1− s)n ds

+ (−1)n+1 λ

∫ 1

0
f (n+1)

(
(1− s) a + b

2
+ sb

)
snds

]
.

In particular, for λ = 1
2 we have

f

(
a + b

2

)
= f (a)+ f (b)

2
(2.9)

+
n∑
k=1

1

2k+1k!
[
f (k) (a)+ (−1)k f (k) (b)

]
(b − a)k

+ S̃n (a, b) ,
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where the remainder S̃n (a, b) is given by

S̃n (a, b) (2.10)

:= 1

2n+2n! (b − a)
n+1

[∫ 1

0
f (n+1)

(
(1− s) a + s a + b

2

)
(1− s)n ds

+ (−1)n+1
∫ 1

0
f (n+1)

(
(1− s) a + b

2
+ sb

)
snds

]
.

Corollary 1 With the assumptions in Theorem 2 we have for each distinct x, a,
b ∈ I̊

f (x) = 1

b − a [(b − x) f (a)+ (x − a) f (b)]+ (b − x) (x − a)
b − a (2.11)

×
n∑
k=1

1

k!
{
(x − a)k−1 f (k) (a)+ (−1)k (b − x)k−1 f (k) (b)

}

+ Ln (x, a, b) ,
where

Ln (x, a, b) := (b − x) (x − a)
n! (b − a)

[
(x − a)n

∫ 1

0
f (n+1) ((1− s) a + sx) (1− s)n ds

+ (−1)n+1 (b − x)n
∫ 1

0
f (n+1) ((1− s) x + sb) snds

]

and

f (x) = 1

b − a [(x − a) f (a)+ (b − x) f (b)] (2.12)

+ 1

b − a
n∑
k=1

1

k!
{
(x − a)k+1 f (k) (a)+ (−1)k (b − x)k+1 f (k) (b)

}

+ Pn (x, a, b) ,

where

Pn (x, a, b) := 1

n! (b − a)
[
(x − a)n+2

∫ 1

0
f (n+1) ((1− s) a + sx) (1− s)n ds

+ (−1)n+1 (b − x)n+2
∫ 1

0
f (n+1) ((1− s) x + sb) snds

]
,

respectively.
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The proof is obvious. Choose λ = (x − a) / (b − a) and λ = (b − x) / (b − a) ,
respectively, in Theorem 2. The details are omitted.

Corollary 2 With the assumption in Theorem 2 we have for each λ ∈ [0, 1] and
any distinct a, b ∈ I̊ that

f ((1− λ) a + λb) = (1− λ) f (a)+ λf (b)+ λ (1− λ)

×
n∑
k=1

1

k!
[
λk−1f (k) (a)+ (−1)k (1− λ)k−1 f (k) (b)

]
(b − a)k + Sn,λ (a, b) ,

(2.13)

where the remainder Sn,λ (a, b) is given by

Sn,λ (a, b) (2.14)

:= 1

n! (1− λ) λ (b − a)
n+1

[
λn
∫ 1

0
f (n+1) ((1− sλ) a + sλb) (1− s)n ds

+ (−1)n+1 (1− λ)n
∫ 1

0
f (n+1) ((1− s − λ+ sλ) a + (λ+ s − sλ) b) snds

]
.

We also have

f ((1− λ) b + λa) = (1− λ) f (a)+ λf (b)

+
n∑
k=1

1

k!
[
(1− λ)k+1 f (k) (a)+ (−1)k λk+1f (k) (b)

]
(b − a)k + Pn,λ (a, b) ,

(2.15)

where the remainder Pn,λ (a, b) is given by

Pn,λ (a, b)

:= 1

n! (b − a)
n+1

[
(1− λ)n+2

∫ 1

0
f (n+1) ((1− s + λs) a + (1− λ) sb) (1− s)n ds

+ (−1)n+1 λn+2
∫ 1

0
f (n+1) ((1− s) λa + (1− λ+ λs) b) snds

]
. (2.16)

The case n = 0, namely when the function f is locally absolutely continuous on
I̊ with the derivative f ′ existing almost everywhere in I̊ is important and produces
the following simple identities for each distinct x, a, b ∈ I̊ and λ ∈ R\ {0, 1}

f (x) = (1− λ) f (a)+ λf (b)+ Sλ (x, a, b) , (2.17)
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where the remainder Sλ (x, a, b) is given by

Sλ (x, a, b) := (1− λ) (x − a)
∫ 1

0
f ′ ((1− s) a + sx) ds (2.18)

− λ (b − x)
∫ 1

0
f ′ ((1− s) x + sb) ds.

We then have for each distinct x, a, b ∈ I̊

f (x) = 1

b − a [(b − x) f (a)+ (x − a) f (b)]+ L (x, a, b) , (2.19)

where

L (x, a, b) (2.20)

:= (b − x) (x − a)
b − a

[∫ 1

0
f ′ ((1− s) a + sx) ds −

∫ 1

0
f ′ ((1− s) x + sb) ds

]

and

f (x) = 1

b − a [(x − a) f (a)+ (b − x) f (b)]+ P (x, a, b) , (2.21)

where

P (x, a, b)

:= 1

b − a

[
(x − a)2

∫ 1

0
f ′ ((1− s) a + sx) ds − (b − x)2

∫ 1

0
f ′ ((1− s) x + sb) ds

]
.

(2.22)

We also have

f ((1− λ) a + λb) = (1− λ) f (a)+ λf (b)+ Sλ (a, b) , (2.23)

where the remainder Sλ (a, b) is given by

Sλ (a, b) := (1− λ) λ (b − a)
[∫ 1

0
f ′ ((1− sλ) a + sλb) ds (2.24)

−
∫ 1

0
f ′ ((1− s − λ+ sλ) a + (λ+ s − sλ) b) ds

]

and

f ((1− λ) b + λa) = (1− λ) f (a)+ λf (b)+ Pλ (a, b) , (2.25)



Two Points Taylor’s Type Representations 299

where the remainder Pλ (a, b) is given by

Pλ (a, b) := (b − a)
[
(1− λ)2

∫ 1

0
f ′ ((1− s + λs) a + (1− λ) sb) ds

−λ2
∫ 1

0
f ′ ((1− s) λa + (1− λ+ λs) b) ds

]
. (2.26)

Moreover, if we take in (2.17) x = a+b
2 for each distinct a, b ∈ I̊ and λ ∈

R\ {0, 1} ,, then we have

f

(
a + b

2

)
= (1− λ) f (a)+ λf (b)+ Sλ (a, b) , (2.27)

where the remainder Sλ (a, b) is given by

Sλ (a, b) := 1

2
(b − a)

×
[
(1− λ)

∫ 1

0
f ′
(
(1− s) a + s a + b

2

)
ds − λ

∫ 1

0
f ′
(
(1− s) a + b

2
+ sb

)
ds

]
.

(2.28)

In particular, for λ = 1
2 we have

f

(
a + b

2

)
= f (a)+ f (b)

2
+ S (a, b) , (2.29)

where

S (a, b) := 1

4
(b − a)

×
[∫ 1

0
f ′
(
(1− s) a + s a + b

2

)
ds −

∫ 1

0
f ′
(
(1− s) a + b

2
+ sb

)
ds

]
.

(2.30)

3 Examples for Logarithm and Exponential

Consider the function f : (0,∞) −→ R, f (x) = ln x, then,

f (n) (x) = (−1)n−1 (n− 1)!
xn

, n ≥ 1, x > 0. (3.1)
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Using the identity (2.1) for this function we get for any x, a, b > 0 and λ ∈ R\ {0, 1}
that

ln x = (1− λ) ln a + λ ln b (3.2)

+
n∑
k=1

1

k

[
(−1)k−1 (1− λ)

(x
a
− 1

)k − λ (1− x
b

)k]

+ Un,λ (x, a, b) ,
where the remainder Un,λ (x, a, b) is given by

Un,λ (x, a, b) (3.3)

:=
[
(−1)n (1− λ) (x − a)n+1

∫ 1

0

(1− s)n
((1− s) a + sx)n ds

−λ (b − x)n+1
∫ 1

0

sn

((1− s) x + sb)n ds
]
.

Using the identity (2.7) for the function f : (0,∞) −→ R, f (x) = ln x, then

ln

(
a + b

2

)
= (1− λ) ln a + λ ln b (3.4)

+
n∑
k=1

1

2kk

[
(−1)k−1 1− λ

ak
− λ

bk

]
(b − a)k

+ Un,λ (a, b) ,
where the remainder Un,λ (a, b) is given by

Un,λ (a, b) (3.5)

:= 1

2n+1 (b − a)n+1

[
(1− λ)

∫ 1

0

(−1)n (1− s)n(
(1− s) a + s a+b2

)n+1 ds

−λ
∫ 1

0

sn(
(1− s) a+b2 + sb)n+1

ds

]
.

In particular, for λ = 1
2 , we have for all a, b > 0 that

ln

(
a + b

2

)
= ln a + ln b

2
(3.6)

+
n∑
k=1

1

2k+1k

[
(−1)k−1

ak
− 1

bk

]
(b − a)k + Un (a, b) ,
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where the remainder Un,λ (a, b) is given by

Un (a, b) (3.7)

:= 1

2n+2 (b − a)n+1

×
[∫ 1

0

(−1)n (1− s)n(
(1− s) a + s a+b2

)n+1
ds −

∫ 1

0

sn(
(1− s) a+b2 + sb)n+1

ds

]
.

From (2.13) we have for any a, b > 0 and λ ∈ [0, 1] that

0 ≤ ln

(
(1− λ) a + λb
a1−λbλ

)
(3.8)

= λ (1− λ)
n∑
k=1

1

k

[
(−1)k−1 λk−1

ak
− (1− λ)

k−1

bk

]
(b − a)k

+ Un,λ (a, b) ,

where the remainder Un,λ (a, b) is given by

Un,λ (a, b) (3.9)

:= (1− λ) λ (b − a)n+1
[
λn
∫ 1

0

(−1)n (1− s)n
((1− sλ) a + sλb)n+1 ds

− (1− λ)n
∫ 1

0

sn

((1− s − λ+ sλ) a + (λ+ s − sλ) b)n+1 ds

]
.

Consider the function f : R −→ (0,∞) , f (y) = exp y, then,

f (n) (y) = exp y, n ≥ 1, x > 0. (3.10)

If we write the equality (2.1) for this function we get for any y, c, d ∈ R and
λ ∈ R\ {0, 1} that

exp y = (1− λ) exp c + λ exp d (3.11)

+
n∑
k=1

1

k!
[
(1− λ) (y − c)k exp c + (−1)k λ (d − y)k exp d

]

+ Rn,λ (y, c, d) ,
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where the remainder Rn,λ (y, c, d) is given by

Rn,λ (y, c, d) (3.12)

:= 1

n!
[
(1− λ) (y − c)n+1

∫ 1

0
(1− s)n exp ((1− s) c + sy) ds

+ (−1)n+1 λ (d − y)n+1
∫ 1

0
sn exp ((1− s) y + sd) ds

]
.

Let x, a, b > 0. If we take in (3.11) and (3.12) y = ln x, c = ln a and d = ln b,,
then we get for any λ ∈ R\ {0, 1} that

x = (1− λ) a + λb (3.13)

+
n∑
k=1

1

k!
[
(1− λ) a (ln x − ln a)k + (−1)k λb (ln b − ln x)k

]

+ Rn,λ (x, a, b) ,
where the remainder Rn,λ (x, a, b) is given by

Rn,λ (x, a, b) (3.14)

:= 1

n!
[
(1− λ) (ln x − ln a)n+1

∫ 1

0
(1− s)n a1−sxsds

+ (−1)n+1 λ (ln b − ln x)n+1
∫ 1

0
snx1−sbsds

]
.

If we write the equality (2.13) for the function f : R −→ (0,∞) , f (y) =
exp y, we get for any c, d ∈ R and λ ∈ R\ {0, 1} that

exp ((1− λ) c + λd) = (1− λ) exp c + λ exp d

+λ (1− λ)
n∑
k=1

1

k!
[
λk−1 exp c + (−1)k (1− λ)k−1 exp d

]
(d − c)k+Tn,λ (c, d) ,

(3.15)

where

Tn,λ (c, d)

:= 1

n! (d − c)
n+1

[
(1− λ)n+2

∫ 1

0
exp ((1− s + λs) c + (1− λ) sd) (1− s)n ds

+ (−1)n+1 λn+2
∫ 1

0
exp ((1− s) λc + (1− λ+ λs) d) snds

]
. (3.16)
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Let x, a, b > 0. If we take in (3.15) and (3.16) y = ln x, c = ln a and d = ln b,,
then we get for any λ ∈ R\ {0, 1} that

a1−λbλ = (1− λ) a + λb

+ λ (1− λ)
n∑
k=1

1

k!
[
λk−1a + (−1)k (1− λ)k−1 b

]
(ln b − ln a)k + Tn,λ (a, b) ,

(3.17)

where

Tn,λ (a, b)

:= 1

n! (ln b − ln a)n+1
[
(1− λ)n+2

∫ 1

0
a1−s+λsb(1−λ)s (1− s)n ds

+ (−1)n+1 λn+2
∫ 1

0
a(1−s)λb1−λ+λssnds

]
. (3.18)

If λ ∈ [0, 1] and a, b > 0, then we have from (3.17) that

0 ≤ (1− λ) a + λb − a1−λbλ

= λ (1− λ)
n∑
k=1

1

k!
[
(−1)k−1 (1− λ)k−1 b − λk−1a

]
(ln b − ln a)k−Tn,λ (a, b) .

(3.19)

4 Some Inequalities

We have the following inequality:

Theorem 3 Let f : I → R be (2m+ 1)-time differentiable function on the interior
I̊ of the interval I and f (2m+1), with m ≥ 0, be locally absolutely continuous on I̊ .
If f (2m+2) (t) ≥ (≤) 0 for almost every t ∈ I̊ , then for each distinct x, a, b ∈ I̊ and
for any λ ∈ [0, 1] we have

f (x) ≥ (≤) (1− λ) f (a)+ λf (b) (4.1)

+
2m+1∑
k=1

1

k!
[
(1− λ) f (k) (a) (x − a)k + (−1)k λf (k) (b) (b − x)k

]
.
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Proof From Theorem 2 we have for each distinct x, a, b ∈ I̊ and for any λ ∈ [0, 1]
that

f (x) = (1− λ) f (a)+ λf (b) (4.2)

+
2m+1∑
k=1

1

k!
[
(1− λ) f (k) (a) (x − a)k + (−1)k λf (k) (b) (b − x)k

]

+ S2m+1,λ (x, a, b) ,

where the remainder S2m+1,λ (x, a, b) is given by

S2m+1,λ (x, a, b)

:= 1

(2m+ 1)!
[
(1− λ) (x − a)2m+2

∫ 1

0
f (2m+2) ((1− s) a + sx) (1− s)2m+1 ds

+λ (b − x)2m+2
∫ 1

0
f (2m+2) ((1− s) x + sb) s2m+1ds

]
.

If f (2m+2) (t) ≥ (≤) 0 for almost every t ∈ I̊ ,, then for each distinct x, a, b ∈ I̊
we have

∫ 1

0
f (2m+2) ((1− s) a + sx) (1− s)2m+1 ds ≥ (≤) 0

and

∫ 1

0
f (2m+2) ((1− s) x + sb) s2m+1ds ≥ (≤) 0,

which implies that S2m+1,λ (x, a, b) ≥ (≤) 0 for each distinct x, a, b ∈ I̊ .
Using the identity (4.2) we deduce the desired result (4.1). ��

Corollary 3 With the assumptions of Theorem 3 for the function f : I → R then
for each distinct a, b ∈ I̊ and for any λ ∈ [0, 1] we have

f ((1− λ) a + λb) ≥ (≤) (1− λ) f (a)+ λf (b)

+ λ (1− λ)
2m+1∑
k=1

1

k!
[
λk−1f (k) (a)+ (−1)k (1− λ)k−1 f (k) (b)

]
(b − a)k .

(4.3)
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Remark 2 If the function f : I → R is twice differentiable convex (concave) on I̊
then for each distinct x, a, b ∈ I̊ and for any λ ∈ [0, 1] we have from (4.1) that

f (x) ≥ (≤) (1− λ) f (a)+ λf (b)+ (1− λ) f ′ (a) (x − a)− λf ′ (b) (b − x) .
(4.4)

From (4.3) we have that

f ((1− λ) a + λb) ≥ (≤) (1− λ) f (a)+ λf (b)
+λ (1− λ) [f ′ (a)− f ′ (b)] (b − a)

that is equivalent to

λ (1− λ) [f ′ (b)− f ′ (a)] (b − a) (4.5)

≥ (≤) (1− λ) f (a)+ λf (b)− f ((1− λ) a + λb)

for any a, b ∈ I̊ and for any λ ∈ [0, 1] .

We get from (3.2) and (3.3) for any x, a, b > 0 and λ ∈ R\ {0, 1} that

ln x = (1− λ) ln a + λ ln b (4.6)

+
2m+1∑
k=1

1

k

[
(−1)k−1 (1− λ)

(x
a
− 1

)k − λ (1− x
b

)k]

+ U2m+1,λ (x, a, b) ,

where the remainder U2m+1,λ (x, a, b) is given by

U2m+1,λ (x, a, b) (4.7)

:= −
[
(1− λ) (x − a)2m+2

∫ 1

0

(1− s)2m+1

((1− s) a + sx)2m+1 ds

+λ (b − x)2m+2
∫ 1

0

s2m+1

((1− s) x + sb)2m+1 ds

]
.

If x, a, b > 0 and λ ∈ [0, 1], then U2m+1,λ (x, a, b) ≤ 0 and by (4.6), we get

ln x ≤ (1− λ) ln a + λ ln b (4.8)

+
2m+1∑
k=1

1

k

[
(−1)k−1 (1− λ)

(x
a
− 1

)k − λ (1− x
b

)k]
.
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From (3.8) we have for any a, b > 0, m ≥ 0 and λ ∈ [0, 1] that

0 ≤ ln

(
Aλ (a, b)

Gλ (a, b)

)
(4.9)

≤ λ (1− λ)
2m+1∑
k=1

1

k

[
(−1)k−1 λk−1

ak
− (1− λ)

k−1

bk

]
(b − a)k ,

whereAλ (a, b) := (1− λ) a+λb is the weighted arithmetic mean andGλ (a, b) :=
a1−λbλ is the weighted geometric mean. For λ = 1

2 we recapture the arithmetic
mean A (a, b) and geometric mean G(a, b) , respectively.

By taking the exponential in (4.9) we have

1 ≤ Aλ (a, b)
Gλ (a, b)

(4.10)

≤ exp

[
λ (1− λ)

2m+1∑
k=1

1

k

[
(−1)k−1 λk−1

ak
− (1− λ)

k−1

bk

]
(b − a)k

]
,

for any a, b > 0, m ≥ 0 and λ ∈ [0, 1] .
In particular, we have

1 ≤ A (a, b)
G (a, b)

≤ exp

[
1

4

2m+1∑
k=1

1

2k−1k

[
(−1)k−1 bk − ak

akbk

]
(b − a)k

]
, (4.11)

for any a, b > 0 and m ≥ 0.
If we take in (4.10) m = 0,, then we get

1 ≤ Aλ (a, b)
Gλ (a, b)

≤ exp

[
λ (1− λ) (b − a)

2

ab

]
(4.12)

for any a, b > 0 and λ ∈ [0, 1] .
We consider the Kantorovich’s constant defined by

K (h) := (h+ 1)2

4h
, h > 0. (4.13)

The functionK is decreasing on (0, 1) and increasing on [1,∞) , K (h) ≥ 1 for any

h > 0 and K (h) = K
(

1
h

)
for any h > 0.

Using Kantorovich’s constant we can write the inequality (4.12) as

1 ≤ (1− ν) a + νb
a1−νbν

≤ exp
[
4ν (1− ν)

(
K
(a
b

)
− 1

)]
(4.14)

for any a, b > 0 and λ ∈ [0, 1] . That has been obtained in [6].
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In particular, we have [6]

1 ≤ A (a, b)
G (a, b)

≤ exp
(
K
(a
b

)
− 1

)
(4.15)

for any a, b > 0.
Let x, a, b > 0 and m ≥ 0. Then we get from (3.13) and (3.14) for any λ ∈

R\ {0, 1} that

x = (1− λ) a + λb (4.16)

+
2m+1∑
k=1

1

k!
[
(1− λ) a (ln x − ln a)k + (−1)k λb (ln b − ln x)k

]

+ R2m+1,λ (x, a, b) ,

where the remainder R2m+1,λ (x, a, b) is given by

R2m+1,λ (x, a, b) (4.17)

:= 1

(2m+ 1)!
[
(1− λ) (ln x − ln a)2m+2

∫ 1

0
(1− s)2m+1 a1−sxsds

+λ (ln b − ln x)2m+2
∫ 1

0
s2m+1x1−sbsds

]
.

If x, a, b > 0, m ≥ 0 and λ ∈ [0, 1] , then R2m+1,λ (x, a, b) ≥ 0 and by (4.16) we
have

x ≥ (1− λ) a + λb (4.18)

+
2m+1∑
k=1

1

k!
[
(1− λ) a (ln x − ln a)k + (−1)k λb (ln b − ln x)k

]
.

If λ ∈ [0, 1] and a, b > 0, m ≥ 0, then we have from (3.19) that

0 ≤ (1− λ) a + λb − a1−λbλ

= λ (1− λ)
2m+1∑
k=1

1

k!
[
(−1)k−1 (1− λ)k−1 b − λk−1a

]
(ln b − ln a)k

− T2m+1,λ (a, b) , (4.19)
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where

T2m+1,λ (a, b)

:= 1

n! (ln b − ln a)2m+2
[
(1− λ)2m+3

∫ 1

0
a1−s+λsb(1−λ)s (1− s)2m+1 ds

+λ2m+3
∫ 1

0
a(1−s)λb1−λ+λss2m+1ds

]
. (4.20)

Since T2m+1,λ (a, b) ≥ 0 if λ ∈ [0, 1] and a, b > 0, m ≥ 0, then from (4.19) we
get

0 ≤ Aλ (a, b)−Gλ (a, b) (4.21)

≤ λ (1− λ)
2m+1∑
k=1

1

k!
[
(−1)k−1 (1− λ)k−1 b − λk−1a

]
(ln b − ln a)k .

In particular, we have for any a, b > 0 and m ≥ 0 that

0 ≤ A (a, b)−G(a, b) ≤ 1

4

2m+1∑
k=1

1

2k−1k!
[
(−1)k−1 b − a

]
(ln b − ln a)k .

(4.22)
If we take m = 0 in (4.21), then we get

0 ≤ Aλ (a, b)−Gλ (a, b) ≤ λ (1− λ) (b − a) (ln b − ln a) , (4.23)

for any a, b > 0 and λ ∈ [0, 1] , that has been obtained in [6].
In particular, we have [6]

0 ≤ A (a, b)−G(a, b) ≤ 1

4
(b − a) (ln b − ln a) , (4.24)

for any a, b > 0.
For other recent inequalities between the weighted arithmetic mean and geomet-

ric mean, see [6–10, 15–17, 20, 21] and [23].
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22. N. Ujević, Error inequalities for a Taylor-like formula. Cubo 10(1), 11–18 (2008)
23. G. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant. J. Math.

Inequal. 5, 551–556 (2011)



Some Weighted Inequalities for
Riemann–Stieltjes Integral When
a Function Is Bounded

Silvestru Sever Dragomir

Abstract In this chapter we provide some simple ways to approximate the
Riemann–Stieltjes integral of a product of two functions

∫ b
a
f (t) g (t) dv (t) by the

use of simpler quantities and under several assumptions for the functions involved,
one of them satisfying the boundedness condition

∣∣∣∣f (t)− γ + �2

∣∣∣∣ ≤ 1

2
|� − γ | for each t ∈ [a, b] ,

where f : [a, b] → C. Applications for continuous functions of selfadjoint
operators and functions of unitary operators on Hilbert spaces are also given.
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1 Introduction

One can approximate the Stieltjes integral
∫ b
a
f (t) du (t)with the following simpler

quantities:

1

b − a [u (b)− u (a)] ·
∫ b

a

f (t) dt (1.1)

f (x) [u (b)− u (a)] (1.2)
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[u (b)− u (x)] f (b)+ [u (x)− u (a)] f (a) , (1.3)

[26] where x ∈ [a, b] .
In order to provide a priori sharp bounds for the approximation error, consider

the functionals:

D (f, u; a, b) :=
∫ b

a

f (t) du (t)− 1

b − a [u (b)− u (a)] ·
∫ b

a

f (t) dt,

� (f, u; a, b, x) :=
∫ b

a

f (t) du (t)− f (x) [u (b)− u (a)]

and

T (f, u; a, b, x) :=
∫ b

a

f (t) du (t)− [u (b)− u (x)] f (b)− [u (x)− u (a)] f (a) .

If the integrand f is Riemann integrable on [a, b] and the integrator u : [a, b] →
R is L−Lipschitzian, i.e.,

|u (t)− u (s)| ≤ L |t − s| for each t, s ∈ [a, b] , (1.4)

then the Stieltjes integral
∫ b
a
f (t) du (t) exists and, as pointed out in [24],

|D (f, u; a, b)| ≤ L
∫ b

a

∣∣∣∣f (t)−
∫ b

a

1

b − a f (s) ds
∣∣∣∣ dt. (1.5)

The inequality (1.5) is sharp in the sense that the multiplicative constant C = 1
in front of L cannot be replaced by a smaller quantity. Moreover, if there exist the
constants m, M ∈ R such that m ≤ f (t) ≤ M for a.e. t ∈ [a, b] , then [24]

|D (f, u; a, b)| ≤ 1

2
L (M −m) (b − a) . (1.6)

The constant 1
2 is best possible in (1.6).

A different approach in the case of integrands of bounded variation was
considered by the same authors in 2001, [25], where they showed that

|D (f, u; a, b)| ≤ max
t∈[a,b]

∣∣∣∣f (t)− 1

b − a
∫ b

a

f (s) ds

∣∣∣∣
b∨
a

(u) , (1.7)



Some Weighted Inequalities for Riemann–Stieltjes Integral 313

provided that f is continuous and u is of bounded variation. Here
∨b
a (u) denotes

the total variation of u on [a, b] . The inequality (1.7) is sharp.
If we assume that f is K-Lipschitzian, then [25]

|D (f, u; a, b)| ≤ 1

2
K (b − a)

b∨
a

(u) , (1.8)

with 1
2 the best possible constant in (1.8).

For various bounds on the error functional D (f, u; a, b) where f and u belong
to different classes of function for which the Stieltjes integral exists, see [18–20],
and [8] and the references therein.

For the functional θ (f, u; a, b, x) we have the bound [13]:

|θ (f, u; a, b, x)| (1.9)

≤ H
[
(x − a)r

x∨
a

(f )+ (b − x)r
b∨
x

(f )

]

≤ H ×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
(x − a)r + (b − x)r]

[
1
2

b∨
a
(f )+ 1

2

∣∣∣∣
x∨
a
(f )−

b∨
x
(f )

∣∣∣∣
]
;

[
(x − a)qr + (b − x)qr] 1

q

[(
x∨
a
(f )

)p
+
(
b∨
x
(f )

)p] 1
p

if p > 1, 1
p
+ 1
q
= 1;

[
1
2 (b − a)+

∣∣x − a+b
2

∣∣]r b∨
a
(f ) ,

provided f is of bounded variation and u is of r-H -Hölder type, i.e.,

|u (t)− u (s)| ≤ H |t − s|r for each t, s ∈ [a, b] , (1.10)

with given H > 0 and r ∈ (0, 1].
If f is of q-K-Hölder type and u is of bounded variation, then [15]

|θ (f, u; a, b, x)| ≤ K
[

1

2
(b − a)+

∣∣∣∣x − a + b2

∣∣∣∣
]q b∨

a

(u) , (1.11)

for any x ∈ [a, b] .
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If u is monotonic nondecreasing and f of q-K-Hölder type, then the following
refinement of (1.11) also holds [8]:

|θ (f, u; a, b, x)| ≤ K
[
(b − x)q u (b)− (x − a)q u (a) (1.12)

+ q
{∫ x

a

u (t) dt

(x − t)1−q −
∫ b

x

u (t) dt

(t − x)1−q
}]

≤ K [(b − x)q [u (b)− u (x)]+ (x − a)q [u (x)− u (a)]]

≤ K
[

1

2
(b − a)+

∣∣∣∣x − a + b2

∣∣∣∣
]q

[u (b)− u (a)] ,

for any x ∈ [a, b] .
If f is monotonic nondecreasing and u is of r-H -Hölder type, then [8]:

|θ (f, u; a, b, x)| (1.13)

≤ H
[ [
(x − a)r − (b − x)r] f (x)

+ r
{∫ x

a

f (t) dt

(b − t)1−r −
∫ b

x

f (t) dt

(t − r)1−r
}]

≤ H {(b − x)r [f (b)− f (x)]+ (x − a)r [f (x)− f (a)]}

≤ H
[

1

2
(b − a)+

∣∣∣∣x − a + b2

∣∣∣∣
]r

[f (b)− f (a)] ,

for any x ∈ [a, b] .
The error functional T (f, u; a, b, x) satisfies similar bounds, see [6, 8, 26] and

[2] and the details are omitted. For other related results, see [3–5, 7, 11, 12, 17, 28,
29].

Motivated by the above results, in this chapter we provide some simple ways
to approximate the Riemann–Stieltjes integral of a product of two functions∫ b
a
f (t) g (t) dv (t) by the use of simpler quantities and under several assumptions

for the functions involved. Applications for continuous functions of selfadjoint oper-
ators and continuous functions of unitary operators on Hilbert spaces are also given.

2 General Results

We have the simple equality of interest for what follows:

Lemma 1 Let f, g, v : [a, b] → C, λ, μ ∈ C and x ∈ [a, b] . If fg, g ∈
RC (v, [a, x]) ∩RC (v, [x, b]) , then fg, g ∈ RC (v, [a, b]) and
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∫ b

a

f (t) g (t) dv (t) = λ
∫ x

a

g (t) dv (t)+ μ
∫ b

x

g (t) dv (t) (2.1)

+
∫ x

a

[f (t)− λ] g (t) dv (t)+
∫ b

x

[f (t)− μ] g (t) dv (t)

= μ
∫ b

a

g (t) dv (t)+ (λ− μ)
∫ x

a

g (t) dv (t)

+
∫ x

a

[f (t)− λ] g (t) dv (t)+
∫ b

x

[f (t)− μ] g (t) dv (t) .

In particular, for μ = λ, we have

∫ b

a

f (t) g (t) dv (t) = λ
∫ b

a

g (t) dv (t) (2.2)

+
∫ x

a

[f (t)− λ] g (t) dv (t)+
∫ b

x

[f (t)− λ] g (t) dv (t)

= λ
∫ b

a

g (t) dv (t)+
∫ b

a

[f (t)− λ] g (t) dv (t) .

Proof The integrability follows by Theorem 7.4 from [1] which says that if a
function is Riemann–Stieltjes integrable on the intervals [a, x] , [x, b] with x ∈
[a, b] , then it is integrable on the whole interval [a, b] .

Using the properties of the Riemann–Stieltjes integral, we have

∫ x

a

[f (t)− λ] g (t) dv (t)+
∫ b

x

[f (t)− μ] g (t) dv (t)

=
∫ x

a

f (t) g (t) dv (t)− λ
∫ x

a

g (t) dv (t)+
∫ b

x

f (t) g (t) dv (t)− μ
∫ b

x

g (t) dv (t)

=
∫ b

a

f (t) g (t) dv (t)− λ
∫ x

a

g (t) dv (t)− μ
∫ b

x

g (t) dv (t) ,

which is equivalent to the first equality in (2.1).
The rest is obvious. ��

Corollary 1 Assume that f, v : [a, b] → C and x ∈ [a, b] are such that f ∈
RC (v, [a, x]) ∩RC (v, [x, b]). Then for any λ, μ ∈ C we have the equality

∫ b

a

f (t) dv (t) = λ [v (x)− v (a)]+ μ [v (b)− v (x)] (2.3)

+
∫ x

a

[f (t)− λ] dv (t)+
∫ b

x

[f (t)− μ] dv (t) .
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In particular, for μ = λ, we have

∫ b

a

f (t) dv (t) = λ [v (b)− v (a)] (2.4)

+
∫ x

a

[f (t)− λ] dv (t)+
∫ b

x

[f (t)− λ] dv (t)

= λ [v (b)− v (a)]+
∫ b

a

[f (t)− λ] dv (t) .

The proof follows by Lemma 1 for g (t) = 1, t ∈ [a, b] .

Remark 1 We observe that, see [1, Theorem 7.27], if f, g ∈ CC [a, b] , namely, are
continuous on [a, b] and v ∈ BVC [a, b] , namely of bounded variation on [a, b] ,
then for any x ∈ [a, b] the Riemann–Stieltjes integrals in Lemma 1 exist and the
equalities (2.1) and (2.2) hold.

Now, for γ, � ∈ C and [a, b] an interval of real numbers, define the sets of
complex-valued functions

Ū[a,b] (γ, �) :=
{
f : [a, b] → C|Re

[
(� − f (t)) (f (t)− γ )] ≥ 0 for each t ∈ [a, b]

}

and

 ̄[a,b] (γ, �) :=
{
f : [a, b] → C|

∣∣∣∣f (t)− γ + �2

∣∣∣∣ ≤ 1

2
|� − γ | for each t ∈ [a, b]

}
.

This family of functions is a particular case of the class introduced in [21]

 ̄[a,b],g (γ, �)

:=
{
f : [a, b] → C|

∣∣∣∣f (t)− γ + �2
g (t)

∣∣∣∣ ≤ 1

2
|� − γ | |g (t)| for each t ∈ [a, b]

}
,

where g : [a, b] → C.
The following representation result may be stated.

Proposition 1 For any γ, � ∈ C, γ �= �, we have that Ū[a,b] (γ, �) and
 ̄[a,b] (γ, �) are nonempty, convex, and closed sets and

Ū[a,b] (γ, �) =  ̄[a,b] (γ, �) . (2.5)
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Proof We observe that for any z ∈ C we have the equivalence

∣∣∣∣z− γ + �2

∣∣∣∣ ≤ 1

2
|� − γ |

if and only if

Re [(� − z) (z̄− γ̄ )] ≥ 0.

This follows by the equality

1

4
|� − γ |2 −

∣∣∣∣z− γ + �2

∣∣∣∣
2

= Re [(� − z) (z̄− γ̄ )]

that holds for any z ∈ C.
The equality (2.5) is thus a simple consequence of this fact. ��
On making use of the complex numbers field properties we can also state that:

Corollary 2 For any γ, � ∈ C, γ �= �,we have that

Ū[a,b] (γ, �) = {f : [a, b] → C | (Re� − Re f (t)) (Re f (t)− Re γ ) (2.6)

+ (Im� − Im f (t)) (Im f (t)− Im γ ) ≥ 0 for each t ∈ [a, b]} .

Now, if we assume that Re (�) ≥ Re (γ ) and Im (�) ≥ Im (γ ) , then we can
define the following set of functions as well:

S̄[a,b] (γ, �) := {f : [a, b] → C | Re (�) ≥ Re f (t) ≥ Re (γ )

and Im (�) ≥ Im f (t) ≥ Im (γ ) for each t ∈ [a, b]} . (2.7)

One can easily observe that S̄[a,b] (γ, �) is closed, convex and

∅ �= S̄[a,b] (γ, �) ⊆ Ū[a,b] (γ, �) . (2.8)

We consider the following functional

P (f, g, v; γ, �, a, b) :=
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t) (2.9)

for the complex-valued functions f, g, v defined on [a, b] and such that the involved
Riemann–Stieltjes integrals exist, and for γ, � ∈ C.
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Theorem 1 Let f, g ∈ CC [a, b] and γ, � ∈ C, γ �= � such that f ∈  ̄[a,b] (γ, �) .

(i) If v ∈ BVC [a, b] , then

|P (f, g, v; γ, �, a, b)| ≤ 1

2
|� − γ |

∫ b

a

|g (t)| d
(
t∨
a

(v)

)

≤ 1

2
|� − γ | max

t∈[a,b]
|g (t)|

b∨
a

(v) . (2.10)

(ii) If v ∈ LL,C [a, b] , namely, v is Lipschitzian with the constant L > 0,

|v (t)− v (s)| ≤ L |t − s| for any t, s ∈ [a, b] ,

then we also have

|P (f, g, v; γ, �, a, b)| ≤ 1

2
|� − γ |L

∫ b

a

|g (t)| dt

≤ 1

2
|� − γ | (b − a) max

t∈[a,b]
|g (t)| . (2.11)

(iii) If v ∈M↗ [a, b] , namely, v is monotonic increasing on [a, b] , then we have

|P (f, g, v; γ, �, a, b)| ≤ 1

2
|� − γ |

∫ b

a

|g (t)| dv (t)

≤ 1

2
|� − γ | [v (b)− v (a)] max

t∈[a,b]
|g (t)| . (2.12)

Proof

(i) It is well known that if p ∈ R (u, [a, b]) where u ∈ BVC [a, b] then we have
[1, p. 177]

∣∣∣∣
∫ b

a

p (t) du (t)

∣∣∣∣ ≤
∫ b

a

|p (t)| d
(
t∨
a

(u)

)
≤ sup
t∈[a,b]

|p (t)|
b∨
a

(u) .

(2.13)
By the equality (2.2) we have

∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t) =
∫ b

a

[
f (t)− γ + �

2

]
g (t) dv (t) .

(2.14)
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Since f ∈  ̄[a,b] (γ, �) then by (2.13) and (2.14) we have

∣∣∣∣
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)

∣∣∣∣ ≤
∫ b

a

∣∣∣∣
[
f (t)− γ + �

2

]
g (t)

∣∣∣∣ d
(
t∨
a

(v)

)

=
∫ b

a

∣∣∣∣f (t)− γ + �2

∣∣∣∣ |g (t)| d
(
t∨
a

(v)

)

≤ 1

2
|� − γ |

∫ b

a

|g (u)| d
(
t∨
a

(v)

)

and the first inequality in (2.10) is proved. The second part is obvious.
(ii) It is well known that if p ∈ R (u, [a, b]) , where u ∈ LL,C [a, b] , then we

have

∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L
∫ b

a

|p (t)| dt. (2.15)

By using (2.14) we then get (2.11).
(iii) It is well known that if p ∈ R (u, [a, b]) , where u ∈ M↗ [a, b] , then we

have

∣∣∣∣
∫ b

a

p (t) dv (t)

∣∣∣∣ ≤ L
∫ b

a

|p (t)| dv (t) . (2.16)

By using (2.14) we then get (2.12).
��

Remark 2 We define the simpler functional for g ≡ 1 by

P (f, v; γ, �, a, b) := P (f, 1, v; γ, �, a, b) =
∫ b

a

f (t) dv (t)−γ + �
2

[v (b)− v (a)] .

Let f ∈ CC [a, b] and γ, � ∈ C, γ �= � such that f ∈  ̄[a,b] (γ, �) . If v ∈
BVC [a, b] , then

|P (f, v; γ, �, a, b)| ≤ 1

2
|� − γ |

b∨
a

(v) . (2.17)

If v ∈ LL,C [a, b] , then

|P (f, v; γ, �, a, b)| ≤ 1

2
L |� − γ | (b − a) . (2.18)
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If v ∈M↗ [a, b] , then

∣∣∣∣
∫ b

a

P (f, v; γ, �, a, b)
∣∣∣∣ ≤ 1

2
|� − γ | [v (b)− v (a)] . (2.19)

We observe that, if f ∈ C [a, b] , namely f is real valued and continuous on
[a, b] and if we putm := mint∈[a,b] f (t) andM := maxt∈[a,b] f (t) then by (2.17)–
(2.19) we get

|P (f, v;m,M, a, b)| ≤ 1

2
(M −m)

b∨
a

(v)

if v ∈ BVC [a, b] ,

|P (f, v;m,M, a, b)| ≤ 1

2
L (M −m) (b − a)

if v ∈ LL,C [a, b] and

|P (f, v;m,M, a, b)| ≤ 1

2
(M −m) [v (b)− v (a)]

if v ∈M↗ [a, b] , that have been obtained in [21].
For other results of this type, see [16].

3 Quasi-Grüss Type Inequalities

We consider the functional

Q(f, g, v; γ, �, δ, , a, b) :=
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)

− δ + 
2

∫ b

a

f (t) dv (t)+ γ + �
2

· δ + 
2

[v (b)− v (a)]

for the complex-valued functions f, g, v defined on [a, b] and such that the involved
Riemann–Stieltjes integrals exist, and for γ, �, δ,  ∈ C.

We have the following quasi-Grüss type inequality:

Proposition 2 Let f, g ∈ CC [a, b] and γ, �, δ,  ∈ C, γ �= �, δ �=  such that
f ∈  ̄[a,b] (γ, �) and g ∈  ̄[a,b] (δ, ) . If v ∈ BVC [a, b] , then
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|Q(f, g, v; γ, �, a, b)| ≤ 1

4
|� − γ | | − δ|

b∨
a

(v) . (3.1)

If v ∈ LL,C [a, b] , then

|Q(f, g, v; γ, �, a, b)| ≤ 1

4
|� − γ | | − δ|L (b − a) .

If v ∈M↗ [a, b] , then

|Q(f, g, v; γ, �, a, b)| ≤ 1

4
|� − γ | | − δ| [v (b)− v (a)] .

Proof If we replace in (2.10) g by g − δ+ 
2 , then we get

∣∣∣∣
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)

− δ + 
2

∫ b

a

f (t) dv (t)+ γ + �
2

· δ + 
2

[v (b)− v (a)]
∣∣∣∣

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− δ + 2

∣∣∣∣ d
(
t∨
a

(v)

)
.

Since g ∈  ̄[a,b] (δ, ) , then

∫ b

a

∣∣∣∣g (t)− δ + 2

∣∣∣∣ d
(
t∨
a

(v)

)
≤ 1

2
| − δ|

∫ b

a

d

(
t∨
a

(v)

)
= 1

2
| − δ|

b∨
a

(v)

and the inequality (3.1) is proved.
The proofs of the other two statements follow in a similar way and we omit the

details. ��
Proposition 3 Let f, g ∈ CC [a, b] , g ∈ BVC [a, b] and γ, � ∈ C, γ �= � such
that f ∈  ̄[a,b] (γ, �) . If v ∈ BVC [a, b] , then

|Q(f, g, v; g (a) , g (b) , a, b)| ≤ 1

4
|� − γ |

b∨
a

(g)

b∨
a

(v) , (3.2)

where

Q(f, g, v; g (a) , g (b) , a, b) =
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)
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− g (a)+ g (b)
2

∫ b

a

f (t) dv (t)+ γ + �
2

· g (a)+ g (b)
2

[v (b)− v (a)] .

If v ∈ LL,C [a, b] , then

|Q(f, g, v; g (a) , g (b) , a, b)| ≤ 1

4
|� − γ |L (b − a)

b∨
a

(g) . (3.3)

If v ∈M↗ [a, b] , then

|Q(f, g, v; g (a) , g (b) , a, b)| ≤ 1

4
|� − γ |

b∨
a

(g) [v (b)− v (a)] . (3.4)

Proof If we replace in (2.10) g by g − g(a)+g(b)
2 , then we get

∣∣∣∣
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)

−g (a)+ g (b)
2

∫ b

a

f (t) dv (t)+ γ + �
2

· g (a)+ g (b)
2

[v (b)− v (a)]
∣∣∣∣

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− g (a)+ g (b)2

∣∣∣∣ d
(
t∨
a

(v)

)
.

Since g ∈ BVC [a, b] , hence

∣∣∣∣g (t)− g (a)+ g (b)2

∣∣∣∣ =
∣∣∣∣g (t)− g (a)+ g (t)− g (b)2

∣∣∣∣

≤ 1

2
[|g (t)− g (a)| + |g (b)− g (t)|] ≤ 1

2

b∨
a

(g)

for any t ∈ [a, b] .
Therefore

∫ b

a

∣∣∣∣g (t)− g (a)+ g (b)2

∣∣∣∣ d
(
t∨
a

(v)

)
≤ 1

2

b∨
a

(g)

∫ b

a

d

(
t∨
a

(v)

)
= 1

2

b∨
a

(g)

b∨
a

(v)

and the inequality (3.2) is proved.
The proofs of the other statements follow in a similar way and we omit the details.

��
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Proposition 4 Let f, g ∈ CC [a, b] and γ, � ∈ C, γ �= � such that f ∈
 ̄[a,b] (γ, �) . If v ∈ BVC [a, b] , then

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ d
(
t∨
a

(v)

)

≤ 1

2
|� − γ | max

t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣
b∨
a

(v) , (3.5)

where

Q

(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)

=
∫ b

a

f (t) g (t) dv (t)− γ + �
2

∫ b

a

g (t) dv (t)

−
∫ b

a

f (t) dv (t)
1

b − a
∫ b

a

g (t) dt + [v (b)− v (a)] γ + �
2

· 1

b − a
∫ b

a

g (t) dt

∣∣∣∣ .
If v ∈ LL,C [a, b] , then

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣
≤ 1

2
|� − γ |L

∫ b

a

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dt

≤ 1

2
|� − γ |L (b − a) max

t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dt. (3.6)

If v ∈M↗ [a, b] , then

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣
≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ dv (t)

≤ 1

2
|� − γ | max

t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ [v (b)− v (a)] . (3.7)
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Proof The first inequality follows by Theorem 1 by replacing g with g −
1
b−a

∫ b
a
g (s) ds. The second part follows by the fact that

∫ b

a

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ d
(
t∨
a

(v)

)

≤ max
t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣
∫ b

a

d

(
t∨
a

(v)

)

= max
t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣
b∨
a

(v) .

The proofs of the other statements follow in a similar way and we omit the details.
��

Remark 3 We observe that the quantity

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ , t ∈ [a, b]

is the left-hand side in Ostrowski type inequalities for various classes of functions
g. For a recent survey on these inequalities, see [23]. Therefore, if

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ ≤ Mg,[a,b] (t) , t ∈ [a, b]

is such of inequality, then from (3.5) we get

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣

≤ 1

2
|� − γ |

∫ b

a

Mg,[a,b] (t) d

(
t∨
a

(v)

)
(3.8)

if v ∈ BVC [a, b] , from (3.6) we get

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣
≤ 1

2
|� − γ |L

∫ b

a

Mg,[a,b] (t) dt (3.9)

if v ∈ LL,C [a, b] and from (3.7) we get
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∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣
≤ 1

2
|� − γ |

∫ b

a

Mg,[a,b] (t) dv (t) , (3.10)

if v ∈M↗ [a, b] .
For instance, if g : [a, b] → C is of bounded variation, then we have, see [10]

and [14]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (t) dt

∣∣∣∣ ≤
[

1

2
+
∣∣t − a+b

2

∣∣
b − a

]
b∨
a

(g) (3.11)

for any t ∈ [a, b] . The constant 1
2 is the best possible one.

Observe that

∫ b

a

[
1

2
+
∣∣t − a+b

2

∣∣
b − a

]
d

(
t∨
a

(v)

)

= 1

2

b∨
a

(v)+ 1

b − a
∫ b

a

∣∣∣∣t − a + b2

∣∣∣∣ d
(
t∨
a

(v)

)

= 1

2

b∨
a

(v)+ 1

b − a
∫ a+b

2

a

(
a + b

2
− t
)
d

(
t∨
a

(v)

)

+ 1

b − a
∫ b

a+b
2

(
t − a + b

2

)
d

(
t∨
a

(v)

)

= 1

2

b∨
a

(v)+ 1

b − a

⎡
⎣
(
a + b

2
− t
) t∨

a

(v)

∣∣∣∣∣
a+b

2

a

+
∫ a+b

2

a

t∨
a

(v) dt

⎤
⎦

+ 1

b − a

⎡
⎣
(
t − a + b

2

) t∨
a

(v)

∣∣∣∣∣
b

a+b
2

−
∫ b

a+b
2

t∨
a

(v) dt

⎤
⎦

=
b∨
a

(v)+ 1

b − a
∫ a+b

2

a

t∨
a

(v) dt − 1

b − a
∫ b

a+b
2

t∨
a

(v) dt

=
b∨
a

(v)+ 1

b − a

(∫ a+b
2

a

t∨
a

(v) dt −
∫ b

a+b
2

t∨
a

(v) dt

)

=
b∨
a

(v)− 1

b − a
∫ b

a

sgn

(
t − a + b

2

) t∨
a

(v) dt.
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Then by (3.8) we get

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣

≤ 1

2
|� − γ |

b∨
a

(g)

[
b∨
a

(v)− 1

b − a
∫ b

a

sgn

(
t − a + b

2

) t∨
a

(v) dt

]

≤ 1

2
|� − γ |

b∨
a

(g)

b∨
a

(v) (3.12)

if v, g ∈ BVC [a, b] .
The last inequality in (3.12) follows by Chebyshev’s inequality for monotonic

functions that gives that

1

b − a
∫ b

a

sgn

(
t − a + b

2

) t∨
a

(v) dt

≥ 1

b − a
∫ b

a

sgn

(
t − a + b

2

)
dt

1

b − a
∫ b

a

t∨
a

(v) dt = 0.

Observe also that

∫ b

a

[
1

2
+
∣∣t − a+b

2

∣∣
b − a

]
dt = 3

4
(b − a) ,

then by (3.9) we get

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣

≤ 3

8
|� − γ |L (b − a)

b∨
a

(g) (3.13)

if v ∈ LL,C [a, b] and g ∈ BVC [a, b] .
Finally, since

∫ b

a

[
1

2
+
∣∣t − a+b

2

∣∣
b − a

]
dv (t) = v (b)− v (a)
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− 1

b − a
∫ b

a

sgn

(
t − a + b

2

)
[v (t)− v (a)] dt,

then we get by (3.10) that

∣∣∣∣Q
(
f, g, v; 1

b − a
∫ b

a

g (s) ds,
1

b − a
∫ b

a

g (s) ds, a, b

)∣∣∣∣

≤ 1

2
|� − γ |

b∨
a

(g)

[
v (b)− v (a)− 1

b − a
∫ b

a

sgn

(
t − a + b

2

)
[v (t)− v (a)] dt

]

≤ 1

2
|� − γ |

b∨
a

(g) [v (b)− v (a)] (3.14)

if v ∈M↗ [a, b] and g ∈ BVC [a, b] .

4 Grüss Type Inequalities

Consider the Grüss type functional

G(f, g, v; a, b) :=
∫ b

a

f (t) g (t) dv (t)

− 1

v (b)− v (a)
∫ b

a

f (t) dv (t)

∫ b

a

g (t) dv (t) (4.1)

for the complex-valued functions f, g, v defined on [a, b] and such that the involved
Riemann–Stieltjes integrals exist and v (b) �= v (a) .

We have:

Proposition 5 Let f, g ∈ CC [a, b] and γ, � ∈ C, γ �= � such that f ∈
 ̄[a,b] (γ, �) . If v ∈ BVC [a, b] with v (b) �= v (a) , then

|G(f, g, v; a, b)|

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ d
(
t∨
a

(v)

)

≤ 1

2
|� − γ |

b∨
a

(v) max
t∈[a,b]

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ dt. (4.2)
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If v ∈ LL,C [a, b] , then

|G(f, g, v; a, b)|

≤ 1

2
|� − γ |L

∫ b

a

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ dt

≤ 1

2
|� − γ |L (b − a) max

t∈[a,b]

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ . (4.3)

If v ∈M↗ [a, b] , then

|G(f, g, v; a, b)|

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ dv (t)

≤ 1

2
|� − γ | [v (b)− v (a)] max

t∈[a,b]

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ .
(4.4)

Proof By Theorem 1, on replacing g with g − 1
v(b)−v(a)

∫ b
a
g (s) dv (s) we get

∣∣∣∣
∫ b

a

f (t)

[
g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

]
dv (t)

−γ + �
2

∫ b

a

[
g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

]
dv (t)

∣∣∣∣

≤ 1

2
|� − γ |

∫ b

a

∣∣∣∣g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

∣∣∣∣ d
(
t∨
a

(v)

)
.

Since

∫ b

a

f (t)

[
g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

]
dv (t)

=
∫ b

a

f (t) g (t) dv (t)− 1

v (b)− v (a)
∫ b

a

f (t) dv (t)

∫ b

a

g (t) dv (t)
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and

∫ b

a

[
g (t)− 1

v (b)− v (a)
∫ b

a

g (s) dv (s)

]
dv (t) = 0,

hence the first inequality (4.2) is obtained. The second inequality is obvious.
The rest follow in a similar way and we omit the details. ��

Remark 4 If g is of K-Lipschitzian and v is of bounded variation, then [15]

∣∣∣∣g (t) [v (b)− v (a)]−
∫ b

a

g (s) dv (s)

∣∣∣∣ ≤ K
[

1

2
(b − a)+

∣∣∣∣t − a + b2

∣∣∣∣
] b∨
a

(v) ,

for any t ∈ [a, b] .
By (4.2) we then have

|G(f, g, v; a, b)|

≤ 1

2

|� − γ |
|v (b)− v (a)|

∫ b

a

∣∣∣∣g (t) [v (b)− v (a)]−
∫ b

a

g (s) dv (s)

∣∣∣∣ d
(
t∨
a

(v)

)

≤ 1

2

|� − γ |
|v (b)− v (a)|K

b∨
a

(v)

∫ b

a

∣∣∣∣12 (b − a)+
∣∣∣∣t − a + b2

∣∣∣∣
∣∣∣∣ d
(
t∨
a

(v)

)
.

Since, as above

∫ b

a

[
1

2
(b − a)+

∣∣∣∣t − a + b2

∣∣∣∣
]
d

(
t∨
a

(v)

)

= (b − a)
b∨
a

(v)−
∫ b

a

sgn

(
t − a + b

2

) t∨
a

(v) dt ≤ (b − a)
b∨
a

(v) ,

then we get the following upper bounds for the magnitude of G(f, g, v; a, b)

|G(f, g, v; a, b)|

≤ 1

2

|� − γ |
|v (b)− v (a)|K

b∨
a

(v)

[
(b − a)

b∨
a

(v)−
∫ b

a

sgn

(
t − a + b

2

) t∨
a

(v) dt

]

≤ 1

2
K
|� − γ | (b − a)
|v (b)− v (a)|

(
b∨
a

(v)

)2

. (4.5)
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Any other upper bounds for |θ (g, v; a, b, t)| with t ∈ [a, b] , see, for instance,
the survey [9], will provide the corresponding bounds for |G(f, g, v; a, b)| . The
details are left to the interested reader.

5 Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on a
complex Hilbert space (H ; 〈·, ·〉) . Let A ∈ B (H) be selfadjoint and let ϕλ be
defined for all λ ∈ R as follows:

ϕλ (s) :=
⎧⎨
⎩

1, for −∞ < s ≤ λ,

0, for λ < s < +∞.

Then for every λ ∈ R the operator

Eλ := ϕλ (A) (5.1)

is a projection which reduces A.
The properties of these projections are collected in the following fundamental

result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see, for instance, [27, p. 256]:

Theorem 2 (Spectral Representation Theorem) Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {λ |λ ∈ Sp (A) } =: min Sp (A)
and b = max {λ |λ ∈ Sp (A) } =: max Sp (A) . Then there exists a family of
projections {Eλ}λ∈R, called the spectral family of A, with the following properties:

(a) Eλ ≤ Eλ′ for λ ≤ λ′;
(b) Ea−0 = 0, Eb = I and Eλ+0 = Eλ for all λ ∈ R;
(c) We have the representation

A =
∫ b

a−0
λdEλ.

More generally, for every continuous complex-valued function ϕ defined on R

there exists a unique operator ϕ (A) ∈ B (H) such that for every ε > 0 there exists
a δ > 0 satisfying the inequality

∥∥∥∥∥ϕ (A)−
n∑
k=1

ϕ
(
λ′k
) [
Eλk − Eλk−1

]∥∥∥∥∥ ≤ ε
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whenever
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ0 < a = λ1 < . . . < λn−1 < λn = b,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′k ∈ [λk−1, λk] for 1 ≤ k ≤ n

this means that

ϕ (A) =
∫ b

a−0
ϕ (λ) dEλ, (5.2)

where the integral is of Riemann–Stieltjes type.

Corollary 3 With the assumptions of Theorem 2 for A, Eλ, and ϕ we have the
representations

ϕ (A) x =
∫ b

a−0
ϕ (λ) dEλx for all x ∈ H

and

〈ϕ (A) x, y〉 =
∫ b

a−0
ϕ (λ) d 〈Eλx, y〉 for all x, y ∈ H. (5.3)

In particular,

〈ϕ (A) x, x〉 =
∫ b

a−0
ϕ (λ) d 〈Eλx, x〉 for all x ∈ H.

Moreover, we have the equality

‖ϕ (A) x‖2 =
∫ b

a−0
|ϕ (λ)|2 d ‖Eλx‖2 for all x ∈ H.

We need the following result that provides an upper bound for the total variation
of the function R ( λ �→ 〈Eλx, y〉 ∈ C on an interval [α, β] , see [22].

Lemma 2 Let {Eλ}λ∈R be the spectral family of the bounded selfadjoint operator
A. Then for any x, y ∈ H and α < β we have the inequality

⎡
⎣ β∨
α

(〈
E(·)x, y

〉)⎤⎦
2

≤ 〈(Eβ − Eα) x, x〉 〈(Eβ − Eα) y, y〉 , (5.4)
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where
β∨
α

(〈
E(·)x, y

〉)
denotes the total variation of the function

〈
E(·)x, y

〉
on [α, β] .

Remark 5 For α = a −ε with ε > 0 and β = b we get from (5.4) the inequality

b∨
a−ε

(〈
E(·)x, y

〉) ≤ 〈(I − Ea−ε) x, x〉1/2 〈(I − Ea−ε) y, y〉1/2 (5.5)

for any x, y ∈ H.
This implies, for any x, y ∈ H , that

b∨
a−0

(〈
E(·)x, y

〉) ≤ ‖x‖ ‖y‖ , (5.6)

where
b∨
a−0

(〈
E(·)x, y

〉)
denotes the limit limε→0+

[
b∨
a−ε

(〈
E(·)x, y

〉)]
.

We can state the following result for functions of selfadjoint operators:

Theorem 3 Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min {λ |λ ∈ Sp (A) } =: min Sp (A) and b = max {λ |λ ∈ Sp (A) }
=: max Sp (A) . Also, assume that {Eλ}λ∈R is the spectral family of the bounded
selfadjoint operator A and f, g : I → C are continuous on I, [a, b] ⊂ I̊ (the
interior of I ). If γ, � ∈ C, γ �= � such that f ∈  ̄[a,b] (γ, �) , then

∣∣∣∣〈f (A) g (A) x, y〉 − γ + �2
〈g (A) x, y〉

∣∣∣∣

≤ 1

2
|� − γ | max

t∈[a,b]
|g (t)|

b∨
a−0

(〈
E(·)x, y

〉) ≤ 1

2
|� − γ | max

t∈[a,b]
|g (t)| ‖x‖ ‖y‖

(5.7)

for any x, y ∈ H.
Proof Using the inequality (2.10), we have

∣∣∣∣
∫ b

a−ε
f (t) g (t) d 〈Etx, y〉 − γ + �

2

∫ b

a−ε
g (t) d 〈Etx, y〉

∣∣∣∣

≤ 1

2
|� − γ | max

t∈[a−ε,b]
|g (t)|

b∨
a−ε

(〈
E(·)x, y

〉)

for small ε > 0 and for any x, y ∈ H.
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Taking the limit over ε → 0+ and using the continuity of f, g and the Spectral
Representation Theorem, we deduce the desired result (5.7). ��
Corollary 4 With the assumptions of Theorem 3 and if γ, �, δ,  ∈ C, γ �= �,
δ �=  such that f ∈  ̄[a,b] (γ, �) and g ∈  ̄[a,b] (δ, ) , then

∣∣∣∣〈f (A) g (A) x, y〉 − γ + �2
〈g (A) x, y〉

−δ + 
2

〈f (A) x, y〉 + γ + �
2

δ + 
2

〈x, y〉
∣∣∣∣

≤ 1

4
|� − γ | | − δ|

b∨
a−0

(〈
E(·)x, y

〉) ≤ 1

4
|� − γ | | − δ| ‖x‖ ‖y‖ (5.8)

for any x, y ∈ H.
Corollary 5 With the assumptions of Theorem 3 and if g ∈ BVC [a, b] and γ,
� ∈ C, γ �= � such that f ∈  ̄[a,b] (γ, �) , then

∣∣∣∣〈f (A) g (A) x, y〉 − γ + �2
〈g (A) x, y〉

−g (a)+ g (b)
2

〈f (A) x, y〉 + γ + �
2

g (a)+ g (b)
2

〈x, y〉
∣∣∣∣

≤ 1

4
|� − γ |

b∨
a

(g)

b∨
a−0

(〈
E(·)x, y

〉) ≤ 1

4
|� − γ |

b∨
a

(g) ‖x‖ ‖y‖ (5.9)

for any x, y ∈ H.
Corollary 6 With the assumptions of Theorem 3 and if γ, � ∈ C, γ �= � such that
f ∈  ̄[a,b] (γ, �) ,

∣∣∣∣〈f (A) g (A) x, y〉 − γ + �2
〈g (A) x, y〉

− 〈f (A) x, y〉 1

b − a
∫ b

a

g (t) dt + 〈x, y〉 γ + �
2

1

b − a
∫ b

a

g (t) dt

∣∣∣∣

≤ 1

2
|� − γ | max

t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣
b∨
a−0

(〈
E(·)x, y

〉)

≤ 1

2
|� − γ | max

t∈[a,b]

∣∣∣∣g (t)− 1

b − a
∫ b

a

g (s) ds

∣∣∣∣ ‖x‖ ‖y‖ (5.10)

for any x, y ∈ H.
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Finally, by the use of the inequality (4.2) in the form

∣∣∣∣[v (b)− v (a)]
∫ b

a

f (t) g (t) dv (t)−
∫ b

a

f (t) dv (t)

∫ b

a

g (t) dv (t)

∣∣∣∣

≤ 1

2
|� − γ |

b∨
a

(v) max
t∈[a,b]

∣∣∣∣g (t) [v (b)− v (a)]−
∫ b

a

g (s) dv (s)

∣∣∣∣ , (5.11)

provided v ∈ BVC [a, b] , f, g ∈ CC [a, b] and γ, � ∈ C, γ �= � such that f ∈
 ̄[a,b] (γ, �) , we have

Corollary 7 With the assumptions of Theorem 3 and if γ, � ∈ C, γ �= � such that
f ∈  ̄[a,b] (γ, �) , then

|〈f (A) g (A) x, y〉 〈x, y〉 − 〈f (A) x, y〉 〈g (A) x, y〉|

≤ 1

2
|� − γ | max

t∈[a,b]
|g (t) 〈x, y〉 − 〈g (A) x, y〉|

b∨
a−0

(〈
E(·)x, y

〉)

≤ 1

2
|� − γ | max

t∈[a,b]
|g (t) 〈x, y〉 − 〈g (A) x, y〉| ‖x‖ ‖y‖ (5.12)

for any x, y ∈ H.

6 Applications for Unitary Operators

A unitary operator is a bounded linear operator U : H → H on a Hilbert space H
satisfying

U∗U = UU∗ = 1H

where U∗ is the adjoint of U, and 1H : H → H is the identity operator. This
property is equivalent to the following:

(1) U preserves the inner product 〈·, ·〉 of the Hilbert space, i.e., for all vectors x
and y in the Hilbert space, 〈Ux,Uy〉 = 〈x, y〉 and

(2) U is surjective.

The following result is well known [27, pp. 275–276]:

Theorem 4 (Spectral Representation Theorem) Let U be a unitary operator on
the Hilbert space H. Then there exists a family of projections {Pλ}λ∈[0,2π ], called
the spectral family of U, with the following properties:
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(a) Pλ ≤ Pλ′ for λ ≤ λ′;
(b) P0 = 0, P2π = I and Pλ+0 = Pλ for all λ ∈ [0, 2π);
(c) We have the representation

U =
∫ 2π

0
exp (iλ) dPλ.

More generally, for every continuous complex-valued function ϕ defined on the
unit circle C (0, 1) there exists a unique operator ϕ (U) ∈ B (H) such that for every
ε > 0 there exists a δ > 0 satisfying the inequality

∥∥∥∥∥ϕ (U)−
n∑
k=1

ϕ
(
exp

(
iλ′k
)) [
Pλk − Pλk−1

]∥∥∥∥∥ ≤ ε

whenever
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 = λ1 < . . . < λn−1 < λn = 2π,

λk − λk−1 ≤ δ for 1 ≤ k ≤ n,

λ′k ∈ [λk−1, λk] for 1 ≤ k ≤ n

this means that

ϕ (U) =
∫ 2π

0
ϕ (exp (iλ)) dPλ, (6.1)

where the integral is of Riemann–Stieltjes type.

Corollary 8 With the assumptions of Theorem 4 for U, Pλ, and ϕ we have the
representations

ϕ (U) x =
∫ 2π

0
ϕ (exp (iλ)) dPλx for all x ∈ H

and

〈ϕ (U) x, y〉 =
∫ 2π

0
ϕ (exp (iλ)) d 〈Pλx, y〉 for all x, y ∈ H. (6.2)

In particular,

〈ϕ (U) x, x〉 =
∫ 2π

0
ϕ (exp (iλ)) d 〈Pλx, x〉 for all x ∈ H.
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Moreover, we have the equality

‖ϕ (U) x‖2 =
∫ 2π

0
|ϕ (exp (iλ))|2 d ‖Pλx‖2 for all x ∈ H.

On making use of an argument similar to the one in [22, Theorem 6], we have:

Lemma 3 Let {Pλ}λ∈[0,2π ]be the spectral family of the unitary operator U on the
Hilbert space H. Then for any x, y ∈ H and 0 ≤ α < β ≤ 2π we have the
inequality

β∨
α

(〈
P(·)x, y

〉) ≤ 〈(Pβ − Pα) x, x〉1/2 〈(Pβ − Pα) y, y〉1/2 , (6.3)

where
β∨
α

(〈
P(·)x, y

〉)
denotes the total variation of the function

〈
P(·)x, y

〉
on [α, β] .

In particular,

2π∨
0

(〈
P(·)x, y

〉) ≤ ‖x‖ ‖y‖ (6.4)

for any x, y ∈ H.
Theorem 5 Let U be a unitary operator on the Hilbert space H and {Pλ}λ∈[0,2π ]
the spectral family of projections of U. Also, assume that f, g : C (0, 1) → C

are continuous on C (0, 1). If φ, ! ∈ C, φ �= ! are such that f ◦ exp (i·) ∈
 ̄[0,2π ] (φ,!) , then

∣∣∣∣〈f (U) g (U) x, y〉 − φ +!2
〈g (U) x, y〉

∣∣∣∣

≤ 1

2
|!− φ| max

t∈[0,2π ]
|g (exp (it))|

2π∨
0

(〈
P(·)x, y

〉)

≤ 1

2
|!− φ| max

t∈[0,2π ]
|g (exp (it))| ‖x‖ ‖y‖ (6.5)

for any x, y ∈ H.
The proof follows by Theorem 1 and the Spectral Representation Theorem for

unitary operators in a similar way with the proof of Theorem 3 and we omit the
details.
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Corollary 9 With the assumptions of Theorem 5 and if φ, !, ψ, " ∈ C, φ �= !
such that f ◦ exp (i·) ∈  ̄[0,2π ] (φ,!) , g ◦ exp (i·) ∈  ̄[0,2π ] (ψ,") then

∣∣∣∣〈f (U) g (U) x, y〉 − φ +!2
〈g (U) x, y〉

−ψ +"
2

〈f (U) x, y〉 + φ +!
2

ψ +"
2

〈x, y〉
∣∣∣∣

≤ 1

4
|!− φ| |" − ψ |

2π∨
0

(〈
P(·)x, y

〉) ≤ 1

4
|!− φ| |" − ψ | ‖x‖ ‖y‖ (6.6)

for any x, y ∈ H.
Corollary 10 With the assumptions of Theorem 5 and if φ, ! ∈ C, φ �= ! such
that f ◦ exp (i·) ∈  ̄[0,2π ] (φ,!) , then

∣∣∣∣〈f (U) g (U) x, y〉 − φ +!2
〈g (U) x, y〉

− 〈f (U) x, y〉 1

2π

∫ 2π

0
g (exp (it)) dt + 〈x, y〉 φ +!

2

1

2π

∫ 2π

0
g (exp (it)) dt

∣∣∣∣

≤ 1

2
|!− φ| max

t∈[0,2π ]

∣∣∣∣g (exp (it))− 1

2π

∫ 2π

0
g (exp (is)) ds

∣∣∣∣
2π∨
0

(〈
P(·)x, y

〉)

≤ 1

2
|!− φ| max

t∈[0,2π ]

∣∣∣∣g (exp (it))− 1

2π

∫ 2π

0
g (exp (is)) ds

∣∣∣∣ ‖x‖ ‖y‖ (6.7)

for any x, y ∈ H.
Corollary 11 With the assumptions of Theorem 5 and if φ, ! ∈ C, φ �= ! such
that f ◦ exp (i·) ∈  ̄[0,2π ] (φ,!) , then

|〈f (U) g (U) x, y〉 〈x, y〉 − 〈f (U) x, y〉 〈g (U) x, y〉|

≤ 1

2
|!− φ| max

t∈[0,2π ]
|g (exp (it)) 〈x, y〉 − 〈g (U) x, y〉|

2π∨
0

(〈
P(·)x, y

〉)

≤ 1

2
|!− φ| max

t∈[0,2π ]
|g (exp (it)) 〈x, y〉 − 〈g (U) x, y〉| ‖x‖ ‖y‖ (6.8)

for any x, y ∈ H.
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Cauchy–Schwarz Inequality and Riccati
Equation for Positive Semidefinite
Matrices

Masatoshi Fujii

Abstract By the use of the matrix geometric mean #, the matrix Cauchy–Schwarz
inequality is given as Y ∗X ≤ X∗X # U∗Y ∗YU for k × n matrices X and Y , where
Y ∗X = U |Y ∗X| is a polar decomposition of Y ∗X with unitary U . In this note,
we generalize Riccati equation as follows: X∗A†X = B for positive semidefinite
matrices, where A† is the Moore–Penrose generalized inverse of A. We consider
when the matrix geometric mean A # B is a positive semidefinite solution of
XA†X = B. For this, we discuss the case where the equality holds in the matrix
Cauchy–Schwarz inequality.

2000 Mathematics Subject Classification 47A64, 47A63, 15A09

1 Introduction

One of the most important inequalities in functional analysis is the Cauchy–Schwarz
inequality. It is originally an integral inequality, but is usually expressed as follows:
Let H be a Hilbert space with inner product 〈·, ·〉. Then

|〈x, y〉| ≤ 〈x, x〉1/2〈y, y〉1/2 for x, y ∈ H. (1.1)

Matrix versions of the Cauchy–Schwarz inequality have been discussed by Marshall
and Olkin [7], see also Bhatia and Davis [2] for operator versions.

Now we note that its right-hand side of (1.1) is the geometric mean of 〈x, x〉 and
〈y, y〉. From this viewpoint, Fujii [3] proposed a matrix Cauchy–Schwarz inequality
by the use of the matrix geometric mean #, see [5, Lemma 2.6]. LetX and Y be k×n
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matrices and Y ∗X = U |Y ∗X| a polar decomposition of an n × n matrix Y ∗X with
unitary U . Then

|Y ∗X| ≤ X∗X#U∗Y ∗YU,

where the matrix geometric mean # is defined by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2

for positive definite matrices A and B, see [6].
On the other hand, the original definition of it for operators is given by Ando [1]

as follows: For A,B ≥ 0, it is defined by

A#B = max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}
.

Here a bounded linear operatorA acting on a Hilbert spaceH is positive, denoted
by A ≥ 0, if 〈Ax, x〉 ≥ 0 for all x ∈ H . It is obvious that a matrix A is positive
semidefinite if and only if A ≥ 0, and A is positive definite if and only if A > 0,
i.e., A is positive and invertible. It is known that if A > 0, then they coincide, that
is,

max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}
= A1/2(A−1/2BA−1/2)1/2A1/2

holds for any B ≥ 0.
Another approach of geometric mean is the Riccati equation. For A > 0 and

B ≥ 0, A#B is the unique solution of the Riccati equation

XA−1X = B.

This fact is easily checked by multiplying A−1/2 on both sides. For importance of
Riccati equation, we refer [8]. Throughout this paper, we restrict our attention to
positive semidefinite matrices, by which we can consider the generalized inverse
X† in the sense of Moore–Penrose even if they are not invertible. Among others, we
generalize the Riccati equation to

XA†X = B.

In this paper, we discuss order relations between A#B and A1/2((A1/2)†

B(A1/2)†)1/2A1/2 for positive semidefinite matrices A and B. As an application,
we discuss the case where the equality holds in matrix Cauchy–Schwarz inequality.
Finally we generalize some results in our previous paper [4] by the use of the
generalized inverse X†.
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2 A Generalization of Formula for Geometric Mean

Since A#B = A1/2(A−1/2BA−1/2)1/2A1/2 for invertible A, the geometric mean
A#B for positive semidefinite matrices A and B might be expected the same
formulae as for positive definite matrices, i.e.,

A#B = A1/2((A1/2)†B(A1/2)†)1/2A1/2.

As a matter of fact, the following result is mentioned by Fujimoto and Seo [5].
For convenience, we cite it as Theorem FS:

Theorem FS Let A and B be positive semidefinite matrices. Then

A#B ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2,

If the kernel inclusion kerA ⊂ kerB is assumed, then the equality holds in above.

We remark that the point of its proof is thatA and B are expressed asA = A1⊕0
and B = B1 ⊕ 0 on ran A⊕ kerA, respectively, and A† = (A1)

−1 ⊕ 0.
Now Theorem FS has an improvement in the following way. Below, let PA be

the projection onto ran A, the range of A.

Theorem 2.1 Let A and B be positive semidefinite matrices. Then

A#B ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2,

In particular, the equality holds in above if and only if PA = AA† commutes
with B.

To prove it, we cite the following lemma:

Lemma 2.2 If

(
A X

X∗ B

)
≥ 0, then X = AA†X = PAX and B ≥ XA†X.

Proof The assumption implies that
(
(A1/2)† 0

0 1

)(
A X

X∗ B

)(
(A1/2)† 0

0 1

)
=
(

PA (A1/2)†X

X∗(A1/2)† B

)
≥ 0.

Moreover, since

0 ≤
(

1 −(A1/2)†X

0 1

)∗ (
PA (A1/2)†X

X∗(A1/2)† B

)(
1 −(A1/2)†X

0 1

)

=
(
PA 0
0 B −X∗A†X

)
,

we have B ≥ X∗A†X.
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Next we show that X = PAX, which is equivalent to kerA ⊆ kerX∗. Suppose
that Ax = 0. Putting y = − 1

‖B‖X
∗x, we have

0 ≤
((
A X

X∗ B

)(
x

y

)
,

(
x

y

))

= (Xy, x)+ (X∗x, y)+ (By, y)

= − 2

‖B‖‖X
∗x‖2 + 1

‖B‖2 (BX
∗x,X∗x)

≤ −‖X
∗x‖2

‖B‖ ≤ 0.

Hence we have X∗x = 0, that is, kerA ⊆ kerX∗ is shown.

Proof of Theorem 2.1 For the first half, it suffices to show that if

(
A X

X B

)
≥ 0, then

X ≤ A1/2((A1/2)†B(A1/2)†)1/2A1/2

because of Ando’s definition of the geometric mean. We here use the facts that

(A1/2)† = (A†)1/2, and that if

(
A X

X B

)
≥ 0 for positive semidefinite X, then X =

AA†X = PAX and B ≥ XA†X by Lemma 2.2.
Now, since B ≥ XA†X, we have

(A1/2)†B(A1/2)† ≥ [(A1/2)†X(A1/2)†]2,

so that Löwner–Heinz inequality implies

[(A1/2)†B(A1/2)†]1/2 ≥ (A1/2)†X(A1/2)†.

Hence it follows from X = PAX that

A1/2[(A1/2)†B(A1/2)†]1/2A1/2 ≥ X.

Namely we have Y = A1/2[(A1/2)†B(A1/2)†]1/2A1/2 ≥ A#B.
Next suppose that kerA ⊂ kerB. Then we have ran B ⊂ ran A and so

A1/2(A1/2)†B(A1/2)†A1/2 = B.

Therefore, putting C = (A1/2)†B(A1/2)†, since

Y = A1/2((A1/2)†B(A1/2)†)1/2A1/2 = A1/2C1/2A1/2,



Cauchy–Schwarz Inequality and Riccati Equation for Positive Semidefinite Matrices 345

we have

(
A Y

Y B

)
=
(
A1/2 0

0 A1/2

)(
I C1/2

C1/2 C

)(
A1/2 0

0 A1/2

)
≥ 0,

which implies that Y ≤ A#B and thus Y = A#B by combining the result Y ≥ A#B
in the first paragraph.

Now we show the second half. Notation as in above. If PA = AA†(=
A1/2(A1/2)†) commutes with B, we have PABPA ≤ B. Therefore we have

(
A Y

Y B

)
≥
(
A Y

Y PABPA

)
=
(
A1/2 0

0 A1/2

)(
I C1/2

C1/2 C

)(
A1/2 0

0 A1/2

)
≥ 0,

which implies that Y ≤ A#B and hence Y = A#B.

Conversely assume that the equality holds. Then

(
A Y

Y B

)
≥ 0. Hence we have

B ≥ YA†Y = A1/2CA1/2 = PABPA,

which means PA commutes with B, cf. Lemma 2.2.

3 Solutions of a Generalized Riccati Equation

Noting that A#B = A1/2(A−1/2BA−1/2)1/2A1/2 for invertible A, the geometric
mean A#B is the unique solution of the Riccati equation XA−1X = B if A > 0,
see [8] for an early work. So we consider it for positive semidefinite matrices by the
use of the Moore–Penrose generalized inverse, that is,

XA†X = B

for positive semidefinite matrices A,B.

Theorem 3.1 Let A and B be positive semidefinite matrices satisfying the kernel
inclusion kerA ⊂ kerB. Then A#B is a solution of a generalized Riccati equation

XA†X = B.

Moreover, the uniqueness of its solution is ensured under the additional assump-
tion kerA ⊂ kerX.
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Proof We first note that (A1/2)† = (A†)1/2 and PA = PA† . Putting X0 = A#B,
either Theorem FS or 2.1 says that

X0 = A1/2[(A1/2)†B(A1/2)†]1/2A1/2.

Therefore we have

X0A
†X0 = A1/2[(A1/2)†B(A1/2)†]1/2PA[(A1/2)†B(A1/2)†]1/2A1/2

= A1/2[(A1/2)†B(A1/2)†]A1/2

= PABPA = B

Since ran X0 ⊂ ran A1/2, X0 is a solution of the equation.
The second part is proved as follows: If X is a solution of XA†X = B, then

(A1/2)†XA†X(A1/2)† = (A1/2)†B(A1/2)†,

so that

(A1/2)†X(A1/2)† = [(A1/2)†B(A1/2)†]1/2.

Hence we have

PAXPA = A1/2[(A1/2)†B(A1/2)†]1/2A1/2 = X0.

Since PAXPA = X by the assumption, X = X0 is obtained.

As an application, we give a simple proof of the case where the equality holds in
matrix Cauchy–Schwarz inequality, see [5, Lemma 2.5].

Corollary 3.2 Let X and Y be k × n matrices and Y ∗X = U |Y ∗X| a polar
decomposition of an n× n matrix Y ∗X with unitary U . If kerX ⊂ ker YU , then

|Y ∗X| = X∗X#U∗Y ∗YU

if and only if Y = XW for some n× n matrixW .

Proof Since kerX∗X ⊂ kerU∗Y ∗YU , the preceding theorem implies that |Y ∗X| is
a solution of a generalized Riccati equation, i.e.,

U∗Y ∗YU = |Y ∗X|(X∗X)†|Y ∗X| = U∗Y ∗X(X∗X)†X∗YU,

or consequently

Y ∗Y = Y ∗X(X∗X)†X∗Y.
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Noting that X(X∗X)†X∗ is the projection PX, we have Y ∗Y = Y ∗PXY and hence

Y = PXY = X(X∗X)†X∗Y
by (Y − PXY)∗(Y − PXY) = 0, so that Y = XW forW = (X∗X)†X∗Y .

4 Geometric Mean in Operator Cauchy–Schwarz Inequality

The origin of Corollary 3.2 is the operator Cauchy–Schwarz inequality due to
Fujii [3] as in below. Let B(H) be the C∗-algebra of all bounded linear operators
acting on a Hilbert space H .

OCS Inequality If X, Y ∈ B(H) and Y ∗X = U |Y ∗X| is a polar decomposition of
Y ∗X with a partial isometry U , then

|Y ∗X| ≤ X∗X#U∗Y ∗YU.

In his proof of it, the following well-known fact due to Ando [1] is used: ForA,B ≥
0, the geometric mean A#B is given by

A#B = max

{
X ≥ 0;

(
A X

X B

)
≥ 0

}

First of all, we discuss the case Y ∗X ≥ 0 in (OCS). That is,

Y ∗X ≤ X∗X#Y ∗Y

is shown: Noting that Y ∗X = X∗Y ≥ 0, we have

(
X∗X X∗Y
Y ∗X Y ∗Y

)
=
(
X Y

0 0

)∗ (
X Y

0 0

)
≥ 0,

which means Y ∗X ≤ X∗X#Y ∗Y .
The proof for a general case is presented by applying the above: Noting that

(YU)∗X = |Y ∗X| ≥ 0, it follows that

|Y ∗X| = (YU)∗X ≤ X∗X#(YU)∗YU.

Incidentally, we can give a direct proof to the general case as follows:

(
X∗X |Y ∗X|
|Y ∗X| U∗Y ∗YU

)
=
(
X YU

0 0

)∗ (
X YU

0 0

)
≥ 0.
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Related to matrix Cauchy–Schwarz inequality, the following result is obtained
by Fujimoto–Seo [5]:

Let A =
(
A C

C∗ B

)
be positive definite matrix. Then B ≥ C∗A−1C holds.

Furthermore it is known by them:

Theorem 4.1 Let A be as in above and C = U |C| a polar decomposition of C with
unitary U . Then

|C| ≤ U∗AU # C∗A−1C.

Proof It can be also proved as similar as in above: Since |C| = U∗C = C∗U , we
have

(
U∗AU |C|
|C| C∗A−1C

)
=
(
A1/2U A−1/2C

0 0

)∗ (
A1/2U A−1/2C

0 0

)
≥ 0.

The preceding result is generalized a bit by the use of the Moore–Penrose
generalized inverse, for which we note that (A1/2)† = (A†)1/2 for A ≥ 0:

Theorem 4.2 Let A be of form as in above and positive semidefinite, andC = U |C|
a polar decomposition of C with unitary U . If ran C ⊆ ran A, then

|C| ≤ U∗AU # C∗A†C.

Proof Let PA be the projection onto the range of A. Since PAC = C and C∗PA =
C∗, we have |C| = U∗PAC = C∗PAU . Hence it follows that

(
U∗AU |C|
|C| C∗A†C

)
=
(
A1/2U (A†)1/2C

0 0

)∗ (
A1/2U (A†)1/2C

0 0

)
≥ 0.

5 Solutions of Generalized Algebraic Riccati Equation

Following after [4], we discuss solutions of a generalized algebraic Riccati equation.
Incidentally PX means the projection onto the range of a matrix X.

Lemma 5.1 Let A and B be positive semidefinite matrices and T an arbitrary
matrix. ThenW is a solution of a generalized Riccati equation

W ∗A†W = B + T ∗AT

if and only ifX = W +AT is a solution of a generalized algebraic Riccati equation

X∗A†X − T ∗PAX −X∗PAT = B.
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Proof Put X = W + AT . Then it follows that

X∗A†X − T ∗PAX −X∗PAT = W ∗A†W − T ∗AT,

so that we have the conclusion.

Theorem 5.2 Let A and B be positive semidefinite matrices. Then W is a solution
of a generalized Riccati equation

W ∗A†W = B with ranW ⊆ ran A

if and only if W = A1/2UB1/2 for some partial isometry U such that U∗U ≥ PB
and UU∗ ≤ PA.

Proof Suppose that W ∗A†W = B and ran W ⊆ ran A. Since ‖(A1/2)†Wx‖ =
‖B1/2x‖ for all vectors x, there exists a partial isometry U such that UB1/2 =
(A1/2)†W with U∗U = PB and UU∗ ≤ PA. Hence we have

A1/2UB1/2 = PAW = W.

The converse is easily checked: If W = A1/2UB1/2 for some partial isometry U
such that U∗U ≥ PB and UU∗ ≤ PA, then ranW ⊆ ran A and

W ∗A†W = B1/2U∗PAUB1/2 = B1/2U∗UB1/2 = B.

Corollary 5.3 Notation as in above. ThenX is a solution of a generalized algebraic
Riccati equation

X∗A†X − T ∗X −X∗T = B

with ranX ⊆ ranA if and only ifX = A1/2U(B+T ∗AT )1/2+AT for some partial
isometry U such that U∗U ≥ PB+T ∗AT and UU∗ ≤ PA.

Proof By Lemma 5.1, X is a solution of a generalized algebraic Riccati equation
X∗A†X − T ∗PAX − X∗PAT = B if and only if W = X − AT is a solution of
W ∗A†W = B+T ∗AT . Since ranX ⊆ ran A if and only if ranW ⊆ ran A, we have
the conclusion by Theorem 5.2.
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Inequalities for Solutions of Linear
Differential Equations in a Banach Space
and Integro-Differential Equations

Michael Gil’

Abstract The chapter presents a survey of the recent results of the author on
solution estimates for the linear differential equation du(t)/dt = A(t)u(t) with
a bounded operator A(t) in a Banach space satisfying various conditions. These
estimates give us sharp stability conditions as well as upper and lower bounds for the
evolution operator. Applications to integro-differential equations are also discussed.
In particular, we consider equations with differentiable in t operators, equations
with the Lipschitz property, equations in the lattice normed spaces, and equations
with the generalized Lipschitz property. In addition, we investigate integrally
small perturbations of autonomous equations. In appropriate situations our stability
conditions are formulated in terms of the commutators of the coefficients of the
considered equations. A significant part of these results has been generalized in the
available literature to equations with unbounded operators. Some results presented
in the chapter are new.

AMS (MOS) Subject Classification 34G10, 34D05, 34D20

1 Introduction and Notations

Let X be a Banach space with a norm ‖.‖ and the unit operator I . By B(X ) we
denote the algebra of bounded linear operators in X . For a C ∈ B(X ), σ(C) is
the spectrum, α(C) = sup*σ(C), β(C) = inf*σ(C), ‖C‖ is the operator norm,
C∗ is the adjoint operator.

By H we denote a separable complex Hilbert space with a scalar product (., .)
and the norm ‖.‖ = √(., .).
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The present paper is a survey of the recent results of the author on solution
estimates for the equation

du(t)

dt
= A(t)u(t) (t ≥ 0), (1)

with a bounded operator A(t) in X satisfying the conditions pointed below. These
estimates give us sharp stability conditions as well as upper and lower bounds for the
evolution operator. Applications to integro-differential equations are also discussed.

A solution to (1) for a given u0 ∈ X is a function u : [0,∞) → X having
at each point t > 0 a strong derivative, at t = 0—the right strong derivative, and
satisfying (1) for all t > 0 and the equality u(0) = u0. The existence and uniqueness
of solutions under considerations are obvious.

Equation (1) is said to be exponentially stable, if there are positive constants m0
and ε, such that ‖u(t)‖ ≤ m0exp [−εt]‖u(0)‖ (t ≥ 0) for any solution u(t) of (1).
Besides, the evolution operator U(t, s) (t ≥ s ≥ 0) of (1) is defined by the equality
U(t, s)u(s) = u(t).

The literature on stability of abstract differential equations is very rich, cf. [2,
3, 5, 7, 10, 32, 33], and the references therein, but the problem of stability analysis
of such equations continues to attract the attention of many specialists despite its
long history. It is still one of the most burning problems of the theory of differential
equations, because of the absence of its complete solution. The basic method for
the stability analysis of (1) is the direct Lyapunov method [7]. By that method many
very strong results are obtained, but finding Lyapunov’s functions is often connected
with serious mathematical difficulties. Below we suggest various explicit stability
conditions.

In particular, in Sect. 2 we derive a stability test for Eq. (1) in a Hilbert space
assuming that A(t) has “small” derivatives. Recall the Wintner inequalities

exp [
∫ t

s

λ(*A(t1))dt1] ≤ ‖U(t, s)v‖
‖v‖ ≤ exp [

∫ t

s

Λ(*A(t1))dt1]

(0 ≤ s ≤ t; v ∈H ),

where *A(t) = (A(t)+ A∗(t))/2,

Λ(*A(t)) := sup σ(*A(t)) and λ(*A(t)) := inf σ(*A(t)),

cf. [7, Theorem III.4.7]. Note that ifA(t) is not dissipative, i.e. ifA(t)+A∗(t) is not
negative definite, then the Wintner inequalities do not give us stability conditions
even in the case of a constant operator. In Sect. 2 we suggest estimates for the
evolution operator in H , which give us stability conditions for equations with non-
dissipative operators. The main result of this section has been generalized in [26] to
equations with unbounded operators.
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In Sects. 3 and 4 we consider the equation

du(t)/dt = (B + C(t))u(t), (2)

where B is a constant bounded operator, and C(t) is a function defined on [0,∞)
whose values are bounded operators. Conditions for the exponential stability are
derived in terms of the commutator BC(t) − C(t)B. The results of Sects. 3 and 4
have been generalized in [27, 28, 30] to equations with unbounded operators.

Section 5 is devoted to integrally small perturbations of equations with constant
operators.

In Sect. 6 we extend the freezing method for ordinary differential equations
[4, 18, 35] to equations in X . Moreover, assuming that the norm ofA(t) satisfies the
Lipschitz condition, we establish upper and lower bounds for the norm of U(t, s).
The main result of this section has been generalized in [29] to equations with
unbounded operators.

Section 7 deals with the equations in a lattice normed space. Here the important
role is played by the generalized (Kantorovich) norm.

In Sect. 8 we generalize some results from Sect. 6 assuming that A(t) satisfies
the so-called generalized Lipschitz condition.

In Sects. 9 and 10 we discuss applications of our results to integro-differential
equations. Besides, our results supplement the well-known investigations of integro-
differential equations [1, 6, 9, 11, 12, 31, 34, 37] and the references therein.

2 Equations with Differentiable in Time Coefficients

2.1 Statement of the Result

In this section we consider Eq. (1) a Hilbert space H , assuming thatA(t) is bounded
on [0,∞), has a measurable strong derivative bounded on [0,∞). In addition,

sup
t≥0

α(A(t)) = sup
t≥0

sup*σ(A(t)) < 0. (3)

Then the integrals

Q(t) := 2
∫ ∞

0
eA

∗(t)seA(t)sds and q(t) := 2
∫ ∞

0
‖eA(t)s‖2ds (4)

converge.

Theorem 1 Let the conditions (3) and

sup
t≥0
q2(t)‖A′(t)‖ < 2 (5)
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hold. Then any solution u(t) to Eq. (1) satisfies the inequality

(Q(t)u(t), u(t)) ≤ (Q(0)u(0), u(0)) (t ≥ 0). (6)

Moreover, (1) is exponentially stable.

This theorem is proved in the next subsection.

2.2 Proof of Theorem 1

Recall that the Lyapunov equation

A∗0Y + YA0 = E (7)

with a constant bounded stable operatorA0 (i.e., α(A0) < 0) and a constant bounded
operator E has a solution Y which is represented as

Y = −
∫ ∞

0
eA

∗
0sEeA0sds, (8)

cf. [7, Section I.4.4]. Then due to (4),Q(t) is a unique solution of the equation

A∗(t)Q(t)+Q(t)A(t) = −2I (t ≥ 0). (9)

Clearly,

‖Q(t)‖ ≤ q(t). (10)

Lemma 1 Let condition (3) hold and A(t) be strongly differentiable. Then Q(t) is
strongly differentiable and ‖Q′(t)‖ ≤ q2(t)‖A′(t)‖.
For the proof see Lemma 2 from [22].

Lemma 2 Let the condition

sup
t≥0
‖Q′(t)‖ < 2. (11)

hold. Then inequality (6) is valid

Proof Multiplying Eq. (1) byQ(t) and doing the scalar product, we can write

(Q(t)u′(t), u(t)) = (Q(t)A(t)u(t), u(t)).
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Since

d

dt
(Q(t)u(t), u(t)) = (Q(t)u′(t), u(t))+ (u(t),Q(t)u′(t))+ (Q′(t)u(t), u(t)),

in view of (9) it can be written

d

dt
(Q(t)u(t), u(t)) = (Q(t)A(t)u(t), u(t))+ (u(t),Q(t)A(t)u(t))+ (Q′(t)u(t), u(t))

= ((Q(t)A(t)+ A∗(t)Q(t))u(t), u(t))+ (Q′(t)u(t), u(t))

= −2(u(t), u(t))+ (Q′(t)u(t), u(t)).

Hence,

d

dt
(Q(t)u(t), u(t)) ≤ (−2+ ‖Q′(t)‖)(u(t), u(t)) < 0. (12)

Solving this inequality we get the required result. ��
Lemma 3 Let conditions (3) and (5) hold. Then (1) is exponentially stable.

Proof For a stable operator A0 put y(t) = eA0t v (v ∈ H ). Then y′(t) = A0y(t),
and

d(y(t), y(t))

dt
= ((A0 + A∗0)y(t), y(t)).

Hence denoting by λ(*A0) the smallest eigenvalue of *A0 := (A0 + A∗0)/2 we
have

d(y(t), y(t))

dt
≥ 2λ(*A0)(y(t), y(t)) and therefore ‖eA0t v‖ ≥ etλ(*A0)‖v‖.

Recall that A0 is stable, so ‖eA0t v‖ → 0 and therefore etλ(*A0) → 0 (t → ∞).
Hence it follows that λ(*A0) < 0. Put

Q0 = 2
∫ ∞

0
eA

∗
0seA0sds.

Then we get

(Q0h, h) = 2
∫ ∞

0
(eA

∗
0seA0sh, h)ds ≥ 2

∫ ∞

0
e2λ(*A0)sds ‖h‖2 = ‖h‖2

|λ(*A0)| (h ∈ H ).
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Hence,

(Q(t)u(t), u(t)) ≥ ‖u(t)‖2

|λ(*A(t))| . (13)

Now Lemma 3 implies

(u(t), u(t)) ≤ 2|λ(*A(t))|(Q(0)u(0), u(0)) (t ≥ 0).

But |λ(A(t))| is uniformly bounded on [0,∞ and therefore all the solutions of (1)
are uniformly bounded (i.e., (1) is Lyapunov stable). Furthermore, substitute into (1)

u(t) = uε(t)e−εt (ε > 0). (14)

Then

u̇ε(t) = (A(t)+ εI)uε(t). (15)

Applying our above arguments to (15) can assert that Eq. (15) with small enough
ε > 0 is Lyapunov stable. So due to (14) Eq. (1) is exponentially stable, provided (3)
and (11) hold. As claimed. ��
Proof of Theorem 1 The required assertion follows from Lemmas 1 and 3. ��

2.3 Upper and Lower Bounds for Evolution Operators of
Equations with Differentiable in Time Coefficients

According to (12), under condition (6) we have

d

dt
(Q(t)u(t), u(t)) = ((−2I +Q′(t))u(t), u(t)) ≤ −(2− ‖Q′(t)‖)(u(t), u(t)).

But

‖Q(t)‖(u(t), u(t)) ≥ (Q(t)u(t), u(t)).

Hence,

d

dt
(Q(t)u(t), u(t)) = ((−2I +Q′(t))u(t), u(t)) ≤ − (2− ‖Q

′(t)‖)
‖Q(t)‖ (Q(t)u(t), u(t)).
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Solving this inequality and taking into account (10), we obtain

(Q(t)u(t), u(t)) ≤ (Q(s)u(s), u(s)) exp [−
∫ t

s

(2− ‖Q′(t1)‖)
q(t1)

dt1].

Now (13) implies

‖u(t)‖2 ≤ |λ(*A(t))|q(s)‖u(s)‖2 exp [−
∫ t

s

(2− ‖Q′(t1)‖)
q(t1)

dt1].

Making use of Lemma 1 we arrive at

Corollary 1 Let conditions (3) and (5) hold. Then the evolution operator of (1)
satisfies the inequality

‖U(t, s)‖2 ≤ |λ(*A(t))|q(s) exp [−
∫ t

s

(2− q2(t1)‖A′(t1)‖)
q(t1)

dt1].

Furthermore, due to (12)

d

dt
(Q(t)u(t), u(t)) = ((−2I +Q′(t))u(t), u(t)) ≥ −(2+ ‖Q′(t)‖)(u(t), u(t)).

Hence by (13)

d

dt
(Q(t)u(t), u(t)) = ((−2I+Q′(t))u(t), u(t)) ≥ −(2+‖Q′(t)‖)|λ(*A(t))|(Q(t)u(t), u(t)).

Solving this inequality, we obtain

(Q(t)u(t), u(t)) ≥ (Q(s)u(s), u(s)) exp [−
∫ t

s

(2+ ‖Q′(t1)‖)|λ(*A(t1))dt1].

Now (10) and (13) imply

q(t)‖u(t)‖2 ≥ ‖u(s)‖2

|λ(*A(s))| exp [−
∫ t

s

(2+ ‖Q′(t1)‖)|λ(*A(t1))|dt1].

Making use of Lemma 1, we arrive at

Corollary 2 Let conditions (3) and (5) hold. Then the evolution operator of (1)
satisfies the inequality

‖U(t, s)h‖2 ≥ ‖h‖2

|λ(*A(s))| exp [−
∫ t

s

(2+ q2(t1)‖A′(t1)‖)|λ(*A(t1))|dt1]

(h ∈H , 0 ≤ s ≤ t).
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2.4 Coefficients with Hilbert–Schmidt Components

Assume that

-A0 := (A0 − A∗0)/2i is a Hilbert–Schmidt operator, (16)

i.e., N2
2 (-A0) = trace (-A0)

2 <∞, and put

gI (A0) := (2N2
2 (-A0)− 2

∞∑
k=1

|Im λk(A0)|2)1/2,

where λk(A0) (k = 1, 2, . . .) are the nonreal eigenvalues of A0.

Lemma 4 Let the conditions (16) and α(A0) < 0 hold. Then a solution Y of Eq. (7)
is subject to the inequality

‖Y‖ ≤ ‖E‖
∞∑
j,k=1

g
j+k
I (A0)(k + j)!

|2α(A0)|j+k+1(j ! k!)3/2 .

Proof We need the estimate

‖eA0t‖ ≤ exp[α(A0)t]
∞∑
k=0

gkI (A0)t
k

(k!)3/2 (t ≥ 0)

proved in [17, Example 7.10.3]. Then due to (8),

‖Y‖ ≤ ‖E‖
∫ ∞

0
‖eA0t‖2dt ≤

‖E‖
∫ ∞

0
exp[2α(A0)t](

∞∑
k=0

gkI (A0)t
k

(k!)3/2 )2dt ≤ ‖E‖
∫ ∞

0
e2α(A0)t

∞∑
j,k=0

(gI (A0)t)
k+j

(j ! k!)3/2 dt

= ‖E‖
∞∑
j,k=0

(k + j)!gj+kI (A0)

(2|α(A0)|)j+k+1(j ! k!)3/2 ,

as claimed. ��
Suppose that condition (3) holds and

-A(t) (t ≥ 0) is a Hilbert–Schmidt operator.
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Then due to the previous lemma

q(t) ≤ μ(A(t)) := 2
∞∑
j,k=1

g
j+k
I (A(t))(k + j)!

|2α(A(t))|j+k+1(j ! k!)3/2 .

Theorem 1 and the previous inequality imply

Corollary 3 Let -AI (t) be a Hilbert-Schmidt operator. Let the conditions (3) and

sup
t≥0
μ2(t)‖A′(t)‖ < 2

hold. Then (1) is exponentially stable.

3 Estimates for Solutions of Differential Equations
in a Banach Space via Commutators

3.1 Statement of the Result

We consider Eq. (2) where B ∈ B(X ) is a constant operator and C(t) is a function
with values in B(X ) uniformly bounded on [0,∞) and Riemann-integrable on
each finite segment.

Equation (2) can be considered as Eq. (1) with a variable operator A(t). This
identification which is a common device in the theory of differential equations when
passing from a given equation to an abstract evolution equation turns out to be useful
also here. Observe that A(t) in the considered case has a special form: it is the
sum of operators B and C(t). This fact allows us to use the information about the
coefficients more completely than the theory of differential equations (1) containing
an arbitrary operator A(t).

Let U(t, s) be evolution operator of (2) andW(t, s) (t ≥ s ≥ 0) be the evolution
operator of the equation

ẏ(t) = C(t)y(t) (t ≥ 0). (17)

In this section we suggest estimates for the sup-norm of solutions to (2) via the
commutator K(t) := [B,C(t)] = BC(t) − C(t)B. These estimates give us sharp
stability conditions, provided we have estimates for W(t, s). Besides, we do not
require that the operator B + C(t) is dissipative.

Put

Y (t, s) = eB(t−s)W(t, s), κ = sup
t≥0
‖K(t)‖ and ‖U‖C := sup

t≥s≥0
‖U(t, s)‖.
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It is assumed that there are positive constants c0 and b0, such that

‖W(t, s)‖ ≤ c0 exp [−b0(t − s)] (t ≥ s ≥ 0). (18)

We say that a bounded operator is stable if its spectrum is in the open left half plane.

Theorem 2 Let condition (18) hold and the operator B−b0I be stable. In addition,
let

ζ := κc0

(∫ ∞

0
‖e(B−b0I )t‖dt

)2

< 1. (19)

Then

‖U − Y‖C := sup
t≥s≥0

‖U(t, s)− Y (t, s)‖C(s,∞) ≤ ζ‖Y‖C1− ζ (20)

and Eq. (2) is exponentially stable.

The proof of this theorem is presented in the next section. Note that under
consideration

‖Y‖C ≤ c0 sup
t
‖e(B−b0I )t‖.

Theorem 2 is sharp: if B commutes with C(t), then U(t, s) = Y (t, s) (t ≥ s). In
addition, from (20) it directly follows

‖U‖C ≤ ‖Y‖C
1− ζ . (21)

3.2 Proof of Theorem 2

Let [eBt , C(t)] := etBC(t)− C(t)eBt .
Lemma 5 One has

[eB(t−s), C(t)] =
∫ t

s

e(v−s)BK(t)e(t−v)Bdv (0 ≤ s ≤ t <∞).

Proof We have

∫ t

s

e(v−s)BK(t)e(t−v)Bdv =
∫ t

s

e(v−s)B(BC(t)− C(t)B)e(t−v)Bdv =
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∫ t

s

(
d

dv
e(v−s)B)C(t)e(t−v)B + evBC(t)( d

dv
e(t−v)B))dv =

∫ t

s

d

dv
(e(v−s)BC(t)e(t−v)B)dv=e(v−s)BC(t)e(t−v)B |tv=s=eB(t−s)C(t)− CeB(t−s).

We thus get the required result. ��
The previous lemma is a generalization of Lemma 2.1 from [23].

Lemma 6 With the notation F(t, s) := [eB(t−s), C(t)]W(t, s), let

γ (F ) := sup
s

∫ ∞

s

‖F(t, s)‖dt < 1. (22)

Then

‖U‖C ≤ ‖Y‖C
1− γ (F ) (23)

and

‖U − Y‖C ≤ γ (F )‖Y‖C
1− γ (F ) . (24)

Proof We have

∂

∂t
Y (t, s) = ∂

∂t
(eB(t−s)W(t, s)) = ( ∂

∂t
eB(t−s))W(t, s)+ eB(t−s) ∂

∂t
W(t, s)

= BeB(t−s)W(t, s)+ eB(t−s)C(t)W(t, s) = (B + C(t))eB(t−s)W(t, s)+ F(t, s).

Thus,

∂Y (t, s)/∂t = (B + C(t))Y (t, s)+ F(t, s). (25)

Subtracting (2) from (25), for a fixed s, we get

∂

∂t
(Y (t, s)− U(t, s)) = (B + C(t))(Y (t, s)− U(t, s))+ F(t, s). (26)

Since Y (s, s) = U(s, s) = I , we can write

Y (t, s)− U(t, s) =
∫ t

s

U(t, t1)F (t1, s)dt1.



362 M. Gil’

Consequently,

‖Y (t, s)− U(t, s)‖ ≤
∫ t

0
‖U(t, t1)‖‖F(t1, s)‖dt1, (27)

and therefore

‖U(t, s)‖ ≤ ‖Y (t, s)‖ +
∫ t

s

‖U(t, t1)‖‖F(t1, s)‖dt1. (28)

Hence, for any finite t > 0 we obtain

sup
0≤s≤v≤t

‖U(v, s)‖ ≤ ‖Y‖C + sup
0≤s≤v≤t

‖U(v, s)‖γ (F ). (29)

Now (22) implies

sup
0≤s≤v≤t

‖U(v, s)‖ ≤ ‖Y‖C/(1− γ (F )).

This proves (23). From (23), inequality (24) follows. This proves the lemma. ��
Proof of Theorem 2 By Lemma 5,

‖F(t, s)‖ ≤ ‖[eB(t−s), C(t)]‖‖W(t, s)‖ ≤ κ‖W(t, s)‖
∫ t

s

‖eB(v−s)‖‖eB(t−v)‖dv.

Hence,

∫ ∞

s

‖F(t, s)‖ds ≤ γ̂ (s),

where

γ̂ (s) := κ
∫ ∞

s

‖W(t, s)‖
∫ t

s

‖eB(v−s)‖‖eB(t−v)‖dv dt.

So γ (F ) ≤ sups γ̂ (s). From (18) it follows

γ̂ (s) ≤ κc0

∫ ∞

s

e−b0(t−s)
∫ t

s

‖eB(t−v)‖‖eB(v−s)‖dv dt

= κc0

∫ ∞

s

‖eB(v−s)‖
∫ ∞

v

‖eB(t−v)‖e−b0(t−s) dt dv

= κc0

∫ ∞

s

‖eB(v−s)‖
∫ ∞

0
‖eBt1‖e−b0(t1+v−s)dt1dv.
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Thus

γ (F ) ≤ κc0‖e(B−b0I )t‖2
L1(0,∞).

Here

‖e(B−b0I )t‖L1(0,∞) =
∫ ∞

0
‖e(B−b0I )t‖dt.

Now Lemma 6 proves (20) and (21). Inequality (21) means that (2) is Lyapunov
stable. Furthermore, substitute

u(t) = uε(t)e−εt (ε > 0) (30)

into (2). Then

duε(t)/dt = (B + C(t)+ εI)uε(t). (31)

Applying our above arguments to (31) one can assert that Eq. (31) with small enough
ε > 0 is Lyapunov stable. So due to (30) Eq. (2) is exponentially stable. This proves
the theorem. ��

3.3 Auxiliary Results

To apply Theorem 2 to concrete equations we need some auxiliary results presented
in this section. Introduce the products

←∏
1≤k≤m

(I + C(t(m)k )δk) :=

(I + C(t(m)m )δm)(I + C(t(m)m−1)δm−1) · · · (I + C(t(m)1 )δ1),

where

s = t (m)1 < t
(m)
2 < . . . < t(m)m = t and δk = t (m)k − t (m)k−1 (k = 1, . . . , m).

That is, the arrow over the symbol of the product means that the indexes of the co-
factors increase from right to left. The strong limit of these products as maxk δk → 0
(if it exists) is called the left multiplicative integral and is denoted by

∫←
[s,t](I +

C(s1)ds1). As it is well-known,

W(t, s) =
∫ ←

[s,t]
(I + C(s1)ds1). (32)
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This equality is proved in [8]; in the finite dimensional case it is proved in [13,
Chapter XV, Section 6] but for operators in a Banach space the proof is the same.

Furthermore, introduce the products

←∏
1≤k≤m

eC(t
(m)
k )δk := eC(t(m)m )δmeC(t

(m)
m−1)δm−1 . . . eC(t

(m)
1 )δ1

(s = t (m)1 < t
(m)
2 < . . . < t(m)m = t).

The strong limit of these products as maxk δk → 0 (if it exists) will be called the left
exponentially multiplicative integral and denoted by

∫←
[s,t] e

C(t1)dt1 . As it is shown
in [7, Section III.1],

W(t, s) =
∫ ←

[s,t]
eC(t1)dt1 (33)

Lemma 7 Let there be a real function φ(t) Riemann-integrable on each finite
segment, such that

‖eC(t)δ‖ ≤ eφ(t)δ (t ≥ 0) (34)

for all sufficiently small δ > 0. Then

‖W(t, s)‖ ≤ exp[
∫ t

s

φ(s1)ds1] (t ≥ s ≥ 0). (35)

Proof Condition (34) implies

‖
←∏

1≤k≤m
eC(t

(m)
k ))δk‖ ≤

m∏
k=1

eφ(t
(m)
k )δk = exp [

m∑
k=1

φ(t
(m)
k )δk].

The passage to the limit as m → ∞ and representation (33) give the required
estimate. ��

Similarly, applying representation (32), we obtain the following result.

Lemma 8 Let there be a real Riemann-integrable function φ(t), such that

‖I + C(t)δ‖ ≤ 1+ φ(t)δ (t ≥ 0) (36)

for all sufficiently small δ > 0. Then inequality (35) is valid.

Let X =H be a Hilbert space. Recall thatΛ(*C(s)) = sup σ(*C(s)), where
*C(s) = 1

2 (C(s) + C∗(s)) and the asterisk means the adjointness. Taking in (36)
φ(t) = Λ(*C(t)), we arrive at the Wintner inequality
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‖W(t, s)‖ ≤ exp[
∫ t

s

Λ(*C(s1))ds1] (t ≥ s ≥ 0). (37)

Theorem 2, and Lemmas 8 and 7 imply

Corollary 4 Assume that one of conditions (34) or (36) holds and

b0 := − inf
t≥s≥0

1

(t − s)
∫ t

s

φ(t1)dt1 > 0. (38)

Then ‖W(t, s)‖ ≤ exp[−b0(t − s)] (t ≥ s ≥ 0) and Eq. (2) is exponentially stable,
provided

κ‖e(B−b0I )t‖2
L1(0,∞) < 1.

4 Stability Conditions for Equations in a Hilbert Space via
Commutators

4.1 Stability Conditions

In this section we consider Eq. (2) in a Hilbert space H . Besides, B ∈ B(H ) is a
constant operator and C(t) is a function with values in B(H ) uniformly bounded
on [0,∞) and Riemann-integrable on each finite segment. Assume that

α(B) < 0 (39)

and put

X := 2
∫ ∞

0
eB

∗t eBtdt, ζ(B) := 2
∫ ∞

0
‖eBt‖

∫ t

0
‖eBs‖‖eB(t−s)‖ds dt

and

ψ(X,C(t)) :=
{
Λ(*C(t))‖X‖ if Λ(*C(t)) > 0,
Λ(*C(t))λ(X) if Λ(*C(t)) ≤ 0.

Recall that λ(S) = inf σ(S) and Λ(S) = sup σ(S) for a selfadjoint operator S.
Below we suggest estimates for ‖X‖ and λ(X). Furthermore, [B1, B2] = B1B2 −
B2B1 is the commutator of B1, B2 ∈ B(H ) and K(t) = [B,C(t)].
Theorem 3 Let the conditions (39) and

sup
t≥0
(ψ(X,C(t))+ ‖K(t)‖ζ(B)) < 1 (40)
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hold. Then Eq. (2) is exponentially stable.

This theorem is proved in the next section. If

‖eBs‖ ≤ ce−νs (s ≥ 0; c, ν = const > 0), (41)

then

(Xv, v) = 2
∫ ∞

0
‖eBtv‖2dt ≤ 2c2

∫ ∞

0
e−2νt dt‖v‖2 (v ∈H ).

So

‖X‖ ≤ c
2

ν
and ζ(B) ≤ 2c3

∫ ∞

0
e−νt

∫ t

0
e−νse−ν(t−s)ds dt

= 2c3
∫ ∞

0
e−2νt tdt = c3

2ν2 . (42)

Now let us estimate λ(X). Due to the Wintner inequalities (see Sect. 1),

‖eBtv‖ ≥ eλ(*B)t‖v‖ (v ∈H ).

So in view of (39), λ(*B) is negative. Consequently,

(Xv, v) = 2
∫ ∞

0
‖eBtv‖2dt ≥ 2

∫ ∞

0
e2λ(*B)t‖v‖2dt ≥ ‖v‖2/|λ(*B)| (v ∈H ).

Thus

λ(X) ≥ 1/|λ(*B)|. (43)

IfB is a normal operator:BB∗ = B∗B, then ‖eBt‖ = eα(B)t (t ≥ 0), and according
to (42),

‖X‖ ≤ 1

|α(B)| , ζ(B) =
1

2|α(B)|2 and, in addition, λ(*B) = β(B),

where β(B) := inf *σ(B). Consequently, ψ(X,C(t)) = ψ0(B,C(t)), where

ψ0(B,C(t)) =
{
Λ(*C(t))
|α(B)| if Λ(*C(t)) > 0,
Λ(*C(t))
|β(B)| if Λ(*C(t)) ≤ 0.

So we arrive at
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Corollary 5 Let B be a normal operator, and the conditions (39) and

sup
t≥0

(
ψ0(B,C(t))+ ‖K(t)‖

2|α(B)|2
)
< 1 (44)

hold. Then (2) is exponentially stable.

Theorem 3 and Corollary 5 are sharp: if C(t) is a constant operator, then
ψ(B,C(t)) = ‖K(t)‖ = 0, and (40) obviously holds. But condition (39) is
necessary in this case.

4.2 Proof of Theorem 3

Under condition (39), the Lyapunov equation

XB + (XB)∗ = −2I (45)

has a unique solution X ∈ B(H ) and it can be represented as in Subsect. 4.2, cf.
[7, Theorem I.5.1] (see also Eq. (4.12) from Chapter I of [7]). For two selfadjoint
operators S and S1 the inequality S < S1 (S ≤ S1) means (Sh, h) < (S1h, h)

((Sh, h) ≤ (S1h, h)) (h ∈ H ). In particular, the inequality S < 0 (S > 0) means
that S is strongly negative (strongly positive) definite.

Lemma 9 If condition (39) holds and X is a solution of (45), then

*(XC(t)) = 1

2
(XC(t)+ (XC(t))∗) ≤ (ψ(X,C(t))+ ‖K(t)‖ζ(B))I.

Proof We can write (8)

*(XC(t)) = 1

2
(XC(t)+ C∗(t)X) =

∫ ∞

0
(eB

∗t1eBt1C(t)+ C∗(t)eB∗t1eBt1)dt1.

But

eBt1C(t) = C(t)eBt1 + [eBt1 , C(t)], C∗(t)eB∗t1 = eB∗t1C∗(t)+ [C∗(t), eB∗t1].

So *(XC(t)) = J1 + J2, where

J1 =
∫ ∞

0
eB

∗t1(C(t)+ C∗(t))eBt1dt1
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and

J2 =
∫ ∞

0
(eB

∗t1 [eBt1 , C(t)] + (eB∗t1[eBt1 , C(t)])∗)dt1.

We have

J1 ≤ 2Λ(*C(t))
∫ ∞

0
eB

∗t1eBt1dt1 = Λ(*C(t))X.

If Λ(*C(t)) > 0, then J1 ≤ Λ(*C(t))‖X‖I . If Λ(*C(t)) < 0, then

J1 ≤ Λ(*C(t))λ(X)I.
So J1 ≤ ψ(X,C(t))I . In addition, by Lemma 5,

‖J2‖ ≤ 2
∫ ∞

0
‖eBt1‖‖[eBt1 , C(t)]‖dt1 ≤ 2

∫ ∞
0

‖eBt1‖‖K(t)‖
∫ t1

0
‖eBs‖‖eB(t1−s)‖ds dt1

= ‖K(t)‖ζ(B).
This proves the lemma. ��
Proof of Theorem 3 Due to the Lyapunov equation (45) and Lemma 9,

*X(B + C(t)) ≤ −(1− ψ(X,C(t))− ‖K(t)‖ζ(B))I.

So (40) implies

*X(B + C(t)) < sup
t
(−1+ ψ(X,C(t))+ ‖K(t)‖ζ(B))I < 0. (46)

Applying the right-hand Wintner inequality (see Sect. 1) with the scalar product
(., .)X defined by (h, g)X = (Xh, g) (h, g ∈ H ), we can assert that Eq. (2) is
exponentially stable, as claimed. ��

4.3 Coefficients with Compact Hermitian Components

In this section we consider Eq. (2), assuming that

-B is a Hilbert–Schmidt operator, (47)

i.e., N2(-B) = (trace (-B)2)1/2 <∞. Recall that

gI (B) = [2N2
2 (-B)− 2

∞∑
k=1

|-λk(B)|2 ]1/2 ≤
√

2N2(-B),



Equations in a Banach Space 369

where λk(B), k = 1, 2, . . . , are nonreal eigenvalues of B, enumerated with their
multiplicities. If B is a normal operator, then gI (B) = 0, cf. [17, Section 7.7].
Again apply [17, Example 7.10.3]:

‖eBt‖ ≤ eα(B)t
∞∑
k=0

tkgkI (B)

(k!)3/2 (t ≥ 0),

So

‖X‖ ≤ 2
∫ ∞

0
‖eBt‖2dt ≤ 2

∫ ∞

0
eα(B)t

( ∞∑
k=0

tkgkI (B)

(k!)3/2
)2

dt = μ(B),

where

μ(B) =
∞∑
j,k=0

g
j+k
I (B)(k + j)!

2j+k|α(B)|j+k+1(j ! k!)3/2 .

Put

p̃(B, t) =
∞∑
k=0

tkgkI (B)

(k!)3/2 (t ≥ 0).

Then ‖eBt‖ ≤ eα(B)t p̂(B, t) and

ζ(B) ≤ ζ̃ (B) := 2
∫ ∞

0
e2α(B)t p̃(t, B)

∫ t

0
p̃(t − s, B)p̃(s, B)ds dt.

Moreover, ψ(X,C(t)) ≤ ψ̃(B,C(t)), where

ψ̃(B,C(t)) :=
{
μ(B)Λ(*C(t)) if Λ(*C(t)) > 0,
Λ(*C(t))
|λ(*B)| if Λ(*C(t)) ≤ 0.

Now Theorem 3 and (43) imply

Corollary 6 If the conditions (39), (47) and

sup
t≥0

(
ψ̃(B,C(t))+ ‖K(t)‖ζ̃ (B)

)
< 1

hold, then (2) is exponentially stable.
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5 Integrally Small Perturbations of Autonomous Equations

5.1 Statement of the Result

Again consider Eq. (2). Throughout this section B ∈ B(X ) is a stable operator
and C(t) : [0,∞) → B(X ) is Riemann integrable. Let U(t) = U(t, 0) be the
Cauchy operator to (2): that is U(t)u(0) = u(t) for a solution u(t) of (2). Put
A(t) = B + C(t),

J (t) :=
∫ t

0
C(s)ds, m(t) := ‖BJ(t)− J (t)A(t)‖

and

rJ (t) := inf
h∈X;‖h‖=1

‖(J (t)− I )h‖ (t ≥ 0).

Theorem 4 Let the condition

inf
t≥0
rJ (t) > 0 (48)

hold. Then ‖U(t)‖ ≤ z(t), t ≥ 0, where z(t) is a solution of the equation

z(t) = 1

rJ (t)
[‖etB‖ +

∫ t

0
‖e(t−s)B‖m(s)z(s)ds], t ≥ 0. (49)

In the next subsection we show that from Theorem 4 it follows

Theorem 5 Let B be stable and

sup
t≥0
(‖J (t)‖ +

∫ t

0
‖e(t−s)B‖m(s)ds) < 1. (50)

Then Eq. (2) is exponentially stable.

5.2 Proofs of Theorems 4 and 5

We need the following simple result.

Lemma 10 Let w(t), f (t) and v(t) (0 ≤ t ≤ a < ∞) be functions whose values
are bounded linear operators in X . Assume that w(t) is Riemann integrable and
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f (t) and v(t) have Riemann integrable derivatives on [0, a]. Then with the notation
jw(t) =

∫ t
0 w(s)ds, we have

∫ t

0
f (s)w(s)v(s)ds = f (t)jw(t)v(t)−

∫ t

0
[f ′(s)jw(s)v(s)+ f (s)jw(s)v′(s)]ds

(0 ≤ t ≤ a).

For the proof see Lemma 3 from [21].

Lemma 11 One has

(I − J (t))U(t) = eBt +
∫ t

0
eB(t−s)[BJ(s)− J (s)(B + C(s))]U(s)ds.

Proof The equality

U(t)− eBt =
∫ t

0
eB(t−s)C(s)U(s)ds, (51)

can be checked by differentiation. Thanks to the previous lemma,

∫ t

0
e(t−s)BC(s)U(s)ds = T (0)J (t)U(t)−

∫ t

0
[(∂e(t−s)B/∂s)J (s)U(s)

+e(t−s)BJ (s)U ′(s)]ds.

But ∂e(t−s)B/∂s = −Be(t−s)B . In addition, U ′(s) = A(s)U(s). Thus,

∫ t

0
e(t−s)BC(s)U(s)ds = J (t)U(t)+

∫ t

0
e(t−s)B [BJ(s)− J (s)A(s)]U(s)ds.

Now (51) implies the required result. ��
Proof of Theorem Thanks to the previous lemma,

‖(I − J (t))U(t)‖ ≤ ‖etB‖ +
∫ t

0
‖e(t−s)B‖m(s)‖U(s)‖ds.

Hence

rJ (t)‖U(t)‖ ≤ ‖etB‖ +
∫ t

0
‖e(t−s)B‖m(s)‖U(s)‖ds.

Then by the well-known (comparison) Lemma 3.2.1 from [7] we have the required
result. ��
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Let

η0 := sup
t≥0

1

rJ (t)

∫ t

0
‖e(t−s)B‖m(s)ds < 1. (52)

Then (49) implies

sup
t
z(t) ≤ sup

t≥0

‖etB‖
rJ (t)

+ sup
t
z(t)η0.

Due to the previous lemma we get

Lemma 12 Let conditions (48) and (52) hold. Then

sup
t≥0
‖U(t)‖ ≤ sup

t≥0

‖etB‖
(1− η0)rJ (t)

.

Proof of Theorem 5 Assume that

j (t) := ‖J (t)‖ ≤ q < 1 (q = const; t ≥ 0),

then rJ (t) ≥ 1− j (t). If

η1 := sup
t≥0

1

1− j (t)
∫ t

0
‖e(t−s)B‖m(s)ds < 1, (53)

then η0 ≤ η1 < 1 and thanks to the previous lemma, Eq. (2) is stable. But
condition (50) implies that

j (t)+
∫ t

0
‖e(t−s)B‖m(s)ds < 1

or

1

1− j (t)
∫ t

0
‖e(t−s)B‖m(s)ds < 1 (t ≥ 0).

Thus (50) implies the inequality η1 < 1, and therefore, from (50) condition (53)
follows. This proves the stability. Substitute the equality

u(t) = y(t)e−εt (54)

into (1). Then we obtain the equation

ẏ = (A(t)+ Iε)y. (55)
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Denote the Cauchy operator of (55) by Uε(t). Repeating our above arguments with
Uε(t) instead of U(t), due to Lemma 12 we can assert that Uε(t) is bounded,
provided ε > 0 is sufficiently small. Now (54) implies

‖U(t)‖ ≤ e−εt sup
t≥0
‖Uε(t)‖, t ≥ 0.

This proves the theorem. ��

5.3 A Particular Case of Theorem 5

To illustrate Theorem 5, consider the equation

du

dt
= Bu+ c(t)C0u, (56)

where C0 is a constant operator and c(t) is a scalar real piece-wise continuous
function bounded on [0,∞). So C(t) = c(t)C0.

Without loss of generality assume that supt |c(t)| ≤ 1. With the notation

ic(t) = |
∫ t

0
c(s)ds|,

we obtain

m(t) = ‖BJ(t)− J (t)A(t)‖ ≤ ic(t)‖BC0 − C0(B + c(t)C0)‖ ≤

ic(t)(‖BC0 − C0B‖ + |c(t)|‖C2
0‖) ≤

ic(t)(‖BC0 − C0B‖ + ‖C2
0‖).

If ‖etB‖ ≤ Me−αt (M, α, t > 0), then

∫ t

0
‖e(t−s)B‖ds ≤ M

∫ t

0
e−αsds ≤ M

α
(t ≥ 0).

Thus, denoting

θ0 = sup
t
|
∫ t

0
c(s)ds|,

due to Theorem 5, we arrive at the following result.
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Corollary 7 If the inequalities supt |c(t)| ≤ 1, ‖etB‖ ≤ Me−αt (M, α, t > 0) and

θ0(‖C0‖ + M
α
(‖BC0 − C0B‖ + ‖C2

0‖)) < 1 (57)

hold, then Eq. (56) is exponentially stable.

For example, let c(t) = sin (ωt) (ω > 0). Then ic(t) ≤ 2
ω

and

m(t) ≤ 2

ω
(‖BC0 − C0B‖ + ‖C2

0‖).

Thus (57) takes the form

‖C0‖ + M
α
(‖BC0 − C0B‖ + ‖C2

0‖) <
ω

2
.

6 Equations with the Lipschitz Property

6.1 Stability Conditions

Again consider in X the equation

u̇(t) = A(t)u(t) (t ≥ 0), (58)

where A(t) is a variable bounded stable operator (i. e. α(A(t)) < 0 ), satisfying the
conditions

‖A(t)− A(s)‖ ≤ q0|t − s| (t, s ≥ 0; q0 = const > 0), (59)

and

‖exp[A(s)t]‖ ≤ p(t) (t, s ≥ 0), (60)

where p(t) is a piece-wise-continuous function independent on s uniformly
bounded on [0,∞).
Theorem 6 Let the conditions (59), (60) and

θ0 := q0

∫ ∞

0
tp(t)dt < 1 (61)

hold. Then a solution u(t) of (58) satisfies the inequality

sup
t≥0
‖u(t)‖ ≤ χ‖u(0)‖

1− θ0
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where

χ := sup
t≥0
p(t) <∞. (62)

Proof Equation (58) can be rewritten in the form

du/dt − A(τ)u = [A(t)− A(τ)]ux

with an arbitrary fixed τ ≥ 0. This equation is equivalent to the following one:

u(t) = exp[A(τ)t]u(0)+
∫ t

0
exp[A(τ)(t − t1)][A(t1)− A(τ)]u(t1)dt1.

So

‖u(t)‖ ≤ ‖exp[A(τ)t]‖‖u(0)‖

+
∫ t

0
‖exp[A(τ)(t − t1)]‖‖A(t1)− A(τ)‖‖u(t1)‖dt1.

According to (59) and (60),

‖u(t)‖ ≤ p(t)‖u(0)‖ + q0

∫ t

0
p(t − t1)|t1 − τ |‖u(t1)‖dt1.

With τ = t this relation gives us

‖u(t)‖ ≤ p(t)‖u(0)‖ + q0

∫ t

0
p(t − t1)(t − t1)‖u(t1)‖dt1. (63)

Hence

sup
0≤t≤T

‖u(t)‖ ≤ χ‖u(0)‖ + sup
0≤t≤T

‖u(t)‖θ0

for any positive finite T . By the condition θ0 < 1 we arrive at the inequality

sup
0≤t≤T

‖u(t)‖ ≤ χ‖u(0)‖
1− θ0

.

Since the right-hand part of the latter inequality does not depend on T , we get the
required inequality. ��
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By the substitution

u(t) = uε(t)e−εt (ε > 0)

with small enough ε > 0 into (58) and taking into account Theorem 6, we arrive at

Corollary 8 Under the hypothesis of Theorem 6 Eq. (58) is exponentially stable.

6.2 An Upper Bound for Evolution Operators

Suppose that there are constants aν, ν > 0 independent of s, such that

‖exp[A(s)t]‖ ≤ aνe−νt (aν, ν = const > 0, t, s ≥ 0). (64)

That is, p(t) = aνe−νt . Then due to (63),

‖u(t)‖ ≤ aνe−νt‖u(0)‖ + q0

∫ t

0
aνe

−ν(t−t1)(t − t1)‖u(t1)‖dt1.

With v(t) = ‖u(t)‖eνt this gives us

v(t) ≤ aνv(0)+ q0aν

∫ t

0
(t − t1)v(t1)dt1.

Due to the above-mentioned comparison principle this inequality yields v(t) ≤
w(t), where w(t) is the solution of

w(t) = aνv(0)+ aνq0

∫ t

0
(t − t1)w(t1)dt1.

Hence,

w′′(t) = aνq0w(t)

with w(0) = v(0)aν and w′(0) = 0. Solving this equality, we have

w(t) = v(0)aν cosh (
√
aνq0t) (cosh x = (ex + e−x)/2).

But

‖u(t)‖ = v(t)e−νt ≤ w(t)e−νt
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and the therefore the inequality

‖u(t)‖ ≤ ‖u(0)‖aνe−νt cosh(t
√
aνq0) ≤ ‖u(0)‖aν exp[(−ν +√aνq0)t]

is true for any solution u(t) of (58). Replacing in our reasonings zero by an arbitrary
t0 ≥ 0, we get

‖u(t)‖ ≤ ‖u(t0)‖aνe−ν(t−t0) cosh(
√
aνq0(t − t0))

≤ ‖u(t0)‖aνexp[(−ν +√aνq0)(t − t0)] (t ≥ t0).

We thus have proved

Theorem 7 Let the conditions (59) and (64) hold. Then the evolution operator
of (58) satisfies the inequalities

‖U(t, t0)‖ ≤ aνe−ν(t−t0) cosh(
√
aνq0(t − t0))

≤ aνexp[(−ν +√aνq0)(t − t0)] (t ≥ t0 ≥ 0).

Corollary 9 Let the conditions (59), (64) and ν >
√
aνq0 hold. Then (58) is

exponentially stable.

6.3 A Lower Bound for Evolution Operators

Assume that

‖ exp[−A(s)t]‖ ≤ bμe−μt (t, s ≥ 0) (65)

with constants bμ > 0 and μ > 0. Put V (t, t0) = U−1(t, t0). Then

d

dt
(V (t, t0)U(t, t0)) = d

dt
I = 0

and therefore,

d

dt
(V (t, t0)U(t, t0)) = ( d

dt
V (t, t0))U(t, t0)+ V (t, t0) d

dt
U(t, t0) =

= ( d
dt
V (t, t0))U(t, t0)+ V (t, t0)A(t)U(t, t0) = 0.
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Hence,

d

dt
V (t, t0) = −V (t, t0)A(t)

and thus,

d

dt
V ∗(t, t0) = −A∗(t)V ∗(t, t0).

So V ∗(t, t0) is the evolution operator of the equation

dv(t)/dt = −A∗(t)v(t) (t ≥ 0). (66)

Since the norms of adjoint operators coincide, condition (59) holds with A∗(t)
instead of A(t). Applying Theorem 7 to Eq. (66) and taking into account (65), we
obtain

‖U−1(t, t0)‖ = ‖V (t, t0)‖ ≤ bμ exp [(−μ+√bμq0)(t − t0)] (t ≥ t0 ≥ 0)

and consequently

‖U(t, t0)h‖ ≥ ‖h‖ 1

bμ
exp [(μ−√bμq0)(t − t0)] (h ∈X , t ≥ t0 ≥ 0). (67)

We thus have proved the following

Theorem 8 Let conditions (59) and (65) hold. Then the evolution operator of (58)
satisfies inequality (67).

From this theorem it directly follows

Corollary 10 Let the conditions (59), (65) and

μ−√bμq0 > 0

hold. Then Eq. (58) is unstable.

6.4 Equations in a Hilbert Space

Consider Eq. (58) in a Hilbert space: X =H , and put

Z =
∫ ∞

0
eB

∗t eBtdt,
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where B ∈ B(H ) with the spectrum in the open left half-plane. So Z is a solution
of the equation ZB+B∗Z = −I (see Sect. 2). Put w(t) = eBth (h ∈H ). We have

d

dt
(Zw,w) = (Zw,w′)+(Zw′, w) = (Zw,Bw)+(ZBw,w) ≤ −(w,w) (w = w(t)).

Clearly, (w,w) = (Z−1Zw,w) ≥ λ(Z−1)(Zw,w) where λ(S) means the smallest
eigenvalue of a selfadjoint operator S. But λ(Z−1) = 1/‖Z‖ and therefore
d
dt
(Zw,w) ≤ −(Zw,w)/‖Z‖. Consequently,

(Zw(t), w(t)) ≤ exp

[
− 1

‖Z‖
]
(Zw(0), w(0)).

Hence

λ(Z)(w(t), w(t)) ≤ ‖Z‖ exp

[
− t

‖Z‖
]
(w(0), w(0)).

Or

‖eBth‖2 ≤ ‖Z‖
λ(Z)

exp

[
− t

‖Z‖
]
‖h‖2.

So

‖eBt‖ ≤
√‖Z‖√
λ(Z)

exp

[
− t

2‖Z‖
]
(t ≥ 0). (68)

Moreover, by the Parseval equality

‖Z‖ ≤ ψ(B) :=
∫ ∞

0
‖eBt‖2dt = 1

2π

∫ ∞

−∞
‖(B − iωI)−1‖2dω.

In addition, by the Wintner inequality ‖eBth‖ ≥ eλ(*B)t‖h‖ and consequently,

(Zh, h) =
∫ ∞

0
‖eBth‖2dt ≥

∫ ∞

0
e2λ(*B)tdt‖h‖2.

Hence λ(Z) ≥ 1/|2λ(Λ(*B))| and (68) yields

Lemma 13 Let B ∈ B(H ) be stable. Then

‖eBt‖ ≤ √2ψ(B)|λ(*B)|exp [−t/(2ψ(B))] (t ≥ 0). (69)

About estimates for resolvents of and exponentials of nonselfadjoint operators
see [24].
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Furthermore, put

ψ0 := sup
t≥0
ψ(A(t)) = sup

t≥0

∫ ∞

0
‖eA(t)s‖2ds = sup

t≥0

1

2π

∫ ∞

−∞
‖(A(t)− iωI)−1‖2dω

and

χ0 := sup
t≥0
|λ(*A(t))| = sup

t≥0
| inf σ(*A(t))|.

Then Lemma 13 implies

‖eA(s)t‖ ≤ √2ψ0χ0 exp [−t/(2ψ0)]. (70)

Now we can immediately apply Theorem 7 and Corollary 9.

7 Equations in a Lattice Normed Space

7.1 Lattice Normed Spaces

Throughout this section B is a Banach lattice with a positive cone B+ and an order
continuous norm ‖.‖B [36], L(B) is the set of all bounded operators acting in B.
Let X be a linear space, and there be a mappingM : X→ B+ with the properties

M(x) > 0 iff x �= 0;M(λx) = |λ|M(x) (λ ∈ C) andM(x + y) ≤ M(x)+M(y)
(71)

for every λ ∈ C and x, y ∈ X. Such a mapping was introduced by L. Kantorovich
(see [36, p. 334] ) who called M the generalized norm. Since the words “the
generalized norm” can confuse the reader, we will call a mappingM satisfying (71)
the normalizing mapping, and X will be called the space with a normalizing
mapping. Following [36], we will call B the norming lattice. Clearly, a space X
with a normalizing mappingM : X→ B+ is a normed space with the norm

‖h‖X = ‖M(h)‖B (h ∈ X). (72)

The topology in space X in the sequel is defined by the norm (72), and X is a
Banach space.

Again consider the equation

du/dt = A(t)u (t ≥ 0), (73)

where A(t) is a linear bounded operator in X. In the present section under some
assumptions by a normalizing mapping, solution estimates for Eq. (73) are derived.
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Note that a normalizing mapping enables us to use more complete information about
the equation than a usual (number) norm.

7.2 Solution Estimates

Let us suppose that for small enough δ > 0, there is a continuous operator-valued
function a(t) : R+ = [0,∞)→ L(B) such that

M((IX + δA(t))h) ≤ (IB + a(t)δ)M(h) (h ∈ X; t ≥ 0). (74)

Here IX and IB are the unit operators in X and B, respectively. We need the
following linear equation in B

ż(t) = a(t)z(t) (t ≥ 0). (75)

Theorem 9 Let condition (74) hold. Then any solution u(t) of (73) subordinates
the inequality

M(u(t)) ≤ z(t) (t ≥ 0), (76)

where z(t) is a solution of Eq. (75) with the initial condition z(0) = M(u(0)).
Proof For some partitioning of a segment [0, t]: 0 = t (n)0 < t

(n)
1 < . . . < t

(n)
n = t

let us denote

Un,k = (IX + A(t(n)n )δn)(IX + A(t(n)n−1)δn−1) . . . (IX + A(t(n)k+1)δk+1),

for k < n, and Un,n = IX. Here δk = δ(n)k = t (n)k − t (n)k−1 (k = 1, . . . , n).
According to (74) we easily get

M(Un,0u0) ≤
←∏

1≤k≤n
(IB + a(tk)δk)M(u0), (77)

where the arrow over the symbol of the product means that the cofactor indices
increase from right to left. On the other hand, the limit in the strong topology of the
operators

←∏
1≤k≤n

(IB + a(tk)δk) as max
k
δ
(n)
k → 0,

is the Cauchy operator of Eq. (75), cf. [8]. Now the desired assertion follows from
inequality (77). ��
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7.3 Systems of Equations in Banach Spaces

Let X be a direct sum of Banach spaces Ek (k = 1, . . . , n <∞) with norms ‖.‖Ek ,
and let h = (hk ∈ Ek)nk=1 be an element ofX. Define inX the normalizing mapping
by the formula

M(h) = (‖hk‖Ek )nk=1. (78)

That is, M(h) is the vector whose coordinates are ‖hk‖Ek (k = 1, . . . , n).
Furthermore, let Ajk(t) be bounded continuous linear operators acting from Ek into
Ej (j, k = 1, . . . , n), and A(t) be defined by the operator matrix (Ajk(t))nj,k=1.
Then (73) takes the form

duj/dt =
n∑
k=1

Ajk(t)uk (t ≥ 0; j = 1, . . . , n; uj = uj (t)). (79)

Put

ajk(t) = ‖Ajk(t)‖Ek→Ej (j �= k; t ≥ 0)

and let for every small enough δ > 0,

‖(IEk + δAkk(t))hk)‖Ek ≤ (1+ akk(t)δ)‖hk‖Ek (hk ∈ Ek), (80)

where akk(t) (k = 1, . . . , n) are continuous scalar-valued functions. We have

Mj((IX + δA(t))h) = ‖(IEj + Ajj (t)δ)hj + δ
∑
k �=j
Ajk(t)hk‖Ej .

HereMj((IX+δA(t))h) (h ∈ X) is the coordinate of the vectorM((IX+δA(t))h).
Therefore,

Mj((IX + δA(t))h) ≤ ‖(IEj + Ajj (t)δ)hj‖Ej + δ
∑
k �=j

‖Ajk(t)hk‖Ej ≤

(1+ ajj (t)δ)‖hj‖Ej + δ
∑
k �=j
ajk(t)‖hk‖Ek .

That inequality can be written in the vector form

M((IX + δA(t))h) ≤ (ICn + a(t)δ)M(h) (h ∈ X)
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with the matrix a(t) = (ajk(t)). This relation yields condition (74). Now Theorem 9
immediately implies

Corollary 11 Let conditions (80) be fulfilled. Then a solution u(t) of system (79)
satisfies inequality (76), where z(t) is the solution of Eq. (75) with a variable n× n-
matrix a(t) = (ajk(t)) and the initial condition z(0) = (‖uk(0)‖Ek )nk=1 ∈ Rn.

8 Equations with the Generalized Lipschitz Conditions

Consider Eq. (1) assuming that A(t) is a variable operator in X uniformly bounded
on [0,∞) and satisfying the generalized Lipschitz condition

‖A(t)− A(τ)‖ ≤ r(t − τ) (t, τ ≥ 0). (81)

where r(t) is a positive piece-wise continuous on [0,∞) function. In addition to (81)
suppose that there is a positive Riemann integrable on finite real segments function
p(t) independent of s and uniformly bounded on [0,∞), such that

‖ exp[A(s)t]‖ ≤ p(t) (t, s ≥ 0). (82)

Now we are in a position to formulate the main result of the section

Theorem 10 Let the conditions (81), (82) and

ζ0 :=
∫ ∞

0
r(s)p(s)ds < 1 (83)

hold. Then any solution u(t) of (1) satisfies the inequality

sup
t≥0
‖u(t)‖ ≤ χ‖u(0)‖

1− ζ0 , (84)

where χ = supt p(t). Moreover, Eq. (1) is exponentially stable.

Proof Rewrite (1) as

du(t)

dt
= A(τ)u(t)+ [A(t)− A(τ)]u(t)

with an arbitrary fixed τ ≥ 0. So (1) is equivalent to the equation

u(t) = exp[A(τ)t]u(0)+
∫ t

0
exp[A(τ)(t − s)][A(s)− A(τ)]u(s)ds.
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Hence,

‖u(t)‖ ≤ ‖ exp[A(τ)t]‖‖u(0)‖ +
∫ t

0
‖ exp[A(τ)(t − s)]‖‖A(s)−A(τ)‖‖u(s)‖ds.

According to (81) and (82),

‖u(t)‖ ≤ p(t)‖u(0)‖ +
∫ t

0
p(t − s)r(s − τ)‖u(s)‖ds.

Taking τ = t , we obtain

‖u(t)‖ ≤ p(t)‖u(0)‖ +
∫ t

0
p(t − s)r(t − s)‖u(s)‖ds

and therefore,

‖u(t)‖ ≤ p(t)‖u(0)‖ +
∫ t

0
p(t1)r(t1)‖u(t − t1)‖dt1.

Hence for any positive finite T ,

sup
t≤T

‖u(t)‖ ≤ χ‖u(0)‖ + sup
t≤T

‖u(t)‖
∫ T

0
p(t1)r(t1)dt1

≤ χ‖u(0)‖ + sup
t≤T

‖u(t)‖
∫ ∞

0
p(t1)r(t1)dt1 = χ‖u(0)‖ + sup

t≤T
‖u(t)‖ζ0.

According to (83) we get

sup
t≤T

‖u(t)‖ ≤ χ‖u(0)‖(1− ζ0)−1

Extending this result to all T ≥ 0 we prove inequality (84).
Furthermore, by the substitution

u(t) = uε(t)e−εt (85)

with an ε > 0 into (1), we obtain the equation

duε(t)/dt = (εI + A(t))uε(t). (86)

Taking ε small enough and applying (84) to Eq. (86) we can assert that ‖uε(t)‖ ≤
const‖u(0)‖. Hence due to (85) we prove exponential stability. ��
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9 Integro-Differential Equations with Differentiable
in Time Coefficients

Our main object in this section is the equation

∂u(t, x)

∂t
= c(t, x)u(t, x)+

∫ 1

0
k(t, x, s)u(t, s)ds (t > 0; 0 ≤ x ≤ 1), (87)

where c(., .) : [0,∞)× [0, 1] → R and k(., ., .) : [0,∞)× [0, 1]2 → R are given
functions, u(., .) is unknown.

We consider (87) in space L2(0, 1) of scalar functions defined on [0, 1] with the
traditional scalar product

(f, g) =
∫ 1

0
f (x)g(x)dx (f, g ∈ L2(0, 1)),

norm ‖.‖L2(0,1) =
√
(., .) and initial condition

u(0, x) = u0(x) (0 ≤ x ≤ 1), (88)

where u0 ∈ L2(0, 1) is given.
A solution of (87), (88) is a function u(t, .), defined on [0,∞) with values in

L2(0, 1), absolutely continuous in t and satisfying (88) and (87), almost everywhere
on [0,∞). The existence and uniqueness of solutions under consideration is
obvious.

We will say that Eq. (87) is exponentially stable, if there are positive constants
m0 and ε, such that any its solution u(t, .) satisfies the inequality ‖u(t, .)‖L2 ≤
m0e

−εt‖u0‖L2 (t ≥ 0). It is assumed that, for almost all x, s ∈ [0, 1], c(t, x)
and k(t, x, s) have bounded measurable derivatives in t , c′t (t, x) and k′t (t, x, s). In
addition, the operators A(t) and A′(t) defined by

(A(t)w)(x) = c(t, x)w(x)+
∫ 1

0
k(t, x, s)w(s)ds

and

(A′(t)w(x)) = c′t (t, x)w(x)+
∫ 1

0
k′t (t, x, s)w(s)ds (x ∈ [0, 1]; w ∈ L2),

respectively, are assumed to be bounded uniformly in t ∈ [0,∞). In addition, it is
assumed that

N2(-A(t)) = (
∫ 1

0

∫ 1

0
(k(t, x, s)− k(t, s, x))2 ds dx)1/2 <∞ (89)
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and

sup
t≥0
α(A(t)) < 0. (90)

Recall that N2(.) is the Hilbert–Schmidt norm. Note that in [22] estimates for
α(A(t)) are derived. To apply Corollary 3 take into account that g2

I (A) ≤
2N2

2 (-A(t)) and therefore μ(t) ≤ μ̂(t), where

μ̂(t) =
∞∑
j,k=1

N
j+k
2 (-A(t))(k + j)!

2(j+k)/2|α(A(t))|j+k+1(j ! k!)3/2 .

Then Corollary 3 implies

Corollary 12 Let the conditions (89), (90) and

sup
t≥0
μ̂2(t)‖A′(t)‖ < 2

hold. Then Eq. (87) is exponentially stable.

10 Integro-Differential Equations with Two Spatial Variables

Put Ω = [0, 1] × [0, 1]. Consider the equation

∂u(t, x, y)

∂t

= c(t, x, y)u(t, x, y)+
∫ x

0
ψ1(x, s)u(t, s, y)ds +

∫ 1

0
ψ2(t, y, s1)u(t, x, s1)ds1

(0 ≤ x, y ≤ 1; t ≥ 0), (91)

where c(·, ·, ·) : [0,∞) × Ω → C is piece-wise continuous, ψ1(·, ·) : Ω → C,
ψ2(·, ·, ·) : [0,∞)×Ω → C satisfy the conditions pointed below.

We consider Eq. (91) in the Hilbert space H = L2(Ω) of complex square
integrable functions defined on Ω with the scalar product

(f, g) =
∫ 1

0

∫ 1

0
f (x, y)g(x, y)dx (f, g ∈ L2(Ω)),
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norm ‖.‖L2(Ω) =
√
(., .) and initial condition

u(0, x, y) = u0(x, y) (0 ≤ x, y ≤ 1), (92)

where u0 ∈ L2(Ω) is given.
Define the operators B and C(t) by

(Bw)(x, y) =
∫ x

0
ψ1(x, s)w(s, y)ds

and

(C(t)w)(x, y) = c(t, x, y)w(x, y)+
∫ 1

0
ψ2(t, y, s1)w(x, s1)ds1

(x, y ∈ [0, 1]; w ∈ L2(Ω)),

respectively. Under consideration the commutatorK(t) = BC(t)−C(t)B is defined
by

(K(t)w)(x, y) =
∫ x

0
m(t, x, y, s)w(s, y)ds,

where m(t, x, y, s) = ψ1(x, s)(c(t, s, y)− c(t, x, y)). Assume that

N2(B) =
(∫ 1

0

∫ x

0
|ψ1(x, s)|2 ds dx

)1/2

<∞ (93)

and ψ2 provides the boundedness of the operatorM(t) defined in L2(0, 1) by

(M(t)v)(y) =
∫ 1

0
ψ2(t, y, s)v(s)ds (y ∈ [0, 1]; v ∈ L2(0, 1)).

Suppose

Λ0 := sup
t
Λ(*C(t)) = sup

t
sup σ(*C(t)) < 0. (94)

Obviously,

Λ(*C(t)) ≤ sup
x,y

*c(t, x, y)+Λ(*M(t)).

According to the Wintner inequalities (see Sect. 1) condition (18) is fulfilled with
b0 = |Λ0| and c0 = 1.
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Furthermore, under consideration B is quasi-nilpotent. Applying Corollary 7.4
from [24], we have

‖e(B−b0)t‖ ≤ e−b0t
∞∑
k=0

tkNk2 (B)

(k!)3/2 (t ≥ 0),

So ‖e(B−b0I )t‖L1(0,∞) ≤ J (b0, B), where

J (b0, B) =
∞∑
k=0

Nk2 (B)

bk+1
0 (k!)1/2 .

Making use of Theorem 2, we arrive at the following result.

Corollary 13 Let the conditions (93), (94), and supt ‖K(t)‖J 2(b0, B) < 1. hold.
Then Eq. (91) is exponentially stable.

Note that some estimates for the spectra of partial integral operators can be found in
[19].

11 Bibliographical Comments

The material of Sect. 2 is adopted from the paper [22].
Section 3 is based on the paper [25].
The results of Sect. 4 are probably new.
Section 5 is a modification of the paper [20].
Section 6.1 is a generalization of the results from [18, Section 3.1] derived in

the framework of the freezing method for ordinary differential equations (see also
[15, 16]). The material of Sects. 6.2 and 6.3 is probably new.

The material of Sect. 7 is adopted from [14]. The results of Sect. 8 are probably
new. Sections 9 and 10 are based on the papers [22] and [25].
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Best Constants for Poincaré-Type
Inequalities in Wn

1 (0, 1)

Allal Guessab and Gradimir V. Milovanović

Abstract For any positive integer n, let {Tk}nk=1 be a given set of linear functionals
on Wn

1 (0, 1), which are unisolvent for polynomials of degree n − 1. We determine
the best possible constant c(T1, . . . , Tn) in the following general higher-order
Poincaré-type inequalities

∫ 1

0
|f (x)| dx ≤ cn(T1, . . . , Tn)

∫ 1

0

∣∣f (n)(x)∣∣dx,
where f ∈ Wn

1 (0, 1) satisfying the conditions Tk [f ] = 0, k = 1, . . . , n. Our main
result states that the minimal value cn of the constants cn(T1, . . . , Tn) is just the
L∞-norm of the (properly normalized) perfect B-spline Bn of degree n on [0, 1].
We were also able to exhibit one particular set of extremal functionals for which this
constant is achieved. Furthermore, comparison of the best constants in the previous
inequality for some most frequently used functionals in practice is also given.

1 Introduction

The Poincaré-type inequalities are important and widely used in the study of
many problems of partial differential equations and numerical analysis. Various
extensions, analogues, variants, applications, and historical notes of the Poincaré
inequality can be found in the excellent recent survey paper [7], and the references
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given there. For many practical purposes it is important to know the exact values of
the best possible constants appearing in such inequalities (see, e.g., [7, 8, 12]).

The main contribution of this paper provides the best constant for the generalized
Poincaré inequality

∫ 1

0
|f (x)| dx ≤ cn(T1, . . . , Tn)

∫ 1

0

∣∣f (n)(x)∣∣dx, (1)

where f ∈ Wn
1 (0, 1) satisfying the conditions Tk [f ] = 0, k = 1, . . . , n.

Throughout, {Tk}nk=1 denotes any set of linear functionals on Wn
1 (0, 1), which are

unisolvent with respect to πn−1. Recall that the functionals Tk , k = 1, . . . , n, are
πn−1 unisolvent if for any p ∈ πn−1, Tk(p) = 0, k = 1, . . . , n, only when p is
the identical zero polynomial. Here and in what follows, πm denotes the class of all
polynomials of degree less than or equal to m.

To state the result precisely let us first fix some more notation and terminology.
By a normalized weight function α we mean a real valued nonnegative function
on [0, 1] for which the Riemann integral exists and has the value one. To ease the
notation, let us denote by N the class of normalized weight functions on [0, 1].
Throughout this paper, the usual L1-norm on [0, 1] will be denoted by ‖·‖1, and for
any positive integer n, letWn

1 (0, 1) be the Sobolev space defined by

Wn
1 (0, 1) =

{
f : f (n−1) is absolutely continuous and

∥∥f (n)(x)∥∥1 <∞
}
.

Furthermore, let α1, . . . , αn be any n normalized weight functions on [0, 1]. They
give rise to the linear functionals

Tk [f ] =
∫ 1

0
αk(x)f (x)dx, k = 1, . . . , n. (2)

Let us start by considering inequality (1) in the special case when the functionals
Tk , k = 1, . . . , n, can be represented in weighted integrals as defined in (2). We
will return to more general case when the functionals Tk , k = 1, . . . , n are not
necessarily generated by densities in Sect. 3. With such notation at hand, we ask the
following questions: For a given function belonging to Wn

1 (0, 1), can we estimate
‖f ‖1 in terms of

∥∥f (n)∥∥1 provided that for any k = 1, . . . , n,

Tk [f ] = 0?

If so, what is the best choice of the extremal weight functions {αk}nk=1 in the
sense that they provide the smallest constant c(α1, . . . , αn) in the following general
higher-order Poincaré-type inequality

‖f ‖1 ≤ c(α1, . . . , αn)
∥∥f (n)(x)∥∥1? (3)
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Recently, in the case n = 1, one of us (see [5, Theorem 1]) has shown that the best
constant in inequality (3) is equal to 1/2. Moreover, they characterized all extremal
weight functions α for which inequality (3) is satisfied with the best constant

c(α) = 1

2
.

For n > 1, we did not give fully satisfactory answers, however, we were able to
specify a class of weight functions α1, . . . , αn for which we find the exact value of
the best possible constant in the following first order Poincaré inequality

∫ 1

0
|f (x)| dx ≤ c(α1, . . . , αn)

∫ 1

0

∣∣f ′(x)∣∣ dx, (4)

in the case where many orthogonality conditions are satisfied by f,

∫ 1

0
αk(x)f (x)dx = 0, k = 1, . . . , n. (5)

More precisely, it is shown (in Theorem 3) that in this more general context, the
best possible value in inequality (4) is just c(α1, . . . , αn) = 1/(2n). The proof of
this theorem is based on Theorem 1 and the Hobby–Rice theorem (see [9]), and it
may be viewed as a natural generalization of Theorem 1 to the case where many
orthogonality conditions are satisfied by f .

The corresponding questions for the most general inequality (1) are answered
via a new approach in our main result (in Theorem 4). The minimal value cn of
the constants cn(T1, . . . , Tn) in inequality (1) is shown to be the L∞-norm of the
(properly normalized) perfect B-spline Bn of degree n on [0, 1]. Moreover we show
that the best constant cn is attained by exhibiting (in Corollary 1) one particular set
of extremal functionals for which this constant is achieved. Furthermore, we discuss
the comparison of the best constants in inequality (1) for some most frequently used
functionals in practice.

2 Case of Weighted Integral Functionals

We begin by considering the (simplest) case when n = 1. To this end, we first recall
the following Poincaré-type inequality. A proof can be found in Guessab [5].

Theorem 1 Let α be a normalized weight function. Then, there exists a constant
c(α) such that for every function f ∈ W 1

1 (0, 1) satisfying

∫ 1

0
α(x)f (x)dx = 0, (6)



394 A. Guessab and G. V. Milovanović

the following Poincaré inequality holds:

∫ 1

0
|f (t | dt ≤ c(α)

∫ 1

0

∣∣f ′(t)∣∣ dt. (7)

The constant c(α) satisfies the inequality

c(α) ≥ 1

2
,

and the best constant c(α) = 1/2 is achieved if and only if the weight function α
satisfies the additional condition

∫ 1/2

0
α(t)dt = 1

2
. (8)

Moreover, if c(α) = 1
2 , then the constant 1

2 in (7) is optimal.

Proof In order to make the paper self-contained, we include a proof here for the
best constant c(α) = 1/2 appearing in (7). To see that the constant 1/2 is optimal in
the case where c(α) = 1/2, take f = fε, where ε > 0, and fε is defined by

fε(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if x ∈
[
0, 1

2 − ε
]
,

1
ε

(
x − 1

2

)
if x ∈

[
1
2 − ε, 1

2 + ε
]
,

1 if x ∈
[

1
2 + ε, 1

]
.

(9)

We clearly have

lim
ε→0

∫ 1

0
fε(x)α(x)dx = lim

ε→0

(
−
∫ 1/2−ε

0
α(x)dx +

∫ 1

1/2+ε
α(x)dx

)

+ lim
ε→0

∫ 1
2+ε

1
2−ε

fε(x)α(x)dx

= −
∫ 1/2

0
α(x)dx +

∫ 1

1/2
α(x)dx + lim

ε→0

∫ 1
2+ε

1
2−ε

fε(x)α(x)dx.

Now since c(α) = 1
2 , we have that

∫ 1/2
0 α(x)dx = 1/2, which yields

−
∫ 1/2

0
α(x)dx +

∫ 1

1/2
α(x)dx = 0.

Hence, we get
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lim
ε→0

∫ 1

0
fε(x)α(x)dx = lim

ε→0

∫ 1
2+ε

1
2−ε

fε(x)α(x)dx

= 0.

Observe that in the case where α ≡ 1 condition
∫ 1

0 fε(x)α(x)dx = 0 is exactly
fulfilled for arbitrary ε. As we have

∫ 1

0
|fε(x)| dx = 1− ε,

∫ 1

0

∣∣f ′ε(x)∣∣ dx = 2,

it is easy to check that

∫ 1

0
|fε(x)| dx

∫ 1

0

∣∣f ′ε(x)∣∣ dx
= 1− ε

2
→ 1

2
when ε→ 0.

Remark 1 A scaling argument shows that for a general interval [a, b] the inequal-
ity (7) takes the form

∫ b

a

|f (t)| dt ≤ b − a
2

∫ b

a

∣∣f ′(t)∣∣ dt.
We now return to our general Poincaré inequality (3).

Set Ik :=
[
k−1
n
, k
n

]
, k = 1, . . . , n. Let us define the weight functions in the

following way

α∗k (x) =
{

0 on Ij , if j �= k,
n on Ik.

(10)

Clearly, it is easily verified that

∫ 1

0
α∗k (x)dx =

∫
Ik

α∗k (x)dx = 1.

Thus, for any k = 1, . . . , n, α∗k ∈ N .
Our next result extends Theorem 1 when instead of (6) orthogonality condi-

tions (5) are imposed. To establish this result, we shall use Theorem 1 and the
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Hobby–Rice Theorem [6] (see [9] for a nice simple proof). This later, which is
of importance in the study of L1-approximation, plays a central role in this paper.

Theorem 2 (Hobby, Rice) Let αi, i = 1, . . . , n, be n real functions in
L(dμ; [0, 1]), where μ is a finite, nonatomic, real measure on [0, 1]. Then there
exist

{
tj
}m
j=1, m ≤ n, t0 = 0 < t1 < · · · < tm < tm+1 = 1, such that

m+1∑
j=1

(−1)j
∫ tj

tj−1

αi(x)dμ(x) = 0, i = 1, . . . , n.

Our first result can be stated as follows:

Theorem 3 Let α∗k , k = 1, . . . , n, be the weight functions as defined in (10). Set

T ∗k (f ) =
∫ 1

0
α∗k (x)f (x)dx, k = 1, . . . , n. (11)

Then for every function f ∈ W 1
1 (0, 1) satisfying

T ∗k (f ) = 0, k = 1, . . . , n, (12)

the following Poincaré inequality holds:

∫ 1

0
|f (x)| dx ≤ 1

2n

∫ 1

0

∣∣ f ′(x)∣∣ dx. (13)

Moreover, for each choice of α1 , . . . , αn in N , the constant
1

2n
in (13) is optimal.

Proof Let f ∈ W 1
1 (0, 1) and assume that f satisfies conditions (12). Then, it is seen

from the definition of α∗k that

∫
Ik

α∗k (x)f (x)dx =
∫ 1

0
α∗k (x)f (x)dx = 0, k = 1, . . . , n.

Thus, we can apply Theorem 1 (see Remark 1) to the interval Ik and get

∫
Ik

|f (x)| dx ≤ |Ik|
2

∫
Ik

∣∣f ′(x)∣∣ dx = 1

2n

∫
Ik

∣∣f ′(x)∣∣ dx. (14)

Then summing (14) over k gives the desired result (13).
It remains to show that the constant 1/(2n) is optimal. Now, because of the

Hobby–Rice Theorem, we know that for any given integrable functions α1, . . . , αn
on [0, 1] there exist points 0 < t1 < · · · < tm < 1, with m ≤ n, such that the sign
function
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σ(x) := sign [(x − t1) . . . (x − tm)]

is orthogonal on [0, 1] to each of α1, . . . , αn, i.e.,

∫ 1

0
αk(x)σ (x)dx = 0, k = 1, . . . , n.

Next, let α∗k , k = 1, . . . , n, be the weight functions as defined in (10), then for
every sufficiently small ε > 0 we construct the function σε, smoothing the jumps at
t1, . . . , tm in the way of definition of fε defined in (9). Then

∣∣∣∣
∫ 1

0
α∗k (x)σε(x)dx

∣∣∣∣ = O(ε), k = 1, . . . , n,

∫ 1

0
|σε(x)|dx = 1−mε,

∫ 1

0

∣∣σ ′ε(x)∣∣ dx = 2m,

it is easy to check that, when ε→ 0, we have

∫ 1

0
|σε(x)| dx

∫ 1

0

∣∣σ ′ε(x)∣∣ dx
= 1−mε

2m
→ 1

2m
≥ 1

2n
.

(The last inequality holds because m ≤ n.) Thus, 1/(2n) is optimal and completes
the proof of the theorem. ��

3 Case of General Linear Functionals

We now turn to the main part of our contribution and consider the more general
situation in which the functionals Tk , k = 1, . . . , n, are not necessarily generated
by densities. To accomplish this, we use some well-known facts on B-splines and
divided differences, see, e.g., [2]. We shall start with the simple observation any set
of linear functionals T1, . . . , Tn satisfying

T1 [f ] = · · · = Tn [f ] = 0 (f ∈ Wn
1 (0, 1)) (15)

assure existence of a constant c(T1, . . . , Tn) such that
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∫ 1

0
|f (x)| dx ≤ c(T1, . . . , Tn)

∫ 1

0

∣∣f (n)(x)∣∣dx, (16)

must be unisolvent with respect to πn−1. Note that the unisolvence condition is
certainly satisfied by functionals T ∗k , k = 1, . . . , n, defined by Eq. (12), as can be
shown using the classical intermediate value theorem.

In order to formulate our main result we need the following important fact.

Lemma 1 Assume that the functionals Tk , k = 1, . . . , n, are unisolvent with
respect to πn−1. Then for every f ∈ Wn

1 (0, 1) there exists a unique polynomial
p[f ] ∈ πn−1 such that

Tk [p[f ]] = Tk [f ] , k = 1, . . . , n.

Proof The conditions above form a linear system of n linear equations in n
unknowns with respect to the coefficients of p[f ]. Now, the unisolvence of the
set of functionals {Tk}nk=1 with respect to πn−1 ensures that the corresponding
homogeneous system admits only the trivial zero solution, and this implies the
existence and uniqueness of the solution p[f ] of the original system. ��

We now briefly recall the relevant material from B-splines and divided differ-
ences defined on a set of distinct points {xk}nk=0 . They are called knots.

B(x0, . . . , xn+1, t) = ( · − t)n+ [x0, . . . , xn+1]

of the truncated power function (x− t)n+ is called a B-spline of degree n with knots
x0, . . . , xn+1. The B-spline has the properties (see [2, p. 30]):

B(x0, . . . , xn+1, t) > 0 on (x0, xn+1);

B(x0, . . . , xn+1, t) = 0 for t /∈ (x0, xn+1);

B(j)(x0) = B(j)(xn+1) = 0, j = 0, 1, . . . , n− 1,

provided x0 < x1 < · · · < xn+1. The reader can find details in some book
on splines, e.g., [2–4, 10, 11]. It can be easily derived from these properties
d
dt B(x0, . . . , xn+1, t) has a unique zero in (x0, xn+1). Therefore, B(x0, . . . , xn+1, t)

has a unique maximum in (x0, xn+1).
Consider the particular case when x0 = 0, xn+1 = 1, and for k = 1, . . . , n the

knots xk coincide with the zeros η0
1 < · · · < η0

n of the Chebyshev polynomial of the
second kind u0

n associated with the interval [0, 1], i.e., u0
n(x) = un(2x − 1), where

un(x) := sin(n+ 1)θ

sin θ
, x = cos θ.
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Then the correspondingB-spline will be denoted byBn. It is called perfectB-spline,
since in this case its nth derivative maintains a constant absolute value

∣∣B(n)n (t)∣∣ = const

for all points t ∈ [0, 1] at which the derivative B(n)n (t) is defined. We shall assume
that Bn is normalized by the condition

B(n)n (t) = sign u0
n(t), t ∈ [0, 1] .

Perfect splines exhibit a number of interesting extremal properties, see e.g. [11]. Let
us denote by ‖Bn‖ the uniform norm of Bn on [0, 1]. Given T1, . . . , Tn, for each
f ∈ Wn

1 we consider the polynomial p [f ] defined in Lemma 1. Since, as can be
easily verified, the operator p [f ] : Wn

1 (0, 1) → πn−1 reproduces the polynomials
from πn−1 Peano’s theorem gives the representation

f (x) = 1

(n− 1)!
∫ 1

0

(
(x − t)n−1+ − p

[
( · − t)n−1+

]
(x)
)
f (n)(t)dt

for all functions f ∈ Wn
1 (0, 1) for which Tk [f ] = 0, k = 1, . . . , n.

The above integral representation yields the estimate

∫ 1

0
|f (x)| dx ≤ c(T1, . . . , Tn)

∫ 1

0

∣∣f (n)(x)∣∣dx, (17)

with

c(T1, . . . , Tn) := 1

(n− 1)! max
0≤x≤1

∫ 1

0

∣∣∣(x − t)n−1+ − p
[
( · − t)n−1+

]
(x)

∣∣∣ dt.
(18)

So much more can be said about the best constant in the error bound given in (17).
Our main result is presented in the following theorem.

Theorem 4 Let {Tk [f ]}n1 be any set of linear functionals on Wn
1 (0, 1) which are

unisolvent with respect to πn−1. Then

∫ 1

0
|f (x)| dx ≤ c(T1, . . . , Tn)

∫ 1

0

∣∣f (n)(x)∣∣dx (19)

for every function f ∈Wn
1 (0, 1) satisfying the conditions Tk [f ] = 0, k = 1, . . . , n.

Furthermore, the constant c(T1, . . . , Tn) defined in (18) is optimal.

Proof The first claim was proved. Next we show the lower bound. Note that

p
[
( · − t)n−1+

]
is an algebraic polynomials from πn−1. Therefore, for every fixed

t ∈ [0, 1] ,
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c(T1, . . . , Tn) ≥ 1

(n− 1)!
∫ 1

0

∣∣∣(x − t)n−1+ − qt (x)
∣∣∣ dx,

where qt is the polynomial of best L1-approximation on [0, 1] to the function
( · − t)n−1+ . It is a classical result (see, for example, the book of Achieser [1]) that if
the difference f (x)− p(x), where p ∈ πn−1 interpolates f at the zeros η0

1, . . . , η
0
n

of the Chebyshev polynomial of the second kind u0
n, changes sign only at the points

η0
1, . . . , η

0
n, then p is the polynomial of best L1-approximation to f on [0, 1] of

degree n−1. In the case f ( · ) = ( · −t)n−1+ we see that f−p cannot have more than
n zeros counting multiplicities. Indeed, otherwise f (n−1)−p(n−1) would have at last
two sign changes which is impossible since f (n−1) is a step function and p(n−1) is a
constant. Thus, the only zeros of f − p are the interpolation nodes η0

1, . . . , η
0
n,

and they are simple zeros. This means that the polynomials qt ∈ πn−1 which
interpolates ( · − t)n−1+ at η0

1, . . . , η
0
n, is a polynomial of best L1-approximation

of it. Then, as known from the theory, the sign of the difference, that is,

sign((x − t)n−1+ − qt (x)) = sign u0
n(x)

must be orthogonal to all polynomials from πn−1. This yields

∫ 1

0

∣∣∣(x − t)n−1+ − qt (x)
∣∣∣ dx =

∫ 1

0
(x − t)n−1+ sign u0

n(x) dx

:= Φ(t),

where Φ is the n-tuple integral of u0
n satisfying the conditions

Φ(0) = Φ ′(0) = · · · = Φ(n−1)(0) = 0.

By the orthogonality property of sign u0
n(t), it satisfies also the conditions

Φ(1) = Φ ′(1) = · · · = Φ(n−1)(1) = 0.

SinceΦ(n−1) = (n−1)! sign u0
n, the functionΦ(n−1)/(n−1)! is a spline of degree n

with knots at 0, η0
1, . . . , η

0
n, 1. Moreover, Φ(n−1)/(n−1)! coincides with the perfect

B-spline Bn. Therefore,

c(T1, . . . , Tn) ≥ ‖Bn‖ ,

which was to be shown.
To see that the constant c(T1, . . . , Tn) is optimal for the given functionals

T1, . . . , Tn, we consider the function
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f0(x) := 1

(n− 1)!
{
(x − t)n−1+ − p

[
( · − t)n−1+

]
(x)
}

for a point t at which

1

(n− 1)!
∫ 1

0

∣∣∣(x − t)n−1+ − p
[
( · − t)n−1+

]
(x)

∣∣∣ dx
attained its maximal value (equal to c(T1, . . . , Tn) by definition). Observe that then

∫ 1

0
|f0(x)| dx = c(T1, . . . , Tn),

while the variation V (f (n−1)
0 ) of f (n−1)

0 on [0, 1] equals 1. The latter follows from
the fact that (n− 1)th derivative of (x − t)n−1+ /(n− 1)! equals 0 on [0, t] and 1 on

[t, 1], and p(n−1)
[
( · − t)n−1+

]
(x)/(n − 1)! is a constant. Then smoothing f0 in a

neighborhood [t − ε, t + ε] of t we get a function fε fromWn
1 (0, 1) such that

∫ 1

0
|fε(x)| dx = c(T1, . . . , Tn)− ε,

V (f (n−1
ε ) =

∫ 1

0
|f (n)ε (x)|dx = 1.

Therefore, inequality (19) with a constant smaller than c(T1, . . . , Tn) cannot be hold
for fε if ε is sufficiently small. The proof is complete. ��

Our main result tells us that using any set of linear functionals {Tk}nk=1 we cannot
get estimate with a constant better than ‖Bn‖. In the following corollary, which is
a simple consequence of Theorem 4, we obtain an example of a set of extremal
functionals for which this best constant is achieved.

Corollary 1 Let the functionals T1, . . . , Tn be defined by

Tk [f ] = f (η0
k), k = 1, . . . , n.

Then

∫ 1

0
|f (x)| dx ≤ ‖Bn‖

∫ 1

0

∣∣f (n)(x)∣∣dx
for every function f ∈Wn

1 (0, 1) satisfying the conditions Tk [f ] = 0, k = 1, . . . , n.

We conclude this section with the following open problem: Are they other sets of
functionals with this extremal property?
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As can be easily computed

‖B1‖ = 1

2
, ‖B2‖ = 1

16
.

Therefore this confirms and gives another proof of the exact value of the best
possible constant 1/2 derived in Theorem 1. On the other hand, by Corollary 1,
we see that there exist another extremal functionals for which this constant is also
achieved. Moreover, a direct calculation shows that the mean-value functionals

T1 [f ] =
∫ 1

0
f (x)dx and T2 [f ] =

∫ 1

0
f ′(x)dx

are also best in this sense for the case n = 2. Based on this observation, it seems
that we have a good reason to conjecture that the functionals

Tk [f ] =
∫ 1

0
f (k)(x)dx, k = 0, 1, . . . , n− 1,

are extremal for any n as well.
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Best Constants for Weighted
Poincaré-Type Inequalities

Alla Guessab

Abstract In this paper we will determine the best constant for a class of (weighted
and non-weighted) new Poincaré-type inequalities. In particular, we obtain sharp
inequalities under the concavity, convexity of the weight function. We also establish
a family of sharp Poincaré inequalities involving the second derivative.

1 Introduction

IfΩ is a sufficiently regular bounded convex domain in R
d and f a smooth function

defined on Ω with vanishing mean value over Ω , then a well-known form of the
Poincaré inequality states that there is a constant cp,Ω independent of f such that

‖f ‖p ≤ cp,Ω ‖∇f ‖p , (1)

where 1 ≤ p < ∞ and ‖.‖p denotes the classical Lp(Ω)-norm, see, e.g., [12].
Poincaré-type inequalities are a key tool in the study of many problems of partial
differential equations and numerical analysis, see [3, 7, 10, 13]. In the estimate (1),
the constant cp,Ω is finite for any p and generally it is not explicitly known. For
practical purposes it is important to know an explicit expression for this constant
(see, e.g., [11]). The determination of analytical expression of the Poincaré constant
cp,Ω as function of p and Ω is a difficult task. Specific estimates related to
cp,Ω have been obtained only in very special cases. For example, for p = 2, by
some elementary considerations, Payne and Weinberger [9] showed that in order to
determine the best Poincaré constant c2,Ω in (1), it is basically enough to consider
weighted Poincaré inequalities in one dimension. In this way, the one-dimensional
case is essential since the case of several dimensions can be reduced to it. The main

A. Guessab (�)
Laboratoire de Mathématiques et de leurs Applications UMR CNRS 4152, Université de Pau et
des Pays de l’Adour, Pau, France
e-mail: allal.guessab@univ-pau.fr

© Springer Nature Switzerland AG 2019
D. Andrica, T. M. Rassias (eds.), Differential and Integral Inequalities,
Springer Optimization and Its Applications 151,
https://doi.org/10.1007/978-3-030-27407-8_12

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27407-8_12&domain=pdf
mailto:allal.guessab@univ-pau.fr
https://doi.org/10.1007/978-3-030-27407-8_12


404 A. Guessab

idea is to decompose the original domain into smaller subdomains, keeping the
same mean value of f on each subdomain, and then to apply sharp one-dimensional
weighted Poincaré inequalities. Payne and Weinberger have exploited this method
in [9] to prove that the optimal constant in (1) is d/π when the L2-norm is used.
For p = 1, this technique was also developed by Acosta and Durán in [1]. For
general p, Chua and Wheede [2] have successfully used this method for estimating
the constants cp,Ω.

Some simple generalizations of (1) are well known, see, e.g., [8, Theorems 8.11
and 8.12]. One involves replacing the condition

∫
Ω
f (x)dx = 0 by the α-weighted

average of f over Ω,
∫
Ω
α(x)f (x)dx = 0, where α is any weight function from

L1(Ω) satisfying
∫
Ω
α(x)dx = 1. We do not know the exact value of the best

possible constants appearing in such general inequalities. We must add at this
place that determining exact constants in inequalities between norms of functions
and their derivatives is a very difficult problem that usually requires delicate
considerations. Each case when exact constants are found is a great achievement.

In this paper, continuing the previous line of research we will discuss just the
1-dimensional case of the above. To be specific, we are interested in finding the
smallest constant which is admissible in the following Poincaré-type inequality:

∫ 1

0
|f (t)| dt ≤ c(α)

∫ 1

0

∣∣f ′(t)∣∣ dt, (2)

where f is such that f is absolutely continuous, f, f ′ ∈ L1[0, 1] and

∫ 1

0
α(t)f (t)dt = 0, (3)

with α a weight function on [0, 1] whose integral over [0, 1] is one. Our first main
result provides an explicit expression for the best constant in (2). We will show that
c(α) = 1/2 is the best possible value. Moreover, we shall characterize all weight
functions α for which (2) holds with best possible value 1/2. In [1, Theorem 3.1],
Acosta and Durán showed that if, in addition, α is concave on [0, 1] then the
following weighted version of (2)

∫ 1

0
α(t) |f (t)| dt ≤ c(α)

∫ 1

0
α(t)

∣∣f ′(t)∣∣ dt, (4)

holds true with the constant c(α) = 1/2. Moreover, they also showed that the
constant 1/2 cannot be improved in the case when α ≡ 1.We shall give a new proof
of this result, and, under specified conditions, prove that inequality (4) continues
to hold when concavity of the weight function α is replaced by convexity. It
is also shown, under suitable conditions on the weighted function, that Poincaré
inequality (4) still holds with the best constant c(α) = 1/2 for this general class
of functions. Sharp Poincaré inequalities involving the second derivative are also
considered.
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The present paper is organized as follows. In Sect. 2, we shall first determine the
best constant in (2), and characterize all weight functions α for which (2) holds
with best possible value. We then give a new proof of the Acosta and Durán’s
inequality (4) when the weight function is concave. Furthermore, under appropriate
assumptions on the weight function like convexity or monotonicity we generalize
it, showing that inequality (4) still holds with the best constant c(α) = 1/2 for this
class of functions. Finally, in Sect. 3 we show how our arguments can be used to
establish new sharp Poincaré inequality involving the second derivative.

2 Sharp Inequalities for the First Derivative

For the sake of clarity of our presentation, we shall first consider inequalities which
involve only the first derivative of a function and the function itself. We first discuss
optimal weight functions corresponding to the best constant in (2) with respect
to the choice to some large class of weight functions. We also establish several
weighted Poincaré-type inequalities under some appropriate assumptions on the
weight function α like concavity, convexity.

We now set down some of the notation which will be used throughout. Let
W 1,1[0, 1] denote the space of absolutely continuous functions on [0, 1] such that f
and f ′ ∈ L1 [0, 1] . Consider a linear functional of the form

Tα[f ] :=
∫ 1

0
α(t)f (t)dt (5)

where α is a weight on [0, 1] . Throughout this paper, by weight function we
mean a nonnegative integrable function on [0, 1]. We assume in addition that α
is normalized in the sense that its integral is equal to one:

∫ 1

0
α(t)dt = 1. (6)

To ease the notation let us denote by N the class of weight functions on [0, 1]
satisfying (6). This condition simply means that Tα[f ] = 1 for the constant function
f of value 1 on [0, 1]. In what follows, (.)0+ : R → R will denote the function
defined by

(x)0+ =
{

1 if x ≥ 0

0 if x < 0.

Applying integration by parts, we deduce

Tα[f ] = f (0)+
∫ 1

0

(∫ 1

0
(s − t)0+α(s)ds

)
f ′(t)dt.
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Hence if we denote

Kα(x, t) = (x − t)0+ −
∫ 1

0
(s − t)0+α(s)ds

then it follows from Taylor’s formula

f (x) = f (0)+
∫ 1

0
(x − t)0+f ′(t)dt

that

f (x)− Tα[f ] =
∫ 1

0 Kα(x, t)f
′(t)dt. (7)

Thus, if we assume that Tα[f ] = 0, we may use the representation formula (7) to
estimate L1-norm of f in terms of the L1-norm of f ′ as follows:

∫ 1
0 |f (x)| dx =

∫ 1
0

∣∣∣∫ 1
0 Kα(x, t)f

′(t)dt
∣∣∣ dx

≤
(

sup
0≤t≤1

∫ 1
0 |Kα(x, t)| dx

)∫ 1
0

∣∣f ′(t)∣∣ dt. (8)

Hence, denoting by

c(α) := sup
0≤t≤1

∫ 1

0
|Kα(x, t)| dx (9)

we get that for any function f ∈ W 1,1[0, 1] satisfying Tα[f ] = 0, the following
Poincaré inequality holds:

∫ 1

0
|f (t)| dt ≤ c(α)

∫ 1

0

∣∣f ′(t)∣∣ dt. (10)

An interesting problem is to know the dependence of the constant c(α), where c(α)
is given by (9), on the weight function and, in particular, to find the best constant
cmin = minα∈N c(α). Therefore, there are two important questions that arise:

(1) What is the exact value of the best possible constant cmin?
(2) What are all the normalized weight functions α for which the best constant cmin

is achieved?
(3) What is the exact value of c(α) under the concavity or convexity of the weight

function α ?

Our first result will be fundamental for the remainder of this paper. Indeed, it permits
us to determine the exact value of the best possible constant cmin and also to establish
a complete characterization of the weight functions for which inequality (10) is
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satisfied with the best possible value cmin. More precisely, we have the following
characterization:

Lemma 1 For any weight function α ∈ N ,

c(α) ≥ 1/2.

The inequality c(α) = 1/2 holds if and only if α satisfies the additional condition

∫ 1/2

0
α(t)dt = 1/2. (11)

Moreover, if c(α) = 1/2, then the constant 1
2 in (10) is optimal.

Proof Let α be a weight function belonging to N . From the above considerations,
we know that inequality (10) holds with the constant

c(α) = sup
0≤t≤1

∫ 1

0
|Kα(x, t)| dx. (12)

But, the integral appearing in (12) is easily calculated. Indeed, we have

F(t) := ∫ 1
0 |Kα(x, t)| dx

= ∫ 1
0

∣∣∣(x − t)0+ − ∫ 1
0 (s − t)0+α(s)ds

∣∣∣ dx
=
(∫ 1
t
α(s)ds

)
t +

(
1− ∫ 1

t
α(s)ds

)
(1− t)

=
(

1− ∫ t0 α(s)ds
)
t +

(∫ t
0 α(s)ds

)
(1− t)

=
(

1− 2
∫ t

0 α(s)ds
)
t + ∫ t0 α(s)ds.

Moreover, we clearly observe that

F(
1

2
) = 1

2
.

Therefore, by continuity of F on [0, 1] it becomes obvious that

c(α) = sup
0≤t≤1

F(t) ≥ 1

2
. (13)

This proves the first statement of the lemma.
We now prove the second part of this lemma. To this end, a simple calculation

shows that the derivative of F is given by

F ′(t) = 1− 2
∫ t

0
α(s)ds + α(t)(1− 2t). (14)



408 A. Guessab

To establish the “if” part, let us assume that c(α) = 1/2. Since F(1/2) = 1/2
then (13) implies F ′( 1

2 ) = 0. Hence, substituting t = 1/2 into Eq. (14) yields
condition (11).

For the “only if” part, let us assume that
∫ 1/2

0 α(x)dx = 1/2. Then for every
α ∈ N that satisfies the last condition, we clearly have, by Eq. (14),

F ′(t) > 0 on [0, 1/2) , and F ′(t) < 0 on (1/2, 1] ,

and thus sup
0≤t≤1

F(t) = F(1/2). Remembering that F(1/2) = 1/2 we easily get

c(α) = sup
0≤t≤1

F(t) = 1/2, as required. To see that the constant 1
2 is optimal in the

case where c(α) = 1/2, take f = fε, where ε > 0, and fε is defined by

fε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if x ∈
[
0, 1

2 − ε
]

1
ε

(
x − 1

2

)
if x ∈

[
1
2 − ε, 1

2 + ε
]

1 if x ∈
[

1
2 + ε, 1

]
.

(15)

We clearly have

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0

(
− ∫ 1/2−ε

0 α(x)dx + ∫ 1
1/2+ε α(x)dx

)

+ limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx

= − ∫ 1/2
0 α(x)dx + ∫ 1

1/2 α(x)dx

+ limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx.

Now since c(α) = 1
2 , we have that

∫ 1/2
0 α(x)dx = 1/2 which yields

−
∫ 1/2

0
α(x)dx +

∫ 1

1/2
α(x)dx = 0.

Hence, we get

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx

= 0.

Observe that in the case where α ≡ 1 condition
∫ 1

0 fε(x)α(x)dx = 0 is fulfilled for
arbitrary ε. On the other hand,

∫ 1
0 |fε(x)| dx = 1− ε∫ 1
0

∣∣f ′ε(x)∣∣ dx = 2.
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Then,we arrive at

∫ 1
0 |fε(x)| dx∫ 1
0

∣∣f ′ε(x)∣∣ dx
= 1− ε

2
→ 1

2
when ε→ 0,

which concludes the proof.

Now we state our first result whose proof follows immediately from Lemma 1.

Theorem 1 If the weight function α from N satisfies (11), then

∫ 1
0 |f (t)| dt ≤ 1

2

∫ 1
0

∣∣f ′(t)∣∣ dt (16)

for every function f ∈ W 1,1[0, 1] such that
∫ 1

0 α(x)f (x)dx = 0. Moreover, if α
does not satisfy (11), then the constant 1

2 is optimal.

Proof The first part of the theorem is a direct consequence of Lemma 1. For the
second part, without loss of generality, assume that

∫ 1/2
0 α(x)dx > 1/2. Take an

arbitrary ε ∈ (0, 1) and consider the sequence of functions

fε(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if x ∈
[
0, 1

2 − ε
]

l(x) if x ∈
[

1
2 − ε, 1

2 + ε
]

1+ 2δ if x ∈
[

1
2 + ε, 1

]
,

(17)

where l is the affine function

l(x) = −1+ 1+ δ
ε
(x − 1

2
+ ε) and δ = 2

∫ 1/2
0 α(x)dx − 1

2
∫ 1

1/2 α(x)dx
.

Observe that δ is positive and it satisfies

−
∫ 1/2

0
α(x)dx + (1+ 2δ)

∫ 1

1/2
α(x)dx = 0. (18)

A simple calculation shows that

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0

(
− ∫ 1/2−ε

0 α(x)dx + (1+ 2δ)
∫ 1

1/2+ε α(x)dx
)

+ limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx

= − ∫ 1/2
0 α(x)dx + (1+ 2δ)

∫ 1
1/2 α(x)dx

+ limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx.
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Now using (18), we get

limε→0
∫ 1

0 fε(x)α(x)dx = limε→0
∫ 1

2+ε
1
2−ε

fε(x)α(x)dx

= limε→0 εδ = 0.

As we have

∫ 1
0 |fε(x)| dx = 1+ δ − ε − δε

1+δ∫ 1
0

∣∣f ′ε(x)∣∣ dx = 2(1+ δ),

it follows

∫ 1
0 |fε(x)| dx∫ 1
0

∣∣f ′ε(x)∣∣ dx
= 1+ δ − ε − δε

1+δ
2(1+ δ) → 1

2
when ε→ 0.

This proves the theorem.

Remark 1 A scaling argument shows that for a general interval [a, b] the inequality
(16) takes the form

∫ b
a
|f (t)| dt ≤ (b−a)

2

∫ b
a

∣∣f ′(t)∣∣ dt.
We have the following result as a corollary to Theorem 1.

Corollary 1 Suppose that α is any weight function from N . Then, for every
function f ∈ W 1,1[0, 1] satisfying

∫ 1
0 α(t)f (t)dt = 0 the following inequality

holds:

∫ 1
0 α(t) |f (t)| dt ≤ 1

2

∫ 1
0

∣∣f ′(t)∣∣ dt. (19)

The constant 1
2 cannot be improved.

Proof For a given function α in N , we define

v(x) =
∫ x

0
α(s)ds, x ∈ [0, 1] .

Clearly v(0) = 0, v(1) = 1 and v is non-decreasing on [0, 1] .We associate with any
function f , belonging to the class W 1,1[0, 1] on [0, 1] and satisfying the condition∫ 1

0 α(x)f (x)dx = 0, the following function

f̃ (t) := f (v−1(t)), t ∈ [0, 1] ,

where v−1 is the inverse of v. Clearly f̃ ∈ W 1,1[0, 1] and it satisfies the condition
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∫ 1

0
f̃ (t)dt =

∫ 1

0
f̃ (v(x))v′(x)dx =

∫ 1

0
α(x)f (x)dx = 0.

Then, by Theorem 1, f̃ satisfies the inequality

∫ 1
0

∣∣∣f̃ (t)
∣∣∣ dt ≤ 1

2

∫ 1
0

∣∣∣f̃ ′(t)
∣∣∣ dt.

Now by making the change of variables t = v(x), we see that

∫ 1

0
α(x) |f (x)| dx ≤ 1

2

∫ 1

0

∣∣∣f̃ ′(v(x))∣∣∣ v′(x)dx = 1

2

∫ 1

0

∣∣f ′(x)∣∣ dx,
which is the announced statement.

We observe that the integral on the right-hand side in the estimate (19) is not
weighted. In view of this result the following question arises naturally:

• Does inequality (19) also hold with a weight function in the integral appearing
on the right-hand side?

Acosta and Durán, see [1, Theorem 3.1], provide a positive answer to this question
if the weight function is concave. We shall give a new and simpler proof of this
result, and generalize it to a wide class of weight functions. From now on, we would
like to consider the case when the weight function α is chosen in such a way that it
belongs to the special class M defined by:

M :=
{
α ∈ N :

∫ 1/2

0
α(t)dt = 1/2

}
. (20)

Recall that the best constant in the Poincaré inequality (2) is attained for this class
of weight functions. This subset is nonempty, since it clearly contains the following
two “broken” functions:

α2(x) =
{

2− 4x if x ∈ [0, 1/2]

4x − 2 if x ∈ [1/2, 1] ,

α3(x) =
{

4x if x ∈ [0, 1/2]

4− 4x if x ∈ [1/2, 1] .

Moreover, since M is convex it is an infinite set. Note that the function α2 is convex
on [0, 1], while α3 is concave on [0, 1].

Without concavity assumption on α the weighted Poincaré-type inequality (4)
does not hold true in general. The question we now want to address is that of
determining some appropriate assumptions on the weight function α like convexity,
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monotonicity, which ensure that (4) holds. To the best of our knowledge the problem
involving finding the weight functions that produce the best constant 1/2 in (4)
was not considered previously. In doing so, we shall provide a new version and a
different proof of the Acosta and Durán result for a general class of weight functions
belonging to M .

To this end we first make the following observation that gives a sufficient
condition on the weight functions for inequality (4) to hold.

Remark 2 Let us first observe that if Tα[f ] = 0 then multiplying (7) by α ∈ N
and applying Fubini’s theorem, we obtain

∫ 1

0
α(x) |f (x)| dx ≤ 2

∫ 1

0

((
1−

∫ x

0
α(t)dt

)∫ x

0
α(t)dt

) ∣∣f ′(x)∣∣ dx. (21)

As a consequence of the above inequality, the weighted Poincaré inequality (4)
obviously holds for all α ∈ N satisfying

(
1−

∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ α(x)

4
, x ∈ (0, 1) . (22)

Acosta and Durán have shown that the above inequality holds for every concave
weight function α ∈ N , see [1, Lemma 3.1].

In what follows we will show that large subclasses of weight functions in N satisfy
inequality (22). We now give a useful fact:

Remark 3 By using the identity ab ≤ (a+b)2
4 , when a, b ≥ 0, together with the fact

that, for all x in the interval (0, 1), 0 ≤ ∫ x0 α(t)dt ≤ 1, we obtain that

(
1−

∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ 1

4
. (23)

Therefore, inequality (22) holds for every x on (0, 1) such that α(x) ≥ 1.

To prove our next weighted Poincaré-type inequality, we make use of two general
lemmas:

Lemma 2 Let α ∈ N be a non-decreasing weight function on I0, where I0 :=
(0, tα) is any nonempty sub-interval of (0, 1) , then (22) holds for all values x ∈
I0 ∩ (0, 1/2) satisfying

4x − 1

4x2
≤ α(x). (24)

If α does not satisfy (24), then there is a function from the described class for which
(22) does not hold.
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Proof We first observe that since α is a non-decreasing function on I0 we have

∫ x

0
α(t)dt ≤ xα(x), x ∈ I0 ∩ (0, 1/2) . (25)

According to Remark 3, it is enough to consider only those values of x ∈ I0 for
which 0 < α(x) < 1. Thus, under this condition, inequality (25) yields

∫ x

0
α(t)dt ≤ xα(x) ≤ 1/2, x ∈ I0 ∩ (0, 1/2) .

Therefore, since the function h(x) = x(1−x) is non-decreasing on [0, 1/2], we get

(
1−

∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ xα(x)(1− xα(x)), x ∈ I0 ∩ (0, 1/2) ,

and so to prove inequality (22) for a given fixed x ∈ I0 ∩ (0, 1/2) it is enough to
show that x(1 − xα(x)) ≤ 1/4, which is in turn equivalent to 4x−1

4x2 ≤ α(x) as was
assumed. This proves the first part of the lemma.

For the second part, we may use a geometrically evident idea to construct,
through any fixed point t in (0, 1) such that

0 < α(t) <
4t − 1

4t2
,

the function

ft (x) =
{
α(t) if x ∈ [0, t]

l(x) if x ∈ [t, 1] ,

where l is the linear polynomial passing through the points

(t, α(t)) and (1,
2− (1+ t)α(t)

1− t ).

It is easy to see that ft is a non-decreasing weight function that belongs to N . Also,
we have

(
1−

∫ t

0
ft (x)dx

)∫ t

0
ft (x)dx = tα(t)(1− tα(t)) >

ft (t)

4
(:= α(t)

4
).

This shows that (22) is not satisfied at the point t for the function ft and this
completes the proof of our lemma.

If the weight function α ∈ N and non-increasing, then we have the following:
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Lemma 3 Let α ∈ N be a non-increasing weight function on I1, where I1 :=
(tα, 1) is any nonempty sub-interval of (0, 1) , then (22) holds for all values x ∈
I1 ∩ (1/2, 1) satisfying

3− 4x

4(1− x)2 ≤ α(x). (26)

If α does not satisfy (26), then there is a function from the described class for which
(22) does not hold.

Proof We prove only the first statement since the proof of the second is essentially
the same as that of Lemma 2. We will show that this case can be reduced the one
treated in the previous lemma. Indeed, let us fix a non-increasing weight function α
from N . Define α̃ the function in the interval (0, 1) by α̃(t) = α(1 − t). Then, a
straightforward inspection shows that α̃ is a non-decreasing function belonging to
N . Hence the desired result follows by applying Lemma 2 to α̃. This completes the
proof of Lemma 3.

Now we make some comments, containing consequences of Lemmas 2 and 3.

Remark 4 Let α ∈ N . Since α is nonnegative function on the interval (0, 1) then
(24) is automatically satisfied on (0, 1/4] , and hence, by Lemma 2, inequality (22)
holds if α is a non-decreasing function on any interval I0 ⊂ (0, 1/4). The same is
true if α is a non-increasing function on any interval I1 ⊂ (3/4, 1).
Hence, we have the following weighted Poincaré inequality:

Theorem 2 Let α be any concave function belonging to M . Then, for every
function f ∈ W 1,1[0, 1] satisfying

∫ 1
0 α(t)f (t)dt = 0, the following weighted

Poincaré-type inequality holds

∫ 1

0
α(t) |f (t)| dt ≤ 1

2

∫ 1

0
α(t)

∣∣f ′(t)∣∣ dt. (27)

The constant 1
2 cannot be improved.

In order to prove the above theorem, we shall apply the results of the previous two
lemmas, and some preliminary facts about concave functions on [0, 1] that will often
be used without explicit reference. A somewhat known result that we can use as a
starting point is the following form of the right-hand side of the Hermite–Hadamard
inequality. It says: If the function α is concave on [0, 1], then

∫ x

0
α(t)dt ≤ xα(x/2), x ∈ [0, 1] . (28)

In particular, for any concave weight function belonging to N , the following
inequality holds:

1 ≤ α(1/2).
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Moreover, if α is concave and α ∈M , then substituting x = 1/2 in (28) and taking
account of the fact that

∫ 1/2
0 α(t)dt = 1/2, we have

1 ≤ α(1/4).

It is also easy to check that

1 ≤ α(3/4), (29)

in fact since α is concave the following inequality holds

∫ 1

x

α(t)dt ≤ (1− x)α((1+ x)/2), x ∈ [0, 1] ,

and so (29) follows immediately by substituting x = 1/2 in the above equation.
Inequalities (28) have been extensively studied in the literature, see, e.g., [4–6].

We now turn to the proof of Theorem 2.

Proof Let us fix a function α from M .We begin the proof of Theorem 2 by noting
that since α is concave, then, there exists an tα in [0, 1] such that α is non-decreasing
on [0, tα] and non-increasing on [tα, 1] .We will distinguish the following two cases:

Case 1 tα ∈ (0, 1/2). If tα ∈ (0, 1/4], this case is easier to handle, indeed
by Remark 4, there is nothing to prove, since (24) is automatically satisfied on
(0, tα], and hence inequality (22) holds on (0, tα). We may therefore assume that
tα ∈ (1/4, 1/2). Let us denote I0 the sub-interval (0, tα). Then, since 1 ≤ α(1/4)
and α is non-decreasing function on (1/4, tα), it follows that 1 ≤ α(t) for all t
in (1/4, tα). Observe that for all x ∈ (1/4, tα), 4x−1

4x2 ≤ 1, then inequality (24) is
satisfied for all x ∈ (0, tα]. Hence, Lemma 2 applies, so inequality (22) holds on
(0, tα).

Now, we will use I1 to denote the sub-interval (1/2, 1). Then, since 1 ≤
α(1/2), 1 ≤ α(3/4), and α is non-increasing function on I1, it follows that 1 ≤ α(t)
for all t in (1/2, 3/4). Then, arguing as before, we see that (26) is satisfied for all
x ∈ I1. Lemma 3 applies, consequently, inequality (22) also holds on I1.

Finally, in the sub-interval (tα, 1/2) we have nothing to prove, since 1 ≤ α(t) for
all t in (tα, 1/2).

Case 2 tα ∈ [1/2, 1). The proof is similar to the proof of the above case and hence
is omitted.

So altogether, inequality (22) holds on (0, 1), then the weighted Poincaré
constant in (27) follows from Remark 2.

We note that our proof given in case α ∈ M is completely different from the
one given in [1]. We observe also that if (27) is unweighted and we allow α to very
freely over N , then Lemma 2 and Theorem 2 inform us that the value 1/2 of the
best weighted Poincaré constant in (27) and it is attained if and only if α ∈M .
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We may now ask the following question:

• Do we get similar result to Theorem 2 if concavity is replaced by convexity
assumption?

We first make the following observation:

Remark 5 The inequality (27) cannot hold in Theorem 2 if concavity is replaced by
convexity. Indeed, if α is a non-decreasing convex function on [0, 1], then applying
the Hermite–Hadamard inequality on [0, 1], we have α(1/2) ≤ 1, and since α is
non-decreasing we deduce that α(0) ≤ 1. These two conditions together imply that∫ 1/2

0 α(t)dt = 1/2, which can only happen if α is the one constant weight. To
see this is quite simple and becomes obvious on drawing a figure. So the weighted
Poincaré inequality does not hold for non-constant weight convex functions, which
are non-decreasing.

Thus, our aim, of course, is to find some subclasses of convex functions for which
inequality (27) remains valid. The last observation motivates us to introduce the
subsets of weight functions of N (satisfying the Dirichlet conditions)

N0 = {α ∈ N : α(0) = 0}
N1 = {α ∈ N : α(1) = 0} .

A weighted Poincaré inequality with a nonnegative weight function in N0 or N1
is sometimes referred to as Poincaré–Friedrichs inequality. In order to state our
next theorem, we would like to point out that the Hermite–Hadamard inequality
for convex functions gives

(
1−

∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ x(1− x)α(1)+ α(x)

2

α(0)+ α(x)
2

≤ 1

4

α(1)+ α(x)
2

α(0)+ α(x)
2

.

By Remark 2 is enough to prove that (22) holds for x ∈ (0, 1) such that α(x) ≤ 1.
Therefore, we conclude that if α ∈ N0 with α(1) ≤ 3 or α ∈ N1 with α(0) ≤ 3
then we have (

1−
∫ x

0
α(t)dt

)∫ x

0
α(t)dt ≤ 1

4
α(x).

Hence, by exactly the same argument as before we can show our modest extension
of Theorem 2 when concavity is replaced by convexity.

Theorem 3 Let α be any convex function belonging to N0 with α(1) ≤ 3, or N1

with α(0) ≤ 3. Then, for every function f ∈ W 1,1[0, 1] such that
∫ 1

0 α(t)f (t)dt =
0, the following weighted Poincaré-type inequality holds

∫ 1
0 α(t) |f (t)| dt ≤ 1

2

∫ 1
0 α(t)

∣∣f ′(t)∣∣ dt. (30)
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The constant 1
2 cannot be improved.

Conditions α(1) ≤ 3 or α(0) ≤ 3, required in Theorem 3, are not optimal. Indeed,
let us consider the weight function

αm(x) =
{
mx if x ∈ [0, 1/m] ,
mx+m(m−2)
(m−1)2

if x ∈ [1/m, 1] ,

where m ∈ (1, 2]. Then it is easy to see that αm is convex and that belongs to N0
for any m ∈ (1, 2]. Note also that αm(x) < 1 if x ∈ [0, 1/m), and αm(x) ≥ 1 if
x ∈ [1/m, 1]. According to Remark 3, it is sufficient to consider interval [0, 1/m).
Therefore, after performing the integration inequality (22) simplifies to

x

2

(
1− m

2
x2
)
≤ 1

4
, (x ∈ (0, 1/m)).

But now we can check that the latter holds if m ≥ 32
27 . Hence, for any m ∈

[
32
27 , 2

]
the weighted Poincaré inequality (30) holds for αm. However, we have αm(1) > 3
for any m ∈ [ 32

27 ,
3
2 ).

3 Sharp Inequalities for the Second Derivatives

In this section we discuss sharp weighted Poincaré inequality involving the second
derivative. More precisely, we want to take advantage of a possible second order
regularity of f and consider in this section estimates of the L1-norm of a function
f in terms of the L1-norm of its second-order derivative. To state our main result
we will use the following notation:

W 2,1[0, 1] =
{
f : f ′, f ′′ abs. cont., f ′′ ∈ L1[0, 1)

}
.

By applying twice inequality (16) for functions f ∈ W 2,1[0, 1] which satisfy the
conditions

∫ 1

0
f (t)dt =

∫ 1

0
f ′(t)dt = 0, (31)

we conclude that

∫ 1

0
|f (t)| dt ≤ 1

2

∫ 1

0

∣∣f ′(t)∣∣ dt ≤ 1

4

∫ 1

0

∣∣f ′′(t)∣∣ dt. (32)
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As the next result shows the constant 1/4, obtained by iteration from the Poincaré
inequality of first order, is far from being the best one. The following alternative
approach leads the optimal constant.

Theorem 4 For all f ∈ W 2,1[0, 1] satisfying (31) the following inequality holds

∫ 1

0
|f (t)| dt ≤ 1

16

∫ 1

0

∣∣f ′′(t)∣∣ dt. (33)

The constant 1/16 is the smallest possible.

Proof It can be easily verified that the operator

l1 [f ] (x) :=
∫ 1

0
f (t)dt + (x − 1

2
)

∫ 1

0
f ′(t)dt

reproduces the linear polynomials, that is,

l1 [f ] (x) ≡ f (x) f or f (t) = 1 and f (t) = t, t ∈ [0, 1] .

Then, by Peano’s kernel theorem, each function inW 2,1[0, 1] satisfying (31) can be
represented in the form

f (x) =
∫ 1

0
[(x − t)+ − l1 [(.− t)+] (x)] f ′′(t)dt,

where x+ := 1
2 (x + |x|). From this, in a standard way we derive the inequality

∫ 1

0
|f (x)| dx ≤ max

0≤t≤1

∫ 1

0
|K1(x, t)| dx

∫ 1

0

∣∣f ′′(t)∣∣ dt,
where the kernel K1(x, t) is defined by

K1(x, t) = (x − t)+ − l1 [(.− t)+] (x)
= (x − t)+ −

∫ 1
0 (s − t)+ds − (x − 1

2 )
∫ 1

0 (s − t)0+ds.

In order to compute the integral
∫ 1

0 |K1(x, t)| dx we first note that

lt (x) :=
∫ 1

0 (s − t)+ds + (x − 1
2 )
∫ 1

0 (s − t)0+ds
= ∫ 1

t
(s − t)ds + (x − 1

2 )
∫ 1
t
ds

= (1−t)2
2 + (x − 1

2 )(1− t)
= (1− t)(x − t

2 ).
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Therefore the line lt crosses the x-axis at the point x1 = t
2 . We easily find also the

point x2 at which lt intersects the truncated power function (x − t)+. We should
have

x − t = lt (x) at x = x2.

This immediately implies that

x2 = 1+ t
2

> t.

It is seen that
∫ 1

0 |K1(x, t)| dx, which is the area between the functions lt and (. −
t)+, equals 2 times the area A , which satisfies the following equation

2A = (x2 − x1)(x2 − t)− (x2 − t)2
= 1

2
1−t

2 −
(

1−t
2

)2

= (1−t)t
4 .

Since (1− t)t ≤ 1/4 for all t ∈ [0, 1] , we obtain

max
0≤t≤1

∫ 1

0
|K1(x, t)| dx = 1

16

and thus the desired inequality (33) holds.
It remains to show that the constant 1/16 cannot be improved. In order to see this

we consider the function

f0(x) :=
⎧⎨
⎩

1
4 − x on x ∈

[
0, 1

2

]

x − 3
4 on x ∈

[
1
2 , 1

]
.

We have
∫ 1

0 |f0(x)| dx = 1
8 while the variation V (f ′0) of f ′0 on [0, 1] is equal to

2. Thus, a smoothing of f0 in a neighborhood [−ε, ε] of the zero will produce a
function fε fromW 2,1[0, 1] for which

∫ 1

0
|fε(x)| dx ≥ 1

8
− ε, V (f ′ε) =

∫ 1

0

∣∣f ′′(x)∣∣ dx = 2.

Thus inequality (33) with a constant smaller that 1
16 does not hold true for ε > 0

sufficiently small. The proof is complete.

The common restrictions on f to estimate a certain norm of f in terms of a norm
of higher derivative are of the form



420 A. Guessab

f (i)(ξ) = 0, j = 0, 1, . . . , m,

with an appropriatem. Usually ξ is taken to be the middle of the interval considered.
We can see as we did in Theorem 4 that the conditions

f (a) = f ′(a) = 0 or f (b) = f ′(b) = 0

imply the estimate

∫ b

a

|f (t)| dt ≤ (b − a)
2

2

∫ b

a

∣∣f ′′(t)∣∣ dt.
Applying this inequality twice, on [0, 1/2] and [1/2, 1], we get under the conditions

f (
1

2
) = f ′(1

2
) = 0 (34)

that
∫ 1

0
|f (t)| dt ≤ 1

8

∫ 1

0

∣∣f ′′(t)∣∣ dt.
Therefore the conditions we considered in Theorem 4 yield a better estimation of
‖f ‖1 than the standard ones (34).

This arises the following question:

• Are there other functionals that produce the smallest constant?

It is difficult to characterize all of them as we did in the caseW 1,1[0, 1]. Even if we
restricted ourselves to the study of functionals of the form

∫ b

a

α(x)f (x)dx = 0,
∫ b

a

α(x)f ′(x)dx = 0,

with a certain weight function α on [0, 1], we would arrive at the problem of
investigation of the corresponding kernel

K(x, t) = (x − t)+ − l [(.− t)+] (x)

where

l [f ] (x) =
∫ 1

0
α(s)f (s)ds +

(
x −

∫ 1

0
sα(s)ds

)∫ 1

0
α(s)f ′(s)ds.

In this situation the line lt [(.− t)+] intersects the truncated power function at the
points

x1(t) = j (t)/
∫ 1
t
α(s)ds

x2(t) = (t − j (t))/
∫ t

0 α(s)ds
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where

j (t) =
∫ t

0
α(s)ds

∫ 1

t

sα(s)ds −
∫ t

0
sα(s)ds

∫ 1

t

α(s)ds.

Unfortunately, these expressions are too complicated to hope to get a complete
characterization of the best weight functions, i. e., those that lead to

∫ 1

0
|K(x, t)| dx = 1/16.

4 Conclusion

With direct and simple proofs, we establish, under the concavity, convexity, or
monotonicity of the weight function, the best constants for a class of (weighted and
non-weighted) new Poincaré-type inequalities. Finally, an (unweighted) inequality
of a similar type involving the second derivative is studied. A sharp constant is
determined.
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Operator Inequalities Involved
Wiener–Hopf Problems in the Open
Unit Disk

Rabha W. Ibrahim

Abstract In this effort, we employ some of the linear differential inequalities to
achieve integral inequalities of the type Wiener–Hopf problems (WHP). We utilize
the concept of subordination and its applications to gain linear integral operators in
the open unit disk that preserve two classes of analytic functions with a positive real
part. Linear second-order differential inequalities play a significant role in the field
of complex differential equations. Our study is based on a neighborhood containing
the origin. Therefore, the Wiener–Hopf problem is decomposed around the origin
in the open unit disk using two different classes of analytic functions. Moreover,
we suggest a generalization for WHP by utilizing some classes of entire functions.
Special cases are given in the sequel as well. A necessary and sufficient condition
for WHP to be averaging operator on a convex domain (in the open unit disk) is
given by employing the subordination relation (inequality).

1 Introduction

The Wiener–Hopf problems (WHP) [1] is a mathematical method to solve systems
of integral equations extensively used in the field of applied mathematics [2],
specifically in optimization theory [3], control systems [4], electromagnetics [5],
image processing [6], and cloud computing system [7]. The technique acts by
developing the complex-holomorphic properties of transforming functions. The
Wiener operator of absolutely convergent Taylor series of a complex variable is
given by the formal

w(z) =
∑
n∈N

ωnz
n, with ‖w‖W =

∑
n∈N

|ωn| <∞.
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It has been studied in many infinite spaces such as Hilbert spaces [8] and Banach
spaces [9]. The main stage in many WHP is to decompose an arbitrary function into
two functions. Overall, this can be done by putting

Ψ+(ζ ) = 1

2πi

∫
Ω1

Ψ (z)
dz

z− ζ (1)

and

Ψ−(ζ ) = − 1

2πi

∫
Ω2

Ψ (z)
dz

z− ζ , (2)

where the contours Ω1,Ω2 are parallel to the real line, but move above and below
the point z = ζ, respectively.

In this paper, we investigate some of the linear differential inequalities involving
WHP. Our discussion is based on the concept of subordination: φ(z) ≺ ψ(z),where
z ∈ U = {z ∈ C : |z| < 1} (the open unit disk), if there occurs a Schwartz function
σ(z), σ (0) = 0, |σ(z)| < 1 such that φ(z) = ψ(σ(z)) . We shall show that the
integrals (1) and (2) preserve analytic functions with a positive real part. Special
generalizations are provided involving entire functions. Moreover, we illustrate
a necessary and sufficient condition for some convex inequalities containing (1)
and (2).

Let H = H(U) indicate the class of analytic functions in U. For a positive integer
n and a complex number φ, let

H[φ, n] = {ϕ ∈ H : ϕ(z) = φ + φnzn + φn+1z
n+1 + . . .}.

Define special classes of analytic functions

Pn = {ϕ ∈ H[1, n] : *(ϕ(z)) > 0, for z ∈ U}

H[0, n] = {ϕ ∈ H : ϕ(z) = φnzn + φn+1z
n+1 + . . .},

and

An = {ϕ ∈ H : ϕ(z) = z+ φnzn + φn+1z
n+1 + . . .},

where A1 = A is called the normalized class satisfying the normalized condition
ϕ(0) = ϕ′(0)− 1 = 0 and taking the form

A = {ϕ ∈ H : ϕ(z) = z+ φ2z
2 + . . .}.

Since our study is in the open unit disk, we need to define the following W-H
operator (WHO)
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Wζ (ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ − ζ , (3)

where ϕ ∈ H[1, n] taking the expansion

ϕ(z) = 1+ φnzn + φn+1z
n+1 + . . . , z ∈ U

DenoteW0(ϕ)(z) = W(ϕ)(z).
Definition 1 The integral operator WHO is called averaging operator, if ϕ ∈ K (the
class of convex function) satisfies

W(ϕ)(0 = ϕ(0)), W(ϕ)(U) ⊂ coϕ(U).

Remark 1 For the function ϕ ∈ A which is starlike (S∗) on U, the operator WHO
is also starlike. This result comes from equation (2.5–28) [10] when α = 1.

2 Results

Our first result is thatW(ϕ) is closed in the space H[1, n].
Proposition 1 For analytic function ϕ ∈ H[1, n], the operatorW(ϕ) ∈ H[1, n].
Proof Let ϕ(z) = 1+ φnzn + φn+1z

n+1 + . . .

W(ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ

= 1

2πi

∫ z

0
[1+ φnξn + φn+1ξ

n+1 + . . .]dξ
ξ

= 1

2πi

∫ z

0
[1
ξ
+ φnξn−1 + φn+1ξ

n + . . .]dξ.

Since dz/z is accurate in a cut plane, which means a plane eliminates some line
moving from the origin to ∂U , we have

∫ z

0

1

ξ
dξ =

∫
∂U

1

z
dz = 2πi.

Moreover, we have

∫ z

0
ξm−1dξ = ξ

m

m

∣∣∣z
0
= z

m

m
.
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Hence, we attain

W(ϕ)(z) = 1

2πi
[2πi +

∑
m≥n

φmz
m

m
]

= 1+
∑
m≥n

φm

2mπi
zm,

which proves thatW(ϕ) is analytic in U. In other wordsW(ϕ) ∈ H[1, n] taking the
expansion

W(ϕ)(z) = 1+ ωnzn + ωn+1z
n+1 + . . . , z ∈ U.

Proposition 2 Let λ �= 0 be a complex number with *(λ) > 0 and let n be a
positive integer. If ϕ ∈ Pn such that

∣∣∣∣-
(λW(ϕ)+ zW(ϕ)′

λW(ϕ)

)∣∣∣∣ ≤ n*(1

λ
).

ThenW(ϕ) ∈ Pn.

Proof Set the following functions

B(z) = 1

λ
, C(z) = λW(ϕ)+ zW(ϕ)

′

λW(ϕ)
.

Now,

*
(
B(z) zW(ϕ)′ + C(z)W(ϕ)

)
= *

( 1

λ
zW(ϕ)′ + λW(ϕ)+ zW(ϕ)

′

λW(ϕ)
W(ϕ)

)

= *
(λW(ϕ)+ 2zW(ϕ)′

λ

)

= *
(
W(ϕ)

)
+ 2*

( zW(ϕ)′
λ

)

= *
(

1+ ωnzn + ωn+1z
n+1 + . . .

)

+ 2*
(nωn
λ
zn + (n+ 1)ωn+1

λ
zn+1 + . . .

)

= 1+*
(
(1+ 2n

λ
)ωnz

n + (1+ 2(n+ 1)

λ
)ωn+1z

n+1 + . . .
)
.

By setting

λ = 2m

2π im− 1
, m ≥ n,
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we have

*
(
B(z) zW(ϕ)′ + C(z)W(ϕ)

)
= *(ϕ(z)) > 0.

Hence, in view of Corollary 4.1a.1 in [10], we obtainW(ϕ) ∈ Pn.

Proposition 3 Let λ �= 0 be a complex number with *(λ) > −n, where n is a
positive integer. Let ϕ ∈ An and

*
(
λ+ n− zW(λϕ)

′(z)
W(λϕ)(z)

)
> 0.

If |ϕ(z)| < M, M > 0, thenW(λϕ) ∈ An and |W(λϕ)(z)| < N, N > 0.

Proof First, we show thatW(ϕ) ∈ An. Let ϕ(z) = z+ φnzn + φn+1z
n+1 + . . .

W(λϕ)(z) = 1

2πi

∫ z

0
λϕ(ξ)

dξ

ξ

= λ

2πi

∫ z

0
[ξ + φnξn + φn+1ξ

n+1 + . . .]dξ
ξ

= λ

2πi

∫ z

0
[1+ φnξn−1 + φn+1ξ

n + . . .]dξ.

By letting λ = 2πi, we have

W(λϕ)(z) = z+ ωnzn + . . . ∈ An.

Assume the following functions:

B(z) = 1, C(z) = λW(λϕ)(z)− zW(λϕ)
′(z)

W(λϕ)(z)
, D(z) = ϕ(z)− λW(λϕ)(z)

|B(z)zW(λϕ)′(z)+ C(z)W(λϕ)(z)+D(z)|

=
∣∣∣zW(λϕ)′(z)+ λW(λϕ)(z)− zW(λϕ)′(z)

W(λϕ)(z)
W(λϕ)(z)+ ϕ(z)− λW(λϕ)(z)

∣∣∣
= |ϕ(z)| < M.

Hence, in view of Corollary 4.1b.1 in [10], we have

|W(λϕ)| < supz∈U
{ M + |D(z)|
|nB(z)+ C(z)|

}
:= N.

This completes the proof.
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Proposition 4 Let n be a positive integer and let ϕ ∈ H[0, n] achieving

*
(
n− zW(ϕ)

′(z)
W(ϕ)(z)

)
≥ 0.

If |ϕ(z)| < M, M > 0 and

∣∣∣n− zW(ϕ)′(z)
W(ϕ)(z)

∣∣∣ ≥ 2M

N

thenW(ϕ) ∈ H[0, n] and |W(ϕ)(z)| < N, N > 0.

Proof First, we show thatW(ϕ) ∈ H[0, n]. Let ϕ(z) = φnzn + φn+1z
n+1 + . . .

W(ϕ)(z) = 1

2πi

∫ z

0
ϕ(ξ)

dξ

ξ

= 1

2πi

∫ z

0
[φnξn + φn+1ξ

n+1 + . . .]dξ
ξ

= 1

2πi

∫ z

0
[φnξn−1 + φn+1ξ

n + . . .]dξ.

Thus, we obtain

W(ϕ)(z) = ωnzn + . . . ∈ H[0, n].

Assume the following functions:

B(z) = 1, C(z) = −zW(ϕ)
′(z)

W(ϕ)(z)
, D(z) = ϕ(z)

|B(z)zW(λϕ)′(z)+ C(z)W(ϕ)(z)+D(z)|

=
∣∣∣zW(λϕ)′(z)− zW(ϕ)′(z)

W(ϕ)(z)
W(ϕ)(z)+ ϕ(z)

∣∣∣
= |ϕ(z)| < M.

Hence, in view of Theorem 4.1b in [10], we have |W(ϕ)(z)| < N. This completes
the proof.

Proposition 5 LetM > 0, N > 0 and let ϕ ∈ H[0, 1] achieving

∣∣∣-(zW(ϕ)′(z)
W(ϕ)(z)

)

∣∣∣ ≥ M
N
.

ThenW(ϕ) ∈ H[0, 1] and |W(ϕ)(z)| < N.
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Proof It is clear thatW(ϕ) ∈ H[0, 1]. Consider the following functions:

B(z) = 1, C(z) = −zW(ϕ)
′(z)

W(ϕ)(z)

|B(z)zW(λϕ)′(z)+ C(z)W(ϕ)(z)|

=
∣∣∣zW(λϕ)′(z)− zW(ϕ)′(z)

W(ϕ)(z)
W(ϕ)(z)

∣∣∣
= 0 < M.

Hence, in view of Theorem 4.1c in [10], we have

|W(ϕ)(z)| < N := sup
z∈U
{ M

|B(z).||-C(z)/B(z)| }.

This completes the proof.

Next, we discuss the upper bound of the WHO with respect to convex analytic
function, by using the second-order differential subordination.

Theorem 1 Let h be convex in U and let ϕ ∈ H[h(0), 1] satisfying the subordina-
tion

z2W(ϕ)′′(z)+ zW(ϕ)′(z)+W(ϕ)(z) ≺ h(z)

thenW(ϕ)(z) ≺ h(z).
Proof Since h is convex then it has the normalized property h(0) = 0 then we have
W(ϕ)(z) ∈ H[0, 1] (Proposition 5). Consider the following functions:

A = 1, B(z) = 1, D(z) = 0.

Since *(B(z)) = A = 1 then in view of Theorem 4.1f [10], we have W(ϕ)(z) ≺
h(z).

Theorem 2 Let ϕ ∈ H[0, 1] satisfying the subordination

z2W(ϕ)′′(z)+ zW(ϕ)′(z)+W(ϕ)(z) ≺ z

thenW(ϕ)(z) ≺ z
2

and z/2 is the best (0,1)-dominant.

Proof It is clear that W(ϕ)(z) ∈ H[0, 1] (Proposition 5). Consider the following
real numbers:

A = 1, B = 1, C = 1.
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Then in view of Theorem 4.1g [10], we have W(ϕ)(z) ≺ z

2
and z/2 is the best

(0,1)-dominant.

Theorem 3 Let n be a positive integer and ϕ ∈ H[1, n] satisfying the linear first
differential subordination

zW(ϕ)′(z)+W(ϕ)(z) ≺ [1+ z
1− z ]

α

then

W(ϕ)(z) ≺ [1+ z
1− z ]

β

where α := β + o(n) > 0.

Proof It is clear that W(ϕ)(z) ∈ H[1, n] (Proposition 1). According to Theo-
rem 3.1c [10], we have

W(ϕ)(z) ≺ [1+ z
1− z ]

β.

Theorem 4 Let λ be a real number with |λ| ≤ 1. If ϕ ∈ H[1, n] satisfying
*(ϕ(z)) > 0, then the generalized WHO achieves

*(Wλ(ϕ)(z)) = *( 1

2πieλzn

∫ z

0
ϕ(ξ)eλξ

n dξ

ξ
) > 0

such that

|-( 1

2πieλzn
)′| ≤ n*( 1

2πiz eλzn
).

Proof According to the relation 4.2–6 [10], we have the desire inequality.

Note thatW0(ϕ)(z)) = W(ϕ)(z)).
Theorem 5 Let λ be a real number with |λ| ≤ 1 and γ > 0. If ϕ ∈ H[1, n]
satisfying *(ϕ(z)) > 0 then the generalized WHO achieves

*(Wλ,γ (ϕ)(z)) = *( 1

2πizγ−1 eλz
n

∫ z

0
ϕ(ξ)ξγ−1 eλξ

n dξ

ξ
) > 0.

Proof A direct application of the relation 4.2–4 [10], we have the desire inequality.

Note that W0,1(ϕ)(z)) = W(ϕ)(z)). Theorems 4 and 5 show that the generalized
WHO satisfies the relation
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ϕ(z) ∈ Pn ⇒ Wλ,γ (ϕ)(z)) ∈ Pn.

Theorem 6 Let ϕ be an analytic function in U with ϕ(0) = 1 (ϕ ∈ H[1, n]). If
either of the following three conditions is achieved:

•

1+ λzW(ϕ)(z)
′

W(ϕ)(z)
≺ ez, λ > 1

•

1+ λzW(ϕ)(z)
′

W(ϕ)(z)
≺ 1+ Az

1+ Bz
(
− 1 < B < A ≤ 1, |λ| ≥ A− B

1− |B|
)

•

1+ λzW(ϕ)(z)
′

W(ϕ)(z)
≺ √1+ z, λ ≥ 1

then

W(ϕ)(z) ≺ ez.

Proof According to Proposition 1, we have W(ϕ)(z) ∈ H[1, n]. Let h(z) be the
convex univalent function defined by h(z) = ez . Then, obviously λ z (h(z))

′
is

starlike. The main aim of the proof reads on the information that if the subordination

1+ λzW(ϕ)(z)
′

W(ϕ)(z)
≺ 1+ λ z (h(z))

′

h(z)
= 1+ λz := Θ(z)

is achieved, then W(ϕ)(z) ≺ h(z) (see Corollary 3.4h.1, p. 135 [10]). By
Remark 2.1 in [11] and the first condition, we obtain

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

Now, let ψ(z) := 1+ Az
1+ Bz then ψ−1(η) = η − 1

A− Bη . But ψ(z) ≺ h(z) means

z ≺ ψ−1(Θ(z)) and

|ψ−1(Θ(eit )| = | λ eit

(A− B)− λB eit | ≥
λ

A− B + λ|B| ≥ 1
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for λ ≥ (A− B)(1− |B|). Hence,

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

Finally, let Λ(z) = √1+ z, where Λ(U) ⊂ Θ(U) then if λ ≥ 1, we attain

h(z) ≺ Θ(z) �⇒ W(ϕ)(z) ≺ h(z).

A direct application of Lemma 4.4b in [10], we get the following outcome:

Theorem 7 Let ϕ ∈ K such that ϕ(0) = 0 and h ∈ K such that ϕ(z) ≺ h(z). Then
the WHO is averaging operator on K satisfyingW(ϕ)(z) ≺ h(z).
Next, we discuss the case ϕ is not convex.

Theorem 8 Let ϕ ∈ H(U) and h ∈ K such that ϕ(z) ≺ h(z) and

*
(
− W(ϕ)(z)− ϕ(z)

zW(ϕ)(z)′
)
> 0.

Then the WHO is averaging operator on K satisfyingW(ϕ)(z) ≺ h(z).
Proof Since ϕ ∈ H(U) then we obtainW(ϕ) ∈ H(U). A computation leads to

W(ϕ)(z)− W(ϕ)(z)− ϕ(z)
zW(ϕ)(z)′

.zW(ϕ)(z)′ = ϕ(z) ≺ h(z).

In view of Theorem 3.1a in [10], we get

ϕ(z) ≺ h(z) �⇒ W(ϕ)(z) ≺ h(z),

which implies that WHO is averaging operator on K.

Theorem 9 Let ϕ ∈ H(U) and h is starlike on U. If ϕ(z) ≺ h(z), then

W(ϕ)(z) ≺ W(h)(z).

Proof By Remark 1,W(h)(z) is starlike on U. Suppose thatW(ϕ)(z) ⊀ W(h)(z),

then there occur some points z0 ∈ U and η0 ∈ ∂U such thatW(ϕ)(z0) = W(h)(η0)

andW(ϕ)(U0) ⊂ W(h)(U). Thus, by Lemma 2.2c [10], we obtain

z0W(ϕ)(z0)
′ = kη0W(h)

′(η0), k ≥ 1.

This implies that

ϕ(z0) = k h(η0) /∈ h(U),

which contradicts the assumption ϕ(z) ≺ h(z). Hence,W(ϕ)(z) ≺ W(h)(z).
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Some New Hermite–Hadamard Type
Integral Inequalities via Caputo
k-Fractional Derivatives and Their
Applications

Artion Kashuri and Rozana Liko

Abstract The authors discover a general integral identity concerning (n + 1)-
differentiable mappings defined on m-invex set via Caputo k-fractional derivatives.
By using the notion of generalized ((h1, h2); (η1, η2))-convex mappings and this
integral equation as an auxiliary result, we derive some new estimates with respect
to Hermite–Hadamard type inequalities via Caputo k-fractional derivatives. It is
pointed out that some new special cases can be deduced from main results. At
the end, some applications to special means for different positive real numbers are
provided as well.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (−∞,+∞). For any subset K ⊆ R

n, K◦ is the
interior of K.

The following inequality, named Hermite–Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I ⊆ R −→ R be a convex function on I and a, b ∈ I with
a < b. Then the following inequality holds:

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

. (1)

This inequality (1) is also known as trapezium inequality.

The trapezium type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. For other recent results which
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generalize, improve, and extend the inequality (1) through various classes of convex
functions, interested readers are referred to [1–30, 32–40, 42–46, 50, 52, 53].

Let us recall some special functions and evoke some basic definitions as follows.

Definition 1 The Euler beta function is defined for a, b > 0 as

β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt. (2)

Definition 2 The hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) = 1

β(b, c − b)
∫ 1

0
tb−1(1− t)c−b−1(1− zt)−adt

for c > b > 0 and |z| < 1, where β(x, y) is the Euler beta function for all x, y > 0.

Definition 3 For k ∈ R
+ and x ∈ C, the k-gamma function is defined by

Γk(x) = lim
n−→+∞

n!kn(nk) xk−1

(x)n,k
. (3)

Its integral representation is given by

Γk(α) =
∫ +∞

0
tα−1e−

tk

k dt. (4)

One can note that

Γk(α + k) = αΓk(α).

For k = 1, (4) gives integral representation of gamma function.

Definition 4 For k ∈ R
+ and x, y ∈ C, the k-beta function with two parameters x

and y is defined as

βk(x, y) = 1

k

∫ 1

0
t
x
k
−1(1− t) yk−1dt. (5)

For k = 1, (5) gives integral representation of beta function.

Theorem 2 Let x, y > 0, then for k-gamma and k-beta function the following
equality holds:

βk(x, y) = Γk(x)Γk(y)
Γk(x + y) . (6)
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Definition 5 ([31]) Let α > 0 and α /∈ {1, 2, 3, . . .}, n = [α] + 1, f ∈ Cn[a, b]
such that f (n) exists and is continuous on [a, b]. The Caputo fractional derivatives
of order α are defined as follows:

cDαa+f (x) =
1

Γ (n− α)
∫ x

a

f (n)(t)

(x − t)α−n+1 dt, x > a (7)

and

cDαb−f (x) =
(−1)n

Γ (n− α)
∫ b

x

f (n)(t)

(t − x)α−n+1 dt, x < b. (8)

If α = n ∈ {1, 2, 3, . . .} and usual derivative of order n exists, then Caputo fractional
derivative

(
cDαa+f

)
(x) coincides with f (n)(x). In particular we have

(
cD0
a+f

)
(x) =

(
cD0
b−f

)
(x) = f (x) (9)

where n = 1 and α = 0.

Definition 6 ([12]) Let α > 0, k ≥ 1 and α /∈ {1, 2, 3, . . .}, n = [α] + 1, f ∈
Cn[a, b]. The Caputo k-fractional derivatives of order α are defined as follows:

cD
α,k
a+f (x) =

1

kΓk
(
n− α

k

)
∫ x

a

f (n)(t)

(x − t) αk−n+1
dt, x > a (10)

and

cD
α,k
b− f (x) =

(−1)n

kΓk
(
n− α

k

)
∫ b

x

f (n)(t)

(t − x) αk−n+1
dt, x < b. (11)

Definition 7 ([51]) A set S ⊆ R
n is said to be invex set with respect to the

mapping η : S × S −→ R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].

The invex set S is also termed an η-connected set.

Definition 8 ([35]) Let h : [0, 1] −→ R be a non-negative function and h �= 0.
The function f on the invex set K is said to be h-preinvex with respect to η, if

f
(
x + tη(y, x)) ≤ h(1− t)f (x)+ h(t)f (y) (12)

for each x, y ∈ K and t ∈ [0, 1] where f (·) > 0.

Clearly, when putting h(t) = t in Definition 8, f becomes a preinvex function [41].
If the mapping η(y, x) = y − x in Definition 8, then the non-negative function f
reduces to h-convex mappings [48].
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Definition 9 ([49]) Let S ⊆ R
n be an invex set with respect to η : S × S −→ R

n.

A function f : S −→ [0,+∞) is said to be s-preinvex (or s-Breckner-preinvex)
with respect to η and s ∈ (0, 1], if for every x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)sf (x)+ t sf (y). (13)

Definition 10 ([38]) A function f : K −→ R is said to be s-Godunova–Levin–
Dragomir-preinvex of second kind, if

f
(
x + tη(y, x)) ≤ (1− t)−sf (x)+ t−sf (y), (14)

for each x, y ∈ K, t ∈ (0, 1) and s ∈ (0, 1].
Definition 11 ([47]) A non-negative function f : K ⊆ R −→ R is said to be
tgs-convex on K if the inequality

f
(
(1− t)x + ty) ≤ t (1− t)[f (x)+ f (y)] (15)

grips for all x, y ∈ K and t ∈ (0, 1).
Definition 12 ([32]) A function f : I ⊆ R −→ R is said to be MT -convex
functions, if it is non-negative and ∀ x, y ∈ I and t ∈ (0, 1) satisfies the subsequent
inequality

f (tx + (1− t)y) ≤
√
t

2
√

1− t f (x)+
√

1− t
2
√
t
f (y). (16)

Definition 13 ([40]) LetK ⊆ R be an openm-invex set respecting η : K×K −→
R and h1, h2 : [0, 1] −→ [0,+∞). A function f : K −→ R is said to be
generalized (m, h1, h2)-preinvex, if

f
(
mx + tη(y,mx)) ≤ mh1(t)f (x)+ h2(t)f (y) (17)

is valid for all x, y ∈ K and t ∈ [0, 1], for some fixed m ∈ (0, 1].
The concept of η-convex functions (at the beginning was named by ϕ-convex
functions), considered in [15], has been introduced as the follows.

Definition 14 Consider a convex set I ⊆ R and a bifunction η : f (I)× f (I) −→
R. A function f : I −→ R is called convex with respect to η (briefly η-convex), if

f
(
λx + (1− λ)y) ≤ f (y)+ λη(f (x), f (y)), (18)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Geometrically it says that if a function is η-convex on I, then for any x, y ∈ I,
its graph is on or under the path starting from (y, f (y)) and ending at (x, f (y) +
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η(f (x), f (y))). If f (x) should be the end point of the path for every x, y ∈ I, then
we have η(x, y) = x−y and the function reduces to a convex one. For more results
about η-convex functions, see [7, 8, 14, 15].

Definition 15 ([1]) Let I ⊆ R be an invex set with respect to η1 : I × I −→ R.

Consider f : I −→ R and η2 : f (I) × f (I) −→ R. The function f is said to be
(η1, η2)-convex if

f
(
x + λη1(y, x)

) ≤ f (x)+ λη2(f (y), f (x)), (19)

is valid for all x, y ∈ I and λ ∈ [0, 1].
Motivated by the above works and the references therein, the main objective of this
article is to apply the notion of generalized ((h1, h2); (η1, η2))-convex mappings
and an interesting lemma to establish some new estimates with respect to Hermite–
Hadamard type inequalities via Caputo k-fractional derivatives. Also, some new
special cases will be deduced. At the end, some applications to special means for
different positive real numbers are given as well.

2 Main Results

Definition 16 ([10]) A set K ⊆ R
n is named as m-invex with respect to the

mapping η : K × K −→ R
n for some fixed m ∈ (0, 1], if mx + tη(y,mx) ∈ K

grips for each x, y ∈ K and any t ∈ [0, 1].
Remark 1 In Definition 16, under certain conditions, the mapping η(y,mx) could
reduce to η(y, x).When m = 1, we get Definition 3.

For the simplicities of notations, let

δ(α, ξ) :=
∫ 1

0
|tα − ξ |dt, -(α, ξ, p) :=

∫ 1

0
|tα − ξ |pdt. (20)

Lemma 1 For 0 ≤ ξ ≤ 1, we have

(a)

δ(α, ξ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

α + 1
, ξ = 0;

2αξ1+ 1
α + 1

α + 1
− ξ, 0 < ξ < 1;

α

α + 1
, ξ = 1.
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(b)

-(α, ξ, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

pα + 1
, ξ = 0;

ξp+ 1
α

α
β

(
1

α
, p + 1

)
+ (1− ξ)

p+1

α(p + 1)

×2F1

(
1− 1

α
, 1;p + 2; 1− ξ

)
, 0 < ξ < 1;

1

α
β

(
p + 1,

1

α

)
, ξ = 1.

Proof These equalities follow from a straightforward computation of definite
integrals. This completes the proof of the lemma.

We next introduce the concept of generalized ((h1, h2); (η1, η2))-convex mappings.

Definition 17 Let K ⊆ R be an open m-invex set with respect to the mapping
η1 : K × K −→ R. Suppose h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are
continuous. Consider f : K −→ (0,+∞) and η2 : f (K) × f (K) −→ R. The
mapping f is said to be generalized ((h1, h2); (η1, η2))-convex if

f
(
mϕ(x)+ tη1(ϕ(y),mϕ(x))

) ≤ [mh1(t)f
r(x)+ h2(t)η2(f

r(y), f r(x))
] 1
r ,

(21)
holds for all x, y ∈ I, r �= 0, t ∈ [0, 1] and some fixed m ∈ (0, 1].
Remark 2 In Definition 17, if we choose m = r = 1, h1(t) = 1, h2(t) =
t, η1(ϕ(y),mϕ(x)) = ϕ(y) − mϕ(x), η2(f

r(y), f r(x)) = η(f r(y), f r(x)) and
ϕ(x) = x, ∀x ∈ I, then we get Definition 14. Also, in Definition 17, if we choose
m = r = 1, h1(t) = 1, h2(t) = t and ϕ(x) = x, ∀x ∈ I, then we get Definition 13.
Under some suitable choices as we done above, we can also get Definitions 9 and 10.

Remark 3 Let us discuss some special cases in Definition 17 as follows.

1. Taking h1(t) = h(1 − t), h2(t) = h(t), then we get generalized
((m, h); (η1, η2))-convex mappings.

2. Taking h1(t) = (1 − t)s, h2(t) = t s for s ∈ (0, 1], then we get generalized
((m, s); (η1, η2))-Breckner-convex mappings.

3. Taking h1(t) = (1 − t)−s , h2(t) = t−s for s ∈ (0, 1], then we get generalized
((m, s); (η1, η2))-Godunova–Levin–Dragomir-convex mappings.

4. Taking h1(t) = h2(t) = t (1 − t), then we get generalized ((m, tgs); (η1, η2))-
convex mappings.

5. Taking h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t , then we get generalized

(m; (η1, η2))-MT -convex mappings.

It is worth to mention here that to the best of our knowledge all the special cases
discussed above are new in the literature.
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Let us see the following example of a generalized ((h1, h2); (η1, η2))-convex
mapping which is not convex.

Example 1 Let us take m = r = 1, h1(t) = 1, h2(t) = t and ϕ an identity
function. Consider the function f : [0,+∞) −→ [0,+∞) by

f (x) =
{
x, 0 ≤ x ≤ 2;
2, x > 2.

Define two bifunctions η1 : [0,+∞) × [0,+∞) −→ R and η2 : [0,+∞) ×
[0,+∞) −→ [0,+∞) by

η1(x, y) =
{−y, 0 ≤ y ≤ 2;
x + y, y > 2,

and

η2(x, y) =
{
x + y, x ≤ y;
4(x + y), x > y.

Then f is generalized ((1, t); (η1, η2))-convex mapping. But f is not preinvex with
respect to η1 and also it is not convex (consider x = 0, y = 3, and t ∈ (0, 1]).
For establishing our main results regarding some new Hermite–Hadamard type
integral inequalities associated with generalized ((h1, h2); (η1, η2))-convexity via
Caputo k-fractional derivatives, we need the following lemma.

Lemma 2 Let α > 0, k ≥ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1. Suppose K =
[mϕ(a),mϕ(a) + η(ϕ(b),mϕ(a))] ⊆ R be an open m-invex subset with respect to
η : K × K −→ R for some fixed m ∈ (0, 1], where η(ϕ(b),mϕ(a)) > 0. Also, let
ϕ : I −→ K be a continuous function. Assume that f : K −→ R is a (n + 1)-
differentiable mapping on K◦ such that f ∈ Cn+1(K). Then for any λ,μ ∈ [0, 1]
and r ≥ 0, we have the following identity for Caputo k-fractional derivatives:

(
η(ϕ(b),mϕ(a))

r + 1

)n− α
k ×

{
λ

[
f (n)(mϕ(a))− f (n)

(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)]

+μ
[
f (n)

(
mϕ(a)+ r

r + 1
η(ϕ(b),mϕ(a))

)
− f (n)(mϕ(a)+ η(ϕ(b),mϕ(a)))

]

+f (n)
(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)
+ f (n)(mϕ(a)+ η(ϕ(b),mϕ(a)))

}

−(nk − α)Γk
(
n− α

k

)
×
[
cD

α,k

(mϕ(a))+f

(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)
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+(−1)n ×c Dα,k
(mϕ(a)+η(ϕ(b),mϕ(a)))−f

(
mϕ(a)+ r

r + 1
η(ϕ(b),mϕ(a))

)]

=
(
η(ϕ(b),mϕ(a))

r + 1

)n− α
k
+1

×
{∫ 1

0

(
1− λ− tn− αk

)
f (n+1)

(
mϕ(a)+

(
1− t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

+
∫ 1

0

(
tn−

α
k − μ

)
f (n+1)

(
mϕ(a)+

(
r + t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

}
. (22)

We denote

T
α,k
f (η, ϕ; λ,μ, n, r,m, a, b) :=

(
η(ϕ(b),mϕ(a))

r + 1

)n− α
k
+1

(23)

×
{∫ 1

0

(
1− λ− tn− αk

)
f (n+1)

(
mϕ(a)+

(
1− t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

+
∫ 1

0

(
tn−

α
k − μ

)
f (n+1)

(
mϕ(a)+

(
r + t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

}
.

Proof Integrating by parts (23), we get

T
α,k
f (η, ϕ; λ,μ, n, r,m, a, b) =

(
η(ϕ(b),mϕ(a))

r + 1

)n− α
k
+1

×
{[−(r + 1)

(
1− λ− tn− αk

)
f (n)

(
mϕ(a)+

(
1−t
r+1

)
η(ϕ(b),mϕ(a))

)
η(ϕ(b),mϕ(a))

∣∣∣∣
1

0

− (r + 1)
(
n− α

k

)
η(ϕ(b),mϕ(a))

∫ 1

0
tn−

α
k
−1f (n)

(
mϕ(a)+

(
1− t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

]

+
[ (r + 1)

(
tn− αk − μ

)
f (n)

(
mϕ(a)+

(
r+t
r+1

)
η(ϕ(b),mϕ(a))

)
η(ϕ(b),mϕ(a))

∣∣∣∣
1

0

− (r + 1)
(
n− α

k

)
η(ϕ(b),mϕ(a))

∫ 1

0
tn−

α
k
−1f (n)

(
mϕ(a)+

(
r + t
r + 1

)
η(ϕ(b),mϕ(a))

)
dt

]}
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=
(
η(ϕ(b),mϕ(a))

r + 1

)n− α
k×
{
λ

[
f (n)(mϕ(a))−f (n)

(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)]

+μ
[
f (n)

(
mϕ(a)+ r

r + 1
η(ϕ(b),mϕ(a))

)
− f (n)(mϕ(a)+ η(ϕ(b),mϕ(a)))

]

+f (n)
(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)
+ f (n)(mϕ(a)+ η(ϕ(b),mϕ(a)))

}

−(nk − α)Γk
(
n− α

k

)
×
[
cD

α,k

(mϕ(a))+f

(
mϕ(a)+ η(ϕ(b),mϕ(a))

r + 1

)

+(−1)n ×c Dα,k
(mϕ(a)+η(ϕ(b),mϕ(a)))−f

(
mϕ(a)+ r

r + 1
η(ϕ(b),mϕ(a))

)]
.

This completes the proof of our lemma.

Using Lemmas 1 and 2, we now state the following theorems for the corresponding
version for power of (n+ 1)-derivative.

Theorem 3 Let α > 0, k ≥ 1, 0 < r ≤ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1.
Suppose K = [mϕ(a),mϕ(a) + η1(ϕ(b),mϕ(a))] ⊆ R be an open m-invex
subset with respect to η1 : K × K −→ R for some fixed m ∈ (0, 1], where
η1(ϕ(b),mϕ(a)) > 0. Also, let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are
continuous. Assume that f : K −→ (0,+∞) is a (n + 1)-differentiable mapping
on K◦ such that f ∈ Cn+1(K) and η2 : f (K) × f (K) −→ R. If

(
f (n+1)

)q
is

generalized ((h1, h2); (η1, η2))-convex mapping, q > 1, p−1 + q−1 = 1, then for
any λ,μ ∈ [0, 1] and r1 ≥ 0, the following inequality for Caputo k-fractional
derivatives holds:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1+1

)n− α
k
+1 ×

{
-

1
p
(
n− α

k
, 1− λ, p) (24)

×
[
m
(
f (n+1)(a)

)rq
I r (h1(t); r, r1)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1)

] 1
rq

+- 1
p
(
n− α

k
, μ, p

)×
[
m
(
f (n+1)(a)

)rq
I
r
(h1(t); r, r1)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1)

] 1
rq
}
,
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where

I (hi(t); r, r1) :=
∫ 1

0
h

1
r

i

(
1− t
r1 + 1

)
dt,

I (hi(t); r, r1) :=
∫ 1

0
h

1
r

i

(
r1 + t
r1 + 1

)
dt, ∀ i = 1, 2

and -
(
n− α

k
, 1− λ, p

)
, -

(
n− α

k
,μ, p

)
are defined as in Lemma 1.

Proof From Lemma 2, generalized ((h1, h2); (η1, η2))-convexity of
(
f (n+1)

)q
,

Hölder inequality, Minkowski inequality, and properties of the modulus, we have

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤

(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{∫ 1

0

∣∣∣1− λ− tn− αk ∣∣∣
∣∣∣∣f (n+1)

(
mϕ(a)+

(
1− t
r1 + 1

)
η1(ϕ(b),mϕ(a))

) ∣∣∣∣dt

+
∫ 1

0

∣∣∣tn− αk − μ
∣∣∣
∣∣∣∣f (n+1)

(
mϕ(a)+

(
r1 + t
r1 + 1

)
η1(ϕ(b),mϕ(a))

) ∣∣∣∣dt
}

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{(∫ 1

0

∣∣∣1− λ− tn− αk
∣∣∣pdt

) 1
p

×
(∫ 1

0

(
f (n+1)

(
mϕ(a)+

(
1− t
r1 + 1

)
η1(ϕ(b),mϕ(a))

))q
dt

) 1
q

+
(∫ 1

0

∣∣∣tn− αk − μ
∣∣∣pdt

) 1
p

×
(∫ 1

0

(
f (n+1)

(
mϕ(a)+

(
r1 + t
r1 + 1

)
η1(ϕ(b),mϕ(a))

))q
dt

) 1
q
}

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
-

1
p

(
n− α

k
, 1− λ, p

)

×
[ ∫ 1

0

[
mh1

(
1− t
r1 + 1

)(
f (n+1)(a)

)rq
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+h2

(
1− t
r1 + 1

)
η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ] 1
r

dt

] 1
q

-
1
p

(
n− α

k
,μ, p

)
×
[ ∫ 1

0

[
mh1

(
r1 + t
r1 + 1

)(
f (n+1)(a)

)rq

+h2

(
r1 + t
r1 + 1

)
η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ] 1
r

dt

] 1
q
}

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
-

1
p

(
n− α

k
, 1− λ, p

)

×
[(∫ 1

0
m

1
r

(
f (n+1)(a)

)q
h

1
r

1

(
1− t
r1 + 1

)
dt

)r

+
(∫ 1

0
η

1
r

2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
h

1
r

2

(
1− t
r1 + 1

)
dt

)r ] 1
rq

+- 1
p

(
n− α

k
,μ, p

)
×
[(∫ 1

0
m

1
r

(
f (n+1)(a)

)q
h

1
r

1

(
r1 + t
r1 + 1

)
dt

)r

+
(∫ 1

0
η

1
r

2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
h

1
r

2

(
r1 + t
r1 + 1

)
dt

)r ] 1
rq
}

=
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
-

1
p

(
n− α

k
, 1− λ, p

)

×
[
m
(
f (n+1)(a)

)rq
I r (h1(t); r, r1)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1)

] 1
rq

+- 1
p

(
n− α

k
,μ, p

)
×
[
m
(
f (n+1)(a)

)rq
I
r
(h1(t); r, r1)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1)

] 1
rq
}
.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 3.
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Corollary 1 In Theorem 3 if we choose λ = μ = m = r = 1 and
η1(ϕ(b),mϕ(a)) = ϕ(b) − mϕ(a), ϕ(x) = x for all x ∈ I, we get the following
inequality for Caputo k-fractional derivatives:

∣∣∣T α,kf (1, 1, n, r1, 1, a, b)
∣∣∣ ≤

(
b − a
r1 + 1

)n− α
k
+1

×
{(

1

p
(
n− α

k

)+ 1

) 1
p

(25)

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1)+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1)

] 1
q

+
[

1(
n− α

k

)β
(
p + 1,

1

n− α
k

)] 1
p

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1)+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1)

] 1
q
}
.

Corollary 2 In Theorem 3 if we choose λ = μ = 0, m = r = 1 and
η1(ϕ(b),mϕ(a)) = ϕ(b) − mϕ(a), ϕ(x) = x for all x ∈ I, we get the following
inequality for Caputo k-fractional derivatives:

∣∣∣T α,kf (0, 0, n, r1, 1, a, b)
∣∣∣

≤
(
b − a
r1 + 1

)n− α
k
+1

×
{[

1(
n− α

k

)β
(
p + 1,

1

n− α
k

)] 1
p

(26)

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1)+ η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1)

] 1
q

+
(

1

p
(
n− α

k

)+ 1

) 1
p

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1)+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1)

] 1
q
}
.

Corollary 3 In Theorem 3 for h1(t) = h(1 − t), h2(t) = h(t) and f (n+1)(x) ≤
L, ∀x ∈ I, we get the following inequality for generalized ((m, h); (η1, η2))-convex
mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣
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≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLrq + η2

(
Lrq, Lrq

) ]
(27)

×
{
-

1
p

(
n− α

k
, 1− λ, p

)
I

1
q (h(t); r, r1)+ -

1
p

(
n− α

k
,μ, p

)
I

1
q (h(t); r, r1)

}
.

Corollary 4 In Corollary 3 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following inequality for generalized ((m, s); (η1, η2))-Breckner-convex mappings
via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤

(
r

r + s
) 1
q
(

1

r1 + 1

) s
rq

(28)

×
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLrq + η2

(
Lrq, Lrq

) ]

×
{
-

1
p

(
n− α

k
, 1− λ, p

)
+ - 1

p

(
n− α

k
,μ, p

) [
(r1 + 1)

s
r
+1 − r

s
r
+1

1

] 1
q

}
.

Corollary 5 In Corollary 3 for h1(t) = (1 − t)−s , h2(t) = t−s and 0 < s < r,
we get the following inequality for generalized ((m, s); (η1, η2))-Godunova–Levin–
Dragomir-convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤

(
r

r − s
) 1
q
(

1

r1 + 1

) s
rq

(29)

×
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLrq + η2

(
Lrq, Lrq

) ]

×
{
-

1
p

(
n− α

k
, 1− λ, p

)
+ - 1

p

(
n− α

k
,μ, p

) [
(r1 + 1)

s
r
+1 − r

s
r
+1

1

] 1
q

}
.

Corollary 6 In Theorem 3 for r = 1, h1(t) = h2(t) = t (1 − t) and f (n+1)(x) ≤
L, ∀x ∈ I, we get the following inequality for generalized ((m, tgs); (η1, η2))-
convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤

(
3r1 + 1

6(r1 + 1)2

) 1
q

(30)

×
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLq + η2

(
Lq,Lq

) ]

×
{
-

1
p

(
n− α

k
, 1− λ, p

)
+ - 1

p

(
n− α

k
,μ, p

)}
.
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Corollary 7 In Theorem 3 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and

f (n+1)(x) ≤ L, ∀x ∈ I, we get the following inequality for generalized
(m; (η1, η2))-MT -convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤ (31)

×
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLrq + η2

(
Lrq, Lrq

) ]

×
{
-

1
p

(
n− α

k
, 1− λ, p

)
I

1
q

( √
t

2
√

1− t ; r, r1
)

+- 1
p

(
n− α

k
,μ, p

)
I

1
q

( √
t

2
√

1− t ; r, r1
)}
.

Theorem 4 Let α > 0, k ≥ 1, 0 < r ≤ 1, and α /∈ {1, 2, 3, . . .}, n = [α] + 1.
Suppose K = [mϕ(a),mϕ(a) + η1(ϕ(b),mϕ(a))] ⊆ R be an open m-invex
subset with respect to η1 : K × K −→ R for some fixed m ∈ (0, 1], where
η1(ϕ(b),mϕ(a)) > 0. Also, let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K

are continuous. Assume that f : K −→ (0,+∞) is a (n + 1)-differentiable
mapping on K◦ such that f ∈ Cn+1(K) and η2 : f (K) × f (K) −→ R. If(
f (n+1)

)q
is generalized ((h1, h2); (η1, η2))-convex mapping and q ≥ 1, then for

any λ,μ ∈ [0, 1] and r1 ≥ 0, the following inequality for Caputo k-fractional
derivatives holds:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)
(32)

×
[
m
(
f (n+1)(a)

)rq
I r (h1(t); r, r1, λ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1, λ, α, k, n)

] 1
rq

+δ1− 1
q

(
n− α

k
,μ
)
×
[
m
(
f (n+1)(a)

)rq
I
r
(h1(t); r, r1, μ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1, μ, α, k, n)

] 1
rq
}
,
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where

I (hi(t); r, r1, λ, α, k, n) :=
∫ 1

0

∣∣∣1− λ− tn− αk
∣∣∣h 1

r

i

(
1− t
r1 + 1

)
dt,

I (hi(t); r, r1, μ, α, k, n) :=
∫ 1

0

∣∣∣tn− αk − μ∣∣∣h 1
r

i

(
r1 + t
r1 + 1

)
dt, ∀ i = 1, 2

and δ
(
n− α

k
, 1− λ

)
, δ
(
n− α

k
,μ
)

are defined as in Lemma 1.

Proof From Lemma 2, generalized ((h1, h2); (η1, η2))-convexity of
(
f (n+1)

)q
, the

well-known power mean inequality, Minkowski inequality, and properties of the
modulus, we have

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣ ≤

(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{∫ 1

0

∣∣∣1− λ− tn− αk ∣∣∣
∣∣∣∣f (n+1)

(
mϕ(a)+

(
1− t
r1 + 1

)
η1(ϕ(b),mϕ(a))

) ∣∣∣∣dt

+
∫ 1

0

∣∣∣tn− αk − μ
∣∣∣
∣∣∣∣f (n+1)

(
mϕ(a)+

(
r1 + t
r1 + 1

)
η1(ϕ(b),mϕ(a))

) ∣∣∣∣dt
}

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{(∫ 1

0

∣∣∣1− λ− tn− αk
∣∣∣dt
)1− 1

q

×
(∫ 1

0

∣∣∣1− λ− tn− αk
∣∣∣
(
f (n+1)

(
mϕ(a)+

(
1− t
r1 + 1

)
η1(ϕ(b),mϕ(a))

))q
dt

) 1
q

+
(∫ 1

0

∣∣∣tn− αk − μ∣∣∣dt
)1− 1

q

×
(∫ 1

0

∣∣∣tn− αk − μ∣∣∣
(
f (n+1)

(
mϕ(a)+

(
r1 + t
r1 + 1

)
η1(ϕ(b),mϕ(a))

))q
dt

) 1
q
}

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)

×
[ ∫ 1

0

∣∣∣1− λ− tn− αk
∣∣∣
[
mh1

(
1− t
r1 + 1

)(
f (n+1)(a)

)rq

+h2

(
1− t
r1 + 1

)
η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ] 1
r

dt

] 1
q
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+δ1− 1
q

(
n− α

k
,μ
)
×
[ ∫ 1

0

∣∣∣tn− αk − μ
∣∣∣
[
mh1

(
r1 + t
r1 + 1

)(
f (n+1)(a)

)rq

+h2

(
r1 + t
r1 + 1

)
η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ] 1
r

dt

] 1
q
}

≤
(
η(ϕ(b), ϕ(a),m)

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)

×
[(∫ 1

0
m

1
r

(
f (n+1)(a)

)q ∣∣∣1− λ− tn− αk ∣∣∣h 1
r

1

(
1− t
r1 + 1

)
dt

)r

+
(∫ 1

0
η

1
r

2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ∣∣∣1− λ− tn− αk ∣∣∣h 1
r

2

(
1− t
r1 + 1

)
dt

)r ] 1
rq

+δ1− 1
q

(
n− α

k
,μ
)
×
[(∫ 1

0
m

1
r

(
f (n+1)(a)

)q ∣∣∣tn− αk − μ∣∣∣h 1
r

1

(
r1 + t
r1 + 1

)
dt

)r

+
(∫ 1

0
η

1
r

2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq) ∣∣∣tn− αk − μ∣∣∣h 1
r

2

(
r1 + t
r1 + 1

)
dt

)r ] 1
rq
}

=
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)

×
[
m
(
f (n+1)(a)

)rq
I r (h1(t); r, r1, λ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1, λ, α, k, n)

] 1
rq

+δ1− 1
q

(
n− α

k
,μ
)
×
[
m
(
f (n+1)(a)

)rq
I
r
(h1(t); r, r1, μ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1, μ, α, k, n)

] 1
rq
}
.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 4.
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Corollary 8 In Theorem 4 if we choose λ = μ = m = r = 1 and
η1(ϕ(b),mϕ(a)) = ϕ(b) − mϕ(a), ϕ(x) = x for all x ∈ I, we get the following
inequality for Caputo k-fractional derivatives:

∣∣∣T α,kf (1, 1, n, r1, 1, a, b)
∣∣∣ ≤

(
b − a
r1 + 1

)n− α
k
+1

×
{(

1

n− α
k
+ 1

)1− 1
q

(33)

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1, 1, α, k, n)

+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1, 1, α, k, n)

] 1
q

+
(

n− α
k

n− α
k
+ 1

)1− 1
q

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1, 1, α, k, n)

+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1, 1, α, k, n)

] 1
q
}
.

Corollary 9 In Theorem 4 if we choose λ = μ = 0, m = r = 1 and
η1(ϕ(b),mϕ(a)) = ϕ(b) − mϕ(a), ϕ(x) = x for all x ∈ I, we get the following
inequality for Caputo k-fractional derivatives:

∣∣∣T α,kf (0, 0, n, r1, 1, a, b)
∣∣∣ ≤

(
b − a
r1 + 1

)n− α
k
+1

×
{(

n− α
k

n− α
k
+ 1

)1− 1
q

(34)

×
[ (
f (n+1)(a)

)q
I (h1(t); 1, r1, 0, α, k, n)

+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1, 0, α, k, n)

] 1
q

+
(

1

n− α
k
+ 1

)1− 1
q ×

[ (
f (n+1)(a)

)q
I (h1(t); 1, r1, 0, α, k, n)

+η2

((
f (n+1)(b)

)q
,
(
f (n+1)(a)

)q)
I (h2(t); 1, r1, 0, α, k, n)

] 1
q
}
.
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Corollary 10 In Theorem 4 for h1(t) = h(1 − t), h2(t) = h(t) and f (n+1)(x) ≤
L, ∀x ∈ I, we get the following inequality for generalized ((m, h); (η1, η2))-convex
mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)
(35)

×
[
mLrqI r (h(1− t); r, r1, λ, α, k, n)+ η2

(
Lrq, Lrq

)
I r (h(t); r, r1, λ, α, k, n)

] 1
rq

+δ1− 1
q

(
n− α

k
,μ
)

×
[
mLrqI

r
(h(1−t); r, r1, μ, α, k, n)+η2

(
Lrq, Lrq

)
I
r
(h(t); r, r1, μ, α, k, n)

] 1
rq
}
.

Corollary 11 In Corollary 10 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following inequality for generalized ((m, s); (η1, η2))-Breckner-convex mappings
via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1+1

)n− α
k
+1 ×

{
δ

1− 1
q
(
n− α

k
, 1− λ) (36)

×
[
mLrqI r ((1− t)s; r, r1, λ, α, k, n)+ η2 (L

rq, Lrq) I r (ts; r, r1, λ, α, k, n)
] 1
rq

δ
1− 1

q
(
n− α

k
, μ
)

×
[
mLrqI

r
((1− t)s; r, r1, μ, α, k, n)+ η2(L

rq, Lrq)I
r
(ts; r, r1, μ, α, k, n)

] 1
rq
}
.

Corollary 12 In Corollary 10 for h1(t) = (1 − t)−s , h2(t) = t−s and 0 < s < r,
we get the following inequality for generalized ((m, s); (η1, η2))-Godunova–Levin–
Dragomir-convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)
(37)
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×
[
mLrqI r ((1− t)−s; r, r1, λ, α, k, n)+ η2

(
Lrq, Lrq

)
I r (t−s; r, r1, λ, α, k, n)

] 1
rq

+δ1− 1
q

(
n− α

k
,μ
)

×
[
mLrqI

r
((1−t)−s; r, r1, μ, α, k, n)+η2

(
Lrq, Lrq

)
I
r
(t−s; r, r1, μ, α, k, n)

] 1
rq
}
.

Corollary 13 In Theorem 4 for h1(t) = h2(t) = t (1 − t) and f (n+1)(x) ≤
L, ∀x ∈ I, we get the following inequality for generalized ((m, tgs); (η1, η2))-
convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
[
mLrq + η2

(
Lrq, Lrq

) ]
(38)

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)
I

1
q (t (1− t); r, r1, λ, α, k, n)

+δ1− 1
q

(
n− α

k
,μ
)
I

1
q (t (1− t); r, r1, μ, α, k, n)

}
.

Corollary 14 In Theorem 4 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and

f (n+1)(x) ≤ L, ∀x ∈ I, we get the following inequality for generalized
(m; (η1, η2))-MT -convex mappings via Caputo k-fractional derivatives:

∣∣∣T α,kf (η1, ϕ; λ,μ, n, r1,m, a, b)
∣∣∣

≤
(
η1(ϕ(b),mϕ(a))

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)
(39)

×
[
mLrqI r

(√
1− t
2
√
t
; r, r1, λ, α, k, n

)
+η2

(
Lrq, Lrq

)
I r
( √

t

2
√

1− t ; r, r1, λ, α, k, n
)] 1

rq

+δ1− 1
q

(
n− α

k
,μ
)

×
[
mLrqI

r

(√
1− t
2
√
t
; r, r1, μ, α, k, n

)
+ η2

(
Lrq, Lrq

)
I
r
( √

t

2
√

1− t ; r, r1, μ, α, k, n
)] 1

rq
}
.
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Remark 4 For k = 1, by our Theorems 3 and 4, we can get some new spe-
cial Hermite–Hadamard type inequalities associated with generalized ((h1, h2);
(η1, η2))-convex mappings via Caputo fractional derivatives of order α. The details
are left to the interested reader.

3 Applications to Special Means

Definition 18 A function M : R2+ −→ R+ is called a Mean function if it has the
following properties:

1. Homogeneity:M(ax, ay) = aM(x, y), for all a > 0,
2. Symmetry:M(x, y) = M(y, x),
3. Reflexivity:M(x, x) = x,
4. Monotonicity: If x ≤ x′ and y ≤ y′, thenM(x, y) ≤ M(x′, y′),
5. Internality: min{x, y} ≤ M(x, y) ≤ max{x, y}.
We consider some means for different positive real numbers α, β.

1. The arithmetic mean:

A := A(α, β) = α + β
2
.

2. The geometric mean:

G := G(α, β) = √αβ.
3. The harmonic mean:

H := H(α, β) = 2
1
α
+ 1
β

.

4. The power mean:

Pr := Pr(α, β) =
(
αr + βr

2

) 1
r

, r ≥ 1.

5. The identric mean:

I := I (α, β) =
{

1
e

(
ββ

αα

)
, α �= β;

α, α = β.
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6. The logarithmic mean:

L := L(α, β) = β − α
lnβ − lnα

.

7. The generalized log-mean:

Lp := Lp(α, β) =
[
βp+1 − αp+1

(p + 1)(β − α)
] 1
p

; p ∈ R \ {−1, 0}.

It is well known that Lp is monotonic nondecreasing over p ∈ R with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤ A.
Now, let a and b be positive real numbers such that a < b. Let us consider
continuous functions ϕ : I −→ K, η1 : K ×K −→ R, η2 : f (K)× f (K) −→ R

and M := M(ϕ(a), ϕ(b)) : [ϕ(a), ϕ(a) + η1(ϕ(b), ϕ(a))] × [ϕ(a), ϕ(a) +
η1(ϕ(b), ϕ(a))] −→ R+, which is one of the above-mentioned means. Therefore
one can obtain various inequalities using the results of Sect. 2 for these means as
follows. Replace η1(ϕ(b),mϕ(a)) = M(ϕ(a), ϕ(b)) for value m = 1, in (24)
and (32), one can obtain the following interesting inequalities involving means:

∣∣∣T α,kf (M, ϕ; λ,μ, n, r1, 1, a, b)
∣∣∣ ≤

(
M

r1 + 1

)n− α
k
+1

×
{
-

1
p

(
n− α

k
, 1− λ, p

)

(40)

×
[ (
f (n+1)(a)

)rq
I r (h1(t); r, r1)+ η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1)

] 1
rq

+- 1
p

(
n− α

k
,μ, p

)
×
[ (
f (n+1)(a)

)rq
I
r
(h1(t); r, r1)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1)

] 1
rq
}
,

∣∣∣T α,kf (M, ϕ; λ,μ, n, r1, 1, a, b)
∣∣∣ ≤

(
M

r1 + 1

)n− α
k
+1

×
{
δ

1− 1
q

(
n− α

k
, 1− λ

)

(41)

×
[ (
f (n+1)(a)

)rq
I r (h1(t); r, r1, λ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I r (h2(t); r, r1, λ, α, k, n)

] 1
rq
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+δ1− 1
q

(
n− α

k
,μ
)
×
[ (
f (n+1)(a)

)rq
I
r
(h1(t); r, r1, μ, α, k, n)

+η2

((
f (n+1)(b)

)rq
,
(
f (n+1)(a)

)rq)
I
r
(h2(t); r, r1, μ, α, k, n)

] 1
rq
}
.

Letting M := A,G,H,Pr, I, L,Lp in (40) and (41), we get the inequali-
ties involving means for a particular choices of

(
f (n+1)

)q
that are generalized

((h1, h2); (η1, η2))-convex mappings.

4 Conclusion

In this article, we first presented a new identity concerning (n + 1)-differentiable
mappings defined on m-invex set via Caputo k-fractional derivatives. By using the
notion of generalized ((h1, h2); (η1, η2))-convexity and the obtained identity as
an auxiliary result, some new estimates with respect to Hermite–Hadamard type
inequalities via Caputo k-fractional derivatives are established. It is pointed out
that some new special cases are deduced from main results. Motivated by this
new interesting class of generalized ((h1, h2); (η1, η2))-convex mappings we can
indeed see to be vital for fellow researchers and scientists working in the same
domain. We conclude that our methods considered here may be a stimulant for
further investigations concerning Hermite–Hadamard, Ostrowski and Simpson type
integral inequalities for various kinds of convex and preinvex functions involving
local fractional integrals, fractional integral operators, q-calculus, (p, q)-calculus,
time scale calculus, and conformable fractional integrals.
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Some New Hermite–Hadamard Type
Integral Inequalities for Twice
Differentiable Mappings and Their
Applications

Artion Kashuri and Rozana Liko

Abstract The authors discover a general fractional integral identity regarding
Hermite–Hadamard type inequality for twice differentiable functions. By using this
integral equation, the authors derive some new estimates difference between the left
and middle part in Hermite–Hadamard type integral inequality associated with twice
differentiable generalized relative semi-m-(r;h1, h2)-preinvex mappings defined on
m-invex set. It is pointed out that some new special cases can be deduced from main
results. At the end, some applications to special means for different positive real
numbers are provided as well.

1 Introduction

The following notations are used throughout this paper. We use I to denote an
interval on the real line R = (−∞,+∞). For any subset K ⊆ R

n, K◦ is the
interior of K. The set of integrable functions on the interval [a, b] is denoted by
L[a, b].

The following inequality, named Hermite–Hadamard inequality, is one of the
most famous inequalities in the literature for convex functions.

Theorem 1 Let f : I ⊆ R −→ R be a convex function on I and a, b ∈ I with
a < b. Then the following inequality holds:

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

. (1)

This inequality (1) is also known as trapezium inequality.
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The trapezium type inequality has remained an area of great interest due to its wide
applications in the field of mathematical analysis. For other recent results which
generalize, improve and extend the inequality (1) through various classes of convex
functions, interested readers are referred to [1–33, 35, 38, 39, 41–45, 49, 51, 52]. Let
us recall some special functions and evoke some basic definitions as follows.

Definition 1 The incomplete beta function is defined for a, b > 0 as

βx(a, b) =
∫ x

0
ta−1(1− t)b−1dt, 0 < x ≤ 1. (2)

Definition 2 ([50]) A set S ⊆ R
n is said to be invex set with respect to the mapping

η : S × S −→ R
n, if x + tη(y, x) ∈ S for every x, y ∈ S and t ∈ [0, 1].

The invex set S is also termed an η-connected set.

Definition 3 ([34]) Let h : [0, 1] −→ R be a non-negative function and h �= 0.
The function f on the invex set K is said to be h-preinvex with respect to η, if

f
(
x + tη(y, x)) ≤ h(1− t)f (x)+ h(t)f (y) (3)

for each x, y ∈ K and t ∈ [0, 1] where f (·) > 0.

Clearly, when putting h(t) = t in Definition 3, f becomes a preinvex function [40].
If the mapping η(y, x) = y − x in Definition 3, then the non-negative function f
reduces to h-convex mappings [47].

Definition 4 ([48]) Let S ⊆ R
n be an invex set with respect to η : S × S −→ R

n.

A function f : S −→ [0,+∞) is said to be s-preinvex (or s-Breckner-preinvex)
with respect to η and s ∈ (0, 1], if for every x, y ∈ S and t ∈ [0, 1],

f
(
x + tη(y, x)) ≤ (1− t)sf (x)+ t sf (y). (4)

Definition 5 ([37]) A function f : K −→ R is said to be s-Godunova-Levin-
Dragomir-preinvex of second kind, if

f
(
x + tη(y, x)) ≤ (1− t)−sf (x)+ t−sf (y), (5)

for each x, y ∈ K, t ∈ (0, 1) and s ∈ (0, 1].
Definition 6 ([46]) A non-negative function f : K ⊆ R −→ R is said to be tgs-
convex on K if the inequality

f
(
(1− t)x + ty) ≤ t (1− t)[f (x)+ f (y)] (6)

grips for all x, y ∈ K and t ∈ (0, 1).
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Definition 7 ([31]) A function f : I ⊆ R −→ R is said to be MT -convex
functions, if it is non-negative and ∀ x, y ∈ I and t ∈ (0, 1) satisfies the subsequent
inequality

f (tx + (1− t)y) ≤
√
t

2
√

1− t f (x)+
√

1− t
2
√
t
f (y). (7)

Definition 8 ([39]) LetK ⊆ R be an openm-invex set respecting η : K×K −→ R

and h1, h2 : [0, 1] −→ [0,+∞). A function f : K −→ R is said to be generalized
(m, h1, h2)-preinvex, if

f
(
mx + tη(y,mx)) ≤ mh1(t)f (x)+ h2(t)f (y) (8)

is valid for all x, y ∈ K and t ∈ [0, 1], for some fixed m ∈ (0, 1].
Definition 9 ([32]) Let f ∈ L[a, b]. The Riemann–Liouville integrals Jαa+f and
Jαb−f of order α > 0 with a ≥ 0 are defined by

Jαa+f (x) =
1

Γ (α)

∫ x

a

(x − t)α−1f (t)dt, x > a

and

Jαb−f (x) =
1

Γ (α)

∫ b

x

(t − x)α−1f (t)dt, b > x,

where Γ (α) =
∫ +∞

0
e−uuα−1du. Here J 0

a+f (x) = J 0
b−f (x) = f (x).

Note that α = 1, the fractional integral reduces to the classical integral.

Motivated by the above works and the references therein, the main objective of this
article is to apply the notion of generalized relative semi-m-(r;h1, h2)-preinvex
mappings and an interesting lemma to establish some new estimates difference
between the left and middle part in Hermite–Hadamard type integral inequal-
ity associated with twice differentiable generalized relative semi-m-(r;h1, h2)-
preinvex mappings defined on m-invex set. Also, some new special cases will be
deduced. At the end, some applications to special means for different positive real
numbers will be given as well.

2 Main Results

The following definitions will be used in this section.

Definition 10 Let m : [0, 1] −→ (0, 1] be a function. A set K ⊆ R
n is named as

m-invex with respect to the mapping η : K×K −→ R
n, if m(t)x+ξη(y,m(t)x) ∈

K holds for each x, y ∈ K and any t, ξ ∈ [0, 1].
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Remark 1 In Definition 10, under certain conditions, the mapping η(y,m(t)x) for
any t, ξ ∈ [0, 1] could reduce to η(y,mx). For example, when m(t) = m for all
t ∈ [0, 1], then the m-invex set degenerates an m-invex set on K.

Definition 11 ([24]) Let K ⊆ R be an open m-invex set with respect to the
mapping η : K × K −→ R. Suppose h1, h2 : [0, 1] −→ [0,+∞), ϕ : I −→ K

are continuous functions and m : [0, 1] −→ (0, 1].A mapping f : K −→ (0,+∞)
is said to be generalized relative semi-m-(r;h1, h2)-preinvex, if

f
(
m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) ≤ [m(ξ)h1(ξ)f

r(x)+ h2(ξ)f
r(y)

] 1
r

(9)

holds for all x, y ∈ I and t, ξ ∈ [0, 1], where r �= 0.

Remark 2 In Definition 11, if we choose m = m = r = 1, this definition reduces
to the definition considered by Noor in [36] and Fulga and Preda in [13].

Remark 3 In Definition 11, if we choose m = m = r = 1 and ϕ(x) = x, then we
get Definition 8.

Remark 4 Let us discuss some special cases in Definition 11 as follows.

1. Taking h1(t) = h(1 − t), h2(t) = h(t), then we get generalized relative semi-
(m, h)-preinvex mappings.

2. Taking h1(t) = (1 − t)s, h2(t) = t s for s ∈ (0, 1], then we get generalized
relative semi-(m, s)-Breckner-preinvex mappings.

3. Taking h1(t) = (1 − t)−s , h2(t) = t−s for s ∈ (0, 1], then we get generalized
relative semi-(m, s)-Godunova–Levin–Dragomir-preinvex mappings.

4. Taking h1(t) = h2(t) = t (1− t), then we get generalized relative semi-(m, tgs)-
preinvex mappings.

5. Taking h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t , then we get generalized relative

semi-m-MT -preinvex mappings.

It is worth to mention here that to the best of our knowledge all the special cases
discussed above are new in the literature.

For establishing our main results regarding some new estimates difference
between the left and middle part in Hermite–Hadamard type integral inequality
associated with generalized relative semi-m-(r;h1, h2)-preinvexity via fractional
integrals, we need the following lemma.

Lemma 1 Let ϕ : I −→ K be a continuous function and m : [0, 1] −→ (0, 1].
Suppose K ⊆ R be an open m-invex subset with respect to η : K × K −→ R

where η(ϕ(x),m(t)ϕ(y)) �= 0 and η(ϕ(y),m(t)ϕ(x)) �= 0 for all t ∈ [0, 1]. If
f : K −→ R is a twice differentiable mapping on K◦ such that f ′′ ∈ L(K), then
for any α > 0, the following identity holds:
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− (α + 1)

2α−1

1

η2(ϕ(y),m(t)ϕ(x))
f

(
m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))

2

)

− (α + 1)

2α−1

1

η2(ϕ(x),m(t)ϕ(y))
f

(
m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))

2

)

+ Γ (α + 2)

ηα+2(ϕ(y),m(t)ϕ(x))

×
[
Jα(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))2

)+f (m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x)))

+Jα(
m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))2

)−f (m(t)ϕ(x))
]

+ Γ (α + 2)

ηα+2(ϕ(x),m(t)ϕ(y))

×
[
Jα(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))2

)+f (m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y)))

+Jα(
m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))2

)−f (m(t)ϕ(y))
]

=
∫ 1

2

0
ξα+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) (10)

+f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) ]dξ
+
∫ 1

1
2

(1− ξ)α+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x)))

+f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) ]dξ.
We denote

T αf (η, ϕ,m; x, y) :=
∫ 1

2

0
ξα+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) (11)

+f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) ]dξ

+
∫ 1

1
2

(1− ξ)α+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x)))

+f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) ]dξ.
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Proof

T αf (η, ϕ,m; x, y) = T11 + T12 + T21 + T22,

where

T11 =
∫ 1

2

0
ξα+1[f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) dξ ;

T12 =
∫ 1

2

0
ξα+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) dξ ;

T21 =
∫ 1

1
2

(1− ξ)α+1[f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) dξ ;

T22 =
∫ 1

1
2

(1− ξ)α+1[f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) dξ.
Now, using twice integration by parts, we have

T11 = ξ
α+1f ′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y)))

η(ϕ(x),m(t)ϕ(y))

∣∣∣∣
1
2

0

− (α + 1)

η(ϕ(x),m(t)ϕ(y))

∫ 1
2

0
ξαf ′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) dξ

= 1

2α+1

f ′
(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))
2

)
η(ϕ(x),m(t)ϕ(y))

− (α + 1)

η(ϕ(x),m(t)ϕ(y))

×
{
ξαf (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y)))

η(ϕ(x),m(t)ϕ(y))

∣∣∣∣
1
2

0

− α

η(ϕ(x),m(t)ϕ(y))

∫ 1
2

0
ξα−1f (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) dξ

}

= 1

2α+1

f ′
(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))
2

)
η(ϕ(x),m(t)ϕ(y))

− (α + 1)

η(ϕ(x),m(t)ϕ(y))
(12)

×
{

1

2α

f
(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))
2

)
η(ϕ(x),m(t)ϕ(y))

− Γ (α + 1)

ηα+1(ϕ(x),m(t)ϕ(y))
× Jα(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))2

)−f (m(t)ϕ(y))
}
.
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In a similar way, we find

T12 = 1

2α+1

f ′
(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))
2

)
η(ϕ(y),m(t)ϕ(x))

− (α + 1)

η(ϕ(y),m(t)ϕ(x))
(13)

×
{

1

2α

f
(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))
2

)
η(ϕ(y),m(t)ϕ(x))

− Γ (α + 1)

ηα+1(ϕ(y),m(t)ϕ(x))
× Jα(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))2

)−f (m(t)ϕ(x))
}
.

T21 = − 1

2α+1

f ′
(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))
2

)
η(ϕ(x),m(t)ϕ(y))

+ (α + 1)

η(ϕ(x),m(t)ϕ(y))
(14)

×
{
− 1

2α

f
(

m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))
2

)
η(ϕ(x),m(t)ϕ(y))

+ Γ (α + 1)

ηα+1(ϕ(x),m(t)ϕ(y))
×

Jα(
m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y))2

)+f (m(t)ϕ(y)+ η(ϕ(x),m(t)ϕ(y)))
}
.

T22 = − 1

2α+1

f ′
(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))
2

)
η(ϕ(y),m(t)ϕ(x))

+ (α + 1)

η(ϕ(y),m(t)ϕ(x))
(15)

×
{
− 1

2α

f
(

m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))
2

)
η(ϕ(y),m(t)ϕ(x))

+ Γ (α + 1)

ηα+1(ϕ(y),m(t)ϕ(x))
×

Jα(
m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x))2

)+f (m(t)ϕ(x)+ η(ϕ(y),m(t)ϕ(x)))
}
.

Adding Eqs. (12)–(15), we get our lemma.

Remark 5 In Lemma 1, if we take α = 1, m(t) ≡ 1 for all t ∈ [0, 1], a < b, x =
μa+(1−μ)b, y = μb+(1−μ)a,where μ ∈ [0, 1]\{ 1

2

}
and η(ϕ(x),m(t)ϕ(y)) =

ϕ(x)−m(t)ϕ(y), η(ϕ(y),m(t)ϕ(x)) = ϕ(y)−m(t)ϕ(x), where ϕ(x) = x for all
x ∈ I, in identity (10), then it becomes identity of Lemma 2.1 in [41].

Theorem 2 Let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are continuous
functions and m : [0, 1] −→ (0, 1]. Suppose K ⊆ R be an open m-invex subset,
where η(ϕ(x),m(t)ϕ(y)) �= 0 and η(ϕ(y),m(t)ϕ(x)) �= 0 for all t ∈ [0, 1].
Assume that f : K −→ (0,+∞) is a twice differentiable mapping on K◦ such that
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f ′′ ∈ L(K). If f ′′q is generalized relative semi-m-(r;h1, h2)-preinvex mapping,
0 < r ≤ 1 and q > 1, p−1+q−1 = 1, then for any α > 0, the following inequality
for fractional integrals hold:

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤
(

1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

(16)

×
{[ (

f ′′(x)
)rq
I r (h1(ξ);m(ξ), r)+ (f ′′(y))rq I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(y)

)rq
I r (h1(ξ);m(ξ), r)+ (f ′′(x))rq I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(x)

)rq
J r (h1(ξ);m(ξ), r)+ (f ′′(y))rq J r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(y)

)rq
J r (h1(ξ);m(ξ), r)+ (f ′′(x))rq J r (h2(ξ); r)

] 1
rq

}
,

where

I (h1(ξ);m(ξ), r) :=
∫ 1

2

0
m

1
r (ξ)h

1
r

1 (ξ)dξ, I (h2(ξ); r) :=
∫ 1

2

0
h

1
r

2 (ξ)dξ ;

and

J (h1(ξ);m(ξ), r) :=
∫ 1

1
2

m
1
r (ξ)h

1
r

1 (ξ)dξ, J (h2(ξ); r) :=
∫ 1

1
2

h
1
r

2 (ξ)dξ.

Proof From Lemma 1, generalized relative semi-m-(r;h1, h2)-preinvexity of f ′′q,
Hölder inequality, Minkowski inequality, and properties of the modulus, we have

∣∣T αf (η, ϕ,m; x, y)∣∣

≤
∫ 1

2

0
ξα+1[|f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) |

+|f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) |]dξ

+
∫ 1

1
2

(1− ξ)α+1[|f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) |

+|f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) |]dξ
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≤
(∫ 1

2

0
ξp(α+1)dξ

) 1
p

×
{(∫ 1

2

0

(
f ′′(m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))))q dξ

) 1
q

+
(∫ 1

2

0

(
f ′′(m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))))q dξ

) 1
q }

+
(∫ 1

1
2

(1− ξ)p(α+1)dξ

) 1
p

×
{(∫ 1

1
2

(
f ′′(m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))))q dξ

) 1
q

+
(∫ 1

1
2

(
f ′′(m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))))q dξ

) 1
q }

≤
(

1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

×
{(∫ 1

2

0

[
m(ξ)h1(ξ)

(
f ′′(x)

)rq + h2(ξ)
(
f ′′(y)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

2

0

[
m(ξ)h1(ξ)

(
f ′′(y)

)rq + h2(ξ)
(
f ′′(x)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

1
2

[
m(ξ)h1(ξ)

(
f ′′(x)

)rq + h2(ξ)
(
f ′′(y)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

1
2

[
m(ξ)h1(ξ)

(
f ′′(y)

)rq + h2(ξ)
(
f ′′(x)

)rq ] 1
r
dξ

) 1
q }

≤
(

1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

×
{[(∫ 1

2

0
m

1
r (ξ)

(
f ′′(x)

)q
h

1
r

1 (ξ)dξ

)r
+
(∫ 1

2

0

(
f ′′(y)

)q
h

1
r

2 (ξ)dξ

)r ] 1
rq

+
[(∫ 1

2

0
m

1
r (ξ)

(
f ′′(y)

)q
h

1
r

1 (ξ)dξ

)r
+
(∫ 1

2

0

(
f ′′(x)

)q
h

1
r

2 (ξ)dξ

)r ] 1
rq
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+
[(∫ 1

1
2

m
1
r (ξ)

(
f ′′(x)

)q
h

1
r

1 (ξ)dξ

)r
+
(∫ 1

1
2

(
f ′′(y)

)q
h

1
r

2 (ξ)dξ

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r (ξ)

(
f ′′(y)

)q
h

1
r

1 (ξ)dξ

)r
+
(∫ 1

1
2

(
f ′′(x)

)q
h

1
r

2 (ξ)dξ

)r ] 1
rq
}

=
(

1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

×
{[ (

f ′′(x)
)rq
I r (h1(ξ);m(ξ), r)+ (f ′′(y))rq I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(y)

)rq
I r (h1(ξ);m(ξ), r)+ (f ′′(x))rq I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(x)

)rq
J r (h1(ξ);m(ξ), r)+ (f ′′(y))rq J r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(y)

)rq
J r (h1(ξ);m(ξ), r)+ (f ′′(x))rq J r (h2(ξ); r)

] 1
rq

}
.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 2.

Corollary 1 In Theorem 2, if we take m(ξ) ≡ m ∈ (0, 1] for all ξ ∈ [0, 1], h1(t) =
h(1 − t), h2(t) = h(t) and f ′′(x) ≤ L, ∀x ∈ I, we get the following Hermite–
Hadamard type fractional inequality for generalized relative semi-(m, h)-preinvex
mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

(17)

×
{[
mIr(h(t); r)+ I r (h(1− t); r)

] 1
rq +

[
mIr(h(1− t); r)+ I r (h(t); r)

] 1
rq

}
.

Corollary 2 In Corollary 1 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following Hermite–Hadamard type fractional inequality for generalized relative
semi-(m, s)-Breckner-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p
(

r

(s + r)2 sr+1

) 1
q

(18)

×
{[
m+

(
2
s
r
+1 − 1

)r ] 1
rq +

[
m
(

2
s
r
+1 − 1

)r + 1
] 1
rq

}
.
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Corollary 3 In Corollary 1 for h1(t) = (1− t)−s and h2(t) = t−s and 0 < s < r,
we get the following Hermite–Hadamard type fractional inequality for generalized
relative semi-(m, s)-Godunova–Levin–Dragomir-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p
(

r

(r − s)21− s
r

) 1
q

(19)

×
{[
m+

(
21− s

r − 1
)r ] 1

rq +
[
m
(

21− s
r − 1

)r + 1
] 1
rq

}
.

Corollary 4 In Theorem 2, if we take m(ξ) ≡ m ∈ (0, 1] for all ξ ∈ [0, 1], h1(t) =
h2(t) = t (1− t) and f ′′(x) ≤ L, ∀x ∈ I, we get the following Hermite–Hadamard
type fractional inequality for generalized relative semi-(m, tgs)-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 4L(m+ 1)
1
rq

(
1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

(20)

×β
1
q

1/2

(
1+ 1

r
, 1+ 1

r

)
.

Corollary 5 In Corollary 1 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and r ∈( 1
2 , 1

]
, we get the following Hermite–Hadamard type fractional inequality for

generalized relative semi-m-MT -preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p
(

1

2

) 1
rq

(21)

×
{[
mβr1/2

(
1− 1

2r
, 1+ 1

2r

)
+ βr1/2

(
1+ 1

2r
, 1− 1

2r

)] 1
rq

+
[
mβr1/2

(
1+ 1

2r
, 1− 1

2r

)
+ βr1/2

(
1− 1

2r
, 1+ 1

2r

)] 1
rq
}
.

Theorem 3 Let h1, h2 : [0, 1] −→ [0,+∞) and ϕ : I −→ K are continuous
functions and m : [0, 1] −→ (0, 1]. Suppose K ⊆ R be an open m-invex subset,
where η(ϕ(x),m(t)ϕ(y)) �= 0 and η(ϕ(y),m(t)ϕ(x)) �= 0 for all t ∈ [0, 1].
Assume that f : K −→ (0,+∞) is a twice differentiable mapping on K◦ such that
f ′′ ∈ L(K). If f ′′q is generalized relative semi-m-(r;h1, h2)-preinvex mapping,
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0 < r ≤ 1 and q ≥ 1, then for any α > 0, the following inequality for fractional
integrals hold:

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤
(

1

(α + 2)2α+2

)1− 1
q

(22)

×
{[ (

f ′′(x)
)rq
F r(h1(ξ);m(ξ), α, r)+ (f ′′(y))rq F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(y)

)rq
F r(h1(ξ);m(ξ), α, r)+ (f ′′(x))rq F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(x)

)rq
Gr(h1(ξ);m(ξ), α, r)+ (f ′′(y))rq Gr(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(y)

)rq
Gr(h1(ξ);m(ξ), α, r)+ (f ′′(x))rq Gr(h2(ξ);α, r)

] 1
rq

}
,

where

F(h1(ξ);m(ξ), α, r) :=
∫ 1

2

0
m

1
r (ξ)ξα+1h

1
r

1 (ξ)dξ ;

F(h2(ξ);α, r) :=
∫ 1

2

0
ξα+1h

1
r

2 (ξ)dξ,

and

G(h1(ξ);m(ξ), α, r) :=
∫ 1

1
2

m
1
r (ξ)(1− ξ)α+1h

1
r

1 (ξ)dξ ;

G(h2(ξ);α, r) :=
∫ 1

1
2

(1− ξ)α+1h
1
r

2 (ξ)dξ.

Proof From Lemma 1, generalized relative semi-m-(r;h1, h2)-preinvexity of f ′′q,
the well-known power mean inequality, Minkowski inequality, and properties of the
modulus, we have

∣∣T αf (η, ϕ,m; x, y)∣∣

≤
∫ 1

2

0
ξα+1[|f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) |
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+|f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) |]dξ

+
∫ 1

1
2

(1− ξ)α+1[|f ′′ (m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))) |

+|f ′′ (m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))) |]dξ

≤
(∫ 1

2

0
ξα+1dξ

)1− 1
q

×
{(∫ 1

2

0
ξα+1 (f ′′(m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))))q dξ

) 1
q

+
(∫ 1

2

0
ξα+1 (f ′′(m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))))q dξ

) 1
q }

+
(∫ 1

1
2

(1− ξ)α+1dξ

)1− 1
q

×
{(∫ 1

1
2

(1− ξ)α+1 (f ′′(m(t)ϕ(x)+ ξη(ϕ(y),m(t)ϕ(x))))q dξ
) 1
q

+
(∫ 1

1
2

(1− ξ)α+1 (f ′′(m(t)ϕ(y)+ ξη(ϕ(x),m(t)ϕ(y))))q dξ
) 1
q }

≤
(

1

(α + 2)2α+2

)1− 1
q

×
{(∫ 1

2

0
ξα+1

[
m(ξ)h1(ξ)

(
f ′′(x)

)rq + h2(ξ)
(
f ′′(y)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

2

0
ξα+1

[
m(ξ)h1(ξ)

(
f ′′(y)

)rq + h2(ξ)
(
f ′′(x)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

1
2

(1− ξ)α+1
[
m(ξ)h1(ξ)

(
f ′′(x)

)rq + h2(ξ)
(
f ′′(y)

)rq ] 1
r
dξ

) 1
q

+
(∫ 1

1
2

(1− ξ)α+1
[
m(ξ)h1(ξ)

(
f ′′(y)

)rq + h2(ξ)
(
f ′′(x)

)rq ] 1
r
dξ

) 1
q }
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≤
(

1

(α + 2)2α+2

)1− 1
q

×
{[(∫ 1

2

0
m

1
r (ξ)

(
f ′′(x)

)q
ξα+1h

1
r

1 (ξ)dξ

)r
+
(∫ 1

2

0

(
f ′′(y)

)q
ξα+1h

1
r

2 (ξ)dξ

)r ] 1
rq

+
[(∫ 1

2

0
m

1
r (ξ)

(
f ′′(y)

)q
ξα+1h

1
r

1 (ξ)dξ

)r
+
(∫ 1

2

0

(
f ′′(x)

)q
ξα+1h

1
r

2 (ξ)dξ

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r (ξ)

(
f ′′(x)

)q
(1− ξ)α+1h

1
r

1 (ξ)dξ

)r

+
(∫ 1

1
2

(
f ′′(y)

)q
(1− ξ)α+1h

1
r

2 (ξ)dξ

)r ] 1
rq

+
[(∫ 1

1
2

m
1
r (ξ)

(
f ′′(y)

)q
(1− ξ)α+1h

1
r

1 (ξ)dξ

)r

+
(∫ 1

1
2

(
f ′′(x)

)q
(1− ξ)α+1h

1
r

2 (ξ)dξ

)r ] 1
rq
}

=
(

1

(α + 2)2α+2

)1− 1
q

×
{[ (

f ′′(x)
)rq
F r(h1(ξ);m(ξ), α, r)+ (f ′′(y))rq F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(y)

)rq
F r(h1(ξ);m(ξ), α, r)+ (f ′′(x))rq F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(x)

)rq
Gr(h1(ξ);m(ξ), α, r)+ (f ′′(y))rq Gr(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(y)

)rq
Gr(h1(ξ);m(ξ), α, r)+ (f ′′(x))rq Gr(h2(ξ);α, r)

] 1
rq

}
.

So, the proof of this theorem is completed.

We point out some special cases of Theorem 3.
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Corollary 6 In Theorem 3, if we take m(ξ) ≡ m ∈ (0, 1] for all ξ ∈ [0, 1], h1(t) =
h(1 − t), h2(t) = h(t) and f ′′(x) ≤ L, ∀x ∈ I, we get the following Hermite–
Hadamard type fractional inequality for generalized relative semi-(m, h)-preinvex
mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(α + 2)2α+2

)1− 1
q

(23)

×
{[
mFr(h(1− t);α, r)+ F r(h(t);α, r)

] 1
rq

+
[
mGr(h(1− t);α, r)+Gr(h(t);α, r)

] 1
rq

}
.

Corollary 7 In Corollary 6 for h1(t) = (1 − t)s and h2(t) = t s , we get the
following Hermite–Hadamard type fractional inequality for generalized relative
semi-(m, s)-Breckner-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(α + 2)2α+2

)1− 1
q

(24)

×
{[
m

(
r

(s + r(α + 2))2
s
r
+α+2

)r
+ βr1/2

(
α + 2, 1+ s

r

) ] 1
rq

+
[
mβr1/2

(
α + 2, 1+ s

r

)
+
(

r

(s + r(α + 2))2
s
r
+α+2

)r ] 1
rq
}
.

Corollary 8 In Corollary 6 for h1(t) = (1− t)−s and h2(t) = t−s and 0 < s < r,
we get the following Hermite–Hadamard type fractional inequality for generalized
relative semi-(m, s)-Godunova–Levin–Dragomir-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(α + 2)2α+2

)1− 1
q

(25)

×
{[
m

(
r

(r(α + 2)− s)2α+2− s
r

)r
+ βr1/2

(
α + 2, 1− s

r

) ] 1
rq

+
[
mβr1/2

(
α + 2, 1− s

r

)
+
(

r

(r(α + 2)− s)2α+2− s
r

)r ] 1
rq
}
.
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Corollary 9 In Theorem 3, if we take m(ξ) ≡ m ∈ (0, 1] for all ξ ∈ [0, 1], h1(t) =
h2(t) = t (1− t) and f ′′(x) ≤ L, ∀x ∈ I, we get the following Hermite–Hadamard
type fractional inequality for generalized relative semi-(m, tgs)-preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 4L(m+ 1)
1
rq

(
1

(α + 2)2α+2

)1− 1
q

(26)

×β
1
q

1/2

(
α + 2+ 1

r
, 1+ 1

r

)
.

Corollary 10 In Corollary 6 for h1(t) =
√

1− t
2
√
t
, h2(t) =

√
t

2
√

1− t and r ∈( 1
2 , 1

]
, we get the following Hermite–Hadamard type fractional inequality for

generalized relative semi-m-MT -preinvex mappings

∣∣T αf (η, ϕ,m; x, y)∣∣ ≤ 2L

(
1

(α + 2)2α+2

)1− 1
q
(

1

2

) 1
rq

(27)

×
{[
mβr1/2

(
α + 2− 1

2r
, 1+ 1

2r

)
+ βr1/2

(
α + 2+ 1

2r
, 1− 1

2r

)] 1
rq

+
[
mβr1/2

(
α + 2+ 1

2r
, 1− 1

2r

)
+ βr1/2

(
α + 2− 1

2r
, 1+ 1

2r

)] 1
rq
}
.

Remark 6 By applying our Theorems 2 and 3 for α = 1, we can deduce some new
estimates difference between the left and middle part in Hermite–Hadamard type
integral inequality associated with twice differentiable generalized relative semi-
m-(r;h1, h2)-preinvex mappings via classical integrals. The details are left to the
interested reader.

3 Applications to Special Means

Definition 12 A function M : R2+ −→ R+, is called a Mean function if it has the
following properties:

1. Homogeneity:M(ax, ay) = aM(x, y), for all a > 0,
2. Symmetry:M(x, y) = M(y, x),
3. Reflexivity:M(x, x) = x,
4. Monotonicity: If x ≤ x′ and y ≤ y′, thenM(x, y) ≤ M(x′, y′),
5. Internality: min{x, y} ≤ M(x, y) ≤ max{x, y}.
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We consider some means for different positive real numbers α, β.

1. The arithmetic mean:

A := A(α, β) = α + β
2
.

2. The geometric mean:

G := G(α, β) = √αβ.
3. The harmonic mean:

H := H(α, β) = 2
1
α
+ 1
β

.

4. The power mean:

Pr := Pr(α, β) =
(
αr + βr

2

) 1
r

, r ≥ 1.

5. The identric mean:

I := I (α, β) =
{

1
e

(
ββ

αα

)
, α �= β;

α, α = β.

6. The logarithmic mean:

L := L(α, β) = β − α
lnβ − lnα

.

7. The generalized log-mean:

Lp := Lp(α, β) =
[
βp+1 − αp+1

(p + 1)(β − α)
] 1
p

; p ∈ R \ {−1, 0}.

It is well known that Lp is monotonic nondecreasing over p ∈ R with L−1 := L
and L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤
A. Now, let a and b be positive real numbers such that a < b. Let us consider
continuous functions ϕ : I −→ K, η : K × K −→ R and M := M(ϕ(a), ϕ(b)) :
[ϕ(a), ϕ(a) + η(ϕ(b), ϕ(a))] × [ϕ(a), ϕ(a) + η(ϕ(b), ϕ(a))] −→ R+, which is
one of the above-mentioned means. Therefore one can obtain various inequalities
using the results of Sect. 2 for these means as follows. If we take m(t) ≡ 1, ∀ t ∈
[0, 1] and replace η(ϕ(x),m(t)ϕ(y)) = η(ϕ(y),m(t)ϕ(x)) = M(ϕ(x), ϕ(y)) for
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all x, y ∈ I, in (16) and (22), one can obtain the following interesting inequalities
involving means:

∣∣T αf (M, ϕ, 1; a, b)∣∣ ≤
(

1

(p(α + 1)+ 1)2p(α+1)+1

) 1
p

(28)

×
{[ (

f ′′(a)
)rq
I r (h1(ξ); r)+

(
f ′′(b)

)rq
I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(b)

)rq
I r (h1(ξ); r)+

(
f ′′(a)

)rq
I r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(a)

)rq
J r (h1(ξ); r)+

(
f ′′(b)

)rq
J r (h2(ξ); r)

] 1
rq

+
[ (
f ′′(b)

)rq
J r (h1(ξ); r)+

(
f ′′(a)

)rq
J r (h2(ξ); r)

] 1
rq

}
,

∣∣T αf (M, ϕ, 1; a, b)∣∣ ≤
(

1

(α + 2)2α+2

)1− 1
q

(29)

×
{[ (

f ′′(a)
)rq
F r(h1(ξ);α, r)+

(
f ′′(b)

)rq
F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(b)

)rq
F r(h1(ξ);α, r)+

(
f ′′(a)

)rq
F r(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(a)

)rq
Gr(h1(ξ);α, r)+

(
f ′′(b)

)rq
Gr(h2(ξ);α, r)

] 1
rq

+
[ (
f ′′(b)

)rq
Gr(h1(ξ);α, r)+

(
f ′′(a)

)rq
Gr(h2(ξ);α, r)

] 1
rq

}
.

Letting M := A,G,H,Pr, I, L,Lp in (28) and (29), we get the inequalities
involving means for a particular choices of f ′′q that are generalized relative semi-
1-(r;h1, h2)-preinvex mappings.

4 Conclusion

In this article, we first presented a new general fractional integral identity concerning
twice differentiable mappings defined on m-invex set. By using the notion of
generalized relative semi-m-(r;h1, h2)-preinvexity and lemma as an auxiliary
result, some new estimates difference between the left and middle part in Hermite–
Hadamard type integral inequality associated with twice differentiable generalized
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relative semi-m-(r;h1, h2)-preinvex mappings are established. It is pointed out that
some new special cases are deduced from main results. At the end, some applica-
tions to special means for different positive real numbers are provided. Motivated
by this interesting class we can indeed see to be vital for fellow researchers and
scientists working in the same domain. We conclude that our methods considered
here may be a stimulant for further investigations concerning Hermite–Hadamard,
Ostrowski and Simpson type integral inequalities for various kinds of convex and
preinvex functions involving local fractional integrals, fractional integral operators,
Caputo k-fractional derivatives, q-calculus, (p, q)-calculus, time scale calculus, and
conformable fractional integrals.
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Inequalities in Statistics and Information
Measures

Christos P. Kitsos and Thomas L. Toulias

Abstract This paper presents and discusses a number of inequalities in the area of
two distinct mathematical branches, with not that different line of thought: Statistics
and Mathematical Information, which apply different “measures” to analyze the
collected data. In principle, in these two fields, inequalities appear either as bounds
in different measures or when different measures are compared. We discuss both
and we prove new bounds for the Kullback–Leibler relative entropy measure, when
the Generalized Normal distribution is involved.

1 Introduction

Inequalities play an important role in Mathematical Sciences. Provides bounds to
the existing calculations, or even to the non-existing ones: we may not know the
exact closed expression of a mathematical expression, but it is often possible to
know the corresponding boundaries. Typical example is the bound of the n roots of
an n-th degree polynomial, say

Pn(x) = a0 + a1 x + a2 x
2 + · · · + an xn, x ∈ C.

Then, for n > 4, it is well known that there are no closed algebraic forms describing
the root values, but we can have certain bounds for them. Indeed, if

A := max
{|a0|, |a1|, . . . , |an−1|

}
and B := {|an|, |an−1|, . . . , |a1|

}
,
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then for the k-th root xk , k = 1, 2, . . . , n, it holds that

r := 1

1+ B
|a0|

< |xk| < 1+ A

|an| =: R.

Therefore, the roots xk , k = 1, 2, . . . , n, lie within the set-difference of the circles
C(O,R) and C(O, r), i.e. xk ∈ C(O,R) \ C(O, r), k = 1, 2, . . . , n.

Moreover, if the highest-order coefficient of the polynomial Pn as above is non-
negative, i.e. an > 0, and δ := max

{|ak|, k ∈ {0, 1, . . . , n} : ak < 0
}
, then—

according to the Lagrange theory for the positive roots of Pn—it holds that

0 < xk ≤ 1+ p
√
δ/an, k ∈ K ⊆ {1, 2, . . . , n},

where p declares the position of the highest-order negative coefficient of Pn.
Inequalities appear in almost all the subject fields of Mathematics. The fol-

lowing Sect. 2 presents some classical inequalities in Mathematics, while Sect. 3
demonstrates the importance of inequalities in Statistics. Section 4 discusses certain
inequalities that appear in Probability Theory. Section 5 shows some of the most
important inequalities in Information Theory, while Sect. 6 briefly introduces the
generalized Normal distribution and its relation to a generalized form of the
logarithm Sobolev inequality, and to information measures in general. Finally,
Sect. 7 proves and discusses some inequalities derived from the study of the
information divergence between two generalized forms of the multivariate Normal
distribution.

2 Fundamental Inequalities in Mathematics

Some of the main, in our opinion, inequalities widely used in Mathematics are
presented in the following.

• The Cauchy–Schwarz inequality. Let f and g be two real functions defined on
the interval [a, b]. Then, their inner product is defined to be

〈f, g〉 :=
∫ b

a

f (x) g(x)w(x) dx, w(x) ≥ 0.

The well-known Cauchy–Schwarz inequality is then formulated as

〈f, g〉2 ≤ 〈f, f 〉 〈g, g〉, or 〈f, g〉 ≥ ‖f ‖ ‖g‖.

When f and g assumed to be n-dimensional vectors a := (ai),b := (bi) ∈ Rn

and w ≡ 1, their inner product is then given by the finite sum 〈a,b〉 = a1 b1 +
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a2 b2 + · · · + an bn. As a result, the corresponding Cauchy–Schwarz inequality
can then be written as

∣∣〈a,b〉∣∣/(‖a‖ ‖b‖) ≤ 1.
• The determinant inequality. From Linear Algebra, it is known that the determi-

nant of a square real matrix A ∈ Rn×n is bounded. Indeed,

n

tr(A−1)
≤ (det A)1/n ≤ 1

n
tr(A).

• The triangle inequality. In Euclidian Plane Geometry, for every three non-
collinear points A, B, and C, forming the triangle ABC, it holds that |AC| <
|AB| + |BC|, which is known as the triangle inequality. Considering now the
Euclidian p-dimensional space, equipped with the usual Euclidian metric/norm,
i.e. ‖a‖2 := a2

1 + a2
2 + · · · + a2

p, a = (ai) ∈ Rp, the triangle inequality holds,
formulated as ‖a + b‖ ≤ ‖a‖ + ‖b‖, a,b ∈ Rp. This is also one of the most
widely known inequalities in Analytic/Convex Geometry as well as in the study
of metric spaces.

• The Minkowski inequality. Triangle inequality can be considered as a special case
of the Minkowski inequality ‖f + g‖p ≤ ‖f ‖p + ‖g‖p, f, g ∈ L p(S), where
S is a metric space with measure μ with f + g ∈ L p(S), and where the p-norm
‖·‖p is defined as ‖f ‖pp :=

∫ |f |p dμ; see [30] among others. The equality holds
for f := λ g, λ ∈ R+, or when g ≡ 0. Finally, if we are considering vectors, the
Minkowski inequality is reduced to ‖a+b‖p ≤ ‖a‖p+‖b‖p, a,b ∈ Rp, for the
non-Euclidian p-norm ‖a‖pp := |a1|p + |a2|p + · · · + |ap|p, a = (ai) ∈ Rp.

• Factorial bounds. Two interesting inequalities are known as the lower and upper
bounds for the factorial, i.e.

(
n
e

)n√2π n ≤ n! ≤ e
(
n
e

)n√
n, n ∈ N, (1)

or, generalizing via the Gamma function,

(
x
e

)x √2π x ≤ �(x + 1) ≤ e
(
x
e

)x √
x, x ∈ R+. (2)

Recall that the lower boundary of (1) is the well-known Stirling’s approximation

formula, n! asym.≈ (n/ e)n
√

2π n, meaning that the quantities n! and (n/ e)n
√

2π n

are asymptotically convergent. Historically speaking, the Stirling’s formula was
first introduced by Abraham de Moivre in the form of n! ∼ (const.) (n/ e)n

√
n,

and later James Stirling evaluated the constant to be
√

2π. Note that the bounds
in (1) shall be used later in Sect. 5. More precise bounds introduced by Robbins
in [39] were formulated as

e
1

12n+1
(
n
e

)n√2π n < n! < e
1

12n
(
n
e

)n√2π n, n ∈ N∗ := N \ {0}. (3)
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Finally, Srinivasa Ramanujan, in his lost notebook, [36] provided some alterna-
tive bounds for the Gamma function, in the form of

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
100 < �(x + 1) <

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 , x ∈ R+,

while Mortici proved in [33], some even stricter bounds for the Gamma function
when x ≥ 8, i.e.

(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 − 11

240x < �(x+1) <
(
x
e

)x √
π

6
√

8x3 + 4x2 + x + 1
30 − 1

24x ,

although the lower boundary actually holds for x ≥ 2.
• Rayleigh quotient. Consider the Rayleigh quotient

R(A) = R(A; x) := xH A x
xH x

, x ∈ Rn \ {0},

for the complex Hermitian (or self-adjoint) matrix A ∈ Cn×n, i.e. when A = AH,
where AH denotes the conjugate transpose of matrix/vector (aij ) = A ∈ Cm×n,
i.e. A = AH := AT = (aji). For the case of a Hermitian (or real symmetric)
matrix A ∈ Rn×nsym , it holds A = AT (symmetricity), while λ1 = maxx

{
R(x)

}
and λn = minx

{
R(x)

}
, where λ1 ≥ λ2 ≥ · · · ≥ λn are the n real eigenvalues of

matrix A.
• Error bounds. In all the approximation problems, there are bounds for the

existing errors. Practically speaking, for the exact solution y(xk) at point xk ,
the total truncation error εk is then given by εk = yk − y(xk), where yk is the
exact value (corresponding to xk) which would be resulting from an algorithm.
We usually calculate some value, say y∗k , which approximates the exact yk value,
and thus the corresponding rounding error ε∗k is ε∗k = y∗k − yk . Therefore, the
total error rk is given by |rk| ≤ |εk|+ |ε∗k |. Both the forms of truncation error and
the propagation error need particular inequalities; see [13, 17].

• Error control. When the simultaneous equations A x = b are asked to be solved,
where A ∈ Rm×n, det A �= 0, x,b ∈ Rn×1, errors may occur in both left- and
right-hand side. These equations can then be written as (A + δA) (x + δ x) =
b + δ b. Froberg in [13] calculated the relative error εx of the solution x and
proved that it is bounded, i.e.

εx ≤ c

1− cεmathbfA (εA + εb),

where c := cond(A) = ‖A‖ ‖A−1‖ is the conditional number of matrix A, and
the corresponding relative errors of A, x, and b are given, respectively, by εA :=
‖δA‖/‖A‖, εx := ‖δ x‖/‖x‖ and εb := ‖δ b‖/‖b‖. For a number of evaluated
bounds in Numerical Analysis, see [17] among others.
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• Stochastic approximation. For the numerical solution of an equation, there are
numerous methods in literature, with the most popular being the Newton–
Raphson (and its various forms) and, alternatively, the bisection method (in cases
where the differentiation is fairly complicated or not available). The stochastic
approximation method, [17], introduced by Robbins and Monro in [40] provides
a statistical iterative approach for the solution of M(x) = θ, and evaluates
maximum or minimum of a function, since the problem cannot adopt the line
of thought in [37]. If we assume that an experiment is performed with response y
at point x, i.e. y = Y (x), and probabilityH(y|x) := Pr(Y (x) ≤ y)with expected
value of random variable (r.v.) X (which measures x) of the form E(X) =∫
R y dH(y|x), it is then asked to solve the equation M(x) = θ. Under a certain

number of restrictions (i.e. inequalities), the sequence xn+1 = xn + an(b − yn)
converges to x∗, where x∗ is a solution of M(x∗) = θ, with an being an arbitrary
sequence of real numbers. Kitsos in [22] applied the method for non-linear
models. But why to adopt a Newton–Raphson framework in a statistical point
estimation problem, under certain restrictions, and not the bisection method. The
answer is that: The bisection approach leads to a (minimax) Decision Theory
reasoning, and not to the classical statistical way of thinking; see Theorem 4
in Appendix 2. Stochastic Approximation is a particular method concerning
statistical point estimation. Other methods were also developed; see, for example,
[32, 55] for methods related to epidemiological problems.

3 Main Inequalities in Statistics

As far as the Statistics is concerned, the inequalities are strongly related to the
development of the field. In the following, we present and discuss some widely
used inequalities.

• The Markov inequality. LetX be a non-negative random variable (r.v.) with finite
mean μ. Then, for every non-negative c, it holds

Pr(X ≥ c) ≤ μc .

The extra knowledge of variance results the following:
• The Chebyshev’s inequality. Let X be an r.v. with given both finite mean μ and

finite variance σ 2. Then, for every non-negative c, it holds that

Pr(|X − μ| ≥ c) ≤ (σc )2.
The well-known Jensen’s inequality relates the influence of a convex function

when acting on the expected value operator. In particular:
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• The Jensen’s inequality. Let g be a convex function on a convex subset 0 ⊆ Rk ,
and suppose that Pr(X ∈ 0) = 1. If the expected value E(X) of an r.v.X is finite,
then g

(
E(X)

) ≤ E
(
g(X)

)
.

The Cauchy–Schwartz inequality, mentioned in Sect. 2, is transferred in
Statistics as:

• The Statistical form of the Cauchy–Schwartz inequality. Let X1 and X2 be two
random vectors of the same dimension such that E

(‖Xi‖2
)
, i = 1, 2, are finite.

Then,

E
(
XT

1 X2
) ≤

√
E
(‖X1‖2

)
E
(‖X2‖2

)
.

The Cauchy–Schwarz inequality provides food for thought on how Mathemat-
ics and Statistics communicate. In the following paragraph we discuss the sense
of distance from a probabilistic point of view.

• Distance in Probability Theory. Let (0,A , P ) be a probability space consisting
of the sample space 0, the σ -algebra of “events” of 0, and the probability

measure P that maps each event to the real interval [0, 1], i.e. A ( A
P�→

P(A) ∈ [0, 1]. Recall that A = ⋃
i∈NAi with Ai

⋂
Aj = ∅, i �= j ,

and
∑
i∈N P(Ai) = 1. The (probability) distance D between two probability

measures P andQ (of the same probability space) is denoted with D(P,Q) and
is defined as D(P,Q) := sup

{∣∣P(A) −Q(A)∣∣}
A∈A . Note that the mapping D

that assigns a real non-negative number to every pair of probability measures of
0 is—indeed—a distance metric. Furthermore, it is easy to see that D(P,Q) ∈
[0, 1] for every P andQ, and the following holds.

Proposition 1 The “exponentiated” distance D∗ of a given bounded distance 0 ≤
D ≤ 1, i.e. D∗(P,Q) := eD(P,Q) − 1, is also a distance metric.

See Appendix 1 for the proof, where the exponential inequality ex ≥ (1 + x/n)n,
x ∈ R, n ∈ N, was applied. We assume now that for every probability measure P
of 0, i.e. P ∈ P(0), there is a σ -finite measure μ such that P < μ with P 1 μ,
i.e. P is absolutely continuous with respect to μ (assuming that P is countable,
μ always exists since μ can be considered as μ := ∑

i 2−iPi). Then, from the
Radon–Nikodym theorem, there exists an integrable function f : A → R such that
P(A) = ∫

A
f dμ, and thus f := dP/ dμ. Therefore, D(P,Q) = ∫

A
|f − g| dμ

with f := dP/ dμ and g := dQ/ dμ. It holds, also, that H 2(P,Q) < D(P,Q),
P,Q ∈ P(0), where H denotes the Hellinger distance defined by H(P,Q)2 :=∫ (√

f − √g)2 dμ = 2
[
1 − A(P,Q)], with A(P,Q) := ∫ √

f g dμ being the
affinity between probability measures P and Q. This is true, since H(P,Q)2 <∫ (√

f −√g)(√f +√g) dμ ≤ ∫ |f −g| dμ ≤ D(P,Q) for every P,Q ∈P(0).
For a study of the Hellinger distance between two generalized normal distributions,
see [25].

• Hypothesis testing for a mean. In principle, if x ∈ Rn×1 is the mean sample
of n observations from the multivariate Normal distribution with mean vector
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μ ∈ Rn×1 and variance–covariance matrix � ∈ Rn×n, the known region

n (x− μ0)
T �−1 (x− μ0) ≥ χ2

p,α,

is a critical region at the confidence level α for testing the hypothesis H : μ =
μ0. As far as the confidence intervals are concerned in a Biostatistics level,
there are different approaches for the Odds Ratio; see [32, 55]. As we have
already mentioned, Statistical Inference is based on point estimation (see [50] for
example) as well as on interval estimation. Note that the interval estimation by
itself introduces the use of inequalities. The Likelihood method is still valid when
the Maximum Likelihood Estimation (MLE), say θ̂, of the unknown parameter
vector θ = (θi) ∈ � ⊆ Rp, with � being the parameter space, is subject to
certain restrictions, say h(θ̂) = 0. The well-known Lagrangian method is then
applied, i.e.

∂

∂θi

[
1(θ)− λ h(θ)] = 0,

with 1(θ) being the log-Likelihood function with regard to θ, and λ ∈ R the
Lagrange multiplier. In such a case, still the estimate θ̂ follows the (multivariate)
Normal distribution with mean μ = θ and the asymptotic variance–covariance
matrix � = n I−1(θ), i.e. θ̂ ∼ N

(
θ, n I−1(θ)

)
, where I ∈ Rp×p denotes

the Fisher’s information matrix; see the early work of Silvey in [44] among
others. Moreover, Anderson in [1] discussed a number of confidence intervals
concerning Multivariate Statistics, Ferguson in [9] considered a Decision Theory
point of view, while Fortuin et al. in [11] focused on a particular inequality
problem.

Example 1 Let us consider the vector of n observations X = (x1, x2, . . . , xk)which
follows the k-th degree multinomial distribution, i.e.

p(x1, x2, . . . , xk) = n!
x1! x2! . . . xk!θ

x1
1 θ

x2
2 . . . θ

xk
k , with

k∑
i=1

xi = n and
k∑
i=1

θi = 1,

while θi , i = 1, 2, . . . , k, denote the involved parameters. Following, therefore,
the typical procedure for the evaluation of the log-Likelihood under the restriction
h(θ) := (∑

θi
) − 1 = 0, we can evaluate the expected value, variance, and

covariance as

E(xi) = n θi, Var(xi) = n θ1 (1− θi), and Cov(xi, xj ) = −n θi θj , i �= j,

and hence, the inverse of the Fisher’s information matrix I−1(θ) is the variance–
covariance matrix with elements

(
I−1

)
ii
(θ) = n−1 θi(1 − θi), i = 1, 2, . . . , k, and(

I−1
)
ij
(θ) = n−1 θi θj , i �= j = 1, 2, . . . , k.
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Let c be now an appropriate constant vector for an approximate (1− α) · 100%.
The confidence interval for cT θ̂ is defined to be the real interval CI

(
cT θ̂

) :=(
cT θ̂−Kα/2

[
cT I−1

(
θ̂
)

c
]
, cTθ̂+Kα/2

[
cT I−1

(
θ̂
)

c
])

with θ̂ being an estimate of

θ, and Kα/2 the appropriate value for either standard Normal or t-distribution.
Recalling the previous Example 1, notice that, although we assumed a multinomial
distribution, the common marginal distribution of two components, say xp and
xq , is a trinomial one with xp + xq ≤ n, 1 ≤ p, q ≤ k, p �= q, while the
probability distribution of xp + xq = ξ , ξ = 0, 1, . . . , n, is binomial, since it
is the probability distribution of xi , i = 1, 2, . . . , k, with different parameters;
see also [32] for a special case in epidemiology. Notice also that the components
of the corresponding Fisher’s information matrix, as in Example 1, are non-linear
functions of the unknown parameter vector θ. This creates a real problem regarding
the calculations.

• Sequential Probability Ratio Test (SPRT). The pioneering work of Wald in [52]
was based on changing the probability ratio test; see also [53]. The fundamental
difference is that now there are three regions testing two simple hypothesis H0 :
θ = θ0 vs. H1 : θ = θ1, θ0 �= θ1, there is a “continuation region” and the
sample size is not fixed anymore but a random variable, say n, such that Pr(n <
∞ | θ) = 1. Moreover, the expected value E(n; θ) exists and certain bounds
for this were derived; see [14] for details, while when the average sample size is
less than the appropriate sample size in a random sample see [54]. Usually, we
denote the Operating Character (OC) function asQ(θ) and the power function as
R(θ)

( := 1 −Q(θ), θ ∈ �). For given confidence levels, say α and β, for the
above defined test, it is required that Q(θ0) ≥ 1 − α and Q(θ1) ≤ β. Then, the
logarithm of the probability ratio test at stage n is defined as

Zn := ln
fn(xn; θ1)

fn(xn; θ0)
, n ≥ 1, xn = (x1, x2, . . . , xn).

Based on the SPRT, when two given numbers act as stopping bounds (B,A) with
−∞ < B < A < +∞, these numbers are defined through the decision rule:

1. Accept H0 if Zn ≤ B,
2. Reject H0 if Zn ≥ A, and
3. Continue by examining xn+1, i.e. B < Zn+1 < A.

The inequality B < Zn+1 < A is known as the critical inequality and the test is
denoted by S(B,A). Following Ghosh in [14, Th. 3.2], the following is true.

Theorem 1 The risk errors α(θ0) and β(θ1) associated with the SPRT S(B,A) for
H : θ = θ0 vs. H : θ = θ1, with B < A being any choice of stopping bounds, then
the following inequalities hold:

ln
β(θ1)

1− α(θ0)
≤ min{0, B}, ln

1− β(θ1)

α(θ0)
≥ max{0, A}.



Inequalities in Statistics and Information Measures 489

However, the optimum bounds, say (B∗, A∗) have not evaluated and, therefore, the
pair (α, β), α+β < 1, the optimum bounds can be approximated byB∗ ≈ lnβ/(1−
α) and A∗ ≈ ln(1− β)/α.

Example 2 Let x1, x2, . . . be some Bernoulli variables regarding the SPRT with
p being the proportion of successes, i.e. H0 : p ≤ p0 vs. H1 : p ≥ p1, with
0 ≤ p0 < p1 ≤ 1. For each observation xi it is Zi = ln

{
(1 − p1)/(1 − p0)

} +
xi ln

{
p1 (1 − p0)

/[p0 (1 − p1)]
}
. As Zn = ∏n

i=1 zi and Xn = ∑n
i=1 xi then the

critical inequality for S(B∗, a∗) is reduced to K+�n < Xn < M+�n where

K := B∗

ln p1 (1−p0)
p0 (1−p1)

, � := ln 1−p0
1−p1

ln p1 (1−p0)
p0 (1−p1)

, and M := A∗

ln p1 (1−p0)
p0 (1−p1)

,

see [14]. Moreover, the value E(n; p) is also bounded. In particular, S ≤ E(n; p) ≤
T , where

S :=
Q(p)

(
ln 1−p1

1−p0
+ B − A

)
+ A

p ln p1 (1−p0)
p0 (1−p1)

+ ln 1−p1
1−p0

and T :=
Q(p)

(
ln p0
p1
+ B − A

)
+ ln p1

p0
+ A

p ln p1 (1−p0)
p0 (1−p1)

+ ln 1−p1
1−p0

.

• Sequential design methods. The sequential methods are the key for testing more
than two hypotheses. Moreover, they are related to decision problems; see [41].
The inequalities involved to the Decision Theory, their links to the Bayesian
Decision Theory and the evaluated risks are presented in a compact form by [41,
Ch. 3]. The sequential way of thinking has been adopted by Kitsos in [22, 23]
as well by Ford et al. in [10] with regard to optimal non-linear Design Theory.
Moreover, Kitsos proved in [23] that when the initial design is D-optimal, [43],
and a stochastic approximation scheme is used, then the limiting design is also
D-optimal (and hence G-optimal due to the Kiefer’s Equivalence Theorem).
The main results of Wynn in [57, 58] rule the sequential design approach.
The link between the optimal Design Theory and the moment inequalities was
investigated by Torsney in [48], where Hölder’s and Minkowski’s inequalities
were also discussed. If ξ denotes a design measure, [43], and M is the average-
per-observation information matrix M = n−1 I, then it can be written as M(ξ) =
n−1 I(ξ) for the linear case, and M(θ, ξ) = n−1 I(θ, ξ) for the non-linear case,
where matrix I is the Fisher’s information matrix; see [10]. In linear theory, it has
been proved in [56] that M(ξn)→ M(ξ∗) when ξn → ξ∗, i.e. when a sequence
of design measures converges to the optimum design, then the corresponding
measures of information “follow” the scheme. That is, when we are not at the
limit, inequalities are hold. This result is similar to the Dominated converge
principle for a sequence of integrable functions, say un converging to u, provided
that an integrable function w such that |un| ≤ w exist, then u is also integrable
and E(un)→ E(u). However, this is not true for the non-linear case: there is no
limiting result for M(ξn, θ) or M(ξn, θn). Moreover, in Design Theory there is not
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a similar to the Fatou’s Lemma that E(limn→∞ un) ≤ limn→∞ E(un), un ≥ 0.
In particular, E(u) ≤ limn→∞ E(un) when un→ u.

• Linear programming. As far as the linear programming is concerned, the Simplex
method solves linear inequalities problems, such as: evaluate max

{
y = f (x)},

x ∈ Rp, under A xT ≤ bT, where A ∈ Rp×p and b ∈ Rp are known.
Adding the so-called slack variables the inequalities are eventually transformed
into equalities.

4 Inequalities in Probability Theory

In this section we present some essential inequalities used in Probability Theory, in
order to clarify the importance of these inequalities to all the fields of Statistics.

• Renewal Theory. From the Renewal Theory [20], consider the elapsed number of
generation, say T (0), known also as a generation of equal components. Then for
a finite population of constant size N , it can be proved that E

(
T (0)

) ≤ NN .
• Doob’s martingale. Recall that a stochastic process {Xn}n∈N is called a martin-

gale with respect to {Yn}n∈N if E
{|Yn|} < ∞ and E

(
Xn+1(Y0, Y1, . . . , Yn)

) =
Xn, n ∈ N. In such a case, the “existing history” determines xn in terms that,
eventually, E(Xn) = E(Xn+1| Y0, Y1, . . . , Yn) = E(X0) for every n ∈ N. As
far as the Doob’s Martingale Process is concerned, the inequality is requested
in its definition, as well as for the Radon–Nikodym derivatives; see [8]. Indeed,
for a given r.v. X with E(|X|) < ∞, and for an ordinary sequence of r.v.-s,
say Y0, Y1, . . . , Yn, then from Xn := E(X | Y0, Y1, . . . , Yn), n ∈ N, a martingale
structure {Xn}with respect to {Yn}, is obtained when E(|Xn|) ≤ E(|X|) <∞ and
E(Xn+1 | Y0, Y1, . . . , Yn) = Xn, known as Doob’s process. Suppose, now, that
U is a uniformly distributed r.v. on [0, 1]. We define Yn = k/2n, k = k(n,U),
unique such that k/2n ≤ U ≤ (k + 1)/2n. Then, process {Xn} defined as
Xn := 2n

[
g(Yn + 2−n) − g(Yn)

]
for g|[0, 1] bounded forms a martingale; see

[20]. Moreover, the sequence Xn is known as the Radon–Nikodym derivative of
g evaluated at U .

• Crossing inequality. One of the well-known inequalities in Stochastic Process
Theory, strongly related to Sequential Analysis, is the so-called Crossing Inequal-
ity. It counts the number of times a sub-martingale {Xn}, with respect to a
sequence {Yn}, crosses a given interval (a, b) ⊆ R. That is, the number of
crosses, say Na,b, from the level below a to a level above b. In fact, Na,b is
the number of pairs (i, j) such that Xi ≤ a and Xj ≥ b with a < Xk < b,
0 ≤ i < j ≤ Nj , i < k < j . For sub-martingales {Xn} with given T and T ′
Markov times and q ∈ Z with 0 ≤ T ≤ T ′ ≤ q, then E(XT ) ≤ E(XT ′). The
Crossing Inequality is then formulated by E(Na,b) ≤

(
E
[
(XN−a)+

]−E
[
(X0−

a)+
])
/(b − a). For the backward martingale {Xn}n=0,−1,−2,... with respect to a

σ -field Fn, n = 0,−1,−2, . . . (generated by some jointly distributed r.v.-s), the
Crossing Inequality is reduced to E(Na,b) ≤ E

[
(X0 − a)+

]
/(b − a) with the
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only new restriction N ≤ i < j ≤ 0. For a given martingale {Xn} satisfying
E
(|Xn|k) <∞ for every k > 1 and n ∈ N, it can be proved that

E

(
max

0≤r≤n
{|Xr |}

)
≤ k
k−1 E

(|Xk|k)1/k and E

(
max

0≤r≤n
{|Xr |k}

)
≤ ( k

k−1

)k E
(|Xn|k),

see [20] for details. When restrictions are imposed to expected value and
variance, i.e. E(Xn) = 0 and hence σ 2 = E(X2

n) <∞ for every n, then

Pr
(

max
0≤r≤n

{|Xr |} > k
)
≤ σ 2

σ 2+k , k > 0.

• Chebyshev’s and Kolmogorov’s inequalities. Chebyshev’s Inequality provides
food for thought when an extension, known as the Kolmogorov’s Inequality, is
considered. For given two independent and identically distributed (i.i.e.) r.v-s
X1, X2, . . . , with mean μ = E(Xi) = 0 and variance σ 2 = E(X2

i ) < ∞,
i = 1, 2, . . . , we define Sn = X1 + X2 + · · · + Xn, n = 1, 2, . . . , and S0 = 0.
Then, Chebyshev’s Inequality is formulated by

ε2 Pr
(|Sn| > ε) ≤ n σ 2 = Var(Sn),

while Kolmogorov’s Inequality is written as

ε2 Pr
(

max
k≤n

{|Sk|} > ε
)
≤ n σ 2 = Var(Sn).

• Maximal inequalities. A number of inequalities are based on Kolmogorov’s
Inequality for the (sub-)martingales, and are known as the Maximal Inequalities;
see [8, 20].

1. Let {Xn} be a martingale and k ≥ 0. Then, k Pr
(

max0≤r≤n
{|Xr |} > k) ≤

E
({|Xn|}).

2. Let {Xn} be a sub-martingale with Xn ≥ 0, n ∈ N, and k ≥ 0. Then,
k Pr

(
max0≤r≤n{Xr} > k

) ≤ E
({Xn}).

3. When {Xn}n=0,−1,−2,... is a backward martingale with respect to a σ -field,
say Fn, n = 0,−1,−1, . . . , generated by some jointly distributed r.v.-s
{Yn, Yn−1, . . . }, then k Pr

(
max0≤r≤n{Xr} > k

) ≤ E
({X0}

)
.

4. Let {Xn} be a martingale. Then, k Pr
(

min0≤r≤n{Xr} < −k) ≤ E
({X+n } −

E(X0)
)
.

5. Let {Xn} be a super-martingale with Xn ≥ 0, n ∈ N. In such a case,
k Pr

(
max0≤r≤n{Xr} ≥ k

) ≤ E(X0)
)
.

The above inequalities from the Probability Theory provide evidence of how
really useful inequalities can be, in terms of offering bounds, for most of the
involved “sequences,” such as martingales. In the next section, we present the
existence of certain bounds related to information measures.
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• Distance in navigation. Franceschetti and Meester in [12], working in similar line
of thought as in [42] and [35], consider the Euclidian distance between a source
point and a target, in navigation in random networks, and presented a number of
interesting inequalities for the ε-delivery time of a decentralized algorithm. This
refers to the number of steps required for the message, originating at point s to
reach an ε-neighborhood of point t . Moreover, working on network topology,
they introduced a new distance measure, the chemical distance between two
points x and y (and by considering the existence of a path connecting x with y),
with a number of inequalities obtained through Probability Theory: for a random
grid and given points x and y, probability assigned to be 1 if |x − y| = 1, and
1 − exp

( − β/|x − y|a) if |x − y| > 1, a, b > 0. Their results are related
to the percolation models; see [18, 31]. Although the evolution of ideas from
Shannon’s work in [42] to Navigation in Random Networks is important, it has
attracted the interest of Engineers rather than Mathematicians, as the former pay
more attention to the information flow in random networks; see [45]. We present
here an important—in our opinion—inequality related to the Phase Transition:
There is an interest to express positive correlations between increasing events,
sayA and B, so that Pr(A∩B) ≥ Pr(A) Pr(B); see [18, 31]. Then, for increasing
events A1, A2, . . . , An, all having the same probability, it holds that

1−
[

1− Pr

(
n⋃
i=1

Ai

)]1/n

≤ Pr(A1).

Indeed, due to Pr(A ∩ B) ≥ Pr(A) Pr(B) and some set-theoretic algebra,

1− Pr

(
n⋃
i=1

Ai

)
= Pr

(
n⋂
i=1

Ai

)
≥

n∏
i=1

Pr
(
Ac
i

) = [Pr
(
Ac
i

)]n = [1− Pr(A1)
]n
,

since we assumed that Pr(Ai) = Pr(Aj ), i �= j = 1, 2, . . . , n.

5 Information Measures and Inequalities

In the following we shall try to investigate certain bounds concerning generalized
entropy type information measures from the Information Theory.

New entropy type information measures were introduced in [24], generalizing
the known Fisher’s entropy type information measure; see also [5, 26–29, 49]. The
introduced new entropy type measure of information Jα(X) is a function of the
density f of the p-variate random variable r.v. X defined as, [24],

Jα(X) := E
(∥∥∇ log f (X)

∥∥α) =
∫
Rp
f (x)

∥∥∇ log f (x)
∥∥α dx, α > 1, (4)
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where ‖ · ‖ is the usual two-norm of L 2(Rp). Notice that J2 = J , with J being the
known Fisher’s entropy type information measure.

In his pioneering work [42], Shannon introduced the notion of Entropy in an
Information Theory context giving a new perspective to the study of Information
Systems, Signal Processing and Cryptography among other fields of application.
Shannon entropy, or differential entropy, denoted by H(X), measures the average
uncertainty of an r.v. X and is given by

H(X) := −E
(

log f (X)
) = −

∫
Rp
f (x) log f (x) dx, (5)

with f being the probability density function (p.d.f.) of r.v. X; see [6, 42]. In
Information Theory, it is the minimum number of bits required, on the average,
to describe the value x of the r.v. X. In Cryptography, entropy gives the ultimately
achievable error-free compression in terms of the average codeword length symbol
per source; see [21] among others.

For the Shannon entropy H(X) of any multivariate r.v. X with zero mean vector
and covariance matrix �, an upper bound exists,

H(X) ≤ 1
2 log

{
(2π e)p| det �|}, (6)

where the equality holds if and only if X is a normally distributed r.v., i.e. X ∼
N (0,�); see [6]. Note that the Normal distribution is usually adopted as the
description variable for noise, and acts additively to the input variable when an
input–output discrete time channel is formed. The known entropy power, dented
by N(X), and defined through the Shannon entropy H(X), has been extended to

Nα(X) := να exp
{
α
p

H(X)
}
, (7)

where

να :=
(
α−1

e

)
π−α/2

⎡
⎣ �

(p
2 + 1

)
�
(
pα−1

α
+ 1

)
⎤
⎦
α
p

, α > 1, (8)

see [24] for details. Notice that ν2 = (2πe)−1 and hence N2 = N . It can be proved
that [24],

Jα(X)Nα(X) ≥ p, α > 1, (9)

which extends the well-known Information Inequality, i.e. J (X)N(X) ≥ p,
obtained from (9) by setting α := 2.
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The so-called Cramér–Rao Inequality, [6, Th. 11.10.1], is generalized due to the
introduced information measures, [24], and is given by

√
2π e
p

Var(X)
[
να
p
Jα(X)

]1/α ≥ 1, α > 1. (10)

When α := 2 we have Var(X) J2(X) ≥ p2, which is the known Cramér–Rao
inequality, Var(X) J (X) ≥ 1 for the univariate case. The lower boundary Bα for
the introduced generalized information Jα(X) is then

p
να

[
2π e
p

Var(X)
]−α/2 =: Bα ≤ Jα(X), α > 1. (11)

Finally, the classical Entropy Inequality,

Var(X) ≥ pN(X) = p
2π e exp

{
2
p
H(X)

}
, (12)

can be extended, adopting the extended entropy power as in (7), to the general form

Var(X) ≥ p
2π eν

−2/α
α N2/α

α (X), α > 1. (13)

Under the “normal” parameter value α := 2, inequality (13) is reduced to (12).
The Blachman–Stam Inequality [2, 3, 47] is generalized through the generalized

Jα measure. Indeed: For given two independent r.v.-s X and Y of the same
dimension, it holds

Jα

(
λ1/αX + (1− λ)1/αY

)
≤ λJα(X)+ (1− λ)Jα(Y ), λ ∈ (0, 1),

where the equality holds for X and Y normally distributed r.v.-s with the same
covariance matrix; see [26] for the proof. For parameter value α := 2 we are reduced
to the well-known Blachman–Stam Inequality, since J2 = J .

Let now X1, X2, . . . , Xn be some n independent and identically distributed
(i.i.d.) univariate random variables with mean 0 and variance σ 2, having density
function f (x) satisfying Poincaré conditions with finite restricted Poincaré constant
c
P

. If φ(x) denotes the corresponding probability density of N
(
0, σ 2

)
, then the

Fisher’s information distance (or standardized information) of some univariate r.v.
X (with mean 0 and variance σ 2) is defined to be

Jφ(X) := σ 2 E
[

d
dx log f (X)− d

dx logφ(X)
]2 = σ 2 J (X)− 1,

with J being the known Fisher’s (entropy type) information. Notice that Jφ(λX) =
Jφ(X), so Jφ is scale invariant and, moreover, provides a measure of distance
of “how far f (x) is from normality,” i.e. from φ(x). Then, for the sum Yn :=(√
nσ
)−1 ∑n

i=1Xi , it can be proved that for every n
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J (Yn) = 2c
P

2c
P
+ (n− 1)σ 2 J (X1).

Moreover, if φ(x) represents the probability density of the standard Normal
distribution, then it holds that

sup
x∈R

{∣∣f (x)−φ(x)∣∣} ≤ (1+√σ/π)√J (X),
∫
R

∣∣f (x)−φ(x)∣∣ dx ≤ 2H(f, φ) ≤ √2J (X),

with H 2(f, φ) :=
∫ ∣∣√f (x) − √φ(x)∣∣2 dx being the Hellinger distance between

densities f and φ; see [19] for details.

6 The Generalized Normal (GN) Distribution

The Logarithmic Sobolev Inequalities (LSI) attempt to estimate the lower-order
derivatives of a given function in terms of higher-order derivatives. The well-known
LSI was introduced in 1938 and translated in English 1963 as appeared in [46]; see
also [16, 26] for details. The introductory and well-known Sobolev Inequality (SI)
is of the form

( ∫
Rp
|f (x)| 2p

p−2 dx

) p−2
2p ≤ cS

( ∫
Rp
|∇f (x)|2 dx

) 1
2

, (14)

or, using the two-norm notation, ‖f ‖q ≤ cS‖∇f ‖2, with the constant cS > 0 is
known as the Sobolev constant.

Kitsos and Tavoularis [24] introduced and studied an exponential-power gener-
alized form of the multivariate Normal distribution, denoted as Nγ (μ,�), μ ∈ Rp

and � ∈ Rp×p, called the γ -order Generalized Normal (γ -GN) distribution; see
also [27, 28] for further reading. The derivation of this three-parameter extended
Normal distribution came up an extremal of a generalized Euclidian LSI introduced
by Del Pino et al. in [7], which can be written as

∫
Rp
|u|γ log |u| dx ≤ p

γ 2 log

{
Kγ

∫
Rp
|∇u|γ dx

}
, (15)

where u = u(x), x ∈ Rp, belongs to the Sobolev space H 1/2(Rp) with ‖u‖γ =∫
Rp |g(x)|γ dx = 1. The optimal constant Kγ is being equal to

Kγ := γ
p

( γ−1
e

)γ−1
π−γ /2

[
�(
p
2 + 1)

�
(
p
γ−1
γ
+ 1

)
]γ /p

. (16)
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The equality in (15) holds, [24], when u is considered to be the p.d.f. of an r.v. X
following γ -GN distribution as defined below.

Definition 1 The p-variate random variable X follows the γ -order generalized
Normal (γ -GN) distribution, i.e. X ∼ Nγ (μ,�), with location parameter vector
μ ∈ Rp, shape parameter γ ∈ R \ [0, 1], and positive definite scale parameter
matrix � ∈ Rp×p, when the density function fX of X is of the form

fX(x) = fX(x; μ,�, γ, p) := C(�) exp
{
− γ−1

γ
Q(x)

γ
2(γ−1)

}
, x ∈ Rp,

(17)
where Q is the p-quadratic form Q(x) = Q(x; μ,�) := (x − μ)�−1(x − μ)T,
x ∈ Rp, while the normalizing factor C is defined as

C(�) = C(�; γ, p) := �
(p

2 + 1
)

πp/2 �
(
p
γ−1
γ
+ 1

)√|�|
( γ−1
γ

)p γ−1
γ , (18)

where |�| denotes the determinant det � of the scale matric � ∈ Rp×p.

From the p.d.f. fX as above, notice that the location vector ofX is essentially the
mean vector of X, i.e. μ = μX := E(X). Moreover, for the shape parameter value
γ = 2, N2(μ,�) is reduced to the well-known multivariate normal distribution,
where � is now the covariance of X, i.e. CovX = �. Recall that

Cov(X) =
�
(
(p + 2) γ−1

γ

)

p �3
(
p
γ−1
γ

) ( γ
γ−1

)2 γ−1
γ �, (19)

for the positive definite scale matrix �; see [28].
Note that there are several other exponential-power generalizations of the usual

Normal distribution, see [4, 15, 34], and [59] among others. Those generalizations
are technically obtained and, thus, they have no specific physical interpretation. On
the contrary, the γ -GN distribution has a strong information-theoretic background.
Indeed, the most significant fact about the γ -GN family is that—at least for the
spherically contoured case—acts to the generalized Information Inequality, the same
way as the usual Normal distribution acts (i.e. providing equality) to the usual
Information Inequality. In fact, the generalized form of the Information Inequality
in (9) is reduced to equality for every spherically contoured γ -order normally
distributed r.v., as it holds that Jα(X)Nα(X) = p for X ∼ Nα

(
μ, σ 2Ip

)
; see

[24, Cor. 3.2] for details. Moreover, the equality in the generalized Cramér–Rao
Inequality as in (10) is achieved for r.v. X following the γ -GN distribution as
above, i.e. it behaves the same way the usual Normal distribution does on the
usual Cramér–Rao inequality. Indeed, using the fact that Jα(X)Nα(X) = p holds
for X ∼ Nα

(
μ, σ 2Ip

)
, as well as the extended Entropy Inequality as in (13),

the equality of (10) can then be deduced, for the spherically contoured case; see
also [26].
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The family of multivariate γ -GN distributions, i.e. the family of the elliptically
contoured γ -order generalized Normals, provides a smooth bridging between some
important multivariate (and elliptically countered) distributions. Indeed:

1. Case γ := 0. For the limiting case when the shape parameter γ → 0−, the
degenerate Dirac distribution D(μ) with pole at point μ ∈ Rp is derived for
dimensions p := 1, 2, while for p ≥ 3 the corresponding p.d.f. “vanishes,” i.e.
fX ≡ 0 for X ∼ N0(μ,�).

2. Case γ := 1. For the limiting case when γ → 1+, the elliptically contoured
Uniform distribution U (μ,�) is obtained, which is defined over the p-ellipsoid
Q(x) ≤ 1, x ∈ Rp.

3. Case γ := 2. For the “normality” case of γ := 2 the usual p-variate Normal
distribution N (μ,�) is obtained.

4. Case γ := ±∞. For the limiting case when γ →±∞ the elliptically contoured
Laplace distribution L (μ,�) is derived.

See [28] for details. Therefore, one of the merits of the γ -GN family is that it can
provide “heavy-” or “light-tailed” distributions as the change of shape parameter γ
influences the “amount” of probability at the tails.

7 Information Divergencies

The informational divergence between two r.v.-s is usually calculated through the
Kullback–Leibler (KL) divergence, which is acting as an “discrimination” measure
of information. Recall that the KL divergence (also known as relative entropy),
usually denoted by DKL(X‖Y ), of an r.v. X over an r.v. Y (of the same dimension),
measures the amount of information “gained” when r.v. Y is replaced by X (say in
an I/O system), and is defined by, [6],

DKL(X‖Y ) :=
∫
fX log

fX

fY
, (20)

where fX and fY denote the corresponding density functions of r.v.-s X and Y .
In this section, we shall investigate the KL divergence measure of the multivariate

γ -order normally distributed X ∼ Nγ (μ1,�1) over the multivariate tν-distributed
Y ∼ tν(μ2,�2); see [51] for the univariate case. Recall the p.d.f. fY of the
multivariate (and scaled) tν-distributed r.v. Y with ν ≥ 1 degrees of freedom, mean
vector μ2 ∈ Rp, and scale matrix �2 ∈ Rp×p, which is given by

fY (y) = fY (y; μ2,�2, ν) := C2

[
1+ 1

νQ2(y)
]− ν+p2

, y ∈ Rp, (21)
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with normalizing factor

C2 = C2(�2; ν, p) := (π ν)
−p/2 �

( ν+p
2

)
�
(
v
2

)√|�2| , (22)

and p-quadratic form Q2(y) := (y − μ2)�
−1
2 (y − μ2)

T, y ∈ Rp. Note that
parameter ν can be also a positive real R+ ( ν ≥ 1.

The following theorem provides an upper bound for the “gained” information
when the tν-distribution is replaced by a γ -GN distribution. Note that we often
rely on inequalities when it comes to the calculation of information divergencies
(including KL) between certain r.v.-s, since the integrals involved cannot usually be
solved in a closed form.

Theorem 2 The KL divergence DKL := DKL(X‖Y ), of a multivariate spherically
contoured γ -order normally distributed r.v.X ∼ Nγ

(
μ, σ 2

1 Ip
)

over a tν-distributed
r.v. Y ∼ tν

(
μ, σ 2

2 Ip
)
, of the same mean μ ∈ Rp, has the following upper bound,

DKL ≤ logK + p
(

log σ2
σ1
− γ−1

γ

)
+ ν+p

2ν

(
σ1
σ2

)2 ( γ
γ−1

)2 γ−1
γ
�
(
(p + 2) γ−1

γ

)
�
(
p
γ−1
γ

) ,

(23)
where

K = K(γ, ν, p) := νp/2 �
(p

2

)
�
(
ν
2

)
2�
(
p
γ−1
γ

)
�
( ν+p

2

)( γ−1
γ

)p γ−1
γ
−1
. (24)

Proof From the definition of the KL divergence (20) and the probability densities
fX and fY , as in (17) and (21), with K , C1, and C2 are defined as in (24), (18),
and (22), respectively, while Qi(x) := (x − μ)�−1

i (x − μ)T, x ∈ Rp, i = 1, 2,
with �1 := σ 2

1 Ip, �2 := σ 2
2 Ip, it holds

DKL = C1

[(
logK + p log σ2

σ1

)
I1 − g I2 + p+ν

2 I3

]
, (25)

where

I1 :=
∫
Rp

exp

{
−g
∥∥∥x− μ
σ1

∥∥∥1/g
}

dx

I2 :=
∫
Rp

exp

{
−g
∥∥∥x− μ
σ1

∥∥∥1/g
}∥∥∥x− μ

σ1

∥∥∥1/g
dx, and

I3 :=
∫
Rp

exp

{
−g
∥∥∥x− μ
σ1

∥∥∥1/g
}

log

(
1+ 1

ν

∥∥∥x− μ
σ2

∥∥∥2
)

dx,
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and g = g(γ ) := (γ − 1)/γ . Applying the linear transformation z = z(x) :=
gg (x − μ)/σ1, x ∈ Rp, with dx = g−p g σp1 dz, the above three multiple integrals
are then written as

I1 = g−p g σp1
∫
Rp

e−‖z‖1/g
dz, (26a)

I2 = g−p gσp1
∫
Rp
‖z‖1/g e−‖z‖1/g

dz, and (26b)

I3 = g−p g σp1
∫
Rp

e−‖z‖1/g
log
(

1+ g−2g

ν

(σ1
σ2

)2‖z‖2
)

dz. (26c)

Applying then the known integrals

∫
Rp

e−‖z‖β dz = 2πp/2 �
(p
β

)
β �

(p
2

) and
∫
Rp
‖z‖β e−‖z‖β dz = p

β

∫
Rp

e−‖z‖β dz,

(27)
with β ∈ R∗+ := R+ \ {0}, integrals (26a) and (26b) are then calculated as

I1 = g−p g σp1
2πp/2

�(p/2)
g �(p g) and I2 = p g I1, (28)

, respectively. Thus, (25) is reduced to

DKL = C1

(
logK + p log σ2

σ1
− p g

)
I1 + p+ν

2 C1 I3.

Substituting I1 from (28) and using C1 from (18), and applying the Gamma function
additive identity, the above is reduced to

DKL = logK + p
(

log σ2
σ1
− g

)
+ p + ν

4
(√

π σ1
)p �(p/2)
�(p g)

gp g−1 I3. (29)

Notice that the function in the integral of (26c) is positive, and so, using the known
logarithmic inequality log(x + 1) ≤ x, x > −1, relation (26c) implies

I3 ≤ g−(p+2) g σ
p+2
1

ν σ 2
2

∫
Rp
‖z‖2 e−‖z‖1/g

dz. (30)

We calculate now the first and the third integral of the above inequality by
switching to hyperspherical coordinates, while the second integral is calculated
using the relation first of (27). Recall the known hyperspherical transformation



500 C. P. Kitsos and T. L. Toulias

Hp : Sp → Rp, where Sp := R+ × [0, π)p−2 × [0, 2π), in which Sp (
(ρ, ϕ1, ϕ2, . . . , ϕp−1)

Hp�−→ (z1, z2, . . . , zp) ∈ Rp, is given by

z1 = ρ cosϕ1, (31a)

zi = ρ sinϕ1 sinϕ2 · · · sinϕi−1 cosϕi, i = 2, 3, . . . , p − 1, (31b)

zp = ρ sinϕ1 sinϕ2 · · · sinϕp−2 sinϕp−1, (31c)

where ρ ∈ R+, ϕ1, ϕ2, . . . , ϕp−2 ∈ [0, π), and ϕp−1 ∈ [0, 2π). It holds that
‖z‖2 = z2

1 + z2
2 + · · · + z2

p = ρ2, z ∈ Rp, while the volume element dz =
dz1 dz2 · · · dzp of the p-dimensional Euclidean space is given in hyperspherical
coordinates as

dz = J(Hp) dρ dϕ1 · · · dϕp−1 = ρp−1

⎛
⎝p−2∏
k=1

sinp−k−1 ϕk

⎞
⎠ dρ dϕ1 · · · dϕp−1,

(32)
where J(Hp) is the Jacobian determinant of the transformation Hp, i.e.

J(Hp) :=
∣∣∣∣det

∂(z1, z2, . . . , zp)

∂(ρ, ϕ1, . . . , ϕp−1)

∣∣∣∣ = ρp−1 sinp−2 ϕ1 sinp−3 ϕ2 · · · sinϕp−2,

(33)
Moreover, the volume element of the (p − 1)-sphere is given by

dp−1V = sinp−2 ϕ1 sinp−3 ϕ2 · · · sinϕp−2 dϕ1 dϕ2 · · · dϕp−1.

Thus the corresponding volume is then Vp−1 = 2πp/2/�(p/2). Therefore, the
multiple integral in (30) is transformed to

I :=
∫
Rp
‖z‖2 e−‖z‖1/g

dz = Vp−1

∫
R+
ρ2 ρp−1 e−ρ1/g

dρ. (34)

Applying the transformation u = u(ρ) := ρ1/g , ρ ∈ R+, with dρ = gug−1 du, the
integral (34) is then calculated, via the definition of the Gamma function, as

I = g Vp−1

∫
R+
u(p+2) g−1 e−u du = g Vp−1 �

(
(p + 2) g

)
, (35)

hence, the inequality (30) is then reduced to

I3 ≤ 2g1−(p+2) g πp/2 σ
p+2
1 �

(
(p + 2) g

)
ν σ 2

2 �(p/2)
. (36)

Applying (36) to (29) we finally derive the upper bound of DKL as in (23).
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Consider now the (multivariate) Normal distribution instead of the tν distribution.
Then, following Theorem 2, we can derive an exact form of the KL divergence of the
γ -GN over the usual Normal distribution, extending the corresponding univariate
result in [51]. Note that, in order to achieve this result, the inequality proved in
Theorem 2 is studied in limit, showing that the upper bounds in (23) increase along
with the degrees of freedom ν of the tν-distribution, until they reach a supremum.
Hence, when ν tends to infinity we are approaching normality as well as equality
for (23).

Theorem 3 The KL divergence of a p-variate r.v. X ∼ Nγ

(
μ, σ 2

1 Ip
)
, μ ∈ Rp,

σ > 0, over a p-variate normally distributed r.v. N ∼ N
(
μ, σ 2

2 Ip
)
, is given by

DKL(X‖N) = log

{
2p/2−1 �(p/2)

�
(
p
γ−1
γ

) ( γ−1
γ

)p γ−1
γ
−1

}
+ p

(
log σ2
σ1
− γ−1

γ

)
+

( γ
γ−1

)2 γ−1
γ
(σ1
σ2

)2�((p + 2) γ−1
γ

)
2�
(
p
γ−1
γ

) . (37)

Proof Firstly, by substituting of (26c) to (29), we obtain

DKL(X‖Yν) = logK + p
(

log σ1
σ2
− g

)
+ �(p/2)

4πp/2g �(pg)
I, (38)

where g := (γ − 1)/γ , Yν ∼ tν
(
μ, σ 2

2 Ip
)
, ν ∈ N∗, and

I :=
∫
Rp

e−‖z‖1/g
log

{
1+ 1

ν

(σ2
σ1

)2
g−2g‖z‖2

}p+ν
dz. (39)

For the KL divergence ofX ∼ Nγ

(
μ, σ 2

1 Ip
)

over the p-variate normally distributed
r.v. N ∼ N

(
μ, σ 2

2 Ip
)
, it holds that DKL(X‖N) = limν→∞DKL(X‖Yν), as

the scaled spherically contoured tν
(
μ, σ 2

2 Ip
)

distribution is, in limit, the normal
distribution N

(
μ, σ 2

2 Ip
)

when ν →∞. As a result, the sequence

bν := ν
p/2 �(ν/2)

�
( ν+p

2

) , ν, p ∈ N∗, (40)

converges to 2p/2 as ν → ∞, since limν→∞ fYν = fN , where fYν and fN are the
probability densities of the tν-distributed r.v. Yν and the normally distributed r.v. N ,
respectively. Indeed, bν → 2p/2, as ν → ∞, due to the fact that the normalizing
factorC2(σ

2
2 Ip) of fYν converges to the normalizing factorC1(σ

2
2 Ip) of fN , i.e. (18)

and (22) yield π−p/2 limν→∞ b−1
ν = (2π)−p/2, or equivalently limν→∞ bν = 2p/2.

Therefore, substituting C2(σ
2
2 Np) from (18) into (38), and then computing the

limit for ν → ∞, we derive, using the limit in (40) as well as the well-known
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exponential limit limν→∞(1+ ν−1)ν = e, that

DKL(X‖N) = log

{
2(p/2)−1�(p/2)

�(p g)
gp g−1

}
+p

(
log σ2
σ1
−g
)
+ �(p/2)

4πp/2 g �(p g)
I,

(41)
where

I = (σ1
σ2

)2
g−2g

∫
Rp
‖z‖2 e−‖z‖1/g

dz. (42)

Calculating the above integral (42) with the help of (27), we derive

I = 2πp/2

�(p/2)

(σ1
σ2

)2
g1−2g �

(
(p + 2)g

)
.

By substitution in (41), we finally obtain (37) using the known Gamma function
additive identity, i.e. �(x + 1) = x �(x), x ∈ R∗+.

The following investigates the order behavior of the upper bounds in (23).

Proposition 2 When the degrees of freedom ν ∈ N∗ rise, the upper bound value,
say Bγ,ν of (23) approximate better the KL divergence DKL for all parameters γ ∈
R\[0, 1]. Furthermore, for the univariate and the bivariate case, the corresponding
bounds Bγ,ν have a strict descending order converging to the DKL measure of r.v.
X ∼ Nγ

(
μ, σ 2

1 Ip
)

over the normally distributed r.v. N ∼ N
(
μ, σ 2

2 Ip
)

as v rises,
i.e. Bγ,1 < Bγ,2 < · · · < Bγ,∞ = DKL(X‖N) for p = 1, 2.

Proof Consider the sequence aν := (ν + 1)/ν, nu ∈ N∗. Then aν and bν , as
in (40), converge both to 1 as ν → ∞. Considering the bounds Bγ,ν as in (23)
when ν → ∞, it holds that Bγ,∞ approaches the KL divergence as in (37). Thus,
the equality in (23) is obtained in limit as ν → ∞, i.e. DKL(X‖N) = Bγ,∞, and
therefore the bounds Bγ,ν approximate better the KL divergence DKL(X‖Y ) as v
rises, until Bγ,ν coincides eventually with DKL of Theorem 3 for all parameter γ
values.

Especially for the bivariate case of p := 2, the sequence bν is constant, i.e.
bν = 2, ν ∈ N∗, while for univariate case of p := 1, sequence bν is descending
with bν ≥ limν→∞ bν =

√
2. Indeed,

b2ν+1

b2ν
= 1
ν

√
2ν+1

2ν

�2
(
ν + 1

2

)
�2(ν)

, ν ∈ N∗.

By applying the known result of Gamma function,

�
(
k + 1

2

) = (2k−1)!!
2k

√
π = (2k)!

22k k!
√

π, k ∈ N, (43)

we obtain
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b2ν+1

b2ν
= π ν

√
2ν+1

2ν

[
(2ν)!

22ν (ν!)2
]2

. (44)

Finally, utilizing the known bounds for the factorial in (1), the ratio in (44) is less
than 1, as

b2ν+1

b2ν
≤ e2

4π

√
2ν+1

2ν ≤ e2

4π

√
3
2 ≈ 0.72015 < 1.

Therefore, for dimensions p = 1 and p = 2, and from the form of bounds in
Theorem 23, we derive that Bγ,1 < Bγ,2 < · · · < Bγ,∞. That is, as tv-distribution
approaches the Normal distribution (as ν → ∞), the bounds Bγ,ν have a strictly
descending order converging to Bγ,∞, i.e. to DKL(X‖N).

8 Discussion

Inequalities cover all the Mathematical disciplines, either as bounds to different
quantities or measures—with typical example being the error control, as described
in Sect. 2, or confidence intervals in Sect. 3—or as an attempt to compare different
measures, like the notion of distance in Probability Theory, the SPRT method in
Sect. 3, the various forms of triangle inequality given in Sect. 2, or in Information
Theory as discussed in Sects. 5, 6 and 7. There are cases were the inequalities are
involved either in definition, as in SPRT, or imposed as restriction to the developed
theory, as in Stochastic Approximation. In Statistics, inequalities are often related
with the interval estimation for the estimated parameters, usually through the
Maximum Likelihood methodology. Sequences under imposed assumptions create
different approaches in Statistics, with the main ones being the Sequential approach
and the Stochastic processes.

A number of inequalities were presented in this paper. For example, consider the
maximal inequalities in Sect. 4, or the Crossing Inequality that measures the times
we can exceed the imposed bounds in a stochastic process; in the SPRT case, if
this happens once, the method stops. Similar inequalities can also be considered
under different lines of thought, with typical example being the Cauchy–Schwarz
inequality in Sect. 2, which can be also be transferred and used in Statistics as shown
in Sect. 3.

The inequalities in Information theory are more “mathematically oriented” and
well-known bounds have been extended, with typical examples being the Informa-
tion Inequality, the Cramér–Rao Inequality, or the Blachman–Stam Inequality. The
upper bound of the Kullback–Leibler divergence, as proved in Sect. 7, is essential,
we believe in the sense that offers a way of approximating “how far” can be the
family of the generalized Normal distributions from the multivariate Student’s t-
distribution, since the involved integrals cannot be computed in a closed form.
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Moreover, Proposition 2 gives us an idea of how those bounds behave in relation
to the degrees of freedom of the considered t-distribution.

This paper can also be considered as an attempt to increase the existed inequality
problems, collected by Rassias in [38].

Appendix 1

Proof of Proposition 1 It is easy to see thatD∗ satisfies the positive-definiteness and
symmetricity conditions, and therefore—in order to prove thatD∗ is indeed a proper
distance metric—the triangle inequality (or subadditivity) must be fulfilled. For this
purpose, three arbitrary probability measures P,Q,R ∈ P(0) are considered.
Applying the exponential inequality ex ≥ (1 + x/n)n, x ∈ R, with n := 3, to
the definition of D∗, we get

D∗(P,Q)+D∗(Q,R) = eD(P,Q)+ eD(Q,R)−2 ≥
[
1+ 1

3D(P,Q)
]3+

[
1+ 1

3D(Q,R)
]3−2,

and using the simplified notations a := D(P,Q), b := d(Q,R) and c := d(P,R),

D∗(P,Q)+D∗(Q,R) ≥ 1
27

(
a3 + b3)+ 1

3

(
a2 + b2)+ a + b

= 1
27 (a + b)3 − 1

9a b (a + b)+ 1
3 (a + b)2 − 2

3a b + a + b
≥ 1

27 (a + b)3 − 1
36 (a + b)3 + 1

3 (a + b)2 − 1
6 (a + b)2 + a + b

≥ 1
3c

3 + 1
6 c

2 + c, (45)

where the triangle inequality of metric D was used as well as the inequality
√
ab ≤

1
2 (a+b), a, b ∈ R+. By expressingD in terms ofD∗, through the definition ofD∗,
relation (45) yields

D∗(P,Q)+D∗(Q,R) ≥ 1
3 log3(1+D∗(P,R))+ 1

6 log2(1+D∗(P,R))+log
(
1+D∗(P,R)).

(46)
Consider now the function f (x) := 1

3 log3(1+x)+ 1
6 log2(1+x)+ log(1+x)−x,

x ∈ R+. Assuming that f ′ ≤ 0, i.e. log2(1 + x) + 1
3 log(1 + x) − x ≤ 0, the

logarithm identity log x ≥ (x−1)/x, x ∈ R∗+ := R+ \{0} gives 4x2−2x−3 ≤ 0,
which holds for x ≥ x0 := 1

4

(
2+√28

) ≈ 1.822. Therefore, f has a global maxima
at x0, and as x1 = 0 = f (0) is one of the two roots x1, x2 ∈ R+ of f , the fact
that 0 = x1 ≤ x0 means that f (x) ≥ 0 for x ∈ [0, x2], where x2 ≈ 3.5197
(numerically computed). Therefore, the fact that metric D ≤ 1 implies 0 ≤ D∗ ≤
e − 1 ≈ 1.718 < x2, resulting (from the above discussion) that f

(
D∗(P,Q)

) ≥ 0
which is equivalent, through (46), to the requested triangle inequality D∗(P,Q) +
D∗(Q,R) ≥ D∗(P,Q).
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Appendix 2

Some introductory definitions from the Statistical Decision Theory are needed.

Definition 2 (Decision Problem and Rules) A general decision problem is defined
to be a triplet (�,D, 1) and a random variable X, known as data, following the
probability distribution F(x | θ), θ ∈ �, with� being a parameter space. Moreover,
θ is called as the state of nature with 1 = 1(θ, d) denoting the loss function, while
d is a decision from the decision space D. A non-randomized decision rule is a

function q(·) such that X ( x q�→ q(x) = d ∈ D, while a randomized decision rule
q(x) specifies a probability distribution according to which a member, say d, of D
is to be chosen.

Definition 3 (Risk Function) The risk function rθ (q) of a decision rule q, for a
decision problem (�,D, 1), is defined by rθ (q) := E

(
1
(
θ, q(X)

))
, when θ is

referring to the true state of nature, as appeared in the expected (or average) loss in
the definition. To assign an order to decision rules, we assume that rθ (q1) > rθ (q2),
for every θ ∈ �, and say that q2 is more preferable than q1.

Now, let F be the class of monotone non-decreasing functions f with f (x) = 0
on I := [0, 1]. Let D∗ be a collection of sub-intervals of I , and Qn be the set of
decision rules q. We try to estimate q(f )with f (x) = 0 and n observations, with the
final decision to be q(f ) ∈ d for a particular d ∈ D∗. Obviously, q(f ) = d ∈ D∗
defines a decision rule with n observations. We also consider the set, say Q∗n, of all
procedures q ∈ Qn for which q(f ) ∈ D. An optimum procedure q∗n is imposed as
a minimax decision procedure, depending on the length L(f, q) of d, with f ∈ F ,
q ∈ Q∗n of the form

sup
f∈F
L
(
f, q∗n

) = inf
q∈Q∗n

sup
f∈F
L(f, q).

Theorem 4 The bisection method is a q∗n minimax procedure.

Proof Consider the iterative procedure xk := (αk−1 + βk−1)/2, k = 2, 3, . . . ,
with initial value x1 := 1/2. We assume that the value αk−1 corresponds to the
largest previously observed value of x, with f (x) = 0 if there is no largest value
for x, and f (x) < 0 if x is the largest value. We assume also that the value βk−1
corresponds to the smallest value of x, for which f (x) = 1 if there is no such x,
and f (x) > 0 if x is the largest value. Let d = [αn, βn] be each time interval.
In such a procedure with n ≥ 1, any procedure q ∈ Q∗n with x1 �= 1/2 shall
provide a larger supf∈F L(f, q). By induction, if we accept that theorem holds
for ν = 1, 2, . . . , n − 1, we shall try to prove it for ν = n. Any procedure
q with n − 1 evaluations at (x1, x2, . . . , xn−1) does best to adopt the xν value
midway between αν−1 and βν−1, both evaluated via (x1, x2, . . . , xn−1). Hence, xν
reaches a minimax length of (αν−1 − βν−1)/2. However, by taking into account
the values x1, x2, . . . , xν−1, then we are in accordance with q∗ν−1 which minimizes
βν−1 − αν−1.
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Multiple Hardy–Littlewood Integral
Operator Norm Inequalities

J. C. Kuang

Abstract How to obtain the sharp constant of the Hardy–Littlewood inequality
remains unsolved. In this paper, the new analytical technique is to convert the
exact constant factor to the norm of the corresponding operator, the multiple
Hardy–Littlewood integral operator norm inequalities are proved. As its general-
izations, some new integral operator norm inequalities with the radial kernel on
n-dimensional vector spaces are established. The discrete versions of the main
results are also given.

Mathematics Subject Classification (2000) 47A30, 26D10

1 Introduction

Throughout this paper, we write

En(α) = {x = (x1, x2, · · · , xn) : xk ≥ 0, 1 ≤ k ≤ n, ‖x‖α = (
n∑
k=1

|xk|α)1/α, α > 0},

En(α) is an n-dimensional vector space, when 1 ≤ α < ∞, En(α) is a normed
vector space. In particular, En(2) is an n-dimensional Euclidean space R

n+.

‖f ‖p,ω = (
∫
En(α)

|f (x)|pω(x)dx)1/p,

Lp(ω) = {f : f is measurable, and‖f ‖p,ω <∞},
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where, ω is a non-negative measurable function on En(α). If ω(x) ≡ 1, we will
denote Lp(ω) by Lp(En(α)), and ‖f ‖p,1 by ‖f ‖p. �(α) is the Gamma function:

�(α) =
∫ ∞

0
xα−1e−xdx (α > 0).

B(α, β) is the Beta function:

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx (α, β > 0).

The celebrated Hardy–Littlewood inequality (see [1], Theorem 401 and [2–4])
asserts that if f and g are non-negative, and 1 < p <∞, 1 < q <∞, 1

p
+ 1
q
≥ 1,

λ = 2− 1
p
− 1
q

, δ < 1− 1
p
, β < 1− 1

q
, δ + β ≥ 0, and δ + β > 0, if 1

p
+ 1
q
= 1,

then
∫ ∞

0

∫ ∞

0

f (x)g(y)

xδyβ |x − y|λ−δ−β dxdy ≤ c(
∫ ∞

0
f pdx)1/p(

∫ ∞

0
gqdx)1/q . (1)

Here, c denotes a positive number depending only on the parameters of the theorem
(here p, q, δ, β). But Hardy was unable to fix the constant c in (1). We note that (1)
is equivalent to

‖T0f ‖p ≤ c‖f ‖p, (2)

where,

T0(f, x) =
∫ ∞

0

1

xδyβ |x − y|λ−δ−β f (y)dy. (3)

Hence, c = ‖T0‖ in (2) is the sharp constant for (1) and (2). Under the above
conditions, Hardy–Littlewood [2] proved that there exists a positive constant c1 such
that

∫ ∞

0

∫ ∞

0

f (x)g(y)

xδyβ |x − y|λ−δ−β dxdy ≤ c1

∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|λ dxdy. (4)

The following Hardy–Littlewood–Pólya inequality was proved in [5] and [6]:

Theorem 1 Let f ∈ Lp(0,∞), g ∈ Lq(0,∞), 1 < p, q < ∞, 1
p
+ 1
q
> 1,

0 < λ < 1, λ = 2− 1
p
− 1
q

, then

∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|λ dxdy ≤ c2‖f ‖p‖g‖q, (5)
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where,

c2 = c2(p, q, λ) = 1

1− λ {(
p

p − 1
)
p(1− 1

q
) + ( q

q − 1
)
q(1− 1

p
)}. (6)

Let

T1(f, x) =
∫ ∞

0

1

|x − y|λ f (y)dy. (7)

Then (5) is equivalent to

‖T1f ‖p1 ≤ c2‖f ‖p, (8)

where, 1 < p < ∞, 1 − 1
p
< λ < 1, 1

p1
= 1

p
+ λ − 1, c2 is given by (6). For a

function f ∈ Lp(Rn), 1 < p <∞, define its potential of order λ as

T2(f, x) =
∫
Rn

1

‖x − y‖λ2
f (y)dy, 0 < λ < n. (9)

Theorem 2 ([6, pp. 412–413]) There exists a constant c3 depending only upon
n, p, and λ, such that

‖T2f ‖p2 ≤ c3‖f ‖p, (10)

where, 1
p2
= 1
p
+ λ
n
− 1.

Theorem 3 ([7–10]) Let f ∈ Lp(Rn), g ∈ Lq(Rn), 1 < p, q < ∞, 0 < λ < n,
1
p
+ 1
q
+ λ
n
= 2, then there exists a constant c4 = c4(p, λ, n) (depending only upon

n, p, and λ), such that
∫
Rn

∫
Rn

f (x)g(y)

‖x − y‖λ2
dxdy ≤ c4‖f ‖p‖g‖q, (11)

where,

c4 ≤ n

pq(n− λ)(
Sn

n
)λ/n{( λ/n

1− (1/p))
λ/n + ( λ/n

1− (1/q) )
λ/n},

and Sn is the surface areas of the unit sphere in R
n. In particular, for p = q = 2n

2n−λ ,

c4 = πλ/2 �(
n−λ

2 )

�(n− λ
2 )
{�(

n
2 )

�(n)
} λn−1

is the best possible constant.

But when p �= q, the best possible value of c4 is also unknown.
In 2017, the author Kuang [14] established the norm inequality of operator T2.
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Theorem 4 ([11]) Let f ∈ Lp(Rn), g ∈ Lq(Rn), 1 < p, q < ∞, 0 < λ <

n, δ + β ≥ 0, 1 − 1
p
− λ
n
< δ

n
< 1 − 1

p
, 1
p
+ 1
q
+ λ+δ+β

n
= 2, then there exists a

constant c5 = c5(p, δ, β, λ, n), such that

∫
Rn

∫
Rn

f (x)g(y)

‖x‖δ2‖y‖β2 ‖x − y‖λ2
dxdy ≤ c5‖f ‖p‖g‖q . (12)

Remark 1 Inequality (12) can be given an equivalent form

∫
Rn

∫
Rn

f (x)g(y)

‖x‖δ2‖y‖β2 ‖x − y‖λ−δ−β2

dxdy ≤ c5‖f ‖p‖g‖q, (13)

then the conditions 1− 1
p
− λ
n
< δ
n
< 1− 1

p
, 1
p
+ 1
q
+ λ+δ+β

n
= 2 are replaced by

δ

n
< 1− 1

p
<
λ

n
− β
n
,

1

p
+ 1

q
+ λ
n
= 2.

The multiple Hardy–Littlewood integral operator T3 defined by

T3(f, x) =
∫
Rn

f (y)

‖x‖δ2‖y‖β2 ‖x − y‖λ−δ−β2

dy. (14)

Then (13) is equivalent to

‖T3f ‖p ≤ c5‖f ‖p. (15)

But, the problem of determining the best possible constants in (13) and (15) remains
unsolved. In this paper, the new analytical technique is to convert the exact constant
factor to the norm c5 = ‖T3‖ of the corresponding operator T3. Hence, we consider
operator norm inequality (15). Without loss of generality, we may consider that the
multiple Hardy–Littlewood integral operator T4 defined by

T4(f, x) =
∫
R
n+

f (y)

‖x‖δ2‖y‖β2 ‖x − y‖λ−δ−β2

dy (16)

and f be a nonnegative measurable function on R
n+, thus, by the triangle inequality,

we have

|‖x‖2 − ‖y‖2| ≤ ‖x − y‖2 ≤ ‖x‖2 + ‖y‖2.

Let

K4(x, y) = (‖x‖δ2‖y‖β2 ‖x − y‖λ−δ−β2 )−1,
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K5(x, y) = (‖x‖δ2‖y‖β2 (‖x‖2 + ‖y‖2)
λ−δ−β)−1,

K6(x, y) = (‖x‖δ2‖y‖β2 (|‖x‖2 − ‖y‖2|)λ−δ−β)−1,

Tj (f, x) =
∫
R
n+
Kj(x, y)f (y)dy, (17)

‖Tj‖ = sup
f �=0

‖Tjf ‖p,ω
‖f ‖p , j = 4, 5, 6,

where, ω is a nonnegative measurable weight function on R
n+. If δ > 0, β > 0, λ−

δ − β > 0, then

T5(f, x) ≤ T4(f, x) ≤ T6(f, x),

and therefore,

‖T5‖ ≤ ‖T4‖ ≤ ‖T6‖. (18)

Thus, we may use the norms ‖T5‖, ‖T6‖ of the operator T5, T6 with the radial kernels
to find the norm inequality of the multiple Hardy–Littlewood integral operator T4.
As their generalizations, we introduce the new integral operator T defined by

T (f, x) =
∫
En(α)

K(‖x‖α, ‖y‖α)f (y)dy, x ∈ En(α), (19)

where, the radial kernel K(‖x‖α, ‖y‖α) is a nonnegative measurable function
defined on En(α)× En(α), which satisfies the following condition:

K(‖x‖α, ‖y‖α) = ‖x‖−λα K(1, ‖y‖α‖x‖−1
α ), x, y ∈ En(α), λ > 0. (20)

Equation (19) includes many famous operators as special cases. In particular, for
n = 1, we have

T (f, x) =
∫ ∞

0
K(x, y)f (y)dy, x > 0, (21)

and

K(x, y) = x−λK(1, yx−1), x, y > 0, λ > 0. (22)
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The kernel in (3)

K(x, y) = 1

xδyβ |x − y|λ−δ−β

satisfies (22). In 2016, the author Kuang [12] proved that if f ∈ Lp(ω0), g ∈
Lq(ω0), 1 < p <∞, 1

p
+ 1
q
= 1, ω0(x) = x1−λ, and

max{ 1

p
, δ + β + 1

q
} < λ < 1+ δ + β < 1+ 1

p
,

then
∫ ∞

0

∫ ∞

0

f (x)g(y)

xδyβ |x − y|λ−δ−β dxdy ≤ c0‖f ‖p,ω0‖g‖q,ω0 ,

which is equivalent to

‖T0f ‖p ≤ c0‖f ‖p,ω0 ,

where, T0 is defined by (3) and

c0 = B(λ− 1

p
, 1− λ+ δ + β)+ B( 1

p
− δ − β, 1− λ+ δ + β)

+B( 1

q
, 1− λ+ δ + β)+ B(λ− δ − β − 1

q
, 1− λ+ δ + β). (23)

We define ω1 = xλ−1, then the above norm inequality is also equivalent to

‖T0f ‖p,ω1 ≤ c0‖f ‖p. (24)

The celebrated Hardy–Littlewood inequality (1) and (2) are important in analysis
mathematics and its applications. In this paper, we give some new improvements
and extensions of (24). As some further generalizations of the above results, the
norm inequalities of the multiple integral operators with the radial kernels on n-
dimensional vector spaces En(α) are established. In particular, using new analytical
techniques, we convert the exact constant factor we are looking for into the norm
of the corresponding operator, under a somewhat different hypothesis, we get lower
and upper bounds of the sharp constant of the multiple Hardy–Littlewood inequality.
Finally, the discrete versions of the main results are also given in Sect. 6.
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2 Main Results

Our main results read as follows.

Theorem 5 Let 1 < p, q <∞, λ ≥ n > 1, 1
p
+ 1
q
+ λ
n
= 2, 0 ≤ δ < 1− 1

q
, 0 ≤

β < 1− 1
p

, and

max{β + 1− 1

q
, δ + n(1− 1

p
)} < λ < min{ δ + β

1− (1/n) ,
δ + β

1− 1
pn(1−(1/q))

}.

If f ∈ Lp(Rn+), f (x) ≥ 0, x ∈ R
n+, ω(x) = ‖x‖p(λ−n)2 , then the multiple Hardy–

Littlewood integral operator T4 is defined by (16): T4 : Lp(Rn+)→ Lp(ω) exists as
a bounded operator and

c3 ≤ ‖T4‖ ≤ c1−(1/p)
1 c

1/p
2 ,

where,

c1 = πn/2

2n−1�(n/2)
{B(n
λ
(

1

q
− 1− β)+ n, 1− n

λ
(λ− δ − β))

+ B(n
λ
(λ− δ − 1

q
+ 1)− n, 1− n

λ
(λ− δ − β))},

c2 = πn/2

2n−1�(n/2)
{B(pn

λ
(1− 1

q
)(1− β − 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))

+ B(pn
λ
(1− 1

q
)(λ− δ − 1+ 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))},

c3 = πn/2

2n−1�(n/2)
B(n(1− 1

p
)− β, λ− δ − n(1− 1

p
)).

For n = 1, we have

Theorem 6 Let 1 < p, q <∞, λ = 2− 1
p
− 1
q

, 0 ≤ β < 1− 1
p
, 0 ≤ δ < 1− 1

q
,

and

max{β + 1− 1

q
, δ + 1− 1

p
} < λ < δ + β

1− 1
p(1−(1/q))

.

If f ∈ Lp(0,∞), f (x) ≥ 0, x ∈ (0,∞), ω(x) = xp(λ−1), then the Hardy–
Littlewood integral operator T0 is defined by (3):T0 : Lp(0,∞)→ Lp(ω) exists as
a bounded operator and

c3 ≤ ‖T0‖ ≤ c1−(1/p)
1 c

1/p
2
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where,

c1 = B(1

λ
(

1

q
− 1− β)+ 1,

δ + β
λ
)+ B(1

λ
(1− δ − 1

q
),
δ + β
λ
)

c2 = B(p
λ
(1− 1

q
)(1− β − 1

p
), 1− (1− δ + β

λ
)p(1− 1

q
))

+ B(p(1− 1

q
)(1− 1

λ
(δ + 1− 1

p
)), 1− (1− δ + β

λ
)p(1− 1

q
)),

c3 = B(1− β − 1

p
, λ− δ − 1+ 1

p
)

Corollary 1 Let 1 < p <∞, 1
p
+ 1
q
= 1,0 ≤ δ < 1

p
, 0 ≤ β < 1

q
, δ+β > 0, λ = 1.

Iff ∈ Lp(0,∞), f (x) ≥ 0, x ∈ (0,∞), then the integral operator T0 is defined
by (3): T0 : Lp(0,∞)→ Lp(0,∞) exists as a bounded operator and

B(
1

p
− δ, 1

q
− β) ≤ ‖T0‖ ≤ B( 1

p
− δ, δ + β)+ B( 1

q
− β, δ + β).

As some further generalizations of the above results, we have

Theorem 7 Let 1 < p < ∞, 1 < q < ∞, δ, β ≥ 0, λ ≥ n, 1
p
+ 1
q
+ λ
n
= 2,

ω(x) = ‖x‖p(λ−n)α , the radial kernel K(‖x‖α, ‖y‖α) satisfies (20).

(i) If

c1 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
(K(1, u))n/λu

n
λ
( 1
q
−1)+n−1

du <∞, (25)

c2 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
(K(1, u))

pn
λ
(1− 1

q
)
u
n(p−1)(q−1)

λq
−1
du <∞, (26)

then the integral operator T is defined by (19):T : Lp(En(α))→ Lp(ω) exists
as a bounded operator and

‖Tf ‖p,ω ≤ c‖f ‖p. (27)

This implies that

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p ≤ c, (28)

where,

c = c(1−(1/p))1 c
1/p
2 . (29)
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(ii) If

c3 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u(1−

1
p
)n−1

du <∞, (30)

then

‖T ‖ ≥ c3. (31)

In particular, for n = 1, by Theorem 7, we get

Theorem 8 Let 1 < p < ∞, 1 < q < ∞, δ, β ≥ 0, 1 ≤ λ = 2 − 1
p
− 1
q

,

ω(x) = xp(λ−1), the radial kernel K(x, y) satisfies (22).

(i) If

c1 =
∫ ∞

0
(K(1, u))1/λu

1
λ
( 1
q
−1)
du <∞, (32)

c2 =
∫ ∞

0
(K(1, u))

p
λ
(1− 1

q
)
u
(p−1)(q−1)

λq
−1
du <∞, (33)

then the integral operator T is defined by (21):T : Lp(0,∞)→ Lp(ω) exists
as a bounded operator and

‖Tf ‖p,ω ≤ c‖f ‖p. (34)

This implies that

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p ≤ c, (35)

where,

c = c(1−(1/p))1 c
1/p
2 . (36)

(ii) If

c3 =
∫ ∞

0
K(1, u)u−

1
p du <∞, (37)

then

‖T ‖ ≥ c3. (38)

For λ = n, we have 1
p
+ 1
q
= 1, and by Theorem 7, we get
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Theorem 9 Let 1 < p < ∞, 1 < q < ∞, 1
p
+ 1
q
= 1, δ, β ≥ 0, the radial kernel

K(‖x‖α, ‖y‖α) satisfies:

K(‖x‖α, ‖y‖α) = ‖x‖−nα K(1, ‖y‖α‖x‖−1
α ), x, y ∈ En(α).

(i) If

c1 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u−(1/p)+n−1du <∞, (39)

c2 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u−(1/p)du <∞, (40)

then the integral operator T is defined by (19): T : Lp(En(α))→ Lp(En(α)) exists
as a bounded operator and

‖Tf ‖p ≤ c‖f ‖p. (41)

This implies that

‖T ‖ = sup
f �=0

‖Tf ‖p
‖f ‖p ≤ c, (42)

where,

c = c(1/q)1 c
(1/p)
2 . (43)

(ii) If

c3 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u(n/q)−1du <∞, (44)

then,

‖T ‖ ≥ c3. (45)

In particular, for n = 1, by Theorem 9, we get

c = c1 = c2 = c3 =
∫ ∞

0
K(1, u)u−(1/p)du, (46)

then by (42), (45), and (46), we get

‖T ‖ = c =
∫ ∞

0
K(1, u)u−(1/p)du. (47)
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Thus, we get the following

Corollary 2 Let 1 < p < ∞, 1
p
+ 1
q
= 1, the kernel K(x, y) satisfies (22). Then

the integral operator T is defined by (21): T : Lp(0,∞) → Lp(0,∞) exists as a
bounded operator and

‖Tf ‖p ≤ c‖f ‖p, (48)

where ‖T ‖ = c = ∫∞0 K(1, u)u−(1/p)du is the sharp constant.

3 Proofs of Theorems

We require the following lemmas to prove our results:

Lemma 1 ([4, 13]) If ak, bk, pk > 0, 1 ≤ k ≤ n,f is a measurable function on
(0,∞), then

∫
R
n+
f
( n∑
k=1

(
xk

ak
)bk
)
x
p1−1
1 · · · xpn−1

n dx1 · · · dxn

=
∏n
k=1 a

pk
k∏n

k=1 bk
×
∏n
k=1 �(

pk
bk
)

�(
∑n
k=1

pk
bk
)

∫ ∞

0
f (t)t

(
∑n
k=1

pk
bk
−1)
dt.

We get the following Lemma 2 by taking ak = 1, bk = α > 0, pk = 1, 1 ≤ k ≤ n,
in Lemma 1.

Lemma 2 Let f be a measurable function on (0,∞), then

∫
En(α)

f (‖x‖αα)dx =
(�(1/α))n

αn�(n/α)

∫ ∞

0
f (t)t(n/α)−1dt. (49)

Proof of Theorem 7

(i) Let

p1 = p

p − 1
, q1 = q

q − 1
,

thus, we have

1

p1
+ 1

q1
+ (1− λ

n
) = 1,

p

q1
+ p(1− λ

n
) = 1.
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By Hölder’s inequality, we get

T (f, x) =
∫
En(α)

K(‖x‖α, ‖y‖α)f (y)dy

=
∫
En(α)

{‖y‖(
n
p1λ
)

α Kn/λ(‖x‖α, ‖y‖α)f p(y)}1/q1

× {Kn/λ(‖x‖α, ‖y‖α)‖y‖
−( n

q1λ
)

α }1/p1{f (y)}p(1− λn )dy
≤ {
∫
En(α)

‖y‖
n
p1λ
α Kn/λ(‖x‖α, ‖y‖α)|f (y)|pdy}1/q1

× {
∫
En(α)

‖y‖−(
n
q1λ
)

α Kn/λ(‖x‖α, ‖y‖α)dy}1/p1‖f ‖p(1−
λ
n
)

p

= I 1/q1
1 × I 1/p1

2 × ‖f ‖p(1−
λ
n
)

p , (50)

where,

I1 =
∫
En(α)

‖y‖(
n
p1λ
)

α Kn/λ(‖x‖α, ‖y‖α)|f (y)|pdy,

I2 =
∫
En(α)

‖y‖−(
n
q1λ
)

α Kn/λ(‖x‖α, ‖y‖α)dy.

In I2, by using Lemma 2, and letting u = ‖x‖−1
α t

1/α , and use (20), (49),
and (25), we get

I2 = ‖x‖−nα
∫
En(α)

‖y‖−(
n
q1λ
)

α Kn/λ(1, ‖y‖α · ‖x‖−1
α )dy

= ‖x‖−nα
(�(1/α))n

αn�(n/α)

∫ ∞

0
t
−( n

q1λα
)
Kn/λ(1, t1/α‖x‖−1

α )× t
n
α
−1dt

= (�(1/α))n

αn−1�(n/α)
‖x‖−(

n
q1λ
)

α

∫ ∞

0
K

n
λ (1, u)u

−( n
q1λ
)+n−1

du

= c1‖x‖
−( n

q1λ
)

α . (51)

Hence, by (50) and (51), we conclude that

‖Tf ‖p,ω = (
∫
En(α)

|T (f, x)|pω(x)dx)1/p ≤ (
∫
En(α)

I

p
q1

1 I

p
p1

2 ‖f ‖p2(1− λ
n
)

p ω(x)dx)1/p

= c
1
p1
1 ‖f ‖p(1−

λ
n
)

p {
∫
En(α)

(

∫
En(α)

‖y‖
n
p1λ
α K

n
λ (‖x‖α, ‖y‖α)|f (y)|pdy)

p
q1

× ‖x‖−
pn

p1q1λ
α ω(x)dx}1/p. (52)
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Using the Minkowski’s inequality for integrals (see [3]):

{
∫
X
(

∫
Y
|f (x, y)|dy)pω(x)dx}1/p ≤

∫
Y
{
∫
X
|f (x, y)|pω(x)dx}1/pdy, 1 ≤ p <∞,

and letting v = ‖y‖αt−(1/α), we obtain

‖Tf ‖p,ω ≤ c
1
p1
1 ‖f ‖p(1−

λ
n
)

p {
∫
En(α)

‖y‖
n
p1λ
α |f (y)|p

× (
∫
En(α)

K
pn
q1λ (‖x‖α, ‖y‖α)‖x‖

− pn
p1q1λ

α ω(x)dx)
q1
p dy}1/q1

= c
1
p1
1 ‖f ‖p(1−

λ
n
)

p {
∫
En(α)

‖y‖
n
p1λ
α |f (y)|p

× (
∫
En(α)

K
pn
q1λ (1, ‖y‖α · ‖x‖−1

α )‖x‖
− pn
q1
− pn
p1q1λ

+p(λ−n)
α dx)

q1
p dy} 1

q1

= c
1
p1
1 ‖f ‖p(1−

λ
n
)

p {
∫
En(α)

‖y‖
n
p1λ
α |f (y)|p

× ( (�(1/α))n
αn�(n/α)

∫ ∞

0
K

pn
q1λ (1, ‖y‖α · t− 1

α )t
− pn
q1α

− pn
λαp1q1

+ p(λ−n)
α t

n
α
−1dt

) q1
p dy} 1

q1

= c
1
p1
1 ‖f ‖p(1−

λ
n
)

p {
∫
En(α)

‖y‖
n
p1λ
α |f (y)|p

× (‖y‖− pn
q1p1λ

α

(�(1/α))n

αn−1�(n/α)

∫ ∞

0
K

pn
q1λ (1, v)v

pn
p1q1λ

−1
dv
) q1
p dy} 1

q1

= c1/p1
1 c

1/p
2 ‖f ‖p(1−

λ
n
)

p ‖f ‖
p
q1
p = c(1−(1/p))1 c

1/p
2 ‖f ‖p.

Thus,

‖Tf ‖p,ω ≤ c‖f ‖p. (53)

(ii) For proving (31), we take

fε(x) = ‖x‖−(n/p)−εα ϕBc(x),

gε(x) = (pε)1/p1{α
n−1�(n/α)

(�(1/α))n
}1/p1‖x‖−

n
p1
−(p−1)ε

α ϕBc(x),

where, ε > 0, B = B(0, 1) = {x ∈ En(α) : ‖x‖α < 1}, ϕBc is the
characteristic function of the set Bc = {x ∈ En(α) : ‖x‖α ≥ 1}, that is

ϕBc(x) =
{

1, x ∈ Bc
0, x ∈ B.
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Thus, we get

‖fε‖p =
( (�(1/α))n

pεαn−1�(n/α)

)1/p
,

‖gε‖p1
p1 = (pε)(

�n(1/α)

αn−1�(n/α)
)−1

∫
Bc
‖x‖−n−(p−1)p1ε

α dx

= (pε) 1

α

∫ ∞

1
t−

pε
α
−1dt = 1.

Using the sharpness in Hölder’s inequality (see [13]):

‖Tf ‖p,ω = sup{|
∫
En(α)

T (f, x)g(x)(ω(x))1/pdx| : ‖g‖p1 ≤ 1},

where, 1 < p <∞, 1
p
+ 1
p1
= 1, thus, if ‖g‖p1 ≤ 1, then

|
∫
En(α)

T (f, x)g(x){ω(x)}1/pdx| ≤ ‖Tf ‖p,ω. (54)

By (54) and (19), we get

‖Tfε‖p,ω ≥
∫
En(α)

T (fε, x)gε(x){ω(x)}1/pdx

=
∫
En(α)

∫
En(α)

K(‖x‖α, ‖y‖α)fε(y)gε(x)‖x‖λ−nα dydx

= (pε)1/p1{α
n−1�(n/α)

(�(1/α))n
}1/p1

×
∫
Bc
{
∫
Bc
K(‖x‖α, ‖y‖α)‖y‖−(n/p)−εα dy}‖x‖−

n
p1
−(p−1)ε+λ−n

α dx. (55)

Letting u = t1/α‖x‖−1
α , and using (20), we have

∫
Bc
K(‖x‖α, ‖y‖α)‖y‖−(n/p)−εα dy

= (�(1/α))n

αn�(n/α)
‖x‖−λα

∫ ∞

1
K(1, t1/α‖x‖−1

α )t
−( n

pα
)− ε

α
+ n
α
−1
dt

= (�(1/α))n

αn−1�(n/α)
‖x‖−λ+

n
p1
−ε

α

∫ ∞

‖x‖−1
α

K(1, u)u
n
p1
−ε−1

du. (56)
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We insert (56) into (55) and use Fubini’s theorem to obtain

‖Tfε‖p,ω ≥ (pε)1/p1{ (�(1/α))
n

αn−1�(n/α)
}1/p

×
∫
Bc
‖x‖−pε−nα (

∫ ∞

‖x‖−1
α

K(1, u)u
n
p1
−ε−1

du)dx

= (pε)1/p1{ (�(1/α))
n

αn−1�(n/α)
}1/p

×
∫ ∞

0
K(1, u)u

n
p1
−ε−1

(

∫ ∞

β(u)

‖x‖−pε−nα dx)du

= (pε)1/p1{ (�(1/α))
n

αn−1�(n/α)
}(1/p)+1 × 1

α

×
∫ ∞

0
K(1, u)u

n
p1
−ε−1

(

∫ ∞

β(u)

t−(pε)/α−1dt)du

= (pε)−(1/p){ (�(1/α))
n

αn−1�(n/α)
}(1/p)+1

×
∫ ∞

0
K(1, u)u

n
p1
−ε−1

(β(u))−(pε)/αdu,

where, β(u) = max{1, u−1}. Thus, we get

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p ≥ ‖Tfε‖p,ω

‖fε‖p

≥ (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u

n
p1
−ε−1

(β(u))−(pε)/αdu. (57)

By letting ε→ 0+ in (57) and using Fatou lemma, we get

‖T ‖ ≥ (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u

n
p1
−1
du = c3.

The proof is complete.

4 Some Applications

As applications, a large number of known and new results have been obtained by
proper choice of kernelK . In this section we present some model applications which
display the importance of our results.
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Example 1 Let h : En(α)× En(α)→ R+ be a measurable function. K7 is defined
by

K7(‖x‖α, ‖y‖α) = h(‖y‖α · ‖x‖−1
α )

‖x‖δα‖y‖βα |‖x‖α − ‖y‖α|λ−δ−β
, (58)

and let

T7(f, x) =
∫
En(α)

h(‖y‖α · ‖x‖−1
α )

‖x‖δα‖y‖βα |‖x‖α − ‖y‖α|λ−δ−β
f (y)dy.

If p, q, λ, and ω satisfy the conditions of Theorem 7, and

c1 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
{ h(u)

uβ |1− u|λ−δ−β }
n
λ u

n
λ
( 1
q
−1)+n−1

du <∞, (59)

c2 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
{ h(u)

uβ |1− u|λ−δ−β }
pn
λ
(1− 1

q
)
u
n
λ
(p−1)(1− 1

q
)−1
du <∞,

(60)

c3 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0

h(u)

uβ |1− u|λ−δ−β u
n(1− 1

p
)−1
du <∞, (61)

then by Theorem 7, we get

c3 ≤ ‖T7‖ ≤ c(1−(1/p))1 c
1/p
2 . (62)

Setting h(u) = 1, we distinguish four cases:

(i) The case n > 1. Let 0 ≤ δ < 1− 1
q

, 0 ≤ β < 1− 1
p

, and

max{β+1− 1

q
, δ+n(1− 1

p
)} < λ< min{1+δ+β, δ + β

1− (1/n) ,
δ + β

1− 1
pn(1−(1/q))

},

then by (59), (60), and (61), we get

c1 = (�(1/α))n

αn−1�(n/α)
{B(n
λ
(

1

q
− 1− β)+ n, 1− n

λ
(λ− δ − β))

+ B(n
λ
(λ− δ − 1

q
+ 1)− n, 1− n

λ
(λ− δ − β))}, (63)

c2 = (�(1/α))n

αn−1�(n/α)
{B(pn

λ
(1− 1

q
)(1− β − 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))

+ B(pn
λ
(1− 1

q
)(λ− δ − 1+ 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))}, (64)
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c3 = (�(1/α))n

αn−1�(n/α)
{B(n(1− 1

p
)− β, 1− λ+ δ + β)

+ B(λ− δ − n(1− 1

p
), 1− λ+ δ + β)}. (65)

(ii) The case n = 1. Let 0 ≤ β < 1− 1
p

,0 ≤ δ < 1− 1
q

,δ + β > 0, and

max{δ + 1− 1

p
, β + 1− 1

q
} < λ < min{1+ δ + β, δ + β

1− 1
p(1−(1/q))

},

then by (59), (60), and (61), we get

c1 = B(1

λ
(

1

q
− 1− β)+ 1,

δ + β
λ
)+ B(1

λ
(1− δ − 1

q
),
δ + β
λ
), (66)

c2 = B(p
λ
(1− 1

q
)(1− β − 1

p
), 1− (1− δ + β

λ
)p(1− 1

q
))

+ B(p(1− 1

q
)(1− 1

λ
(δ + 1− 1

p
)), 1− (1− δ + β

λ
)p(1− 1

q
)), (67)

c3 = B(1−β− 1

p
, 1−λ+δ+β)+B(λ−δ−1+ 1

p
, 1−λ+δ+β). (68)

(iii) The case λ = n, this implies that 1
p
+ 1
q
= 1. Let 0 ≤ δ < min{ 1

p
, n − 1

q
},

0 ≤ β < min{ 1
q
, n− 1

p
}, n− 1 < δ + β, then by (59), (60), and (61), we get

c1 = (�(1/α))n

αn−1�(n/α)
{B(n− 1

p
− β, 1− n+ δ + β)

+ B( 1

p
− δ, 1− n+ δ + β)}, (69)

c2 = (�(1/α))n

αn−1�(n/α)
{B( 1

q
− β, 1− n+ δ + β)

+ B(n− δ − 1

q
, 1− n+ δ + β)}, (70)

c3 = (�(1/α))n

αn−1�(n/α)
{B(n
q
− β, 1− n+ δ + β)

+ B( n
p
− δ, 1− n+ δ + β)}. (71)
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(iv) The case λ = n = 1. Let 0 ≤ δ < 1
p

, 0 ≤ β < 1
q

, δ+β > 0, then by (69), (70),
and (71), we get

‖T7‖ = B( 1

p
− δ, δ + β)+ B( 1

q
− β, δ + β). (72)

Example 2 Let h : En(α)× En(α)→ R+ be a measurable function. K8 is defined
by

K8(‖x‖α, ‖y‖α) = h(‖y‖α · ‖x‖−1
α )

‖x‖δα‖y‖βα(‖x‖α + ‖y‖α)λ−δ−β
, (73)

and let

T8(f, x) =
∫
En(α)

h(‖y‖α · ‖x‖−1
α )

‖x‖δα‖y‖βα(‖x‖α + ‖y‖α)λ−δ−β
f (y)dy.

If p, q, λ, and ω satisfy the conditions of Theorem 7, and

c1 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
{ h(u)

uβ(1+ u)λ−δ−β }
n
λ u

n
λ
( 1
q
−1)+n−1

du <∞, (74)

c2 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
{ h(u)

uβ(1+ u)λ−δ−β }
pn
λ
(1− 1

q
)
u
n
λ
(p−1)(1− 1

q
)−1
du <∞,

(75)

c3 = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
{ h(u)

uβ(1+ u)λ−δ−β }u
n(1− 1

p
)−1
du <∞, (76)

then by Theorem 7, we get

c3 ≤ ‖T8‖ ≤ c(1−(1/p))1 c
1/p
2 .

Setting h(u) = 1, we distinguish four cases:

(i) The case n > 1. Let 0 ≤ δ < 1− 1
q
, 0 ≤ β < 1− 1

p
, and

λ > max{β + 1− 1

q
, δ + n(1− 1

p
)},

then by (74), (75), and (76), we get

c1 = (�(1/α))n

αn−1�(n/α)
B(
n

λ
(

1

q
− 1− β)+ n, n

λ
(λ− δ + 1− 1

q
)− n), (77)
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c2 = (�(1/α))n

αn−1�(n/α)
B(
pn

λ
(1− 1

q
)(1− 1

p
− β), pn

λ
(1− 1

q
)(λ− δ − 1+ 1

p
)),

(78)

c3 = (�(1/α))n

αn−1�(n/α)
B(n(1− 1

p
)− β, λ− δ − n(1− 1

p
)). (79)

(ii) The case n = 1. Let 0 ≤ β < 1 − 1
p

, 0 ≤ δ < 1 − 1
q

, and λ > max{δ + 1 −
1
p
, β + 1− 1

q
}, then by (74), (75), and (76), we get

c1 = B(1

λ
(

1

q
− 1− β)+ 1,

1

λ
(1− δ − 1

q
)), (80)

c2 = B(p
λ
(1− 1

q
)(1− 1

p
− β), p

λ
(1− 1

q
)(λ− δ − 1+ 1

p
)), (81)

c3 = B(1− β − 1

p
, λ− δ − 1+ 1

p
). (82)

(iii) The case λ = n, this implies that 1
p
+ 1
q
= 1. Let 0 ≤ β < 1

q
, 0 ≤ δ <

min{ n
p
, n− 1

q
}, then by (74), (75), and (76), we get

c1 = c2 = (�(1/α))n

αn−1�(n/α)
B(

1

q
− β, n− δ − 1

q
), (83)

c3 = (�(1/α))n

αn−1�(n/α)
B(
n

q
− β, n

p
− δ), (84)

and

c3 ≤ ‖T8‖ ≤ c1. (85)

(iv) The case λ = n = 1. Let 0 ≤ δ < 1
p

, 0 ≤ β < 1
q

, α + β > 0, and

max{β + 1
p
, δ + 1

q
} < 1, then by (83), (84), and (85), we get

‖T8‖ = B( 1

p
− δ, 1

q
− β). (86)
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5 Multiple Hardy–Littlewood Integral Operator
Norm Inequalities

In Examples 1 and 2, setting h(u) = 1, α = 2, thus, En(α) reduces to En(2) = R
n+,

T7, T8 reduces to T6, T5, respectively. Assume f ∈ Lp(Rn+), f (x) ≥ 0, x ∈ R
n+,

1 < p, q < ∞, λ ≥ n, δ, β ≥ 0, 1
p
+ 1
q
+ λ
n
= 2. The multiple Hardy–Littlewood

integral operator T4 is defined by (16):T4 : Lp(Rn+) → Lp(ω), where ω(x) =
‖x‖p(λ−n)2 and

‖T4‖ = sup
f �=0

‖T4‖p,ω
‖f ‖p .

We distinguish four cases:

(i) The case n > 1. Let 0 ≤ δ < 1− 1
q

, 0 ≤ β < 1− 1
p

, and

max{β + 1− 1

q
, δ + n(1− 1

p
)} < λ < min{ δ + β

1− (1/n) ,
δ + β

1− 1
pn(1−(1/q))

},

then by (18), (63), (64) and (79), we get

c3 ≤ ‖T4‖ ≤ c1−(1/p)
1 c

1/p
2 , (87)

where

c1 = πn/2

2n−1�(n/2)
{B(n
λ
(

1

q
− 1− β)+ n, 1− n

λ
(λ− δ − β))

+ B(n
λ
(λ− δ − 1

q
+ 1)− n, 1− n

λ
(λ− δ − β))}, (88)

c2 = πn/2

2n−1�(n/2)
{B(pn

λ
(1− 1

q
)(1− β − 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))

+ B(pn
λ
(1− 1

q
)(λ− δ − 1+ 1

p
), 1− pn

λ
(1− 1

q
)(λ− δ − β))}, (89)

c3 = πn/2

2n−1�(n/2)
B(n(1− 1

p
)− β, λ− δ − n(1− 1

p
)). (90)

(ii) The case n = 1. Let 0 ≤ β < 1− 1
p
, 0 ≤ δ < 1− 1

q
, and

max{δ + 1− 1

p
, β + 1− 1

q
} < λ < δ + β

1− 1
p(1−(1/q))

,
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then by (18), (66), (67) and (82), we get

c3 ≤ ‖T4‖ ≤ c1−(1/p)
1 c

1/p
2 ,

where,

c1 = B(1

λ
(

1

q
− 1− β)+ 1,

δ + β
λ
)+ B(1

λ
(1− δ − 1

q
),
δ + β
λ
), (91)

c2 = B(p
λ
(1− 1

q
)(1− β − 1

p
), 1− (1− δ + β

λ
)p(1− 1

q
))

+ B(p(1− 1

q
)(1− 1

λ
(δ + 1− 1

p
)), 1− (1− δ + β

λ
)p(1− 1

q
)), (92)

c3 = B(1− β − 1

p
, λ− δ − 1+ 1

p
). (93)

(iii) The case λ = n, this implies that 1
p
+ 1
q
= 1. Let 0 ≤ δ < 1

p
, 0 ≤ β < 1

q
, and

max{β + 1

p
, δ + 1

q
} < n < 1+ δ + β,

then by (18), (69), (70), and (84), we get

c3 ≤ ‖T4‖ ≤ c1−(1/p)
1 c

1/p
2 ,

where

c1 = πn/2

2n−1�(n/2)
{B(n− 1

p
− β, 1− n+ δ + β)

+ B( 1

p
− δ, 1− n+ δ + β)}, (94)

c2 = πn/2

2n−1�(n/2)
{B( 1

q
− β, 1− n+ δ + β)

+ B(n− δ − 1

q
, 1− n+ δ + β)}, (95)

c3 = πn/2

2n−1�(n/2)
B(
n

q
− β, n

p
− δ). (96)
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(iv) The case λ = n = 1. Let 0 ≤ δ < 1
p

, 0 ≤ β < 1
q

,δ+β > 0, then by (18), (72),
and (86), we get

B(
1

p
− δ, 1

q
− β) ≤ ‖T4‖ ≤ B( 1

p
− δ, δ + β)+ B( 1

q
− β, δ + β). (97)

We have thus also proved that Theorems 5 and 6 are correct.

6 The Discrete Versions of the Main Results

Let a = {am} be a sequence of real numbers, we define

‖a‖p,ω = {
∞∑
m=1

|am|pω(m)}1/p, lp(ω) = {a = {am} : ‖a‖p,ω <∞}.

If ω(m) ≡ 1, we will denote lp(ω) by lp, and ‖a‖p,1 by ‖a‖p. Defining f,K by
f (x) = am, K(x, y) = K(m, n)(m − 1 ≤ x < m, n − 1 ≤ y < n), respectively,
we obtain the corresponding series form of (21):

T (a,m) =
∞∑
n=1

K(m, n)an. (98)

Then by Theorem 8, we get

Theorem 10 Let 1 < p <∞, 1 < q <∞, δ, β ≥ 0, δ+β > 0, 1 ≤ λ = 2− 1
p
− 1
q

,

ω(m) = mp(λ−1), the kernel K(m, n) satisfies

K(m, n) = m−λK(1, nm−1). (99)

(i) If

c1 =
∫ ∞

0
(K(1, u))

1
λ u

1−q
λq du <∞, (100)

c2 =
∫ ∞

0
(K(1, u))

p
λ
(1− 1

q
)
u
(p−1)(q−1)

λq
−1
du <∞, (101)

then the integral operator T is defined by (98): T : lp → lp(ω) exists as a
bounded operator and

‖T a‖p,ω ≤ c‖a‖p. (102)
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This implies that

‖T ‖ = sup
a �=0

‖T a‖p,ω
‖a‖p ≤ c, (103)

where

c = c(1−(1/p))1 c
1/p
2 . (104)

(ii) If

c3 =
∫ ∞

0
K(1, u)u−

1
p du <∞, (105)

then

‖T ‖ ≥ c3. (106)

For λ = 1, we have 1
p
+ 1
q
= 1 and by Theorem 10, we get

‖T a‖p ≤ c‖a‖p, (107)

where c = ‖T ‖ = ∫∞0 K(1, u)u−(1/p)du is the sharp constant. In particular, let

K(m, n) = 1

mδnβ |m− n|λ−δ−β ,

if 0 ≤ β < 1− 1
p
, 0 ≤ δ < 1− 1

q
, δ + β > 0, and

max{δ + 1− 1

p
, β + 1− 1

q
} < λ < min{1+ δ + β, δ + β

1− 1
p(1−(1/q))

},

then by Example 1, we get

c3 ≤ ‖T ‖ ≤ c1−(1/p)
1 c

1/p
2 , (108)

where c1, c2, and c3 are defined by (66), (67), and (68), respectively.
If λ = 1, that is, 0 ≤ δ < 1

p
, 0 ≤ β < 1

q
, δ + β > 0, then by (72), we have

‖T ‖ = B( 1

p
− δ, δ + β)+ B( 1

q
− β, δ + β). (109)
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Remark 2 In 2016, the author Kuang [12] proved that if a = {am} ∈ lp(ω0), b =
{bn} ∈ lq(ω0), 1 < p <∞, 1

p
+ 1
q
= 1, ω0(m) = m1−λ, and

max{ 1

p
, δ + β + 1

q
} < λ < 1+ β + δ < 1+ 1

p

then

∞∑
m=1

∞∑
n=1

ambn

mδnβ |m− n|λ−δ−β ≤ c0‖a‖p,ω0‖b‖q,ω0 , (110)

where c0 is defined by (23). Inequality (110) is equivalent to

‖T9(a)‖p ≤ c0‖a‖p,ω0 , (111)

where,

T9(a,m) =
∞∑
n=1

an

mδnβ |m− n|λ−δ−β

is the Hardy–Littlewood operator. We define ω1(m) = mλ−1, then the above norm
inequality is also equivalent to

‖T9(a)‖p,ω1 ≤ c0‖a‖p. (112)

Hence, (108) and (109) are new improvements and extensions of (112).

Acknowledgement The author wishes to express his thanks to Professor Bicheng Yang for his
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Norm Inequalities for Generalized
Fractional Integral Operators

J. C. Kuang

Abstract Some new norms of the integral operator with the radial kernel on n-
dimensional vector spaces are deduced. These norms used then to establish some
new norm inequalities for generalized fractional integral operators and the Riesz
potential operators.
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1 Introduction

Throughout this paper, we write

En(α) = {x = (x1, x2, · · · , xn) : xk ≥ 0, 1 ≤ k ≤ n, ‖x‖α = (
n∑
k=1

|xk|α)1/α, α > 0},

En(α) is an n-dimensional vector space, when 1 ≤ α < ∞, En(α) is a normed
vector space. In particular, En(2) is an n-dimensional Euclidean space R

n+.

‖f ‖p,ω = (
∫
En(α)

|f (x)|pω(x)dx)1/p,

Lp(ω) = {f : f is measurable, and‖f ‖p,ω <∞},

where ω is a nonnegative measurable function on En(α). If ω(x) ≡ 1, we will
denote Lp(ω) by Lp(En(α)), and ‖f ‖p,1 by ‖f ‖p. �(α) is the Gamma function:
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�(α) =
∫ ∞

0
xα−1e−xdx (α > 0).

B(α, β) is the Beta function:

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx (α, β > 0).

For a given function 0 : (0,∞) → (0,∞), the generalized fractional integral
operator T0 defined by (see [4])

T0(f, x) =
∫
Rn

0(‖x − y‖2)

‖x − y‖n2
f (y)dy. (1)

We may consider that the integral operator T1 defined by

T1(f, x) =
∫
Rn

0(‖x − y‖2)

‖x − y‖λ2
f (y)dy, λ > 0. (2)

In particular, when 0 ≡ 1, 0 < λ < n, then (2) reduces to the Riesz potential
operator of order λ:

T2(f, x) =
∫
Rn

1

‖x − y‖λ2
f (y)dy. (3)

The following Hardy–Littlewood–Pólya inequality was proved in ([3, 5, 7]):

Theorem 1 Let f ∈ Lp(0,∞), g ∈ Lq(0,∞), 1 < p, q < ∞, 1
p
+ 1
q
> 1,

0 < λ < 1, λ = 2− 1
p
− 1
q

, then

∫ ∞

0

∫ ∞

0

f (x)g(y)

|x − y|λ dxdy ≤ c3‖f ‖p‖g‖q, (4)

where

c3 = c3(p, q, λ) = 1

1− λ {(
p

p − 1
)
p(1− 1

q
) + ( q

q − 1
)
q(1− 1

p
)}. (5)

Let

T3(f, x) =
∫ ∞

0

1

|x − y|λ f (y)dy. (6)

Then (4) is equivalent to

‖T3f ‖p1 ≤ c3‖f ‖p, (7)
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where 1 < p <∞, 1− 1
p
< λ < 1, 1

p1
= 1
p
+ λ− 1, c3 is given by (5), but it is not

asserted that the constant c3 is the best possible.

Theorem 2 ([3], pp. 412–413) If f ∈ Lp(Rn), 1 < p < ∞, 0 < λ < n, then the
Riesz potential operator T2 is defined by (3): T2 : Lp(Rn) → Lp2(Rn) exists as a
bounded operator and

‖T2f ‖p2 ≤ c2‖f ‖p, (8)

where 1
p2
= 1
p
+ λ
n
− 1, and the constant c2 depending only upon n, p, and λ.

Theorem 3 ([6, 7, 12, 13, 16]) Let f ∈ Lp(Rn), g ∈ Lq(Rn), 1 < p, q <∞, 0 <
λ < n, 1

p
+ 1
q
+ λ
n
= 2, then there exists a constant c2 = c2(p, λ, n) (depending

only upon n, p, and λ), such that

∫
Rn

∫
Rn

f (x)g(y)

‖x − y‖λ2
dxdy ≤ c2‖f ‖p‖g‖q, (9)

where

c2 ≤ n

pq(n− λ)(
Sn

n
)λ/n{( λ/n

1− (1/p))
λ/n + ( λ/n

1− (1/q) )
λ/n},

and Sn is the surface areas of the unit sphere in R
n.

In particular, when p = q = 2n
2n−λ ,

c2 = πλ/2 �(
n−λ

2 )

�(n− λ
2 )
{�(

n
2 )

�(n)
} λn−1

is the best possible constant. But when p �= q, the best possible value of c2 is also
unknown. Note that (9) is equivalent to

‖T2f ‖p ≤ c2‖f ‖p. (10)

There are many works about the boundedness of the operator Tj on Lp(Rn) for
1 ≤ p <∞, and their weighted versions, that is,

‖Tjf ‖p,ω1 ≤ cj‖f ‖p,ω2 , j = 0, 1, 2, 3, (11)

where cj > 0, with some appropriate conditions on 0,ω1, ω2. The boundedness
of these operators on more general spaces than Lp(Rn), for example, Orlicz spaces,
Lorentz spaces, generalized Morrey spaces, generalized Campanato spaces and their
weighted versions, as well as on general Banach spaces, has been investigated by
various authors (see, e.g.,[1–5, 10–15, 17–19] and the references cited therein). But,
the problem of determining the best possible constants in (11) remains unsolved. In
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fact, in the research of the boundedness of various operators, c only means a positive
constant independent of the main parameters and may change from one occurrence
to another.

In this paper, by means of the new analysis technique of the sharp constant factor
is changed into the corresponding operator norm

cj = ‖Tj‖ = sup
f �=0

‖Tjf ‖p,ω1

‖f ‖p,ω2

.

Without loss of generality, we may consider that the generalized fractional
integral operator T4 defined by

T4(f, x) =
∫
R
n+

0(‖x − y‖2)

‖x − y‖λ2
f (y)dy, (12)

where 0 : (0,∞) → (0,∞) is increasing and homogeneous of degree 0, thus, by
the triangle inequality, we have

|‖x‖2 − ‖y‖2| ≤ ‖x − y‖2 ≤ ‖x‖2 + ‖y‖2.

This implies that

0(|‖x‖2 − ‖y‖2|) ≤ 0(‖x − y‖2) ≤ 0(‖x‖2 + ‖y‖2).

Let

K4(x, y) = 0(‖x − y‖2)

‖x − y‖λ2
,

K5(x, y) = 0(|‖x‖2 − ‖y‖2|)
(‖x‖2 + ‖y‖2)λ

,

K6(x, y) = 0(‖x‖2 + ‖y‖2)

(|‖x‖2 − ‖y‖2|)λ .

Tj (f, x) =
∫
R
n+
Kj(x, y)f (y)dy, (13)

‖Tj‖ = sup
f �=0

‖Tjf ‖p,ω
‖f ‖p , j = 4, 5, 6,

where ω be a nonnegative measurable weight function on R
n+. If f be a nonnegative

measurable function on R
n+, and λ > 0, then

T5(f, x) ≤ T4(f, x) ≤ T6(f, x),
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and therefore,

‖T5‖ ≤ ‖T4‖ ≤ ‖T6‖. (14)

Thus, we may use the norms ‖T5‖, ‖T6‖ of the operator T5, T6 with the radial kernels
to find the norm inequality of the generalized fractional integral operator T4. In
particular, we may consider that the Riesz potential operator of order λ:

T7(f, x) =
∫
R
n+

1

‖x − y‖λ2
f (y)dy. (15)

As their further generalizations, we introduce the new integral operator T defined
by

T (f, x) =
∫
En(α)

K(‖x‖α, ‖y‖α)f (y)dy, x ∈ En(α), (16)

where the radial kernel K(‖x‖α, ‖y‖α) is a nonnegative measurable function
defined on En(α)× En(α), which satisfies the following condition:

K(‖x‖α, ‖y‖α) = ‖x‖−λα K(1, ‖y‖α‖x‖−1
α ), x, y ∈ En(α), λ > 0. (17)

Equation (16) includes many famous operators as special cases. In particular, for
n = 1, we have

T (f, x) =
∫ ∞

0
K(x, y)f (y)dy, x > 0, (18)

and

K(x, y) = x−λK(1, yx−1), x, y > 0, λ > 0. (19)

In this paper, some new norms

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p

of the integral operator T defined by (16) with the radial kernel on n-dimensional
vector spaces are deduced. These norms used then to establish some new generalized
fractional integral operator norm inequalities and the Riesz potential operator norm
inequalities.
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2 Statement of the Main Results

Our main results read as follows.

Theorem 4 Let 1 < p < ∞, 1
p
+ 1

q
= 1, λ > 0, ω(x) = ‖x‖p(λ−n)2 , and

0 : (0,∞) → (0,∞) be an increasing and homogeneous of degree 0. If f be
a nonnegative measurable function on R

n+, and

c1 = πn/2

2n−1�(n/2)

∫ ∞

0

0(|1− u|)
(1+ u)λ u

n
q
−1
du <∞, (20)

c2 = πn/2

2n−1�(n/2)

∫ ∞

0

0(1+ u)
|1− u|λ u

n
q
−1
du <∞, (21)

then the generalized fractional integral operator T4 is defined by (12): T4 :
Lp(Rn+)→ Lp(ω) exists as a bounded operator and

c1‖f ‖p ≤ ‖T4f ‖p,ω ≤ c2‖f ‖p. (22)

This implies that

c1 ≤ ‖T4‖ = sup
f �=0

‖T4f ‖p,ω
‖f ‖p ≤ c2, (23)

where c1 and c2 are defined by (20) and (21), respectively.
In particular, for n = 1, we get

∫ ∞

0

0(|1− u|)
(1+ u)λ u

−( 1
p
)
du ≤ ‖T4‖ ≤

∫ ∞

0

0(1+ u)
|1− u|λ u

−( 1
p
)
du.

In Theorem 4, setting 0 ≡ 1, we get

Corollary 1 Suppose that p, q, λ, ω, and f are as in Theorem 4, and 0 < n
q
< λ <

1, then the Riesz potential operator T7 is defined by (15): T7 : Lp(Rn+) → Lp(ω)

exists as a bounded operator and

c1‖f ‖p ≤ ‖T7f ‖p,ω ≤ c2‖f ‖p. (24)

This implies that

c1 ≤ ‖T7‖ = sup
f �=0

‖T7f ‖p,ω
‖f ‖p ≤ c2, (25)
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where

c1 = πn/2

2n−1�(n/2)
B(
n

q
, λ− n

q
), (26)

c2 = πn/2

2n−1�(n/2)
{B(n
q
, 1− λ)+ B(λ− n

q
, 1− λ)}. (27)

In particular, for n = 1, we get

B(
1

q
, λ− 1

q
) ≤ ‖T7‖ ≤ B( 1

q
, 1− λ)+ B(λ− 1

q
, 1− λ).

As some further generalizations of the above results, we have

Theorem 5 Let 1 < p <∞, 1
p
+ 1
q
= 1, λ > 0, ω(x) = ‖x‖p(λ−n)α , and the radial

kernel K(‖x‖α, ‖y‖α) satisfies (17). If

c = (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u

n
q
−1
du <∞, (28)

then the integral operator T is defined by (16): T : Lp(En(α))→ Lp(ω) exists as
a bounded operator and

‖Tf ‖p,ω ≤ c‖f ‖p, (29)

where

c = ‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p (30)

be the sharp constant defined by (28).

3 Proof of Theorems

Theorem 4 is proved in Sect. 5. In order to prove Theorem 5, we require the
following Lemmas:

Lemma 1 ([8, 9, 19]) If ak, bk, pk > 0, 1 ≤ k ≤ n, f is a measurable function on
(0,∞), then

∫
R
n+
f
( n∑
k=1

(
xk

ak
)bk
)
x
p1−1
1 · · · xpn−1

n dx1 · · · dxn
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=
∏n
k=1 a

pk
k∏n

k=1 bk
×
∏n
k=1 �(

pk
bk
)

�(
∑n
k=1

pk
bk
)

∫ ∞

0
f (t)t

(
∑n
k=1

pk
bk
−1)
dt.

We get the following Lemma 2 by taking ak = 1, bk = α > 0, pk = 1, 1 ≤ k ≤ n,
in Lemma 1.

Lemma 2 Let f be a measurable function on (0,∞), then

∫
En(α)

f (‖x‖αα)dx =
(�(1/α))n

αn�(n/α)

∫ ∞

0
f (t)t(n/α)−1dt. (31)

Proof of Theorem 5. By Hölder’s inequality, we get

T (f, x) =
∫
En(α)

K(‖x‖α, ‖y‖α)f (y)dy

=
∫
En(α)

‖y‖−(
n
pq
)

α {K(‖x‖α, ‖y‖α)}1/q‖y‖(
n
pq
)

α {K(‖x‖α, ‖y‖α)}1/pf (y)dy

≤ {
∫
En(α)

‖y‖−(
n
p
)

α K(‖x‖α, ‖y‖α)dy}1/q

×{
∫
En(α)

‖y‖n/qα K(‖x‖α, ‖y‖α)|f (y)|pdy}1/p

= I 1/q
1 × I 1/p

2 . (32)

In I1, by using lemma 2 and letting u = ‖x‖−1
α t

1/α , we get

I1 =
∫
En(α)

‖y‖−(n/p)α K(‖x‖α, ‖y‖α)dy

= ‖x‖−λα
(�(1/α))n

αn�(n/α)

∫ ∞

0
t
−( n

pα
)
K(1, ‖x‖−1

α t
1/α)× t ( nα )−1dt

= (�(1/α))n

αn−1�(n/α)
‖x‖(n/q)−λα

∫ ∞

0
K(1, u)u(n/q)−1du

= c‖x‖(n/q)−λα . (33)

Hence, by (32), (33) and the Fubini theorem and letting v = ‖y‖αt−(1/α), we
conclude that

‖Tf ‖p,ω = (
∫
En(α)

|T (f, x)|pω(x)dx)1/p ≤ (
∫
En(α)

I
p/q

1 I2ω(x)dx)
1/p

= c1/q {
∫
En(α)

‖x‖(
n
q
−λ) p

q
α

( ∫
En(α)

‖y‖
n
q
α K(‖x‖α, ‖y‖α)|f (y)|pdy

)‖x‖p(λ−n)α dx}1/p
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= c1/q {
∫
En(α)

‖y‖
n
q
α

( ∫
En(α)

‖x‖(
n
q
−λ)(p−1)+p(λ−n)

α K(‖x‖α, ‖y‖α)dx
)|f (y)|pdy}1/p

= c1/q {
∫
En(α)

‖y‖
n
q
α

( (�(1/α))n
αn�(n/α)

∫ ∞

0
t
n
αq
− n
α K(1, t−(1/α)‖y‖α)t nα−1dt

)|f (y)|pdy}1/p

= c1/q {
∫
En(α)

|f (y)|pdy}1/p × { (�(1/α))
n

αn−1�(n/α)

∫ ∞

0
K(1, v)v(

n
q
−1)
dv}1/p

= c‖f ‖p. (34)

This implies that

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p ≤ c. (35)

To prove the opposite inequality ‖T ‖ ≥ c, we take

fε(x) = ‖x‖−(n/p)−εα ϕBc(x),

gε(x) = (pε)1/q{α
n−1�(n/α)

(�(1/α))n
}1/q‖x‖−(

n
q
)−(p−1)ε

α ϕBc(x),

where ε > 0, B = B(0, 1) = {x ∈ En(α) : ‖x‖α < 1}, ϕBc is the characteristic
function of the set Bc = {x ∈ En(α) : ‖x‖α ≥ 1}, that is

ϕBc(x) =
{

1, x ∈ Bc
0, x ∈ B.

Thus, we get

‖fε‖p =
( (�(1/α))n

pεαn−1�(n/α)

)1/p
, ‖gε‖q = 1.

Using the sharpness in Hölder’s inequality (see [8]):

‖Tf ‖p,ω = sup{|
∫
En(α)

T (f, x)g(x){ω(x)}1/pdx| : ‖g‖q ≤ 1},

where 1 < p <∞, 1
p
+ 1
q
= 1, thus, if ‖g‖q ≤ 1, then

|
∫
En(α)

T (f, x)g(x){ω(x)}1/pdx| ≤ ‖Tf ‖p,ω. (36)
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Hence, By (36) and (16), we get

‖Tfε‖p,ω ≥
∫
En(α)

T (fε, x)gε(x){ω(x)}1/pdx

=
∫
En(α)

∫
En(α)

K(‖x‖α, ‖y‖α)fε(y)gε(x)‖x‖λ−nα dydx

= (pε)1/q {α
n−1�(n/α)

(�(1/α))n
}1/q

×
∫
Bc
{
∫
Bc
K(‖x‖α, ‖y‖α)‖y‖−(n/p)−εα dy}‖x‖−(n/q)−(p−1)ε+λ−n

α dx. (37)

Letting u = t1/α‖x‖−1
α , and using (31), we have

∫
Bc
K(‖x‖α, ‖y‖α)‖y‖−(n/p)−εα dy

= ‖x‖−λα
(�(1/α))n

αn�(n/α)

∫ ∞

1
K(1, t1/α‖x‖−1

α )t
( n
qα
)− ε

α
+ n
α
−1
dt

= (�(1/α))n

αn−1�(n/α)
‖x‖

n
q
−λ−ε
α

∫ ∞

‖x‖−1
α

K(1, u)u(n/q)−ε−1du. (38)

We insert (38) into (37) and use Fubini’s theorem to obtain

‖Tfε‖p,ω ≥ (pε)1/q{ (�(1/α))
n

αn−1�(n/α)
}1/p

×
∫
Bc
‖x‖−pε−nα (

∫ ∞

‖x‖−1
α

K(1, u)u(n/q)−ε−1du)dx

≥ (pε)1/q{ (�(1/α))
n

αn−1�(n/α)
}1/p

×
∫ ∞

0
K(1, u)u(n/q)−ε−1(

∫ ∞

β(u)

‖x‖−pε−nα dx)du

= (pε)1/q{ (�(1/α))
n

αn−1�(n/α)
}(1/p)+1

× 1

α

∫ ∞

0
K(1, u)u(n/q)−ε−1(

∫ ∞

β(u)

t−(pε)/α−1dt)du

= (pε)−(1/p){ (�(1/α))
n

αn−1�(n/α)
}(1/p)+1

×
∫ ∞

0
K(1, u)u(n/q)−ε−1(β(u))−(pε)/αdu,
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where β(u) = max{1, u−1}. Thus, we get

‖T ‖ = sup
f �=0

‖Tf ‖p,ω
‖f ‖p ≥ ‖Tfε‖p,ω

‖fε‖p

≥ (�(1/α))n

αn−1�(n/α)

×
∫ ∞

0
K(1, u)u(n/q)−ε−1(β(u))−(pε)/αdu. (39)

By letting ε→ 0+ in (39) and using the Fatou lemma, we get

‖T ‖ ≥ (�(1/α))n

αn−1�(n/α)

∫ ∞

0
K(1, u)u

n
q
−1
du = c.

The proof is complete.

4 Some Applications

As applications, a large number of known and new results have been obtained by
proper choice of kernel K . In this section we present some model and interesting
applications which display the importance of our results. Also these examples are
of fundamental importance in analysis.

Example 1 Let 1 < p < ∞, 1
p
+ 1
q
= 1, λ > 0, ω(x) = ‖x‖p(λ−n)α , and 0 :

(0,∞) → (0,∞) be an increasing and homogeneous of degree 0. Take K to be
defined by

K(‖x‖α, ‖y‖α) = 0(|‖x‖α − ‖y‖α|)
(‖x‖α + ‖y‖α)λ , (40)

and let

T8(f, x) =
∫
En(α)

0(|‖x‖α − ‖y‖α|)
(‖x‖α + ‖y‖α)λ f (y)dy.

By Theorem 5, we get

c = ‖T8‖ = (�(1/α))n

αn−1�(n/α)

∫ ∞

0

0(|1− u|)
(1+ u)λ u

(n/q)−1du. (41)
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In particular, for n = 1, we get

c = ‖T8‖ =
∫ ∞

0

0(|1− u|)
(1+ u)λ u

−(1/p)du.

For 0 ≡ 1, if λ > n/q, then by (41), we get

c = ‖T8‖ = (�(1/α))n

αn−1�(n/α)

∫ ∞

0

u(n/q)−1

(1+ u)λ du

= (�(1/α))n

αn−1�(n/α)
B(
n

q
, λ− n

q
). (42)

In particular, for n = 1, we get

c = ‖T8‖ = B( 1

q
, λ− 1

q
).

Example 2 Let 1 < p < ∞, 1
p
+ 1
q
= 1, λ > 0, ω(x) = ‖x‖p(λ−n)α , and 0 :

(0,∞) → (0,∞) be an increasing and homogeneous of degree 0. Take K to be
defined by

K(‖x‖α, ‖y‖α) = 0(‖x‖α + ‖y‖α)
(|‖x‖α − ‖y‖α|)λ , (43)

and let

T9(f, x) =
∫
En(α)

0(‖x‖α + ‖y‖α)
|‖x‖α − ‖y‖α|λ f (y)dy.

By Theorem 5, we get

c = ‖T9‖ = (�(1/α))n

αn−1�(n/α)

∫ ∞

0

0(1+ u)
|1− u|λ u

(n/q)−1du. (44)

In particular, for n = 1, we get

c = ‖T9‖ =
∫ ∞

0

0(1+ u)
|1− u|λ u

−(1/p)du.

For 0 ≡ 1, if 0 < n/q < λ < 1, then by (44), we get

c = ‖T9‖ = (�(1/α))n

αn−1�(n/α)

∫ ∞

0

u(n/q)−1

|1− u|λ du

= (�(1/α))n

αn−1�(n/α)
{B(n
q
, 1− λ)+ B(λ− n

q
, 1− λ)}. (45)
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In particular, for n = 1, we get

c = ‖T9‖ = B( 1

q
, 1− λ)+ B(λ− 1

q
, 1− λ).

Remark 1 Defining other forms of the kernel K , we can obtain new results of
interest.

5 Some Integral Operator Norm Inequalities

In Examples 1–2, setting α = 2, thus,En(α) reduces toEn(2) = R
n+, T8, T9 reduces

to T5, T6, respectively. Assume f ∈ Lp(Rn+), f (x) ≥ 0, x ∈ R
n+, 1 < p, q < ∞,

1
p
+ 1
q
= 1. 0 : (0,∞)→ (0,∞) be an increasing and homogeneous of degree 0,

ω(x) = ‖x‖p(λ−n)2 , then by (41) and (44), we get

‖T5‖ = πn/2

2n−1�(n/2)

∫ ∞

0

0(|1− u|)
(1+ u)λ u

(n/q)−1du; (46)

‖T6‖ = πn/2

2n−1�(n/2)

∫ ∞

0

0(1+ u)
|1− u|λ u

(n/q)−1du. (47)

In particular, for n = 1, we get

‖T5‖ =
∫ ∞

0

0(|1− u|)
(1+ u)λ u

−(1/p)du;

‖T6‖ =
∫ ∞

0

0(1+ u)
|1− u|λ u

−(1/p)du.

For 0 ≡ 1, if 0 < n/q < λ < 1, then by (46) and (47), we get

‖T5‖ = πn/2

2n−1�(n/2)

∫ ∞

0

u(n/q)−1

(1+ u)λ du

= πn/2

2n−1�(n/2)
B(
n

q
, λ− n

q
); (48)

‖T6‖ = πn/2

2n−1�(n/2)

∫ ∞

0

u(n/q)−1

|1− u|λ du

= πn/2

2n−1�(n/2)
{B(n
q
, 1− λ)+ B(λ− n

q
, 1− λ)}. (49)
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In particular, for n = 1, we get

‖T5‖ = B( 1

q
, λ− 1

q
); (50)

‖T6‖ = B( 1

q
, 1− λ)+ B(λ− 1

q
, 1− λ). (51)

By using (14), (46), (47), (48), (49) and (50), (51), we have thus also proved that
Theorem 4 and Corollary 1 are correct.
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Application of Davies–Petersen Lemma

Manish Kumar and R. N. Mohapatra

Abstract In this paper we have shown how use of a simple lemma first proved
by Davies and Petersen and later extended by Mohapatra and Russell can be
used effectively to prove three main results which can yield integral inequalities
of Hardy and Copson. We have also shown how those results can be used to
obtain many known results obtained by Levinson, Pachpatte, Chan, etc. by carefully
manipulating these three theorems. A look at this paper will also reveal that there can
be simple proofs of sophisticated results after they have been proved by exploiting
the important points that make things work. It does not take away the value of
the original contributions. We have also mentioned that it has not been possible
to deduce other known results by using our results.

Mathematics Subject Classification (2010) 26 D15

1 Introduction

With a view to providing an alternative proof of the discrete version of Hilbert’s
inequality G. H. Hardy proved the following inequality:

Theorem 1.1 ([13] p. 239, Theorem 326) If p > 1, an > 0, n = 0, 1, 2, . . . , then

∞∑
n=0

(
(n+ 1)−1

n∑
k=0

ak

)p
≤ qp

∞∑
n=0

a
p
n , (1)
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with 1
p
+ 1
q
= 1. The constant qp on the right-hand side of (1) is best possible. In

[23, Theorem 1] Davies and Petersen proved the following result.

Theorem 1.2 ([7], Theorem 1) Suppose A = (amn) be an infinite matrix with

amn > 0 (n ≤ m), amn = 0 (n > m),m, n = 1, 2, . . . , (2)

Further assume that

0 ≤ amn
akn

≤ K, (0 ≤ n ≤ k ≤ m) (3)

and amn
akn

is a decreasing sequence as n increases in (3) with 0 ≤ n ≤ k ≤ m.
Let us also assume that there exists an f (m) (f (m) → ∞ as m → ∞) such

that the matrix (cmn) defined by cmn = f (m)amn (n = 1, 2, . . . ) has properties (2)
and (3) mentioned before with perhaps a different constant k in (2).

If xn ≥ 0 (n = 1, 2, . . . , ) and if

∞∑
k=1

ak1 {f (k)}1−p (4)

converges and

∞∑
k=n
ak1 {f (k)}1−p ≤ Man1 {f (n)}1−p , (5)

then

∞∑
m=1

{
m∑
n=1

amnxn

}p
≤ C

∞∑
m=1

{xmf (m)amn}p , (6)

where p is an integer and C is an arbitrary constant.
In [9, Theorem 2], Davies and Petersen extended Theorem 1.2 to all real p > 1.

This extension was, in fact, a consequence of the following lemma which we name
as Davies–Petersen lemma for sequences.

Lemma 1.1 ([9], Lemma 1) If p > 1 and zn ≥ 0 (n = 1, 2, . . . , ), then

(
n∑
k=1

zk

)p
≤ p

n∑
k=1

zk

⎛
⎝ k∑
j=1

zj

⎞
⎠
p−1

. (7)

Using this lemma, Davies and Petersen proved an analogue of the Theorem 1.2
for all real p > 1. Johnson and Mohapatra [15] proved discrete inequalities for a
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class of matrices and called such inequalities as Hardy–Davies–Petersen inequality.
For details, we refer the reader to [15].

An analogue of the Lemma 1.1 for integrals was proved in [9, Lemma 2] by
Davies and Petersen.

Lemma 1.2 ([9], Lemma 2) Let p > 1 and z(x) be any positive integral function
of x. Then

(∫ x

0
z(x)dx

)p
= p

∫ x

0
z(x)

(∫ x

0
z(t)dt

)p−1

dx. (8)

Davies and Petersen used Lemma 1.2 to prove an integral inequality (see [9,
Theorem 4]) involving μ-kernel which is defined below.

Let an μ-kernel a(x, y) satisfy the following conditions:

⎧⎨
⎩
a(x, y) > 0 (y ≤ x)

(x, y) ≥ 0.
a(x, y) = 0 (y > x)

(9)

Also

0 ≤ a(x0, y)

a(x1, y)
≤ K (0 ≤ y ≤ x1 ≤ x0), (10)

whereK is an absolute constant. Further let there exist a function f (x) (f (x)→∞
as x → ∞) such that c(x, y) = f (x)a(x, y) is an μ-kernel. Davies and Petersen
proved

Theorem 1.3 ([9], Theorem 4) Let a(x, y) be an μ-kernel and u(y) ≥ 0 (y ≥ 0).
Then if

∫ ∞

0
{f (x)}−p dx (11)

exists and
∫ ∞

x0

{f (x)}−p dx ≤ M [f (x0)]
1−p , (12)

we have

∫ ∞

0

{∫ x

0
a(x, y)u(y)dy

}p
dx ≤ C

∫ ∞

0
{u(x)f (x)a(x, x)}p dx, (13)

where p ≥ 1 and C is a constant which depends on p.
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The intent of Davies and Petersen in proving Theorem 1.3 was to provide a
generalization of Hardy’s integral inequality:

Theorem 1.4 ([13], Theorem 327) If p > 1, f (x) ≥ 0 for 0 < x <∞
∫ ∞

0

(
1

x

∫ x

0
f (t)dt

)p
dx < qp

∫ ∞

0
f (x)pdx (14)

unless f (x) is identically zero, with q = p/(p − 1).

Over the years Theorem 1.4 has been generalized in several directions and many
research papers have been written on this inequality (see [1–12, 14–18, 20–32] and
all the references in those papers).

Mohapatra and Russell [21] mentioned Lemma 1.2 as Davies–Petersen lemma
and remarked what happens when 0 < p < 1. They wrote the following:

Lemma 1.3 ([21], Lemma 1)

(i) Let 1 ≤ p <∞ and Z(t) be non-negative and integrable over 0 < t < x. Then

(∫ x

0
Z(t)dt

)p
= p

∫ x

0
Z(t)

{∫ t

0
Z(u)du

}p−1

dt. (15)

The result holds for 0 < p < 1 provided
∫ t

0 Z(u)du > 0 for 0 < t < x.
(ii) Let 1 ≤ p <∞ and Z(t) be an integrable function for x < t <∞. Then

(∫ ∞

x

Z(t)dt

)p
= p

∫ ∞

x

Z(t)

{∫ ∞

t

Z(u)du

}p−1

dt. (16)

The result holds for 0 < p < 1 provided that
∫∞
t
Z(u)du > 0 for x < t <∞.

Proof of (15) was given by Davies and Petersen [9] and proof of (16) was given
by Mohapatra and Russell (see [21, Lemma 1, p. 201]).

The main objective of this chapter is to use the above lemma (hereafter called
as Davies–Petersen lemma) to obtain three theorems which will yield many known
results as corollaries.

2 Known Integral Inequalities

In this section we give a number of generalizations of Hardy’s, Copson’s and
Levinson’s integral inequalities. The results of Copson and Levinson were proved
to provide generalization of Hardy’s integral inequality. We state these below:

Theorem 2.1 (Hardy [13]) Let p > 1, c �= 1, and h(x) be non-negative and
Lebesgue integrable on [0, a] or [a,∞] for every a > 0 according as c > 1 or
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c < 1. If, we define,

F(x) =
⎧⎨
⎩
∫ x

0 h(t)dt, c > 1;
∫∞
x
h(t)dt, 0 < c < 1;

then

∫ ∞

0
x−c {F(x)}p dx ≤

(
p

|c − 1|
)p ∫ ∞

0
x−c {xh(x)}p dx. (17)

In [8] Copson has proved integral inequality with a view to generalizing Hardy’s
inequality. One such result is

Theorem 2.2 ([8], Theorem 1) Let φ(x), f (x) be non-negative for x ≥ 0 and be
continuous in [0,∞). Let p ≥ 1, c > 1. If 0 < b ≤ ∞ and

∫ b

0
F(x)pΦ(x)−cφ(x)dx (18)

converges at the lower limit of integration, then

∫ b

0
F(x)pΦ(x)−cφ(x)dx ≤

(
p

c − 1

)p ∫ b

0
f (x)pΦ(x)p−cφ(x)dx (19)

where Φ(x) = ∫ x
o
φ(t)dt , F(x) = ∫ x

o
f (t)φ(t)dt .

Remark 2.1 The case c = p > 1 and φ(x) = 1 is Hardy’s classical integral inequal-
ity [13, Theorem 327] which inspired numerous researchers including Copson. In
fact, Theorem 2.2 mentioned above is one of the six inequalities established in [8].
Beesack [2] has proved six similar inequalities two of which provide alternative
proofs of [8, Theorem 5 and Theorem 6]. Independent generalization of Copson’s
inequalities has been done by Love [18], Mohapatra and Russel [21], and Mohapatra
and Vajravelu [22].

With a view to generalizing Hardy’s inequality, Levinson established the follow-
ing results

Theorem 2.3 ([17], Theorem 4, p. 329) Let p > 1, f (x) ≥ 0 and let r(x) be
positive and locally absolutely continuous in (0,∞). In addition, let

p − 1

p
+ xr

′(x)
r(x)

≥ 1

λ
(20)

for some λ > 0 and for almost all x. If
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H(x) =
∫ x

0 r(t)f (t)dt

xr(x)
, (21)

then
∫ ∞

0
H(x)pdx ≤ λp

∫ ∞

0
f (x)pdx. (22)

Theorem 2.4 ([1], Theorem 5, p. 393) Let p > 1, f (x) ≥ 0, r(x) be locally
absolutely continuous for x > 0. Let

xr ′(x)
r(x)

− p − 1

p
≥ 1

λ
(23)

for some λ > 0. If

J (x) = r(x)
x

∫ ∞

x

f (t)

r(t)
dt, (24)

then
∫ ∞

0
J (x)pdx ≤ λp

∫ ∞

0
f (x)pdx, (25)

Remark 2.2 If in Theorem 2.4, we take r(x) = 1 and λ = p
p−1 , then we get Hardy’s

integral inequality [13, Theorem 327]. If r(x) = x and λ = p, then (25) reduces to
the dual inequality related to that of Hardy.

3 Main Results

In this section, we shall prove three integral inequalities from which we shall be able
to deduce a number of known results as corollaries. These theorems will be proved
by using Davies–Petersen lemma and careful use of Hölder inequalities.

Since some of the research papers consider the interval of integration as (a, b)
in place of (0,∞), our next theorem will be established for (a, b). Although these
were proved in [6], we give complete proofs and apply them to get many known
results as corollaries.

Thus, this chapter shows how simple techniques can yield nice results.

Theorem 3.1 (See [6], Theorem A) Let 0 ≤ a < b ≤ ∞ and h be a non-negative
function which is Lebesgue integrable in (x, b), and u is a positive function with

U(x) =
∫ x

a

u(t)dt (26)
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is finite for each x in a < x < b. Then the following inequality holds:

(i) When 1 < p <∞,

∫ b

a

u(x)

(∫ b

x

h(t)dt

)p
dx ≤ pp

∫ b

a

u(x)

(
h(x)U(x)

u(x)

)p
dx. (27)

(ii) If 0 < p < 1, then the inequality ≤ is replaced by ≥. If p = 1, then the
inequality (27) reduces to an equality.

Proof

Case 1 If p = 1,

∫ b

a

u(x)

(∫ b

x

h(t)dt

)
dx =

∫ b

a

h(t)

(∫ t

a

u(x)dx

)
dt =

∫ b

a

h(t)U(t)dt. (28)

This completes the proof for the case p = 1.

Case 2 If 1 < p < ∞, if the left-hand side of (27) is infinite, then apply the
following with b replaced by c with a < c < b, and the let c approach b from
below.

Using Davies–Petersen lemma (Lemma 1.7),

∫ b

a

u(x)

(∫ b

x

h(t)dt

)p
dx = p

∫ b

a

u(x)

∫ b

x

h(t)dt

(∫ b

t

h(s)ds

)p−1

dx

= p
∫ b

a

h(t)

(∫ b

t

h(s)ds

)p−1

dt

∫ t

a

u(x)dx

= p
∫ b

a

h(t)U(t)

(∫ b

t

h(s)ds

)p−1

dt. (29)

Now, let us write the expressing on the right-hand side of (29) as

p

∫ b

a

h(t)U(t)

u(t)
u(t)

(∫ b

t

h(s)ds

)p−1

dt (30)

and apply Hölder’s inequality to (30).
Hence, (30) is not greater than

p

[∫ b

a

u(t)

(∫ b

t

h(s)ds

)p
dt

] 1
p′ [∫ b

a

u(t)

(
h(t)U(t)

u(t)

)p
dt

] 1
p

. (31)
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Now, collecting results from (29)–(31), we have, after dividing both sides by[∫ b
a

(∫ b
t
h(s)ds

)p
u(t)dt

] 1
p′

[∫ b

a

u(x)

(∫ b

x

h(t)dt

)p
dx

] 1
p′
≤ p

[∫ b

a

u(t)

(
h(t)U(t)

u(t)

)p
dt

] 1
p

, (32)

which yields the required result for Theorem 1.1, when 1 < p <∞.

Case 3 When 0 < p < 1. In this case the Hölder inequality applied to the
expression (30) in case 2 yields

[∫ b

a

u(x)

(∫ b

x

h(t)dt

)p
dx

] 1
p

≥ p
[∫ b

a

u(t)

(
h(t)U(t)

u(t)

)p
dt

] 1
p

and the result follows.
Note that in cases 2 and 3, if the expression by which we are dividing both

sides is zero, then the inequality is automatically satisfied because both sides of
the inequality to be proved are zero. ��
Theorem 3.2 (See [6], Theorem B) Let 0 ≤ a < b ≤ ∞, h be a non-negative
function which is Lebesgue integrable in a < x < b and u be a positive function
such that

U(x) =
∫ b

x

u(t)dt

is finite for a < x < b. Then for 1 ≤ p <∞,

∫ b

a

u(x)

(∫ x

a

h(t)dt

)p
dx ≤ pp

∫ b

a

u(x)

(
h(x)U(x)

u(x)

)p
dx. (33)

If 0 < p < 1, then the inequality in (33) becomes ≥.

Proof

Case 1 p = 1. In this case change of order of integration for the double integral on
the left-hand side of (33) yields the equality.

Case 2 1 < p < ∞, if the left-hand side of (33) is infinite, we apply the proof
given below with a replaced by c, a < c < b and then let c→ a from above. Hence
we assume, for the rest of the proof, the left-hand side of (33) as finite.

By Davies–Petersen Lemma (Lemma 1.2), we have
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∫ b

a

u(x)

(∫ x

a

h(t)dt

)p
dx = p

∫ b

a

u(x)

[∫ x

a

h(t)

(∫ t

a

h(s)ds

)p−1

dt

]
dx

= p
∫ b

a

h(t)

(∫ t

a

h(s)ds

)p−1 ∫ b

t

u(x)dx dt (34)

By applying Hölder’s inequality in the same manner, as in the proof of Theorem 3.1,
we obtain with p′ = p/(p − 1),

∫ b

a

u(x)

(∫ x

a

h(t)dt

)p
dx ≤ p

[∫ b

a

u(t)

(∫ t

a

h(s)ds

)p
dt

] 1
p′

[∫ b

a

u(t)

(
h(t)U(t)

u(t)

)p
dt

] 1
p

. (35)

Since the integral
∫ b
a
u(t)

(∫ t
a
h(s)ds

)p
dt is finite, we divide both sides of (35) by

that integral to get

[∫ b

a

u(x)

(∫ x

a

h(t)dt

)p
dx

] 1
p

≤ p
[∫ b

a

u(t)

(
h(t)U(t)

u(t)

)p
dt

] 1
p

. (36)

Raising both sides of (36) to power p the result follows.

Case 3 0 < p < 1. In this case the Hölder’s inequality yields the required results
because ≤ is replaced by ≥. ��

Our next theorem is Levinson type generalization of Hardy’s inequality. We first
state Levinson’s result for the reader to appreciate our next theorem.

Theorem 3.3 (See Levinson [17], Theorem 2) Let 0 ≤ a < b ≤ ∞, φ(u) ≥ 0
and φ′′(u) ≥ 0 when 0 ≤ u ≤ b, p > 1. Let

φ(x)φ′′(x) ≥
(

1− 1

p

) (
φ′(x)

)2
f or a < x < b. (37)

At end points of the interval a < x < b, let φ(x) take its limiting values, finite or
infinite. For x > 0, let r(x) be continuous and non-decreasing, and let

R(x) =
∫ x

0
r(t)dt. (38)

Then

∫ ∞

0
φ

(∫ x

0

r(t)f (t)

R(x)

)
dx ≤

(
p

p − 1

)p ∫ ∞

0
φ(f (x))dx. (39)
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Remark 3.1 When φ(u) = up, p > 1, (39) is automatically satisfied and the
inequality (39) reduces to Hardy’s inequality when r(t) ≡ 1.

We prove the following generalization of Theorem 3.3.

Theorem 3.4 (See [6] Theorem C) Let p ≥ 1 and let φ,R, r , and f be defined as
in Theorem 3.3 so that the hypotheses of Theorem 3.3 are satisfied. Further assume
that g is a positive function which is Lebesgue integrable over the interval (0, b),
and

U(x) =
∫ b

x

g(t)

(R(t))p
dt. (40)

Then

∫ b

0
g(x) φ

(∫ x

0

r(x)f (t)

R(x)

)
dx

≤ pp
∫ b

a

(g(x))p−1
{
R(x)p−1r(x)U(x)

}p
φ(f (x))dx (41)

Proof Let us write η(t)p = φ(t). Then

φ(x)φ′′(t) ≥
(

1− 1

p

) (
φ′(t)

)2

means

p(p − 1)η2(p−1) (η′(t))2 + pη(t)2p−1η′′(t) ≥ (p − 1)pη2(p−1) (η′(t))2 .
This implies that η(t)η′′(t) ≥ 0. Since φ(t) ≥ 0, η(t) ≥ 0 and consequently, the
condition (37) amounts to η′′(t) ≥ 0. Hence, the function η(t) is convex. Now, by
Jensen’s in equality applied to

∫ x
0
r(t)f (t)
R(x)

dt yields

η

(∫ x

0

r(t)f (t)

R(x)
dt

)
≤
∫ x

0

r(t)η(f (t))

R(x)
dt (42)

Substituting φ(t)1/p for η(t) in (42) and raising both sides to power p, we get

φ

(∫ x

0

r(t)f (t)

R(x)
dt

)
≤
(∫ x

0

r(t)φ(f (t))1/p

R(x)
dt

)p
(43)

since g is a positive function (43) yields
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∫ b

0
g(x)φ

(∫ x

0

r(t)f (t)

R(x)
dt

)
dx ≤

∫ b

0
g(x)

(∫ x

0

r(t)φ(f (t))1/p

R(x)
dt

)p
(44)

Now, we can apply Theorem 3.2 to the left-hand side of (44) with h(t) =
r(t)φ(f (t))1/p and u(x) = g(x)

(R(x))p
, and a = 0. We will get

∫ b

0
g(x)φ

(∫ x

0

r(t)f (t)

R(x)
dt

)
dx≤

∫ b

0

g(x)

R(x)p

(
r(x)φ(f (x))1/pU(x)R(x)p

g(x)

)p
dx

≤ pp
∫ b

0
g(x)1−p

{
R(x)p−1r(x)U(x)

}p
φ(f (x))dx, (45)

after simplification. This completes the proof of Theorem 3.4. ��
Remark 3.2 Theorem 3.3 can be obtained from Theorem 3.4 by setting g(x) ≡ 1.
Since r(x) is non-decreasing, we estimate u(x) from

U(x) ≤ 1

r(x)

∫ b

x

r(t)

R(t)p
dt ≤ 1

p − 1

(
1

r(x)R(x)p−1

)
(46)

Then (39) follows.

4 Corollaries from Theorems 3.1 and 3.2

Corollary 4.1 (See Chan [7], Theorem 1, p. 165) If h(t) is Lebesgue integrable in
(x,∞) for every x ∈ (1,∞), and h(t) > 0 for all t ∈ (1,∞), then for 1 < p <∞,

∫ ∞

1

1

x

(∫ ∞

0
h(t)dt

)p
dx ≤ pp

∫ ∞

1

1

x
(x ln x h(x))p dx. (47)

The inequality is reversed if 0 < p < 1 and yields equality when p = 1.

Proof Equation (47) follows from Theorem 3.1 by setting u(x) = 1
x

and U(x) =
ln(x), a = 1 and b = ∞. ��
Corollary 4.2 (See Chan [7], Theorem 2, p. 166) Suppose h(t) is Lebesgue
integrable over (0, x) for each x ∈ (0, 1), and h(t) ≥ 0 for all t ∈ (0, 1). Then
for 1 < p <∞,

∫ 1

0

1

x

(∫ x

0
h(t)dt

)p
dx ≤ pp

∫ 1

0

1

x
(x | ln x| h(x))p dx. (48)

The inequality is reversed if 0 < p < 1 and yields equality when p = 1.
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Proof In Theorem 3.2, take a = 0, b = 1, u(x) = 1
x

, 0 < x < 1. Then

U(x) =
∫ 1

x

1

x
dx = − ln x = | ln x|, (49)

with these, we see that the Corollary 4.2 holds. ��
Corollary 4.3 (See Chen [7], Theorem 3, p. 166) Suppose h(t) is integrable in the
sense of Lebesgue over (1, x) for each x ∈ (1,∞), and h(t) ≥ 0 for all t ∈ (1,∞).
Then for 1 < p <∞,

∫ ∞

1

1

x
(ln x)−p

(∫ x

1
h(t)dt

)p
dx ≤

(
p

p − 1

)p ∫ ∞

1

1

x
(xh(x))p dx. (50)

Proof In Theorem 3.2, set u(x) = x−1(ln x)−p, 1 < p < ∞, a = 1, and b = ∞.
Then U(x) = (p − 1)−1(ln x)−p+1 and Corollary 4.3 follows. ��
Corollary 4.4 (See Chen [7], Theorem 4, p. 167) Let h(t) be Lebesgue integrable
over (x, 1) for each x ∈ (0, 1). Then for 1 < p <∞,

∫ 1

0
x−1(ln x)−p

(∫ 1

x

h(t)dt

)p
dx ≤

(
p

p − 1

)p ∫ 1

0
x−1 (xh(x))p dx. (51)

Proof In Theorem 3.1, set u(x) = x−1(ln x)−p and 1 < p < ∞. Let a approach
zero from above and b = 1. Clearly,

U(x) =
∣∣∣∣
∫ x

0

dt

t | ln t |p
∣∣∣∣ = 1

(p − 1)| ln x|p−1 , (52)

Equation (51) follows from Theorem 3.1. ��
Corollary 4.5 Let h(t) be as in Corollary 4.3. Then for 1 < p, q <∞,

∫ b

0

1

x| ln x|q
(∫ b

a

h(t)dt

)p
dx ≤

(
p

p − 1

)p ∫ b

0
xp−1| ln x|p−qh(x)pdx (53)

Corollary 4.6 Let h(t) be as in corollary 4.4. Then for 1 < p, q <∞,

∫ ∞

a

1

x| ln x|q
(∫ x

a

h(t)dt

)p
dx≤

(
p

p − 1

)p ∫ ∞

a

xp−1| ln x|p−qh(x)pdx (54)

Remark 4.1 Corollaries 4.5 and 4.6 are obtained from Theorems 3.1 and 3.2 by
choosing u(x) = 1

x| ln x|q . Also both inequalities are reversed when 0 < p < 1.
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Corollary 4.7 (Hardy [12]) Let p > 1, r �= 1, and h(t) be a non-negative function
which is integrable on the interval (0, a] or [a,∞) for every a > 0, according as
r > 1 or r < 1. If F(x) is defined by

F(x) :=
{∫ x

0 h(t)dt r > 1;∫∞
x
h(t)dt r < 1;

then

∫ ∞

0
x−rF (x)pdx ≤

(
p

|r − 1|
)p ∫ ∞

0
x−r (xh(x))pdx (55)

Proof Inequality (55) is deducible from Theorems 3.1 and 3.2 by taking u(x) = x−r
according to the value of r . If r < 1, it is deduced from Theorem 3.1 but when
r > 1, it can be obtained using Theorem 3.2. U(x) is easily calculated to complete
the proofs for both cases. ��
Corollary 4.8 (Levinson [17], Theorem 4) Suppose 1 < p < ∞, f (x) ≥ 0 and
r(x) is positive and locally absolutely continuous in (0,∞). Further assume that
r(x) satisfies the following:

p − 1

p
+ xr

′(x)
r(x)

≥ 1

λ
, (56)

for some λ > 0 and for almost all x.
If we define

H(x) = 1

xr(x)

∫ x

0
r(t)f (t)dt, (57)

then
∫ ∞

0
H(x)pdx ≤ λp

∫ ∞

0
f (x)pdx. (58)

Remark 4.2 If r(x) ≡ 1, λ = p
p−1 , then (58) reduces to well-known Hardy’s

inequality [12, Theorem 327].

Proof (of Corollary 4.8) We shall use Theorem 3.2 with a = 0, h(x) = r(x)f (x)
and u(x) = (xr(x))−p.

Applying integration by parts,

U(x) =
∫ b

x

dt

tpr(t)p
=
[(

t−p+1

−p + 1

1

r(t)p

)]b
x

− p

p − 1

∫ b

x

t−p+1

r(t)p+1 r
′(t)dt. (59)

Since r(b) > 0, b > 0 and 1 < p <∞.
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b−p+1

(−p + 1)r(b)p
< 0. (60)

Hence, (59) yields

U(x) ≤ x

(p − 1)xpr(x)p
− p

(p − 1)

∫ b

x

[
tr ′(t)
r(t)

]
dt

(tr(t))p
. (61)

Using

− tr
′(t)
r(t)

≤ p − 1

p
− 1

λ
(62)

in the integral on the right-hand side of (61), we get by (59) and (61)

U(x) ≤ x

(p − 1)(xr(x))p
+ U(x)+ p

(p − 1)λ
U(x)

or

U(x) ≤ λx

p(xr(x))p
= λxU(x)

p
, (63)

since u(x) = (xr(x))−p. Now, for 1
p
+ 1
p′ = 1, we have

u(x)−1/p′U(x)r(x)f (x) ≤ u(x)−1/p′ λxu(x)

p
r(x)f (x) = λ

p
f (t), (64)

since r(x)−1 = u(x)1/p. Now applying Theorem 3.2 and letting b→∞, the result
follows. ��

Corollary 4.9 (See Levinson [17], Theorem 5) Suppose f (x) ≥ 0, r(x) > 0,
1 < p <∞, and r(x) be locally absolutely continuous for x > 0.

Let

xr ′(x)
r(x)

− p − 1

p
≥ 1

λ
(65)

for some λ > 0. If, we write

J (x) = r(x)
x

∫ ∞

x

f (t)

r(t)
dt (66)

then
∫ ∞

0
J (x)pdx ≤ λp

∫ ∞

0
f (x)pdx (67)
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Proof In Theorem 3.1, take b = ∞ and u(x) = (r(x)/x)p, 1 < p <∞ and h(t) =
f (t)/r(t). Now follow the method of proof of Corollary 4.8 and use Theorem 3.1
with a→ 0. ��
Remark 4.3 If, in Corollary 4.9, r(x) = x and λ = p, then Corollary 4.9 reduces
to the dual inequality related to Hardy’s inequality.

Pachpatte [27] followed the method of Levinson [17] to obtain generalization
of two theorems of Chan [7]. We can deduce the results of Pachpatte from our
Theorems 3.1 and 3.2 by appropriate choice of u(x).

Corollary 4.10 (See Pachpatte [27], Theorem 1) Let f be a non-negative and
Lebesgue integrable function over the interval [1, b), 1 < b ≤ ∞. Let 1 < p <∞
and r(x) be a positive and locally absolutely continuous function on the interval
[1, b). Let

1− px(ln x)r
′(x)
r(x)

≥ 1

α
(68)

for almost all x in [1, b) and for some constant α > 0. If F(x) is given by

F(x) = 1

r(x)

∫ b

x

r(t)f (t)

t
dt, x ∈ [1, b), (69)

then

∫ b

1
x−1F(x)pdx ≤ (αp)p

∫ b

1
x−1 [ln xf (x)]p dx. (70)

Proof In Theorem 3.1 take u(x) = x−1(r(x))−p, h(x) = r(x)f (x)
x

and a = 1. Then,
by integrating by parts,

U(x) =
∫ x

1

dt

t (r(t))p
= ln x

(r(x))p
− (−p)

∫ x

1

(lnx)r ′(t)
r(t)p+1 dt. (71)

Using (68) in the integral on the right-hand side of (71), we get, after some
calculation,

U(x) ≤
∫ x

1

dt

t (r(t))p
= ln x

r(x)p
+ p

∫ x

1

(ln t)r ′(t)
r(t)p+1 dt (72)

using (68) to the integral on the right-hand side of (72), and observing that

U(x) =
∫ x

1

dt

t (r(t))p
,
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we will get

U(x) ≤ α ln x

(r(x))p
. (73)

Now the corollary can be deduced from Theorem 3.1. ��
Remark 4.4 If, in Corollary 4.10, we take r(t) ≡ 1 in [1, b) and f (t) = tg(t), then
α = 1 yield Theorem 1 (1a) of Chan [7].

Corollary 4.11 (See Pachpatte [27], Theorem 2) Let p ≥ 1 and f be a non-
negative and integrable function on (0, 1). Let r be a positive and locally absolutely
continuous function on (0, 1). Suppose further that

1− px(ln x)r
′(x)
r(x)

≥ 1

α
(74)

for almost all x in (0, 1) and for some constant α > 0.
If, we define,

F(x) = 1

r(x)

∫ x

0

r(t)f (t)

t
dt, x ∈ (0, 1), (75)

then

∫ 1

0

(F (x)))p

x
dx ≤ (αp)p

∫ 1

0
x−1 [| ln x|f (x)]p dx. (76)

Proof Use Theorem 3.2 with a = 0, b = 1, h(t) = r(t)f (t)/t and u(x) =
x−1r(t)−p. Then follow the method used in the proof of Corollary 4.10 to get the
required results of Corollary 4.11. We leave the details to the interested reader. ��
Remark 4.5 The case r(x) = 1 for all x in (0, 1), α = 1 and f (x) = xg(x), reduces
Corollary 4.11 to Theorem 2 of the Chan [7].

Our next set of corollaries will be concerned with inequalities of the type proved
by Copsen [8] and Beesack [2]. When those results were proved one felt that they
are unique in their findings and could not be unified. We shall show that they follow
from our Theorems 3.1 and 3.2 by choosing u(x) appropriately.

Let f and φ be positive and measurable functions on (0,∞) and let us suppose
that Φ(x) = ∫ x

0 φ(t)dt exists for all x in 0 < x < ∞. Whenever the integrals
written below have finite values, we can write

G1(x) =
∫ x

0
f (t)φ(t)dt, (77)
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and

G2(x) =
∫ ∞

x

f (t)φ(t)dt. (78)

Corollary 4.12 (Copson [8], Theorem 1) If 0 < b <∞, 1 < p <∞, then

∫ b

0
G1(x)Φ(x)

−cφ(x)dx <
(
p

c − 1

)p ∫ b

0
f (x)pΦ(x)p−cφ(x)dx (79)

if 0 ≤ a <∞, 0 < p ≤ 1, c > 1, and lim
x→∞Φ(x) = ∞, then

∫ ∞

a

G1(x)
pΦ(x)−cφ(x)dx ≥

(
p

p − 1

)p ∫ ∞

a

f (x)pΦ(x)p−cφ(x)dx. (80)

Proof In Theorem 3.2, take u(x) = φ(x)
Φ(x)c

(x > 0). Then

U(x) = 1

(c − 1)

[
Φ(x)1−c −Φ(b)1−c

]
.

��
Since c > 1 and Φ(x) is a monotonically increasing function of x, we can conclude
that

U(x) ≤ 1

(c − 1)
[Φ(x)]1−c .

Now (79) follows from Theorem 3.2 when we substitute for u(t) and h(t).
To obtain (80), we need to note that Φ(∞) = ∞ and that gives

u(t) ≤ 1

(c − 1)
[Φ(t)]1−c , c > 1.

Then we use Theorem 3.1 to get the required result.

Corollary 4.13 (Copson [8], Theorems 3 and 4)

(i) If 1 ≤ p <∞, c > 1, 0 ≤ a <∞, then

∫ ∞

a

G2(x)
pΦ(x)−cφ(x)dx <

(
p

1− c
)p ∫ ∞

a

f (x)pΦ(x)p−cφ(x)dx (81)

(ii) if 0 < p ≤ 1, c < 1, 0 < b ≤ ∞, then
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∫ b

0
G2(x)

pΦ(x)−cφ(x)dx ≥
(
p

1− c
)p ∫ b

0
f (x)pΦ(x)p−cφ(x)dx. (82)

Proof Use the method outlined in the proof of Corollary 4.12 and use Theorem 3.1
instead of Theorem 3.2. ��
Corollary 4.14 (Beesack [2], Results (33))

(i) If 0 < a <∞, 1 < p <∞, then

∫ ∞

a

G2(x)
pΦ(x)−1φ(x)dx≤pp

∫ ∞

a

f (x)pΦ(x)p−1
{

ln
Φ(x)

φ(x)

}p
φ(x)dx (83)

(ii) [Copson [8], Theorem 6 and Beesack [2], result (33)]. If 0 < p < 1, and
0 < a < ∞, then the inequality in (83) is reserved. We also get equality when
p = 1.

Proof In Theorem 3.1, let b→∞, and u(x) = φ(x)/Φ(x) and h(x) = f (x)φ(x).
Then

U(x) =
∫ x

a

φ(x)

Φ(x)
dt = ln

{
Φ(x)

Φ(a)

}
,

since φ(t) = Φ ′(t) almost everywhere. The results can now be obtained. ��
Corollary 4.15 (See Copson [8], Theorem 5 and Beesack [2], Result (28)) If 0 <
b <∞, 1 < p <∞, then

∫ b

0
G1(x)

pΦ(x)−1φ(x)dx ≤ pp
∫ b

0
f (x)pΦ(x)p−1

{
ln
Φ(b)

Φ(x)

}p
Φ(x)dx, (84)

if 0 < p < 1 and 0 < b <∞, the inequality (84) is reserved. If p = 1, (84) reduces
to an equality.

Proof In Theorem 3.2, let us take a = 0, u(x) = φ(x)
Φ(x)

and h(t) = f (x)φ(x). Then

U(x) =
∫ b

x

φ(t)Φ(t)−1dt = ln

{
Φ(b)

Φ(x)

}
(85)

since Φ ′(x) = φ(x) almost everywhere. Now the corollary follows. ��

5 Conclusion

As we have obtained many known results from Theorem 3.1–3.3 in Sect. 4, we
can also obtain results proved in Mohapatra and Russell [21] and Mohapatra and
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Vajravelu [22]. We can also obtain results proved by same authors given in the
references. However at this time we are unable to deduce results proved by Love
[18] and [19] and Bicheng et al. [3].

A look at Theorem 2.1 of [3] shows that it is an improvement of Hardy’s
inequality. It will be instructive to see how are can generalize the results proved
in [3] and many other papers in the reference so that a number of inequalities can be
unified.

The objective of this chapter is to demonstrate that simple use of integration by
parts and Hölder’s inequality which led to Davies–Peterson lemma can deliver fairly
general results which unify variants of inequalities of Hardy, Copson, and Levinson
types.

One can think of generalizing the results of Sect. 3 to Orlicz spaces and try to
obtain interesting results. A look at the result of Love [20] where he has proved
Hardy inequalities in Orlicz and Luxemburg norms shows that one can think of
generalizations of theorems in Sect. 3 to more general norms as a field for future
research. We should also look at the paper of Andersen and Heinig [1] where nice
results involving integral operators have been proved. Equally instructive are also
the papers of Boas [4], Boas and Imoru [5], and Nemeth [23] where nice results
are established. It will be interesting to see if some unification of these results is
possible.
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Double-Sided Taylor’s Approximations
and Their Applications in Theory of
Analytic Inequalities

Branko Malešević, Marija Rašajski, and Tatjana Lutovac

Abstract In this paper the double-sided Taylor’s approximations are studied. A
short proof of a well-known theorem on the double-sided Taylor’s approximations
is introduced. Also, two new theorems are proved regarding the monotonicity of
such approximations. Then we present some new applications of the double-sided
Taylor’s approximations in the theory of analytic inequalities.

1 Introduction

Consider a real function f : (a, b) −→ R such that there exist finite limits
f (k)(a+) = lim

x→a+ f
(k)(x), for k = 0, 1, . . . , n. Let us denote by T f, a+n (x) Taylor’s

polynomial of degree n, n∈N0, for the function f (x) in the right neighborhood of a:

T
f, a+
n (x) =

n∑
k=0

f (k)(a+)
k! (x − a)k.

We will call T f, a+n (x) the first Taylor’s approximation in the right neighbor-
hood of a.

Similarly, the first Taylor’s approximation in the left neighborhood of b is
defined by:

T
f, b−
n (x) =

n∑
k=0

f (k)(b−)
k! (x − b)k,

B. Malešević (�) · M. Rašajski · T. Lutovac
School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
e-mail: branko.malesevic@etf.bg.ac.rs; marija.rasajski@etf.bg.ac.rs; tatjana.lutovac@etf.bg.ac.rs

© Springer Nature Switzerland AG 2019
D. Andrica, T. M. Rassias (eds.), Differential and Integral Inequalities,
Springer Optimization and Its Applications 151,
https://doi.org/10.1007/978-3-030-27407-8_20

569

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-27407-8_20&domain=pdf
mailto:branko.malesevic@etf.bg.ac.rs
mailto:marija.rasajski@etf.bg.ac.rs
mailto:tatjana.lutovac@etf.bg.ac.rs
https://doi.org/10.1007/978-3-030-27407-8_20


570 B. Malešević et al.

where f (k)(b−) = lim
x→b− f

(k)(x), for k = 0, 1, . . . , n.

Also, for n∈N, the following functions:

R
f, a+
n (x) = f (x)− T f, a+n−1 (x)

and

R
f, b−
n (x) = f (x)− T f, b−n−1 (x)

are called the remainder of the first Taylor’s approximation in the right neigh-
borhood of a, and the remainder of the first Taylor’s approximation in the left
neighborhood of b, respectively.

Polynomials:

T
f ; a+, b−
n (x) =

⎧⎪⎨
⎪⎩
T
f, a+
n−1 (x)+

1

(b − a)n R
f, a+
n (b−)(x − a)n : n ≥ 1

f (b−) : n = 0,

and

T
f ; b−, a+
n (x) =

⎧⎪⎨
⎪⎩
T
f, b−
n−1 (x)+

1

(a − b)n R
f, b−
n (a+)(x − b)n : n ≥ 1

f (a+) : n = 0,

are called the second Taylor’s approximation in the right neighborhood of a, and the
second Taylor’s approximation in the left neighborhood of b, respectively, n∈N0.

Theorem 2 in [26] provides an important result regarding Taylor’s approxima-
tions. We cite it below:

Theorem 1 Suppose that f (x) is a real function on (a, b), and that n is a positive
integer such that f (k)(a+), f (k)(b−), for k∈{0, 1, 2, . . . , n}, exist.

(i) Supposing that (−1)(n)f (n)(x) is increasing on (a, b), then for all x ∈ (a, b)
the following inequality holds:

T
f ; b−, a+
n (x) < f (x) < T

f, b−
n (x). (1)

Furthermore, if (−1)nf (n)(x) is decreasing on (a, b), then the reversed
inequality of (1) holds.

(ii) Supposing that f (n)(x) is increasing on (a, b), then for all x ∈ (a, b) the
following inequality also holds:

T
f ; a+, b−
n (x) > f (x) > T

f, a+
n (x). (2)
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Furthermore, if f (n)(x) is decreasing on (a, b), then the reversed inequal-
ity of (2) holds.

Let us name this theorem the Theorem on double-sided Taylor’s approximations.
In papers [16, 20, 23, 24] and [8] Theorem 1 was denoted by Theorem WD. Let us
note that the proof of Theorem 1 (Theorem 2 in [26]) was based on the L’Hospital’s
rule for monotonicity. The same method was used in proofs of some theorems in
[25, 27] and [28], that had been published earlier.

Here, we cite a theorem (Theorem 1.1. from [23]) that represents a natural
extension of Theorem 1 over the set of real analytic functions.

Theorem 2 For the function f : (a, b) −→ R let there exist the power series
expansion:

f (x) =
∞∑
k=0

ck(x − a)k, (3)

for every x ∈ (a, b), where {ck}k∈N0 is the sequence of coefficients such that there
is only a finite number of negative coefficients, and their indices are all in the set
J ={j0, . . . , j1}.

Then, for the function

F(x) = f (x)−
1∑
i=0

cji (x − a)ji =
∑
k∈N0\J

ck(x − a)k, (4)

and the sequence {Ck}k∈N0 of the non-negative coefficients defined by

Ck =
{
ck : ck > 0,

0 : ck ≤ 0; (5)

holds that :

F(x) =
∞∑
k=0

Ck(x − a)k, (6)

for every x∈(a, b).
Also, F (k)(a+) = k!Ck , for k ∈ {0, 1, 2, . . . , n}, and the following inequalities

hold :
n∑
k=0

Ck(x − a)k < F(x) <

<

n−1∑
k=0

Ck(x − a)k + 1

(b − a)n
(
F(b−)−

n−1∑
k=0

(b − a)kCk
)
(x − a)n,

(7)
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i.e.:

n∑
k=0

Ck(x−a)k +
1∑
i=0

cji (x − a)ji < f (x) <

<

n−1∑
k=0

Ck(x−a)k+
1∑
i=0

cji (x−a)ji+
(x−a)n
(b−a)n

(
f (b−)−

n−1∑
k=0

Ck(b−a)k−
1∑
i=0

cji (b−a)ji
)
,

(8)
for every x∈(a, b).
Corollary 1 Let there hold the conditions from the previous theorem. If

n > max{j0, . . . , j1}, (9)

then the following holds :
n∑
k=0

ck(x − a)k < f (x) <

<

n−1∑
k=0

ck(x − a)k + 1

(b − a)n
(
f (b−)−

n−1∑
k=0

ck(b − a)k
)
(x − a)n,

(10)

for every x∈(a, b).

2 Some New Results on Double-Sided Taylor’s
Approximations

Consider a real function f : (a, b) −→ R such that there exist its first and second
Taylor’s approximations on both sides, for some n ∈ N. Let us recall the remainders
in Lagrange and the integral form, respectively, [22]:

R
f, a+
n (x) = f

(n)(ξa,x)

n! (x − a)n,

for some ξa,x ∈ (a, x), and

R
f, a+
n (x) = (x − a)

n

(n− 1)!
∫ 1

0
f (n)(a + (x − a)t)(1− t)n−1 dt.
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2.1 A New Proof of Theorem 1

We consider the case when f (n)(x) is a monotonically increasing function on (a, b)
for some n ∈ N. Other cases from Theorem 1 are proved similarly.

From the Lagrange form of the remainder and monotonicity of f (n)(x) on (a, b)
we get:

f (n)(a+)
n! <

f (n)(ξa,x)

n! = f (x)− T
f, a+
n−1 (x)

(x − a)n �⇒ T
f, a+
n (x) < f (x).

since ξa,x ∈ (a, x) for all x ∈ (a, b).
Using the integral form of the remainder we obtain the following inequality for

all x ∈ (a, b):

R
f, a+
n (x) = (x − a)n

(n− 1)!
∫ 1

0
f (n)(a + (x − a)t)(1− t)n−1 dt

<
(x − a)n
(n− 1)!

∫ 1

0
f (n)(a + (b − a)t)(1− t)n−1 dt

= (x − a)n
(b − a)n R

f, a+
n (b−) �⇒ f (x) < T

f ; a+, b−
n (x).

This completes the proof.

2.2 Monotonicity of Double-Sided Taylor’s Approximations

Proposition 1 Consider a real function f : (a, b) −→ R such that there exist its
first and second Taylor’s approximations on both sides, for some n ∈ N0. Then,

sgn
(
T
f, a+, b−
n (x) − T

f, a+, b−
n+1 (x)

)
= sgn

(
f (b−) − T f, a+n (b)

)
, (11)

for all x ∈ (a, b).
Proof From the definitions of the first and second Taylor’s approximations we have:
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T
f,a+,b−
n+1 (x) = T f, a+n (x)+

(
x − a
b − a

)n+1

·
(
f (b−)− T f, an (b)

)

= T f, a+n−1 (x)+
f (n)(a+)
n! (x−a)n

+
(
x − a
b − a

)n(x − a
b − a −1+1

)(
f (b−)− T f, a+n (b)

)

= T f, a+n−1 (x)+
(
x − a
b − a

)n (
f (b−)− T f, a+n−1 (b)−

f (n)(a+)
n! (b−a)n

)
+

+f
(n)(a+)
n! (x−a)n +

(
x − a
b − a

)n(x − a
b − a −1

)(
f (b−)− T f, a+n (b)

)

= T
f, a+, b−
n (x)− b − x

b − a
(
x − a
b − a

)n (
f (b−)− T f, a+n (b)

)
.

Thus we have:

T
f,a+,b−
n (x)−T

f, a+, b−
n+1 (x) = b − x

b − a
(
x − a
b − a

)n (
f (b−)− T f, a+n (b)

)
, (12)

and the equality (11) immediately follows. ��
Now, let us notice that if the real analytic function f : (a, b) −→ R satisfies the

condition (∀n ∈ N0) f
(n)(a+) ≥ 0, then, from Proposition 1 directly follows:

(∀n ∈ N0)(∀x ∈ (a, b))Tf, a+, b−n (x) > T
f, a+, b−
n+1 (x).

Theorem 3 Consider a real function f : (a, b) −→ R such that the derivatives
f (k)(a+), k∈{0, 1, 2, . . . , n+ 1} exist, for some n ∈ N.

Suppose that f (n)(x) and f (n+1)(x) are increasing on (a, b), then for all x ∈
(a, b) the following inequalities hold:

T
f, a+
n (x) < T

f, a+
n+1 (x) < f (x) < T

f ; a+, b−
n+1 (x) < T

f ; a+, b−
n (x), (13)

for all x ∈ (a, b). If f (n)(x) and f (n+1)(x) are decreasing on (a, b), then for all
x∈(a, b) the reversed inequalities hold.

Case of the Real Analytic Functions
In applications, of special interest are the real analytic functions.

Theorem 4 Consider the real analytic functions f : (a, b) −→ R:

f (x) =
∞∑
k=0

ck(x − a)k, (14)

where ck ∈ R and ck ≥ 0 for all k ∈ N0. Then,
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T
f, a+
0 (x) ≤ . . . ≤ T f, a+n (x) ≤ T f, a+n+1 (x) ≤ . . .

. . . ≤ f (x) ≤ . . .
. . . ≤ T

f ; a+, b−
n+1 (x) ≤ T

f ; a+, b−
n (x) ≤ . . . ≤ T

f ; a+, b−
0 (x),

(15)

for all x ∈ (a, b). If ck ∈ R and ck ≤ 0 for all k ∈ N0, then the reversed inequalities
hold.

3 An Application of the Theorem on Double-Sided Taylor’s
Approximations

In this section we discuss an implementation of the Theorem on double-sided
Taylor’s approximations applied to the sequence of functions:

hn(x) =
tan x − T tan, 0

2n−1 (x)

x2n tan x
:
(

0,
π

2

)
−→ R, (16)

for n ∈ N. This sequence of functions was considered in papers [4, 29]. In order to
obtain estimates of functions hn(x), we use the well-known series expansions:

tan x =
∞∑
i=1

22i (22i − 1)|B2i |
(2i)! x2i−1, (17)

where |x| < π
2

and Bk is the k-th Bernoulli number. Then:

T
tan, 0
2n−1 (x) =

n∑
i=1

22i (22i − 1)|B2i |
(2i)! x2i−1, (18)

for x ∈
(

0,
π

2

)
. The main results on the functions hn(x), presented in the paper

[29] (see also [4]), are cited below in the following two theorems.

Theorem 5 For x ∈
(

0,
π

2

)
and n ∈ N, we have:

hn(x) =
n∑
j=1

22(n−j+1)(22(n−j+1) − 1)|B2(n−j+1)|
(2(n− j + 1))!

∞∑
k=j

22k|B2k|
(2k)! x

2(k−j). (19)
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Theorem 6 For x ∈
(

0,
π

2

)
and n ∈ N, we have:

22(n+1)(22(n+1) − 1)|B2(n+1)|
(2n+ 2)! < hn(x) <

(
2

π

)2n

, (20)

where the scalars
22(n+1)(22(n+1) − 1)|B2(n+1)|

(2n+ 2)! and

(
2

π

)2n

in (20) are the best

possible.

From Theorem 5, using the change of variables and some algebraic transforma-
tions, immediately follows the next theorem.

Theorem 7 For x ∈
(

0,
π

2

)
and n ∈ N, functions hn(x) are real analytic functions

and have the following Taylor series expansions:

hn(x) =
∞∑
i=0

n∑
j=1

22(n+i+1)(22(n−j+1) − 1) |B2(n−j+1)| |B2(i+j)|
(2(n− j + 1))! (2(i + j))! x2i . (21)

Let us notice that the Taylor series expansions of the functions hn(x) satisfy the
conditions of Theorem 4.

Thus, we get the improvement of the results of Theorem 6:

Theorem 8 For x ∈
(

0,
π

2

)
and n ∈ N, we have

T
hn(x), 0+

0 (x) = 22(n+1)(22(n+1) − 1)|B2(n+1)|
(2n+ 2)! <

< T
hn(x), 0+

2 (x) < . . . < T
hn(x), 0+

2m (x) < T
hn(x), 0+

2m+2 (x) < . . .

. . . < hn(x) < . . .

. . . < T
hn(x); 0+, π2 −
2m+2 (x) < T

hn(x); 0+, π2 −
2m (x) < . . . < T

hn(x); 0+, π2 −
2 (x) <

< T
hn(x); 0+, π2 −
0 (x) =

(
2

π

)2n

.

(22)

4 More Examples of Double-Sided Taylor’s Approximations

In this section we give two examples of some analytic inequalities recently proved
using the results of Theorem 1. Also, we illustrate the application of double-sided
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Taylor approximations and Theorem 4 in the generalizations and improvements of
some analytic inequalities.

Example 1 In [6] the following improvement of Stečkin’s inequality, in the left

neighborhood of b = π
2

, was proposed and proved:

Q1(x) = 2

π
− 1

2

(π
2
− x

)
< tan x − 4x

π(2π − x) <
2

π
− 1

3

(π
2
− x

)
= R1(x),

(23)

for x ∈
(

0,
π

2

)
. In [20] the inequality (23) was further generalized. The starting

point was the following real function:

g(t)=cot t − 1

t
+ 2

π
:
(

0,
π

2

)
−→ R, (24)

for which it is fulfilled

g
(π

2
− x

)
= tan x − 4x

π(2π − x) , (25)

for x ∈
(

0,
π

2

)
. It has been shown that the function g(t) satisfies the conditions of

Theorem 1. Namely, it has the following power series expansion

g(t)= 2

π
−

∞∑
k=1

22k|B2k|
(2k)! t

2k−1 (26)

which converges for t ∈
(

0,
π

2

)
, and it is true

g(0+) = lim
t→0+g(t) =

2

π
and g

(π
2
−
)
= lim
t→π/2−g(t) = 0.

The function g(t) also satisfies the conditions of Theorem 4. Based on this, the
following result was proposed in [20] (Theorem 3) for the function f (x) =
g
(π

2
− x

)
:

Theorem 9 For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the following inequalities

hold:

T
g; 0+, π/2−
2m−1

(π
2
− x

)
< f (x) < T

g, 0
2m−1

(π
2
− x

)
, (27)

where
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T
g; 0+, π/2−
2m−1

(π
2
− x

)
=

= 2

π
−
m−1∑
k=1

22k|B2k|
(2k)!

(π
2
− x

)2k−1+
m−1∑
k=1

22k|B2k|
(2k)!

(
2

π

)2(m+k−1)(π
2
− x

)2m−1

(28)
and

T
g, 0
2m−1

(π
2
− x

)
= 2

π
−

m∑
k=1

22k|B2k|
(2k)!

(
2

π
− x

)2k−1

. (29)

It is easy to check that the function g(t) also satisfies the conditions of

Theorem 4. Therefore, for the function f (x) = g
(π

2
− x

)
the following assertion

directly follows:

Theorem 10 For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the following inequalities

hold:

T
g, 0+
1

(π
2
− x

)
≤ . . . ≤ T g, 0+2m−1

(π
2
− x

)
≤ T g, 0+2m+1

(π
2
− x

)
≤ . . .

. . . ≤ f (x) ≤ . . .

. . . ≤ T
g; 0+, π2 −
2m+1

(π
2
− x

)
≤ T

g; 0+, π2 −
2m−1

(π
2
− x

)
≤ . . . ≤ T

g; 0+, π2 −
1

(π
2
− x

)
.

(30)

Finally, from the previous two theorems an improvement of the inequality (23)
directly follows. For example, if m = 1, we have:

T
g; 0+, π/2−
1

(π
2
− x

)
= 2

π
− 4

π2

(π
2
− x

)
≤

≤ tan x − 4x

π(2π − x) ≤

≤ 2

π
− 1

3

(π
2
− x

)
= T g, 01

(π
2
− x

)
,

which further implies the following:

Q1(x) < T
g; 0+, π/2−
1

(π
2
− x

)
≤ tan x− 4x

π(2π − x) ≤ T
g, 0+
1

(π
2
− x

)
=R1(x),

for x∈
(

0,
π

2

)
.
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Note that the same approach (based on Theorems 1 and 4) enables generaliza-
tions of the inequalities from [20] connected with the function

f (x) =
(
π2 − 4x2

) tan x

x
:
(

0,
π

2

)
−→ R.

Example 2 In [19] (Theorem 5) the following inequality was proved:

2+ 2

45
x4 <

( x

sin x

)2 + x

tan x
for 0 < x < π/2. (31)

In order to refine the previous inequality, the following real function was considered
in [16]:

f (x) =
( x

sin x

)2 + x

tan x
for 0 < x < π/2.

It has been shown that the above function satisfies the conditions of Theorem 1.

Namely, it has the following power series expansion

f (x)=2+
∞∑
k=2

|B2k| (2k − 2)4k

(2k)! x2k, (32)

which converges for x ∈
(

0,
π

2

)
, and it is true

f (0+) = lim
x→0+f (x) = 2 and f

(π
2
−
)
= lim
x→π/2−f (x) =

π2

4
.

Based on this, the following result was proposed and proved in [16] (Theorem 5):

Theorem 11 For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the following inequalities

hold:

T
f, 0
2m (x) < f (x) < T

f ; 0+, π/2−
2m (x), (33)

where

T
f, 0
2m (x) = 2+

m∑
k=2

|B2k| (2k − 2)4k

(2k)! x2k (34)

and
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T
f ; 0+, π/2−
2m (x) =

= 2+
m−1∑
k=2

|B2k | (2k − 2)4k

(2k)! x2k +
(

2

π

)2m⎛⎝π2

4
− 2−

m−1∑
k=2

|B2k | (2k − 2)4k

(2k)!
(π

2

)2k⎞⎠x2m.

(35)

In [16] the polynomials T f, 0+m (x) and T
f ; 0+, π/2−
m (x) are calculated and the

concrete inequalities

T
f, 0+
m (x) < f (x) < T

f ; 0+, π/2−
m (x)

are given for x∈
(

0,
π

2

)
and for m = 2, 3, 4, 5.

It is easy to check that the function f (x) also satisfies the conditions of
Theorem 4, and hence the following generalizations of the inequality (33) i.e. of
the inequality (31) are true:

Theorem 12 For every x ∈
(

0,
π

2

)
and m ∈ N , m ≥ 2, the following inequalities

hold:

T
f, 0+
0 (x) ≤ . . . ≤ T f, 0+2m (x) ≤ T f, 0+2m+2(x) ≤ . . .

. . . ≤ f (x) ≤ . . .
. . . ≤ T

f ; 0+, π/2−
2m+2 (x) ≤ T

f ; 0+, π/2−
2m (x) ≤ . . . ≤ T

f ; 0+, π/2−
0 (x)

(36)

The same approach, based on Theorem 1 and Theorem 4, provides generaliza-
tions of the inequalities from [16] related to the function

f (x) = 3
x

sin x
+ cos x :

(
0,
π

2

)
−→ R.

5 Conclusion

Even though Taylor’s approximations represent a few centuries old topic, they
are still present in research in many areas of science and engineering. Let us
note that many results regarding Taylor’s approximations are presented in well-
known monographs [18] and [17]. Historically speaking, the second Taylor’s
approximation was mentioned in 1851 in the proof of the Taylor’s formula with
the Lagrange remainder in the paper [5] by Cox, see also [22].

Let us mention that in papers [1, 9, 23, 24, 30] and [8] double-sided Taylor’s
approximations are used to obtain corresponding inequalities. Results of these
papers can be further organized and made more precise using Theorem 4 so we
get the order among the functions occurring within these inequalities. Similar to
double-sided Taylor’s approximations, in papers [2, 3, 7, 10–14, 21] i [15] the
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finite expansions are used in the proofs of some mixed-trigonometric polynomial
inequalities, as well as in some inequalities which can be reduced to mixed-
trigonometric polynomial inequalities.

Currently, we are working on developing a computer system for automatic
proving of some classes of analytic inequalities based on the results in the mentioned
papers.

Acknowledgements Research of the first and second and third author was supported in part by
the Serbian Ministry of Education, Science and Technological Development, under Projects ON
174032 & III 44006, ON 174033, and TR 32023, respectively.
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2. B. Banjac, M. Nenezić, B. Malešević, Some applications of Lambda-method for obtain-

ing approximations in filter design, in Proceedings of 23rd TELFOR Conference, 2015,
pp. 404–406
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The Levin–Stečkin Inequality and Simple
Quadrature Rules

Peter R. Mercer

Abstract We obtain an error term for an extension of the Levin–Stečkin Inequality,
which yields the error terms for the Midpoint, Trapezoid, and Simpson’s rules.

1 Preliminaries

For an interval [a, b], we denote its midpoint by c = (a + b)/2. If a function p
defined on [a, b] satisfies p(a + b − x) = p(x) for x ∈ [a, c], we shall say that p
is evenc. If p satisfies p(a + b − x) = −p(x) for x ∈ [a, c], we shall say that p is
oddc. So an even function is even0 and an odd function is odd0.

Let p be an integrable evenc function on [a, b] which is increasing on [a, c]. We
recall the Levin–Stečkin Inequality [1–3]: For f convex on [a, b], we have

∫ b

a

f (x)p(x) dx ≤ 1
b−a

∫ b

a

f (x) dx

∫ b

a

p(x) dx .

Here is a quick proof, more or less contained in [4]: Set h(t) = f (t)+f (a+b− t).
Since f is convex the slope of its chords is increasing, so we have for
c < x < y < b,

h(y) − h(x) = f (y) + f (a + b − y) − ( f (x) + f (a + b − x) ) ≥ 0 ,

so h is increasing on [c, b]. Then since h and p are evenc , it is easily verified that
∫ b

a

fp − 1
b−a

∫ b

a

f

∫ b

a

p = 1
b−a

∫ b

c

∫ b

c

[(
h(x)− h(y))(p(x)− p(y))]dxdy,
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and this is ≤ 0, since p is decreasing on [c, b].
Contained in the Levin–Stečkin Inequality is the term

A = 1
b−a

∫ b

a

p(x) dx ,

which is, of course, the average value of p. If p is evenc and increasing on [a, c],
then p crosses over this value just twice; once in [a, c] and once in [c, b]. The
idea here is to allow p to cross its average value somewhat more often. We provide
below an error term for the Levin–Stečkin Inequality—while requiring less from
p, but (necessarily) a little more from f . As a consequence, we obtain the familiar
error terms for the Midpoint, Trapezoid, and Simpson’s Rules.

2 Main Result

Theorem Let p be an integrable evenc function on [a, b]. Let Ap = 1
b−a

b∫
a

p(x)dx

and suppose that

P(x) =
∫ x

a

[
p(u)− Ap

]
du

does not change sign on [a,c]. Let f ′′ be continuous on [a, b]. Then there is ξ ∈
(a, b) such that

∫ b

a

f (x)p(x) dx − 1
b−a

∫ b

a

f (x) dx

∫ b

a

p(x) dx = Kf ′′(ξ) ,

where

K =
∫ b

a

∫ x

a

P (t) dt dx .

Proof By replacing p with p−Ap, we may assume that Ap = 0. With P as defined
above, i.e.,

P(x) =
∫ x

a

p(u) du ,

let

Q(x) =
∫ x

a

P (t) dt .
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Clearly we have P(a) = P(b) = 0. (And incidentally, P(c) = 0.) But since p is
evenc, P is oddc, so that Q is evenc, with Q(a) = Q(b) = 0. Integration by parts
gives

∫ b

a

f (x)p(x) dx = f (x)P (x)
∣∣∣b
a
−
∫ b

a

f ′(x)P (x) dx = −
∫ b

a

f ′(x)P (x) dx

= −f ′(x)Q(x)
∣∣∣b
a
+
∫ b

a

f ′′(x)Q(x) dx =
∫ b

a

f ′′(x)Q(x) dx .

Now if P does not change sign on [a, c] then Q does not change sign on [a, b].
Therefore, since f ′′ is continuous, by the Mean Value Theorem for Integrals there
is ξ ∈ [a, b] such that

∫ b

a

f (x)p(x) dx = f ′′(ξ)
∫ b

a

Q(x) dx ,

as desired. �
We make a few observations regarding the theorem.

(a) If p defined on [a, b] is evenc and monotonic on [a, c], then the hypotheses of
the theorem are satisfied. If, in particular, p is increasing on [a, c], then

K =
∫ b

a

Q(x) dx ≤ 0 .

This yields the Levin–Stečkin Inequality, at least for f ′′ ≥ 0.
(b) Setting f (x) = x2 in the conclusion of the theorem we get (as may be

expected),

K = 1

2

(∫ b

a

x2p(x) dx − 1
b−a

∫ b

a

x2 dx

∫ b

a

p(x) dx

)
.

This was obtained in an entirely different way in [5], but only for p as in the
hypothesis of the Levin–Stečkin Inequality. Notice that K is independent of f .
Under most circumstances this is a more manageable definition for K than the
one provided in the statement of the theorem.

(c) The theorem may be viewed as a sort of a Mean Value-type theorem. Here is a

very simple example: If f ′′ is continuous on [0, 1], then since
1∫

0
cos(2πu)du =

0 and
x∫
0

cos(2πu)du = 1
2π sin(2πx) does not change sign on [0, 1/2], there is

ξ ∈ [0, 1] such that
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∫ 1

0
f (x) cos(2πx)dx = f ′′(ξ)

2

∫ 1

0
x2 cos(2πx)dx = f ′′(ξ)

4π2 .

If f is convex, then
1∫

0
f (x) cos(2πx)dx ≥ 0.

3 Quadrature Rules

Let us denote by χS the characteristic function for the set S.

Midpoint Rule Let Mn = (b − a)n2χ[c−1/n, c+1/n]. Then Mn is evenc and

AMn = 1
b−a

b∫
a

Mn(x)dx = 1. Here,
x∫
a

[Mn(u) − 1]du does not change sign on

[a, c], and the theorem gives

∫ b

a

f (x)Mn(x) dx −
∫ b

a

f (x) dx = Knf
′′(ξn) .

Therefore if f ′′ is continuous then, as n→∞, we get

f (c)[b − a] −
∫ b

a

f (x) dx = Kf ′′(ξ1) .

The Kn’s can be computed explicitly along the way; consequently so can K =
limKn. However, it is easier to obtain K by setting f (x) = x2. This gives the
familiar

f (c)[b − a] −
∫ b

a

f (x) dx = − 1
3

(
b−a

2

)3
f ′′(ξ1) .

Trapezoid Rule Let Tn = (b − a)n2χ[a, a+1/n] ∪ [b−1/n, b]. Then Tn is evenc and,
again, ATn = 1. Here,

∫ x
a
[Tn(u) − 1]du does not change sign on [a, c] and the

theorem gives

∫ b

a

f (x)Tn(x) dx −
∫ b

a

f (x) dx = Knf
′′(ξn) .

If f ′′ is continuous, then as n→∞, we get

f (a)+f (b)
2 [b − a] − 1

b − a
∫ b

a

f (x) dx = Kf ′′(ξ2) .
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As before, K can be obtained via K = limKn, though it is easier to set f (x) = x2.
This gives the familiar

f (a)+f (b)
2 [b − a] −

∫ b

a

f (x) dx = 2
3

(
b−a

2

)3
f ′′(ξ2) .

Simpson’s Rule Even though ξ1 �= ξ2 in the error terms above, their coefficients
suggest consideration of a quadrature rule which arises from

Sn = 2
3Mn + 1

3Tn .

Then again, Sn is evenc and 1
b−a

b∫
a

Sn(x) dx = 1. The beginning of the proof of the

theorem gives

∫ b

a

f (x)Sn(x) dx −
∫ b

a

f (x) dx =
∫ b

a

f ′′(x)Qn(x) dx ,

where

Qn(x) =
∫ x

a

∫ t

a

[Sn(u)− 1] du dt .

Then Qn is evenc and AQn = 1
b−a

b∫
a

Qn(x)dx = 1
b−a

−n+2
12n2 . To verify that

x∫
a

[Qn(u) − AQn ]du does not change sign on [a, c] is routine (but tedious) and the

theorem applied toQn gives

∫ b

a

f ′′(x)Qn(x) dx = Knf
(iv)(ξn) + 1

b−a
∫ b

a

f ′′(x) dx
∫ b

a

Qn(x) dx .

That is,

∫ b

a

f (x)Sn(x) dx−
∫ b

a

f (x) dx = Knf (iv)(ξn)+ 1
b−a

∫ b

a

f ′′(x) dx
∫ b

a

Qn(x) dx .

If f (iv) is continuous, then since
b∫
a

Qn(x) dx → 0 as n→∞, we get

(
2
3f (c) + 1

3
f (a)+f (b)

2

)
[b − a] −

∫ b

a

f (x) dx = Kf (iv)(ξ3).
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Again, the Kn’s can be computed explicitly (this is very tedious), so K can be
obtained via K = limKn. It is easier to set f (x) = x4. This yields the familiar

1
6

(
f (a)+ 4f (c)+ f (b))[b − a] −

∫ b

a

f (x) dx = 1
90

(
b−a

2

)5
f (iv)(ξ3) .
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(p, q)-Laplacian Equations with
Convection Term and an Intrinsic
Operator

Dumitru Motreanu and Viorica Venera Motreanu

Abstract The paper introduces a new type of nonlinear elliptic Dirichlet problem
driven by the (p, q)-Laplacian where the reaction term is in the convection form
(meaning that it exhibits dependence on the solution and its gradient) composed
with a (possibly nonlinear) general map called intrinsic operator on the Sobolev
space. Under verifiable hypotheses, we establish the existence of at least one (weak)
solution. A second main result deals with the uniqueness of solution. Finally, a
third result provides the existence and uniqueness of solution to a problem of this
type involving a translation viewed as an intrinsic operator. Examples show the
applicability of these results.

1 Introduction

Let Ω ⊂ R
N be a nonempty bounded open set with Lipschitz boundary ∂Ω , let the

real numbers p, q, μwith 1 < q < p < N andμ ≥ 0, and let f : Ω×R×R
N → R

be a Carathéodory function, i.e., f (·, s, ξ) is measurable for all (s, ξ) ∈ R × R
N

and f (x, ·, ·) is continuous for a.e. x ∈ Ω . It is supposed to have p < N only for
avoiding to repeat certain arguments. The case p ≥ N can be handled similarly. By
W

1,p
0 (Ω) we denote the usual Sobolev space equipped with the norm

‖u‖ =
( ∫

Ω

|∇u|pdx
) 1
p
.
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In the sequel, corresponding to any real number r ∈ (1,+∞) we denote by r ′ its
Hölder conjugate, i.e., r ′ = r

r−1 .

Given a continuous map T : W 1,p
0 (Ω)→ W

1,p
0 (Ω) called intrinsic operator, we

consider the following Dirichlet problem

{−Δpu− μΔqu = f (x, T (u),∇ T (u)) in Ω,
u = 0 on ∂Ω.

(1)

In (1) we have the negative p-Laplacian −Δp : W 1,p
0 (Ω)→ W−1,p′(Ω) given by

〈−Δpu, v〉 =
∫
Ω

|∇u(x)|p−2∇u(x)· ∇v(x) dx, ∀v ∈ W 1,p
0 (Ω),

and the negative q-Laplacian −Δq : W 1,q
0 (Ω)→ W−1,q ′(Ω) given by

〈−Δqu, v〉 =
∫
Ω

|∇u(x)|q−2∇u(x)· ∇v(x) dx, ∀v ∈ W 1,q
0 (Ω).

SinceΩ ⊂ R
N is a bounded domain and p > q, it holds the continuous embedding

W
1,p
0 (Ω) ↪→ W

1,q
0 (Ω), so it is well defined the sum of operators −Δp − μΔq :

W
1,p
0 (Ω) → W−1,p′(Ω) for all μ. Important special cases are when μ = 0, i.e.,

the negative p-Laplacian−Δp, and when μ = 1, i.e., the negative (p, q)-Laplacian
−Δp−Δq . In this way it is achieved the unifying presentation of two very different
operators p-Laplacian and (p, q)-Laplacian.

We say that u ∈ W 1,p
0 (Ω) is a weak solution of problem (1) if it holds

∫
Ω

|∇u|p−2∇u·∇v dx+μ
∫
Ω

|∇u|q−2∇u·∇v dx−
∫
Ω

f (x, T (u),∇ T (u))v dx=0

for all v ∈ W 1,p
0 (Ω) provided that the third integral makes sense. This occurs under

suitable growth conditions for f and T as will be supposed later on. The aim of this
note is to seek for weak solutions of problem (1).

A relevant feature of problem (1) is the fact that the right-hand side of the
equation is expressed as the composition of the Nemytskii operator associated to
the function f (x, s, ξ) giving rise to the convection term f (x, u,∇u) (i.e., an
expression depending on the solution u and its gradient ∇u) with a prescribed
continuous map T : W 1,p

0 (Ω) → W
1,p
0 (Ω) that we call intrinsic operator for

problem (1). Generally, a convection term prevents to have a variational structure,
so the variational methods are not applicable, which complicates considerably the
study of such problems. Inserting the map T in the convection term makes the
problem substantially more general and more difficult. The case where T is the
identity map is just the (p, q)-Laplacian problem with convection term, a topic
extensively studied (see, e.g., [1, 2, 5–9, 11, 13]). We emphasize that the operator T
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cannot be incorporated in the function f (x, s, ξ) because T acts on the whole space
W

1,p
0 (Ω) and not pointwise.
A novelty of this work with respect to other papers in the field is the presence

of the (possibly nonlinear) intrinsic operator T : W 1,p
0 (Ω) → W

1,p
0 (Ω) in the

statement of problem (1), which makes the problem nonstandard and more complex.
Under adequate assumptions we present three main results. Theorem 2 provides
the existence of a (weak) solution. Theorem 3 constitutes a uniqueness result for
problem (1). An existence and uniqueness result is formulated in Theorem 4 for
a particular case of problem (1). These results are accompanied by examples. An
essential role in our developments is played by the theory of pseudomonotone
operators whose basic needed elements are recalled in the next section for the sake
of clarity.

2 Preliminary Tools

In view of Rellich–Kondrachov Theorem, one has that the Sobolev spaceW 1,p
0 (Ω)

is compactly embedded into Lθ(Ω) for every 1 ≤ θ < p∗ and continuously
embedded for θ = p∗, where p∗ stands for the Sobolev critical exponent, that is
p∗ = Np

N−p (if N > p, as supposed). Thus for every 1 ≤ θ ≤ p∗ there exists a
positive constant Sθ such that

‖u‖θ ≤ Sθ ‖u‖, ∀u ∈ W 1,p
0 (Ω), (2)

where ‖u‖θ denotes the norm in Lθ(Ω).
We also recall that the first eigenvalue λ1,r of the negative r-Laplacian −Δr :

W
1,r
0 (Ω)→ W−1,r ′(Ω) has the following variational characterization

λ1,r = inf
u∈W 1,r

0 (Ω), u�=0

‖∇u‖rr
‖u‖rr

. (3)

Notice that, for θ = p in (2), the best constant Sp is Sp = (1/λ1,p)
1/p (see (3)).

For a later use, we mention a few basic facts about pseudomonotone operators
that are necessary in the rest of the paper. LetX be a real reflexive Banach space with
the norm ‖ · ‖ and its dual space X∗. Denote by 〈·, ·〉 the duality pairing between
X and X∗. The norm convergence in X and X∗ is denoted by → and the weak
convergence by⇀.

A map A : X→ X∗ is called:

• continuous, if un→ u implies Aun→ Au;
• bounded, if A maps bounded sets into bounded sets;
• coercive if
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lim‖u‖→+∞
〈Au, u〉
‖u‖ = +∞;

• pseudomonotone if un ⇀ u in X and

lim sup
n→+∞

〈Aun, un − u〉 ≤ 0

imply

〈Aun, u− w〉 ≤ lim inf
n→+∞〈Aun, un − w〉 , ∀w ∈ X.

The main theorem on pseudomonotone operators is now stated. More details can
be found in [3, 12].

Theorem 1 Let X be a real reflexive Banach space, let A : X → X∗ be a
pseudomonotone, bounded, and coercive operator, and let b ∈ X∗. Then a solution
u ∈ X of the equation Au = b exists.

3 Existence of Solutions

We formulate the following assumptions on the Carathéodory function f : Ω×R×
R
N → R and the continuous operator T : W 1,p

0 (Ω)→ W
1,p
0 (Ω):

(i) There exist constants a1 ≥ 0, a2 ≥ 0, α ∈ (0, p∗ − 1), β ∈ (0, p
(p∗)′ ), and a

function σ1 ∈ Lr ′(Ω) with r ∈ [1, p∗) such that

|f (x, s, ξ)| ≤ σ1(x)+ a1|s|α + a2|ξ |β

for a.a. x ∈ Ω , all s ∈ R and ξ ∈ R
N .

(ii) There exist constants K1,K2,K3 ≥ 0 such that

‖T (u)‖αp∗ ≤ K1‖u‖p−1 +K3 and ‖T (u)‖β ≤ K2‖u‖p−1 +K3

for all u ∈ W 1,p
0 (Ω) and

a1K1S p∗
p∗−α

+ a2K2S p
p−β < 1 (4)

(see (2)). In particular, this assumption is fulfilled if there are constants
K ′1,K ′2 ≥ 0 and γ ∈ [0, p − 1) such that

max{‖T (u)‖α, ‖T (u)‖β} ≤ K ′1‖u‖γ +K ′2 for all u ∈ W 1,p
0 (Ω). (5)

Our result on the existence of weak solutions to problem (1) is as follows.
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Theorem 2 Assume that conditions (i) and (ii) are verified. Then problem (1)
admits at least one (weak) solution.

Proof On the basis of assumption (i), the Nemytskii operator Nf : W 1,p
0 (Ω) →

L(p
∗)′(Ω) related with the function f , that is

Nf (u) = f (x, u,∇u),

is well defined and continuous. Then using the intrinsic operator, i.e. the map
T : W 1,p

0 (Ω) → W
1,p
0 (Ω), we construct the nonlinear operator A : W 1,p

0 (Ω) →
W−1,p′(Ω) defined by

Au = −Δpu− μΔqu−Nf ◦ T (u). (6)

Here the continuity of the embedding L(p
∗)′(Ω) ↪→ W−1,p′(Ω) was used, too. The

fact that u ∈ W 1,p
0 (Ω) is a weak solution for problem (1) is equivalent to have that

u is a zero of the operator A, which means that

〈Au, v〉 = 0, ∀ v ∈ W 1,p
0 (Ω). (7)

Our aim is to apply Theorem 1, from which we will get the surjectivity of the
operator A : W 1,p

0 (Ω) → W−1,p′(Ω) defined by (6), thus (7) ensues. We divide
the proof into six steps.

Claim 1 For every u, w ∈ W 1,p
0 (Ω) we have the estimate

∣∣∣∣
∫
Ω

f (x, T (u),∇ T (u))w dx
∣∣∣∣

≤ ‖σ1‖r ′ ‖w‖r + a1 ‖T (u)‖αp∗‖w‖ p∗
p∗−α

+ a2‖T (u)‖β‖w‖ p
p−β . (8)

Estimate (8) is obtained from assumption (i) in conjunction with Hölder’s
inequality.

Claim 2 The operator A is continuous and bounded.

Since q < p, one has the continuous embedding W 1,p
0 (Ω) ↪→ W

1,q
0 (Ω), so

the operator −Δp − μΔq : W 1,p
0 (Ω) → W−1,p′(Ω) is continuous (see, e.g., [4,

Lemma 2.111]). Moreover, as noted above, the Nemytskii operatorNf is continuous

from W
1,p
0 (Ω) to L(p

∗)′(Ω). Hence, due to the continuity of the embedding

L(p
∗)′(Ω) ↪→ W−1,p′(Ω), the operator Nf ◦ T : W 1,p

0 (Ω) → W−1,p′(Ω) is
continuous as composition of continuous maps. Consequently, the operator A is
continuous as being a sum of continuous operators. Taking into account that the
operators −Δp − μΔq,Nf : W 1,p

0 (Ω)→ W−1,p′(Ω) are bounded, as well as the
operator T (see (ii)), we infer that A is bounded.
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Claim 3 If un ⇀ u inW 1,p
0 (Ω), then it holds

lim
n→+∞

∫
Ω

f (x, T (un),∇ T (un))(un − u) dx = 0. (9)

The sequence (un) is bounded in W 1,p
0 (Ω), so due to the boundedness of the

operator T , which follows from assumption (ii), there is a constant c1 > 0 such
that

‖T (un)‖ ≤ c1, ∀ n.

From this, owing to (8) with u and w replaced by un and un − u, respectively, we
get the estimate

∣∣∣∣
∫
Ω

f (x, T (un),∇ T (un))(un − u) dx
∣∣∣∣

≤ ‖σ1‖r ′ ‖un − u‖r + a1S
α
p∗c

α
1 ‖un − u‖ p∗

p∗−α
+ a2c

β
1 ‖un − u‖ p

p−β

for every n (with Sp∗ as in (2)). In view of the conditions imposed in assumption

(i) on r , α, and β, the space W 1,p
0 (Ω) is compactly embedded in Lr(Ω),

Lp
∗/(p∗−α)(Ω), and Lp/(p−β)(Ω). Therefore, passing to the limit as n → +∞,

we arrive at (9).

Claim 4 If un ⇀ u inW 1,p
0 (Ω) and

lim sup
n→+∞

〈Aun, un − w〉 ≤ 0, (10)

then there hold un→ u inW 1,p
0 (Ω), Aun→ Au inW−1,p′(Ω) and

lim
n→+∞ 〈Aun, un〉 = 〈Au, u〉 . (11)

In particular, the operator A is pseudomonotone.

On the basis of Claim 3, inequality (10) reads as

lim sup
n→+∞

〈−Δpun − μΔqun, un − u〉 ≤ 0.

Invoking the (S+)-property of the operator −Δp − μΔq on W 1,p
0 (Ω) (see, e.g.,

[4]), it follows that un → u in W 1,p
0 (Ω). Moreover, we know by Claim 2 that A is

continuous. Hence Aun→ Au inW−1,p′(Ω) and (11) holds, too.
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Claim 5 There exist constants δ ∈ [0, 1) and γ ≥ 0 such that

∫
Ω

f (x, T (u),∇ T (u))u dx ≤ δ‖u‖p + γ for all u ∈ W 1,p
0 (Ω). (12)

Using Claim 1, hypothesis (ii), and Young’s inequality, we find that

∫
Ω

f (x, T (u),∇ T (u))u dx

≤ ‖σ1‖r ′ ‖u‖r + a1 (K1‖u‖p−1 +K3)‖u‖ p∗
p∗−α

+ a2(K2‖u‖p−1 +K3)‖u‖ p
p−β

≤ (a1K1S p∗
p∗−α

+ a2K2S p
p−β + ε)‖u‖

p + γ

with a constant γ > 0 and an ε > 0 small so that δ := a1K1S p∗
p∗−α

+a2K2S p
p−β+ε <

1 (see (4)). This establishes Claim 5.

Claim 6 The operator A is coercive.

Using Claim 5, we find that

〈Au, u〉 = 〈−Δpu− μΔqu, u〉−
∫
Ω

f (x, T (u),∇ T (u))u dx ≥ (1− δ)‖u‖p − γ

for all u ∈ W 1,p
0 (Ω). Since p > 1 and δ < 1, we derive that

lim‖u‖→+∞
〈Au, u〉
‖u‖ = +∞,

thus Claim 6 holds true.
At this moment we are able to conclude. Claims 2, 4, and 6 entail that the operator

A satisfies all the assumptions of Theorem 1. The conclusion follows by applying
this theorem since then the operator A is surjective. ��
Remark 1 A careful reading of the proof shows that hypothesis (ii) can be replaced
by requiring the (continuous) operator T to be bounded and to fulfill the non-local
condition (12) for constants δ ∈ [0, 1) and γ ≥ 0.

Here are two examples where Theorem 2 can be applied. In the first example, T
is a typical truncation operator (thus defined locally) while in the second example
T (u) cannot be defined locally (as being a solution of an auxiliary problem).

Example 1 Let f : Ω × R × R
N → R be a Carathéodory function satisfying

condition (i) with α, β < p − 1. Then the following problem

{−Δpu− μΔqu = f (x, u+,∇(u+)) in Ω,
u = 0 on ∂Ω

(13)



596 D. Motreanu and V. V. Motreanu

possesses at least a weak solution. Here u+ stands for the positive part of u, that
is u+ = max{u, 0}. In order to obtain the stated conclusion, we consider the
continuous intrinsic operator T : W 1,p

0 (Ω) → W
1,p
0 (Ω) given by T (u) = u+ for

all u ∈ W 1,p
0 (Ω). We note that since we supposed α, β < p−1 in (i), condition (ii)

is fulfilled since T satisfies (5) with γ = max{α, β}. We can thus apply Theorem 2,
which yields the existence of a weak solution u ∈ W 1,p

0 (Ω) to problem (13).

Example 2 In this example we argue with a continuous function g : R→ R which
satisfies the following growth condition

|g(s)| ≤ a|s|t + b for all s ∈ R (14)

for constants a, b ≥ 0 and t ∈ (0, p∗ − 1). Under this condition, for every u ∈
W

1,p
0 (Ω), the problem

{−Δpv = g(u) in Ω,
u = 0 on ∂Ω

(15)

has a unique weak solution v =: T (u). We consider the mapping T : W 1,p
0 (Ω)→

W
1,p
0 (Ω) so obtained.
Let a Carathéodory function f : Ω × R × R

N → R which satisfies (i) and
assume in addition that

t max{α, β} < (p − 1)2 (16)

(this holds, for instance, if max{t, α, β} < p − 1, or if t = 1 and max{α, β} <
(p − 1)2). Under these conditions we claim that problem (1) (for the operator T
defined above) has a weak solution. To see this, let us note that T is continuous and
satisfies condition (5) (and thus condition (ii)) so that Theorem 2 can be applied.
Since 0 < t < p∗−1 we can find r ∈ (1, p∗) such that tr ′ < p∗. Let u ∈ W 1,p

0 (Ω).
On the one hand by (14) we have

‖g(u)‖r ′r ′ ≤ ã‖u‖tr
′

tr ′ + b̃ ≤ ãStr
′

tr ′ ‖u‖tr
′ + b̃

for constants ã, b̃ > 0 independent of u (where we also use the constant Sθ of (2)).
On the other hand using T (u) as test function in (15) leads to

‖T (u)‖p =
∫
Ω

g(u)T (u) dx ≤ ‖g(u)‖r ′ ‖T (u)‖r ≤ Sr‖g(u)‖r ′ ‖T (u)‖

whence

‖T (u)‖p−1 ≤ Sr‖g(u)‖r ′ ≤ a′‖u‖t + b′
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for constants a′, b′ > 0 independent of u. By (16) we can find γ such that
t max{α,β}
p−1 < γ < p − 1, so that the previous relation yields

max{‖T (u)‖α, ‖T (u)‖β} ≤ ã′‖u‖γ + b̃′ (17)

for some constants ã′, b̃′ > 0 independent of u. Thus (5) is satisfied.
Moreover, the mapping T : W 1,p

0 (Ω) → W
1,p
0 (Ω) is continuous. This can be

seen as follows. Let un → u in W 1,p
0 (Ω), thus un → u in Lp

∗
(Ω) by the Sobolev

embedding theorem, which guarantees through the Krasnoselskii theorem and (14)

that g(un) → g(u) in L
p∗
t (Ω). Due to (17), the sequence (wn) := (T (un)) is

bounded in W 1,p
0 (Ω). Passing to a relabeled subsequence we have wn ⇀ w in

W
1,p
0 (Ω) and wn→ w in L(

p∗
t
)′(Ω), with some w ∈ W 1,p

0 (Ω). Therefore we infer
that

〈−Δpwn,wn − w〉 =
∫
Ω

g(un)(wn − w) dx → 0 as n→∞.

Then the (S+)-property of the operator−Δp onW 1,p
0 (Ω) (see, e.g., [4]) ensures that

wn → w in W 1,p
0 (Ω). From here it is straightforward to deduce that w = T (u),

whence the continuity of the mapping T follows. The application of Theorem 2
ensues.

4 Uniqueness

In this section we present a uniqueness result for problem (1). The main features of
this result are that p > q ≥ 2 and the right-hand side of the equation is written as
a sum f (x, s, ξ) = g(x, s, ξ) + h(x, s, ξ) with the terms g(x, s, ξ) and h(x, s, ξ)
having different behavior.

We recall that for every r ≥ 2 there is a constant cr > 0 such that

(|ξ |r−2ξ − |η|r−2η) · (ξ − η) ≥ cr |ξ − η|r for all ξ, η ∈ R
N

so that

〈−Δru1 +Δru2, u1 − u2〉 ≥ cr‖∇u1 −∇u2‖rr , ∀ u1, u2 ∈ W 1,r
0 (Ω). (18)

Note that for r = 2 the constant is c2 = 1. Our uniqueness statement is as follows.

Theorem 3 Let p > q ≥ 2. Assume that the Carathéodory functions g, h : Ω ×
R × R

N → R and the continuous map T : W 1,p
0 (Ω) → W

1,p
0 (Ω) satisfy the

conditions:
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(j) there is a constant m1 ∈ [0, cp] such that for all v1, v2 ∈ W 1,p
0 (Ω), one has

∫
Ω

(g(x, T (v1),∇ T (v1))− g(x, T (v2),∇ T (v2)))(v1 − v2) dx ≤ m1‖v1 − v2‖p;

(jj) there is a constant m2 ∈ [0, μcq ] such that for all v1, v2 ∈ W 1,p
0 (Ω), one

has
∫
Ω

(h(x, T (v1),∇ T (v1))− h(x, T (v2),∇ T (v2)))(v1 − v2) dx

≤ m2

∫
Ω

|∇(v1 − v2)|q dx;

(jjj) m1 < cp or m2 < μcq .

Then the Dirichlet problem (of type (1))

{−Δpu− μΔqu = g(x, T (u),∇ T (u))+ h(x, T (u),∇ T (u)) in Ω,
u = 0 on ∂Ω

(19)

has at most one weak solution.

Proof Suppose u1, u2 ∈ W 1,p
0 (Ω) are both weak solutions to problem (19). Then

by (18) and hypotheses (j) and (jj) we have

cp‖u1 − u2‖p + μcq
∫
Ω

|∇(u1 − u2)|q dx

≤ 〈−Δpu1 +Δpu2, u1 − u2
〉+ μ 〈−Δqu1 +Δqu2, u1 − u2

〉

=
∫
Ω

(g(x, T (u1),∇ T (u1))− g(x, T (u2),∇ T (u2)))(u1 − u2) dx

+
∫
Ω

(h(x, T (u1),∇ T (u1))− h(x, T (u2),∇ T (u2)))(u1 − u2) dx

≤ m1‖u1 − u2‖p +m2

∫
Ω

|∇(u1 − u2)|q dx.

This results in

(cp −m1)‖u1 − u2‖p + (μcq −m2)

∫
Ω

|∇(u1 − u2)|q dx ≤ 0.

Invoking (jjj), we infer that u1 = u2, which completes the proof. ��
Remark 2 Assumptions (j) and (jj) express properties of interaction between the
nonlinearity f (x, s, ξ) = g(x, s, ξ) + h(x, s, ξ) and the intrinsic operator T :
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W
1,p
0 (Ω) → W

1,p
0 (Ω). Uniqueness results for elliptic problems with convection

terms (i.e., the corresponding vector field fully depends on the solution and its
gradient) can be found in [2, Theorem 2] (see also [10] and the references therein
where the nonlinearity does not depend on the gradient of the solution). The novelty
here is that the result involves the intrinsic operator T .

We provide a simple example of application of Theorem 3.

Example 3 Fix an element u0 ∈ W
1,p
0 (Ω) and let g : Ω × R → R be a

Carathéodory function such that for a.e. x ∈ Ω the function g(x, ·) is nonincreasing,
so

(g(x, s1)− g(x, s2))(s1 − s2) ≤ 0, ∀s1, s2 ∈ R. (20)

Then Theorem 3 with p > q = 2 applies to the problem

{
−Δpu− μΔu = g(x, u+ u0)+ ∂

∂x1
(u+ u0) in Ω,

u = 0 on ∂Ω
(21)

ensuring that, for μ sufficiently large, problem (21) possesses at most a weak
solution. Indeed, in order to apply Theorem 3 we take the intrinsic operator T :
W

1,p
0 (Ω)→ W

1,p
0 (Ω) to be the translation T (v) = v + u0. In view of assumption

(20), condition (j) (with the function g(x, s, ξ) := g(x, s)) is verified with the
constant m1 = 0 < cp. Next we point out that condition (jj) is verified by the
function h(x, s, ξ) = h(ξ) := ξ1 for all ξ = (ξ1, . . . , ξN ) ∈ R

N , provided that the
parameter μ ≥ 1

2 (1+ 1
λ1,2
) with λ1,2 as in (3). This follows from the estimate

∫
Ω

(h(∇ T (v1))− h(∇ T (v2)))(v1 − v2) dx

=
∫
Ω

∂(v1 − v2)

∂x1
(v1 − v2) dx

≤ 1

2

∫
Ω

(
|∇(v1 − v2)|2 + (v1 − v2)

2
)
dx ≤ 1

2

(
1+ 1

λ1,2

)∫
Ω

|∇(v1 − v2)|2 dx

for all v1, v2 ∈ W 1,p
0 (Ω), where (3) with r = 2 has been used. Theorem 3 implies

that problem (21) admits at most one solution whenever μ ≥ 1
2 (1+ 1

λ1,2
).

Finally, we present a result involving convection term with an intrinsic operator
where Theorems 2 and 3 jointly apply, thus obtaining an existence and uniqueness
result. We do this in the case of problem (21) in Example 3 by strengthening the
hypotheses therein.

Theorem 4 Assume that p > q = 2, g : Ω × R→ R is a Carathéodory function
satisfying (20) together with the growth condition
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(i′) there exist constants a0, a1 ≥ 0 and α ∈ (0, p∗ − 1) such that

|g(x, s)| ≤ a0 + a1|s|α for a.e. x ∈ Ω and all s ∈ R,

and let u0 ∈ W 1,p
0 (Ω)∩L∞(Ω). If μ ≥ 0, then problem (21) has at least one weak

solution. If μ ≥ 1
2 (1+ 1

λ1,2
), then the weak solution is unique.

Proof The uniqueness part follows from Example 3. In order to prove the existence
of a weak solution to problem (21) we check the conditions required to address
Theorem 2 (in the refined version pointed out in Remark 1). To this end we set

f (x, s, ξ) = g(x, s)+ ξ1
for a.e. x ∈ Ω , all s ∈ R, and ξ = (ξ1, . . . , ξN ) ∈ R

N . From assumption (i′) we
obtain the estimate

|f (x, s, ξ)| ≤ |g(x, s)| + |ξ1| ≤ a0 + a1|s|α + |ξ |,

which shows that assumption (i) of Theorem 2 is fulfilled. The operator T :
W

1,p
0 (Ω) → W

1,p
0 (Ω), u �→ u + u0 corresponding to problem (21) is clearly

bounded. On the basis of (20) we have the estimate

∫
Ω

f (x, T (u),∇ T (u))u dx =
∫
Ω

g(x, u+ u0)u dx +
∫
Ω

∂(u+ u0)

∂x1
u dx

≤
∫
Ω

g(x, u0)u dx +
∫
Ω

∂(u+ u0)

∂x1
u dx

≤ δ‖u‖2 + c ≤ δ′‖u‖p + c′ for all u ∈ W 1,p
0 (Ω)

with constants δ, c, c′ > 0 and δ′ ∈ (0, 1). In view of Remark 1 the conclusion of
Theorem 2 is valid. This completes the proof. ��
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Iterative Methods for Variational
Inequalities

Muhammad Aslam Noor, Khalida Inayat Noor, and Themistocles M. Rassias

Abstract Variational inequalities can be viewed as novel and significant extension
of variational principles. A wide class of unrelated problems, which arise in
various branches of pure and applied sciences are being investigated in the unified
framework of variational inequalities. It is well known that variational inequalities
are equivalent to the fixed point problems. This equivalent fixed point formulation
has played not only a crucial part in studying the qualitative behavior of complicated
problems, but also provide us numerical techniques for finding the approximate
solution of these problems. Our main focus is to suggest some new iterative
methods for solving variational inequalities and related optimization problems using
projection methods, Wiener–Hopf equations and dynamical systems. Convergence
analysis of these methods is investigated under suitable conditions. Some open
problems are also discussed and highlighted for future research.

1 Introduction

Variational inequality theory contains a wealth of new ideas and techniques.
Variational inequality theory, which was introduced and considered in the early
1960s by Stampacchia [43], can be viewed as a natural extension and generalization
of the variational principles. It is well known that the minimum u ∈ K of a
differentiable convex functions on the convex set K can be characterized by an
inequality of the type:

〈f ′(u), v − u〉 ≥ 0, ∀v ∈ K,
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which is called the variational inequality. It is amazing that a wide class of unrelated
problems, which arise in various different branches of pure and applied sciences,
can be studied in the general and unified framework of variational inequalities.
For the applications, motivation, numerical results, and other aspects of variational
inequalities, see [1–48] and the references therein.

It is worth mentioning that a convex function f is a convex function, if and only
if, it satisfies the inequality of the type:

f
(a + b

2

) ≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

,∀a, b ∈ [a, b],

which is called the Hermite–Hadamard inequality. Such type of inequalities have
important and fundamental applications in various fields of pure and applied
sciences.

It is well known that the variational inequalities are equivalent to the fixed
point problems. This alternative formulation is used not only to study the existence
theory of the solution of the variational inequalities, but also to develop several
iterative methods such as projection method, implicit methods, and their variant
modifications. The convergence analysis of the projection method requires that the
underlying operator must be strongly monotone and Lipschitz continuous, which
are strict conditions. To overcome these drawbacks, Korpelevich [16] suggested
the extragradient method, convergence of which requires only the monotonicity
and Lipschitz continuity. Noor [29] has proved that the convergence analysis
of the extragradient method only requires the monotonicity. This result can be
viewed as the significant refinement of a result of Korpelevich [16], see also Noor
et al. [37, 38].

The Wiener–Hopf equations were introduced and studied by Shi [42] and
Robinson [41]. The technique of Wiener–Hopf equations is quite general and
unifying one. This technique has been used to study the existence of a solution as
well as to develop various iterative methods for solving the variational inequalities.
Noor [23, 25, 26, 32] has used the Wiener–Hopf equations technique to suggest
iterative method and study the sensitivity, stability analysis, and dynamical systems
of the variational inequalities.

The alternative fixed point technique is used to establish the equivalence between
the variational inequalities and dynamical systems. This equivalence has been used
to study the existence and stability of the solution of variational inequalities. Bin-
Mohsin et al. [1] have been shown that the dynamical system can be used to
suggest some implicit iterative method for solving variational inequalities. For the
applications and numerical methods of the dynamical systems, see [1, 6–9, 17–
19, 32, 47].

In this paper, we use the fixed point formulation, Wiener–Hopf equations, and
dynamical systems to suggest some implicit and explicit methods for solving the
variational inequalities. The convergence criteria of the proposed implicit method
is discussed under some mild conditions. An example is given to illustrate the
implementation and efficiency of the proposed method for solving variational
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inequalities. Using the techniques and ideas of this paper, one can suggest a wide
class of iterative schemes for solving different classes of variational inequalities,
equilibrium and optimization problems.

2 Formulations and Basic Facts

Let H be a real Hilbert space, whose norm and inner product are denoted by ‖ · ‖
and 〈·, ·〉, respectively.

Let T : H → H be a nonlinear operator and f be a linear continuous functional.
Let K be a closed and convex set in H.We consider the problem of finding u ∈ K ,
such that

〈T u, v − u〉 ≥ 〈f, v − u〉, ∀v ∈ K, (1)

which is called the variational inequalities, introduced and studied by Karamar-
dian [14]. A wide class of problems arising in pure and applied sciences can be
studied via variational inequalities (1), see [1–7, 26, 32, 33, 40–42, 48].

If K∗ = {u ∈ H : 〈u, v〉 ≥ 0,∀v ∈ K, } is a polar(dual) cone, then problem (1)
is equivalent to finding

u ∈ K, T u− f ∈ K∗, 〈T u− f, u〉 = 0, (2)

which is known as the nonlinear complementarity problem, introduced by Karamar-
dian [14]. For the applications and other aspects of the complementarity problems
in engineering and applied sciences, see [1, 6–12, 32, 35, 47] and the references
therein.

If K = H, then problem (1) is equivalent to finding u ∈ H, such that

〈T u, v〉 = 〈f, v〉, ∀v ∈ H, (3)

which is known as the general Lax–Milgram Lemma, see [20, 40] and the references
therein, We would like to point out that, if T = I, the identity operator, then problem
(3) is known as the Riesz –Frechet representation theorem, see, for example, [17,
20, 40].

If the operator T is linear, symmetric, and positive definite, then problem (1) is
equivalent to finding the minimum of the functional I [v] on the convex setK , where

I [v] = 〈T v, v〉 − 2〈f, v〉, ∀v ∈ H,

which is the energy functional. Consequently, it is clear that all these problems are
closely related to the quadratic programming and optimization theory.
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Definition 1 An operator T : H → H is said to be:

1. Strongly monotone, if there exists a constant α > 0, such that

〈T u− T v, u− v〉 ≥ α‖u− v‖2, ∀u, v ∈ H.

2. Lipschitz continuous, if there exists a constant β > 0, such that

‖T u− T v‖ ≤ β‖u− v‖, ∀u, v ∈ H.

3. Monotone, if

〈T u− T v, u− v〉 ≥ 0, ∀u, v ∈ H.

Remark 1 Every strongly monotone operator is monotone but the converse is not
true.

We also need the following result, known as the Projection Lemma, which plays
a crucial part in establishing the equivalence between the variational inequalities
and the fixed point problem. This result can be used in analyzing the convergence
analysis of the projective implicit and explicit methods for solving the variational
inequalities and related optimization problems.

Lemma 1 ([10, 15]) Let K be a closed and convex set in H. Then, for a given
z ∈ H , u ∈ K satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K, (4)

if and only if

u = PK(z),

where PK is the projection operator.

It is well known that the projection operator PK is nonexpansive, that is,

‖PK(u)− PK(v)‖ ≤ ‖u− v‖,∀u, v ∈ H.

Lemma 1 has played a crucial part in the development of numerical methods,
sensitivity analysis, dynamical systems, convergence analysis , and other aspects
of variational inequalities and related problems.
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3 Projection Methods

In this section, we use the fixed point formulation to suggest and analyze some new
implicit methods for solving the variational inequalities.

Using Lemma 1, one can show that the variational inequalities are equivalent to
the fixed point problems.

Lemma 2 ([32]) The function u ∈ K is a solution of the variational inequalities
(1), if and only if, u ∈ K satisfies the relation

u = PK [u− ρT u], (5)

where PK is the projection operator and ρ > 0 is a constant.

Lemma 2 implies that the variational inequality (1) is equivalent to the fixed
point problem (5). This equivalent fixed point formulation was used to suggest some
implicit iterative methods for solving the variational inequalities. One uses (5) to
suggest the following iterative methods for solving variational inequalities.

Algorithm 1 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un − ρT un], n = 0, 1, 2, . . . (6)

which is known as the projection method and has been studied extensively, see [26,
32, 35].

Algorithm 2 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un − ρT un+1], n = 0, 1, 2, . . . (7)

which is known as the extragradient method, which was suggested and analyzed
by Korpelevich [16] and has been studied extensively. Noor [29] has proved the
convergence of the extragradient for pseudomonotone operators.

Algorithm 3 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un+1 − ρT un+1], n = 0, 1, 2, . . . (8)

which is known as the modified projection method and has been studied extensively,
see [26, 32].

We can rewrite Eq. (5) as:

u = PK [u+ u
2

− ρT u]. (9)

This fixed point formulation was used to suggest the following implicit method,
which is due to Noor et al. [38].
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Algorithm 4 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un + un+1

2
− ρT un+1], n = 0, 1, 2, . . . (10)

For the implementation and numerical performance of Algorithm 4, Noor et
al. [38] used the predictor-corrector technique to suggest the following two-step
iterative method for solving variational inequalities.

Algorithm 5 For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [un − ρT un]
un+1 = PK [yn + un

2
− ρTyn], λ ∈ [0, 1], n = 0, 1, 2, . . .

which is a two-step iterative method:
From Eq. (5), we have

u = PK [u− ρT (u+ u
2
)]. (11)

This fixed point formulation is used to suggest the implicit method for solving the
variational inequalities as

Algorithm 6 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un − ρT (un + un+1

2
)], n = 0, 1, 2, . . . . (12)

which is another implicit method, see Noor et al. [37, 38]. To implement this implicit
method, one can use the predictor-corrector technique to rewrite Algorithm 3 as
equivalent two-step iterative method:

Algorithm 7 For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [un − ρT un],
un+1 = PK [un − ρT (un + yn

2
)], n = 0, 1, 2, . . . .

which was suggested and studied by Noor et al. [10] and is known as the mid-point
implicit method for solving variational inequalities. For the convergence analysis
and other aspects of Algorithm 3, see Noor et al. [10].

It is obvious that Algorithms 4 and 5 have been suggested using different variant
of the fixed point formulations of Eq. (5). It is natural to combine these fixed
point formulation to suggest a hybrid implicit method for solving the variational
inequalities and related optimization problems, which is the main motivation of this
paper.
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One can rewrite Eq. (5) as

u = PK [u+ u
2

− ρT (u+ u
2
)]. (13)

This equivalent fixed point formulation enables to suggest the following method for
solving the variational inequalities.

Algorithm 8 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK [un + un+1

2
− ρT (un + un+1

2
)], n = 0, 1, 2, . . . . (14)

which is an implicit method.

We would like to emphasize that Algorithm 8 is an implicit method. To
implement the implicit method, one uses the predictor-corrector technique. We use
Algorithm 1 as the predictor and Algorithm 8 as corrector. Thus, we obtain a new
two-step method for solving variational inequalities.

Algorithm 9 For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [un − ρT un]

un+1 = PK [
(
yn + un

2

)
− ρT

(
yn + un

2

)
], n = 0, 1, 2, . . .

which is two-step method introduced.

From the above discussion, it is clear that Algorithms 8 and 9 are equivalent. It
is enough to prove the convergence of Algorithm 8, which is the main motivation of
our next result.

Theorem 1 Let the operator T be strongly monotone with constant α > 0 and
Lipschitz continuous with constant β > 0, respectively. Let u ∈ K be solution of
(1) and un+1 be an approximate solution obtained from Algorithm 8. If there exists
a constant ρ > 0, such that

0 < ρ <
2α

β2 , (15)

then the approximate solution un+1 converges to the exact solution u ∈ K.
Proof Let u ∈ K be a solution of (1) and un+1 be the approximate solution obtained
from Algorithm 8. Then, from Eqs. (13) and (14), we have

‖un+1 − u‖2 = ‖PK [(un + un+1

2
)− ρT (un + un+1

2
)] − PK [u+ u

2
)− ρT (u+ u

2
)]‖2

≤ ‖un+1 + un
2

− u+ u
2
)− ρ(T (un+1 + un

2
)− T (u+ u

2
))‖2
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≤ (1− 2ρα + ρ2β2)‖un − u
2

+ un+1 − u
2

‖2, (16)

where we have used the fact that the operator T is strongly monotone with constant
α > 0 and Lipschitz continuous constant β > 0, respectively.

Thus, from (16), we have

‖un+1 − u‖ ≤
√

1− 2ρα + ρ2β2{‖un − u
2

‖ + ‖un+1 − u
2

‖}

= 1

2

√
1− 2ρα + ρ2β2‖un − u‖

+1

2

√
1− 2ρα + ρ2β2‖un+1 − u‖, (17)

which implies that

‖un+1 − u‖ ≤
1
2

√
1− 2ρα + ρ2β2

1− 1
2

√
1− 2ρα + ρ2β2

‖un − u‖

= θ‖un − u‖, (18)

where

θ =
1
2

√
1− 2ρα + ρ2β2

1− 1
2

√
1− 2ρα + ρ2β2

.

From (15), it follows that θ < 1. This shows that the approximate solution un+1
obtained from Algorithm 8 converges to the exact solution u ∈ K satisfying the
variational inequality (1).

4 Wiener–Hopf Equations Technique

We now consider the problem of solving the Wiener–Hopf equations related to the
variational inequalities. Let T be an operator and QK = I − PK, where I is the
identity operator and PK is the projection of H onto the closed convex set K. We
consider the problem of finding z ∈ H such that

T PKz+ ρ−11QKz = 0. (19)

The equations of the type (19) are called the Wiener–Hopf equations, which were
introduced and studied by Shi [42] and Robinson [41] independently. It has been
shown that the Wiener–Hopf equations play an important part in the developments
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of iterative methods, sensitivity analysis, and other aspects of the variational
inequalities, see [23–27, 30, 32, 39–42] and the references therein.

Lemma 3 The element u ∈ K is a solution of variational inequality (1), if and only
if z ∈ H satisfies the Wiener–Hopf equation (19), where

u = PKz, (20)

z = u− ρT u, (21)

where ρ > 0 is a constant.

From Lemma 3, it follows that the variational inequalities (1) and the Wiener–
Hopf equations (19) are equivalent. This alternative equivalent formulation has been
used to suggest and analyze a wide class of efficient and robust iterative methods for
solving variational inequalities and related optimization problems, see [6–11] and
the references therein.

We use the Wiener–Hopf equations (19) to suggest some new iterative methods
for solving the variational inequalities. From (20) and (21),

z = PKz− ρT PKz
= PK [u− ρT u] − ρT PK [u− ρT u].

Thus, we have

u = ρT u+ [PK [u− ρT u] − ρT PK [u− ρT u+ PK [u− ρT u] − u].
Consequently, for a constant αn > 0, we have

u = (1− αn)u+ αn{PK [PK [u− ρT u] + ρT u− ρT PK [u− ρT u] + PK [u− ρT u]−u]}
= (1− αn)u+ αn{PK [y − ρTy + ρT u+ y − u]}, (22)

where

y = PK [u− ρT u]. (23)

Using (22) and (23), we can suggest the following new predictor-corrector method
for solving variational inequalities.

Algorithm 10 For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [un − ρT un]

un+1 = (1− αn)un + αn
{
PK [yn − ρTyn + yn − (un − ρT un)]

}
. (24)
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Algorithm 10 can be rewritten in the following equivalent form:

Algorithm 11 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = (1− αn)un + αn{PK [PK [un − ρT un] − ρT PK [un − ρT un]
+PK [un − ρT un)− (un − ρT un])},

which is an explicit iterative method and appears to be a new one.

If αn = 1, then Algorithm 11 reduces to

Algorithm 12 For a given u0 ∈ H , compute un+1 by the iterative scheme

yn = PK [un − ρT un]
un+1 = PK [yn − ρTyn + yn − (un − ρT un])}, n = 0, 1, 2, . . . ,

which appears to be a new one.

5 Dynamical Systems Technique

In this section, we consider the projected dynamical systems associated with
variational inequalities. We investigate the convergence analysis of these new
methods involving only the monotonicity of the operator.

We now define the residue vector R(u) by the relation

R(u) = u− PK [u− ρT u]. (25)

Invoking Lemma 2, one can easily conclude that u ∈ K is a solution of (1), if and
only if, u ∈ K is a zero of the equation

R(u) = 0. (26)

We now consider a projected dynamical system associated with the variational
inequalities. Using the equivalent formulation (2), we suggest a class of projected
dynamical systems as

du

dt
= λPK [u− ρT u] − u}, u(t0) = u0 ∈ K, (27)

where λ is a parameter. The system of type (27) is called the projected dynamical
system associated with variational inequalities (1). Here the right hand is related to
the resolvent and is discontinuous on the boundary. From the definition, it is clear
that the solution of the dynamical system always stays in H . This implies that the
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qualitative results such as the existence, uniqueness, and continuous dependence
of the solution of (27) can be studied. These projected dynamical systems are
associated with the variational inequalities (1), which have been studied extensively.

We use the projected dynamical system (27) to suggest some iterative for
solving variational inequalities (1). These methods can be viewed in the sense of
Korpelevich [16] and Noor [26, 32] involving the double resolvent operator.

For simplicity, we consider the dynamical system (27)

du

dt
+ u = PK [u− ρT u], u(t0) = α. (28)

We construct the implicit iterative method using the forward difference scheme.
Discretizing the equation (28), we have

un+1 − un
h

+ un+1 = PK [un − ρT un+1], (29)

where h is the step size. Now, we can suggest the following implicit iterative method
for solving the variational inequality (1).

Algorithm 13 For a given u0 ∈ H , compute un+1 by the iterative scheme

un+1 = PK
[
un − ρT un+1 − un+1 − un

h

]
, n = 0, 1, 2, . . . .

This is an implicit method and is quite different from the implicit method [16,
32]. Using Lemma 1, Algorithm 13 can be rewritten in the equivalent form as:

Algorithm 14 For a given u0 ∈ H , compute un+1 by the iterative scheme

〈ρT un+1 + 1+ h
h
(un+1 − un), v − un+1〉 ≥ 0, ∀v ∈ K, n = 0, 1, 2, . . . . (30)

We now study the convergence analysis of algorithm 14 under some mild conditions.

Theorem 2 Let u ∈ K be a solution of variational inequality (1). Let un+1 be the
approximate solution obtained from (30). If T is monotone, then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2. (31)

Proof Let u ∈ K be a solution of (1). Then

〈T v, v − u〉 ≥ 0, ∀v ∈ K, (32)

since T is a monotone operator.



614 M. A. Noor et al.

Set v = un+1 in (32), to have

〈T un+1, un+1 − u〉 ≥ 0. (33)

Taking v = u in (30), we have

〈ρT un+1 + { (1+ h)un+1 − (1+ h)un
h

}, u− un+1〉 ≥ 0. (34)

From (33) and (34), we have

〈(1+ h)(un+1 − un), u− un+1〉 ≥ 0. (35)

From (35) and using 2〈a, b〉 = ‖a+ b‖2−‖a‖2−‖b‖2, ∀a, b ∈ H, we obtain

‖un+1 − u‖2 ≤ ‖u− un‖2 − ‖un+1 − un‖2. (36)

the required result.

Theorem 3 Let u ∈ K be the solution of variational inequality (1). Let un+1 be the
approximate solution obtained from (30). If T is a monotone operator, then un+1
converges to u ∈ H satisfying (1).

Proof Let T be a monotone operator. Then, from (31), it follows the sequence
{ui}∞i=1 is a bounded sequence and

∞∑
i=1

‖un − un+1‖2 ≤ ‖u− u0‖2,

which implies that

lim
n→∞‖un+1 − un‖2 = 0. (37)

Since sequence {ui}∞i=1 is bounded, so there exists a cluster point û to which the
subsequence {uik}∞k=1 converges. Taking limit in (30) and using (37), it follows that
û ∈ K satisfies

〈T û, v − û〉 ≥ 0, ∀v ∈ K,

and

‖un+1 − u‖2 ≤ ‖u− un‖2.

Using this inequality, one can show that the cluster point û is unique and
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lim
n→∞ un+1 = û.

We now suggest another implicit iterative method for solving (1). Discretizing (30),
we have

un+1 − un
h

+ un+1 = PK [un+1 − ρT un+1], (38)

where h is the step size.
This formulation enables us to suggest the following iterative method.

Algorithm 15 For a given u0 ∈ K, compute un+1 by the iterative scheme

un+1 = PK
[
un+1 − ρT un+1 − un+1 − un

h

]
, n = 0, 1, 2, . . . .

Using Lemma 1, Algorithm 15 can be rewritten in the equivalent form as:

Algorithm 16 For a given u0 ∈ K, compute un+1 by the iterative scheme

〈ρT un+1 + {un+1 − un
h

}, v − un+1〉 ≥ 0, ∀v ∈ K. (39)

Again using the dynamical systems, we can suggest some iterative methods for
solving the variational inequalities and related optimization problems.

Algorithm 17 For a given u0 ∈ K, compute un+1 by the iterative scheme

un+1 = PK
[
(h+ 1)(un − un+1)

h
− ρT un

]
, n = 0, 1, 2, . . . ,

which can be written in the equivalent form as

Algorithm 18 For a given u0 ∈ K, compute un+1 by the iterative scheme

〈ρT un + {h+ 1

h
(un+1 − un)}, v − un+1〉 ≥ 0, ∀v ∈ K. (40)

In a similar way, one can suggest a wide class of implicit iterative methods for
solving variational inequalities and related optimization problems. The comparison
of these methods with other methods is an interesting problem for future research.

6 Computational Results

We now explain Algorithm 8 as follows, which is used to illustrate the efficiency of
Algorithm 8.
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Step 0 Let ρ0 > 0, δ := 0.95 < 1, ε > 0, k = 0 and u0 ∈ K.
Step 1 If ‖|r(uk, ρk)‖∞ ≤ ε, then stop. Otherwise, go to Step 2.
Step 2
yk = PK [uk − ρkT (uk)], εk = ρk(T (ũk)− T (uk)),
r = ‖εk‖

‖uk−ũk‖ .
While (r > δ)
ρk = 0.8

r
∗ ρk, yk = PK [uk − ρkT (uk)],

εk = ρk(T (ũk)− T (uk)), r = ‖εk‖
‖uk−ũk‖ .

end While
Step 3

uk+1 = PK
[
uk+yk

2 − ρT (uk+yk2 )
]
.

Step 4 ρk+1 =
{
ρk∗0.7
r

if r ≤ 0.5;
ρk otherwise.

Step 5 k:=k+1; go to Step 1.

We now consider an example to illustrate the implementation and efficiency of
the proposed Algorithm 8. In order to verify the theoretical assertions, we consider
the variational inequality (1), where

T (u) = D(u)+Mu+ q, (41)

D(u) andMu+ q are the nonlinear part and the linear part of T (u), respectively.
We form the linear part in the test problems similarly as in Harker and Pang [11].

The matrixM = ATA+B, where A is an n×n matrix whose entries are randomly
generated in the interval (−5,+5) and a skew-symmetric matrix B is generated in
the same way. The vector q is generated from a uniform distribution in the interval
(−500, 500). In D(u), the nonlinear part of T (u), the components are chosen to be
Dj(u) = dj ∗ arctan(uj ), where dj is a random variable in (0, 1). A similar type of
problems was tested in [18] and [44].

In all tests we take δ = 0.95 and γ = 1.98. All iterations start with
u0 = (1, . . . , 1)T and ρ0 = 1, and stopped whenever ‖r(uk, 1)‖∞ ≤ 10−7. All
codes are written in Matlab. The iteration numbers and the computational time for
Algorithm 3.2, the methods in [5] and in [1] with different dimensions are given in
Table 1.

Table 1 Numerical results for problem (1)

Algorithm 3.2 The method in [6] The method in [3]

Dimension of the problem No. It. CPU (s) No. It. CPU (s) No. It. CPU (s)

n = 100 122 0.009 261 0.06 164 0.04

n = 200 194 0.022 402 0.59 250 0.53

n = 300 178 0.047 442 1.94 282 1.30

n = 500 221 90.107 496 5.91 312 3.29

n = 700 181 0.169 479 16.99 310 10.68
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Recent Developments of Lyapunov-Type
Inequalities for Fractional Differential
Equations

Sotiris K. Ntouyas, Bashir Ahmad, and Theodoros P. Horikis

Abstract A survey of results on Lyapunov-type inequalities for fractional differ-
ential equations associated with a variety of boundary conditions is presented. This
includes Dirichlet, mixed, Robin, fractional, Sturm–Liouville, integral, nonlocal,
multi-point, anti-periodic, conjugate, right-focal, and impulsive conditions. Further-
more, our study includes Riemann–Liouville, Caputo, Hadamard, Prabhakar, Hilfer,
and conformable type fractional derivatives. Results for boundary value problems
involving fractional p-Laplacian, fractional operators with nonsingular Mittag–
Leffler kernels, q-difference, discrete, and impulsive equations are also taken into
account.

1 Introduction and Preliminaries

Integral inequalities are fundamental in the study of quantitative properties of
solutions of differential and integral equations. The Lyapunov-type inequality is
one of such inequalities when investigating the zeros of solutions of differential
equations. A method for deriving a Lyapunov-type inequality for boundary value
problems dates back to Nehari [1] and is based on the idea of converting the given
problem into an integral equation. To illustrate this method, let us consider the
following boundary value problem:

{
y′′(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,
(1)
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where a, b ∈ R, a < b are consecutive zeros of y(t) and y(t) �≡ 0, for all t ∈ (a, b).
It can easily be shown that problem (1) is equivalent to the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (2)

where G(t, s) is the Green’s function given by

G(t, s) = −

⎧⎪⎨
⎪⎩
(t − a)(b − s)

b − a , a ≤ s ≤ t ≤ b,
(s − a)(b − t)

b − a , a ≤ t ≤ s ≤ b.
(3)

Taking the absolute value of both sides of Eq. (2), and taking into account that y
does not have any zeros in (a, b),we get

1 ≤ max
a≤t≤b

∫ b

a

|G(t, s)||q(s)|ds, (4)

which yields the desired Lyapunov inequality

∫ b

a

|q(s)|ds ≥ 1

max(t,s)∈[a,b]×[a,b] |G(t, s)| . (5)

In the special case where can findH(s) explicitly such that max
t∈[a,b] |G(t, s)| ≤ H(s),

then we obtain the following inequality:

1 ≤
∫ b

a

H(s)|q(s)|ds.

Clearly the function H(t) for problem (1) is
(t − a)(b − t)

b − a . Moreover, if we take

the absolute maximum of the function H(t) for all t ∈ [a, b], then it is obtained the
following well-known Lyapunov inequality [2].

Theorem 1 If the boundary-value problem (1) has a nontrivial solution, where q is
a real and continuous function, then

∫ b

a

|q(s)|ds > 4

b − a . (6)

The factor 4 in the above inequality is sharp and cannot be replaced by a larger
number.
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Later Wintner in [3] and more authors thereafter generalized this result by
replacing the function |q(t)| in (6) by the function q+(t), q+(t) = max{q(t), 0},
where now the resulting inequality reads:

∫ b

a

q+(s)ds > 4

b − a , (7)

with q+(t) = max{q(t), 0}.
In [4], Hartman expanded further this result with the following inequality:

∫ b

a

(b − t)(t − a)q+(t)dt > (b − a), (8)

which is sharper than both (6) and (7).

Clearly, (8) implies (7) as (b − t)(t − a) ≤ (b − a)2
4

for all t ∈ [a, b] and the

equality holds when t = a + b
2
.

It is worth mentioning that inequality (6) has found many practical applications in
differential equations (oscillation theory, disconjugacy, eigenvalue problems, etc.),
for instance, see [5–11] and the references therein. A thorough literature review
dealing with continuous and discrete Lyapunov inequalities and their applications
can be found in [12] and [13] (which also includes an excellent account on the
history of such inequalities).

In many engineering and scientific disciplines such as physics, chemistry,
aerodynamics, electrodynamics of complex media, polymer rheology, economics,
control theory, signal and image processing, biophysics, blood flow and related
phenomena, fractional differential and integral equations represent processes in
a more effective manner than their integer-order counterparts. This aspect has
led to the increasing popularity in the study of fractional order differential and
integral equations among mathematicians and researchers. In view of their extensive
applications in various fields, the topic of inequalities for fractional differential
equations has also attracted a significant attention in recent years.

This survey article is organized as follows. In Sect. 2 we introduce the reader
to some basic concepts of fractional calculus. In Sect. 3 we summarize Lyapunov-
type inequalities for fractional boundary value problems with different kinds of
boundary conditions. In Sect. 4 we consider the inequalities for nonlocal and multi-
point boundary value problems. Results on p-Laplacians are discussed in Sect. 5,
while results on mixed fractional derivatives are given in Sect. 6. Section 7 deals
with Lyapunov-type inequalities for Hadamard fractional differential equations.
In Sect. 8, inequalities involving Prabhakar fractional differential equations are
discussed. Section 9 contains the results on fractional q-difference equations,
while Sect. 10 consists of the results involving fractional derivatives with respect
to a certain function. Inequalities involving left and right derivatives, operators
with nonsingular Mittag–Leffler kernels, discrete fractional differential equations,
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and impulsive fractional boundary value problems are, respectively, given in
Sects. 11, 12, 13 and 14, respectively. We include the results for Hilfer and
Katugampola fractional differential equations in Sects. 15 and 16, respectively, and
conclude with Sect. 17 with results on conformable fractional differential equations.
Note that our goal here is a more complete and comprehensive review and as such
the choice is made to include as many results as possible to illustrate the progress
on the matter. Any proofs (which are rather long) are omitted, for this matter, and
the reader is referred to the relative article accordingly.

2 Fractional Calculus

Here we introduce some basic definitions of fractional calculus [14, 15] and recall
some results that we need in the sequel.

Definition 1 (Riemann–Liouville Fractional Integral) Let α ≥ 0 and f be a real
function defined on [a, b]. The Riemann–Liouville fractional integral of order α is
defined by (I 0f )(x) = f (x) and

(Iαf )(t) = 1

Γ (α)

∫ t

a

(t − s)α−1f (s)ds, α > 0, t ∈ [a, b]

provided the right-hand side is point-wise defined on [0,∞), where Γ (α) is the

Euler Gamma function: Γ (α) =
∫ ∞

0
tα−1e−t dt.

Definition 2 (Riemann–Liouville Fractional Derivative) The Riemann–
Liouville fractional derivative of order α ≥ 0 is defined by (D0f )(t) = f (t)

and

(Dαf )(t) = (Dm Im−αf )(t) for α > 0,

where m is the smallest integer greater than or equal to α.

Definition 3 (Caputo Fractional Derivative) The Caputo fractional derivative of
order α ≥ 0 is defined by (CD0f )(t) = f (t) and

(CDαf )(t) = (Im−αDm f )(t) for α > 0,

where m is the smallest integer greater than or equal to α.

Notice that the differential operators of arbitrary order are nonlocal in nature and
appear in the mathematical modeling of several real-world phenomena due to this
characteristic (see, e.g., [14]).

If f ∈ C([a, b],R), then the Riemann–Liouville fractional integral of order
γ > 0 exists on [a, b]. On the other hand, following [14, Lemma 2.2, p. 73], we
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know that the Riemann–Liouville fractional derivative of order γ ∈ [n−1, n) exists
almost everywhere (a.e.) on [a, b] if f ∈ ACn([a, b],R), where Ck([a, b],R)
(k = 0, 1, . . .) denotes the set of k times continuously differentiable mappings
on [a, b], AC([a, b],R) is the space of functions which are absolutely continuous
on [a, b] and AC(k)([a, b],R) (k = 1, . . .) is the space of functions f such that
f ∈ Ck−1([a, b],R) and f (k−1) ∈ AC([a, b],R). In particular, AC([a, b],R) =
AC1([a, b],R). (We recall here thatAC([a, b],R) is the space of functions f which
are absolutely continuous on [a, b], and ACn([a, b],R) the space of functions f
which have continuous derivatives up to order n− 1 on [a, b] such that f (n−1)(t) ∈
AC([a, b],R)).

Now we enlist some important results involving fractional order operators [14].

Proposition 1 Let f be a continuous function on some interval J and p, q > 0.
Then

(Ip Iqf )(t) = (Ip+qf )(t) = (I q Ipf )(t) on J.

Proposition 2 Let f be a continuous function on some interval I and α ≥ 0. Then

(DαIαf )(t) = f (t) on I,

with D being the Riemann–Liouville or Caputo fractional derivative operator.

Proposition 3 The general solution of the following fractional differential equation

(Dqy)(t) = f (t), t > a, 0 < q ≤ 1,

is y(t) = c(t − a)q−1 + (I qf )(t), c ∈ R.

Proposition 4 The general solution of the following fractional differential equation

(CDqy)(t) = f (t), t > a, 0 < q ≤ 1,

is y(t) = c + (I qf )(t), c ∈ R.

3 Lyapunov-Type Inequalities for Fractional Differential
Equations with Different Boundary Conditions

Lyapunov-type inequalities involving fractional differential operators have been
investigated by many researchers in the recent years. In 2013, Ferreira [16] derived
a Lyapunov-type inequality for Riemann–Liouville fractional differential equation
with Dirichlet boundary conditions:
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{
Dαy(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,
(9)

where Dα is the Riemann–Liouville fractional derivative of order 1 < α ≤ 2 and
q : [a, b] → R is a continuous function.

An appropriate approach for obtaining the Lyapunov inequality within the
framework of fractional differential equations relies on the idea of converting the
boundary value problem into an equivalent integral equation and then finding the
maximum value of its kernel function (Green’s function).

It is straightforward to show that the boundary value problem (9) is equivalent to
the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (10)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − s)α−1(t − a)α−1

(b − a)α−1
, a ≤ t ≤ s ≤ b,

(b − s)α−1(t − a)α−1

(b − a)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b.
(11)

Observe that the Green’s function (11) satisfies the following properties:

1. G(t, s) ≥ 0, ∀t, s ∈ [a, b];
2. max
s∈[a,b]G(t, s) = G(s, s), s ∈ [a, b];

3. G(s, s) has a unique maximum, given by

max
s∈[a,b]G(s, s) = G

(a + b
2
,
a + b

2

)
= 1

Γ (α)

(b − a
4

)α−1
.

The Lyapunov inequality for problem (9) can be expressed as follows.

Theorem 2 If y is a nontrivial solution of the boundary value problem (9), then

∫ b

a

|q(s)|ds > Γ (α)
( 4

b − a
)α−1

. (12)

Here we remark that Lyapunov’s standard inequality (6) follows by taking α = 2 in
the above inequality. Also, inequality (12) can be used to determine intervals for the
real zeros of the Mittag–Leffler function:

Eα(z) =
∞∑
k=1

zk

Γ (kα + α), z ∈ C, R(α) > 0.
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For the sake of convenience, let us consider the following: fractional Sturm–
Liouville eigenvalue problem (with a = 0 and b = 1):

{
CDαy(t)+ λy(t) = 0, 0 < t < 1,
y(0) = y(1) = 0.

(13)

By Theorem 2, if λ ∈ R is an eigenvalue of (13), that is, if λ is a zero of equation
Eα(−λ) = 0, then |λ| > Γ (α)4α−1. Therefore the Mittag–Leffler function Eα(z)
has no real zeros for |z| ≤ Γ (α)4α−1.

In 2014, Ferreira [17] replaced the Riemann–Liouville fractional derivative in
problem (9) with Caputo fractional derivative CDα and derived the following
Lyapunov-type inequality for the resulting problem:

∫ b

a

|q(s)|ds > Γ (α)αα

[(α − 1)(b − a)]α−1 . (14)

In 2015, Jleli and Samet [18] considered the fractional differential equation

CDαy(t)+ q(t)y(t) = 0, 1 < α ≤ 2, a < t < b, (15)

associated with the mixed boundary conditions

y(a) = 0 = y′(b) (16)

or

y′(a) = 0 = y(b). (17)

An integral equation equivalent to problem (15) and (16) is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (18)

where G(t, s) is again the Green’s function defined by

G(t, s) = H(t, s)

Γ (α)(b − s)2−α ,

and

H(t, s) =
{
(α − 1)(t − α), a ≤ t ≤ s ≤ b,
(α − 1)(t − α)− (t − s)α−1(b − s)2−α, a ≤ s ≤ t ≤ b. (19)
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The function H satisfies the following inequality:

|H(t, s)| ≤ max{(2− α)(b − s), (α − 1)(s − a)} for all (t, s) ∈ [a, b] × [a, b].

In relation to problem (15) and (16), we have the following Lyapunov-type
inequality.

Theorem 3 If y is a nontrivial solution of the boundary value problem (15) and
(16), then

∫ b

a

(b − s)α−2|q(s)|ds > Γ (α)

max{α − 1, 2− α}(b − a) . (20)

In a similar manner, the Lyapunov-type inequality obtained for the boundary value
problem (15)–(17) is

∫ b

a

(b − s)α−1|q(s)|ds > Γ (α). (21)

As an application of Lyapunov-type inequalities (20) and (21), we can obtain the
intervals, where certain Mittag–Leffler functions have no real zeros.

Corollary 1 Let 1 < ν ≤ 2. Then the Mittag–Leffler function Eα(z) has no real
zeros for

z ∈
(
− Γ (α) (α − 1)

max{α − 1, 2− α} , 0
]
.

The proof of the above corollary follows by applying inequality (20) to the following
eigenvalue problem

{
(CDαy)(t)+ λy(t) = 0, 0 < t < 1,

y(0) = y′(1) = 0.
(22)

Moreover, by applying inequality (21) to the following eigenvalue problem

{
(CDαy)(t)+ λy(t) = 0, 0 < t < 1,

y′(0) = y(1) = 0,
(23)

we can obtain the following result:

Corollary 2 Let 1 < ν ≤ 2. Then the Mittag–Leffler function Eα(z) has no real
zeros for

z ∈ (αΓ (α), 0].
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In 2015, Jleli et al. [19] obtained a Lyapunov-type inequality:

∫ b
a
(b− s)α−2(b− s + α − 1)|q(s)|ds ≥ (b − a + 2)Γ (α)

max{b − a + 1, ((2− α)/(α − 1))(b − a)− 1} ,
(24)

for the following problem with Robin boundary conditions

{
CDαy(t)+ q(t)y(t) = 0, 1 < α ≤ 2, a < t < b,

y(a)− y′(a) = y(b)+ y′(b) = 0,
(25)

where q : [a, b] → R is a continuous function.
Using the Lyapunov-type inequality (24), we can find an interval, where a linear

combination of Mittag–Leffler functions Eα,β =
∞∑
k=0

zk

Γ (kα + β) , α > 0, β >

0, z ∈ C has no real zeros. In precise terms, we have the following result:

Theorem 4 Let a < α ≤ 2. Then Eα,2(z) + Eα,1(z) + zEα,α(z) has no real zeros
for

z ∈
( −3αΓ (α)

(1+ α)max{2, ((2− α)/(α − 1)− 1} , 0
]
.

In 2015, Rong and Bai [20] considered a boundary value problem with fractional
boundary conditions:

{
CDαy(t)+ q(t)y(t) = 0, 1 < α ≤ 2, a < t < b,

y(a) = 0, CDβy(b) = 0, 0 < β ≤ 1,
(26)

where q : [a, b] → R is a continuous function. The Lyapunov-type inequality
derived for problem (26) is

∫ b
a
(b − s)α−β−1|q(s)|ds > (b − a)−β

max
{ 1

Γ (α)
− Γ (2− β)
Γ (α − β) ,

Γ (2− β)
Γ (α − β) ,

2− α
α − 1

· Γ (2− β)
Γ (α − β)

} .
(27)

Later, Jleli and Samet [21] obtained a Lyapunov-type inequality for a boundary
value problems with Sturm–Liouville boundary conditions

{
CDαy(t)+ q(t)y(t) = 0, 1 < α ≤ 2, a < t < b,

py(a)− ry′(a) = y(b) = 0, p > 0, r ≥ 0,
(28)

where q : [a, b] → R is a continuous function. The integral equation equivalent to
the problem (28) is
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y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (29)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

(r/p + t − a)
r/p + b − a (b − s)

α−1, a ≤ t ≤ s ≤ b,
(r/p + t − a)
r/p + b − a (b − s)

α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b.
(30)

In order to estimate this Green’s function, we distinguish two cases:

1. If
r

p
>
b − a
α − 1

, then 0 ≤ G(t, s) ≤ G(s, s), (t, s) ∈ [a, b] × [a, b] with

max
s∈[a,b]G(t, s) =

1

Γ (α)

(r/p)(b − a)α−1(
r/p + b − a

) .

2. If 0 ≤ r

p
≤ b − a
α − 1

, then Γ (α)G(t, s) ≤ max{A (α, r/p),B(α, r/p)}, where

A (α, r/p) = (b − a)α−1

(r/p + b − a)
(( (b − a)α−1

(r/p + b − a)(α − 1)α−1

) 1
α−2
(2− α)− r

p

)
,

B(α, r/p) =
( r
p
+ b − a

)α−1 (α − 1)α − 1

αα
.

The Lyapunov inequalities corresponding to the above cases are given in the
following result.

Theorem 5 If there exists a nontrivial continuous solution of the fractional bound-
ary value problem (28), then

(i)

∫ b

a

|q(s)|ds >
(

1+ p
r
(b − a)

) Γ (α)

(b − a)α−1
when p > 0,

r

p
>
b − a
α − 1

;
(31)

(ii)

∫ b

a

|q(s)|ds > Γ (α)

max{A (α, r/p),B(α, r/p)} when p > 0, 0 ≤ r

p
≤ b − a
α − 1

.

(32)

Using the above Lyapunov-type inequalities, we can find intervals, where linear
combinations of some Mittag–Leffler functions have no real zeros.
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Corollary 3 Let 1 < α < 2, p > 0,
r

p
>

1

α − 1
. Then the linear combination of

Mittag–Leffler functions given by

pEα,2(z)+ qrEα,1(z)

has no real zeros for

z ∈
(
−
(

1+ p
r

)
Γ (α), 0

]
.

This corollary can be established by considering the following fractional Sturm–
Liouville eigenvalue problem:

{
CDαy(t)+ λy(t) = 0, 0 < t < 1,

py(0)− ry′(0) = y(1) = 0.

We can apply the foregoing Lyapunov-type inequalities to study the nonexistence of
solutions for certain fractional boundary value problems. For example, the problem
(28) with p = 1, r = 2, a = 0, b = 1, 3/2 < α < 2, has no nontrivial solution if∫ 1

0 |q(s)|ds < 3
2Γ (α). As a second example, there is no nontrivial solution for the

problem (28) with p = 2, r = 1, a = 0, b = 1, 1 < α < 2, provided that

∫ 1

0
|q(s)|ds < Γ (α)

max{A (α, 1/2),B(α, 1/2)} .

In 2015, O’Regan and Samet [22] obtained a Lyapunov-type inequality for the
fractional boundary value problem:

{
Dαy(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = y′′(a) = y′′(b) = 0,
(33)

whereDα is the standard Riemann–Liouville fractional derivative of fractional order
3 < α ≤ 4 and q : [a, b] → R is a continuous function.

The integral equation associated with problem (33) is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (34)

where G(t, s) is the Green’s function defined by
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G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

(t − a)α−1(b − s)α−3

(b − a)α−3
, a ≤ t ≤ s ≤ b,

(t − a)α−1(b − s)α−3

(b − a)α−3 − (t − s)α−1, a ≤ s ≤ t ≤ b.
(35)

The Green’s function defined in (35) satisfies the following inequality:

0 ≤ G(t, s) ≤ G(b, s) = (b − s)
α−3(s − a)(2b − a − s)

Γ (α)
, (t, s) ∈ [a, b] × [a, b].

The Lyapunov inequality for the problem (33) is as follows.

Theorem 6 If there exists a nontrivial continuous solution of the fractional bound-
ary value problem (33), then

∫ b

a

(b − s)α−3(s − a)(2b − a − s)|q(s)|ds ≥ Γ (α). (36)

To demonstrate an application of the above inequality, we consider the eigenvalue
problem:

{
Dαy(t)+ λy(t) = 0, 0 < t < 1, 3 < α ≤ 4,
y(0) = y′(0) = y′′(0) = y′′(1) = 0.

(37)

Corollary 4 If λ is an eigenvalue of the problem (37), then

|λ| ≥ Γ (α)

2B(2, α − 2)
,

where B is the beta function defined by B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds, x, y > 0.

Sitho et al. [23] established some Lyapunov-type inequalities for the following
hybrid fractional boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
Dαa

[
y(t)

f (t, y(t))
−

n∑
i=1

Iβa hi(t, y(t))

]
+ g(t)y(t) = 0, t ∈ (a, b),

y(a) = y′(a) = y(b) = 0,

(38)

where Dαa denotes the Riemann–Liouville fractional derivative of order α ∈ (2, 3]
starting from a point a, the functions g ∈ L1((a, b],R), f ∈ C1([a, b]×R,R\{0}),
hi ∈ C([a, b]×R,R), ∀i = 1, 2, . . . , n and Iβa is the Riemann–Liouville fractional
integral of order β ≥ α with the lower limit at the point a. We consider two cases:
(I) hi = 0, i = 1, 2, . . . , n and (II) hi �= 0, i = 1, 2, . . . , n.
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Case I hi = 0, i = 1, 2, . . . , n. We consider the problem (38) with hi(t, ·) = 0
for all t ∈ [a, b]. For α ∈ (2, 3], we first construct the Green’s function for the
following boundary value problem

⎧⎪⎨
⎪⎩
Dαa

[
y(t)

f (t, y(t))

]
+ g(t)y(t) = 0, t ∈ (a, b),

y(a) = y′(a) = y(b) = 0,

(39)

with the assumption that f is continuously differentiable and f (t, y(t)) �= 0 for all
t ∈ [a, b].

Let y ∈ AC([a, b],R) be a solution of the problem (39). Then the function y
satisfies the following integral equation:

y = f (t, y)
∫ b

a

G(t, s)g(s)y(s)ds, (40)

where G(t, s) is the Green’s function defined by (11) and satisfies the following
properties:

1. G(t, s) ≥ 0, ∀t, s ∈ [a, b].
2. G(t, s) ≤ H(s) := (b − s)

α−1

Γ (α − 1)
.

3. max
s∈[a,b]H(s) =

(b − a)α−1

Γ (α − 1)
.

Theorem 7 The necessary condition for existence of a nontrivial solution for the
boundary value problem (39) is

Γ (α − 1)

‖f ‖ ≤
∫ b

a

(b − s)α−1|g(s)|ds, (41)

where ‖f ‖ = sup
t∈[a,b],y∈R

|f (t, y)|.

Case II hi �= 0, i = 1, 2, . . . , n.
Let y ∈ AC[a, b] be a solution of the problem (38). Then the function y can be

written as

y(t) = f (t, y(t))
[∫ b

a

G(t, s)g(s)y(s)ds −
n∑
i=1

∫ b

a

G∗(t, s)hi(s, y(s))ds
]
,

(42)
where G(t, s) is defined as in (11) and G∗(t, s) is defined by
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G∗(t, s) = 1

Γ (β)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − s)β−1(t − a)α−1

(b − a)α−1 − (t − s)β−1, a ≤ s ≤ t ≤ b,
(b − s)β−1(t − a)α−1

(b − a)α−1
, a ≤ t ≤ s ≤ b.

(43)

The Green’s function G∗(t, s), which is given by (43), satisfies the following
inequalities:

1. G∗(t, s) ≥ 0, ∀t, s ∈ [a, b];
2. G∗(t, s) ≤ J (s) := (α − 1)(b − s)β−1

Γ (β)
.

Also we have

3. max
s∈[a,b] J (s) =

(α − 1)(b − a)β−1

Γ (β)
.

Theorem 8 Assume that |hi(t, y(t))| ≤ |xi(t)||y(t)|, where xi ∈ C([a, b],R),
i = 1, 2, . . . , n and [a, b] = [0, 1]. The necessary condition for existence of a
nontrivial solution for the problem (38) on [0, 1] is

Γ (α − 1)

(
1

‖f ‖ −
(α − 1)

Γ (β + 1)

n∑
i=1

‖xi‖
)
≤
∫ 1

0
(1− s)α−1|g(s)|ds. (44)

In 2016, Al-Qurashi and Ragoub [24] obtained a Lyapunov-type inequality for a
boundary value problem with integral boundary condition

⎧⎪⎨
⎪⎩
CDαy(t)+ q(t)y(t) = 0, a < t < b,

y(a)+ μ
∫ b

a

y(s)q(s)ds = y(b),
(45)

where CDα is the Caputo fractional derivative of order 0 < α ≤ 1, q : [a, b] → R is
a continuous function, a, b are consecutive zeros of the solution y and μ is positive.

The function y ∈ C([a, b],R) is a solution of the boundary value problem (45)
if and only if y satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (46)

where G(t, s) is the Green’s function defined by
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G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − s)α−1

μ(b − a) −
(b − s)α
(b − a)α , a ≤ t ≤ s ≤ b,

(b − s)α−1

μ(b − a) −
(b − s)α
(b − a)α − (t − s)

α−1, a ≤ s ≤ t ≤ b,
(47)

and satisfies the following properties:

1. G(t, s) ≥ 0, for all a ≤ t, s ≤ b;
2. maxt∈[a,b]G(t, s) = G(b, s), s ∈ [a, b];
3. G(b, s) has a unique maximum given by max

s∈[a,b]G(b, s) =
α(b − a + μ)(αμ+ 1)α−1

Γ (α)μα(b − a) ,

provident 0 < μ(b − a) < α.
We describe the Lyapunov’s inequality for the problem (45) as follows.

Theorem 9 The boundary value problem (45) has a nontrivial solution provided
that the real and continuous function q satisfies the following inequality

∫ b

a

|q(s)|ds > Γ (α)μα(b − a)
α(b − a + μ)(αμ+ 1)α−1

. (48)

In 2016, Fereira [25] obtained a Lyapunov-type inequality for a sequential
fractional boundary value problem

{
(DαDβy)(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,
(49)

where Dδ, δ = α, β stands for the Riemann– Liouville fractional derivative and
q : [a, b] → R is a continuous function. Assuming that (49) has a nontrivial solution
y ∈ C[a, b] of the form

y(t) = c Γ (α)

Γ (α + β)(t − a)
α+β−1 − (Iα+βqy)(t),

it follows by Proposition 3 and the fact Iβ(t − a)α−1 = Γ (α)

Γ (α + β)(t − a)
α+β−1

that y′ is integrable in [a, b]. Then, as argued in [14, Section 2.3.6–2.3.7], we have

(DαDβy)(t) = (Dα+βy)(t).

The following result is therefore an immediate consequence of Theorem 2.
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Theorem 10 ( Riemann–Liouville Case) Let 0 < α, β ≤ 1 with 1 < α + β ≤
2. If there exists a nontrivial continuous solution of the fractional boundary value
problem (49), then

∫ b

a

|q(s)|ds > Γ (α + β)
( 4

b − a
)α+β−1

. (50)

As an application we consider the following sequential fractional differential
equation

(DαDαy)(t)+ λ2y(t) = 0, λ ∈ R, t ∈ (0, 1), 1

2
< α ≤ 1. (51)

The fundamental set of solutions to (51) is

{cosα(λt), sinα(λt)},
where

cosα(λt) =
∞∑
j=0

(−1)j λ2j t(2j+1)α−1

Γ ((2j + 1)α)
and sinα(λt) =

∞∑
j=0

(−1)j λ2j+1 t (j+1)2α−1

Γ ((j + 1)2α)
.

Therefore the general solution of (51) can be written as

y(t) = c1 cosα(λt)+ c2 sinα(λt), c1, c2 ∈ R.

Now, the nontrivial solutions of (51) for which the boundary conditions y(0) = 0 =
y(1) hold satisfy sinα(λ) = 0, where λ is a real number different from zero (the
eigenvalue of the problem). By Theorem 10, the following inequality then holds:

λ2 > Γ (2α)42α−1,

which can alternatively be expressed in form of the following result.

Corollary 5 Let
1

2
< α ≤ 1. If

|t | ≤
√
Γ (2α)42α−1, t �= 0,

then sinα(t) has no real zeros.

In [25], Fereira replaced the Riemann –Liouville fractional derivative in the
problem (49) with the Caputo fractional derivative and obtained the following
Lyapunov-type inequality:
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∫ b

a

|q(s)|ds > Γ (α + β)
(b − a)α+β−1

(α + 2β − 1)α+2β−1

(α + β − 1)α+β−1ββ
. (52)

In 2016, Al-Qurashi and Ragoub [26] obtained a Lyapunov-type inequality for a
fractional boundary value problem:

{
Dαy(t)+ q(t)y(t) = 0, 1 < t < e,

y(a) = y(b) = y′′(a) = y′′(b) = 0,
(53)

whereDα is the standard Riemann–Liouville fractional derivative of order 3 < α ≤
4 and q : [a, b] → R is a continuous function.

The function y ∈ C([a, b],R) is a solution of the boundary value problem (53)
if and only if y satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (54)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(t − a)(b − s)α−1

+α(α − 1)(b − a)(b − s)α−3

6
(t − a)

[
1− (t − a)2

(b − a)2
]
, a ≤ t ≤ s ≤ b,

(t − s)α−1 − (t − a)(b − s)α−1

+α(α − 1)(b − a)(b − s)α−3

6
(t − a)

[
1− (t − a)2

(b − a)2
]
, a ≤ s ≤ t ≤ b,

(55)

and satisfies the relation:

0 ≤ G(t, s) ≤ G(b, s) = (1− (b − a))(b − a)
α−1

Γ (α)
, (t, s) ∈ [a, b] × [a, b].

The Lyapunov-type inequality for the problem (53) is given in the following
result.

Theorem 11 If there exists a nontrivial continuous solution to the fractional
boundary value problem (53), then

∫ b

a

|q(s)|ds > Γ (α)

(1− (b − a))(b − a)α−1
. (56)

In order to illustrate Theorem 11, we apply the Lyapunov-type inequality (56) to
find a bound for λ so that the following eigenvalue problem has a nontrivial solution:



636 S. K. Ntouyas et al.

⎧⎨
⎩
Dαy(t)+ λy(t) = 0, 0 < t < 1

2 , 3 < α ≤ 4,

y(1) = y
(1

2

)
= y′′(1) = y′′

(1

2

)
= 0.

(57)

Corollary 6 If λ is an eigenvalue of the fractional boundary value problem (57),
then the following inequality holds:

|λ| ≥ Γ (α)
2−α

.

In 2016, Dhar et al. [27] derived Lyapunov-type inequalities for the following
boundary value problem:

{
Dαy(t)+ q(t)y(t) = 0, a < t < b, 1 < α ≤ 2,

Dα−2y(a) = Dα−2y(b) = 0,
(58)

where Dα is the Riemann–Liouville fractional derivative of order α (1 < α ≤ 2),
q ∈ L([a, b],R). Their main result on fractional Lyapunov-type inequalities is the
following.

Theorem 12

(a) If the problem (58) has a nontrivial solution, then

max
t∈[a,b]

{∫ b

a

|D2−α[G(t, s)q(s)]|ds
}
> 1,

where D2−α[G(t, s)q(s)] is the right-sided fractional derivative of G(t, s)q(s)
with respect to s with

G(t, s) = 1

b − a

⎧⎨
⎩
(t − a)(b − s), a ≤ t ≤ s ≤ b,
(s − a)(b − t), a ≤ s ≤ t ≤ b.

(b) If problem (58) has a nontrivial solution and Dα−2y(t) �= 0 on (a, b), then

max
t∈[a,b]

{∫ b

a

[
D2−α[G(t, s)q(s)]

]
+ds

}
> 1,

where D2−α[G(t, s)q(s)]+ is the positive part of D2−α[G(t, s)q(s)].
As a special case we have the following corollary.

Corollary 7 Assume that D2−α
b− [G(t, s)q(s)] ≥ 0 for t, s ∈ [a, b] so that the

problem (58) has a nontrivial solution. Then
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∫ b

a

q+(t)dt >
ααΓ (α − 1)

(α − 1)α−1(b − a)α−1 .

Next we consider the sequential fractional boundary value problem

⎧⎨
⎩
[(
D
β
a+(Dαy)

)]
(t)+ q(t)y(t) = 0, a < t < b, 0 < α, β ≤ 1,

(Dα−1y)(a+) = (Dα−1y)(b) = 0,
(59)

which is equivalent to the integral equation

y(t) =
∫ b

a

G(t, s)q(s)D1−α
a+ y(s)ds,

where

G(t, s) = 1

Γ (β + 1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − a)β(b − s)β
(b − a)β , a ≤ t ≤ s ≤ b,

(t − a)β(b − s)β
(b − a)β − (t − s)β, a ≤ s ≤ t ≤ b.

In the following result, we express the fractional Lyapunov-type inequalities for
problem (59).

Theorem 13

(a) If problem (59) has a nontrivial solution, then

max
t∈[a,b]

{∫ b

a

|D1−α[G(t, s)q(s)]|ds
}
> 1.

(b) If problem (59) has a nontrivial solution and (Dα−1
a+ y)(t) �= 0 on (a, b), then

max
t∈[a,b]

{∫ b

a

[
D1−α[G(t, s)q(s)]

]
+ds

}
> 1.

As a special case we have the following corollary.

Corollary 8 Assume that D1−α[G(t, s)q(s)] ≥ 0 for t, s ∈ [a, b], 1 < α + β ≤ 2
and the problem (59) has a nontrivial solution. Then

∫ b

a

q+(t)dt >
(α + 2β − 1)α+2β−1Γ (α)Γ (β + 1)

(α + β − 1)α+β−1ββ(b − a)α+β−1 .
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For some similar results on fractional boundary value problems of order α ∈
(2, 3], see [28].

In 2017, Jleli et al. [29] obtained Lyapunov-type inequality for higher order
fractional boundary value problem

{
Dαy(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = . . . = y(n−2)(a) = 0, y(b) = Iα(yh)(b),
(60)

where n ∈ N, n − 1 < α < n, Dα is the standard Riemann–Liouville fractional
derivative of order α, Iα denotes the Riemann–Liouville fractional integral of order
α, and q, h : [a, b] → R are continuous functions.

The function y is a solution of the boundary value problem (60) if and only if y
satisfies the integral equation

y(t) =
∫ b

a

G(t, s)(q(s)+h(s))y(s)ds+ 1

Γ (α)

∫ t

a

(t − s)α−1h(s)y(s)ds, (61)

where G(t, s) is the Green’s function given by (11) such that

0 ≤ G(t, s) ≤ G(s∗, s) = (s − a)α−1(b − s)α−1

Γ (α)(b − a)α−1
[
1−

(
b−s
b−a

) α−1
α−2
]α−2

, a < s < b,

with

s∗ =
s − a

(
b−s
b−a

) α−1
α−2

1−
(
b−s
b−a

) α−1
α−2

.

The following result presents the Lyapunov-type inequality for problem (60).

Theorem 14 Let n ∈ N with n ≥ 3. If y is a nontrivial solution of the fractional
boundary value problem (60), then

∫ b

a

(
|q(s)+ h(s)| +

(
1− z

α−1
α−2
α

)α−2

zα−1
α (1− zα)α−1

|h(s)|
)
ds ≥ Γ (α)

(b − a)α−1

(
1− z

α−1
α−2
α

)α−2

zα−1
α (1− zα)α−1

, (62)

where zα is the unique zero of the nonlinear algebraic equation

z
2α−3
α−2 − 2z+ 1 = 0

in the interval
(

0,
(

2α−4
2α−3

) α−2
α−1
)
.
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Theorem 15 Let n = 2. If y is a nontrivial solution of the fractional boundary
value problem

{
Dαy(t)+ q(t)y(t) = 0, a < t < b,

y(a) = 0, y(b) = Iα(hy)(b),
(63)

then

∫ b

a

(
|q(s)+ h(s)| + 4α−1h(s)|

)
ds ≥ Γ (α)

( 4

b − a
)α−1

. (64)

In 2017, Cabrera et al. [30] obtained a Lyapunov-type inequality for a sequential
fractional boundary value problem

{
CDαy(t)+ q(t)y(t) = 0, a < t < b, α ∈ (n− 1, n], n ≥ 4,

yi(a) = y′′(b) = 0, 0 ≤ i ≤ n− 1, i �= 2,
(65)

where CDα is the Caputo fractional derivative of fractional order α ≥ 0 and q :
[a, b] → R is a continuous function.

The function y ∈ C([a, b],R) is a solution of the boundary value problem (65)
if and only if it satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (66)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

1

2
(α − 1)(α − 2)(t − a)2(b − s)α−3 − (t − s)α−1, a ≤ s ≤ t ≤ b,

1

2
(α − 1)(α − 2)(t − a)2(b − s)α−3, a ≤ t ≤ s ≤ b,

(67)

such that G(t, s) ≥ 0 for t, s ∈ [a, b], |G(t, s)| ≤ G(b, s) for t, s ∈ [a, b] and

|G(t, s)| ≤ G(b, s) = 1

2
(α−1)(α−2)(b−a)2(b−s)α−3−(b−s)α−1, (t, s) ∈ [a, b]×[a, b].

Their result is as follows.

Theorem 16 If there exists a nontrivial continuous solution of the fractional
boundary value problem (65), then

∫ b

a

[1

2
(α− 1)(α− 2)(b− a)2(b− s)α−3− (b− s)α−1

]
|q(s)|ds ≥ Γ (α). (68)
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In 2017, Wang et al. [31] obtained a Lyapunov-type inequality for the higher
order fractional boundary value problem

{
Dαy(t)+ q(t)y(t) = 0, a < t < b,

y(a) = y′(a) = . . . = y(n−2)(a) = 0, y(n−2)(b) = 0,
(69)

where n ∈ N, 2 < n−1 < α ≤ n, Dα is the standard Riemann–Liouville fractional
derivative of order α, and q : [a, b] → R is a continuous function.

The function y is a solution of the boundary value problem (69) if and only if y
satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where G(t, s) is the Green’s function given by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − a)α−1(b − s)α−n+1

(b − a)α−n+1 , a ≤ t ≤ s ≤ b,

(t − a)α−1(b − s)α−n+1

(b − a)α−n+1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

such that

0 ≤ G(t, s) ≤ G(b, s) = (b − s)
α−n+1(s − a)
Γ (α)

n−2∑
i=1

(−1)i−1Cin−2(b− a)n−2−i (s − a)i−1,

(t, s) ∈ [a, b] × [a, b] and Cin−2 is the binomial coefficient.
Their Lyapunov-type inequality for the problem (69) is given in the following

theorem.

Theorem 17 If there exists a nontrivial continuous solutions y of the fractional
boundary value problem (69), and q is a real continuous function, then

∫ b

a

(b− s)α−n+1(s − a)
n−2∑
i=1

(−1)i−1Cin−2(b− a)n−2−i (s − a)i−1|q(s)|ds ≥ Γ (α).

Corollary 9 If the fractional boundary value problem (69) has a nontrivial contin-
uous solution, then

∫ b

a

|q(s)|ds ≥ Γ (α)(α − n+ 2)α−n+2

(n− 2)(α − n+ 1)α−n+1(b − a)α−1
.
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The following result shows the application of the above Lyapunov-type inequal-
ity to eigenvalue problems.

Corollary 10 If λ is an eigenvalue to the fractional boundary value problem

{
Dαy(t)+ λy(t) = 0, a < t < b,

y(a) = y′(a) = . . . = y(n−2)(a) = 0, y(n−2)(b) = 0,

then

|λ| ≥ Γ (α)(α − n+ 3)(α − n+ 2)

n− 2
.

In 2017, Fereira [32] obtained a Lyapunov-type inequality for the so-called anti-
periodic boundary value problem:

{
CDαy(t)+ q(t)y(t) = 0, a < t < b,

y(a)+ y(b) = 0 = y′(a)+ y′(b),
(70)

where CDα is the Caputo fractional derivative of order 1 < α ≤ 2 and q : [a, b] →
R is a continuous function.

Then y ∈ C([a, b],R) is a solution of the boundary value problem (70) if and
only if it satisfies the integral equation

y(t) =
∫ b

a

(b − s)α−2H(t, s)q(s)y(s)ds, (71)

where H(t, s) is defined by

H(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

(
− b − a

4
+ t − a

2

)
(α − 1)+ b − s

2
, a ≤ t ≤ s ≤ b,

(
− b − a

4
+ t − a

2

)
(α − 1)+ b − s

2
− (t − s)α−1

(b − a)α−2 , a ≤ s ≤ t ≤ b.
(72)

Here the function H satisfies the following property:

|H(t, s)| ≤ (b − a)(3− α)
4

, (t, s) ∈ [a, b] × [a, b].

The Lyapunov-type inequality for the problem (70) is given in the following
result.

Theorem 18 If (70) admits a nontrivial continuous solution, then

∫ b

a

(b − s)α−2|q(s)|ds ≥ 4

(b − a)(3− α) . (73)



642 S. K. Ntouyas et al.

Inequality (73) is useful in finding a bound for the possible eigenvalues of the
fractional boundary value problem:

{
Dαy(t)+ λy(t) = 0, a < t < b,
y(a)+ y(b) = 0 = y′(a)+ y′(b),

that is, an eigenvalue λ ∈ R satisfies the inequality

|λ| > 4(α − 1)

(b − a)α(3− α) .

In 2017, Agarwal and Zbekler [33] obtained a Lyapunov-type inequality for the
following fractional boundary value problem with Dirichlet boundary conditions

{
(Dαy)(t)+ p(t)|y(t)|μ−1y(t)+ q(t)|y(t)|γ−1y(t) = f (t), a < t < b,

y(a) = 0, y(b) = 0,
(74)

where Dα is the Riemann–Liouville fractional derivative, p, q, f ∈ C[t0,∞) and
0 < γ < 1 < μ < 2. No sign restrictions are imposed on the potentials p and q,
and the forcing term f .

The problem (74) is equivalent to the following integral equation

y(t) =
∫ b

a

G(t, s)[p(s)yμ(s)+ q(s)yγ (s)− f (s)]ds,

where G(t, s) is the Green’s function defined by (11).
Their Lyapunov-type inequality for the problem (74) is as follows.

Theorem 19 Let y be a nontrivial solution of the problem (74). If y(t) �= 0 in
(a, b), then the inequality

( ∫ b

a

[p+(t)+ q+(t)]dt
)( ∫ b

a

[μ0p
+(t)+ γ0q

+(t)+ |f (t)|]dt
)
>

42α−3Γ 2(α)

(b − a)2α−2

(75)
holds, where u+ = max{u, 0}, u = p, q and

μ0 = (2− μ)μμ/(2−μ)22/(μ−2) > 0, γ0 = (2− γ )γ γ/(2−γ )22/(γ−2) > 0.

In 2017, Zhang and Zheng [34] considered the Riemann–Liouville fractional
differential equations with mixed nonlinearities of order α ∈ (n− 1, n] for n ≥ 3

(Dαy)(t)+ p(t)|y(t)|μ−1y(t)+ q(t)|y(t)|γ−1y(t) = f (t), (76)

where p, q, f ∈ C([t0,∞),R) and the constants satisfy 0 < γ < 1 < μ <

n (n ≥ 3). Equation (76) subjects to the following two kinds boundary conditions,
respectively:
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y(a) = y′(a) = y′′(a) = . . . = y(n−2)(a) = y(b) = 0, (77)

and

y(a) = y′(a) = y′′(a) = . . . = y(n−2)(a) = y′(b) = 0, (78)

where a and b are two consecutive zeros of the function y.
Obviously, it is easy to see that Eq. (76) has two special forms: one is the forced

sub-linear (p(t) = 0) fractional equation

(Dαy)(t)+ q(t)|y(t)|γ−1y(t) = f (t), 0 < γ < 1, (79)

and the other is the forced super-linear (q(t) = 0) fractional equation

(Dαy)(t)+ q(t)|y(t)|γ−1y(t) = f (t), 1 < μ < n. (80)

Their Lyapunov-type inequalities for the problems (76)–(77) and (76)–(78) are,
respectively, the following:

Theorem 20 Let y be a positive solution of the boundary value problem (76)–(77)
in (a, b). Then

(∫ b

a

[(b − s)(s − a)]α−1
[

1−
(
b − s
b − a

) α−1
α−2
]2−α

[μ0p
+(s)+ γ0q

+(s)+ f−(s)]ds
)

×
(∫ b

a

[(b − s)(s − a)]α−1
[

1−
(
b − s
b − a

) α−1
α−2
]2−α

[p+(s)+ q+(s)]ds
)

> [Γ (α)(b − a)α−1] n
n−1 (n− 1)n

n
1−n ,

where μ0 = (n− μ)μ
μ
n−μ n

n
n−μ and γ0 = (n− γ )γ

γ
n−γ n

n
γ−n .

Theorem 21 Let y be a positive solution of the boundary value problem (76)–(78)
in (a, b). Then

(∫ b

a

[(b − s)α−2(s − a)][μ0p
+(s)+ γ0q

+(s)+ f−(s)]ds
)

×
(
[b − s)α−2(s − a)][p+(s)+ q+(s)]ds

) 1
μ−1

> Γ (α)
n
n−1 (n− 1)n

n
1−n ,

where μ0 and γ0 are the same as in Theorem 21.
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In 2017, Chidouh and Torres [35] extended the linear term q(t)y(t) to a nonlinear
term of the form q(t)f (y(t)) and obtained a generalized Lyapunov’s inequality for
the fractional boundary value problem

{
(Dαy)(t)+ q(t)f (y(t)) = 0, a < t < b, 1 < α ≤ 2,

y(a) = y(b) = 0,
(81)

whereDα is the Riemann–Liouville fractional derivative of order α, f : R+ → R
+

is continuous, and q : [a, b] → R
+ is a Lebesgue integrable function.

An integral equation equivalent to the Problem (81) is

y(t) =
∫ b

a

G(t, s)q(s)f (y(s))ds,

where G(t, s) is the Green’s function defined by (11) and satisfies the following
properties:

1. G(t, s) ≥ 0, for all (t, s) ∈ [a, b] × [a, b];
2. maxt∈[a,b]G(t, s) = G(s, s), s ∈ [a, b];
3. G(s, s) has a unique maximum given by max

s∈[a,b]G(s, s) =
(b − a)α−1

4α−1Γ (α)
.

The Lyapunov-type inequality for the problem (81) is as follows.

Theorem 22 Let q be a real nontrivial Lebesgue integrable function. Assume
that f ∈ C(R+,R+) is a concave and nondecreasing function. If the fractional
boundary value problem (81) has a nontrivial solution y, then

∫ b

a

q(s)ds >
4α−1Γ (α)η

(b − a)α−1f (η)
. (82)

where η = maxt∈[a,b] y(t).

In 2016, Ma [36] obtained a generalized form of Lyapunov’s inequality for the
fractional boundary value problem

{
(Dαy)(t)+ q(t)f (y(t)) = 0, a < t < b, 1 < α ≤ 2,

y(a) = y(b) = y′′(a) = 0,
(83)

where Dα is the Riemann–Liouville fractional derivative of order α, q : [a, b] →
R
+ is a Lebesgue integrable function, and f : R+ → R

+ is continuous.
The function y ∈ C([a, b],R) is a solution to the problem (83) if and only if y

satisfies the integral equation
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y(t) =
∫ b

a

G(t, s)q(s)f (y(s))ds,

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − s)α−1(t − a)
(b − a) , a ≤ t ≤ s ≤ b,

(b − s)α−1(t − a)
(b − a) − (t − s)α−1, a ≤ s ≤ t ≤ b.

(84)

The above Green’s function satisfies the following properties:

1. G(t, s) ≥ 0, for all (t, s) ∈ [a, b] × [a, b];
2. For any s ∈ [a, b],

max
t∈[a,b]G(t, s) = G(t0, s) =

(s − a)(b − s)α−1

Γ (α)(b − a) + (α − 2)(b − s) (α−1)2
α−2

(α − 1)
α−1
α−2 (b − a) α−1

α−2Γ (α)
,

where t0 = s +
( (b − s)α−1

(b − a)(α − 1)

) 1
α−2 ∈ [s, b];

3. max
s∈[a,b]G(t0, s) ≤

(b − a)α−1

Γ (α)
;

4. G(t, s) ≥ (t − a)(b − t)
(b − a)2 G(t0, s) for all a ≤ t, s ≤ b.

The following Lyapunov-type inequalities are given in [36].

Theorem 23 Assume that f is bounded by two lines, that is, there exist two positive
constants M and N such that Ny ≤ f (y) ≤ My for any y ∈ R

+. If (83) has a
solution in E+ = {y ∈ C[a, b], y(t) ≥ 0, for any t ∈ [a, b] and ‖y‖ �= 0}, then
the following Lyapunov-type inequalities hold:

(i)
∫ b

a

q(s)ds >
Γ (α)

M(b − a)α−1 ;

(ii)
∫ b

a

(s − a)2(b − s)αq(s)ds ≤ 4Γ (α)(b − a)3
N

;

(iii)
∫ b

a

(s − a)(b − s) α
2−α−1
α−2 q(s)ds ≤ 4Γ (α)(b − a) 3α−2

α−2 (α − 1)
α−1
α−2

(α − 2)N
.

The applications of the above inequalities are given in the following corollaries.

Corollary 11 For any λ ∈ [0, Γ (ν)] ∪
( 4Γ (ν)

B(3, ν + 1)
,+∞

)
, where B(x, y) =

∫ 1

0
sx−1(1− s)y−1ds, x > 0, y > 0, the eigenvalue for the problem
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{
(Dνy)(t)+ λy(t) = 0, 0 < t < 1, 2 < ν ≤ 3,
y(0) = y(1) = y′′(0) = 0,

(85)

has no corresponding eigenfunction y ∈ E+.
In the next corollary we obtain an interval in which the Mittag–Leffler function
Eν,2(z) with β = 2, 2 < ν ≤ 3 has no real zeros.

Corollary 12 Let 2 < ν ≤ 3. Then the Mittag–Leffler function Eν,2(z) =
∞∑
k=0

zk

Γ (kν + 2)
has no real zeros for z ∈

(
−∞,− 4Γ (ν)

B(3, ν + 1
,
)
∪ [−Γ (ν),+∞).

In 2017, Ru et al. [37] obtained the Lyapunov-type inequality for the following
fractional Sturm–Liouville boundary value problem

{
Dα0+(p(t)y

′(t))+ q(t)y(t) = 0, 0 < t < 1, 1 < α ≤ 2,
ay(0)− bp(0)y′(0) = 0, cy(1)+ dp(1)y′(1) = 0,

(86)

where a, b, c, d > 0 Dα is the standard Riemann–Liouville fractional derivative of
order α, p : [0, 1] → (0,∞) and q : [0, 1] → R is a nontrivial Lebesgue integrable
function.

The solution of the boundary value problem (86) in terms of the integral
equation is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where G(t, s) is the Green’s function given by

G(t, s) = 1

ρΓ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
b + a

∫ t

0

dτ

p(τ)

][
d(1− s)α−1 + c

∫ 1

s

(τ − s)α−1dτ

p(τ)

]
, 0 ≤ t ≤ s ≤ 1,

[
b + a

∫ t

0

dτ

p(τ)

][
d(1− s)α−1 + c

∫ 1

s

(τ − s)α−1dτ

p(τ)

]
−H(t, s), 0 ≤ s ≤ t ≤ 1,

ρ = bc + ac
∫ 1

0

1

p(τ)
dτ + ad, H(t, s) = a

[
d + c

∫ 1

t

dτ

p(τ)

] ∫ t

0

(τ − s)α−1

p(τ)
dτ.

Further, the above Green’s function G(t, s) satisfies the following properties:

1. G(t, s) ≥ 0 for 0 ≤ t, s ≤ 1;
2. The maximum value of G(t, s) is

G = max
0≤t,s≤1

G(t, s) = max{ max
s∈[0,1]G(s, s), max

s∈[0,1]G(t0(s), s)}, (87)

where
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t0(s) = s +
[
ad(1− s)α−1 + ac ∫ 1

s
(τ−s)α−1

p(τ)
dτ

ρ

] 1
α−1

.

They obtained the following Lyapunov-type inequality for the problem (86).

Theorem 24 For any nontrivial solutions y of the fractional boundary value
problem (86), the following Lyapunov-type inequality holds:

∫ 1

0
|q(s)|ds > 1

G
,

where G is defined by (87).

In [37], the authors also considered the generalized fractional Sturm–Liouville
boundary value problem:

{
Dα0+(p(t)y

′(t))+ q(t)f (y(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

ay(0)− bp(0)y′(0) = 0, cy(1)+ dp(1)y′(1) = 0,
(88)

where f : R → R is a continuous function, and obtained the Lyapunov-type
inequality for this problem as follows.

Theorem 25 Let f be a positive function on R. For any nontrivial solutions y of
the fractional boundary value problem (88), the following Lyapunov-type inequality
will be satisfied

∫ 1

0
|q(s)|ds > y∗

Gmaxy∈[y∗.y∗] f (y)
,

where G is defined by (87) and y∗ = mint∈[0,1] y(t), y∗ = maxt∈[0,1] y(t).

4 Lyapunov Inequalities for Nonlocal Boundary Value
Problems

In 2017, Cabrera et al. [38] obtained Lyapunov-type inequalities for a nonlocal
fractional boundary value problem

⎧⎨
⎩
CDαy(t)+ q(t)y(t) = 0, a < t < b,

y′(a) = 0, βCDα−1y(b)+ y(η) = 0,
(89)
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where CDα is the Caputo fractional derivative of fractional order 1 < α ≤ 2,

β > 0, a < η < b, β >
(β − η)α−1

Γ (α)
and q : [a, b] → R is a continuous function.

Note that problem (89) is the fractional analogue of the classical nonlocal
boundary value problem

{
y′′(t)+ q(t)y(t) = 0, 0 < t < 1,

y′(0) = 0, βy′(1)+ y(η) = 0, 0 < η < 1,
(90)

which represents a thermostat model insulated at t = 0 with a controller dissipating
heat at t = 1 depending on the temperature detected by a sensor at t = η [39].

The function y ∈ C([a, b],R) is a solution of the boundary value problem (89)
if and only if y satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (91)

where G(t, s) is the Green’s function defined by

G(t, s) = β +Hη(s)−Ht(s), (92)

for r ∈ [a, b],Hr : [a, b] → R is

Hr(s) =

⎧⎪⎨
⎪⎩
(r − s)α−1

Γ (α)
, a ≤ s ≤ r ≤ b,

0, a ≤ r ≤ s ≤ b.

The Green’s function defined in (92) satisfies the relation

|G(t, s)| ≤ β + (η − a)
α−1

Γ (α)
, (t, s) ∈ [a, b] × [a, b].

The Lyapunov-type inequality derived for the problem (89) is given in the
following result.

Theorem 26 If there exists a nontrivial continuous solution of the fractional
boundary value problem (89), then

∫ b

a

|q(s)|ds > Γ (α)

βΓ (α)+ (η − α)α−1 . (93)

In 2017, Cabrera et al. [40] obtained a Lyapunov-type inequality for the following
nonlocal fractional boundary value problem
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⎧⎨
⎩
(Dαy)(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, y′(b) = βy(ξ),
(94)

where Dα is the Riemann–Liouville fractional derivative of order α, a < ξ < b,
0 ≤ β(ξ−a)α−1 < (α−1)(b−a)α−2, and q : [a, b] → R is a continuous function.

The unique solution of the nonlocal boundary value problem (94) is given by

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds

+ β(t − a)α−1

(α − 1)(b − a)α−2 − β(ξ − a)α−1

∫ b

a

G(ξ, s)q(s)y(s)ds,

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(b − s)α−2(t − a)α−1

(b − a)α−2 , a ≤ t ≤ s ≤ b,
(b − s)α−2(t − a)α−1

(b − a)α−2 − (t − s)α−1, a ≤ s ≤ t ≤ b.
(95)

The Green’s function defined in (95) satisfies the following properties:

1. G(t, s) ≥ 0, for all (t, s) ∈ [a, b] × [a, b];
2. G(t, s) is non-decreasing with respect to the first variable;
3. 0 ≤ G(a, s) ≤ G(t, s) ≤ G(b, s), (t, s) ∈ [a, b] × [a, b].

Their Lyapunov-type inequality for the problem (94) is expressed as follows.

Theorem 27 If the problem (94) has a nontrivial solution, then

∫ b

a

|q(s)|ds ≥ Γ (α)(α − 1)α−1

(b − a)α−1(α − 2)α−2

(
1+ β(b − a)α−1

(α − 1)(b − a)α−2 − β(ξ − a)α−1

)−1
.

(96)

As an application of Theorem 27, we consider the following eigenvalue problem:

⎧⎨
⎩
Dαy(t)+ λy(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, y′(b) = βy(ξ),
(97)

where a < ξ < b and 0 ≤ β(ξ − a)α−1 < (α − 1)(b− a)α−2. If λ is an eigenvalue
of problem (97), then

|λ| ≥ α(α − 1)Γ (α)

(b − a)α
(

1+ β(b − a)α−1

(α − 1)(b − a)α−2 − β(ξ − a)α−1

)−1

.
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This is an immediate consequence of Theorem 27.
Very recently, Wang and Wang [41] obtained Lyapunov-type inequalities for the

fractional differential equations with multi-point boundary conditions

⎧⎪⎨
⎪⎩
Dαy(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, (Dβ+1y)(b) =
m−2∑
i=1

bi(D
βy)(ξi),

(98)

where Dα denotes the standard Riemann–Liouville fractional derivative of order
α, α > β + 2, 0 < β < 1, a < ξ1 < ξ2 < . . . < ξm−2 < b, bi ≥ 0(i =
1, 2, . . . , m − 2), 0 ≤ ∑m−2

i=1 bi(ξi − a)α−β−1 < (α − β − 1)(b − a)α−β−2 and
q : [a, b] → R is a continuous function.

The solution of the boundary value problem (98) in terms of the integral equation
is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds + T (t)
∫ b

a

(m−2∑
i=1

biH(ξ, s)q(s)y(s)
)
ds, ,

where G(t, s), H(t, s) and T (t) defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − a)α−1(b − s)α−β−2

(b − a)α−β−2
− (t − s)α−1, a ≤ s ≤ t ≤ b,

(t − a)α−1(b − s)α−β−2

(b − a)α−β−2 , a ≤ t ≤ s ≤ b.

H(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(t − a)α−β−1(b − s)α−β−2

(b − a)α−β−2 − (t − s)α−β−1, a ≤ s ≤ t ≤ b,

(t − a)α−β−1(b − s)α−β−2

(b − a)α−β−2 , a ≤ t ≤ s ≤ b.

T (t) = (t − a)α−1

(α − β − 1)(b − a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1

, t ≥ a.

Further, the above functionsG(t, s) and H(t, s) satisfy the following properties:

1. G(t, s) ≥ 0 for a ≤ t, s ≤ b;
2. G(t, s) is non-decreasing with respect to the first variable;
3. 0 ≤ G(a, s) ≤ G(t, s) ≤ G(b, s) = 1

Γ (α)
(b−s)α−β−2[(b−a)β+1−(b−s)β+1],

(t, s) ∈ [a, b] × [a, b];
4. for any s ∈ [a, b],
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max
s∈[a,b]G(b, s) =

β + 1

α − 1

(α − β − 2

α − 1

)(α−β−2)/(β+1) (b − aα−1

Γ (α)
;

5. H(t, s) ≥ 0 for a ≤ t, s ≤ b;
6. H(t, s) is non-decreasing with respect to the first variable;
7. 0 ≤ H(a, s) ≤ H(t, s) ≤ H(b, s) = 1

Γ (α)
(b−s)α−β−2(s−a), (t, s) ∈ [a, b]×

[a, b];
8.

max
s∈[a,b]H(b, s) = H(b, s

∗) = (α − β − 2)α−β−2

Γ (α)

(
b − a

α − β − 1

)α−β−1

,

where s∗ = α − β − 2

α − β − 1
a + 1

α − β − 1
b.

They obtained the following Lyapunov-type inequalities.

Theorem 28 If the fractional boundary value problem

⎧⎪⎨
⎪⎩
Dαy(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, (Dβ+1y)(b) =
m−2∑
i=1

bi(D
βy)(ξi),

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

(b− s)α−β−2
[
(b− a)β+1− (b− s)β+1+

m−2∑
i=1

biT (b)(s− a)
]
|q(s)|ds ≥ Γ (α).

Note that

Γ (α)
[
G(b, s)+

m−2∑
i=1

biT (b)H(b, s)
]

≤ Γ (α)
[

max
s∈[a,b]G(b, s)+

m−2∑
i=1

biT (b) max
s∈[a,b]H(b, s)

]

= β + 1

α − 1

(
α − β − 2

α − 1

)(α−β−2)/(β+1)

(b − a)α−1

+
m−2∑
i=1

biT (b)(α − β − 2)α−β−2
(

b − a
α − β − 1

)α−β−1

.

Thus we have
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Corollary 13 If the fractional boundary value problem

⎧⎪⎨
⎪⎩
Dαy(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, (Dβ+1y)(b) =
m−2∑
i=1

bi(D
βy)(ξi),

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

|q(s)|ds

≥ Γ (α)

β+1
α−1

(
α−β−2
α−1

) α−β−2
β+1

(b − a)α−1 +∑m−2
i=1 biT (b)(α − β − 2)α−β−2

(
b−a
α−β−1

)α−β−1
.

If β = 0 in Theorem 28 we obtain

Corollary 14 If the fractional boundary value problem

⎧⎪⎨
⎪⎩
Dαy(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, y′(b) =
m−2∑
i=1

biy(ξi),

has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

(b − s)α−2(s − a)|q(s)|ds

≥ Γ (α)

1+∑m−2
i=1 biT (b)

= (α − β − 1)(b − a)α−β−2 +∑m−2
i=1 bi(ξi − a)α−β−1

(α − β − 1)(b − a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1 +∑m−2

i=1 bi(b − a)α−1
Γ (α).

If β = 0 in Corollary 13 we have

Corollary 15 If the fractional boundary value problem

⎧⎪⎨
⎪⎩
Dαy(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y′(a) = 0, y′(b) =
m−2∑
i=1

biy(ξi),
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has a nontrivial solution, where q is a real and continuous function, then

∫ b

a

|q(s)|ds

≥ Γ (α)

1+∑m−2
i=1 biT (b)

· (α − 1)α−1

(b − a)α−1(α − 2)α−2

= (α − β − 1)(b − a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1

(α − β − 1)(b − a)α−β−2 −∑m−2
i=1 bi(ξi − a)α−β−1 +∑m−2

i=1 bi(b − a)α−1

× Γ (α)(α − 1)α−1

(b − a)α−1(α − 2)α−2 .

5 Lyapunov Inequalities for Fractional p-Laplacian
Boundary Value Problems

In this section we present Lyapunov-type inequalities for fractional p-Laplacian
boundary value problems.

In 2016, Al Arifi et al. [42] considered the nonlinear fractional boundary value
problem

⎧⎨
⎩
Dβ(Φp((D

αy(t)))+ q(t)Φp(y(t)) = 0, a < t < b,

y(a) = y′(a) = y′(b) = 0, Dαy(a) = Dαy(b) = 0,
(99)

where 2 < α ≤ 3, 1 < β ≤ 2, Dα,Dβ are the Riemann–Liouville fractional
derivatives of orders α and β, respectively, Φp(s) = |s|p−2s, p > 1 is p-Laplacian
operator, and q : [a, b] → R is a continuous function.

For h ∈ C([a, b],R), the linear variant of the problem (99):

⎧⎨
⎩
Dβ(Φp((D

αy(t)))+ h(t) = 0, a < t < b,

y(a) = y′(a) = y′(b) = 0, Dαy(a) = Dαy(b) = 0,
(100)

has the unique solution

y(t) =
∫ b

a

G(t, s)Φq

( ∫ b

a

H(s, τ )h(τ)dτ
)
ds,

where
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H(t, s) = 1

Γ (β)

⎧⎪⎪⎨
⎪⎪⎩

( b − s
b − a

)β−1
(t − a)β−1, a ≤ t ≤ s ≤ b,

( b − s
b − a

)β−1
(t − a)β−1 − (t − s)β−1, a ≤ s ≤ t ≤ b,

(101)
and G(t, s) is the Green’s function for the boundary value problem

{
Dβy(t)+ h(t) = 0, 2 < α ≤ 3, a < t < b,
y(a) = y′(a) = y′(b) = 0,

(102)

which is given by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

( b − s
b − a

)α−2
(t − a)α−1, a ≤ t ≤ s ≤ b,

( b − s
b − a

)α−2
(t − a)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b.

(103)
Observe that the following estimates hold:

(i) 0 ≤ G(t, s) ≤ G(b, s), (t, s) ∈ [a, b] × [a, b],
(ii) 0 ≤ H(t, s) ≤ H(s, s), (t, s) ∈ [a, b] × [a, b].
For the problem (99), the Lyapunov-type inequality is the following:

Theorem 29 Let 2 < α ≤ 3, 1 < β ≤ 2, p > 1, and q ∈ C[a, b]. If (99) has a
nontrivial solution, then

∫ b

a

(b − s)β−1(s − a)β−1|q(s)|ds ≥ [Γ (α)]p−1Γ (β)(b − a)β−1
( ∫ b

a

(b− s)α−2(s − a)ds
)1−p

.

(104)

Now we present an application of this result to eigenvalue problems.

Corollary 16 Let λ be an eigenvalue of the problem

⎧⎨
⎩
D
β
0 (Φp(D

α
0+y(t)))+ λΦp(y(t)) = 0, 0 < t < 1,

y(0) = y′(0) = y′(1) = 0, Dα0+y(0) = Dα0+y(1) = 0,
(105)

where 2 < α ≤ 3, 1 < β ≤ 2, p > 1, then

|λ| ≥ Γ (2β)
Γ (β)

(
Γ (α)Γ (α + 1)

Γ (α − 1)

)p−1

.

In particular, for p = 2, that is, forΦp(y(t)) = y(t), the bound on λ takes the form:

|λ| ≥ Γ (α)Γ (α + 1)Γ (2β)

Γ (α − 1)Γ (β)
.
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In 2017, Liu et al. [43] considered the nonlinear fractional p-Laplacian boundary
value problem of the form:

{
Dβ(Φp(

CDαy(t)))− q(t)f (y(t)) = 0, a < t < b,

y′(a) = CDαy(a) = 0, y(b) = CDαy(b) = 0,
(106)

where 1 < α, β ≤ 2, CDα,Dβ are the Riemann–Liouville fractional derivatives of
orders α and β, respectively, Φp(s) = |s|p−2s, p > 1, and q : [a, b] → R is a
continuous function.

An integral equation equivalent to the problem (106) is

y(t) =
∫ b

a

G(t, s)Φq

( ∫ b

a

H(s, τ )f (y(τ ))dτ
)
ds,

where

G(t, s) = 1

Γ (α)

⎧⎨
⎩
(b − s)α−1, a ≤ t ≤ s ≤ b,
(b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

and

H(t, s) = 1

Γ (β)

⎧⎪⎪⎨
⎪⎪⎩

( s − a
b − a

)β−1
(b − s)β−1, a ≤ t ≤ s ≤ b,

( s − a
b − a

)β−1
(b − s)β−1 − (t − s)β−1, a ≤ s ≤ t ≤ b.

(107)
Moreover, the following estimates hold:

1. H(t, s) ≥ 0 for all a ≤ t, s ≤ b;
2. maxt∈[a,b]H(t, s) = H(s, s), s ∈ [a, b];
3. H(t, s) has a unique maximum given by

max
s∈[a,b]H(s, s) =

(b − a)β−1

4β−1Γ (β)
;

4. 0 ≤ G(t, s) ≤ G(s, s) = 1

Γ (α)
(b − s)α−1 for all a ≤ t, s ≤ b;

5. G(t, s) has a unique maximum given by

max
s∈[a,b]G(s, s) =

1

Γ (α)
(b − a)α−1.

The Lyapunov-type inequalities for the problem (106) are as follows.
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Theorem 30 Let p : [a, b] → R
+ be a real Lebesgue function. Suppose that there

exists a positive constant M satisfying 0 ≤ f (x) ≤ MΦp(x) for any x ∈ R
+.

If (106) has a nontrivial solution in E+ = {y ∈ C[a, b], y(t) ≥ 0, for any t ∈
[a, b] and ‖y‖ �= 0}, then the following Lyapunov inequality holds:

∫ b

a

q(s)ds >
4β−1Γ (β)

M(b − a)β−1Φp

(Γ (α + 1)

(b − a)α
)
. (108)

Theorem 31 Let p : [a, b] → R
+ be a real Lebesgue function. Assume that

f ∈ C(R+,R+) is a concave and nondecreasing function. If (106) has a nontrivial
solution in E+ = {y ∈ C[a, b], y(t) ≥ 0, for any t ∈ [a, b] and ‖y‖ �= 0}, then
the following Lyapunov inequality holds:

∫ b

a

q(s)ds >
4β−1Γ (β)Φp(Γ (α + 1))Φp(η)

M(b − a)αp+β−α−1f (η)
, (109)

where η = maxt∈[a,b] y(t).

As an application of the foregoing results, we give the following corollary.

Corollary 17 If λ ∈ [0, 4β−1Γ (β)Φp(Γ (α + 1))], then the following eigenvalue
problem

{
Dβ(Φp(

CDα0+y(t)))− λΦp(y(t)) = 0, 0 < t < 1,
y′(0) =C Dα = 0, y(1) =C DαDαy(0) = 0,

(110)

has no corresponding eigenfunction y ∈ E+, where 1 < α, β ≤ 2, and p > 1.

6 Lyapunov Inequalities for Boundary Value Problems with
Mixed Fractional Derivatives

In 2017, Guezane-Lakoud et al. [44] obtained a Lyapunov-type inequality for
the following problem involving both right Caputo and left Riemann–Liouville
fractional derivatives:

⎧⎨
⎩
−CDαb−Dβa+y(t)+ q(t)y(t), t ∈ [a, b],
y(a) = Dβa+y(b) = 0,

(111)

where 0 < α, β < 1, 1 < α + β ≤ 2, CDαb− denotes the right Caputo

fractional derivative,Dβa+ denotes left Riemann–Liouville fractional derivative, and
q : [a, b] → R

+ is a continuous function.
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The left and right Riemann–Liouville fractional integrals of order p > 0 for a
function g : (0,∞)→ R are, respectively, defined by

I
p
a+g(t) =

∫ t

a

(t − s)p−1

Γ (p)
g(s)ds,

I
p
b−g(t) =

∫ b

t

(s − t)p−1

Γ (p)
g(s)ds,

provided the right-hand sides are point-wise defined on (0,∞), where Γ is the
Gamma function.

The left Riemann–Liouville fractional derivative and the right Caputo fractional
derivative of order p > 0 for a continuous function g : (0,∞) → R are,
respectively, given by

D
p
a+g(t) =

dn

dtn
(I
n−p
a+ )(t),

cD
p
b−g(t) = (−1)nIn−pb− g(n)(t),

where n− 1 < p < n.
The function y ∈ C[a, b] is a solution to the problem (111) if and only if y

satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)f (y(s))ds,

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)Γ (β)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ r

a

(t − s)β−1(r − s)α−12, a ≤ r ≤ t ≤ b,
∫ t

a

(t − s)β−1(r − s)α−1, a ≤ t ≤ s ≤ b.
(112)

The above Green’s function satisfies the following properties:

1. G(t, s) ≥ 0, for all a ≤ r ≤ t ≤ b;
2. maxt∈[a,b]G(t, r) = G(r, r) for all r ∈ [a, b];
3. max
r∈[a,b]G(r, r) =

(b − a)α+β−1

(α + β − 1)Γ (α)Γ (β)
.

The following result describes the Lyapunov inequality for problem (111).
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Theorem 32 Assume that 0 < α, β < 1 and 1 < α + β ≤ 2. If the fractional
boundary value problem (111) has a nontrivial continuous solution, then

∫ b

a

|q(r)|dr ≥ (α + β − 1)Γ (α)Γ (β)

(b − a)α+β−1 .

7 Lyapunov Inequality for Hadamard Type Fractional
Boundary Value Problems

Let us begin this section with some fundamental definitions.

Definition 4 ([14]) The Hadamard derivative of fractional order q for a function
g : [1,∞)→ R is defined as

HDqg(t) = 1

Γ (n− q)
(
t
d

dt

)n ∫ t
1

(
log

t

s

)n−q−1 g(s)

s
ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q and log(·) = loge(·) is the
usual Napier logarithm.

Definition 5 ([14]) The Hadamard fractional integral of order q for a function g is
defined as

I qg(t) = 1

Γ (q)

∫ t

1

(
log
t

s

)q−1
g(s)

s
ds, q > 0,

provided the integral exists.

In 2017, Ma et al. [45] obtained a Lyapunov-type inequality for a Hadamard
fractional boundary value problem

{
HDαy(t)− q(t)y(t) = 0, 1 < t < e,

y(1) = y(e) = 0,
(113)

where HDα is the fractional derivative in the sense of the Hadamard of order 1 <
α ≤ 2 and q : [a, b] → R is a continuous function.

The function y ∈ C([1, e],R) is a solution of the boundary value problem (113)
if and only if y satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (114)

where G(t, s) is the Green’s function defined by
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G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−
(

log
e

s

)α−1 (log t)α−1

s
, 1 ≤ t ≤ s ≤ e,

−
(

log
e

s

)α−1 (log t)α−1

s
+
(

log
t

s

)α−1 1

s
, 1 ≤ s ≤ t ≤ e.

(115)
such that

|G(t, s)| ≤ λα−1

Γ (α)
(1− λ)α−1 exp(−λ),

with

λ = 1

2

(
2α − 1−

√
(2α − 2)2 + 1

)
. (116)

The result concerning the Lyapunov-type inequality for the problem (113) is as
follows.

Theorem 33 If there exists a nontrivial continuous solution of the fractional
boundary value problem (113), then

∫ b

a

|q(s)|ds > Γ (α)λ1−α.(1− λ)1−α exp λ, (117)

where λ is defined by (116).

For recent results on Hadamard type fractional boundary value problems, we
refer the interested reader to the book [46].

8 Lyapunov Inequality for Boundary Value Problems with
Prabhakar Fractional Derivative

In [47], the authors discussed Lyapunov-type inequality for the following fractional
boundary value problem involving the k-Prabhakar derivative:

{
(kD

γ
ρ,β,ω,a+y)(t)+ q(t)f (y(t)) = 0, a < t < b,

y(a) = y(b) = 0,
(118)

where kD
γ
ρ,β,ω,a+ is the k-Prabhakar differential operator of order β ∈ (1, 2], k ∈

R
+ and ρ, γ, ω ∈ C. The k-Prabhakar integral operator is defined as
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(kPα,β,ωφ)(t) =
∫ x

0

(x − t) βk −1

k
Ek,α,β [ω(x − t) αk ]φ(t)dt, x > 0,

where Ek,α,β is the k-Mittag–Leffler function given by

E
γ

k,α,β(z) =
∞∑
n=0

(γ )n,kz
n

Γk(αn+ β)n! ,

Γk(x) is the k-Gamma function Γk(x) = lim
n→∞

n!kn(nk) xk−1

(x)n,k
and (γ )n,k =

Γk(γ + nk)
Γk(γ )

is the Pochhammer k-symbol.

The k-Prabhakar derivative is defined as

kD
γ
ρ,β,ωf (x) =

( d
dx

)m
kmk P

−γ
ρ,mk−β,ωf (x),

where m = [β/k] + 1.
An integral equation related to the problem (118) is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t − a) βk −1E
γ

k,ρ,β(ω(t − a)
ρ
k )(b − s) βk −1

(b − a) βk −1E
γ

k,ρ,β(ω(b − a)
ρ
k )k

E
γ

k,ρ,β(ω(b − s)
ρ
k ), a ≤ t ≤ s ≤ b,

(t − a) βk −1E
γ

k,ρ,β(ω(t − a)
ρ
k )(b − s) βk −1

(b − a) βk −1E
γ

k,ρ,β(ω(b − a)
ρ
k )k

E
γ

k,ρ,β(ω(b − s)
ρ
k

− (t−s)
β
k
−1

k
E
γ

k,ρ,β(ω(t − s)
ρ
k ), a ≤ s ≤ t ≤ b,

(119)

which satisfies the following properties:

1. G(t, s) ≥ 0 for all a ≤ t, s ≤ b;
2. maxt∈[a,b]G(t, s) = G(s, s) for all s ∈ [a, b];
3. G(t, s) has a unique maximum given by

max
s∈[a,b]G(s, s) =

(b − a
4

) β
k
−1E

γ

k,ρ,β

(
ω
(
b−a

2

) ρ
k
)
E
γ

k,ρ,β

(
ω
(
b−a

2

) ρ
k
)

kE
γ

k,ρ,β

(
ω(b − a) ρk

) .

The Lyapunov-type inequality for the problem (118) is given in the following
result.
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Theorem 34 If the problem (118) has a nontrivial solution, then

∫ b

a

|q(s)|ds ≥
( 4

b − a
) β
k
−1 kE

γ

k,ρ,β

(
ω(b − a) ρk

)

E
γ

k,ρ,β

(
ω
(
b−a

2

) ρ
k
)
E
γ

k,ρ,β

(
ω
(
b−a

2

) ρ
k
) .

The special case k = 1 for the problem (118) has recently been studied in [48].
In 2017, Pachpatte et al. [49] established some Lyapunov-type inequalities for

the following hybrid fractional boundary value problem

⎧⎪⎪⎨
⎪⎪⎩
D
γ
ρ,β,ω

[
y(t)

f (t, y(t))
−

n∑
i=1

E
γ
ρ,β,ωhi(t, y(t))

]
+ g(t)y(t) = 0, t ∈ (a, b),

y(a) = y(b) = 0,
(120)

whereDγρ,β,ω denotes the Prabhakar fractional derivative of order β ∈ (1, 2] starting

from a point a, y ∈ C([a, b],R), g ∈ L1((a, b],R), f ∈ C1([a, b] × R,R \ {0}),
hi ∈ C([a, b] × R,R), ∀i = 1, 2, . . . , n and Eαρ,μ,ω is the Prabhakar fractional
integral of order μ with the lower limit at the point a.

We consider two cases: (I) hi = 0, i = 1, 2, . . . , n and (II) hi �= 0, i =
1, 2, . . . , n.

Case I hi = 0, i = 1, 2, . . . , n.We consider the problem (120) with hi(t, ·) = 0 for
all t ∈ [a, b]. For α ∈ (2, 3], we first construct a Green’s function for the following
boundary value problem

⎧⎪⎨
⎪⎩
Dαρ,μ,ω

[
y(t)

f (t, y(t))

]
+ g(t)y(t) = 0, t ∈ (a, b),

y(a) = y(b) = 0,

(121)

with the assumption that f is continuously differentiable and f (t, y(t)) �= 0 for
all t ∈ [a, b]. Let y ∈ AC([a, b],R) be a solution of the problem (121). Then the
function y satisfies the following integral equation:

y = f (t, y)
∫ b

a

G(t, s)g(s)y(s)ds, (122)

where G(t, s) is the Green’s function defined by (119). The Lyapunov-type
inequality for this case is as follows.
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Theorem 35 If the problem (121) has a nontrivial solution, then

∫ b

a

|q(s)|ds ≥ 1

‖f ‖
( 4

b − a
)β−1 E

γ
ρ,β

(
ω(b − a)ρ

)

E
γ
ρ,β

(
ω
(
b−a

2

)ρ)
E
γ
ρ,β

(
ω
(
b−a

2

)ρ) ,

where ‖f ‖ = sup
t∈[a,b],y∈R

|f (t, y)|.

Case II hi �= 0, i = 1, 2, . . . , n. Let y ∈ AC[a, b] be a solution of the problem
(120) given by

y(t) = f (t, y(t))
∫ b

a

G(t, s)g
[
(s)y(s)−

n∑
i=1

∫ b

a

hi(s, y(s))
]
ds, (123)

where G(t, s) is defined as in (119).

Theorem 36 (Lyapunov-Type Inequality) Assume that |q(t)y(t) − ∑n
i=1

hi(t, y(t))| ≤ K|qt)|‖y‖, K ∈ R. If a nontrivial solution for the problem (120)
exists, then

∫ b

a

|q(s)|ds ≥ 1

K‖f ‖
( 4

b − a
)β−1 E

γ
ρ,β

(
ω(b − a)ρ

)

E
γ
ρ,β

(
ω
(
b−a

2

)ρ)
E
γ
ρ,β

(
ω
(
b−a

2

)ρ) .

9 Lyapunov Inequality for q-Difference Boundary Value
Problems

Let a q-real number denoted by [a]q be defined by

[a]q = 1− qa
1− q , a ∈ R, q ∈ R

+ \ {1}.

The q-analogue of the Pochhammer symbol (q-shifted factorial) is defined as

(a; q)0 = 1, (a; q)k =
k−1∏
i=0

(1− aqi), k ∈ N ∪ {∞}.

The q-analogue of the exponent (x − y)k is

(x − y)(0)a = 1, (x − y)(k)a =
k−1∏
j=0

((x − a)− (y − a)qj ), k ∈ N, x, y ∈ R.
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More generally, if γ ∈ R, then

(x − y)(γ )a = (x − a)γ
∞∏
i=0

(x − a)− qi(y − a)
(x − a)− qγ+1(y − a) .

The q-Gamma function Γq(y) is defined as

Γq(y) = (1− q)
(y−1)
0

(1− q)y−1
,

where y ∈ R \ {0,−1,−2, . . .}. Observe that Γq(y + 1) = [y]qΓq(y).
The q-derivative of a function f : [a; b] → R(a < b) is defined by

(aDqf )(t) = f (t)− f (qt + (1− q)a
(1− q)(t − a) , t �= a

and

(aDqf )(a) = lim
t→a(aDqf )(t).

In 2016, Jleli and Samet [50] established a Lyapunov-type inequality for a
Dirichlet boundary value problem of fractional q-difference equations given by

{
(aD

αy)(t)+ φ(t)y(t) = 0, a < t < b, q ∈ [0, 1), 1 < α ≤ 2,

y(a) = y(b) = 0,
(124)

where aDα denotes the fractional q-derivative of Riemann–Liouville type and φ :
[a, b] → R is a continuous function.

The solution y ∈ C([a, b],R) of the problem (124) satisfies the integral equation

y(t) =
∫ t
a
G1(t, qs + (1− q)a)φ(s)y(s) adqs +

∫ b
t
G2(t, s)φ(s)y(s) adqs, a ≤ t ≤ b,

where

G1(t, s) = 1

Γq(α)

( (t − a)α−1

(b − a)α−1
(b − s)(α−1)

a − (t − s)(α−1)
a

)
, a ≤ s ≤ t ≤ b,

G2(t, s) = (t − a)α−1

Γq(β)(b − a)α−1 (b − (qs + (1− q)a)(α−1)
a , a ≤ t ≤ s ≤ b,

satisfying the relations

1. 0 ≤ G1(t, qs + (1− q)a) ≤ G2(s, s), a < s ≤ t ≤ b;
2. G2(a, s) = 0 ≤ G2(t, s) ≤ G2(s, s), a ≤ t ≤ s ≤ b.
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Theorem 37 (Lyapunov-Type Inequality) If the problem (124) has a nontrivial
solution, then

∫ b

a

(s − a)α−1(b − (qs + (1− q)a))(α−1)
a |φ(s)| adqs ≥ Γq(α)(b − a)α−1.

Taking α = 2 in the above theorem we have the following corollary.

Corollary 18 If a nontrivial continuous solution to the q-difference boundary value
problem,

{
(aD

2
qy)(t)+ φ(t)y(t) = 0, a < t < b, q ∈ (0, 1),

y(a) = y(b) = 0,
(125)

exists, where φ : [a, b] → R is a continuous function, then

∫ b

a

(s − a)(b − (qs + (1− q)a))|φ(s)| adqs ≥ (b − a).

Some recent work on q-difference boundary value problems can be found in [51].

10 Lyapunov Inequality for Boundary Value Problems
Involving a Fractional Derivative with Respect to a
Certain Function

In 2017, Jleli et al. [52] considered the following fractional boundary value problem
involving a fractional derivative with respect to a certain function g

{
(Dαa,gy)(t)+ q(t)y(t) = 0, a < t < b, 1 < α ≤ 2,
y(a) = y(b) = 0,

(126)

where Dαa,g is the fractional derivative operator of order α with respect to a

nondecreasing function g ∈ C1([a, b],R) with g′(x) > 0, for all x ∈ [a, b], and
q : [a, b] → R is a continuous function.

Let f ∈ L1((a, b),R). The fractional integral of order α > 0 of f with respect
to the function g is defined by

(Iαa,gf )(t) =
1

Γ (α)

∫ t

a

g′(s)f (s)
(g(t)− g(s))1−α ds, a.e. t ∈ [a, b].

Let α > 0 and n be the smallest integer greater than or equal to α. Let f : [a, b] →
R be a function such that ((1/g′(t))(d/dt)nIn−αa,g f exists almost everywhere on
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[a, b]. Then the fractional derivative of order α of f with respect to the function g
is defined as

Dαa,gf (t) =
( 1

g′(t)
t

dt

)n
In−αa,g f (t)

= 1

Γ (n− α)
( 1

g′(t)
t

dt

)n ∫ t

a

g′(s)f (s)
(g(t)− g(s))α−n+1 ds, for a.e t ∈ [a, b].

Theorem 38 Assume that q ∈ C([a, b],R) and g ∈ C1([a, b],R) be a nonde-
creasing function with g′(x) > 0, for all x ∈ [a, b]. If the problem (126) has a
nontrivial solution, then

∫ b

a

[(g(s)− g(a)((g(b)− g(s))]α−1g′(s)|q(s)|ds ≥ Γ (α)(g(b)− g(a))α−1.

(127)

From inequality (127), we can obtain Lyapunov-type inequalities for different
choices of the function g. For instance, for g(x) = xβ, x ∈ [a, b] and g(x) =
log x, x ∈ [a, b] we have, respectively, the following results.

Corollary 19 If the problem (126) has a nontrivial solution and g(x) = xβ, x ∈
[a, b], 0 < a < b, then

∫ b

a

|q(s)|ds ≥ Γ (α)(b
β − aβ)α−1

βφα,β(s∗(α, β))
,

where φα,β(s∗(α, β)) = max{φα,β(s) : s ∈ [a, b]} > 0.

Taking g(x) = log x, x ∈ [a, b], 0 < a < b, in Theorem 38, we deduce the
following Hartman–Wintner-type inequality

∫ b

a

[(
log

s

a

)(
log
b

s

)]α−1 |q(s)|
s
ds ≥ Γ (α)

(
log
b

a

)α−1
,

for the Hadamard fractional boundary value problem of the form:

{
(HDαa y)(t)+ q(t)y(t) = 0, a < t < b, 1 < α ≤ 2,

y(a) = y(b) = 0.
(128)

In order to demonstrate the application of Theorem 38, we consider the eigen-
value problem

{
Dαa,gy(t)+ λy(t) = 0, a < t < b,

y(a) = y(b) = 0,
(129)

and use the Lyapunov-type inequality (127) to obtain the following result.
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Theorem 39 If λ is an eigenvalue of fractional boundary value problem (129), then
the following inequality holds:

|λ| ≥ Γ (α)(g(b)− g(a))α−1

∫ g(b)
g(a) (x − g(a))α−1(g(b)− x)α−1dx

.

11 Lyapunov Inequality for Boundary Value Problems
Involving Left and Right Derivatives

The left and right Caputo fractional derivatives are defined via the Riemann–
Liouville fractional derivatives (see [14, p. 91]). In particular, they are defined for a
class of absolutely continuous functions.

Definition 6 (Left and Right Riemann–Liouville Fractional Integrals [14]) Let
f be a function defined on [a, b]. The left and right Riemann–Liouville fractional
integrals of order γ for function f denoted by I γa+ and I γb−, respectively, are defined
by

I
γ
a+f (t) =

1

Γ (γ )

∫ t

a

(t − s)γ−1f (s)ds, t ∈ [a, b], γ > 0,

and

I
γ

b−f (t) =
1

Γ (γ )

∫ b

t

(t − s)γ−1f (s)ds, t ∈ [a, b], γ > 0,

provided the right-hand sides are point-wise defined on [a, b], where Γ > 0 is the
gamma function.

Definition 7 (Left and Right Riemann–Liouville Fractional Derivatives [14])
Let f be a function defined on [a, b]. The left and right Riemann–Liouville
fractional derivatives of order γ for function f denoted by aD

γ
t f (t) and tD

γ

b f (t),

respectively, are defined by

aD
γ
t f (t) =

dn

dtn a
D
γ−n
t f (t) = 1

Γ (n− γ )
dn

dtn

( ∫ t

a

(t − s)n−γ−1f (s)ds
)

and

tD
γ

b f (t)=(−1)n
dn

dtn t
D
γ−n
b f (t) = (−1)n

1

Γ (n− γ )
dn

dtn

( ∫ b

t

(t−s)n−γ−1f (s)ds
)

where t ∈ [a, b], n− 1 ≤ γ < n and n ∈ N.
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In 2017, Chen et al. [53] obtained a Lyapunov-type inequality for the following
boundary value problem

⎧⎨
⎩
d

dt

(1

2
I
β
a+y′(t)+

1

2
I
β
b−y

′(t)
)
+ q(t)y(t) = 0, a < t < b,

y(a) = y(b) = 0,
(130)

where Iβa+ and Iβb− denote the left and right Riemann–Liouville fractional integrals
of order 0 ≤ β < 1,, respectively, and q ∈ L1([a, b],R).
Theorem 40 Let q ∈ L1([a, b],R) be a nonnegative function and there exists a
nontrivial solution for the boundary value problem (130). Then

∫ b

a

|q(s)|dt ≥
(

2(b − a)α−1/2

Γ (α)(2α − 1)1/2
1

| cos(πα)|1/2
)−2

, α = 1− β
2
.

Jleli et al. [54] considered the following quasilinear problem involving both left
and right Riemann–Liouville fractional derivative operators:

⎧⎨
⎩

1

2

(
tD
α
b (| aDαt |p−2

a Dαt y)+a Dαt (|tDαb y|p−2
t Dαb y)

)
= q(t)|y|p−2y, a < t < b,

y(a) = y(b) = 0,
(131)

where aD
α
t and tD

α
b denote the left Riemann–Liouville fractional derivative of

order α ∈ (0, 1) and the right Riemann–Liouville fractional derivative of order
α, respectively. Note that for α = 1, problem (131) reduces to the p-Laplacian
problem

{
(|y′|p−2y)′ + q(t)|y|p−2y = 0, a < t < b, p > 1,
y(a) = y(b) = 0,

(132)

The Lyapunov-type inequality for the problem (131) is given in the following
theorem.

Theorem 41 Assume that 0 1
p
< α < 1 and q ∈ L1(a, b). If problem (131) admits

a nontrivial solution y ∈ ACα,pa [a, b] ∩ ACα,pb [a, b] ∩ C[a, b] such that |y(c)| =
‖y‖∞, c ∈ (a, b), then

∫ b

a

q+(s)ds ≥
(

2(αp − 1)

p − 1

)p−1 [Γ (α)]p(
(c − a) αp−1

p−1 + (b − c) αp−1
p−1

)p−1 ,

where q+(t) = max{q(t), 0} for t ∈ [a, b], ACα,pa [a, b] = {y ∈ L1(a, b) :a Dαt y ∈
Lp(a, b)} and ACα,pb [a, b] = {y ∈ L1(a, b) :t Dαb y ∈ Lp(a, b)}.
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12 Lyapunov Inequality for Boundary Value Problems with
Nonsingular Mittag–Leffler Kernel

In 2017, Abdeljawad [55] proved a Lyapunov-type inequality for the following
Riemann–Liouville type fractional boundary value problem of order 2 < α ≤ 3
in terms of Mittag–Leffler kernels:

⎧⎨
⎩
(ABRa Dαy)(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3,

y(a) = y(b) = 0,
(133)

where ABRa Dα denotes the left Riemann–Liouville fractional derivative defined by

(ABRa Dαf )(t) = B(α)

1− α
d

dt

∫ t

a

f (x)Eα

(
− α (t − x)

α

1− α
)
ds,

where B(α) is a normalization function such that B(0) = B(1) = 1, and Eα is the

generalized Mittag–Leffler function given by Eα(−tα) =
∞∑
k=0

(−t)αk
Γ (αk + 1)

.

The integral equation equivalent to the boundary value problem (133) is

y(t) =
∫ b

a

G(t, s)R(t, y(s))ds,

where

G(t, s) =

⎧⎪⎨
⎪⎩
(t − a)(b − s)

b − a , a ≤ t ≤ s ≤ b,
(t − a)(b − s)

b − a − (t − s), a ≤ s ≤ t ≤ b,

and

R(t, y(t)) = 1− β
B(β)

q(t)y(t)+ β

B(β)

(
a
Iβq(·)y(·))(t), β = α − 2.

The Green’s function G(t, s) defined above has the following properties:

1. G(t, s) ≥ 0 for all a ≤ t, s ≤ b;
2. maxt∈[a,b]G(t, s) = G(s, s) for s ∈ [a, b];
3. G(s, s) has a unique maximum, given by

max
s∈[a,b]G(s, s) = G

(a + b
2
,
a + b

2

)
= b − a

4
.

The Lyapunov inequality for the problem (133) is given in the following result.
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Theorem 42 If the boundary value problem (133) has a nontrivial solution, where
q is a real-valued continuous function on [a, b], then

∫ b

a

[ 3− α
B(α − 2)

|q(t)| + α − 2

B(α − 2)
(aI

α−2|q(·)|)(t)
]
ds >

4

b − a . (134)

Remark 1 For α→ 2+, notice that
3− α
B(α − 2)

|q(t)|+ α − 2

B(α − 2)
(aI

α−2|q(·)|)(t)→
|q(t)| and hence the inequality (134) reduces to the classical Lyapunov
inequality (6).

13 Lyapunov Inequality for Discrete Fractional Boundary
Value Problems

Let us begin this section with the definitions of integral and derivative of arbitrary
order for a function defined on a discrete set. For details, see [56].

The power function is defined by

x(y) = Γ (x + 1)

Γ (x + 1− y) , for x, x − y ∈ R \ {. . . ,−2,−1}.

For a ∈ R, we define the set Na = {a, a + 1, a + 2, . . .}. Also, we use the notation
σ(s) = s + 1 for the shift operator and (Δf )(t) = f (t + 1)− f (t) for the forward
difference operator. Notice that (Δ2f )(t) = (ΔΔf )(t).

For a function f : Na → R, the discrete fractional sum of order α ≥ 0 is defined
as

(aΔ
0f )(t) = f (t), t ∈ Na,

(aΔ
−αf )(t) = 1

Γ (α)

t−α∑
s=a
(t − σ(s))(α−1), f (s), t ∈ Na + α, α > 0.

The discrete fractional derivative of order α ∈ (1, 2] is defined by

(aΔ
αf )(t) = (Δ2

aΔ
−(2−α)f )(t), t ∈ Na+2−α.

In 2015, Ferreira [57] studied the following conjugate boundary value problem

{
(Δαy)(t)+ q(t + α − 1)y(t + α − 1) = 0, t ∈ [0, b + 1]N0 ,

y(α − 2) = 0 = y(α + b + 1).
(135)

The function y is a solution of the boundary value problem (135) if and only if y
satisfies the integral equation
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y(t) =
b+1∑

0

G(t, s)q(s + α − 1)f (y(s + α − 1)), (136)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t (α−1)(α + b − σ(s))(α−1)

(α + b + 1)(α−1)

−(t − σ(s))(α−1), s < t − α + 1 < b + 1,

t (α−1)(α + b − σ(s))(α−1)

(α + b + 1)(α−1)
, t − α + 1 ≤ s ≤ b + 1,

(137)
and that

max
s∈[0,b+1]N0

G(s, s) = G
(b

2
+ α − 1,

b

2

)
, if b is even,

max
s∈[0,b+1]N0

G(s, s) = G
(b + 1

2
+ α − 1,

b + 1

2

)
, if b is odd,

The Lyapunov inequality for the problem (135) is as follows.

Theorem 43 If the discrete fractional boundary value problem (135) has a nontriv-
ial solution, then

b+1∑
s=0

|q(s + α − 1)| > 4Γ (α)
Γ (b + α + 2)Γ 2

(
b
2 + 2

)

(b + 2α)(b + 2)Γ 2
(
b
2 + α

)
Γ (b + 3)

, if b is even;

b+1∑
s=0

|q(s + α − 1)| > 4Γ (α)
Γ (b + α + 2)Γ 2

(
b+3

2

)

Γ (b + 3)(Γ 2
(
b+1

2 + α
) , if b is odd.

As a simple application, consider the right-focal boundary value problem in
Theorem 43 with q = λ ∈ R. Then an eigenvalue of the boundary value problem

{
(Δαy)(t)+ λy(t + α − 1) = 0, t ∈ [0, b + 1]N0 ,

y(α − 2) = 0 = Δy(α + b),
(138)

must necessarily satisfy the following inequality

|λ| ≥ 1

Γ (α − 1)(b + 2)2
.
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Ferreira [57] also studied the following right-focal boundary value problem

{
(Δαy)(t)+ q(t + α − 1)y(t + α − 1) = 0, t ∈ [0, b + 1]N0 ,

y(α − 2) = 0 = Δy(α + b). (139)

The function y is a solution of the boundary value problem (139) if and only if y
satisfies the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds, (140)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Γ (b + 3)t(α−1)(α + b − σ(s)(α−2)

Γ (α + b + 1)
−(t − σ(s))(α−1), s < t − α + 1 < b + 1,

Γ (b + 3)t(α−1)(α + b − σ(s)(α−2)

Γ (α + b + 1)
, t − α + 1 ≤ s ≤ b + 1,

(141)
with

max
s∈[0,b+1]N0

G(s + α − 1, s) = G(b + α, b + 1) = Γ (α − 1)(b + 2).

The Lyapunov inequality for the problem (139) is presented as follows.

Theorem 44 If the discrete fractional boundary value problem (139) has a nontriv-
ial solution, then

b+1∑
s=0

|q(s + α − 1)| > 1

Γ (α − 1)(b + 2)
.

In 2017, Chidouh and Torres [58] studied the following conjugate boundary value
problem

{
(Δαy)(t)+ q(t + α − 1)f (y(t + α − 1)) = 0, t ∈ [0, b + 1]N0,

y(α − 2) = 0 = y(α + b + 1),
(142)

where f ∈ C(R+,R+) is nondecreasing and q : [α − 1, α + b]Nα−1 → R
+ is a

nontrivial function.
The function y is a solution of the boundary value problem (142) if and only if y

satisfies the integral equation
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y(t) =
b+1∑

0

G(t, s)q(s + α − 1)f (y(s + α − 1)), (143)

where G(t, s) is the Green’s function defined by

G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

t (α−1)(α + b − s)(α−1)

(α + b + 1)(α−1)
− (t − s − 1)(α−1), s < t − α + 1 < b + 1,

t (α−1)(α + b − s)(α−1)

(α + b + 1)(α−1)
, t − α + 1 ≤ s ≤ b + 1.

(144)

Moreover, the function G satisfies the following properties:

1. G(t, s) > 0 for all t ∈ [α − 1, α + b]N0 and s ∈ [1, b + 1]N1;
2. max[α−1,α+b]N0

G(t, s) = G(s + α − 1, s), s ∈ [1, b + 1]N1;
3. G(s + α − 1) has a unique maximum given by

max
s∈[1,b+1]N1

G(s+α−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

4

(b + 2α)(b + 2)Γ 2
(
b
2 + α

)
Γ (b + 3)

Γ (α)Γ (b + α + 2)Γ 2
(
b
2 + α

) if b is even,

1

Γ (α)

(b + 3)Γ 2
(
b+1

2 + α
)

Γ (b + α + 2)Γ 2
(
b+3

2

) if b is odd.

The Lyapunov inequality for the problem (142) is expressed as follows.

Theorem 45 If the discrete fractional boundary value problem (142) has a nontriv-
ial solution, then

b+1∑
s=0

|q(s+α−1)| > 4Γ (α)
Γ (b + α + 2)Γ 2

(
b
2 + 2

)
η

(b + 2α)(b + 2)Γ 2
(
b
2 + α

)
Γ (b + 3)f (η)

, if b is even,

and

b+1∑
s=0

|q(s + α − 1)| > 4Γ (α)
Γ (b + α + 2)Γ 2

(
b+3

2

)
η

Γ (b + 3)(Γ 2
(
b+1

2 + α
)
f (η)

, if b is odd,

where η = max[α−1,α+b]Nα−1
y(s + α − 1).

In 2017, Ghanbari and Gholami [59] presented the Lyapunov-type inequalities
for two special classes of Sturm–Liouville problems equipped with fractional
Δ-difference operators, which are given in the next two results.
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Theorem 46 Assume that p : [a, b]N0 → R
+ and q : [α+a−1, α+b−1]Nα−1 →

R are real-valued functions. If y defined on [α+a−1, α+b−1]Nα−1 is a nontrivial
solution to the fractional Sturm–Liouville problem

{
Δαb−(p(t)Δαa+y(t))+ [q(t + α − 1)− λ]y(t + α − 1) = 0, t ∈ (a, b),
y(α + a − 1) = 0, y(α + b) = 0,

(145)
where α ∈ (1/2, 1) and t = a, a+1, . . . , b, a, b ∈ Z, λ ∈ R such that a ≥ 1, b ≥ 3,
then the following Lyapunov-type inequality holds:

b∑
s=a

b∑
w=a

( |q(w + α − 1)− λ|
p(s)

)
≥ 1

2
.

Theorem 47 Suppose that q : [α + a − 1, α + b − 1]Nα−1 → R is a real-valued
function for 1 < α ≤ 2. Assume that y defined on [α + a − 2, α + b + 1]Nα−2 is a
nontrivial solution to the fractional Δ-difference boundary value problem:

{
Δαa+y(t)+ [q(t + α − 1)− λ]y(t + α − 1) = 0, t ∈ (a, b),
y(α + a − 2) = 0, y(α + b + 1) = 0,

(146)

where t = a, a + 1, . . . , b, b + 1 a, b ∈ Z, λ ∈ R such that a ≥ 1, b ≥ 2, then the
following Lyapunov-type inequalities hold:

b+1∑
a

|q(s + α − 1)− λ| ≥ Γ (α) b − a + 2

b − a + 2α

Γ (α + b − a + 2)Γ 2
(
b−a

2 + 1
)

Γ (b − a + 2)Γ 2
(
b−a

2 + α
) ,

if a + b is even and

b+1∑
a

|q(s+α−1)−λ| ≥ Γ (α) b − a + 3

b − a + 2α + 1

Γ (α + b − a + 2)Γ 2
(
b−a+1

2 + 1
)

Γ (b − a + 2)Γ 2
(
b−a+1

2 + α
) ,

if a + b is odd.

14 Lyapunov-Type Inequality for Fractional Impulsive
Boundary Value Problems

In 2017, Kayar [60] considered the following impulsive fractional boundary value
problem
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(CDαy)(t)+ q(t)y(t) = 0, t �= τi, a < t < b, 1 < α < 2,
Δy|t=τi := y(τ+i )− y(τ−i ), i = 1, 2, . . . , p,

Δy′t=τi = −
γi

βi
y(τ−i ), i = 1, 2, . . . , p,

y(a) = y(b) = 0,

(147)

where CDα is the Caputo fractional derivative of order α (1 < α ≤ 2), q :
PLC[a, b] → R is a continuous function, a = τ0 < τ1 < . . . < τp < τp+1 = b,
PLC[a, b] = {y : [a, b] → R is continuous on each interval (τi, τi+1), the limits
y(τ±i ) exist and y(τ−i ) = y(τi) for i = 1, 2, . . . , p}, and PLC1[a, b] = {y :
[a, b] → R, y′ ∈ PLC[a, b]}.
y ∈ PLC1([a, b],R) is a solution of the boundary value problem (147) if and

only if y satisfies the following integral equation

y(t) = −
∫ b

a

G(t, s)q(s)y(s)ds −
∑
a≤τi<b

H(t, τi)
γi

βi
y(τi),

where

G(t, s) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

a − t
b − a (b − s)

α−1 a ≤ t ≤ s ≤ b,
a − t
b − a (b − s)

α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,

and

H(t, τi) = 1

Γ (α)

⎧⎪⎪⎨
⎪⎪⎩

a − t
b − a (b − τi) a ≤ t ≤ τi ≤ b,
a − τi
b − a (b − t), a ≤ τi ≤ t ≤ b.

Furthermore, the functions G and H satisfy the following properties:

1. G(t, s)| ≤ 1
Γ (α)

(α−1)α−1

αα
(b − a)α−1, for all a ≤ t, s ≤ b;

2. H(t, τi) ≤ 0 and |H(t, τi)| ≤ b−a
4 , for all a ≤ t, τi ≤ b.

The Lyapunov inequality for the problem (147) is the following.

Theorem 48 (Lyapunov Inequality) If the problem (147) has a nontrivial solution
y(t) �= 0 on (a, b), then

∫ b

a

|q(s)|ds +
∑
a≤τi<b

( γi
βi

)+
> min

{
4

b − a ,
Γ (α)αα

[(α − 1)(b − a)]α−1

}
,

where
(
γi
βi

)+ = max
{
γi
βi
, 0
}
.
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15 Lyapunov Inequality for Boundary Value Problems
Involving Hilfer Fractional Derivative

A generalization of both Riemann–Liouville and Caputo derivatives, known as
generalized Riemann–Liouville derivative of order α ∈ (0, 1) and type β ∈ [0, 1],
was proposed by Hilfer in [61]. Such a derivative interpolates between the Riemann–
Liouville and Caputo derivative in some sense. For properties and applications of the
Hilfer derivative, see [62, 63] and the references cited therein.

Definition 8 The generalized Riemann–Liouville fractional derivative or Hilfer
fractional derivative of order α and parameter β for a function u is defined as

HDα,βu(t) = Iβ(n−α)DnI (1−β)(n−α)u(t),

where n− 1 < α < n, 0 ≤ β ≤ 1, t > a, D = d

dt
.

Remark 2 The Hilfer fractional derivative corresponds to the Riemann–Liouville
fractional derivative for β = 0, that is, HDα,0u(t) = DnIn−αu(t), while it
corresponds to the Caputo fractional derivative for β = 1 given by HDα,1u(t) =
In−αDnu(t).

In 2016, Pathak [64] studied Lyapunov-type inequalities for fractional boundary
value problems involving Hilfer fractional derivative and Dirichlet, mixed Dirichlet,
and Neumann boundary conditions.

Let us first consider the Dirichlet boundary value problem given by

⎧⎨
⎩
(Dα,βy)(t)+ g(t)y(t) = 0, t ∈ (a, b), 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = y(b) = 0,
(148)

which is equivalent to the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
t − a
b − a

)1−(2−α)(1−β)
(b − s)α−1, a ≤ t ≤ s ≤ b,

(
t − a
b − a

)1−(2−α)(1−β)
(b − s)α−1 − (t − s)α−1, a ≤ s ≤ t ≤ b,
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is the Green’s function satisfying the property:

|G(t, s)| ≤ (b − a)
α−1[α − 1+ β(2− α)]α−1+β(2−α)[α − 1]α−1

Γ (α)[α − (2− α)(1− β)]α−(2−α)(1−β) ,

(t, s) ∈ [a, b] × [a, b].

Theorem 49 (Lyapunov-Type Inequality) If a nontrivial continuous solution of
the problem (148) exists, then

∫ b

a

|q(s)|ds ≥ Γ (α)[α − (2− α)(1− β)]α−(2−α)(1−β)
(b − a)α−1[α − 1+ β(2− α)]α−1+β(2−α)(α − 1)α−1

.

Next we consider a fractional boundary value problems involving Hilfer frac-
tional derivative and mixed Dirichlet and Neumann boundary conditions:

⎧⎨
⎩
(Dα,βy)(t)+ q(t)y(t) = 0, t ∈ (a, b), 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = y′(b) = 0,
(149)

which is equivalent to the integral equation

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where G(t, s) = H(t, s)

Γ (α)(b − s)2−α and

H(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(α − 1)(t − a)1−(2−α)(1−β)(b − a)(2−α)(1−β)
1− (2− α)(1− β) , a ≤ t ≤ s ≤ b,

(α − 1)(t − a)1−(2−α)(1−β)(b − a)(2−α)(1−β)
1− (2− α)(1− β)

−(t − s)α−1(b − s)2−α, a ≤ s ≤ t ≤ b.

The function H satisfies the following property:

|H(t, s)| ≤ b − a
α − 1+ β(2− α) max{α − 1, β(2− α)}, (t, s) ∈ [a, b] × [a, b].

Theorem 50 (Lyapunov-Type Inequality) If a nontrivial continuous solution of
the problem (149) exists, then

∫ b

a

(b − s)α−2|q(s)|ds ≥ Γ (α)(α − 1+ β(2− α))
(b − a)max{α − 1, β(2− α)} .
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Now we establish a Lyapunov-type inequality for another fractional boundary
value problems with Hilfer fractional derivative and mixed Dirichlet and Neumann
boundary conditions:

⎧⎨
⎩
(Dα,βy)(t)+ q(t)y(t) = 0, t ∈ (a, b), 1 < α ≤ 2, 0 ≤ β ≤ 1,

y(a) = y′(a) = y′(b) = 0,
(150)

which can be transformed to the integral equation:

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(α − 1)(t − a)2−(3−α)(1−β)(b − s)α−2

(b − a)1−(3−α)(1−β)[2− (3− α)(1− β) , a ≤ t ≤ s ≤ b,

(α − 1)(t − a)2−(3−α)(1−β)(b − s)α−2

(b − a)1−(3−α)(1−β)[2− (3− α)(1− β)
−(t − s)α−1, a ≤ s ≤ t ≤ b,

is the Green’s function satisfying the property:

|G(t, s)| ≤ 2(b − a)α−1(α − 2)α−2

Γ (α)[2− (3− α)(1− β)]α−1
, (t, s) ∈ [a, b] × [a, b].

Theorem 51 (Lyapunov-Type Inequality) If a nontrivial continuous solution of
the problem (150) exists, then

∫ b

a

|q(s)|ds ≥ Γ (α)[2− (3− α)(1− β)]
α−1

(b − a)α−1(α − 2)α−2 .

Finally we consider the following fractional boundary value problem with Hilfer
fractional derivative and a mixed set of fractional Dirichlet, Neumann, and fractional
Neumann boundary conditions

⎧⎪⎨
⎪⎩
(Dα,βy)(t)+ q(t)y(t) = 0, a < t < b, 2 < α ≤ 3, 0 ≤ β ≤ 1,

(
I (3−α)(1−β)y

)
(a) = 0, y′(b) = 0,

d2

dt2

(
I (3−α)(1−β)y

)
(a) = 0.

(151)

The integral equation equivalent to Problem (151) is
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y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) = 1

Γ (α)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(α − 1)(t − a)1−(3−α)(1−β)(b − s)α−2

(b − a)−(3−α)(1−β)[1− (3− α)(1− β)] , a ≤ t ≤ s ≤ b,
(α − 1)(t − a)1−(3−α)(1−β)(b − s)α−2

(b − a)−(3−α)(1−β)[1− (3− α)(1− β)]
−(t − s)α−1, a ≤ s ≤ t ≤ b,

such that

|G(t, s)| ≤ (α − 2)α−2(b − a)α−1

Γ (α)[1− (3− α)(1− β)]α−1 , (t, s) ∈ [a, b] × [a, b].

Theorem 52 (Lyapunov Inequality) If a nontrivial continuous solution of the
problem (151) exists, then

∫ b

a

|q(s)|ds ≥ Γ (α)[1− (3− α)(1− β)]
α−1

(b − a)α−1(α − 2)α−2 .

In 2017, Kirane and Torebek [65] obtained Lyapunov-type inequalities for the
following fractional boundary value problem

{
D
α,γ
a y(t)+ q(t)f (y(t)) = 0, a < t < b, 1 < α ≤ γ < 2,

y(a) = y(b) = 0,
(152)

where Dα,γa is a generalized Hilfer fractional derivative of order α ∈ R (m − 1 <
α < m,m ∈ N) and type γ , defined as

D
α,γ
a f (t) = I γ−αa

dm

dtm
I
m−γ
a f (t),

and q : [a, b] → R is a nontrivial Lebesgue integrable function.
The integral representation for the solution of the boundary value problem (152)

is

y(t) =
∫ b

a

G(t, s)q(s)f (y(s))ds,

where G(t, s) is the Green’s function given by
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G(t, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( t − a
b − a

)γ−1 (b − s)α−1

Γ (α)
− (t − s)

α−1

Γ (α)
, a ≤ s ≤ t ≤ b,

( t − a
b − a

)γ−1 (b − s)α−1

Γ (α)
, a ≤ t ≤ s ≤ b.

Further, the above Green’s function G(t, s) satisfies the following properties:

1. G(t, s) ≥ 0 for a ≤ t, s ≤ b;
2. maxa≤t≤b G(t, s) = G(s, s), s ∈ [a, b];
3. G(s, s) has a unique maximum, given gy

max
a≤s≤b G(s, s) =

(α − 1)α−1

(γ + α − 2)γ+α−2

((γ − 1)b − (α − 1)a)γ−1

Γ (α)(b − a)γ−α .

They obtained the following Lyapunov-type inequalities.

Theorem 53 If the fractional boundary value problem (152) has a nontrivial
solution for a real-valued continuous function q, then

∫ b

a

|q(s)|ds > (γ + α − 2)γ+α−2

(α − 1)α−1

Γ (α)(b − a)γ−α
((γ − 1)b − (α − 1)a)γ−1 .

Theorem 54 Let q : [a, b] → R be a real nontrivial Lebesgue integrable function
and f ∈ C(R+,R+) be a concave and nondecreasing function. If there exists a
nontrivial solution y for the problem (152), then

∫ b

a

|q(s)|ds > (γ + α − 2)γ+α−2

(α − 1)α−1

Γ (α)(b − a)γ−α
((γ − 1)b − (α − 1)a)γ−1

ω

f (ω)
,

where ω = maxt∈[a,b] y(t).

Theorem 55 (Hartman–Wintner Type Inequality) Let the functions q and f
satisfy the conditions of Theorem 54. Suppose that the fractional boundary value
problem (152) has a nontrivial solution. Then

∫ b

a

(s − a)γ−1(b − s)α−1q+(s)ds > ‖y‖
f (‖y‖)Γ (α)(b − a)

γ−1.

Corollary 20 If f (y) = y (linear case) and q ∈ L1([a, b],R+), then

∫ b

a

(s − a)γ−1(b − s)α−1q+(s)ds > Γ (α)(b − a)γ−1.
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16 Lyapunov-Type Inequality with the Katugampola
Fractional Derivative

In 2018, Lupinska and Odzijewicz [66] obtained a Lyapunov-type inequality for the
following fractional boundary value problem

{
D
α,ρ
a+ y(t)+ q(t)y(t) = 0, a < t < b, α > 0, ρ > 0,

y(a) = y(b) = 0,
(153)

where Dα,ρa+ is the Katugampola fractional derivative of order α, defined as

D
α,γ
a+ f (t) =

(
t1−α d

dt

)n
In−αa+ f (t),

for t ∈ (a, b), n = [α]+1, 0 < a < t < b ≤ ∞ and q : [a, b] → R is a continuous
function. Here Iα,ρa+ is the Katugampola fractional integral defined by

I
α,ρ
a+ f (t) =

ρ1−α

Γ (α)

∫ t

a

sρ−1

(tρ − sρ)1−α f (s)ds.

The integral representation for the solution of the boundary value problem (153)
is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where G(t, s) is the Green’s function given by

G(t, s) = ρ1−α

Γ (α)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sρ−1

(bρ − sρ)1−α
( tρ − aρ
bρ − aρ

)α−1
, a ≤ t ≤ s ≤ b,

sρ−1

(bρ − sρ)1−α
( tρ − aρ
bρ − aρ

)α−1 − sρ−1

(tρ − sρ)1−α , a ≤ s ≤ t ≤ b,

which satisfies the following properties:

1. G(t, s) ≥ 0 for a ≤ t, s ≤ b;
2. max
a≤t≤b G(t, s) = G(s, s) ≤

max{aρ−1, bρ−1}
Γ (α)

(bρ − aρ
4ρ

)α−1
, s ∈ [a, b].

They obtained the following Lyapunov-type inequality.

Theorem 56 If the fractional boundary value problem (153) has a nontrivial
solution for a real-valued continuous function q, then
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∫ b

a

|q(s)|ds > Γ (α)

max{aρ−1, bρ−1}
( 4ρ

bρ − aρ
)α−1

.

Remark 3 In the special case when ρ = 1 in Theorem 56, we get the following
result

∫ b

a

|q(s)|ds ≥ Γ (α)
( 4

b − a
)α−1

,

which is Theorem 2, while taking ρ → 0+ in Theorem 56, we have the Lyapunov’s
type inequality for the Hadamard fractional derivative:

∫ b

a

|q(s)|ds ≥ αΓ (α)
( log(b/a)

4

)1−α
.

17 Lyapunov Inequality for a Boundary Value Problem
Involving the Conformable Derivative

Recently, Khalil et al. [67] introduced a new derivative, which appears in the form
of a limit like the classical derivative and is known as the conformable derivative.
Later, this new local derivative was improved by Abdeljawad [68]. The importance
of the conformable derivative is that it has properties similar to the ones of the
classical derivative. However, the conformable derivative does not satisfy the index
law [69, 70] and the zero order derivative property, that is, the zero order derivative
of a differentiable function does not return to the function itself.

In 2017, Khaldi et al. [71] obtained a Lyapunov-type inequality for the following
boundary value problem involving the conformable derivative of order 1 < α < 2
and Dirichlet boundary conditions:

{
Tαy(t)+ q(t)y(t) = 0, t ∈ (a, b),
y(a) = y′(b) = 0,

(154)

where Tα denotes the conformable derivative of order α and q : [a, b] → R is a real
continuous function.

The conformable derivative of order 0 < α < 1 for a function g : [a,∞)→ R

is defined by

Tαg(t) = lim
ε→0

g
(
t + ε(t − a)1−α

)
− g(t)

ε
, t > a.

If Tαg(t) exists on (a, b), b > a and limt→a+ Tαg(t) exists, then we define
Tαg(a) = limt→a+ Tαg(t).
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The conformable derivative of order n < α < n+ 1 of a function g : [a,∞)→
R, when g(n) exists, is defined as

Tαg(t) = Tβg(n)(t),

where β = α − n ∈ (0, 1).
The solution y of the problem (154) can be written as

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where

G(t, s) = 1

b − a

{
(b − s)(t − a), a ≤ t ≤ s ≤ b,
−(b − a)(t − s)+ (b − s)(t − a), a ≤ s ≤ t ≤ b,

is the Green’s function, which is nonnegative, continuous and satisfies the property:

0 ≤ G(t, s) ≤ b − a, for all t, s ∈ [a, b].

Theorem 57 (Lyapunov Inequality) Let q ∈ C([a, b],R). If the boundary value
problem (154) has a solution y ∈ AC2([a, b],R) such that y(t) �= 0 a.e. on (a, b),
then

∫ b

a

|q(s)|(s − a)α−2ds ≥ 4

b − a .

In 2017, Abdeljawad et al. [72] obtained Lyapunov-type inequality for a Dirichlet
boundary value problem involving conformable derivative of order 1 < α < 2:

{
Tαy(t)+ q(t)y(t) = 0, t ∈ (a, b),
y(a) = y(b) = 0,

(155)

where Tα denotes the conformable derivative of order α and q : [a, b] → R is a real
continuous function.

The solution for the boundary value problem (155) is

y(t) =
∫ b

a

G(t, s)q(s)y(s)ds,

where G(t, s) is the Green’s function given by
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G(t, s) =

⎧⎪⎪⎨
⎪⎪⎩

(t − a)(b − s)
b − a · (s − a)α−2, a ≤ t ≤ s ≤ b,

( (t − a)(b − s)
b − a − (t − s)

)
· (s − a)α−2, a ≤ s ≤ t ≤ b,

which satisfies the properties:

1. G(t, s) ≥ 0 for all a ≤ t, s ≤ b;
2. maxt∈[a,b]G(t, s) = G(s, s) for s ∈ [a, b];
3. G(t, s) has a unique maximum, given by

max
s∈[a,b]G(s, s) = G

(a + (α − 1)b

α
,
a + (α − 1)b

α

)
= (b − a)

α−1(α − 1)α−1

αα
.

The Lyapunov inequality for the problem (155) is given in the following result.

Theorem 58 If the problem (155) has a nontrivial solution, where q is a real-
valued continuous function on [a, b], then

∫ 1

0
|q(s)|ds > αα

(b − a)α−1(α − 1)α−1 .
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Hypersingular Integrals in Integral
Equations and Inequalities: Fundamental
Review Study

Suzan J. Obaiys, Rabha W. Ibrahim, and Ahmad F. Ahmad

Abstract The present review deals with the fundamental approaches that cover the
numerical solutions of singular and hypersingular integrals. The contribution of this
work is to highlight and gather the most important background with the current
modification of such work and provide the reader with an accurate image of today’s
knowledge regarding the approximate solutions of singular integrals. The review
provides a clear understanding of various numerical approaches from the 1960s up
to the present day. Some interesting applications in physics and engineering are also
given.

1 Introduction

Singular integrals are usually defined for unbounded integrands or over unbounded
ranges of integration. These integrals do not exist as proper or improper Riemann
integrals, but are defined as limits of certain proper integrals [1]. However, in
numerical analysis, numerical integration constitutes a broad family of algorithms
for calculating the numerical value of a definite integral [2, 3]. It is known that
two- and higher-dimensional integration is called curvature formula, whereas the
quadrature reflects more realizable meaning for higher dimensional integration as
well.
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The basic problem considered by numerical integration is to compute an
approximate solution for a definite integral of the form

∫ b

a

f (x)dx.

If f (x) is a smooth well-behaved function and integrated over a small number
of dimensions with bounded limits of integration, then there are many methods
of approximating the integral with arbitrary precision. It is vital to mention that
there are several reasons for carrying out numerical integration. The integrated
f (x) may be known only at certain points, such as obtained by sampling. Some
embedded systems and other computer applications may need numerical integration
for this reason. Moreover, a formula for the integrated may be known, but it may be
difficult or impossible to find an antiderivative which is an elementary function.
Sometimes, computing the numerical approximation of the integral is easier than
computing the antiderivative which is given as an infinite series or product, or
if its evaluation requires a special function which is not available. Furthermore,
numerical integration methods can generally be described as combining evaluations
of the integrated to get an approximation to the integral. Integral equation and
inequalities, in the sense of Cauchy principal value, with integrals having a
singularity in the domain of integration is called Cauchy singular integral equations
and inequalities [4].

2 Singular Integrals

Integral inequalities are very beneficial in the qualitative theory and analysis of
both differential and integral equations. Integral equation is called singular if either
the range of the integration is infinite or the kernel has singularities within the
range of integration. Such equations occur rather frequently in mathematical physics
and possess very unusual properties [4, 5]. Indeed, a differential equation can be
replaced by an integral equation that incorporates its boundary conditions [6]. As
such, each solution of the integral equation automatically satisfies these boundary
conditions. One can also consider integral equations in which the unknown function
is dependent not only on one variable but also on several variables, for example, the
equation

g(x) = f (x)+ λ
∫
L

K(x, t)g(t)dt, x ∈ L,

where x and t are n-dimensional vectors and L is the region of an n-dimensional
space. If the limits of the integral are fixed, then it is called a Fredholm integral
equation. It is called a Volterra integral equation, if one of the limits is a variable.
Moreover, if the unknown function is only under the integral sign, the equation is
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said to be of the first kind. If the function is both inside and outside, then the equation
is called of the second kind.

In the same vein, we can consider system of integral equations with several
unknown functions. Lipovan [7] introduced and studied different types of integral
inequalities when λ = 1 taking the form

g(x) ≤ f (x)+
∫
L

K(x, t)g(t)dt, x ∈ L

It has been shown that

g(x) ≤ Fe
∫
L K(x,t)dt , F := maxxf (x).

Also, the author extended the inequality for λ as a function of t

g(x) ≤ f (x)+ λ(t)
∫
L

K(x, t)g(t)dt, x ∈ L.

Assuming λ(t) = t we obtain Morro’s inequality [8]. Applications of integral
inequalities can be found in [9–11]. Recently, El-Deeb and Ahmad [12] introduced
a generalization of the form

g(x)p ≤ f (x)+
∫
L

K(x, t)g(t)dt +
∫
L

ω(t)gp(t)dt, x ∈ L = C1(J, R+).

As a good application of singular integral is the jump variational inequalities.
These inequalities have been studied in various recent investigations of probability,
ergodic theory, and harmonic analysis. The first variational inequality was given by
Lepingle [13], followed by works due to Pisier and Xu [14] as well as by Bourgain
[15] by reducing different problems to linked jump inequalities. Newly, Liu [16]
proved the jump inequalities for singular integrals and averages of Radon type with
rough kernels : Let P(x) = (P1(x), . . . , Pn(x)) be a polynomial mapping with
components Pj (y) that are real valued polynomials of x ∈ R

k such that Pj (0) = 0.
For t > 0, we define the truncated singular Radon transforms TPt as

(TPt f )(y) =
∫
|x|>t

f (y − P(x)) .Ω(x/|x|)|x|n , Ω ∈ L.

In addition, there is a connection between singular integral and Jensen inequalities
[17] for a function f : [a, b] → R

Θ

(
1

b − a
∫ b

a

f (x) dx

)
≤ 1

b − a
∫ b

a

Θ(f (x)) dx,
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where f is a non-negative Lebesgue-integrable function. It has been shown that the
operator norms of singular integral is approximated to the maximal value of some
classes of functions. This estimate leads to reverse Jensen inequalities. Dragomir et
al. [18] refined the Jensen inequalities by using a measure space (Ω,Λ,μ):

Θ

(
1

μ(Ω)

∫
Ω

f dμ

)
≤ 1

μ(Ω)

∫
Ω

Θ(f ) dμ.

In this study we focus on two kinds of singular integrals, namely the Cauchy
principal value integrals (CPVI) and the hypersingular integrals (HSI) and their
related inequalities, respectively.

2.1 Cauchy Principal Value Integrals (CPVI)

Consider equations that involve integration of the type

I (u, x) =
∫
L

(t − x)−1u(t)dt, x ∈ L, (1)

where the kernel is not integrable over any interval that includes the point t = x

and x is a point on the contour L outside its nodes. Consider a circle with center x
and small radius ε > 0 that intersects L at two points t ′ and t ′′. Denote by 1 the arc
t ′t ′′ ⊂ L. If the integral in (1) has a finite limit U(x) as ε → 0, this limit is called
the Cauchy principal value of the singular integral [19]

U(x) = lim
ε→0

∫
L/1

u(t)

t − x dt =
∫
L

u(t)

t − x dt. (2)

A special condition for the function u(t) that is needed for integrals with this kernel
is called Hölder condition.

Definition 2.1 A function u(t) defined on a setD (on the complex plane, in general)
is said of class H(α) on D, or said to satisfy the Hölder condition with exponent α
if for any t, x ∈ D, the inequality

|u(t)− u(x)| ≤ A|t − x|α,

holds with 0 < α ≤ 1, and A is a positive constant. These constants are called the
coefficient and the exponent in the Hölder condition (see [4]).

The function u(t) is also said to be Hölder continuous and we usually write u(t) ∈
H(α) or u(t) ∈ H(α)(A,D). If L is a single arc ab, then the formula in (2) reads
[20, 21]
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−
∫ b

a

u(t)

t − x dt = lim
ε→0

[(∫ x−ε

a

+
∫ b

x+ε

)
u(t)

t − x dt
]
, x ∈ (a, b). (3)

If D is a measurable subset of R
n with the Lebesgue measure, and φ and

ψ are measurable real- or complex-valued functions on D, then Hölder integral
inequality is

∫
S

∣∣φ(x)ψ(x)∣∣ dx ≤
(∫

S

|φ(x)|p dx

) 1
p
(∫

S

|ψ(x)|q dx

) 1
q

,

where p, q ∈ [1,∞) satisfying 1/p + 1/q ≤ 1. Arkhipova [22] used the Hölder
integral inequality to find the upper bound of solutions of boundary value problems
with integral boundary. Ding [23] obtained a local weighted Caccioppoli-type
estimate and showed the weighted version of the weak reverse Holder inequality for
A-harmonic tensors. Recently, Wang [24] employed the Hölder integral inequality
in a class of fractional integral.

2.2 Hypersingular Integrals

Hypersingular Integrals (HSI) are integrals with strong singularities whose conver-
gence is understood in the sense of Hadamard finite part. Integral equations with
such integrals are also called hypersingular [25]. This concept was introduced in
the 1930s by Hadamard in connection with the Cauchy problem for equations of
hyperbolic type, and originally it was narrowly specific. The singular integral in
Hadamard type is defined as below.

Definition 2.2 Consider the improper integral on the interval [a,b] such that

(i) the integrand has a singularity of the type 1
(t−x)2 at an interior point a < x < b,

and
(ii) the regular part of the integrand is a function ϕ(t), a ≤ t ≤ b, which satisfies

a Hölder-continuous first derivative

|ϕ(t)− ϕ(x)− ϕ′(x)(t − x)| ≤ A|t − x|α+1, (4)

where |A| < ∞ and 0 < α < 1. Then the Hadamard finite part integral or
hypersingular integral is defined as

F(x) =
∫ b

a

ϕ(t)

(t − x)2 dt= lim
ε→0

[∫ x−ε

a

ϕ(t)

(t − x)2 dt +
∫ b

x+ε
ϕ(t)

(t − x)2 dt−
2ϕ(x)

ε

]
,

(5)
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where the neighborhood ε is symmetric about the singular points x, and is
defined [1, 20]

F(x) = F.P.
∫ b

a

ϕ(t)

(t − x)2 dt = =
∫ b

a

ϕ(t)

(t − x)2 dt. (6)

One should clarify in which sense hypersingular integrals as given by Eq. (6) may
be treated, since they do not exist either as improper integrals of the first kind or as
Cauchy-type singular integral. At least three various definitions of HSIs are known
[26–28]:

1. The differentiation of Cauchy principal value integral (CPVI) with respect to x
yields

∫ b

a

ϕ(t)

(t − x)2 dt =
d

dx

∫ b

a

ϕ(t)

t − x dt. (7)

2. The integral is treated as a Hadamard principal value

∫ b

a

ϕ(t)

(t − x)2 dt = lim
ε→0

[(∫ x−ε

a

+
∫ b

x+ε

)
ϕ(t)dt

(t − x)2 −
2ϕ(x)

ε

]
. (8)

3. The integral is a residue value, in the sense of generalized functions,

∫ b

a

| t − x |α ϕ(t)dt =
∫ x

a

(t − x)αdt +
∫ b

x

(x − t)αdt, (9)

where it exists in the classical sense when the value of α = −2. The following
shows that the three different approaches are equivalent to each other, when
ϕ(x) ≡ 1.

1.

=
∫ b

a

dt

(t − x)2 =
d

dx
−
∫ b

a

dt

t − x

= d

dx
ln

(
b − x
x − a

)
= b − a
(a − x)(b − x) .

2.

=
∫ b

a

dt

(t − x)2 = lim
ε→0

[(
1

a − x +
1

ε
+ 1

ε
− 1

b − x
)
− 2

ε

]

= b − a
(a − x)(b − x) .
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3.

∫ b

a

| t − x |α dt =
∫ x

a

(t − x)αdt +
∫ b

x

(x − t)αdt =

= − (a − x)
α+1

α + 1
− (x − b)

α+1

α + 1
,

when the value of α = −2 it gives

∫ b

a

dt

(x − t)2 = lim
α→−2

[
− (a − x)

α+1

α + 1
− (x − b)

α+1

α + 1

]

= (a − x)−1 + (x − b)−1 = b − a
(a − x)(b − x) .

Then the three definitions for the case of ϕ(x) = 1 are equivalent to each other.
If the density function ϕ(x) is differentiable (i.e. analytical) on the open interval
(a,b), then

d

dx

∫ b

a

ϕ(t)

t − x dt = lim
ε→0

d

dx

(∫ x−ε

a

+
∫ b

x+ε

)
ϕ(t)

t − x dt

= lim
ε→0

[(∫ x−ε

a

+
∫ b

x+ε

)
ϕ(t)dt

(t − x)2 −
2ϕ(x)

ε

]
,

and

∫ b

a

| t − x |α ϕ(t)dt = lim
ε→0

(∫ x−ε

a

+
∫ b

x+ε

)
| t − x |α ϕ(t)dt

= lim
ε→0

[∫ x−ε

a

(t − x)αϕ(t)dt +
∫ b

x+ε
(x − t)αϕ(t)dt

]

= lim
ε→0

d

dx

[
−
∫ x−ε

a

(t − x)α+1

α + 1
ϕ(t)dt

−
∫ b

x+ε
(x − t)α+1

α + 1
ϕ(t)dt

]
.

Then, by applying analytical continuation to the last relation, one can see that the
right-hand side yields (7). Therefore, equivalence of the first, second, and third
definitions is evident.

If ϕ(x) ∈ C2(a, b), then the finite limit in expression (8) exists, and the integral∫ b

a

ϕ(x)

(t − x)2 dt is finite for x ∈ (a, b), then Eq. (8) becomes
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=
∫ b

a

ϕ(t)dt

(t − x)2 = lim
ε→0

(∫ x−ε

a

+
∫ b

x+ε

)
1

(t − x)2 [ϕ(t)− ϕ(x)− ϕ
′(x)(t − x)]dt

+ ϕ(x) b − a
(a − x)(b − x) + ϕ

′(x) ln
b − x
a − x ,

which has a finite limit at ε→+0.
Samko et al. [29] studied some properties of fractional integrals and hypersingu-

lar integrals in variable order Holder spaces on homogeneous spaces.
SIEs occur widely in diverse areas of applied mathematics and physics. They

offer a powerful (sometimes the only) technique for solving a variety of practical
problems. One reason for this utility is that all of the conditions specifying an
initial value or boundary value problem for a differential equation can often be
condensed into a single integral equation. In the case of partial differential equations
the dimension of the problem is reduced in this process so that, for example,
a boundary value problem for a partial differential equation in two independent
variables transforms into an integral equation involving an unknown function of
only one variable. Whether one is looking for an exact solution to a given problem
or having to settle for an approximation to it, an integral equation formulation can
often prove to be a useful way forward. For this reason integral equations have
attracted attention for most of this century and their theory is well-developed.

A rich literature of applications involve with the numerical evaluation of SI, HSI,
SIE, and HSIE can be found in the following section.

3 Numerical Solutions

Clenshaw [30] proposed a quadrature scheme based on the practical abscissas
x = cos(iπ/n); i = 0, . . . , n, a much simpler technique based on sampling the
integrand at Chebyshev points. In this method the function f which is continuous
and bounded on the interval [a, b] can be expanded in the form

f (x) ≡ F(t) = 1

2
a0 + a1T1(t)+ a2T2(t)+ · · · , a ≤ x ≤ b, (10)

where Ti(t) is a Chebyshev polynomial of the first kind

Ti(t) = cos(i arccos t), t = 2x − (b + a)
b − a . (11)

Integrating f (x) in (10) (see [31]) yields

2

b − a
∫ x

a

f (x)dx =
∫ t

−1
F(t)dt = 1

2
b0 + b1T1(t)+ b2T2(t)+ · · · , (12)
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where [31]

br = ar−1 − ar+1

2r
, r = 1, 2, . . . . (13)

The value of b0 is determined by the lower limit of integration, thus

b0 = 2b1 − 2b2 − 2b3 − · · · . (14)

The definite integral is given by

2

b − a
∫ b

a

f (x)dx =
∫ 1

−1
F(t)dt = 1

2
b0 + b1 + b2 + · · ·

= 2(b1 + b3 + b5 + · · · ). (15)

The coefficients in Eq. (10) may be calculated after first observing that any
polynomial of degree N in x may be written in the form

f (x) ≡ F(t) = 1

2
a0 + a1T1(t)+ · · · + aN−1TN−1(t)+ 1

2
aNTN(t)

=
N∑′′

r=0

arTr(t), −1 ≤ t ≤ 1. (16)

where
∑′′

denotes the finite sum whose first and last terms are to be halved. The

function f interpolated at the abscissae tNj = cos(πj/N), (0 ≤ j ≤ N), which are
the zeros of the polynomial ωN+1(t) defined by

ωN+1(t) = TN+1(t)− TN−1(t) = 2(t2 − 1)UN−1(t), N ≥ 1, (17)

where Ui(t) = sin(i + 1)θ/ sin θ is a Chebyshev polynomial of the second kind.
The coefficients ar in (16) are given by

ar = 2

N

N∑′′

j=0

Fj cos
πrj

N
, (18)

where

Fj = F(cos
πj

N
). (19)
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They considered a definite integral of the form

2

b − a
∫ b

a

f (x)dx =
∫ 1

−1
F(t)dt, (20)

This method is based on the term-by-term integration of the expansion of f (x)
in Chebyshev polynomials, where in the evaluation of a definite integral in (20),
alternate terms vanish, and they have suggested as a criterion that three successive
non-zero coefficients should be small. This number of three coefficients may be
increased if they desire to reduce even further the possibility of an erroneous result.
This method is written briefly as CC method.

Paget and Elliott [32] have described an algorithm for the evaluation of the
Cauchy principal value integral

−
∫ 1

−1

w(x)f (x)

x − a dx, −1 < a < 1, (21)

with a non-negative weight function w(x). Their method consists of approximating
f (x) by a suitable finite series of polynomials orthonormal on (−1, 1) with respect
to the weight function w(x), and then evaluating the coefficients in terms of
“functions of the second kind” with a suitable interpolation method.

Lifanov and Polonskii [33] presented a numerical method for the real singular
integral equation of the first kind of the form

∫ b

a

γ (x)
K(x0, x)

x − x0
dx = f (x0), a < x0 < b, (22)

where f (x0) satisfies the Hölder continuous condition, with exponent α, and
K(x0, x) satisfies the condition H(α) with respect to x0 and x in the region
a ≤ x0, x ≤ b, γ (x) is the unknown function to be determined in the class of
functions which are bounded for x = b and unbounded for x = a. They solved
Eq. (22) by using the method of discrete vortices to compute the integral in the

left-hand side and choose the collocation points as x0j = xj + xj+1

2
to obtain the

following system of n× n linear equations

n∑
i=1

γ (xi)
K(x0j , xi)

xi − x0j
h = f (x0j ), j = 1, 2, . . . , n, (23)

where the solution gives the values of the unknown function γ at the computational
points xi, i = 1, 2, . . . , n and xi = a+ ih : h = 2

n+1 . They also solved the singular
integral equations

∫ b

a

γ (x)

x − x0
dx +

∫ b

a

K(x0, x)γ (x)dx = ϕ(x0), (24)
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with the condition

K0(x0, x) = K(x0, x)−K(x0, x0)

x − x0
, j = 1, 2, . . . , n, (25)

and

ϕ(x0) = f (x0)

K(x0, x0)
. (26)

where K(x0, x0) �= 0 for a ≤ x0 ≤ b.
Their system of linear integral equations is of the form

n∑
i=1

γ (xi)

xi − x0j
h = ϕ(x0j )−

n∑
p=1

K(x0j , xp)γ (xp)h, j = 1, 2, . . . , n, (27)

where K(x0j , xi) and ϕ(x0j ) are the values of the related functions in Eq. (25) and
Eq. (26), respectively. They showed that by increasing the values of n the solutions
of the systems (23) and (27) approximate those of the singular integral Eqs (22) and
(24), respectively.

Ioakimidis and Theocaris [34] considered the direct numerical solution of
Cauchy type singular integral equations of the first kind

K(y)+
∫ 1

−1

k(x, t)y(t)√
1− t2 dt = g(x), −1 < x < 1, (28)

where

K(f ) = 1

π
−
∫ 1

−1

f (t)√
1− t2(x − t)dt, (29)

and is subject to

∫ 1

−1

y(t)√
1− t2 dt = N. (30)

They used the following approximation for the function f (x):

f TN (x) =
N∑′

k=0

ckTk(x), f UN−1(x) =
N∑
k=1

PkUk−1(x), (31)

where Tk(x) and Uk(x) denote the Chebyshev polynomials of degree k of the first
and second kind, respectively. In the approximation of Eqs. (28) and (30), they



698 S. J. Obaiys et al.

replaced the functions g(x) by gn(x), k(x, t) by kn(x, t) and y(t) by yn(t) using
the approximation in (31). By defining

||f ||∞ = sup
−1≤x≤1

|f (x)|,

they proved that for the direct Galerkin method of numerical solution of (28) and
(30) based on Gauss–Chebyshev, as

n→∞, gn(x)→ g(x), kn(x, t)→ k(x, t) and yn(t)→ y(t),

and if g ∈ Cp1+1(−1, 1), p1 ≥ 1, and k(x, t) ∈ Cp2+1(−1, 1), p2 ≥ 1, then

||y − yn||∞ ≤ Cn−p, p = min(p1, p2),

for a sufficiently large n.
In [34] paper another method of Lobatto–Chebyshev for the numerical solution

of Eqs. (28) and (30) was also proposed, where they have used the following
approximation for the function f (x)

f (x) �
∞∑′

k=0

ckTk(x) =
∞∑
k=1

PkUk−1(x), (32)

and based on the corresponding quadrature rule

∫ 1

−1
(1− t2)− 1

2 f (t)dt ∼= π
n

n∑′′

α=0

f (tα), (33)

where tα are the roots of the polynomial (1 − x2)Un−1(x) and the corresponding
collocation points xβ are the roots of Tn(x). The reduction of such an integral
equation to a system of linear equations was proved for the convergence problem
under appropriate conditions [35].

Ioakimidis [36] used the classical collocation and Galerkin methods for the
numerical solution of Fredholm integral equations of the first kind with a double
pole singularity of the form

1

π
=
∫ 1

−1

√
1− t2g(t)
(x − t)2 dt +

∫ 1

−1

√
1− t2K(t, x)g(t)dt = −f (x), −1 < x < 1,

(34)
where the density function g(t) is proportional to the crack opening displacement
function along the crack. Ioakimidis investigated the following integral equation

=
∫ 1

−1

g(t)

(t − x)2 dt = f (x), x ∈ (−1, 1). (35)
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He applied the above integral with the values of the stress intensity factors K(t) at
the crack tips

K(±1) = g(±1), (36)

taking into account that

Un(±1) = (±1)n(n+ 1), (37)

implies

K(±1) =
n∑
i=0

(±1)i(i + 1)ai, (38)

where ai are the coefficients to be determined. Equation (38) determines both the
numerical values for stress intensity factors at the crack tips K(±1) [37] and also
the unknown coefficients ai , where

K(1) = 1.83122498, K(−1) = 0.70090677. (39)

Hasegawa et al. [38] presented an algorithm to generate the sequence of
interpolation polynomials by increasing the number of sample points in arithmetic
progression, where they obtained an AQS which overcomes the drawback in the
CC method that the number of sample points is increased in geometric progression.
They considered the following integral

Ql(f ) =
∫ 1

−1
Pl(x)dx, (40)

where Pl(x) is an interpolatory polynomial of degree (l + 1)N − 2 of the form

Pl(x) =
N−1∑
k=1

A0,kUk−1(x)+
l∑
i=1

ωi−1(TN(x))+
N−1∑′

k=0

Ai,kTk(x), (41)

which satisfy

Pl(xi) = f (xi), i = 1, 2, . . . , (l + 1)N − 2. (42)

Their lth quadrature rule for the integration interval [−1, 1] is defined as

Ql(f ) =
∫ 1

−1
Pl(x)dx =

N−1∑
k=1

A0,kW0,k +
l∑
i=1

N−1∑′

k=0

Ai,kWi,k, (43)
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where Ai,k and Wi,k are independent of l. The adequate error estimation El(f ) of
the approximationQl(f ) is given by

El(f ) =
∫ 1

−1
UN−1(x)ωl(TN(x))2

1−(l+1)Nf [x, xl, . . . , x(l+1)N−1]dx, (44)

which is very important for the automatic quadrature scheme, where f [x, xl, . . . ,
x(l+1)N−1] are the divided difference of order (l + 1)N − 1.

Golberg [39] established the convergence rate for solving a class of Hadamard
singular integral equation

1

π
=
∫ 1

−1

√
1− ξ2

(x − ξ)2 u(ξ)dξ +
∫ 1

−1

√
1− ξ2K(x, ξ)u(ξ)dξ = f (x), −1 < x < 1,

(45)
for the real functions f ∈ Cr([−1, 1]) and K ∈ Cr([−1, 1] × [−1, 1]); r ≥ 3. By
the relation (7), the first integral in Eq. (45) is treated as

Hu = 1

π
=
∫ 1

−1

√
1− ξ2

(x − ξ)2 u(ξ)dξ =
1

π

d

dx
−
∫ 1

−1

√
1− ξ2

x − ξ u(ξ)dξ, (46)

where the integral is a Cauchy principal value. He used the Chebyshev polynomial
of the second kind to approximate the unknown function u, which implies the
following system of equations

(Hun +Kun − f )(xk) = 0 (47)

where {xk}nk = 0 are the zeros of Un+1(x), and the operator K : L(P ) → L(P )

defined by

(Ku)(x) =
∫ 1

−1

√
1− ξ2K(x, ξ)u(ξ)dξ. (48)

The above system of equation is solved by both Galerkin and collocation methods
and he proved that {un} converges uniformly to u with a rate of convergence in the
L2,w norm which is

||u− un||∞ = O(n−r+2), (49)

for n ≥ max(n0, r + 1), where r > 3 and n0 comes from Jackson’s theorem.
Hasegawa and Torii [40] extended the CC method in [30] for the integral∫ 1

−1
f (t)dt to a problem of the form

Q(f ; c) = −
∫ 1

−1

f (t)

t − cdt, −1 < c < 1, (50)
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where −
∫

is a Cauchy principal value integral. They offered a set of approximations

QN(f ; c) to the integral in (50) by using automatic quadrature method based on
Chebyshev polynomials. To subtract out the singularity, Q(f, x) in (50) can be
written as

Q(f, x) =
∫ 1

−1

f (t)− f (x)
t − x dt + f (x) log

(
1− x
1+ x

)
. (51)

By using the approximate polynomial PN(t)

PN(t) =
N∑′′

k=0

aNk Tk(t), −1 ≤ t ≤ 1, (52)

to interpolate f , Eq. (51) becomes

Q(f, x) ≈ QN(f, x) =
∫ 1

−1

PN(t)− PN(x)
t − x dt + f (x) log

(
1− x
1+ x

)
. (53)

The integrated in (53) can be written as

PN(t)− PN(x)
t − x =

N−1∑′

k=0

dkTk(t), (54)

Integrating term-by-term and substituting the result into Eq. (53) gives an automatic
quadrature scheme (AQS) for Cauchy principal value integral (50)

QN(f, x) ≈ −
∫ 1

−1

f (t)

t − x dt � 2

[N2 −1]∑′

k=0

d2k

1− 4k2
+ f (x) log

(
1− x
1+ x

)
, (55)

where the prime means that the first term is halved and assuming that N is even.
The polynomial coefficients dk in (54) can be stably calculated by using recurrence
relation

dk+1 − 2xdk + dk−1 = 2aNk , k = N,N − 1, . . . , 1, (56)

in the backward direction with the starting condition dN = dN+1 = 0, and by using
the interpolation condition

PN(cosπj/N) = f (cosπj/N), 0 ≤ j ≤ N, (57)
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the coefficients aNk in (56) are determined as follows:

aNk =
2

N

N∑′′

j=0

f (cosπj/N) cos(πkj/N), 0 ≤ k ≤ N. (58)

The error of the approximate integral QN(f, x) given by Eq. (55) is bounded and
independently of x, i.e.,

|Q(f, x)−QN(f, x)| ≤ 8
∞∑′

k=0

|V Nk (f )|, (59)

where

V Nk (f ) =
1

π2i

∮
εp

Ŭk(z)f (z)dz

ωN+1(z)
, k ≥ 0,

and Ŭk(z) is the Chebyshev function of the second kind defined by

Ŭk(z) =
∫ 1

−1

Tk(t)dt

(z− t)√1− t2 =
π√

z2 − 1wk
= 2π

(w − w−1)wk
,

where w = z+√z2 − 1 and |w| > 1 for z /∈ [−1, 1].
Thus, from Eq. (59), they estimated the error ofQN(f, x) as follows:

|Q(f, x)−QN(f, x)| � 4|V N0 (f )|
(
r + 1

r − 1

)
,

where |V Nk (f )| = O(r−k−N) and

r = min
1≤m≤M |zm +

√
z2
m − 1| > 1.

Rassias [41] selected applications of polynomials (Chebyshev polynomial) in
approximation theory and computer aided geometric design (CAGD).

Ashour [42] used the general theory of approximations for unbounded operators
to discuss and obtain convergence of the mechanical quadratures method for solving
Hadamard singular integral equation

KX = 1

π

∫ 1

−1

√
1− τX(τ)
(τ − t)2 dτ + T (X, t) = y (60)
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where T is the given continuous operator. The solution X is approximated by
Chebyshev polynomial of the second kind, and according to his method, the system
of n linear algebraic equations in n unknowns take the form

Xn(t) =
n∑
k=1

αkUk−1(t), −1 ≤ t ≤ 1.

Several algorithms that solve a class of Hadamard singular integral equations

n∑
i=1

αi
(
KUi−1,KUj−1

)
p
= (y,KUj−1

)
p
, 1 ≤ j ≤ n,

which is equivalent to

n∑
k=1

αk

(
(T Uk−1, T Uj−1)p − j (T Uk−1, Uj−1)p − k(T Uj−1, Uk−1)p

)
+ j2αj

= (y,KUj−1
)
p
, 1 ≤ j ≤ n. (61)

If the following conditions hold where x∗n ∈ L2,p is the solution of Eq. (60) for a
given function y ∈ L2,p, then for all n ∈ N, Eq. (61) has a unique solution {α∗k }n1
and if KUi−1 is closed in L2,p. The rate of convergence in Cp[−1, 1] space is as
follow

||rn||p = ||y −Kx∗n || → 0 as n→∞,

x∗n =
n∑
k=1

α∗kUk−1(t).

Hui and Shia [43] constructed a set of Gaussian quadrature formulae for the
approximation of hypersingular integrals of the form

I (t) = F.P.=
∫ b

a

f (x)

(x − t)2 dx, a < t < b, (62)

where F.P. defined the finite part integral, the regular function f (x) is defined over
the interval (a,b) and t ∈ (a, b). For the evaluations of hypersingular integrals in
(62), they developed the Gaussian quadrature formula for the Cauchy principal value
integrals with a weight function ω(x) of the form

−
∫ b

a

ω(x)
f (x)

x − t dx
∼= −2f (t)

ϕn(t)
qn(t)+

n∑
k=1

λk
f (xk)

(xk − t) , t �= xk, t ∈ (a, b),
(63)
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where xk are the roots of polynomial ϕn which satisfies the orthonormal relation
[44]

−
∫ b

a

ω(x)ϕn(x)ϕm(x)dx = δmn, (64)

qn(t) is defined by

qn(t) = 1

2
−
∫ b

a

ω(x)ϕn(x)

t − x dx (65)

and λk is the kth weight given by

λk = −kn+1

knϕ′n(xk)ϕn+1(xk)
, (66)

and kn is defined by ϕn(x) = knxn + kn−1x
n−1 + · · · .

With the help of the orthogonality property in Eq. (63), the Gaussian quadrature
formula for hypersingular integrals with second-order singularities (62) is

=
∫ b

a

ω(x)
f (x)

(x − t)2 dx
∼= −2f ′(t)

ϕn(t)
qn(t)− 2W(ϕn, qn)

ϕ2
n(t)

+
n∑
k=1

λk
f (xk)

(xk − t)2 , (67)

where W(ϕn, qn) ≡ ϕnq ′n − qnϕ′n is the Wronskian. Specializing (67) to Legendre
and Chebyshev polynomials, respectively, we have

=
∫ 1

−1

f (x)

(x − t)2 dx
∼= −2f ′(t)

Pn(t)
Qn(t)− 2f (t)(1− t2)−1

P 2
n (t)

+
n∑
k=1

λk
f (xk)

(xk − t)2 , (68)

=
∫ 1

−1

√
(1−x2)f (x)

(x − t)2 dx ∼= − πf ′(t)
Un−1(t)

Tn(t)− πf (t)W(Un−1, Tn)

U2
n−1(t)

+
n∑
k=1

λk
f (xk)

(xk − t)2 .
(69)

Moreover, they showed that by choosing the appropriate weight function, their
numerical experiments in some cases performed better, compared with Kutt’s
quadrature formula which is given by

I0(f ) ∼=
n∑
k=1

ωk [f (−xk)+ f (xk)] , (70)

where ωk is the weight function and xk represents the station. The numerical results
of both Eq. (68) and Kutt’s method (70) seem to be diverging slowly, which means
the values are getting greater as the number of the quadrature points n is increased.
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Iovane et al. [28] approximated the hypersingular integral equation with the
characteristic kernel of the form

=
∫ b

a

g(t)

(x − t)2 dt = f
′(x), x ∈ (a, b), f (x) ∈ C2(a, b). (71)

The bounded solution of Eq. (71) is unique and given by

g(x) =
√
(x − a)(b − x)

π2

∫ b

a

f (t)√
(t − a)(b − t)(x − t) . (72)

According to the definition of HSIs in Eqs. (7) and (71) is equivalent to

−
∫ b

a

g(t)

x − t dt = −f (x)+ C, x ∈ (a, b),

where the constant C is defined as

C = 1

π2

∫ b

a

f (t)√
(t − a)(b − t) .

It is clear that any bounded solution of Eq. (71) vanishes as x → a, b.

The direct collocation technique of solving Eq. (71) for an arbitrary right-hand
side, they divided the interval (a,b) into n small equal subintervals of the length

h = b − a
n

, by the nodes a = t0, t1, . . . , tn−1, tn = b, tj = a+jh, j = 0, 1, . . . , n.

The central points of each subinterval (ti−1, ti) are denoted by xi , where xi = a +(
i − 1

2

)
h, i = 1, 2, . . . , n. They approximated the integral in the left-hand side of

(71) using the finite sum for x = xi as

=
∫ b

a

g(t)

(xi − t)2 dt �
n∑
j=0

g(tj )=
∫ tj

tj−1

1

(xi − t)2 dt

= g(t0)
∫ h/2

−h/2
dt

t2
+

n∑
j �=i,i=1

g(tj )
( 1

xi − tj −
1

xi − tj−1

)

=
n∑
j=1

g(tj )
( 1

xi − tj −
1

xi − tj−1

)
.

where

tj = a + jh, j = 0, 1, · · · , n,
xi = a +

(
i − 1

2

)
h, i = 1, 2, · · · , n,

h = b−a
n
.

⎫⎪⎪⎬
⎪⎪⎭
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They obtained the following linear algebraic system

n∑
j=i
g(tj )

( 1

xi − tj −
1

xi − tj−1

)
= f ′(xi), i = 1, 2, · · · , n. (73)

When x = xl ∈ (a, b) is fixed, the difference between the solution g(xl) of the
system (73) and the analytical solution (72) tends to zero, provided n → ∞.
The system in (73) solved by Cramer’s method where they have shown that their
proposed method is an efficient alternative to a standard reduction to infinite systems
of linear algebraic equations. Its principal merit is that there is no need for numerical
computations when calculating elements of the respective matrix.

Mandal and Bera [45] presented a simple method based on the polynomial
approximation of a function that is obtained by approximate solutions of hyper-
singular integral equation of the second kind over a finite interval

φ(x)− α
√

1− x2

π
=
∫ 1

−1

φ(t)

(x − t)2 dt = f (x), x ∈ (−1, 1), (74)

and the Cauchy type singular integro-differential equation

2
dφ

dx
− λ−

∫ 1

−1

φ(t)

x − t dt = f (x), x ∈ (−1, 1), λ > 0, (75)

with the condition

φ(±1) = 0.

They approximated the unknown function φ(x) in Eq. (74) by

φ(x) =
√

1− x2ψ(x), −1 < x < 1,

where

ψ(x) ≈
n∑
j=0

ajx
j .

Then Eq. (74) reduces to

n∑
j=0

ajCj (x) = F(x), −1 < x < 1, (76)
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where

Cj (x) = xj − α
π
A′j (x),

A0(x) = −πx,

Aj (x) = −πxj+1 +∑j−1
j=0

1+(−1)i

4

Γ ( 1
2 )Γ

(
i+1

2

)

Γ
(
i+4

2

) ,

F (x) = f (x)√
1−x2

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

They determined the unknown coefficients aj , j = 0, 1, . . . , n by solving the
following system of linear equations obtained by using x = xi(i = 0, 1, . . . , n) as
the collocation points in Eq. (76), where xi’s are suitable distinct collocation points
in the interval (−1, 1) which is

n∑
j=0

ajCj (xi) = F(xi), i = 0, 1, . . . , n. (77)

In the solution of Eq. (75), they approximated the function φ(x) as in Eq. (74) and
obtained

n∑
j=0

ajBj (x) = G(x), −1 < x < 1,

where

B0(x) = −
(

x√
1−x2

+ λπx
2

)
,

Bj (x)) =
(
jxj−1−(j+1)xj+1√

1−x2

)
+ λ

2Aj(x), j = 1, 2, · · · , n,
G(x) = f (x)

2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

They obtained the unknown coefficients aj , j = 0, 1, . . . , n by solving the system
of linear equations.

Mandal and Bhattacharya [46] obtained the approximate numerical solutions of
two classes of integral equations. The first class involves Fredholm integral equation
of second kind of the form

φ(x)+
∫ b

a

K(x, t)φ(t)dt = f (x), a < x < b, (78)

where φ(t) is the unknown function to be determined, K(x, t) is the regular kernel,
and f (x) is a known function. To find appropriate solution to the integral in (78),
the function φ is approximated in the Bernstein polynomial basis in [a,b] of degree
n of the form
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φ(x) =
n∑
i=0

aiBi,n(t), (79)

where ai are the unknown coefficients to be determined, and the Bernstein polyno-
mial Bi,n

Bi,n(x) =
(
n

i

)
(x − a)i(b − x)n−i

(b − a)n , i = 0, 1, . . . , n. (80)

Furthermore, the same basis in (79) are used for the numerical solution of the other
class of Fredholm integral equation of second kind with hypersingular kernel as well
as a simple hypersingular integral equation of the form

×
∫ 1

−1

φ(t)

(t − x)2 dt = f (x), −1 ≤ x ≤ 1, (81)

by imposing two additional conditions

φ(−1) = φ(1) = 0. (82)

The integral in Eq. (81) must be interpreted in the sense of Hadamard finite-part
integral, defined by

×
∫ 1

−1

φ(t)

(t − x)2 dt = lim
ε→0+

[(∫ x−ε

−1
+
∫ 1

x+ε

)
φ(t)

(t − x)2 dt −
φ(x − ε)+ φ(x + ε)

ε

]
,

(83)
where x ∈ (−1, 1) and the function φ is required to verify Hölder condition, φ ∈
C1,α(−1, 1).

Many applications generalized Eq. (81) in the following operator form

(H +K)φ = f, (84)

where K is another linear operator in Eq. (78). The regularized form of Eq. (84),
[47] and [48].

(I +H−1K)φ = H−1f. (85)

The airfoil equation of the form

1

π
−
∫ 1

−1

f (t)

t − x dt = g(x), −1 < x < 1, (86)

represents the simplest singular integral equation over a finite interval. By restricting
g to have Hölder continuous condition, g ∈ C0,α[−1, 1], we can write the general
solution of Eq. (86) as (see [49, pp. 173–180])
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f (x) = − 1

π
−
∫ 1

−1

√
1− t2g(t)√

1− x2(t − x)dt +
A√

1− x2
, (87)

whereA is an arbitrary constant. Generally, φ(x) has inverse square-root singularity
at x = −1 and x = 1 and for the unique solution, φ should be bounded at one end-
point. Applying Eqs. (7)–(81) yields

1

π
−
∫ 1

−1

f (t)

t − x dt = g(x)+ B, (88)

where B is any integration constant. To solve the above Eq. (87) is applied and gives

φ(x) = − 1

π
−
∫ 1

−1

√
1− t2(B − f (t))√

1− x2(t − x) dt + A√
1− x2

. (89)

It is not difficult to show

−
∫ 1

−1

√
1− t2
t − x dt = −

√
1− t2 + x arcsin t

= −
√

1− t2 log

(
|x − t |

1− xt −√(1− x2)(1− t2)

)
. (90)

Using the well-known Cauchy singular integral formula [47]

1

π
−
∫ 1

−1

√
1− t2
t − x Un(t)dt = −Tn+1(x), n ≥ 0, (91)

for n = 0, results

1

π
−
∫ 1

−1

√
1− t2
t − x dt = −x. (92)

Substituting Eq. (92) into Eq. (89) gives the general solution of Eq. (81)

φ(x) = 1

π
−
∫ 1

−1

√
1− t2f (t)√

1− x2(t − x)dt +
A− Bx√

1− x2
. (93)

The exact solution of Eq. (81) is obtained by exploiting Eq.(90) into Eq. (93), yields

φ(x) = 1

π

∫ 1

−1
f (t) ln

∣∣∣ x − t
1− xt −√(1− x2)(1− t2)

∣∣∣dt + A− Bx√
1− x2

, (94)
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where A and B are arbitrary constants. For the unique solution, we need an extra
condition in (82), which gives the exact solution of Eq. (81) (see [48–50])

φ(x) = 1

π2

∫ 1

−1
f (t) ln

∣∣∣ x − t
1− xt −√(1− x2)(1− t2)

∣∣∣dt, −1 ≤ x ≤ 1.

(95)
The exact solution in Eq. (95) is specialized for the case of f (x) = 1, which give

φ(x) = − 1

π

√
(1− x2). (96)

The proof of the convergence problem in terms of truncated Bernstein polynomials
is also presented for a general Fredholm integral equation of the second kind and
hypersingular integral equation.

Capobianco et al. [51] applied Newton’s method and its modified version to
solve the equations obtained by applying a collocation method to a nonlinear
hypersingular integral equations (NHIEs) problems, of the form

γ (x, g(x))− ε

π
=
∫ 1

−1

g(t)

(t − x)2 dt = f (x) (97)

where 0 < ε < 1, and the unknown function g satisfies the boundary conditions
g(±1) = 0. They approximated the density function g by the normalized Chebyshev
polynomial of the second kind of the form

Pϕn (cos s) =
√

2

π

sin(n+ 1)s

sin s
, n = 0, 1, · · · ,

Furthermore, they proved the related convergence results in L2 norm for both of
Newton’s method and its modified method.

Mahiub et al. [52] discussed the numerical solution of Cauchy type singular
integral equations of the first kind of the form

1

π

∫ 1

−1

ϕ(t)

t − x dt +
∫ 1

−1
K(t, x)ϕ(t)dt = f (x), −1 < x < 1, (98)

with the condition

ϕ(±1) = 0,

where K(t, x) and f (x) are given real function satisfying Hölder continuous
condition, and by applying Fredholm integral equation theory along with the exact
solutions of the characteristic integral equation
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1

π

∫ 1

−1

ϕ(t)

t − x dt = f (x), −1 < x < 1, (99)

where the unknown function ϕ is approximated by Chebyshev polynomial of the
first kind

ϕ(x) = 1√
1− x2

n∑
j=0

βjTj (x). (100)

By substituting (100) into Eq. (98), with the use of several Chebyshev properties,
the system of linear algebraic equations becomes

π

n∑
j=1

βjUj−1(xi)+
n∑
j=1

βjψj (xi) = f (xi), (101)

where xi are the collocation points that had chosen as the zeros of Chebyshev
polynomial of the second kind Un, of the form

xi = cos

(
iπ

n+ 1

)
, i = 1, 2, . . . , n, (102)

and

ψj (x) =
∫ 1

−1

1√
1− x2

K(t, x)Tj (t)dt. (103)

The solution of the system in Eq. (101) gives the unknown coefficients βj , j =
1, 2, . . . , n, while the integral in (103) can be evaluated analytically or numerically
using a quadrature formula.

Jung and Rassias [53] solved the inhomogeneous Chebyshev’s differential
equation and employ this outcome for approximating analytic functions by the
Chebyshev functions. The Chebyshev’s differential equation has regular singular
points at −1, 1, and ∞, and it plays a great role in physics and engineering. In
particular, this equation is most important for handling the boundary value problems
exhibiting certain symmetries.

Obaiys et al. [54] used the classical Galerkin method for the numerical solution
of the characteristic hypersingular integral equation of the form

1

π
=
∫ 1

−1

g(t)

(t − x)2 dt = f (x), x ∈ (−1, 1), (104)

where g(t) ∈ C1,α[−1, 1]. The construction of the numerical solutions is obtained
by expanding both of the hypersingular kernel and the density function by using the
sum of Chebyshev polynomials. They reformulated the main problem in (104) as a
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set of linear algebraic system that solved by applying the Galerkin method. For the
characteristic HSIE in (104), the exactness of the approximate method is also given.

Chen and Jiang [55] proposed Taylor expansion method for solving a mixed
linear Volterra–Fredholm integral equation of the second kind of the form

λu(x) = f (x)+
∫ x

a

k1(x, y)u(y)dy+
∫ b

a

k2(x, y)u(y)dy, x ∈ [a, b], (105)

where λ ∈ R\ {0} is a known constant, R is the real number set, f, k1, k2 are known
continuous functions. They defined

(Lu)(x) = λu(x)−
∫ x

a

k1(x, y)u(y)dy −
∫ b

a

k2(x, y)u(y)dy. (106)

The unknown continuous function u is approximated by the square approximation

u(x) =
n∑
i=0

c∗i,n(x − a)i, (107)

where the set of unknown coefficients {c∗i,n}ni=1 satisfies

||f −
n∑
i=0

c∗i,nfi ||c = minci,n ||f −
n∑
i=0

ci,nfi ||c, (108)

and fi(x) = [Ly(y − a)i](x), i = 0, 1, 2, . . .. They declared that for any given
ε > 0, there exists a positive integer N such that for every fixed n > N , there exists
a polynomial

un(x) =
n∑
i=0

ci,n(x − a)i (109)

that satisfies

||u− un(x)||c ≤ ε

|λ| + 2M(b − a) . (110)

They have showed that the approximation in (109) is an ε-approximate solution of
Eq. (105) verifying

∣∣∣
∣∣∣L

n∑
i=0

c∗i,n(x − a)i − f
∣∣∣
∣∣∣
c
=
∣∣∣
∣∣∣
n∑
i=0

c∗i,nfi − f
∣∣∣
∣∣∣
c
≤ ε. (111)
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Obaiys et al. [56] developed automatic quadrature scheme (AQS) for the
numerical solutions of the first kind bounded hypersingular integral equation of the
form

1

π
=
∫ 1

−1

Q(t)

(t − x)2 dt +
∫ 1

−1
K(t, x)Q(t)dt = f (x), x ∈ (−1, 1), (112)

where f (x) is a given function, the unknown function Q satisfies the boundary
conditions Q(±1) = 0, and the kernel function K(t, x) satisfies a Hölder
continuous first-derivative condition.

The unknown function Q in (112) is approximated by using the finite sum of
Chebyshev polynomial of the second kind of the form

Qn(t) =
√
(1− t2)

n∑
i=0

CiUi(t), |t | < 1, (113)

where Ci, i = 0, 1, 2, · · · , n, are the unknown coefficients and Un(t) is the
Chebyshev polynomial of the second kind defined by Mason and Handscomb [47]

Un(t) = sin(n+ 1)θ

sin θ
, t = cos θ, 0 ≤ θ ≤ π.

The initial integral problem in (112) is successfully reduced to a linear finite
algebraic system of n + 1 equations with n + 1 unknown coefficients Ci of the
form

n∑
i=0

Ci[−(i + 1)Ui(xj )+ π
2
ρi(xj )] = f (xj ), (114)

where xj are the collocation points of the roots of the Chebyshev polynomial of the
first kind Tn+1(x) along the interval [−1, 1], which are

xj = cos

(
2j − 1

2(n+ 1)
π

)
, j = 0, 1, · · · , n. (115)

and ρj (x) is the linear system defined by

ρj (x) = 2

π

∫ 1

−1

√
1− t2K(t, x)Uj (t)dt. (116)

This method showed that the calculation of Ci endorses the evaluation of Qn(t) in
(113).

In [57], the author paid particular attention to the error estimate of the developed
AQS, where the HSIE problem of the form in Eq. (112) recapped into the following
operator form
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(H +K)Q(x) = f (x), (117)

where both HQ(x) and KQ(x) are defined as follows:

HQ(x) = 1

π
=
∫ 1

−1

√
1− t2Q(t)
(t − x)2 dt, (118)

and

KQ(x) =
∫ 1

−1

√
1− t2K(t, x)Q(t)dt. (119)

Moreover, the convergence problem ofQn(t) is solved by the proof of the following
theorem.

Theorem 3.1 If f (x) ∈ C1[−1, 1] and k(t, x) ∈ C1
(
[−1, 1] × [−1, 1]

)
, 1 ≥ 1,

then

||Q−Qn||
L2,
√

1−t2 = O(n−1).

where L2,w denotes the space of real valued functions square integrable with respect
to the weight function w = √

1− x2. The space of functions Q(x) defined on
[−1, 1] and square integrable with respect to the corresponding weight function w,
denoted by L2,w :

L2,w =
{
h(x)

∣∣∣
∫ 1

−1
w(x)|h(x)|2dx <∞

}
(120)

and the Chebyshev norm takes the form

‖ eN ‖c= max−1≤a≤t≤b≤1
|f (t)− PN(t)|. (121)

By using Jackson’s theorem [39], the convergence of the function f ∈ C1([−1, 1])
in the class of function Hα([−1, 1]) and L2([−1, 1]) takes the form

||Q−Qn||2 = C(n−1). (122)

where the error in (122) decreases very quickly and the convergence is very fast to
the exact solution even when x is close to the end points. In particular, if 1 in the
relation (122) can be chosen to be any large positive number, then the error decreases
rapidly as n increases. Then the sequence {Qn} converges uniformly in L2,w norm
to {Q}.

Dragomir [58] surveyed different classes of integral inequalities of Chebyshev
functional including in measurable spaces.
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Ioakimidis [59] suggested singular integral equations of crack problems under
parametric inequality constraints with the Fredholm kernels

K(t, x) = a
b
cot
πa(t − x)

b
− 1

π(t − x)
and

K(t, x) = a
b
[2cothπa(t − x)

b
− πa(t − x)

b
csch2πa(t − x)

b
] − 1

π(t − x) .

Boukov et al. [60] proposed a new technique for finding linear and nonlinear
hypersingular integral equations using classical integral inequalities. For nonlinear
equations the importance of the technique is in rather weak requirements for the
nonlinear operator conduct in the vicinity of the outcome.
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Exact Bounds on the Zeros of Solutions
of Second-Order Differential Inequalities

Iosif Pinelis

Abstract Exact upper bounds on the zeros of solutions of a certain class of second-
order differential inequalities are obtained.

Let a function x : [0,∞)→ R be a solution of the differential inequality

x′′(t)− 2a(t)x′(t)+ [a(t)2 + b(t, x(t))2] x(t) ≤ 0 (1)

for t ∈ [0,∞) satisfying initial conditions

x(0) = x0 and x′(0) = y0, (2)

where functions a ∈ C1(R) and b ∈ C(R2) are such that

b2∗ := inf
(t,u)∈R2

[a′(t)+ b(t, u)2] > 0; (3)

let then b∗ :=
√
b2∗. Consider the smallest positive root

t1 := inf{t ∈ (0,∞) : x(t) = 0} (4)

of the function x; here, one may recall the general convention inf ∅ := ∞.

Theorem 1 Suppose that x(t) > 0 for all t in a right neighborhood of 0; that is,
x0 ≥ 0, and x0 = 0 implies y0 > 0. Then
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t1 ≤ T1 :=
⎧⎨
⎩
π

b∗
− t∗ if ya,0 > 0,

t∗ if ya,0≤0,
(5)

where

ya,0 := y0 − a(0)x0 (6)

and

t∗ := 1

b∗
arcsin

b∗x0√
b2∗x2

0 + y2
a,0

.

Moreover, for each given quadruple of values (a(0), b∗, x0, y0), the upper bound T1
on t1 is exact: if inequality (1) is replaced by the corresponding equality and (3) is
replaced by the identity a′(t) + b(t, u)2 = b2∗ for all (t, u) ∈ R

2 (which obtains,
e.g., when a and b are constant), then t1 = T1.

One may note that, if ya,0 = 0, then π
b∗ − t∗ = t∗ = π

2b∗ .
Immediately from Theorem 1 we obtain the following.

Corollary 1 If in (1) we replace “≤0” by “= H(t, x(t)),” where a function
H ∈ C(R2) is such that uH(t, u) ≤ 0 for all (t, u) ∈ [0,∞) × R, then the
resulting solution x has infinitely many zeros on [0,∞) and the distance between
any consecutive nonnegative zeros of x is bounded from above by π/b∗.

Corollary 1 is illustrated in Fig. 1.

Fig. 1 Graph {(t, x(t)) : t ∈ [0, 8π ]} for the solution x of (1)–(2) with “≤0” in (1) replaced by
“= H(t, x(t))”, H(t, u) = − u2 e−k(t+u), a(t) = e−kt , b(t, u) = 1 + 7

10 e
−kt/2, k = 6

10 (so that
b∗ = 1), x0 = 1, y0 = 4
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Proof of Theorem 1 Introduce

r(t) := x(t) exp
{
−
∫ t

0
a(u) du

}
. (7)

Then inequality (1) and definitions (4) and (6) can be rewritten as

r ′′(t)+ [a′(t)+ b(t, x(t))2]r(t) ≤ 0, (8)

t1 = inf{t ∈ (0,∞) : r(t) = 0},

and

ya,0 = r ′(0), (9)

respectively. In particular, r > 0 on the interval (0, t1). Therefore, on (0, t1)we have
r ′′ ≤ −b2∗r < 0 and hence r is strictly concave.

So, if t1 = ∞, the condition that x(t) > 0 for all t in a right neighborhood
of 0 implies that r is increasing on [0,∞), and hence for all real t ≥ 1 we have
r ′′(t) ≤ −b2∗r(1) =: −c < 0 and r(t) ≤ r(1)+ r ′(1)(t − 1)− c(t − 1)2/2 →−∞
as t → ∞, which contradicts the condition that r is increasing on [0,∞). We
conclude here that t1 ∈ (0,∞) and hence r(t1) = 0.

Now consider separately the two cases mentioned in (5), depending on whether
ya,0 > 0.

Case 1: ya,0 > 0 That is, by (9), here r ′(0) > 0. Since r ′′ < 0 on (0, t1), we
have r ′(t1) < 0—because otherwise we would have r ′ > 0 on (0, t1) and hence
0 = r(t1) > r(0) ≥ 0, a contradiction. So, there exists a unique s ∈ (0, t1) such
that r ′(t) (strictly) decreases from r ′(0) > 0 to r ′(s) = 0 to r ′(t1) < 0 as t increases
from 0 to s to t1. So, r ′ > 0 on (0, s) and r ′ < 0 on (s, t1), which in turn implies
that r continuously increases on [0, s] from r(0) = r0 ∈ [0,∞) to

rmax := r(s) > r0 ≥ 0,

and r continuously decreases on [s, t1] from rmax > 0 to r(t1) = 0.
Consider now the functions ρ1 : I1 → K1 and ρ2 : I2 → K2 defined by the

formula ρj (t) := r(t) for t ∈ Ij , where I1 := [0, s], I2 := [s, t1], K1 := [r0, rmax],
and K2 := [0, rmax]; here and in the sequel, j = 1, 2. It follows that the
corresponding inverse functions ρ−1

j : Kj → Ij are well defined, and then one can

also introduce the functions pj by the formula pj (ρ) := r ′(ρ−1
j (ρ)) for ρ ∈ Kj , so

that for t ∈ Ij we have r ′(t) = pj (ρj (t)) = pj (r(t)) and hence, by the chain rule,

r ′′(t) = p′j (r(t))r ′(t) = p′j (r(t))pj (r(t)) = q ′j (r(t))/2
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for t ∈ Ij , where

qj (ρ) := pj (ρ)2. (10)

(
The functions pj and qj /2 may be interpreted as the momentum and kinetic energy,

respectively, of a particle of unit mass, with position r(t) at time t .
)

Thus, formulas
(8) and (3) imply

q ′j (ρ) ≤ −2b2∗ρ (11)

for ρ ∈ Kj . Integrating (11), we have

q1(ρ) ≤ q1(r0)− b2∗(ρ2 − r2
0 ) = y2

a,0 − b2∗(ρ2 − r2
0 ) (12)

for ρ ∈ K1 = [r0, rmax]; here, we used that q1(r0) = q1(r(0)) = p1(r(0))2 =
r ′(0)2 = y2

a,0. Since pj (rmax) = pj (ρj (s)) = r ′(s) = 0 and hence qj (rmax) = 0, it
follows from (12) (with ρ = rmax) that

rmax ≤ r∗ :=
√
r2

0 + y2
a,0/b

2∗. (13)

Another integration of (11) yields

− qj (ρ) = qj (rmax)− qj (ρ) ≤ −b2∗(r2
max − ρ2) (14)

for ρ ∈ Kj . We have qj (r(t)) = pj (r(t))2 = r ′(t)2 for t ∈ Ij . Also, r ′ ≥ 0 on
I1 = [0, s] and r ′ ≤ 0 on I2 = [s, t1]. So, (14) can be rewritten as

r ′ ≥ b∗
√
r2

max − r2 on I1 = [0, s] and r ′ ≤ −b∗
√
r2

max − r2 on I2 = [s, t1]
(15)

– or, equivalently, as

d

dt
arcsin

r(t)

rmax
≥ b∗ for t ∈ (0, s) and

d

dt
arcsin

r(t)

rmax
≤ −b∗ for t ∈ (s, t1).

Integrating these inequalities over the corresponding intervals and recalling that
r(s) = rmax and r(t1) = 0, we get

π

2
− arcsin

r0

rmax
≥ b∗s and − π

2
≤ −b∗(t1 − s).

Eliminating s from these two inequalities and recalling (13) (and the equality r0 =
x0), we finally get
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t1 ≤ π

b∗
− 1

b∗
arcsin

r0

rmax
≤ π

b∗
− 1

b∗
arcsin

b∗x0√
b2∗x2

0 + y2
a,0

= t∗

—in Case 1. Moreover, following the lines of the above reasoning, we see that if
inequality (1) is replaced by the corresponding equality and (3) is replaced by the
identity a′(t) + b(t, u)2 = b2∗ for all (t, u) ∈ R

2, then t1 = π
b∗ − t∗, which shows

that the upper bound t∗ on t1 is exact in Case 1.

Case 2: ya,0 ≤ 0 This case is only simpler than Case 1. Here r ′ < 0 on the entire
interval (0, t1). Accordingly, here we need to consider only one branch of the inverse
function, p := r−1, of the function r on [0, t1]. So, with q := p2, instead of (14)
here we have

y2
a,0 − r ′(t)2 = q(r0)− q(r(t)) ≤ −b2∗(r2

0 − r(t)2)

for t ∈ [0, t1]. So, in place of (15), here we have r ′ ≤ −b∗
√
r2∗ − r2 on [0, t1],

where r∗ is as in (13). Thus, we similarly get

t1 ≤ 1

b∗
arcsin

b∗x0√
b2∗x2

0 + y2
a,0

= t∗

—in Case 2. Moreover, following the lines of the above reasoning, we see that if
inequality (1) is replaced by the corresponding equality and (3) is replaced by the
identity a′(t)+ b(t, u)2 = b2∗ for all (t, u) ∈ R

2, then t1 = t∗, which shows that the
upper bound t∗ on t1 is exact in Case 2.

Theorem 1 is now completely proved. �
Theorem 1 is a generalization and refinement of a result in the recent paper by

Riely [3], devoted to sharp inequalities in harmonic analysis. More specifically, in
[3, Lemma 3.4] the differential inequality (1) is considered with a = 0 and constant
b > 0, with the resulting upper bound π

b
on t1. The method of proof in [3] (is

different from the one presented in this note and) apparently does not work in our
more general setting. Thus, Theorem 1 may lead to more general applications in
harmonic analysis.

Another potential wide field of applications of Theorem 1 is to various special
functions that are solutions of second-order differential equations; see, e.g., survey
[1] by Muldoon.

Studies of differential inequalities go back to at least as far as the seminal paper
[2] by Petrovitch. However, our method, based on the use of the mentioned “kinetic
energy” qj = p2

j /2, appears to differ from the one in [2].
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Variational Methods for Emerging
Real-Life and Environmental
Conservation Problems

Laura Scrimali and Antonino Maugeri

Abstract Variational methods and duality theory are tools of paramount impor-
tance in many areas of mathematics, and are fruitfully used in many different
applications. In this survey paper, we aim at discussing recent developments in
duality theory with the idea of unifying certain basic duality results in nonlinear
optimization, and showing main properties and powerful results.

1 Introduction

In this paper, we present some problems of paramount importance for the human
survival, such as the pollution emission problem, the Kyoto Protocol commitments,
and the Walrasian equilibrium problem, and provide several effective answers and
strategies to decision-makers, governments, managers, etc. We deal with these
problems using notable variational methods, which imply the transformation of
variational and quasi-variational inequalities, as well as infinite dimensional duality
theory. In addition, these tools allow us to find and interpret the dual variables, and
formulate the problems as general nonlinear systems.

It is worth mentioning that the above problems are considered in an infinite
dimensional setting in order to capture their evolutionary nature. If a static approach
is performed, then situations that naturally evolve over time are studied only in
a fixed moment of their evolution. On the contrary, the evolutionary framework
studies the evolution of systems over time, and provides curves of equilibria that
unveil important features of the models. For this reason, we explicitly take into
account the dependence on time of variables (see [1, 10, 25, 37, 38]) and choose as
our functional setting the space L2. This choice allows us to handle both smooth
and non-smooth functions, and prove the existence of solutions under minimal
assumptions.
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We note that problems discussed in our survey are represented not only by
a minimization problem of a convenient utility function, but also by generalized
complementarity conditions, which, roughly speaking, control when an equilibrium
threshold is overcome. Starting from the equilibrium conditions, by means of
duality theory, we are able to transform the problems into variational inequalities
on convex sets with side constraints. In this context, surprisingly, we find a new
complementarity law which connects the dual variables with the corresponding
constraints, so as to control when a constraint is active or not (see also [9, 14]).

We remark that in infinite dimensional spaces, the classical theorems that satisfy
strong duality and ensure existence of multipliers require that the interior of the
ordering cone be nonempty. From these theorems, in the finite dimensional case, the
well-known Slater conditions and KKT conditions can be derived. Unfortunately,
in most infinite dimensional cases where the functional space is L2 or a Sobolev
space, the ordering cone has empty interior. Therefore, the classical results cannot
be applied. We then adopt the approach as in [11] in which the so-called Assumption
S is used as a suitable constraint qualification, and results to be necessary and
sufficient to have strong duality. Once that Assumption S is verified, the existence
of Lagrange multipliers is guaranteed. It is worth noting that other results in the
literature provide the existence of the Lagrange multipliers and the nonnegativity of
the Fréchet derivative of the Lagrange functional (see, for instance, [28]). However,
these conditions, which are generally only sufficient, require a lot of regularity
assumptions on data involving directional derivatives. The use of the separation
condition Assumption S as a constraint qualification does not require regularity
assumptions.

The paper is organized as follows. In Sect. 2, we present some preliminary recent
results in infinite dimensional duality. In Sect. 3, we discuss the pollution emission
problem formulated as a bilevel problem, in which the government chooses the
optimal price of the pollution emission with consideration to firms’ response to
the price; on the other hand, firms choose the optimal quantities of production to
maximize their profits, given the price of pollution emission. Therefore, the govern-
ment’s problem is the upper-level problem and the firm’s problem is the lower-level
problem, see [34]. In Sect. 4, we examine the problem in which different countries,
aiming at reducing pollution emissions according to Kyoto Protocol commitments,
accept to coordinate both emissions and investment strategies in order to optimize
jointly their welfare, see [35]. In Sect. 5, we present the evolutionary Walrasian
price equilibrium problem with memory term, in which the excess demand function
depends on the current price and on previous events of the market, see [23]. For
each model, we provide an example to show the feasibility of the approach. Even
if they are low dimensional examples, they allow us to validate the theoretical
achievements.
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2 Preliminary Duality Results

In this section, we present some infinite dimensional Lagrange duality results
that have been recently achieved (see [4, 11–13, 20–22, 24, 26, 33]). For reader’s
convenience, we first recall some typical concepts in duality theory, see [28]. Let
X denote a real normed space and X∗ the topological dual of all continuous linear
functionals on X.

Definition 1 Let C be a nonempty subset of X and x a given element. The set

TC(x) : =
{
h ∈ X : h = lim

n→∞ λn(xn − x), λn ∈ R, λn > 0 ∀n ∈ N,

xn ∈ C ∀n ∈ N, lim
n→∞ xn = x

}

is called the contingent cone to C at x.

Of course, if TC(x) �= ∅, then x belongs to the closure of C, denoted by cl C. If
x ∈ cl C and C is convex, then (see [3])

TC(x) = cl cone(C − {x}),

where

cone(C) : = {λx : x ∈ C, λ ∈ R, λ ≥ 0}.

Finally, we recall the definition of convex-like function.

Definition 2 Let S be a nonempty subset of a linear real space X and let Y be a
linear real space partially ordered by the cone C. A function g : S → Y is called
convex-like if and only if the set g(S)+ C is convex.

We now present the statement of Theorem 3.2 in [33]. Let X be a real linear
topological space and S a nonempty subset of X; let (Y, ‖ · ‖) be a real normed
space partially ordered by a convex cone C. Let f : S → R and g : S → Y be
two functions such that the function (f, g) is convex-like with respect to the cone
R+ × C of R× Y . Let us consider the primal problem

min
x∈K f (x), (1)

where

K := {x ∈ S : g(x) ∈ −C},
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and the dual problem

max
u∈C∗ inf

x∈S{f (x)+ 〈u, g(x)〉}, (2)

where

C∗ := {u ∈ Y ∗ : 〈u, y〉 ≥ 0,∀y ∈ C}

is the dual cone of C.
It is said that Assumption S is fulfilled at a point x0 ∈ K if and only if it results:

TM̃(f (x0), 0Y )∩] −∞, 0[×{0Y } = ∅,

where

M̃ := {(f (x)− f (x0)+ α, g(x)+ y) : x ∈ S \K,α ≥ 0, y ∈ C}.

Then, in [33] the following theorem is proved.

Theorem 1 Let us assume that the function (f, g) : S → R × Y be convex-like.
Then, if problem (1) is solvable and Assumption S is fulfilled at the extremal solution
x0 ∈ S, also problem (2) is solvable, the extreme values of both problems are equal
and it results:

〈u, g(x0)〉 = 0,

where u is the extremal point of problem (2).

The following result entitles us to characterize a solution of problem (1) as a saddle
point of the Lagrange function, see [11].

Theorem 2 Let us assume that assumptions of Theorem 1 be satisfied. Then, x0 ∈ S
is a minimal solution to problem (1) if and only if there exist u ∈ C∗ such that (x0, u)

is a saddle point of the Lagrange function, namely

L (x0, u) ≤ L (x0, u) ≤ L (x, u),∀x ∈ S, u ∈ C∗,

and 〈u, g(x0)〉 = 0.

3 A New Approach to the Bilevel Pollution Emission Problem

In this section, we present the pollution emission price problem formulated as a
bilevel problem, see [34]. In particular, we suppose that the government chooses
the optimal price of the pollution emission with consideration to firms’ response
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to the price; on the other hand, firms choose the optimal quantities of production
to maximize their profits, given the price of pollution emission. Therefore, the
government’s problem represents the leader’s problem (or upper-level problem)
with the goal of maximizing the social welfare via taxation, and the firm’s problem
describes the follower’s problem (or lower-level problem).

Bilevel programming problems are hierarchical optimization problems, where
a subset of the variables of a decision-maker is constrained to be a solution
of an optimization problem of another decision-maker. The bilevel programming
problems have been extensively studied in [15–17] and the references cited there.
In [29], the authors give a comprehensive review for solving bilevel problems in
finite-dimensional spaces. Other valuable contributions are given in [18, 19, 42, 44].

Bilevel programming problems in finite-dimensional spaces are often reformu-
lated using Karush–Kuhn–Tucker conditions for the lower-level problem, under a
Slater constraint qualification, obtaining a mathematical program with equilibrium
constraints; see [36]. However, in infinite dimensional problems, it is necessary to
apply a different approach. In [46], the author considers, like in our case, a bilevel
problem in an infinite dimensional setting, and reformulates the bilevel problem as
a single level optimal control problem, by using first order optimality conditions
for the lower-level problem as additional constraints for the upper-level problem.
In virtue of the functional constraints, the bilevel dynamic problem is written as an
infinite dimensional optimization problem and the first order optimality conditions,
involving Lagrange multipliers, are obtained using a constraint qualification of
calmness type [45, 47, 48]. The functional setting is the space of continuous
mapping and the Lagrange multipliers result to be Radon measures.

We now present an evolutionary model in the time interval [0, t̄], with t̄ > 0. We
consider a model in whichm firms are involved in the production of a homogeneous
product. We denote a typical firm by i.

In order to describe our model, we introduce the following notations:

• qi(t) is the production output of firm i at time t ∈ [0, t̄];
• qi(t) is the feasible maximum production of firm i at time t ∈ [0, t̄];
• pi(t) is the price per unit product manufactured by firm i at time t ∈ [0, t̄];
• ci(t) is the production cost of firm i at time t ∈ [0, t̄];
• hi(t) is the quantity of pollution emitted by firm i at time t ∈ [0, t̄];
• π(t) is the price per unit product of the pollution emission imposed by the

government to firm i at time t ∈ [0, t̄];
• π(t) is the feasible maximum price of the pollution emission imposed by the

government to firm i at time t ∈ [0, t̄].
We consider the situation in which the production cost of firm i may depend upon

the production of firm i, that is ci(t) = ci(qi(t)). However, it would also be possible
to study a more general formulation in which ci(t) = ci(q1(t), . . . , qm(t)).

Moreover, we denote by κ(t) = ∑m
i=1 hi(qi(t)) ∈ L2([0, t̄]), κ(t) ≥ 0 a.e. in

[0, t̄], the total quantity of pollution emitted by firms, where qi(t) is the response

to the price π(t) at time t . We denote by C(t) = C
(∑m

i=1 hi(qi(t))
)

the cost of
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abating pollution at time t ∈ [0, t̄]. We also assume that C is an increasing function
and that abating pollution exhibits an economy of scale. Finally, we assume that
all the price and cost functions are Carathéodory and continuously differentiable
operators, and belong to the functional space.

We now describe the behavior of the firms and the government. We then
reformulate the lower-level problem into the equilibrium conditions and the bilevel
problem into a one level problem.

3.1 The Firm’s Problem

Firm i, i = 1, . . . , m, chooses the quantity of production qi(t), given the price of
pollution emission π(t) imposed by the government, to maximize the profit.

The total costs incurred by a firm i are given by the firm’s production cost and
the price of the pollution emission charged by the government times the quantity of
pollution emitted. The revenue is generated by the selling of the products. The i-th
firm’s profit function is:

fi(π, qi) = pi(t)qi(t)− π(t)hi(qi(t))− ci(qi(t)).

The maximization problem of firm i, for i = 1, . . . , m, can be expressed as
follows:

max
qi∈Ki

∫ t̄

0
fi(π, qi)dt = − min

qi∈Ki

∫ t̄

0

(
− fi(π, qi)

)
dt, (3)

where

Ki =
{
qi ∈ L2([0, t̄]) : 0 ≤ qi(t) ≤ qi(t), a.e. in [0, t̄]

}
.

We note that in the following we will adopt the minimization formulation of (3):
this will be useful for applying the variational inequality approach.

Definition 3 A vector q∗i ∈ Ki , for i = 1, . . . , m, is an equilibrium production of
the pollution emission price problem of firm i, if and only if it satisfies the following
conditions:

−∂fi(π, q
∗
i )

∂qi
+ μi(t) ≥ 0, a.e in [0, t̄], i = 1, . . . , m,

(
− ∂fi(π, q

∗
i )

∂qi
+ μi(t)

)
q∗i (t) = 0, a.e in [0, t̄], i = 1, . . . , m,

μi(t) ≥ 0, μi(t)(q
∗
i (t)− qi(t)) = 0, a.e in [0, t̄], i = 1, . . . , m,

where μi ∈ L2([0, t̄]) is the Lagrange function.
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The meaning of this definition is the following: to each firm i, we associate
the function μi(t), related to the production qi(t), that represents the disutility or
shadow price associated with a unitary extra production. The equilibrium conditions
state that if there is positive production, then the marginal profit of firm i must be
equal to disutility μi(t); if the disutility exceeds the marginal profit of the firm, then
it will be unfeasible for the firm to produce.

The function μi(t) is the Lagrange multiplier associated with the upper bound
on the product shipment that is unknown a priori. However, this does not affect the
results, since the above conditions are equivalent to a variational inequality where
μi(t) does not appear.

3.2 The Government’s Problem

The government chooses the price of pollution imposed to firms to maximize the
profit. The total cost incurred by the government is equal to the cost of abating
pollution. The revenue is equal to the social profits, given by

m∑
i=1

(
pi(t)qi(t)− ci(qi(t))

)
,

plus the total price of the pollution emission times the quantity of pollution emitted
by all firms. We observe that the social profit has the meaning that the government
encourages manufacturing production and progress for our better living.

Thus, the government’s profit function is:

F(π, κ(q)) =
m∑
i=1

(
pi(t)qi(t)− ci(qi(t))

)
+ π(t)

m∑
i=1

hi(qi(t))

−C
( m∑
i=1

hi(qi(t))
)
.

The government is also a profit-maximizer; then the optimization problem is:

max
π∈P

∫ t̄

0
F(π, κ(q))dt, (4)

where

P =
{
π ∈ L2([0, t̄]) : 0 ≤ π(t) ≤ π(t), a.e. in [0, t̄]

}
.
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Now we can give the bilevel programming model as follows:

max
π∈P

∫ t̄

0
F(π, κ(q))dt

=max
π∈P

∫ t̄

0

( m∑
i=1

(
pi(t)qi(t)−ci(qi(t))

)
+π(t)

m∑
i=1

hi(qi(t))−C
( m∑
i=1

hi(qi(t))
))
dt,

where qi solves the following problem

max
qi∈Ki

∫ t̄

0
fi(π, qi)dt

= max
qi∈Ki

∫ t̄

0

( n∑
j=1

pi(t)qi(t)− π(t)hi(qi(t))− ci(qi(t))
)
dt,

i = 1, . . . , m.

The government’s problem represents the upper-level problem, whereas the firm’s
problem defines the lower-level problem. We assume that for each parameter value
π , the lower-level problem is a concave problem in the variables qi ∈ Ki . If
the functions fi(π, qi) and F(π, κ(q)) are strongly concave or strictly concave
with respect to qi and κ(q), respectively (in the convex set Ki and L2([0, t̄]),
respectively), then for each π the lower-level problem has a unique solution and
the bilevel problem is well-defined. Without these conditions in general the solution
map is a set-valued map, which makes the objective function of the upper-level
problem also a set-valued one.

3.3 The Equilibrium Condition Reformulation

By applying the duality framework to the lower-level problem expressed as a
minimization problem, it is possible to reformulate the lower-level problem into
the equilibrium conditions and then the bilevel problem into a one level problem;
see [34].

Theorem 3 Let us assume that fi(π, qi) is strictly concave and differentiable with
respect to qi , for i = 1, . . . , m. Then a vector q∗i ∈ Ki is an optimal solution of the
lower-level problem (3) if and only if it is a solution to the following evolutionary
parametric variational inequality

∫ t̄

0

(
− ∂fi(π, q

∗
i )

∂qi

)
(qi(t)− q∗i (t))dt

=
∫ t̄

0

(
− pi(t)+ ∂ci(q

∗
i )

∂qi
+ π(t)∂hi(q

∗
i )

∂qi

)
(qi(t)− q∗i (t))dt ≥ 0,

∀qi ∈ Ki. (5)
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Now, we set, for i = 1, . . . , m:

Ψi(π, qi) =∫ t̄

0

(
− pi(t)+ ∂ci(q

∗
i )

∂qi
+ π(t)∂hi(q

∗
i )

∂qi

)
(qi(t)− q∗i (t))dt,

and observe that variational inequality (5) is equivalent to the minimization problem

min
qi∈Ki

Ψi(π, qi) = Ψi(π, q∗i ) = 0. (6)

For i = 1, . . . , m, we consider the Lagrange function associated with optimiza-
tion problem (6)

Li (π, qi, λi, μi) = Ψi(π, qi)−
∫ t̄

0
λi(t)qi(t)dt +

∫ t̄

0
μi(t)(qi(t)− qi(t))dt,

∀qi ∈ L2([0, t̄]), λi, μi ∈ L2([0, t̄])+, where

L2([0, t̄])+ := {f ∈ L2([0, t̄)] : f (t) ≥ 0 a.e in [0, t]}.

We now give two preliminary outcomes.

Lemma 1 Let q∗i ∈ Ki , for i = 1, . . . , m, be a solution to variational inequality
(5) and let us introduce the following sets:

I− :=
{
t ∈ [0, t̄] : q∗i (t) = 0,

}
,

I0 :=
{
t ∈ [0, t̄] : 0 < q∗i (t) < qi(t)

}
,

I+ :=
{
t ∈ [0, t̄] : q∗i (t) = qi(t)

}
.

Then, it results that

∂fi(π, q
∗
i )

∂qi
≤ 0, a.e. in I−, (7)

∂fi(π, q
∗
i )

∂qi
= 0, a.e. in I0, (8)

∂fi(π, q
∗
i )

∂qi
≥ 0, a.e. in I+. (9)
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In order to apply Theorem 3.2 in [33], we set:

X = Y = S = L2([0, t̄],Rn);
C = C∗ = {w ∈ L2([0, t̄],Rn) : w(t) ≥ 0 a.e. in [0, t̄]};
g(qi) = (g1(qi), g2(qi)) = (−qi(t), qi(t)− qi(t)).

Theorem 4 Problem (6) verifies Assumption S at the minimal point q∗i , for i =
1, . . . , m.

The following theorem ensures the equivalence of the variational inequality and
the equilibrium conditions.

Theorem 5 q∗i is a solution to variational inequality (5) if and only if for i =
1, . . . , m ∃λ∗i , μ∗i ∈ L2([0, t̄]) = L such that a.e. in [0, t̄]

(i) λ∗i (t), μ∗i (t) ≥ 0, a.e. in [0, t̄],
(ii) λ∗i (t)q∗i (t) = 0, a.e. in [0, t̄], μ∗i (t)(q∗i (t)− qi(t)) = 0, a.e. in [0, t̄],

(iii) −∂fi(π, q
∗
i )

∂qi
− λ∗i (t)+ μ∗i (t) = 0, a.e. in [0, t̄].

Now, the bilevel problem can be reformulated into a one-level problem, replacing
the lower-level problem with the equilibrium conditions.

Definition 4 The equilibrium condition formulation of the bilevel problem is as
follows:

max
(π,q,λ,μ)∈P×K×L×L

∫ t̄

0
F(π, κ(q))dt

s.t.

−∂fi(π, qi)
∂qi

− λi(t)+ μi(t) = 0, a.e in [0, t̄], i = 1, . . . , m,

λi(t)qi(t) = 0, μi(t)(qi(t)− qi(t)) = 0, a.e in [0, t̄], i = 1, . . . , m,

λi(t) ≥ 0, μi(t) ≥ 0, a.e in [0, t̄], i = 1, . . . , m. (10)

Taking into account (i) and (ii) in Theorem 5, the bilevel problem can be also
formulated as follows:

max
(π,q,μ)∈P×K×L

∫ t̄

0
F(π, κ(q))dt

s.t.

−∂fi(π, qi)
∂qi

+ μi(t) ≥ 0, a.e in [0, t̄], i = 1, . . . , m,
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(
− ∂fi(π, qi)

∂qi
+ μi(t)

)
qi(t) = 0, a.e in [0, t̄], i = 1, . . . , m,

μi(t) ≥ 0, μi(t)(qi(t)− qi(t)) = 0, a.e in [0, t̄], i = 1, . . . , m. (11)

Theorem 6 Let q∗i be a solution to (3) for i = 1, . . . , m, then there exist π∗ ∈
L2([0, t̄]) and μ∗ = (μ∗i )i ∈ L+ such that a.e. in [0, t̄] (π∗, q∗, μ∗) is an optimal
solution to problem (11). Conversely, assume that (π∗, q∗, μ∗) be an optimal
solution to problem (11), then q∗i is an optimal solution to (3) for i = 1, . . . , m.

We note that the constraint set of problem 11 is not convex, due to the presence of

the nonlinear constraint
(
− ∂fi (π,qi )

∂qi
+μi(t)

)
qi(t) = 0. A possible way to overcome

this problem could be to consider a sequence of convex approximating constraints
and apply a regularization procedure. Thus, one should be able to construct an
approximate solution and deduce the final solution. We also note that, by Theorem 3,
the solution of the lower-level problem can be computed by solving an evolutionary
variational inequality; see [8, 10].

3.4 Numerical Results

We now present a small example to show the feasibility of the model, see [34]. We
note that the setting is not restrictive since the real situation can be viewed as an
iteration of this case. The time horizon is the interval [0, 1]. There are assumed to
be two firms producing the quantities qi(t), i = 1, 2, respectively, of a homogeneous
product and emitting the same pollution. The prices of the per unit production
are p1(t) and p2(t), respectively. The charge of the per unit pollution emission is
denoted by π(t). Firms’ productions conditions are as follows:

p1(t) = 10+ 1
4 t; p2(t) = 8− 1

2 t;
h1(q1) = 2q2

1 (t); h2(q2) = 4q2(t);
c1(q1) = 3q1(t); c2(q2) = q2

2 (t);
q1(t) = 10+ t; q2(t) = 10+ 1

2 t;
π(t) = 8.

The total quantity of pollution is κ(q) = 2q2
1 (t)+ 4q2(t) and the abatement cost

is C(κ) = 1000− 4q2
1 (t)− 8q2(t).

The sets of feasible product shipments are given by:

K1 =
{
q1 ∈ L2([0, 1]) : 0 ≤ q1(t) ≤ q1(t), a.e. in [0, 1]

}
,

K2 =
{
q2 ∈ L2([0, 1]) : 0 ≤ q2(t) ≤ q2(t), a.e. in [0, 1]

}
.
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Concerning the government’s problem, the set of feasible prices is given by:

P =
{
π ∈ L2([0, 1]) : 0 ≤ π(t) ≤ π(t), a.e. in [0, 1]

}
.

Firms’ profit functions are as follows:

f1(π, q1)=p1(t)q1(t)−π(t)g1(q1)−c1(q1)=
(

10+1

4
t
)
q1(t)−2π(t)q2

1 (t)−3q1(t);

f2(π, q2)=p2(t)q2(t)−π(t)g2(q2)−c2(q2)=
(

8−1

2
t
)
q2(t)−4π(t)q2(t)−q2

2 (t).

Government’s profit function is given by:

F(π, κ(q))=p1(t)q1(t)−c1(q1)+p2(t)q2(t)−c2(q2)+π(t)
(
g1(q1)+g2(q2)

)
−C(q)

= (2p + 4)q2
1 (t)+

(
7− 1

4
t
)
q1(t)− q2

2 (t)+
(

16+ 1

2
t + 4p

)
q2(t)− 1000.

Hence, the bilevel model is

max
π∈P

∫ 1

0
F(π, κ(q))dt,

where qi(t), i = 1, 2 solves the following problem

max
qi∈Ki

∫ 1

0
fi(pi, qi)dt.

According to (10), the above problem can be formulated as follows:

max
(π,q,λ,μ)∈P×K×L×L

∫ 1

0

(
(2p + 4)q2

1 (t)+
(

7− 1

4
t
)
q1(t)− q2

2 (t)

+
(

16+ 1

2
t + 4p

)
q2(t)− 1000

)
dt

−
(

7+ 1

4
t − 8π(t)q1(t)

)
− λ1(t)+ μ1(t) = 0, a.e in [0, 1], (12)

−
(

8− 1

2
t − 4π(t)− 2q2(t)

)
− λ2(t)+ μ2(t) = 0, a.e in [0, 1], (13)

λ1(t)q1(t) = 0, λ2(t)q2(t) = 0, a.e in [0, 1], (14)

μ1(t)(q1(t)− q1(t)) = 0, μ2(t)(q2(t)− q2(t)) = 0, a.e in [0, 1], (15)

λ(t), μ(t) ≥ 0, a.e in [0, 1], . (16)
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We note that complementarity conditions (14) and (15) make the feasible
set of the above maximization problem nonconvex. Thus, we study all possible
combinations of active and non-active multipliers λi(t), μi(t), i = 1, 2. There are
fifteen possible cases, but only three feasible cases result in positive profits. They
are described in the following.

Case 1. If λ1(t) = λ2(t) = 0, μ1(t) �= 0, μ2(t) �= 0, from (15) it follows that
q∗1 (t) = q1(t) and q∗2 (t) = q2(t). We find:

F(π, κ(q∗)) = F(π) =
(

240+42 t+2 t2
)
p−470+ 165

2
t+ 15

4
t2, a.e in [0, 1];

hence,

max
π∈P F (π) = F(π) = 1450+ 837

2
t + 79

4
t2, a.e in [0, 1].

Finally,

∫ 1

0
F(π)dt = 9995

6
.

Case 2. If λ1(t) = 0, λ2(t) �= 0, μ1(t) �= 0, μ2(t) = 0, from (14), (15) it follows
that q∗1 (t) = q1(t) and q∗2 (t) = 0. We find:

F(π, κ(q∗)) = F(π)
=
(

200+ 40 t + 2 t2
)
p − 530+ 179

2
t + 17

4
t2, a.e in [0, 1];

hence,

max
π∈P F (π) = F(π) = 1070+ 819

2
t + 81

4
t2, a.e in [0, 1].

Finally,

∫ 1

0
F(π)dt = 2563

2
.

Case 3. If λ1(t) = λ2(t) = 0, μ1(t) �= 0, μ2(t) = 0, from (15) it follows that
q∗1 (t) = q1(t) and q∗2 (t) = 16−t−8p

4 . We find:

F(π, κ(q)) = F(π)
= −12p2 +

(
39 t + 200+ 2 t2

)
p − 482+ 171

2
t + 69

16
t2, a.e in [0, 1];
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hence

max
π∈P F (π) = F(π) = 350+ 795

2
t + 325

16
t2, a.e in [0, 1].

Finally

∫ 1

0
F(π)dt = 26665

48
.

Then the optimal profit is given by

max
(9995

6
,

2563

2
,

26665

48

)
= 9995

6
,

that corresponds to the optimal values along the time interval

q∗1 =
21

2
, q∗2 =

41

4
t, π∗ = 8.

We note that the used procedure allows us to overcome the difficulty due to the
nonconvexity of the feasible set; hence, it could suggest an alternative method with
respect to the method of convex approximations to solve the initial problem.

4 A Cooperative Approach to Kyoto Protocol Commitments

In this section, we present an evolutionary variational inequality approach to the
study of cooperative games in pollution control problems as in [35]. In particular, we
study the investment strategies for reducing greenhouse gas emissions, as requested
by Kyoto Protocol; see [41]. The Kyoto Protocol prescribes that “Annex I Parties,” a
list of industrialized countries, must reduce their greenhouse gas emissions below a
fixed level. Its first commitment period started in 2008 and ended in 2012. Now, new
commitments for Annex I Parties are requested for the period from 1 January 2013
to 31 December 2020. Under the Treaty, countries have disposal of three market-
based mechanisms: the Emissions Trading, the Clean Development mechanism, and
the Joint Implementation (JI), which is the focus of this model. The JI mechanism
allows countries with high abatement costs to reach their targets by investing in
countries where the abatement costs are lower. The investor country gets a credit,
referred to as emission reduction units (ERUs), for carrying out environmental
projects in foreign countries.

We examine the situation in which different countries, aiming at reducing
pollution emissions, agree to play a cooperative game, namely, they accept to
coordinate both emissions and investment strategies in order to optimize jointly
their welfare. The optimal welfare is obtained considering the global maximization
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of the profit. In order to keep simple the economics of the pollution model, we
assume that investments in environmental projects are operated by companies that
are then aggregated together and represented by the country to which they belong.
For this reason, the country welfare can be assimilated to the total companies’
profit. The most general case, in which each country may reduce emissions in a
noncooperative manner by investing in both local and foreign projects, is discussed
in [40]. Environmental models have been extensively studied in [5–7] and the
references cited there. In [2, 27] the authors give a comprehensive review of
optimization models in pollution control and other contributions are given in [30].

We now present the cooperative evolutionary pollution control problem and give
the equilibrium conditions governing the model (see also [38–40]). We study the
system in the finite time horizon [0, t], with t > 0. LetN be the number of countries
involved in the Treaty that accept to coordinate their emissions and investment
strategies to jointly optimize their welfare, and agree on a rule for sharing the total
cooperative reward.

Let ei(t) denote the gross emissions resulting from the industrial production of
country i ∈ I at time t ∈ [0, t]. We assume that the emissions of each country are
proportional to the industrial output. Thus, we define the revenue Ri of country i as
the function

Ri : [0, t] × R+ → R+.

Let I ij (t) be the investment in an environmental project held by country i in country

j = 1, . . . , N at time t ∈ [0, t]. We note that whenever j = i variable I ii (t) denotes
the investment of country i in its own country. We further group the total gross
emissions in the column vector e(t) = (e1(t), . . . , eN(t))T . In the JI mechanism, the
benefits of the investment lie in the acquisition of emission reduction units (ERUs),
which are assumed to be proportional to the investment, namely, the emission
reduction units for country i, denoted by ERUsi , are given by ERUsi = γij (t)I ij (t).
Here, γij (t) is a positive technological efficiency parameter depending on both the
investor i and the host country j , because in general there is a dependence on both
the investor’s technologies and laws, and the situation in the host country. The net
emissions in country i, namely, the difference between the gross emissions and the
reduction resulting from local and foreign investments in the same country, is given
by

ei(t)−
N∑
j=1

γji(t)I
j
i (t) ≥ 0. (17)

Let Ei(t) > 0 denote a prescribed level of net emissions for each country i,
namely, for i = 1, . . . , N it results

ei(t)−
N∑
j=1

γji(t)I
j
i (t) ≤ Ei(t). (18)
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Now, we assume that countries jointly optimize their welfare under the following
collective environmental constraint

N∑
i=1

(
ei(t)−

N∑
j=1

γji(t)I
j
i (t)

)
≤

N∑
i=1

Ei(t). (19)

Constraint (19) imposes a total emission cap on the whole market that is given
by the sum of country cap Ei . The above constraint describes an instantaneous
relationship, in the sense that a tolerable level of emissions is requested at time t
and the constraint must be satisfied at the same time. Clearly, a delayed reaction,
namely, requested at time t and verified at time t + δ(t), where δ(t) is a nonnegative
delay factor, would be more realistic and will be investigated in the future.

We observe that constraints (18) and (19) have redundant variables, thus we

simplify the model denoting by
N∑
j=1

I
j
i (t) = Ii(t) the total investment held by all

the countries in country i, and setting
∑N
j=1 γji(t) = γi(t). We further group the

total investments in all the countries in the vector I (t) = (I1(t), . . . , IN (t))T .
We introduce the investment cost Ci of country i as the function

Ci : [0, t] × R+ → R+,

and the damage from pollution as the function Di , where

Di : [0, t] × R
N × R

N → R+.

We choose as our functional setting the Hilbert space L2([0, t],R2N) of square-
integrable functions defined in the closed interval [0, t], endowed with the scalar

product 〈·, ·〉L2 = ∫ t0 〈·, ·〉dt and the usual associated norm ‖ · ‖L2 .
Thus, the set of pairs of feasible emissions and investments is given by:

K =
{
(e, I ) ∈ L2([0, t],R2N) : ei(t) ≥ 0, Ii(t) ≥ 0, i = 1, . . . , N, a.e. in [0, t];
ei(t)− γi(t)Ii(t) ≥ 0, i = 1, . . . , N, a.e. in [0, t];
N∑
i=1

(
ei(t)− γi(t)Ii(t)− Ei(t)

)
≤ 0 a.e. in [0, t]

}
. (20)

We observe that, in the cooperative game, the investment decisions are given
by the total investment

∑N
j=1 I

j
i (t) = Ii(t). Therefore, even if players are jointly

implementing environmental projects, joint implementation only takes into account
the total investment in country i, that is Ii(t). Thus, cost Ci depends on Ii . If, for
instance, we consider a quadratic cost function for country i, it has the form
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1

2
a
(
I 1
i (t)+ · · · + INi (t)

)2 = 1

2
a
( N∑
j=1

I
j
i (t)

)2 = 1

2
a(Ii(t))

2, a > 0.

We also assume that pollution in one country can affect also other countries;
hence, damages from pollution of each country, represented by Di , depend on the
net emissions as well as the total investments in all the countries.

Our assumptions are that the functions Ri(·, ·), Ci(·, ·) and Di(·, ·, ·) are
measurable in the first variable and continuous in the others.

Moreover, we assume that ∂Ri(t,e
i )

∂ei
, ∂Ci(t,Ii )

∂Ii
, ∂Di(t,e,I )

∂ei
and ∂Di(t,e,I )

∂Ii
do exist and

be measurable in t and continuous in the other variables. In addition, we require the
following conditions:

∃δi1 ∈ L2([0, t]) :
∣∣∣∂Ri(t, ei)

∂ei

∣∣∣ ≤ δi1(t)+ |ei |, (21)

∃δi2 ∈ L2([0, t]) :
∣∣∣∂Ci(t, Ii)

∂Ii

∣∣∣ ≤ δi2(t)+ |Ii |, (22)

∃δi3 ∈ L2([0, t]) :
∣∣∣∂Di(t, e, I )

∂ei

∣∣∣ ≤ δi3(t)+ |e|, (23)

∃δi4 ∈ L2([0, t]) :
∣∣∣∂Di(t, e, I )

∂Ii

∣∣∣ ≤ δi4(t)+ |I |. (24)

The goal of countries consists in maximizing the sum of their welfare functions,
subject to the collective environmental constraint. Therefore, the global optimiza-
tion problem in which countries form a coalition and act as a single country is given
by

max
(e,I )∈K

∫ t

0
W(t, e, I )dt, (25)

where

W(t, e, I ) =
N∑
i=1

Wi(t, e, I ),

Wi(t, e, I ) = Ri(t, ei)− Ci(t, Ii)−Di(t, e, I ).

We note that conditions (21)–(24) ensure that
∫ t

0 W(t, e, I )dt is well-defined.
Finally, we require that functionW is concave.

We also remark that it is not possible to study problem (25) considering, instead
of the maximum of the integral, the integral of the maximum for each t , because the
maximum of the functionW in the interval [0, t] could not be an integrable function.
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4.1 Equilibrium Conditions

We now state the equilibrium conditions governing the model, using complemen-
tarity conditions.

Definition 5 A vector of emissions and investments (e∗, I ∗) ∈ K is an equilibrium
of the cooperative evolutionary pollution control problem if and only if, for each
i = 1, . . . , N , and a.e. in [0, t], it satisfies the system of inequalities

− ∂W(t, e
∗, I ∗)

∂ei
+ ν(t)− τi(t) ≥ 0, (26)

−∂W(t, e
∗, I ∗)

∂Ii
− γiν(t)+ γiτi(t) ≥ 0, (27)

and equalities

(
− ∂W(t, e

∗, I ∗)
∂ei

+ ν(t)− τi(t)
)
e∗i (t) = 0, (28)

(
− ∂W(t, e

∗, I ∗)
∂Ii

− γiν(t)+ γiτi(t)
)
I ∗i (t) = 0, (29)

simultaneously, where ν ∈ L2([0, t])+ is the dual variable related to the collective
environmental constraint and τi ∈ L2([0, t])+, i = 1, . . . , N , is the dual variable
related to nonnegativity of net emissions. As usual, L2([0, t])+ denotes the positive
cone of L2([0, t]).

The dual variable ν can be viewed as the marginal abatement cost of all the
countries. We can also refer to the Emission Trading System that puts a limit on
overall emissions from covered installations which is reduced each year. Within
this limit, companies or countries can buy and sell emission allowances as needed.
This cap-and-trade approach gives companies the flexibility they need to cut their
emissions in the most cost-effective way. Under this perspective, the dual variable
ν can be interpreted as the price of emission allowances that are exchanged in
order to cover the emissions. In addition, countries can buy credits from certain
types of approved emission-saving projects around the world, namely, using the JI
mechanism. On the other hand, τi can be viewed as the marginal abatement revenue
of country i. It is equal to zero if the net emissions are positive; whereas if it is
positive, then the net emissions are minimal and equal to zero.

As a consequence, conditions (26) and (28) have the following interpretation.
If the total marginal welfare in case country i of the coalition emits pollution

equals the difference between the marginal abatement cost of all the countries and
the marginal abatement revenue of country i, namely,
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∂W(t, e∗, I ∗)
∂ei

= ν(t)− τi(t),

then by (28) we find that e∗i (t) ≥ 0. This means that it is possible for the coalition
of countries to emit in country i. The total marginal welfare of emitting ∂W(t,e∗,I∗)

∂ei

represents the welfare or the advantage for the coalition with respect to the pollution
emitted by country i. The difference ν(t)−τi(t) can be regarded as the total pollution
threshold under JI. Therefore, the coalition of countries can emit in country i if the
pollution threshold is reached.

If the marginal welfare in case country i of the coalition emits pollution is less
than the difference between the marginal abatement cost of all the countries and the
marginal abatement revenue of country i, namely,

∂W(t, e∗, I ∗)
∂ei

< ν(t)− τi(t),

then by (28) we find that e∗i (t) = 0. This means that it will not be convenient for
the coalition to emit.

An analogous interpretation can be given for conditions (27) and (29).
If the total marginal welfare of investing in country i of the coalition equals the

difference between the marginal abatement revenue of country i and the marginal
abatement cost, also taking into account the technology of the country, namely,

∂W(t, e∗, I ∗)
∂Ii

= γiτi(t)− γiν(t),

then by (29) we find I ∗i (t) ≥ 0, and the coalition of countries is willing to

invest in environmental projects. The total marginal welfare of investing ∂W(t,e∗,I∗)
∂Ii

represents the welfare or the advantage for the coalition with respect to the
investments in environmental projects in country i. The difference τi(t) − ν(t)
represents the effectiveness of investments under JI and measures the benefits
coming from investments. Therefore, the coalition of countries will invest in country
i if the effectiveness level is reached.

If the total marginal welfare of investing in country i of the coalition is less
than the difference between the marginal abatement revenue of country i and the
marginal abatement cost, also taking into account the technology of the country,
namely,

∂W(t, e∗, I ∗)
∂Ii

< γiτi(t)− γiν(t),

then by (29) we find I ∗i (t) = 0, and it will not be convenient for the coalition of
countries to invest.

The equilibrium of the cooperative evolutionary pollution control problem can
be characterized as a solution to an evolutionary variational inequality.
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Theorem 7 (e∗, I ∗) ∈ K is an equilibrium of the cooperative evolutionary pollu-
tion control problem if and only if it satisfies the following variational inequality:

N∑
i=1

∫ t

0

(
− ∂W(t, e

∗, I ∗)
∂ei

(ei(t)−e∗i (t))−∂W(t, e
∗, I ∗)

∂Ii
(Ii(t)−I ∗i (t))

)
dt ≥ 0,

∀(e, I ) ∈ K. (30)

Proof The proof uses arguments as in Section 4.1.2 in [8]. ��
Now, we set:

Ψ (e, I ) =
N∑
i=1

∫ t

0
−∂W(t, e

∗, I ∗)
∂ei

(ei(t)− e∗i (t))dt

+
N∑
i=1

∫ t

0
−∂W(t, e

∗, I ∗)
∂Ii

(Ii(t)− I ∗i (t)dt,

and observe that variational inequality (30) is equivalent to the minimization
problem

min
(e,I )∈K Ψ (e, I ) = Ψ (e

∗, I ∗) = 0. (31)

We now apply the duality framework to our problem and prove that Assumption
S is verified. We first recall two preliminary results.

Lemma 2 Let (e∗, I ∗) ∈ K be a solution to variational inequality (30) and
introduce the following sets for i = 1, . . . , N

V i1 =
{
t ∈ [0, t] : e∗i (t) = 0

}
,

V i2 =
{
t ∈ [0, t] : 0 < γi(t)I

∗
i (t) < e

∗i (t)
}
,

V i3 =
{
t ∈ [0, t] : 0 < e∗i (t) = γi(t)I ∗i (t)

}
.

Then, for i = 1, . . . , N , it results that

−∂W(t, e
∗, I ∗)

∂ei
≥ 0 and − ∂W(t, e

∗, I ∗)
∂Ii

= 0 a.e. in V i1 ,

−∂W(t, e
∗, I ∗)

∂ei
= 0 and − ∂W(t, e

∗, I ∗)
∂Ii

= 0 a.e. in V i2 ,

−∂W(t, e
∗, I ∗)

∂ei
γi(t)− ∂W(t, e

∗, I ∗)
∂Ii

= 0 a.e. in V i3 ,
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−∂W(t, e
∗, I ∗)

∂ei
≤ 0 a.e. in V i3 .

Theorem 8 Problem (31) verifies Assumption S at the minimal point (e∗, I ∗).

4.2 Main Result

In this section we state the main theorem.

Theorem 9 If (e∗, I ∗) ∈ K is a solution to (30), then there exist λ, μ, τ ∈
L2([0, t],RN), ν ∈ L2([0, t]) such that, a.e. in [0, t] and for i = 1, . . . , N :

(i) λi(t), μi(t), ν(t), τi(t) ≥ 0;

(ii)

⎧⎪⎨
⎪⎩
λi(t)e

∗i (t) = 0 , μi(t)I
∗i (t) = 0;

ν(t)
∑N
i=1

(
e∗i (t)− γi(t)I ∗i (t)− Ei(t)

)
= 0;

τi(t)(e
∗i (t)− γi(t)I ∗i (t)) = 0;

(iii)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂W(t, e
∗, I ∗)

∂ei
+ ν(t)− τi(t) = λi(t);

−∂W(t, e
∗, I ∗)

∂Ii
− γi(t)ν(t)+ γi(t)τi(t) = μi(t);(

− ∂W(t, e
∗, I ∗)

∂ei
+ ν(t)− τi(t)

)
e∗i (t) = 0;(

− ∂W(t, e
∗, I ∗)

∂Ii
− γi(t)ν(t)+ γi(t)τi(t)

)
I ∗i (t) = 0.

We now describe some relevant consequences of the previous result and provide
some suggestions to improve the environmental policies. Dual variables λi and μi
regulate the whole pollution control system. In particular, λi represents a control
variable on emissions; whereas μi is a control variable on investments. We can
focus on some cases, considering active or non-active constraints.

(a) We assume that there exist a country î and a set S1
î
⊂ [0, t] with positive

measure m(S1
î
) > 0, such that λ

î
(t) > 0 in S1

î
. From the first of (ii) it follows

that e∗î (t) = 0 a.e. in S1
î
. From constraint (17), we find I ∗

î
(t) = 0. Lemma 2

implies that ∂W(t,e
∗,I∗)

∂eî
≤ 0, namely, emitting in country î is not convenient. In

addition, from the first of (iii), we find

∂W(t, e∗, I ∗)
∂eî

< ν(t)− τ
î
(t),

namely, the advantage of emitting is below the pollution threshold within JI;
hence, it is better not to change strategy and not to emit.
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Thus, if there exists a country î such that

S1
î
= {t ∈ [0, t] : λ

î
(t) > 0} �= ∅, m(S1

î
) > 0,

then set S1
î

represents the time in which emissions are null and there are no
investments in environmental projects. This is an ideal situation of a virtuous
country.

If we assume that there exist a country î and a set S2
î
⊂ [0, t] with positive

measure m(S2
î
) > 0, such that λ

î
(t) = 0 in S2

î
, then e∗î (t) ≥ 0 a.e. in S2

î
.

Now, if e∗î (t)− γ
î
(t)I ∗

î
(t) > 0, from Lemma 2, we find

∂W(t, e∗, I ∗)
∂eî

= ∂W(t, e
∗, I ∗)

∂Iî
= 0,

namely, there is no advantage of emitting and no advantage of investing in
country î. In addition, τ

î
(t) = 0 and from the first of (iii), we deduce that

also

0 = ∂W(t, e
∗, I ∗)

∂eî
= ν(t)− τ

î
(t) = ν(t).

In this case, the advantage coming from emissions of country î equals the
pollution threshold, and the coalition is indifferent to follow JI.

If e∗î (t) − γ
î
(t)I ∗

î
(t) = 0, then the gross emissions are balanced by the

ERUs. From Lemma 2, we find

∂W(t, e∗, I ∗)
∂eî

≥ 0,

namely, the coalition can take advantage from emitting in country î. In addition,
from the first of (iii), we find

∂W(t, e∗, I ∗)
∂eî

= ν(t)− τ
î
(t).

In this case, the welfare coming from emissions of country î equals the pollution
level suggested by JI and there is an incentive to follow JI.

Thus, if there exists a country î such that

S2
î
= {t ∈ [0, t] : λ

î
(t) = 0} �= ∅, m(S2

î
) > 0,



Variational Methods for Emerging Real-Life and Environmental Conservation Problems 747

then set S2
î

represents the time in which emissions are nonnegative and JI
implementation is desirable.

(b) We assume that there exist a country î and a set S3
î
⊂ [0, t] with positive

measure m(S3
î
) > 0, such that μ

î
(t) > 0 in S3

î
. From the first of (ii) it follows

that I ∗
î
(t) = 0. From the last of (ii) we find that τ

î
(t)e∗î (t) = 0. If e∗î (t) > 0,

then τ
î
(t) = 0 and from the second of (iii), we find

∂W(t, e∗, I ∗)
∂I
î

< −γ
î
(t)ν(t),

namely, the advantage of investing in country î decreases with the technology
of the country and is negatively proportional to the marginal abatement cost. If

e∗î (t) = 0, we find a previous examined case. If there exists a country î such
that

S3
î
= {t ∈ [0, t] : μ

î
(t) > 0} �= ∅ m(S3

î
) > 0,

then set S3
î

represents the time in which the coalition does not invest in country

î with pollution control projects and emissions are at a tolerable level.
If there exist a country î and a set S4

î
⊂ [0, t]with positive measurem(S4

î
) >

0, such that μ
î
(t) = 0 in S4

î
. From the first of (ii) it follows that I ∗

î
(t) ≥ 0. From

the second of (ii), we find

∂W(t, e∗, I ∗)
∂I
î

= γ
î
(t)(τ

î
(t)− ν(t)),

namely, the advantage of investing increases with the technology of the country
and is proportional to the effectiveness of JI. If there exists a country î such that

S4
î
= {t ∈ [0, t] : μ

î
(t) = 0} �= ∅ m(S4

î
) > 0,

then set S4
î

represents the time in which country î invests and investments are
convenient if

∂W(t, e∗, I ∗)
∂I
î

= γ
î
(t)(τ

î
(t)− ν(t)).

Theorem 10 If there exist λ, μ, τ ∈ L2([0, t],RN+), ν ∈ L2([0, t])+ satisfying
conditions (i)–(iii) of Theorem 9, (e∗, I ∗) is a cooperative evolutionary pollution
control equilibrium.
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Theorem 11 The following conditions are equivalent:

• (e∗, I ∗) is a cooperative evolutionary pollution control equilibrium;
• (e∗, I ∗) is a solution to variational inequality (30);
• there exist λ,μ, τ ∈ L2([0, t],RN+), ν ∈ L2([0, t])+ satisfying conditions (i)–(iii)

of Theorem 9.

4.3 An Example

In this section, we present a small numerical example. In the time interval
[0, t] = [ 1

2 ,
3
2 ], we consider three countries (labeled as 1, 2, and 3, respectively)

characterized by the functions:

Ri(t, e
i) = −1

2
(ei(t))2 + 300 ei(t),

Ci(t, Ii) = 75(Ii(t))
2,

Di(t, e, I ) = (e1(t)− γ1(t)I1(t)+ e2(t)− γ2(t)I2(t)+ e3(t)− γ3(t)I3(t))
2,

for i = 1, 2, 3. Moreover, we set: γ1(t) = 1
2 t , γ2(t) = 2t , γ3(t) = t , E1(t) =

50t + 1, E2(t) = 30t , E3(t) = 25t + 2.
The set of feasible solutions is given by

K =
{
(e, I ) ∈ L2

([1

2
,

3

2

]
,R6

)
: ei(t) ≥ 0, Ii(t) ≥ 0, i = 1, 2, 3, a.e. in

[1

2
,

3

2

]
;

ei(t)− γi(t)Ii(t) ≥ 0, i = 1, 2, 3, a.e. in
[1

2
,

3

2

]
;

3∑
i=1

(
ei(t)− γi(t)Ii(t)− Ei(t)

)
≤ 0 a.e. in

[1

2
,

3

2

]}
.

Thus, the cooperative pollution control problem is described by the evolutionary
variational inequality:

3∑
i=1

(∫ 3
2

1
2

−∂W(t, e
∗, I ∗)

∂ei
(ei(t)− e∗i (t))dt

+
∫ 3

2

1
2

−∂W(t, e
∗, I ∗)

∂Ii
(Ii(t)− I ∗i (t))dt

)
≥ 0,

∀(e, I ) ∈ K,
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where

−∂W(t, e, I )
∂e1 = 7e1(t)+ 6e2(t)+ 6e3(t)− t (3I1(t)+ 12I2(t)+ 6I3(t))− 300,

−∂W(t, e, I )
∂e2 = 6e1(t)+ 7e2(t)+ 6e3(t)− t (3I1(t)+ 12I2(t)+ 6I3(t))− 300,

−∂W(t, e, I )
∂e3

= 6e1(t)+ 6e2(t)+ 7e3(t)− t (3I1(t)+ 12I2(t)+ 6I3)− 300,

−∂W(t, e, I )
∂I1

=150I1(t)−3t
(
e1(t)+e2(t)+ e3(t)−1

2
tI1(t)−2tI2(t)− tI3(t)

)
,

−∂W(t, e, I )
∂I2

=150I2(t)−12t
(
e1(t)+e2(t)+e3(t)−1

2
tI1(t)−2tI2(t)−tI3(t)

)
,

−∂W(t, e, I )
∂I3

=150I3(t)−6t
(
e1(t)+e2(t)+e3(t)−1

2
tI1(t)−2tI2(t)−tI3(t)

)
.

We point out that the above problem admits solutions; see [32]. We also observe
that the problem is equivalent to the following one

3∑
i=1

(
− ∂W(t, e

∗, I ∗)
∂ei

(ei(t)− e∗i (t))− ∂W(t, e
∗, I ∗)

∂Ii
(Ii(t)− I ∗i (t))

)
≥ 0,

∀(e, I ) ∈ K a.e. in
[1

2
,

3

2

]
. (32)

We now compute the exact solution of (32) applying the direct method as in [31].
To this end, we exploit the constraints and derive the values of some variables. We

first introduce the slack variables h1, h2, z ∈ L2+
([

1
2 ,

3
2

])
such that

ei(t)− γi(t)Ii(t) = hi(t), i = 1, 2, a.e. in
[1

2
,

3

2

]
,

3∑
i=1

(
ei(t)− γi(t)Ii(t)

)
=

3∑
i=1

Ei(t)− z(t) a.e. in
[1

2
,

3

2

]
.

Now, we set

I1(t) = e
1(t)− h1(t)

γ1(t)
, I2(t) = e

2(t)− h2(t)

γ2(t)
, (33)

e3(t) =
3∑
i=1

Ei(t)+ γ3(t)I3(t)− z(t)− h1(t)− h2(t), (34)
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and

K̃ =
{
(e1, e2, I3, h1, h2, z) ∈ L2

([1

2
,

3

2

]
,R6

)
:

e1(t), e2(t), I3(t), h1(t), h2(t), z(t) ≥ 0 a.e. in
[1

2
,

3

2

]
,

e1(t)− h1(t)

γ1(t)
≥ 0,

e2(t)− h2(t)

γ2(t)
≥ 0 a.e. in

[1

2
,

3

2

]
,

3∑
i=1

Ei(t)+ γ3(t)I3(t)− z(t)− h1(t)− h2(t) ≥ 0, a.e. in
[1

2
,

3

2

]}
.

Therefore, using (33) and (34), variational inequality (32) becomes:

( (e∗1(t)− 300)t2 − 600h∗1(t)+ 600e∗1(t)
t2

)
(e1(t)− e∗1(t))

+
(945t3 + (−9z∗(t)+ 2e∗2(t)− 573)t2 − 300h∗1(t)+ 300e∗1(t)

2t2

)
(e2(t)− e∗2(t))

+
(
(I ∗3 (t)+ 105)t2 − (z∗(t)+ h∗1(t)+ h∗2(t)+ 297)t + 150I ∗3 (t)

)
(I3(t)− I ∗3 (t))

+
(−(I ∗3 (t)+ 105)t3 + (z∗(t)+ h∗1(t)+ h∗2(t)+ 297)t2 + 600h∗1(t)− 600e∗1(t)

t2

)

(h1(t)− h∗1(t))

+
(−(2I ∗3 (t)+ 210)t3+(2z∗(t)+ 2h∗1(t)+2h∗2(t)+594)t2+75h∗2(t)−75e∗2(t)

2t2

)

(h2(t)− h∗2(t))
+
(
− (I ∗3 (t)+ 735)t + 7z∗(t)+ h∗1(t)+ h∗2(t)+ 279

)
(z(t)− z∗(t)) ≥ 0,

∀(e1, e2, I3, h1, h2, z) ∈ K̃ a.e. in
[1

2
,

3

2

]
.

We solve the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ1 = (e∗1(t)− 300)t2 − 600h∗1(t)+ 600e∗1(t) = 0

Γ2 = 945t3 + (−9z∗(t)+ 2e∗2(t)− 573)t2 − 300h∗1(t)+ 300e∗1(t) = 0

Γ3 = (I ∗3 (t)+ 105)t2 − (z∗(t)+ h∗1(t)+ h∗2(t)+ 297)t + 150I ∗3 (t) = 0

Γ4 = −(I ∗3 (t)+105)t3+(z∗(t)+h∗1(t)+h∗2(t)+297)t2+600h∗1(t)−600e∗1(t)=0

Γ5 = −(2I ∗3 (t)+210)t3+(2z∗(t)+2h∗1(t)+2h∗2(t)+594)t2+75h∗2(t)−75e∗2(t)=0

Γ6 = −(I ∗3 (t)+ 735)t + 7z∗(t)+ h∗1(t)+ h∗2(t)+ 279 = 0,
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and obtain the final solution

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e∗1(t) = e∗2(t) = e∗3(t) = 6300t2 + 30000

21t2 + 1900

I ∗1 (t) =
1800t

21t2 + 1900

I ∗2 (t) =
7200t

21t2 + 1900

I ∗3 (t) =
3600t

21t2 + 1900

h∗1(t) =
5400t2 + 30000

21t2 + 1900

h∗2(t) =
−8100t2 + 30000

21t2 + 1900

z∗(t) = 2205t3 + 63t2 + 199500t − 84300

21t2 + 1900
.

Once the solution of the variational inequality is known, it is possible to compute
Lagrange multipliers from system (ii)–(iii). Since e∗1(t), e∗2(t), e∗3(t) > 0, then
λ1(t) = λ2(t) = λ3(t) = 0. Moreover, it results

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e∗1(t)− γ1(t)I
∗
1 (t) =

5400t2 + 30000

21t2 + 1900

e∗2(t)− γ2(t)I
∗
2 (t) =

−8100t2 + 30000

21t2 + 1900

e∗3(t)− γ3(t)I
∗
3 (t) =

2700t2 + 30000

21t2 + 1900
,

and from the last of (ii), we find that τ 1(t) = τ 2(t) = τ 3(t) = 0. Finally, from the
first of (iii), since ∂W(t,e

∗,I∗)
∂ei

= 0, i = 1, 2, 3, we have that ν(t) = 0.
The results confirm the behaviors of emissions and investments at equilibrium

(see Definition 5 and Theorem 9). In fact, the emissions e∗1, e∗2, e∗3 are positive
almost everywhere, so that the advantage for the coalition of countries, in case one
of the country had the possibility to emit some more, equals the pollution threshold
which is null. In addition, I ∗1 (t), I ∗2 (t), I ∗3 (t) > 0, then μ1(t) = μ2(t) = μ3(t) = 0

and from the second of (iii) we have ∂W(t,e∗,I∗)
∂Ii

= 0, i = 1, 2, 3. In this case,
the coalition is indifferent to follow JI. In other words, countries take advantage
from operating together and manage to balance marginal revenue and marginal
investment so as to reach a profitable condition.
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5 Walrasian Equilibrium Problem

In this section, we present the evolutionary competitive equilibrium for a Walrasian
pure exchange economy; see the seminal paper [43]. We assume that data are
time-dependent and, in order to have a more realistic model, the excess demand
function depends on the current price and on previous events of the market (see
[23]). Therefore, a memory term is introduced. During a period of time [0, t̄] we
consider a pure exchange economy with l > 1 different commodities. At time t , at
each commodity j we associate a nonnegative price pj (t), where

pj : [0, t̄] → R , j = 1, . . . , l , pj ∈ L2([0, t̄],R) .

Hence, the price vector p = (p1, p2, . . . , pl) ∈ L2([0, t̄],Rl ) = L. Let us denote
by zj the aggregate excess demand function relative to the commodity j :

zj : [0, t̄] × R
l → R, j = 1, . . . , l , (t, p)→ zj (t, p) ,

and by z(t, p) = (z1(t, p), . . . ., zl(t, p)) the aggregate excess demand vector.
As usual in economy, we assume that z be homogeneous of degree zero in p, that

is, for all p, z(t, αp) = z(t, p) with α > 0 a.e. in [0, t̄]. Because of homogeneity,
the price may be normalized, so that they take values in the set:

S0 := {p ∈ L : pj (t) ≥ 0, j = 1, . . . , l,
l∑
j=1

pj (t) = 1 a. e. in [0, t̄]} .

In order to avoid some “free” commodity, it is convenient to fix a minimum price
for each commodity j . In this model, it is convenient to fix, for each commodity j ,
a minimal price pj (t) at the time t . We suppose that p : [0, t̄] → R belongs to L

and it is such that a. e. in [0, t̄]: pj (t) > 0 and for all j = 1, . . . , l, pj (t) <
1

l
.

Then the feasible set becomes:

S := {p ∈ L : pj (t) ≥ pj (t), j = 1, . . . , l,
l∑
j=1

pj (t) = 1 a. e. in [0, t̄]} .

Since our aim is to provide a model closer to reality, for a Walrasian pure
exchange equilibrium problem, we suppose that the price trend at time t be affected
by the previous events of the market. So, we introduce the aggregate excess demand
function with memory term:

Z : [0, t̄] × R
l → R

l ,

Z(t, p) = z(t, p)+
∫ t

0
I (t − s)p(s) ds ,
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where I is a nonnegative definite l × l matrix with entries in L2([0, t̄],R). It is
worth emphasizing the role of the matrix I . The entries of the matrix I represent the
information of past trade of the market and they act on equilibrium solutions on the
current time. Then, the new aggregate excess demand function takes into account a
memory expressed in an integral form and it can also be interpreted as adjustment
factors of prices. The meaning of the integral term is that it expresses the equilibrium
distribution in which the commodity price incur at time t , and, hence, the effect of
the previous situation on the present one. Moreover, the memory term is strictly
connected with the concept of delay: the integral term represents the delay of the
equilibrium solution, due to the previous equilibrium state.

We suppose that Z satisfies the Walras’ law:

〈Z(t, p), p(t)− p(t)〉 = 0 a. e. in [0, t̄] ∀p ∈ S . (35)

We require that the following growth condition holds: there exist B ∈ L2([0, t̄])
and A ∈ L∞([0, t̄]) such that for t ∈ [0, t̄]:

‖z(t, p)‖ ≤ A(t)‖p(t)‖ + B(t) , ∀p ∈ S(t) ,

where

S(t) := {p(t) ∈ R
l+ : p(t) ≥ pj (t) ,

l∑
j=1

pj (t) = 1} .

Taking into account that matrix entries are in L2, it is easy to prove that
∫ t

0
I (t−

s)p(s)ds is in L2. The definition of a Walrasian equilibrium with memory term is
now stated:

Definition 6 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium vector for a
pure exchange model with memory term if and only if

Z(t, p̂) ≤ 0 a.e. in [0, t̄] .

We observe that, since Z satisfies the Walras’ law, the equilibrium condition can
be rewritten in the following way:

Definition 7 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium vector for a
pure exchange model with memory term, if and only if a. e. in [0, t̄]:

Zj (t, p̂)

⎧⎪⎨
⎪⎩
≤ 0, if p̂j (t) = pj (t),

= 0, if p̂j (t) > pj (t) .
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Now, we can characterize the equilibrium as a solution to an evolutionary
variational inequality:

Theorem 12 A price vector p̂ ∈ S is a dynamic Walrasian equilibrium with
memory term, if and only if p̂ is a solution to the following evolutionary variational
inequality:

〈Z(p̂), p − p̂〉L ≤ 0, ∀p ∈ S . (36)

Now, we can characterize a dynamic Walrasian price equilibrium with memory
term by means of the Lagrangian multipliers. In particular, the following result
holds:

Theorem 13 p̂ ∈ S is a solution to the variational problem (36) if and only if there
exist α̂ ∈ L2([0, t̄],Rl ), β̂ ∈ L2([0, t̄],R) such that a. e. in [0, t̄] it results:

(i) α̂j (t) ≥ 0, ∀j = 1, . . . , l;

(ii) α̂j (t)
(
p̂j (t)− pj (t)

)
= 0 ∀j = 1, .., l;

(iii)

⎧⎪⎪⎨
⎪⎪⎩
z(t, p̂(t))+

∫ t

0
I (t − s)p̂(s) ds = −α̂(t),

β̂(t) = 0 .

5.1 Example

During the trading session represented by the time interval [0, t̄], we consider an
economy with two commodities, with typical commodity denoted by j , and two
agents, with typical agent denoted by a. The typical agent has a demand function:

x
j
a (t) =

γ (t)
∑2
j=1 pj (t)e

j
a(t)

pj (t)
, j = 1, 2,

with eja(t), j = 1, 2 initial endowment and γ (t) ∈ L2([0, t̄]), γ (t) ≥ 0 a.e. in [0, t̄].
The excess aggregate demand is then given by

zj (p) =
2∑
a=1

x
j
a (t)−

2∑
a=1

e
j
a(t), j = 1, 2.

Now, we want to focus on the price formation for informed agents, where
information is meant as memory of past trade and is represented as an integral term
that leads to the price adjustment. Thus, in order to study the effective behavior of
the excess aggregate demand function, we introduce a memory term of the form
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∫ t

0
I (t − s)p(s)ds = β(t)

∫ t

0
e−α(t−s)p(s)ds,

namely an exponentially weighted average of past prices, given by an exponentially
distributed adjustment. Here α(t), β(t) ∈ L2([0, t̄]) represent the duration and the
intensity of memory, respectively.

Exponential decay, the decrease at a rate proportional to its value, is a feature
that appears in many fields to describe the decay of a perturbation. In such a way it
is quite natural to consider a decay of memory with an exponential form. Of course
other functions could be considered.

The effective excess aggregate demand is:

Zj (t, p) = zj (t, p)+ β(t)
∫ t

0
e−α(t−s)pj (s)ds, j = 1, 2,

where α(t), β(t) ∈ L2([0, t̄]) and α(t), β(t) > 0 a.e. in [0, t̄].
We pose: A = ∑2

a=1 e
1
a(t), B =

∑2
a=1 e

2
a(t) and D = 1

α
(e−αt − 1), where we

suppose that A− B − βD > 0, 2B + βD > 0, and we fix the minimum prices:

p1(t) = −2B − βD +√(βD)2 + 4AB

2(A− B − 3βD)
,

p2(t) = 2A− βD +√(βD)2 + 4AB

2(A− B − 3βD)
.

Thus, we are led to consider the following variational inequality:

∫ t̄

0

[
Z1(t, p̂)(p1(t)− p̂1(t))+ Z2(t, p̂)(p2(t)− p̂2(t))

]
dt ≤ 0,∀p ∈ S,

where

S = {p ∈ L2([0, t̄],R2) : p(t) ≤ p(t), p1(t)+ p2(t) = 1, a.e. in [0, T ]}.

In virtue of the continuity of solutions we are entitled to solve

Z1(t, p̂)(p1(t)− p̂1(t))+ Z2(t, p̂)(p2(t)− p̂2(t)) ≤ 0,∀p ∈ S(t),∀t ∈ [0, t̄].

By applying the direct method as in [31], we have to equate the aggregate excess
demands of consumers

Z1(t, p̂)− Z2(t, p̂) = 0

with p̂2(t) = 1− p̂1(t) and p1(t) < p̂1(t) < 1, namely
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0 =
2∑
a=1

[
(x1
a(t)− e1

a(t))− (x2
a(t)− e2

a(t))

+β(t)
∫ t

0
e−α(t−s)p̂1(s)ds − β(t)

∫ t

0
e−α(t−s)p̂2(s)ds

]

=
2∑
a=1

[(γ (t)∑2
j=1 p̂

j (t)e
j
a(t)

p̂1(t)
− e1

a(t)
)
−
(γ (t)∑2

j=1 p̂
j (t)e

j
a(t)

1− p̂1(t)
− e2

a(t)
)

+β(t)
∫ t

0
e−α(t−s)p̂1(s)ds − β(t)

∫ t

0
e−α(t−s)(1− p̂1(s))ds

]
.

After some steps, we find

2∑
a=1

(2γ (t)− 1)(e1
a(t)− e2

a(t)) = γ (t)
2∑
a=1

e1
a(t)

1− p̂1(t)
− γ (t)

2∑
a=1

e2
a(t)

p̂1(t)

−2β
∫ t

0
e−α(t−s)p̂1(s)ds + β

α
(e−αt − 1).

Setting γ (t) = 1, we are led to solve the equation

(
A− B + 2β

∫ t

0
e−α(t−s)p̂1(s)ds − β

α
(e−αt − 1)

)
(p̂1(t))2

+
(

2B − 2β
∫ t

0
e−α(t−s)p̂1(s)ds + β

α
(e−αt − 1)

)
p̂1(t)− B = 0,

whose solution is

p̂1(t) = −2B + 2βC − βD +√(2βC − βD)2 + 4AB

2(A− B + 2βC − βD)

where C = ∫ t0 e−α(t−s)p̂1(s)ds is in turn a solution to the equation

16β2C4 + (16βA− 32β2D − 16βB)C3

+(20β2D2 − 16βAD − 8AB + 4B2 + 32βBD + 4A2)C2

+(−20βBD2 − 8B2D + 8ABD − 4β2D3 + 4βAD2)C

+4βBD3 + 4B2D2 − 4ABD2 = 0.

Finally, it is easy to verify that ifA−B+2βC−βD > 0 then p1(t) < p̂1(t) < 1.
Then, we found the following equilibrium price for a pure exchange economy with
memory term:
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p̂ 1(t) = −2B + 2βC − βD +√(2βC − βD)2 + 4AB

2(A− B + 2βC − βD)

p̂ 2(t) = 2A+ 2βC − βD +√(2βC − βD)2 + 4AB

2(A− B + 2βC − βD) .
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Meir–Keeler Sequential Contractions
and Applications

Mihai Turinici

Abstract Some fixed point results are given for a class of Meir–Keeler sequential
contractions acting on relational metric spaces. The connections with a related
statement in Turinici [MDMFPT, Paper-3-3, Pim, Iaşi, 2016] are also being
discussed. Finally, an application of the obtained facts to integral equations theory
is given.
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1 Introduction

Let X be a nonempty set. Call the subset Y of X, almost singleton (in short:
asingleton) provided [y1, y2 ∈ Y implies y1 = y2]; and singleton if, in addition,
Y is nonempty; note that in this case Y = {y}, for some y ∈ X. Further, let
d : X×X→ R+ := [0,∞[ be a metric over X; the couple (X, d) will be termed a
metric space. Finally, let T ∈ F (X) be a selfmap ofX. [Here, for each couple A,B
of nonempty sets, F (A,B) stands for the class of all functions from A to B; when
A = B, we write F (A) in place of F (A,A)]. Denote Fix(T ) = {x ∈ X; x = T x};
each point of this set is referred to as fixed under T . In the metrical fixed point
theory, such points are to be determined according to the context below, comparable
with the one described in Rus [55, Ch 2, Sect 2.2]:

(pic-0) We say that T is fix-asingleton, if Fix(T ) is an asingleton; and fix-singleton,
if Fix(T ) is a singleton.

(pic-1) We say that x ∈ X is a semi-Picard point (modulo (d, T )) when (T nx; n ≥
0) is d-asymptotic (limn d(T nx, T n+1x) = 0). If this property holds for all
x ∈ X, we say that T is a semi-Picard operator (modulo d).
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(pic-2) We say that x ∈ X is a Picard point (modulo (d, T )) when (T nx; n ≥ 0)
is d-Cauchy. If this property holds for all x ∈ X, we say that T is a Picard
operator (modulo d).

(pic-3) We say that x ∈ X is a strongly Picard point (modulo (d, T )) when
(T nx; n ≥ 0) is d-convergent with limn(T nx) ∈ Fix(T ). If this property
holds for all x ∈ X, we say that T is a strongly Picard operator (modulo d).

In this perspective, a basic answer to the posed question is the 1922 one due to
Banach [5]. Given α ≥ 0, let us say that T is Banach (d;α)-contractive, provided

(B-contr) d(T x, T y) ≤ αd(x, y), for all x, y ∈ X.

Theorem 1 Suppose that T is Banach (d;α)-contractive, for some α ∈ [0, 1[. In
addition, let X be d-complete. Then,

(11-a) T is fix-singleton: Fix(T ) = {z}, for some z ∈ X
(11-b) T is a strongly Picard operator (modulo d);

precisely, T nx
d−→ z as n→∞, for each x ∈ X.

This result—referred to as Banach’s contraction principle—found a multitude of
applications in operator equations theory; so, it was the subject of many extensions.
The most general ones have the (set) implicit form

(imp-set) (d(x, T x), d(x, y), d(x, T y), d(T x, y), d(T x, T y), d(y, T y)) ∈M ,
for all x, y ∈ X, x ≤ y;

where M ⊆ R6+ is a (nonempty) subset, and (≤) is a quasi-order (i.e.; reflexive
transitive relation) over X. In particular, when M is the zero-section of a certain
function F : R6+ → R, i.e.

M = {(t1, t2, t3, t4, t5, t6) ∈ R6+;F(t1, t2, t3, t4, t5, t6) ≤ 0},
the implicit contractive condition above has the functional form:

(imp-fct) F(d(x, T x), d(x, y), d(x, T y), d(T x, y), d(T x, T y), d(y, T y)) ≤ 0,
for all x, y ∈ X, x ≤ y.

On the other hand, when the function F appearing here admits the explicit form

F(t1, t2, t3, t4, t5, t6) = t5 −G(t1, t2, t3, t4, t6), (t1, t2, t3, t4, t5, t6) ∈ R6+,

(where G : R5+ → R+ is a function), one gets the explicit functional version of this
(functional) contraction

(exp-fct) d(T x, T y) ≤ G(d(x, T x), d(x, y), d(x, T y), d(T x, y), d(y, T y)),
for all x, y ∈ X, x ≤ y.

In particular, when (≤) is the trivial quasi-order of X, some outstanding explicit
results have been established in Boyd and Wong [9], Reich [50], and Matkowski
[41]; see also the survey paper by Rhoades [51]. And, for the implicit functional
version above, certain technical aspects have been considered by Leader [36] and
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Turinici [63]. On the other hand, when (≤) is antisymmetric (hence, a (partial)
order on X), an appropriate extension of Matkowski’s fixed point theorem was
obtained in the 1986 paper by Turinici [64]; two decades later, this result has
been re-discovered—at the level of Banach contractive maps—by Ran and Reurings
[49]; see also Nieto and Rodriguez-Lopez [47]. Finally, an extension—to the same
framework—of Leader’s contribution was performed in Agarwal et al. [3]; and,
since then, the number of such papers increased rapidly.

A basic particular case of the implicit contractive property above is

(imp-set-2) (d(T x, T y), d(x, y)) ∈M , for all x, y ∈ X, x ≤ y;

where M ⊆ R2+ is a (nonempty) subset. The classical example in this direction
(under the same trivial relation setting) is due to Meir and Keeler [43]; further
refinements of their method were proposed by Matkowski [42] and Cirić [13].

Now, some asymptotic extensions of these techniques were carried out in
Geraghty [20, 21] Leader and Hoyle [38], Kirk [35], Proinov [48], and Suzuki
[59, 60]; see also Abtahi [1]. It is our aim in the following to give a refinement
of these facts, by means of certain techniques involving iterative couples and
geometric/asymptotic Meir–Keeler relations. Note that further extensions of such
developments to common fixed point results as in Jha et al. [27] are possible, by
following the lines in Abtahi et al. [2]; we shall discuss these facts elsewhere.

2 Preliminaries

Throughout this exposition, the axiomatic system in use is Zermelo–Fraenkel’s
(abbreviated: ZF), as described by Cohen [14, Ch 2]. The notations and basic facts
to be considered are standard; some important ones are discussed below.

(a) Let X be a nonempty set. By a relation over X, we mean any (nonempty) part
R of X × X; then, (X,R) will be referred to as a relational structure. Note
that R may be regarded as a mapping between X and exp[X] (=the class of all
subsets in X). In fact, let us write (x, y) ∈ R as xRy; and put, for x ∈ X,

X(x,R) = {y ∈ X; xRy} (the section of R through x);

then, the desired mapping representation is (R(x) = X(x,R); x ∈ X). A basic
example of such object is

I = {(x, x); x ∈ X} [the identical relation over X].

Given the relations R, S over X, define their product R ◦S as

(x, z) ∈ R ◦S , if there exists y ∈ X with (x, y) ∈ R, (y, z) ∈ S .

Also, for each relation R on X, denote

R−1 = {(x, y) ∈ X ×X; (y, x) ∈ R} (the inverse of R).
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Finally, given the relations R and S over X, let us say that R is coarser than S
(or, equivalently: S is finer than R), provided

R ⊆ S ; i.e., xRy implies xS y.

Given a relation R on X, the following properties are to be discussed here:

(P1) R is reflexive: I ⊆ R
(P2) R is irreflexive: R ∩I = ∅
(P3) R is transitive: R ◦R ⊆ R
(P4) R is symmetric: R−1 = R
(P5) R is antisymmetric: R−1 ∩R ⊆ I .

This yields the classes of relations to be used; the following ones are important for
our developments:

(C0) R is amorphous (i.e., it has no specific properties)
(C1) R is a quasi-order (reflexive and transitive)
(C2) R is a strict order (irreflexive and transitive)
(C3) R is an equivalence (reflexive, transitive, symmetric)
(C4) R is a (partial) order (reflexive, transitive, antisymmetric)
(C5) R is the trivial relation (i.e., R = X ×X).

(b) A basic example of relational structure is to be constructed as below. Let

N = {0, 1, 2, . . .}, where (0 = ∅, 1 = {0}, 2 = {0, 1}, . . .)
denote the set of natural numbers. Technically speaking, the basic (algebraic
and order) structures over N may be obtained by means of the (immediate)
successor function suc : N → N , and the Peano properties (deductible in our
system (ZF)):

(pea-1) 0 ∈ N and 0 /∈ suc(N)
(pea-2) suc(.) is injective (suc(n) = suc(m) implies n = m)
(pea-3) ifM ⊆ N fulfills [0 ∈ M] and [suc(M) ⊆ M], thenM = N .

(Note that, in the absence of our axiomatic setting, these properties become the
well-known Peano axioms, as described in Halmos [22, Ch 12]; we do not give
details). In fact, starting from these properties, one may construct, in a recurrent
way, an addition (a, b) �→ a + b over N , according to

(∀m ∈ N ): m+ 0 = m; m+ suc(n) = suc(m+ n).
This, in turn, makes possible the introduction of a relation (≤) over N , as

(m, n ∈ N ): m ≤ n iff m+ p = n, for some p ∈ N .

Concerning the properties of this structure, the most important one writes

(N,≤) is well ordered:
any (nonempty) subset of N has a first element;
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[hence (in particular), (N,≤) is (partially) ordered]; this tells us that inductive
reasonings and constructions are allowed here. Denote, for a, b ∈ N , a ≤ b,

N(a,≤) = {n ∈ N; a ≤ n}, N(a,>) = {n ∈ N; a > n};
N [a, b] = {n ∈ N; a ≤ n ≤ b}, N [a, b[= {n ∈ N; a ≤ n < b};

the second one is referred to as an initial interval (in N ) induced by a. Any
set P with P ∼ N (in the sense: there exists a bijection from P to N ) will be
referred to as effectively denumerable. In addition, given some natural number
n ≥ 1, any set Q with N(n,>) ∼ Q will be said to be n-finite; when n is
generic here, we say that Q is finite. Finally, the (nonempty) set Y is called (at
most) denumerable, iff it is either effectively denumerable or finite.

LetX be a nonempty set. By a sequence inX, we mean any mapping x : N → X,
where N := {0, 1, . . .} is the set of natural numbers. For simplicity reasons, it will
be useful to denote it as (x(n); n ≥ 0), or (xn; n ≥ 0); moreover, when no confusion
can arise, we further simplify this notation as (x(n)) or (xn), respectively. Also, any
sequence (yn := xi(n); n ≥ 0) with

(i(n); n ≥ 0) is strictly ascending [hence: i(n)→∞ as n→∞],

will be referred to as a subsequence of (xn; n ≥ 0). Note that, under such a
convention, the relation “subsequence of” is transitive; i.e.,

(zn) = subsequence of (yn) and (yn) = subsequence of (xn)
imply (zn) = subsequence of (xn).

The above construction allows us to introduce the powers of a relation R as

R0 = I , Rn+1 = Rn ◦R, n ∈ N .

The following properties will be useful in the sequel:

Rm+n = Rm ◦Rn, (Rm)n = Rmn, ∀m, n ∈ N .

Under these conventions, the transitivity of R writes: R2 ⊆ R. This suggests us to
introduce the following extension of the underlying properties

(P6) R is k-transitive (where k ≥ 2); i.e., Rk ⊆ R
(P7) R is finitely transitive; i.e., R is k-transitive for some k ≥ 2
(P8) R is locally finitely transitive; i.e.,
for each (effectively) denumerable subset Y of X, there exists k = k(Y ) ≥ 2,
such that the restriction to Y of R is k-transitive.

(c) Remember that an outstanding part of (ZF) is the Axiom of Choice (abbreviated:
AC), which, in a convenient manner, may be written as

(AC) For each couple (J,X) of nonempty sets and each function
F : J → exp(X), there exists a (selective) function
f : J → X, with f (ν) ∈ F(ν), for each ν ∈ J .
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(Here, exp(X) stands for the class of all nonempty subsets in X). Sometimes,
when the ambient set X is endowed with denumerable type structures, the
existence of such a selective function (over J = N ) may be determined by
using a weaker form of (AC), referred to as: Dependent Choice principle (in
short: DC). Call the relation R over X, proper when

(X(x,R) =)R(x) is nonempty, for each x ∈ X.

Then, R is to be viewed as a mapping between X and exp(X); and the couple
(X,R)will be referred to as a proper relational structure. Further, given a ∈ X,
let us say that the sequence (xn; n ≥ 0) in X is (a;R)-iterative, provided

x0 = a, and xnRxn+1 (i.e., xn+1 ∈ R(xn)), for all n.

Proposition 1 Let the relational structure (X,R) be proper. Then, for each a ∈ X
there is at least an (a;R)-iterative sequence in X.

This principle—proposed, independently, by Bernays [6] and Tarski [62]—is
deductible from (AC), but not conversely; cf. Wolk [70]. Moreover, by the devel-
opments in Moskhovakis [45, Ch 8], and Schechter [58, Ch 6], the reduced system
(ZF-AC+DC) is comprehensive enough so as to cover the “usual” mathematics; see
also Moore [44, Appendix 2].

Let (Rn; n ≥ 0) be a sequence of relations on X. Given a ∈ X, let us say that
the sequence (xn; n ≥ 0) in X is (a; (Rn; n ≥ 0))-iterative, provided

x0 = a, and xnRnxn+1 (i.e., xn+1 ∈ Rn(xn)), for all n.

The following Diagonal Dependent Choice principle (in short: DDC) is available.

Proposition 2 Let (Rn; n ≥ 0) be a sequence of proper relations on X. Then, for
each a ∈ X there exists at least one (a; (Rn; n ≥ 0))-iterative sequence in X.

Clearly, (DDC) includes (DC), to which it reduces when (Rn; n ≥ 0) is constant.
The reciprocal of this is also true. In fact, letting the premises of (DDC) hold, put
P = N ×X; and let S be the relation over P introduced as

S (i, x) = {i + 1} ×Ri (x), (i, x) ∈ P .

It will suffice applying (DC) to (P,S ) and b := (0, a) ∈ P to get the conclusion
in our statement; we do not give details.

Summing up, (DDC) is provable in (ZF-AC+DC). This is valid as well for its
variant, referred to as: the Selected Dependent Choice principle (in short: SDC).

Proposition 3 Let the map F : N → exp(X) and the relation R over X fulfill

(∀n ∈ N ): R(x) ∩ F(n+ 1) �= ∅, for all x ∈ F(n).
Then, for each a ∈ F(0) there exists a sequence (x(n); n ≥ 0) in X, with

x(0) = a, x(n) ∈ F(n), x(n+ 1) ∈ R(x(n)), ∀n.

As before, (SDC) �⇒ (DC) (⇐⇒ (DDC)); just take (F (n) = X; n ∈ N). But,
the reciprocal is also true, in the sense: (DDC) �⇒ (SDC). This follows from



Meir–Keeler Sequential Contractions and Applications 767

Proof (Proposition 3) Let the premises of (SDC) be true. Define a sequence of
relations (Rn; n ≥ 0) over X as: for each n ∈ N ,

Rn(x) = R(x) ∩ F(n+ 1), if x ∈ F(n),
Rn(x) = {x}, otherwise (x ∈ X \ F(n)).

Clearly, Rn is proper, for all n ∈ N ; whence (DDC) applies to these data. So, for the
starting a ∈ F(0), there exists an (a; (Rn; n ≥ 0))-iterative sequence (x(n); n ≥ 0)
in X. Combining with the very definition above, it follows that conclusion in our
statement is holding.

In particular, when R = X × X, the regularity condition imposed in (SDC)
holds. The corresponding variant of underlying statement is just (AC(N)) (=the
Denumerable Axiom of Choice). Precisely, we have

Proposition 4 Let F : N → exp(X) be a function. Then, for each a ∈ F(0) there
exists a function f : N → X with f (0) = a and f (n) ∈ F(n), ∀n ∈ N .

As a consequence of the above facts, (DC) �⇒ (AC(N)) in (ZF-AC). A direct
verification of this is obtainable by taking A = N ×X and introducing the relation
R over it, according to:

R(n, x) = {n+ 1} × F(n+ 1), n ∈ N , x ∈ X;

we do not give details. The reciprocal of this inclusion is not true; see, for instance,
Moskhovakis [45, Ch 8, Sect 8.25].

(d) In what follows, the concepts of convergence and Cauchy structure are intro-
duced; and some basic facts about these are given.

Let X be a nonempty set; and S (X) stand for the class of all sequences (xn) in
X. By a (sequential) convergence structure onX we mean any part C of S (X)×X,
with the properties (cf. Kasahara [31]):

(conv-1) (C is hereditary)
((xn); x) ∈ C �⇒ ((yn); x) ∈ C , for each subsequence (yn) of (xn)
(conv-2) (C is reflexive)
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills ((xn); u) ∈ C .

For (xn) in S (X) and x ∈ X, we write ((xn); x) ∈ C as xn
C−→ x; this reads:

(xn), C -converges to x (also referred to as: x is the C -limit of (xn)).

The set of all such x is denoted limn(xn); when it is nonempty, we say that (xn) is
C -convergent. The following condition is to be optionally considered here:

(conv-3) C is separated: limn(xn) is an asingleton, for each sequence (xn);

when it holds, xn
C−→ z will be also written as limn(xn) = z.

Further, let us say that the subset H ⊆ S (X) is a (sequential) Cauchy structure
on X, provided (cf. Turinici [65])



768 M. Turinici

(Cauchy-1) (H is hereditary)
(xn) ∈H implies (yn) ∈H , for each subsequence (yn; n ≥ 0) of (xn; n ≥ 0)
(Cauchy-2) (H is reflexive)
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills (xn) ∈H ;

each element of H will be referred to as a H -Cauchy sequence in X.
Finally, the couple (C ,H ) will be referred to as a conv-Cauchy structure on X.

The natural conditions about (C ,H ) to be (optionally) considered here are

(CC-1) (C ,H ) is regular:
each C -convergent sequence in X is H -Cauchy
(CC-2) (C ,H ) is complete:
each H -Cauchy sequence in X is C -convergent.

A standard way of introducing such structures is as follows. By a pseudometric
over X we shall mean any map d : X ×X→ R+. Fix such an object, with

(r-s) d is reflexive sufficient (x = y⇐⇒ d(x, y) = 0)
(tri) d is triangular (d(x, z) ≤ d(x, y)+ d(y, z), for all x, y, z ∈ X)
(sym) d is symmetric (d(x, y) = d(y, x), for all x, y ∈ X).

Then, d is called a metric on X; and (X, d) will be referred to as a metric space.
Given the sequence (xn) inX and the point x ∈ X, we say that (xn), d-converges

to x (written as: xn
d−→ x) provided d(xn, x)→ 0 as n→∞; i.e.,

∀ε > 0, ∃i = i(ε): i ≤ n �⇒ d(xn, x) < ε;
or, equivalently: [∀ε > 0, ∃i = i(ε): i ≤ n �⇒ d(xn, x) ≤ ε].

By this very definition, we have the hereditary and reflexive properties:

(d-conv-1) ((
d−→) is hereditary)

xn
d−→ x implies yn

d−→ x, for each subsequence (yn) of (xn)

(d-conv-2) ((
d−→) is reflexive)

(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) fulfills xn
d−→ u;

so that (
d−→) is a sequential convergence on X. The set of all such limit points of

(xn) will be denoted limn(xn); if it is nonempty, then (xn) is called d-convergent.
Finally, note that (by the imposed conditions)

(
d−→) is separated (referred to as: d is separated):

limn(xn) is an asingleton, for each sequence (xn) in X.

Concerning these developments, the following auxiliary statement is useful.

Proposition 5 The mapping (x, y) �→ d(x, y) is d-Lipschitz, in the sense

(25-1) |d(x, y)− d(u, v)| ≤ d(x, u)+ d(y, v), ∀(x, y), (u, v) ∈ X ×X.

As a consequence, this map is d-continuous:
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(25-2) xn
d−→ x, yn

d−→ y imply d(xn, yn)→ d(x, y).

The proof is immediate, by the involved concepts; we do not give details. Some
extensions of these facts are possible under the lines discussed in the 2001 PhD
Thesis by Hitzler [24, Ch 1, Sect 1.2].

Further, call the sequence (xn), d-Cauchy when it satisfies d(xm, xn) → 0 as
m, n→∞, m < n; i.e.,

∀ε > 0, ∃j = j (ε): j ≤ m < n �⇒ d(xm, xn) < ε;
or, equivalently: [∀ε > 0, ∃j = j (ε): j ≤ m < n �⇒ d(xm, xn) ≤ ε];

the class of all these will be denoted as Cauchy(d). As before, we have the
hereditary and reflexive properties

(d-Cauchy-1) (Cauchy(d) is hereditary)
(xn) is d-Cauchy implies (yn) is d-Cauchy, for each subsequence (yn) of (xn)
(d-Cauchy-2) (Cauchy(d) is reflexive)
(∀u ∈ X): the constant sequence (xn = u; n ≥ 0) is d-Cauchy;

hence, Cauchy(d) is a Cauchy structure on X.

Finally—according to the general setting—call the couple ((
d−→), Cauchy(d)),

a conv-Cauchy structure induced by d. The following regularity conditions about
this structure are to be considered

(CC-1) d is regular: each d-convergent sequence in X is d-Cauchy
(CC-2) d is complete: each d-Cauchy sequence in X is d-convergent.

The former of these holds in our setting; but the latter one is not in general true.
A weakened form of the d-Cauchy concept we just exposed is the following. Let

(xn; n ≥ 0) be a sequence; we call it d-asymptotic, provided

(d-asy) limn d(xn, xn+1) = 0; i.e., for each ε > 0, there exists r(ε) ∈ N
such that r(ε) ≤ n �⇒ d(xn, xn+1) < ε.

Clearly, each d-Cauchy sequence is d-asymptotic too; but the reciprocal is not in
general true.

(e) Finally, some convergence properties of real sequences are discussed.

For each sequence (rn) in R, and each element r ∈ R, denote

limn rn = r+ (written as: rn→ r+), when rn→ r and (rn > r , ∀n);
limn rn = r ++ (written as: rn→ r ++), when rn→ r and (rn > r , ∀∀n).

Here, a property π(n) depending on n ∈ N is said to hold for almost all n (written:
(π(n); ∀∀n)), provided

there exists h = h(π) ∈ N , such that (π(n) holds, for all n ≥ h).
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Proposition 6 Let the sequence (rn; n ≥ 0) in R and the point ε ∈ R be such that
rn → ε+. Then, there exists a subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0)
with

(r∗n ; n ≥ 0) is (strictly) descending and r∗n → ε+.

Proof Put i(0) = 0. As ε < ri(0) and rn→ ε+, we have that

A(i(0)) := {n > i(0); rn < ri(0))} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and ri(1) < ri(0).

Likewise, as ε < ri(1) and rn→ ε+, we have that

A(i(1)) := {n > i(1); rn < ri(1))} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and ri(2) < ri(1).

This procedure may continue indefinitely; and yields (without any choice technique)
a strictly ascending rank sequence (i(n); n ≥ 0) (hence, i(n)→∞ as n→∞), for
which the attached subsequence (r∗n := ri(n); n ≥ 0) of (rn; n ≥ 0) fulfills

r∗n+1 < r
∗
n , for all n; hence, (r∗n) is (strictly) descending.

On the other hand, by this very subsequence property,

(r∗n > ε, ∀n), and limn r∗n = limn rn = ε.
Putting these together, we get the desired fact.

A bi-dimensional counterpart of these facts may be given along the lines below.
Let π(t, s) (where t, s ∈ R) be a logical property involving couples or real
numbers. Given the couple of real sequences (tn; n ≥ 0) and (sn; n ≥ 0), call
the subsequences (t∗n ; n ≥ 0) of (tn) and (s∗n; n ≥ 0) of (sn), compatible when

(t∗n = ti(n); n ≥ 0), and (s∗n = si(n); n ≥ 0),
for the same strictly ascending rank sequence (i(n); n ≥ 0).

Proposition 7 Let the couple of real sequences (tn; n ≥ 0), (sn; n ≥ 0) and the
couple of real numbers (a, b) be such that

tn→ a+, sn→ b+ as n→∞ and (π(tn, sn) is true, ∀n).

There exists then a compatible couple of subsequences (t∗n ; n ≥ 0) of (tn; n ≥ 0)
and (s∗n; n ≥ 0) of (sn; n ≥ 0) respectively, with

(27-1) (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) are (strictly) descending
(27-2) (t∗n → a+, s∗n → b+, as n→∞), and (π(t∗n , s∗n) holds, for all n).

Proof By the preceding statement, the sequence (tn; n ≥ 0) admits a subsequence
(Tn := ti(n); n ≥ 0), with

(Tn; n ≥ 0) is (strictly) descending, and (Tn→ a+, as n→∞).

Denote (Sn := si(n); n ≥ 0); clearly,

(Sn; n ≥ 0) is a subsequence of (sn; n ≥ 0) with Sn→ b+ as n→∞.
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Moreover, by this very construction [π(Tn, Sn) holds, for all n]. Again by that
statement, there exists a subsequence (s∗n := Sj(n) = si(j (n)); n ≥ 0) of (Sn; n ≥ 0)
(hence, of (sn; n ≥ 0) as well), with

(s∗n; n ≥ 0) is (strictly) descending, and (s∗n → b+, as n→∞).

Denote further (t∗n := Tj(n) = ti(j (n)); n ≥ 0); this is a subsequence of (Tn; n ≥ 0)
(hence, of (tn; n ≥ 0) as well), with

(t∗n ; n ≥ 0) is (strictly) descending, and (t∗n → a+, as n→∞).

Finally, by this very construction (and a previous relation)

π(t∗n , s∗n) holds, for all n.

Summing up, the couple of subsequences (t∗n ; n ≥ 0) and (s∗n; n ≥ 0) has all needed
properties; and the conclusion follows.

3 Scattered Sets

In what follows, some technical questions concerning scattered sets of natural
numbers are discussed.

(a) Let U be a subset of N with sup(U) = ∞; it may be represented as U =
{un; n ≥ 0} where (un; n ≥ 0) is strictly ascending. As a consequence,

U(p,<) = {u ∈ U ;p < u} is nonempty, for each p ∈ N .

Let ΣU ∈ F (U) stand for the immediate successor function attached to U ,
as

ΣU(p) = minU(p,<), p ∈ U .

Given h ∈ N(1,≤), let us say that U is a h-arithmetic-progression (in short:
h-aprogression), when

|p −ΣU(p)| = h, ∀p ∈ U ; or, equivalently: (un+1 − un = h, for all n);

in this case, one has the representation

U = u0 +Nh := {u0 + nh; n ≥ 0}, where u0 = min(U).

Returning to the general setting, let k ∈ N(1,≤) be arbitrary fixed; we say that
U is k-scattered, if

|p −ΣU(p)| ≤ k, ∀p ∈ U ; or, equivalently: (un+1 − un ≤ k, for all n).

For practical reasons, a particular class of such subsets will be considered. Call
the subsetM of N , (1,∞)-chain provided

inf(M) = min(M) = 1, sup(M) = ∞.
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In this case, M = {an; n ≥ 0}, where the sequence (an; n ≥ 0) in N is 1-
starting (a0 = 1) and strictly ascending (i < j implies ai < aj ); hence, M is
effectively denumerable. Given k ∈ N(1,≤), we have that M is k-scattered,
provided

(M-sca) an+1 − an ≤ k, for all n.

The class of all such k ∈ N(1,≤) (if any) will be denoted as sca(M); referred
to as the scattered domain ofM . Clearly,

sca(M) is hereditary: k ∈ sca(M), h ≥ k �⇒ h ∈ sca(M).

When sca(M) is nonempty, we say thatM is scattered.

A good characterization of this property may be given as below. Call the (1,∞)-
chainM of N , h-admissible (for some h ≥ 1), provided

(M-adm) for each n ∈ N there exists r ∈ M with n < r ≤ n+ h.

When h ≥ 1 is generic in this convention, we say thatM is admissible.

Proposition 8 We have, over the class of all (1,∞)-chainsM of N ,

(31-1) (∀k ≥ 1):M is k-scattered impliesM is k-admissible
(31-2) (∀k ≥ 1):M is k-admissible impliesM is k-scattered.

Hence [for each (1,∞)-chainM of N]:

(31-3) M is scattered iffM is admissible.

Proof

(i) Suppose that the (1,∞)-chain M = {an; n ≥ 0} (where (an; n ≥ 0) is 1-
starting, strictly ascending) appears as k-scattered; we have to prove that M
is k-admissible. The property is clear for n = 0; so, without loss, one may
assume that n ≥ 1 = a0. Then, there exists a uniquely determined rank i ∈ N
with

(ai+1 − ai ≤ k and) ai ≤ n < ai+1;

and this, along with [ai+1 ≤ ai + k ≤ n + k], proves the desired fact, with
r = ai+1.

(ii) Suppose that the (1,∞)-chain M = {an; n ≥ 0} (where (an; n ≥ 0) is 1-
starting, strictly ascending) appears as k-admissible; we have to prove that M
is k-scattered. Let i ∈ N be arbitrary fixed. From the admissible property, there
exists j ∈ N such that (with r = aj ∈ M)

ai < r = aj ≤ ai + k.
Combining with the strict increasing property of (an) yields

ai < ai+1 ≤ aj ≤ ai + k; whence ai+1 − ai ≤ k.
(iii) Evident.



Meir–Keeler Sequential Contractions and Applications 773

Now, a natural question is to determine whether any (1,∞)-chain of N is
scattered. A negative answer to this is available by the characterization of scattered
sets given by the statement above.

Example 1 Let (ϕ(n); n ≥ 0) be a sequence in R+ with limn ϕ(n) = ∞; and
M be a (1,∞)-chain of N ; hence, M = {an; n ≥ 0}, where (an; n ≥ 0} is
a 1-starting strictly ascending sequence in N(1,≤). Suppose that the following
condition holds:

an+1 − an ≥ ϕ(n), for almost all n ∈ N .

We claim that sca(M) = ∅; i.e., M is not scattered. In fact, suppose that M is
k-scattered, for some k ∈ N(1,≤); i.e.,

an+1 − an ≤ k, for all n ∈ N .

This, along with the choice of our sequence, gives

k ≥ ϕ(n), for almost all n ∈ N .

Passing to limit as n→∞ in this relation gives k = ∞; contradiction. Hence,M is
not scattered; as claimed.

Returning to the scattering concept, it is clear that (for the arbitrary fixed k≥ 1)

if the (1,∞)-chainM = {an; n ≥ 0} of N is k-progression
(an+1 − an = k, ∀n), thenM is k-scattered.

A slight extension of this fact may be given along the lines below.

Proposition 9 Let the (1,∞)-chainM of N be such that

there exists a h-progression (yn; n ≥ 0) in N(1,≤),
(where h ≥ 1), with {yn; n ≥ 0} ⊆ M .

Then,M is k-scattered, where k = max{y0, h}.
Proof Let M = {an; n ≥ 0} be the representation of our (1,∞)-chain, where
(an; n ≥ 0} is a 1-starting strictly ascending sequence in N(1,≤). Further, denote
P = {yn; n ≥ 0}. As P ⊆ M , there exists a strictly ascending sequence of ranks
(i(n); n ≥ 0), such that (yn = ai(n); n ≥ 0). Let r ∈ N be an arbitrary rank. Two
situations occur.

Case 1 Suppose that

ar ≥ y0 = ai(0); whence r ≥ i(0).
As (i(n); n ≥ 0) is strictly ascending, we must have limn i(n) = ∞; so that there
must be a uniquely determined rank n, with

i(n) ≤ r < i(n+ 1); whence yn = ai(n) ≤ ar < yn+1 = ai(n+1).
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Since ar+1 is the immediate successor of ar inM , we must have

yn ≤ ar < ar+1 ≤ yn+1; hence, ar+1 − ar ≤ yn+1 − yn = h.

Case 2 Suppose that

ar < y0 = ai(0); whence r < i(0).

As ar+1 is the immediate successor of ar inM , we must have

0 ≤ ar < ar+1 ≤ y0; so that ar+1 − ar ≤ y0 − 0 = y0.

Putting these together yields

ar+1 − ar ≤ k := max{y0, h}, for each r ∈ N ; and we are done.

Given the (1,∞)-chainM of N , denote

reg(M) = {(a, b) ∈ N(1,≤)2; a +Nb ⊆ M};
referred to as: the regularity domain of M . If reg(M) �= ∅, then M will be called
regular; note that, by the preceding statement,M is then scattered.

Concerning this aspect, we may ask whether the reciprocal inclusion is true:

(for each (1,∞)-chainM of N ):M is scattered impliesM is regular.

This is a difficult question; some partial aspects of it were described by Wagstaff Jr
[68] and Dubickas [18].

(b) A uniform type version of these concepts may be introduced along the lines
below. Let S ⊆ N × N be a (nonempty) relation over N . Given h ≥ 1, let us
say that S is h-uniformly-scattered (in short: h-uscattered), provided

∀m, n ∈ N(<), ∃p ∈ N : n < p ≤ n+ h, mS p.

Here, for simplicity reasons, we denoted

N(<) = {(m, n) ∈ N ×N;m < n}; (the graph of (<) over N ).

If h ≥ 1 is generic in this convention, we say that S is uniformly scattered
(in short: uscattered). A functional way of expressing the previous convention
is the following. Let S be a h-uscattered relation over N (where h ≥ 1); this
writes:

∀(m, n) ∈ N(<): L (m, n) = {q ∈ N [1, h];mS (n+ q)} is nonempty;

where (cf. a previous convention) N [1, h] = {n ∈ N; 1 ≤ n ≤ h}; we then
say that L : N(<) → exp(N [1, h]) is the associated to (S , h) multivalued
function. Let L : N(<)→ N [1, h] stand for its selection

L(m, n) = minL (m, n), (m, n) ∈ N(<);
it will be referred to as the associated to (S , h) univalued function. By the very
definition above, one has

mS (n+ L(m, n)), for each (m, n) ∈ N(<).
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Clearly, no choice techniques were used here; hence, this construction is valid
over the strongly reduced system (ZF-AC).

Concerning some concrete classes of uscattered relations, the natural setting to
solve this question is that characterized as

S is telescopic: nS (n+ 1), for all n ≥ 0
S is translation invariant:
(m, n) ∈ S implies (m+ j, n+ j) ∈ S , ∀j ∈ N .

Then, all reasonings above reduce to the corresponding ones involving the section
S (0) := {n ∈ N; 0S n}.
Proposition 10 Suppose that S is telescopic and translation invariant. Then,

(33-1) (∀h ≥ 1): S (0) is h-scattered implies S is h-uscattered
(33-2) S (0) is scattered implies S is uscattered.

Proof It will suffice verifying the first part. Let m, n ∈ N be such that m < n.
As S (0) is h-scattered, it is h-admissible as well; so, there exists r ∈ S (0) with
n−m < r ≤ n−m+h. Denote p = m+r . By the preceding relation, n < p ≤ n+h.
In addition, as S is translation invariant and 0S r , we get mS (m+ r); i.e., mRp.

(c) In what follows, a useful application of these concepts is discussed.
Let (X, d) be a metric space. Define, for each couple of subsets A,B ∈

exp(X),

d(A,B) = inf{d(a, b); a ∈ A, b ∈ B} (the gap between A and B).

Further, denote for each subset C ∈ exp(X)

diam(C) = sup{d(x, y); x, y ∈ C} (the diameter of C).

Proposition 11 For each couple A,B ∈ exp(X) and each (a, b) ∈ A× B,

d(A,B) ≥ d(a, b)− diam(A)− diam(B).

Proof Let (A,B) and (a, b) be as before. From the triangle inequality

d(a, b) ≤ d(a, x)+ d(x, y)+ d(y, b) ≤ d(x, y)+ diam(A)+ diam(B),
for all (x, y) ∈ A× B.

Passing to infimum with respect to (x, y) ∈ A× B, we are done.

Let R be a relation over X; the triplet (X, d,R) will be termed a relational
metric space. Further, take some natural number k ≥ 1. Given the sequence (xn) in
X, call it (R, k)-uniformly-scattered (in short: (R, k)-uscattered), provided

∀(m, n) ∈ N(<), ∃p ∈ N , such that n < p ≤ n+ k and xmRxp.

When k ≥ 1 is generic here, we say that (xn) is R-uniformly-scattered (in short:
R-uscattered).
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To get an appropriate interpretation of this concept, denote by S the trace of R
over this sequence

(m, n ∈ N ): mS n iff xmRxn

Then, evidently,

(xn) is (R, k)-uscattered iff S is k-uscattered.

By a previous result, this happens when

(adm-1) S is telescopic: nS (n+ 1), for all n ≥ 0
(adm-2) S is translation invariant: mS n implies (m+ j)S (n+ j), ∀j ∈ N
(adm-3) S(0) := {n ∈ N; 0S n} is k-scattered:
for each n ∈ N there exists r ∈ S(0) with n < r ≤ n+ k.

These, in terms of our initial sequence (xn), mean (respectively)

(tr-asc-1) (xn) is R-ascending: xnRxn+1, for each n ∈ N
(tr-asc-2) (xn) is R-translated: xmRxn implies xm+jRxn+j , for each j ∈ N
(tr-asc-3) (xn) is (R, x0; k)-scattered:
for each n ∈ N there exists r ∈ N with x0Rxr and n < r ≤ n+ k.

However, these are but an illustration of the introduced general concept; so, we do
not use them in the sequel.

The following auxiliary fact is available.

Proposition 12 Suppose that the R-ascending sequence (xn; n ≥ 0) inX fulfills

(xn; n ≥ 0) is (R, h)-uscattered, for some h ≥ 1.

Then, there exists a mapping L : N(<)→ N [1, h], such that

xmRxn+L(m,n), for each (m, n) ∈ N(<).
Proof By definition, the associated relation S over N is h-admissible. From a
previous observation, there exists a mapping L : N(<)→ N [1, h], with

mS (n+ L(m, n)), for each (m, n) ∈ N(<).
This, according to the definition of S , gives us all desired facts.

We have now all ingredients to formulate the announced statement. Let us say
that the subset Θ of R0+ is (>)-cofinal in R0+, when:

for each ε ∈ R0+, there exists θ ∈ Θ with ε > θ .

Letting (xn; n ≥ 0) be a sequence in X, denote, for n, k ∈ N ,

x[n, n+ k] = {xn, . . . , xn+k}, Δn(k) = diam(x[n, n+ k]).
Given the subset Y ofX and the rank h ≥ 0, let us say that the sequence (xn; n ≥ 0)
in X is h-nearly in Y , provided:

xn ∈ Y , for all n ≥ h; i.e., {xh, xh+1, . . .} ⊆ Y .
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When h = 0, this convention means: (xn; n ≥ 0) is in Y ; and if h ≥ 0 is generic, the
resulting property will be referred to as: (xn; n ≥ 0) is nearly in Y . Finally, given
the sequence (rn; n ≥ 0) in R+ and the point r ∈ R+, let us write

rn→ r ++ (rn→ r −−) if rn→ r and rn > r (rn < r), for almost all n ≥ 0.

Here, a property π(n) depending on n ∈ N is said to hold for almost all n [and we
write this as: (π(n); ∀∀n)], provided

there exists h = h(π) ∈ N , such that (π(n) holds, for all n ≥ h).

Proposition 13 Let the sequence (xn; n ≥ 0) in X and the natural number h ≥ 1
be such that

(36-i) (xn) is d-asymptotic and (R, h)-uscattered
(36-ii) (xn) is not d-Cauchy.

Further, let the subsetΘ of R0+ be (>)-cofinal in R0+. There exist then a number γ ∈
Θ , a rank j (γ, h) ≥ 1, and a triple of rank-sequences (m(j); j ≥ 0), (n(j); j ≥ 0),
(p(j); j ≥ 0), with

(36-1) j ≤ m(j) < n(j) < p(j) ≤ n(j)+ h, xm(j)Rxp(j), ∀j ≥ 0
(36-2) j ≤ m(j) < m(j)+ 2h < n(j), for all j ≥ j (γ, h)
(36-3) d(xm(j), xn(j)−1) ≤ γ +Δm(j)(3h), ∀j ≥ j (γ, h)
(36-4) for each s, t ∈ N [0, 2h], the sequence
(Vj (s, t) := d(xm(j)+s , xp(j)+t ); j ≥ 0) (in R+)
is j (γ, h)-nearly in ]γ,∞[, with Vj (s, t)→ γ ++ as j →∞.

Proof As (xn; n ≥ 0) is d-asymptotic, we must have

Δn(k) := diam(x[n, n+ k])→ 0, as n→∞, for each k ∈ N .

By definition, the d-Cauchy property of our sequence writes:

∀ε ∈ R0+, ∃a = a(ε): a ≤ m < n �⇒ d(xm, xn) ≤ ε.
As Θ is a (>)-cofinal part in R0+, this property may be also written as

∀θ ∈ Θ , ∃α = α(θ): α ≤ m < n �⇒ d(xm, xn) ≤ θ .

The negation of this property means: there exists β ∈ Θ , such that

A(j) := {(m, n) ∈ N ×N; j ≤ m < n, d(xm, xn) > β} �= ∅, ∀j ≥ 0.

Let the number γ ∈ Θ be given according to

β > 3γ (possible, since Θ is (>)-cofinal in R0+).

By the d-asymptotic property of (xn), there must be j (γ, h) ≥ 1, with

Δn(3h) = diam(x[n, n+ 3h]) < γ , for all n ≥ j (γ, h).
For each j ≥ j (γ, h) and each (m, n) ∈ A(j), we have (by an auxiliary fact)
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d(x[m,m+ 3h], x[n, n+ 3h]) ≥
d(xm, xn)− diam(x[m,m+ 3h])− diam(x[n, n+ 3h]) ≥ β − 2γ > γ ;

which tells us that

B(j) := {(m, n) ∈ N ×N; j ≤ m < n, d(x[m,m+ 3h], x[n, n+ 3h]) > γ }
is nonempty, for all j ≥ j (γ, h).

For technical reasons, we complete the above convention as

B(j) := A(j), for each j < j (γ, h).

Having this precise, denote for each j ≥ 0

m(j) = min Dom(B(j)), n(j) = minB(j)(m(j)).

By this very convention,

(pro-1) j ≤ m(j) < n(j), for all j ≥ 0
(pro-2) d(x[m(j),m(j)+ 3h], x[n(j), n(j)+ 3h]) > γ , ∀j ≥ j (γ, h).

On the other hand, as (xn; n ≥ 0) is (R, h)-uscattered, there must be an associated
function L : N(<)→ N [1, h], such that

xmRxn+L(m,n), for each (m, n) ∈ N(<).
Denoting, for simplicity (p(j) = n(j)+ L(m(j), n(j)); j ≥ 0), it results that

(pro–3) (m(j) <)n(j) < p(j) ≤ n(j)+ h, xm(j)Rxp(j), ∀j .

We claim that the rank-sequences (m(j); j ≥ 0), (n(j); j ≥ 0) and (p(j); j ≥ 0)
fulfill all conclusions in the statement.

(i) For the moment, (36-1) is fulfilled.
(ii) We claim that

∀j ≥ j (γ, h), ∀(m, n) ∈ B(j): m+ 2h < n;

and this, along with (m(j), n(j)) ∈ B(j), established the conclusion (36-2). In
fact, suppose by contradiction that

there exist j ≥ j (γ, h), (m, n) ∈ B(j), with n ≤ m+ 2h.

Then,

m < n < n+ h ≤ m+ 3h; so that
x[m,m+ 3h] ∩ x[n, n+ h] = x[n, n+ h] �= ∅.

On the other hand, as (m, n) ∈ B(j),
d(x[m,m+ 3h], x[n, n+ h]) ≥ d(x[m,m+ 3h], x[n, n+ 3h]) > γ > 0;
whence x[m,m+ 3h] ∩ x[n, n+ h] = ∅.

The obtained relations are, however, contradictory. Hence, the working hypothesis
cannot be true; and our claim follows.
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(iii) Let j ≥ j (γ, h) be arbitrary fixed. By definition,

(m(j) < n(j) and) d(x[m(j),m(j)+ 3h], x[n(j), n(j)+ 3h]) > γ .

Moreover, as n(j) is minimal with respect to (pro-2), we derive

(pro-4) d(x[m(j),m(j)+ 3h], x[n(j)− 1, n(j)− 1+ 3h]) ≤ γ .

But, in view of

n(j) ≤ n(j)− 1+ 3h ≤ n(j)+ 3h,

and (pro-2), we have an evaluation like

(pro-5) d(x[m(j),m(j)+ 3h], x[n(j), n(j)− 1+ 3h]) ≥
d(x[m(j),m(j)+ 3h], x[n(j), n(j)+ 3h]) > γ .

So, by simply combining with (pro-4) gives

d(x[m(j),m(j)+ 3h], xn(j)−1) ≤ γ ;

wherefrom (taking an auxiliary fact into account)

d(xm(j), xn(j)−1) ≤ d(x[m(j),m(j)+ 3h], xn(j)−1)+
diam(x[m(j),m(j)+ 3h]) ≤ γ +Δm(j)(3h), ∀j ≥ j (γ, h),

and (36-3) is proved.
(iv) Let s, t ∈ N [0, 2h] be arbitrary fixed. Further, take some j ≥ j (γ, h). From

m(j) ≤ m(j)+ s ≤ m(j)+ 2h ≤ m(j)+ 3h,
n(j) < p(j) ≤ p(j)+ t ≤ n(j)+ h+ t ≤ n(j)+ 3h,

we must have (for the precise ranks)

d(xm(j)+s , xp(j)+t ) ≥ d(x[m(j),m(j)+ 3h], x[n(j), n(j)+ 3h]) > γ ;

so that the first half of our conclusion holds. For the second half, two cases
occur.

Case 1 Assume that s = t = 0. By the very definition of these ranks,

n(j)− 1 < p(j) ≤ n(j)+ h ≤ n(j)− 1+ 2h, ∀j ≥ j (γ, h).
Combining with our preceding stage yields

γ < d(xm(j), xp(j)) ≤ d(xm(j), xn(j)−1)+ d(xn(j)−1, xp(j))

≤ γ +Δm(j)(3h)+Δn(j)−1(2h), ∀j ≥ j (γ, h);
and the particular case of (36-4) (our second half) results by a limit process.

Case 2 For the remaining alternatives, we have by the Lipschitz property of
d(., .),

|d(xm(j), xp(j))− d(xm(j)+s , xp(j)+t |
≤ d(xm(j), xm(j)+s)+ d(xp(j), xp(j)+t ), ∀j ≥ j (γ, h);
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so that (for the same ranks)

|d(xm(j), xp(j))− d(xm(j)+s , xn(j)+t | ≤ Δm(j)(2h)+Δp(j)(2h).
This gives us the general part of (36-4) (our second half), by simply passing to limit
as j →∞. The proof is complete.

In particular, when Θ = R0+ and R = X × X (the trivial relation over X) the
obtained statement covers the one in Khan et al. [32]; so, it is natural that this result
be referred to as Khan–Swaleh–Sessa–Proposition (in short: KSS-Proposition).
Further aspects may be found in Reich [50].

4 Meir–Keeler Relations

Let Ω ⊆ R0+ × R0+ be a relation over R0+; as a rule, we write (t, s) ∈ Ω as tΩs.
The following global property upon this object is considered

(u-diag) Ω is upper diagonal: tΩs implies t < s.

Denote the class of all upper diagonal relations as udiag(R0+). Our exposition below
is essentially related to this basic condition.

To begin with, let us consider the global properties

(1-decr) Ω is first variable decreasing:
t1, t2, s ∈ R0+, t1 ≥ t2 and t1Ωs imply t2Ωs
(2-incr) Ω is second variable increasing:
t, s1, s2 ∈ R0+, s1 ≤ s2 and tΩs1 imply tΩs2.

Then, define the sequential condition below (for upper diagonal relations)

(M-ad) Ω in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (tn+1Ωtn, ∀n) imply limn tn = 0.

To discuss it, the local geometric conditions involving udiag(R0+) are in effect:

(g-mk) Ω has the geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, ε < s < ε + δ �⇒ t ≤ ε
(g-bila-s) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ �⇒ (t, s) /∈ Ω
(g-left-s) Ω is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ �⇒ (t, β) /∈ Ω .

Remark 1 It is worth noting that, by the upper diagonal property, the geometric
Meir–Keeler property is equivalent with

(g-mk-c) Ω has the complete geometric Meir–Keeler property:
∀ε > 0, ∃δ > 0: tΩs, s < ε + δ �⇒ t ≤ ε.

Since the verification is immediate, we do not give details.
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The former of these local conditions—related to the developments in Meir and
Keeler [43]—is strongly related to the Matkowski admissible property we just
introduced. Precisely, the following auxiliary fact is available.

Proposition 14 Under these conditions, one has in (ZF-AC+DC):

(41-1) (for each Ω ∈ udiag(R0+)):
Ω is geometric Meir–Keeler implies Ω is Matkowski admissible
(41-2) (for each first variable decreasing Ω ∈ udiag(R0+)):
Ω is Matkowski admissible implies Ω is geometric Meir–Keeler.

Hence, summing up

(41-3) (for each first variable decreasing Ω ∈ udiag(R0+)):
Ω is geometric Meir–Keeler iff Ω is Matkowski admissible.

Proof Three basic stages must be passed.

(i) Suppose that Ω ∈ udiag(R0+) is geometric Meir–Keeler; we have to establish
that Ω is Matkowski admissible. Let (tn; n ≥ 0) be a sequence in R0+, fulfilling
(tn+1Ωtn, for all n). By the upper diagonal property, we get

(tn+1 < tn, for all n); i.e., (tn) is strictly descending.

As a consequence, τ = limn tn exists in R+; with, in addition: (tn > τ , ∀n). Assume
by contradiction that τ > 0; and let σ > 0 be the number assured by the geometric
Meir–Keeler property. By definition, there exists an index n(σ), with

(tn+1Ωtn and) τ < tn < τ + σ , for all n ≥ n(σ).
This, by the quoted property, gives (for the same ranks)

τ < tn+1 ≤ τ ; contradiction.

Hence, necessarily, τ = 0; and the conclusion follows.

(ii) Suppose that the first variable decreasing Ω ∈ udiag(R0+) is Matkowski
admissible; we have to establish that Ω is geometric Meir–Keeler. Suppose
by contradiction that this is not true; i.e. (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; ε < s < ε + δ, t > ε} is nonempty, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the Denumerable
Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)], a sequence
((tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element of H(δn);

or, equivalently (by definition and upper diagonal property)

(tnΩsn and) ε < tn < sn < ε + δn, for all n.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn→ ε+, sn→ ε+, as n→∞.
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Put i(0) = 0. As ε < ti(0) and sn→ ε+ as n→∞, we have that

A(i(0)) := {n > i(0); sn < ti(0)} is not empty;
hence, i(1) := min(A(i(0))) is an element of it, and si(1) < ti(0);
wherefrom, si(1)Ωsi(0) (as Ω is first variable decreasing).

Likewise, as ε < ti(1) and sn→ ε+ as n→∞, we have that

A(i(1)) := {n > i(1); sn < ti(1)} is not empty;
hence, i(2) := min(A(i(1))) is an element of it, and si(2) < ti(1);
wherefrom, si(2)Ωsi(1) (as Ω is first variable decreasing).

This procedure may continue indefinitely and yields (without any choice technique)
a strictly ascending rank sequence (i(n); n ≥ 0) in N for which the attached
subsequence (rn := si(n); n ≥ 0) of (sn; n ≥ 0) fulfills

rn+1Ωrn, for all n; whence rn→ 0 (as Ω is Matkowski admissible).

On the other hand, by our subsequence property,

(rn > ε, ∀n) and limn rn = limn sn = ε; that is: rn→ ε+.

The obtained relation is in contradiction with the previous one. Hence, the working
condition cannot be true; and we are done.

(iii) Evident, by the above.

In the following, sufficient (sequential) conditions are given for the properties
appearing in our (geometric) concepts above. Given the upper diagonal relation Ω
over R0+, let us introduce the (asymptotic type) conventions

(a-mk) Ω is asymptotic Meir–Keeler:
there are no strictly descending sequences (tn) and (sn) in R0+ and no elements ε
in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+)
(a-bila-s) Ω is asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no elements
ε ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε, sn→ ε)
(a-left-s) Ω is asymptotic left separable:
there are no strictly ascending sequences (tn) in R0+
and no elements β in R0+, with ((tn, β) ∈ Ω , ∀n) and (tn→ β−).

Remark 2 Concerning the bilateral concept above, let us consider the condition

(a-bila-s-str) Ω is strongly asymptotic bilateral separable:
there are no sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and no elements
ε ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and lim infn tn ≥ ε, lim supn sn ≤ ε.

Clearly,

(Ω is strongly asymptotic bilateral separable) implies
(Ω is asymptotic bilateral separable).
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But, the reciprocal inclusion

(Ω is asymptotic bilateral separable) implies
(Ω is strongly asymptotic bilateral separable)

is also true; whence these two conditions are equivalent to each other. In fact,
suppose that Ω is not strongly asymptotic bilateral separable: there are sequences
(tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and elements ε ∈ R0+, with

((tn, sn) ∈ Ω (hence, tn < sn), ∀n) and lim infn tn ≥ ε, lim supn sn ≤ ε.
By these relations, we have

ε ≤ lim infn tn ≤ lim supn tn ≤ lim supn sn ≤ ε,
ε ≤ lim infn tn ≤ lim infn sn ≤ lim supn sn ≤ ε;
wherefrom tn→ ε, sn→ ε, as n→∞.

This last relation, added to the preceding ones, yields a contradiction with respect
to Ω being asymptotic bilateral separable; so that our assertion is proved.

Remark 3 Concerning the left concept above, let us consider the condition

(a-left-s-str) Ω is strongly asymptotic left separable:
there are no sequences (tn) in R0+
and no elements β in R0+, with ((tn, β) ∈ Ω , ∀n) and (tn→ β).

Clearly,

(for each Ω ∈ udiag(R0+)):
(Ω is strongly asymptotic left separable) implies
(Ω is asymptotic left separable).

The converse inclusion is also valid in the class of upper diagonal relations; that
is,

(for each Ω ∈ udiag(R0+)):
(Ω is asymptotic left separable) implies
(Ω is strongly asymptotic left separable).

In fact, suppose that Ω ∈ udiag(R0+) is not strongly asymptotic left separable:

there is a sequence (tn) in R0+ and an element β in R0+, with
((tn, β) ∈ Ω , ∀n) and tn→ β.

By the upper diagonal property of Ω ,

tn < β, for all n; so that tn→ β−.

By an auxiliary fact, there exists a strictly ascending subsequence (t∗n = ti(n); n ≥ 0)
of (tn; n ≥ 0), with

((t∗n , β) ∈ Ω , ∀n) and t∗n → β−.
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This, however, contradicts the asymptotic left separated property of Ω; and
therefore, our claim is proved.

Returning to the general setting above, the relationships with the corresponding
geometric type notions are described in the auxiliary statement below.

Proposition 15 The following generic relationships are valid (for an arbitrary
upper diagonal relation Ω ⊆ R0+ × R0+), in the reduced system (ZF-AC+DC):

(42-1) geometric Meir–Keeler is equivalent with asymptotic Meir–Keeler
(42-2) geometric bilateral separable is equivalent with asymptotic bilateral
separable (hence, with strongly asymptotic bilateral separable)
(42-3) geometric left separable is equivalent with asymptotic left separable
(hence, with strongly asymptotic left separable).

Proof There are three steps to be passed.

(i-1) Let Ω ∈ udiag(R0+) be a geometric Meir–Keeler relation; but—contrary to
the conclusion—assume that Ω does not have the asymptotic Meir–Keeler
property:

there are two strictly descending sequences (tn) and (sn) in R0+ and an
element ε in R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

Let δ > 0 be the number given by the geometric Meir–Keeler property of Ω . By
definition, there exists a (common) rank n(δ), such that

n ≥ n(δ) implies ε < tn < ε + δ, ε < sn < ε + δ.
From the second relation, we must have (by the hypothesis about Ω) tn ≤ ε, for all
n ≥ n(δ). This, however, contradicts the first relation above. Hence,Ω is asymptotic
Meir–Keeler; as asserted.

(i-2) Let Ω ∈ udiag(R0+) be an asymptotic Meir–Keeler relation; but—contrary
to the conclusion—assume that Ω does not have the geometric Meir–Keeler
property; i.e. (for some ε > 0)

H(δ) := {(t, s) ∈ Ω; s < ε + δ, t > ε} �= ∅, for each δ > 0.

Taking a zero converging sequence (δn; n ≥ 0) in R0+, we get by the Denumerable
Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)], a sequence
(tn, sn); n ≥ 0) in R0+ × R0+, so as

(∀n): (tn, sn) is an element of H(δn);

or, equivalently (by definition and upper diagonal property)

((tn, sn) ∈ Ω and) ε < tn < sn < ε + δn, for all n.

Note that, as a direct consequence,

(tnΩsn, for all n), and tn→ ε+, sn→ ε+, as n→∞.
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By a previous result, there exists a compatible couple of subsequences (t∗n :=
ti(n); n ≥ 0) of (tn; n ≥ 0) and (s∗n := si(n); n ≥ 0) of (sn; n ≥ 0), with

(t∗nΩs∗n , ∀n); (t∗n ), (s∗n) are strictly descending; t∗n → ε+ and s∗n → ε+.

This, however, is in contradiction with respect to the posed hypothesis upon Ω;
wherefrom, our assertion follows.

(ii-1) Let Ω ∈ udiag(R0+) be a geometric bilateral separable relation; we have to
establish that Ω is asymptotic bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is,

there are two sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+ and an element
ε ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε, sn→ ε).

Let δ > 0 be the number given by the geometric left separable property of Ω . By
definition, there exists a (common) rank n(δ), such that

n ≥ n(δ) implies ε − δ < tn < ε + δ, ε − δ < sn < ε + δ.
This along with [tnΩsn, ∀n ≥ n(δ)] contradicts the geometric bilateral separable
property of Ω . Hence, Ω is asymptotic bilateral separable.

(ii-2) Let Ω ∈ udiag(R0+) be an asymptotic bilateral separable relation; we have to
establish that Ω is geometric bilateral separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is (for some
ε > 0),

K(δ) := {(t, s) ∈ Ω; t, s ∈]ε − δ, ε + δ[} �= ∅, for each δ ∈]0, ε[.
Taking a strictly ascending sequence (δn; n ≥ 0) in ]0, ε[with δn→ 0, we get by the
Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-AC+DC)],
a sequence ((tn, sn); n ≥ 0) in Ω , so as

(∀n): (tn, sn) is an element of K(δn);

or, equivalently (by the very definition above)

(∀n): (tn, sn) ∈ Ω and tn, sn ∈]ε − δn, ε + δn[.
As a consequence of the latter, we must have (tn→ ε, sn→ ε); and this, along with
the former, contradicts the imposed hypothesis. Hence, necessarily, Ω is geometric
bilateral separable.

(iii-1) Let Ω ∈ udiag(R0+) be a geometric left separable relation; we have to
establish that Ω is asymptotic left separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is,

there is a strictly ascending sequence (tn; n ≥ 0) and an element ε ∈ R0+,
with ((tn, ε) ∈ Ω , ∀n) and (tn→ ε−).

Let δ > 0 be the number given by the geometric left separable property of Ω . By
definition, there exists a rank n(δ), such that
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n ≥ n(δ) implies ε − δ < tn < ε.
This along with [tnΩε, ∀n ≥ n(δ)] contradicts the geometric left separable property
of Ω . Hence, Ω is asymptotic bilateral separable.

(iii-2) Let Ω ∈ udiag(R0+) be an asymptotic left separable relation; we have
to establish that Ω is geometric left separable. Suppose—contrary to this
conclusion—that Ω is not endowed with such a property; that is (for some
β > 0),

K(γ ) := {t ∈]β − γ, β[; (t, β) ∈ Ω} �= ∅, for each γ ∈]0, β[.
Taking a strictly ascending sequence (γn; n ≥ 0) in ]0, β[ with γn → 0+, we
get by the Denumerable Axiom of Choice (AC(N)) [deductible, as precise, in (ZF-
AC+DC)], a sequence (tn; n ≥ 0) in R0+, so as

(∀n): tn is an element of K(γn);

or, equivalently (by the very definition above)

(∀n): β − γn < tn < β, and (tn, β) ∈ Ω .

By the former part, we must have tn → β−; and this, along with an auxiliary fact,
tells us that there exists a subsequence (t∗n := ti(n); n ≥ 0) such that

(t∗n ; n ≥ 0) is strictly ascending, and t∗n → β−.

On the other hand, by the latter part of our previous relation, [(t∗n , β) ∈ Ω , ∀n]. This,
however, contradicts the asymptotic left separable property. Hence, Ω is geometric
left separable.

In the following, some basic examples of (upper diagonal) Matkowski admissible
and geometric Meir–Keeler relations are given. The general scheme of constructing
these may described along the lines below.

Let R(±∞) := R∪{−∞,∞} stand for the set of all extended real numbers. For
each relationΩ over R0+, let us associate a function ξ : R0+×R0+ → R(±∞), as

ξ(t, s) = 0, if (t, s) ∈ Ω; ξ(t, s) = −∞, if (t, s) /∈ Ω .

It will be referred to as the function generated by Ω; clearly,

(t, s) ∈ Ω iff ξ(t, s) ≥ 0.

Conversely, given a function ξ : R0+×R0+ → R(±∞), we may associate it a relation
Ω over R0+ as

Ω = {(t, s) ∈ R0+ × R0+; ξ(t, s) ≥ 0} (in short: Ω = [ξ ≥ 0]);
referred to as: the the positive section of ξ .

Note that the correspondence between the function ξ and its associated relation
[ξ ≥ 0] is not injective; because, for the function η := λξ (where λ > 0), its
associated relation [η ≥ 0] is identical with the relation [ξ ≥ 0] attached to ξ .

Now, call the function ξ : R0+ × R0+ → R(±∞), upper diagonal provided:
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(u-diag-fct) ξ(t, s) ≥ 0 implies t < s.

Note that all subsequent constructions are being considered within this setting. In
particular, the following basic property (condition) for upper diagonal functions ξ
is considered:

(M-ad-fct) ξ in Matkowski admissible:
(tn; n ≥ 0) in R0+ and (ξ(tn+1, tn) ≥ 0, ∀n) imply limn tn = 0.

The following geometric conditions involving our functions are—in particular—
useful for discussing this property

(g-mk-fct) ξ is geometric Meir–Keeler:
∀ε > 0, ∃δ > 0: ξ(t, s) ≥ 0, ε < s < ε + δ �⇒ t ≤ ε
(g-bila-s-fct) ξ is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ �⇒ ξ(t, s) < 0
(g-left-s-fct) ξ is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ �⇒ ξ(t, β) < 0.

The relationships between the former geometric condition and the Matkowski one
attached to upper diagonal functions are nothing else than a simple translation of
the previous ones involving upper diagonal relations; we do not give details.

Summing up, any concept (like the ones above) about (upper diagonal) relations
over R0+ may be written as a concept about (upper diagonal) functions in the class
F (R0+×R0+, R(±∞)). For the rest of our exposition, it will be convenient working
with relations over R0+, and not with functions in F (R0+ × R0+, R(±∞)); this,
however, is but a methodology question.

We may now pass to the description of some basic objects in this area.

Part-Case (I) Let F (re)(R0+, R) stand for the subclass of all ϕ ∈ F (R0+, R)
with

ϕ is regressive: ϕ(t) < t , for all t > 0.

Call ϕ ∈ F (re)(R0+, R), Meir–Keeler admissible if

(mk-adm) ∀γ > 0, ∃β > 0, ∀t : γ < t < γ + β �⇒ ϕ(t) ≤ γ ;
or, equivalently: [∀γ > 0, ∃β > 0, ∀t : 0 < t < γ + β �⇒ ϕ(t) ≤ γ ].

Some important examples of such functions may be given along the lines below.
For any ϕ ∈ F (re)(R0+, R) and any s ∈ R0+, put

Λ+ϕ(s) = inf0<ε<s Φ(s+)(ε); where Φ(s+)(ε) = supϕ(]s, s + ε[)
Λ−ϕ(s) = inf0<ε<s Φ(s−)(ε); where Φ(s−)(ε) = supϕ(]s − ε, s[)
Λ±ϕ(s) = inf0<ε<s Φ(s±)(ε); where Φ(s±)(ε) = supϕ(]s − ε, s + ε[).

From the regressive property of ϕ, these limit quantities fulfill

(−∞ ≤) Λ+ϕ(s), Λ−ϕ(s) ≤ Λ±ϕ(s) ≤ s, ∀s ∈ R0+.

but the case of these limits having infinite values cannot be avoided.
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The following auxiliary fact will be useful.

Proposition 16 Let ϕ ∈ F (re)(R0+, R) and s ∈ R0+ be arbitrary fixed. Then,

(43-1) lim supn(ϕ(tn)) ≤ Λ+ϕ(s), for each sequence (tn) in R0+ with tn→ s+
(43-2) lim supn(ϕ(tn)) ≤ Λ−ϕ(s), for each sequence (tn) in R0+ with tn→ s−
(43-3) lim supn(ϕ(tn)) ≤ Λ±ϕ(s), for each sequence (tn) in R0+ with tn→ s.

Proof

(i) Given ε ∈]0, s[, there exists a rank p(ε) ≥ 0 such that s < tn < s + ε, for all
n ≥ p(ε); hence

lim supn(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s+)(ε).
It suffices taking the infimum over ε > 0 in this relation to get the desired fact.

(ii) The proof mimics the preceding one; so, we omit it.
(iii) Given ε ∈]0, s[, there exists a rank p(ε) ≥ 0 such that s − ε < tn < s + ε, for

all n ≥ p(ε); hence

lim supn(ϕ(tn)) ≤ sup{ϕ(tn); n ≥ p(ε)} ≤ Φ(s±)(ε).
Taking the infimum over ε > 0 in this relation, we get the desired conclusion.

Call ϕ ∈ F (re)(R0+, R), Boyd–Wong admissible [9], if

(bw-adm) Λ+ϕ(s) < s, for all s > 0.

In particular, ϕ ∈ F (re)(R0+, R) is Boyd–Wong admissible provided it is upper
semicontinuous at the right on R0+:

Λ+ϕ(s) ≤ ϕ(s), for each s ∈ R0+.

This, e.g., is fulfilled when ϕ is continuous at the right on R0+; for, in such a case,

Λ+ϕ(s) = ϕ(s), for each s ∈ R0+.

On the other hand, ϕ ∈ F (re)(R0+, R) is Boyd–Wong admissible when

ϕ is strongly Boyd–Wong admissible: Λ±ϕ(s) < s, ∀s ∈ R0+.

Further, let F (re, in)(R0+, R) stand for the class of all ϕ ∈ F (re)(R0+, R),
with

ϕ is increasing on R0+ (0 < t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2)).
Then, let us say that ϕ ∈ F (re, in)(R0+, R) is Matkowski admissible [41],
provided

(m-adm) (∀t > 0): limn ϕn(t) = 0, as long as (ϕn(t); n ≥ 0) exists.

Here, as usual, for each t > 0,

ϕ0(t) = t , ϕ1(t) = ϕ(t), . . . , ϕn+1(t) = ϕ(ϕn(t)), n ≥ 1.
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Note that the obtained class of functions is distinct from the above introduced one,
as simple examples show.

Remark 4 Under these conventions,

(BW-mk) each Boyd–Wong admissible function in F (re)(R0+, R)
is Meir–Keeler admissible
(M-mk) each Matkowski admissible function in F (re, in)(R0+, R)
is Meir–Keeler admissible.

The verification of this is as follows.

(i) (cf. Boyd and Wong [9]). Suppose that ϕ ∈ F (re)(R0+, R) is Boyd–Wong
admissible, and fix γ > 0; hence Λ+ϕ(γ ) < γ . By definition, there exists
β = β(γ ) > 0 with [γ < t < γ + β implies ϕ(t) < γ ]; proving that ϕ is
Meir–Keeler admissible.

(ii) (cf. Jachymski [25]). Assume that ϕ ∈ F (re, in)(R0+, R) is Matkowski
admissible. If the underlying property fails, then (for some γ > 0):

∀β > 0, ∃t ∈]γ, γ + β[, such that ϕ(t) > γ .

Combining with the increasing property of ϕ, one gets

(∀t > γ ): ϕ(t) > γ [whence (by induction): ϕn(t) > γ , for each n].

Fixing some t > γ and passing to limit as n → ∞, one derives 0 ≥ γ ;
contradiction. This ends the argument.

Having these precise, take a function ϕ ∈ F (re)(R0+, R) and define the
associated relation Ω := Ω[ϕ] over R0+, as

(t, s ∈ R0+): (t, s) ∈ Ω iff t ≤ ϕ(s).
Clearly, Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that tΩs; i.e., t ≤ ϕ(s).
As ϕ is regressive, one has ϕ(s) < s; and this yields t < s, whence the conclusion
follows. Further properties of this relation are deductible from

Proposition 17 Let the function ϕ ∈ F (re)(R0+, R) be given, and Ω := Ω[ϕ]
stand for the associated upper diagonal relation over R0+. Then,

(44-1) Ω is geometric Meir–Keeler when ϕ is Meir–Keeler admissible
(44-2) Ω is asymptotic Meir–Keeler when ϕ is Boyd–Wong admissible
(44-3) Ω is asymptotic bilateral separable when ϕ is strongly Boyd–Wong
admissible (see above).

Proof

(i) Let ε > 0 be given; and δ > 0 be the number associated to it, via Meir–Keeler
admissible property for ϕ. Given t, s ∈ R0+ with tΩs, ε < s < ε + δ we have
[t ≤ ϕ(s), ε < s < ε + δ]. This, according to the underlying property of ϕ,
gives ϕ(s) ≤ ε [hence, t ≤ ε]; wherefrom: Ω has the geometric Meir–Keeler
property.
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(ii) Suppose by contradiction that Ω is not asymptotic Meir–Keeler; i.e.,

there exist strictly descending sequences (tn) and (sn) in R0+
and elements ε in R0+, with
((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

This, by the definition of Ω , yields

(tn ≤ ϕ(sn), ∀n) and (tn→ ε+, sn→ ε+)

Passing to lim sup as n → ∞, one derives ε ≤ Λ+ϕ(ε) < ε; contradiction.
Hence, our working assumption is not acceptable; and conclusion follows.

(iii) Suppose by contradiction that Ω is not asymptotic bilateral separable; i.e.,

there exist sequences (tn; n ≥ 0) and (sn; n ≥ 0) in R0+
and elements ε ∈ R0+, with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε, sn→ ε).

This, by the definition of Ω , yields

(tn ≤ ϕ(sn), ∀n) and (tn→ ε, sn→ ε)

Passing to lim sup as n → ∞, one derives ε ≤ Λ±ϕ(ε) < ε; contradiction.
Hence, our working assumption is not acceptable; and conclusion follows.

Part-Case (II) Let (ψ, ϕ) ∈ F 2(R0+, R) := F (R0+, R)×F (R0+, R) be a couple
of functions endowed with

(norm) (ψ, ϕ) is normal:
ψ is increasing and ϕ is strictly positive [ϕ(t) > 0, ∀t > 0].

(This concept may be related to the one introduced by Rhoades [52]; see also Dutta
and Choudhury [19]). Then, define the relation Ω = Ω[ψ, ϕ] in R0+ × R0+, as

(t, s) ∈ Ω iff ψ(t) ≤ ψ(s)− ϕ(s).
We claim that, necessarily,Ω is upper diagonal. In fact, let t, s ∈ R0+ be such that

(t, s) ∈ Ω; i.e., ψ(t) ≤ ψ(s)− ϕ(s).
By the strict positivity of ϕ, one gets ψ(t) < ψ(s); and this, along with the
increasing property of ψ , shows that t < s; whence the conclusion follows. Further
properties of this relation are available under certain supplementary conditions
about the normal couple (ψ, ϕ), like below:

(as-pos) ϕ is asymptotic positive:
for each strictly descending sequence (tn; n ≥ 0) in R0+ and each ε > 0
with tn→ ε+, we must have lim supn(ϕ(tn)) > 0
(bd-osc) ψ is ϕ-bounded oscillating:
for each sequence (tn; n ≥ 0) in R0+ and each ε > 0 with tn → ε, we have
lim supn(ϕ(tn)) > ψ(ε + 0)− ψ(ε − 0).

Proposition 18 Let (ψ, ϕ) be a normal couple of functions in F 2(R0+, R); and
Ω := Ω[ψ, ϕ] be the associated upper diagonal relation. Then,
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(45-1) if ϕ is asymptotic positive, then Ω is asymptotic Meir–Keeler
(45-2) if ψ is ϕ-bounded oscillating, then the associated relation Ω
is asymptotic bilateral separable.

Proof

(i) Suppose by contradiction that Ω is not asymptotic Meir–Keeler:

there exist strictly descending sequences (tn) and (sn) in R0+
and elements ε in R0+ with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε+, sn→ ε+).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.

Passing to limit as n→∞, and noting that limn ψ(sn) = limn ψ(tn) = ψ(ε +
0), one gets limn ϕ(tn) = 0; in contradiction with the asymptotic positivity of
ϕ. So, necessarily, Ω has the asymptotic Meir–Keeler property; as claimed.

(ii) Suppose by contradiction that Ω is not asymptotic bilateral separable; i.e.,

there exist sequences (tn) and (sn) in R0+ and elements ε in R0+,
with ((tn, sn) ∈ Ω , ∀n) and (tn→ ε, sn→ ε).

By the former of these, we get

(0 <)ϕ(sn) ≤ ψ(sn)− ψ(tn), ∀n.

Passing to lim sup as n → ∞ yields lim supn ϕ(sn) ≤ ψ(ε + 0) − ψ(ε − 0);
in contradiction with ψ being ϕ-bounded oscillating. This tells us that Ω is
asymptotic bilateral separable; as claimed.

In the following, some basic (and useful) particular choices for the couple (ψ, ϕ)
above are to be discussed.

Part-Case (II-a) The construction in the preceding step (involving a certain χ ∈
F (re)(R0+, R)) is nothing else than a particular case of this one, corresponding to
the choice

ψ(t) = t , ϕ(t) = t − χ(t), t ∈ R0+.

Since the verification is immediate, we do not give details.

Part-Case (II-b) Let λ : R0+ →]1,∞[ and μ : R0+ →]0, 1[ be a couple of
functions, with λ=increasing. Define a relation Ω := Ω[[λ,μ]] over R0+ as

tΩs iff λ(t) ≤ [λ(s)]μ(s).
This will be referred to as the Jleli–Samet relation attached to λ(.) and μ(.).
(The proposed conventions come from the developments in Jleli and Samet [28],
corresponding to μ(.)=constant). By a direct calculation, it is evident that

tΩs iff tΩ[ψ, ϕ]s; where ψ(t) = log[log(λ(t))], ϕ(t) = − log(μ(t)), t > 0.
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Hence, this construction is entirely reducible to the standard one in this series.
Further aspects may be found in Suzuki and Vetro [61].

Part-Case (II-c) Let ψ ∈ F (R0+, R) andΔ ∈ F (R) be a couple of functions. The
following regularity condition involving these objects will be considered here

(BV-c) (ψ,Δ) is a Bari–Vetro couple:
ψ is increasing and Δ is regressive (Δ(r) < r , for all r ∈ R).

In this case, by definition,

ϕ(t) := ψ(t)−Δ(ψ(t)) > 0, for all t > 0;

so that (ψ, ϕ) is a normal couple of functions in F (R0+, R). Let Ω := Ω[ψ,Δ] be
the (associated) Bari–Vetro relation over R0+, introduced as

tΩs iff ψ(t) ≤ Δ(ψ(s)).
(This convention is related to the developments in Di Bari and Vetro [16]). From
(BV-c), Ω is an upper diagonal relation over R0+. It is natural then to ask: under
which extra assumptions about our data we have that Ω is an asymptotic Meir–
Keeler relation. The simplest one may be written as

(a-reg) Δ is asymptotic regressive:
for each descending sequence (rn) in R and each α ∈ R with rn→ α,
we have that lim infn Δ(rn) < α.

Note that, by the non-strict character of the descending property above, one has

Δ is asymptotic regressive implies Δ is regressive.

Proposition 19 Let the functions (ψ ∈ F (R0+, R),Δ ∈ F (R)) be such that

(ψ,Δ) is an asymptotic Bari-Vetro couple; i.e.,
ψ is increasing and Δ is asymptotic regressive.

Then,
(46-1) The above defined function ϕ is asymptotic positive
(46-2) The associated relationΩ is upper diagonal, and asymptotic Meir–Keeler

(hence, geometric Meir–Keeler).

Proof There are two steps to be passed.

(i) Let the strictly descending sequence (tn; n ≥ 0) in R0+ and the number ε > 0
be such that tn → ε+; we must derive that lim supn(ϕ(tn)) > 0. Denote, for
simplicity

(rn = ψ(tn), n ≥ 0); α = ψ(ε + 0).

By the imposed conditions (and ψ=increasing)

(rn) is descending and rn→ α as n→∞.
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In this case,

lim supn ϕ(tn) = lim supn[rn −Δ(rn)] = α − lim infn Δ(rn) > 0;

hence the claim.
(ii) The assertion follows at once from (ψ, ϕ) being a normal couple with

(ϕ=asymptotic positive), and a previous remark involving these objects.
However, for completeness reasons, we provide an argument for this.

Step ii-1 Let t, s > 0 be such that

tΩs; i.e., ψ(t) ≤ Δ(ψ(s)).
As Δ is regressive,

ψ(t) < ψ(s); whence t < s (in view of ψ=increasing);

so that Ω is upper diagonal.

Step ii-2 Suppose by contradiction that there exists a couple of strictly descending
sequences (tn) and (sn) in R0+, and a number ε > 0, with

tn→ ε+, sn→ ε+, and tnΩsn [i.e., ψ(tn) ≤ Δ(ψ(sn))], for each n.

From the increasing property of ψ , one has (under α := ψ(ε + 0))

(un := ψ(tn)) and (vn := ψ(sn)) are descending sequences in R, with
un→ α, vn→ α, as n→∞;

so, passing to lim inf as n → ∞ in the relation above [i.e., un ≤ Δ(vn), ∀n], one
gets (via Δ=asymptotic regressive)

α = lim infn un ≤ lim infn Δ(vn) < α; contradiction.

Hence, our working assumption is not acceptable; and the conclusion follows.

In particular, when ψ and Δ are continuous, our statement reduces to the one in
Jachymski [26].

Part-Case (III) Let χ : R0+ → R be an increasing function. We say that ξ :
R0+ × R0+ → R is a χ -inf-simulation function, if

(is-1) ξ is χ -diagonal: ξ(t, s) < χ(s)− χ(t), for each t, s > 0
(is-2) ξ is inf-asymptotic negative:
for each couple of strictly descending sequences (tn) and (sn) in R0+ and each
ε > 0 with (tn→ ε+, sn→ ε+), we have lim infn ξ(tn, sn) < 0.

If the increasing function χ is generic in this convention, we say that ξ is an inf-
simulation function.

The usefulness of this concept for the developments above is assured by the
following auxiliary fact.
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Proposition 20 Suppose that ξ : R0+ × R0+ → R is an inf-simulation function.
Then, the associated relation Ω := Ω[ξ ] on R0+, introduced as

(t, s ∈ R0+): tΩs iff ξ(t, s) ≥ 0

is upper diagonal and asymptotic (hence, geometric) Meir–Keeler.

Proof By definition, there exists an increasing function χ : R0+ → R such that ξ is
a χ -inf-simulation function. There are two steps to verify.

(i) Let t, s > 0 be such that

tΩs; i.e., ξ(t, s) ≥ 0.

By the χ -diagonal property, we get

χ(t)− χ(s) < −ξ(t, s) ≤ 0; whence χ(t) < χ(s).

This, along with χ=increasing, yields t < s; and the first assertion follows.
(ii) Suppose (by contradiction) that there exist a couple of strictly descending

sequences (tn) and (sn) in R0+ and a number ε > 0, such that

tnΩsn (i.e., ξ(tn, sn) ≥ 0), for all n, and (tn→ ε+, sn→ ε+).

By the former of these relations, we have lim infn ξ(tn, sn) ≥ 0; in contradiction
with the inf-asymptotic negative property of ξ . Hence, our working assumption
is not acceptable; where the second assertion follows as well.

Remark 5 Let us say that ξ : R0+ × R0+ → R is a simulation function, if (cf.
Khojasteh et al. [34])

(s-1) ξ is diagonal: ξ(t, s) < s − t , for each t, s > 0
(s-2) ξ is asymptotic negative:
for each couple of sequences (tn) and (sn) in R0+ and each ε > 0
with limn tn = limn sn = ε, we have lim supn ξ(tn, sn) < 0.

Clearly, each simulation function is an inf-simulation one (under χ(t) = t , t ∈
R0+); but the reciprocal is not in general true. This is shown from the example below.

Let χ : R0+ → R be an increasing discontinuous function; hence,

α := sup{χ(t + 0)− χ(t − 0); t ∈ R0+} > 0.

Let β ∈]0, α[ be fixed; note that, by the very definition above,

there exists θ > 0 such that χ(θ + 0)− χ(θ − 0) ≥ β.

Now, given the couple (χ, β), define a function ξ : R0+ × R0+ as

ξ(t, s) = −β + χ(s)− χ(t), t, s > 0.

We claim that ξ is an inf-simulation function, but not a simulation one.

(i) In fact, ξ is χ -diagonal, as β > 0.
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(ii) On the other hand, ξ is inf-asymptotic negative. To verify this, let the couple
of strictly descending sequences (tn) and (sn) in R0+ and the number ε > 0 be
such that (tn→ ε+, sn→ ε+). Then, by definition

limn ξ(tn, sn) = −β + χ(ε + 0)− χ(ε + 0) = −β < 0;

and the first half of our assertion follows.
(iii) Finally, we claim that ξ is not asymptotic negative. For, let the couple of

sequences (tn) and (sn) in R0+ and the number θ > 0 (described as before)
be such that tn→ θ−, sn→ θ+. Then, by definition

limn ξ(tn, sn) = −β + χ(θ + 0)− χ(θ − 0) ≥ 0;

hence the second half of our assertion follows as well.

Part-Case (IV) Let χ : R0+ → R be an increasing function. We say that η :
R0+ × R0+ → R is a χ–inf-manageable function, if

(imf-1) η is χ -diagonal: η(t, s) < χ(s)− χ(t), for each t, s > 0
(imf-2) η is inf-asymptotic subunitary:
for each couple of strictly descending sequences (tn) and (sn) in R0+ and each
ε > 0 with (tn→ ε+, sn→ ε+), we have lim infn[tn + η(tn, sn)]/sn < 1.

If the increasing function χ is generic in this convention, we say that η is a inf-
manageable function.

Proposition 21 Suppose that η : R0+ × R0+ → R is an inf-manageable function.
Then, the associated relation Ω := Ω[[η]] on R0+, introduced as

(t, s ∈ R0+): tΩs iff η(t, s) ≥ 0

is upper diagonal and asymptotic (hence, geometric) Meir–Keeler.

Proof By definition, there exists an increasing function χ : R0+ → R such that η is
a χ -inf-manageable function. As before, there are two steps to be passed.

(i) Let t, s > 0 be such that

tΩs; i.e., η(t, s) ≥ 0.

By the χ -diagonal property,

χ(t)− χ(s) < −η(t, s) ≤ 0; whence χ(t) < χ(s).

Combining with χ=increasing yields t < s; so that Ω is upper diagonal.
(ii) Suppose by contradiction that there exists a couple of strictly descending

sequences (tn) and (sn) in R0+ and a number ε > 0, with

tn→ ε+, sn→ ε+, and tnΩsn (i.e., η(tn, sn) ≥ 0), for each n.

Then,

lim infn[tn + η(tn, sn)]/sn ≥ lim infn[tn/sn] = 1;
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in contradiction with η being inf-asymptotic subunitary. Hence, Ω has the
asymptotic Meir–Keeler property; and, from this, we are done.

Remark 6 An indirect proof of the result above is to be obtained by means of
inclusion (valid over the class F (R0+ × R0+, R))

η is inf-manageable implies η is inf-simulation.

In fact, suppose that

η is inf-manageable;
whence η is χ -inf-manageable, for some increasing χ : R0+ → R.

By this very choice, it is clear that η(., .) appears as χ -diagonal. So, it remains to
establish that

η is inf-asymptotic negative:
for each couple of strictly descending sequences (tn) and (sn) in R0+ and each
ε > 0 with (tn→ ε+, sn→ ε+), we have lim infn η(tn, sn) < 0.

In fact, let (tn), (sn) and ε > 0 be as in the premise above. As η is inf-asymptotic
subunitary, we must have

lim infn[tn/sn + η(tn, sn)/sn] < 1;

and this yields (in a direct way)

λ := lim infn η(tn, sn)/sn ≤
lim infn[(tn/sn + η(tn, sn)/sn)] + limn[−tn/sn] < 0.

Let α ∈]λ, 0[ be arbitrary fixed. By this very relation, we derive

for each p ∈ N , there exists i(p) ≥ p, with η(ti(p), si(p))/si(p) < α;

and this yields (by the properties of (sn), combined with α < 0)

for each p ∈ N , there exists i(p) ≥ p, with η(ti(p), si(p)) < αsi(p) < αε.

This gives [lim infn η(tn, sn) ≤ αε < 0]; and proves the desired fact.

Remark 7 According to Du and Khojasteh [17], let us say that η : R0+ × R0+ → R

is a manageable function, if

(mf-1) η is diagonal: η(t, s) < s − t , for each t, s > 0
(mf-2) η is asymptotic subunitary:
for each bounded sequence (tn) in R0+, and each descending sequence (sn) in R0+
we have lim supn[tn + η(tn, sn)]/sn < 1.

We claim that each manageable function is inf-manageable. This is verified along
the steps below.

(i) Clearly, η is χ -diagonal, where (χ(t) = t , t ∈ R0+).
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(ii) Let the couple of strictly descending sequences (tn) and (sn) in R0+ and the
number ε > 0 be such that (tn → ε+, sn → ε+). Clearly, (tn; n ≥ 0) is a
bounded sequence; and then, by the imposed hypothesis

lim infn[tn + η(tn, sn)]/sn ≤ lim supn[tn + η(tn, sn)]/sn < 1;

so that η is inf-asymptotic subunitary. This proves our claim.

Remark 8 Note that many other relations of this type—including the ones in
Argoubi et al. [4], Du and Khojasteh [17], Jachymski [26], Karapinar et al. [30],
Khojasteh and Rakočević [33], Lim [39], Nastasi and Vetro [46], Roldán et al.
[54], to quote only a few—are ultimately reducible to the simpler ones Ω[χ ] and
Ω[ψ, ϕ] for appropriate functions χ and (ψ, ϕ). However, none of these techniques
can handle the contractive conditions appearing in Khan et al. [32], Roldán and
Shahzad [53], or Turinici [63]. A way of avoiding these troubles is of dimensional
nature; further aspects will be delineated in a separate paper.

5 Statement of the Problem

LetX be a nonempty set. Take a metric d : X×X→ R+ onX; and let R ⊆ X×X
be a relation overX; the triple (X, d,R)will be said to be a relational metric space.
Further, let T ∈ F (X) be a selfmap of X. In the following, sufficient conditions are
given for the existence and/or uniqueness of elements in Fix(T ).

Concerning the uniqueness question, call the subset Y of X, R-asingleton if
[y1, y2 ∈ Y , y1Ry2] imply y1 = y2. Then, let us introduce the condition

T is fix-R-asingleton: Fix(T ) is R-asingleton.

This yields the strategy to be followed in concrete cases; we do not give details.
Passing to the existence question, the metrical way of solving it is by means of

local and global (metrical) conditions involving our data.
(5-I) By an iterative couple attached to T , we mean any couple (x0; (xn)), where

x0 is a point in X and (xn = T nx0; n ≥ 0) is the associated iterative sequence.
Then, we say that the iterative couple (x0; (xn)) is R-ascending, provided

(xn) is R-ascending (xnRxn+1, ∀n).

The class of all R-ascending iterative couples will be denoted as icouA(T ).
Further, let (x0; (xn)) be a R-ascending iterative couple attached to T . Given the

natural number k ≥ 1, let us say that (x0; (xn)) is (R, k)-uscattered, provided

∀(m, n) ∈ N(<), ∃p ∈ N , such that n < p ≤ n+ k and xmRxp.

When k ≥ 1 is generic, we say that (x0; (xn)) is R-uscattered. The class of
all (R-ascending, R-uscattered) iterative couples (x0; (xn)) will be denoted as
icouAUS(T ).
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Now, let us consider the conditions

(a-reg) T is ascending regular: icouA(T ) is nonempty
(a-usc-reg) T is ascending-uscattered regular: icouAUS(T ) is nonempty.

Concerning these conditions, two basic problems occur.
(Pro-1) The first question is that of obtaining R-ascending iterative couples by

starting from certain conditions upon T . For example, this is available under

(s-pro) T is R-semi-progressive [X(T ,R) := {x ∈ X; xRT x} �= ∅],
(incr) T is R-increasing [xRy �⇒ T xRTy].

As the verification is immediate, we do not give details.
(Pro-2) The second problem is that of getting (R-ascending, R-uscattered)

iterative couples by starting from R-ascending iterative couples. So, assume that

T is ascending regular (icouA(T ) is nonempty);

note that, necessarily, T is R-semi-progressive. Denote, for each x ∈ X(T ,R),
spec(x) = {i ∈ N(1,≤); xRT ix}.

This will be referred to as the spectrum of x (modulo (R, T )). Clearly, 1 ∈ spec(x);
but, the alternative spec(x) = {1} cannot be avoided.

The following particular answer to the underlying question is available. Letting
the R-ascending iterative couple (x0; (xn)), define the property

(t-asc) (x0; (xn)) is translation ascending:
xiRxj implies xi+sRxj+s , for all s ∈ N .

Clearly, this holds when T is R-increasing.

Proposition 22 Let the R-ascending iterative couple (x0; (xn)) be translation
ascending. In addition, suppose that spec(x0) is scattered. Then, necessarily,
(x0; (xn)) is R-uscattered.

Proof Fix (m, n) ∈ N(<). By hypothesis, there exists k ∈ N(1,≤), with

spec(x0) = {i ∈ N(1,≤); x0Rxi} is k-scattered; wherefrom
there exists r ∈ spec(x0) (hence, x0Rxr ), with n−m < r ≤ n−m+ k.

In this case, under the notation p = m+ r , we have

n < p ≤ n+ k and xmRxm+r (i.e., xmRxp);

if we remember that (x0; (xn)) is translation ascending. Hence, the iterative couple
(x0; (xn)) is R-uscattered; as claimed.

In the following, some other example of such objects is given. The following
auxiliary fact is our starting point.

Proposition 23 Let the R-ascending sequence (zn; n ≥ 0) in X and the number
h ∈ N(2,≤) be such that (under the notation Z := {zn; n ≥ 0})
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RZ := R ∩ (Z × Z) is h-transitive: Rh
Z ⊆ RZ .

Then, necessarily,

(∀r ≥ 0): [(zi, zi+1+r(h−1)) ∈ R, ∀i ≥ 0].
Proof We shall use the induction with respect to r . First, by the R-ascending
property of our sequence,

(zi, zi+1) ∈ RZ ⊆ R, ∀i ≥ 0; whence the case of r = 0 holds.

This, by definition (and the h-transitive hypothesis), yields

(zi, zi+h) ∈ Rh
Z ⊆ RZ ⊆ R, ∀i ≥ 0;

hence, the case of r = 1 holds too. Suppose that the underlying property holds for
r ∈ {0, . . . , s}, where s ≥ 1; we claim that it holds as well for r = s + 1. In fact, let
i ≥ 0 be arbitrary fixed. Again by the R-increasing property of our sequence,

(zi+1+s(h−1), zi+1+(s+1)(h−1)) ∈ Rh−1
Z ;

so that by the inductive hypothesis (and properties of relational product)

(zi, zi+1+(s+1)(h−1)) ∈ RZ ◦Rh−1
Z = Rh

Z ⊆ RZ ⊆ R;

hence the claim. The proof is thereby complete.

Given the R-ascending iterative couple (x0; (xn)), call it (R, h)-transitive
(where h ∈ N(2,≤)), when

the restriction of R to the T -orbit X0 := {xn; n ≥ 0} is h-transitive.

When h ∈ N(2,≤) is generic in this convention, we then say that the R-ascending
iterative couple (x0; (xn)) is R-transitive.

The following answer to the posed question is now available.

Proposition 24 Let the R-ascending iterative couple (x0; (xn)) be R-transitive.
Then, necessarily, (x0; (xn)) is R-uscattered.

Proof By definition, there exists h ∈ N(2,≤) such that (x0; (xn)) is (R, h)-
transitive. Let (m, n) ∈ N(<) be arbitrary fixed. By the preceding result,

(zm, zm+1+r(h−1)) ∈ R, ∀r ≥ 0.

Asm+1 ≤ n, there exists at least one r ∈ N(1,≤)with n < m+1+r(h−1) ≤ n+h.
It will suffice putting p = m+ 1+ r(h− 1) to end the reasoning.

Note, finally, that when R is transitive on X, then

spec(x) = N(1,≤), for all x ∈ X(T ,R);
so, the whole theory above becomes trivial.

(5-II) Having these precise, we may now pass to the essential part of our devel-
opments. Given the R-ascending iterative couple (x0; (xn)), one of the following
alternative holds:
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(Alt-1) The R-ascending iterative couple (x0; (xn)) is telescopic, in the sense

the sequence (xn) is telescopic: there exists h ≥ 0, such that d(xh, xh+1) = 0.

By the very definition of our sequence, one derives

xh = xn, for all n ≥ h; whence z := xh is an element of Fix(T ).

As a consequence, this case is completely clarified from the fixed point perspective.
(Alt-2) The R-ascending iterative couple (x0; (xn)) is non-telescopic, in the

sense

the sequence (xn) is non-telescopic: d(xn, xn+1) > 0, ∀n.

We then say that the iterative couple (x0; (xn)) is (a-nt)-admissible. This is the
effective case when the posed problem is to be solved.

Under the precise framework, let us list the specific directions under which the
proposed problem is to be considered.

(rpo-1) We say that the (a-nt)-admissible iterative couple (x0; (xn)) attached to T
is semi-Picard (modulo (d,R; T )) when the (R-ascending non-telescopic)
sequence (xn) (in X) is d-asymptotic (limn d(xn, xn+1) = 0)

(rpo-2) We say that the (a-nt)-admissible iterative couple (x0; (xn)) attached to
T is Picard (modulo (d,R; T )) when the (R-ascending non-telescopic)
sequence (xn) (in X) is d-Cauchy

(rpo-3) We say that the (a-nt)-admissible iterative couple (x0; (xn)) attached to
T is strongly Picard (modulo (d,R; T )) when the (R-ascending non-
telescopic) sequence (xn) (in X) is d-convergent and limn(xn) ∈ Fix(T )

(rpo-4) We say that the (a-nt)-admissible iterative couple (x0; (xn)) attached to
T is semi-Bellman Picard (modulo (d,R; T )) when the (R-ascending
non-telescopic) sequence (xn) (in X) is d-convergent and (xn; n ≥
0)RR limn(xn) ∈ Fix(T ).

Here, if (zn; n ≥ 0) is a sequence in X and z is an element in X, we defined

(zn; n ≥ 0)Rz iff znRz, for all n
(zn; n ≥ 0)RRz iff (wn; n ≥ 0)Rz, for some subsequence (wn) of (zn).

In particular, when T is R-semi-progressive and R-increasing, these conventions
are comparable with the ones in Turinici [66], which, in case of R = X×X, reduce
to the ones in Rus [55, Ch 2, Sect 2.2]; because, in this setting, X(T ,R) = X.

Sufficient conditions for such properties are being founded on ascending orbital
full concepts (in short: (a-o-f)-concepts). Call the sequence (zn; n ≥ 0) in X,

R-ascending, if ziRzi+1 for all i ≥ 0
T -orbital, when (zn = T nx; n ≥ 0), for some x ∈ X
full, if n �→ zn is injective (i �= j implies zi �= zj );

the intersections of these are just the precise concepts.
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(reg-1) Call X, (a-o-f,d)-complete provided (for each (a-o-f)-sequence) d-Cauchy
�⇒ d-convergent

(reg-2) Let us say that T is (a-o-f,d)-continuous, if [(zn)=(a-o-f)-sequence and

zn
d−→ z] imply T zn

d−→ T z

(reg-3) Call R, (a-o-f,d)-almost-selfclosed when [(zn)=(a-o-f)-sequence and

zn
d−→ z] imply (zn; n ≥ 0)RRz.

(5-III) To solve our posed problem along the precise directions, the metrical
contractive technique will be used; it is strongly connected with certain Meir–Keeler
conditions [43] upon the considered data. Denote, for x, y ∈ X
Q1(x, y) = d(x, T x),Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y),Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y),Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)),
K1(x, y) = d(x, T 2x),K2(x, y) = d(T x, T 2x), K (x, y) = (K1(x, y),K2(x, y)).

Further, let us construct the family of functions [for x, y ∈ X]

P0(x, y) = Q5(x, y) = d(T x, T y),
P1(x, y) = (1/2)[Q3(x, y)+Q4(x, y)],
P2(x, y) = (1/2)[K1(x, y)+Q4(x, y)],
M0(x, y) = min{Q1(x, y),Q2(x, y),Q5(x, y),Q6(x, y),K2(x, y)},
M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)}.
(5-III-1) Having this precise, let P = P(T ) be a map in F (X × X,R+). For

example, one may take

P(x, y) = Θ(Q(x, y),K (x, y)), x, y ∈ X;

where Θ : R6+ × R2+ → R+ is a map; but this is not the only possible choice. We
say that T is Meir–Keeler (d,R;P)-contractive if

(mk-1) for each x, y ∈ X with xRy and P(x, y) > 0, we have P0(x, y) <

P (x, y);
referred to as: T is strictly contractive (modulo (d,R;P))
(mk-2) ∀ε > 0, ∃δ > 0, ∀x, y ∈ X:
xRy and ε < P (x, y) < ε + δ imply P0(x, y) ≤ ε;
referred to as: T has the Meir–Keeler property (modulo (d,R;P)).

In particular, when R = X × X, these concepts are comparable with the ones
introduced by Meir and Keeler [43] and Matkowski [42]; see also Cirić [13].

Remark 9 By the former of these conditions, the Meir–Keeler property (modulo
(d,R;P)) of T writes

(mk-3) ∀ε > 0, ∃δ > 0, ∀x, y ∈ X:
xRy and 0 < P0(x, y) < P (x, y) < ε + δ imply P0(x, y) ≤ ε.
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(5-III-2) A geometric version of the above concept may be given along the
lines below. Remember that the relation Ω ⊆ R0+ × R0+ is called upper diagonal,
provided

(u-diag) (t, s) ∈ Ω implies t < s;

the class of all these will be denoted as udiag(R0+). Further, let us introduce the
conditions (over the class udiag(R0+))

(g-mk) Ω is geometric Meir–Keeler:
∀ε > 0, ∃δ > 0, ∀(t, s): tΩs, ε < s < ε + δ �⇒ t ≤ ε
(g-bila-s) Ω is geometric bilateral separable:
∀β > 0, ∃γ ∈]0, β[, ∀(t, s): t, s ∈]β − γ, β + γ [ �⇒ (t, s) /∈ Ω
(g-left-s) Ω is geometric left separable:
∀β > 0, ∃γ ∈]0, β[, ∀t : t ∈]β − γ, β[ �⇒ (t, β) /∈ Ω .

Now, given the mapping P = P(T ) : X×X→ R+ and the relationΩ ⊆ R0+×R0+,
let us say that T is (d,R;P ;Ω)-contractive, provided

(Om-contr) (P0(x, y), P (x, y)) ∈ Ω ,
for all x, y ∈ X with xRy and P0(x, y), P (x, y) > 0.

Proposition 25 Suppose that T is (d,R;P ;Ω)-contractive where the relation
Ω ⊆ R0+ × R0+ is upper diagonal and geometric Meir–Keeler. Then, T is Meir–
Keeler (d,R;P)-contractive.

Proof

(i) Let x, y ∈ X be such that xRy and P(x, y) > 0. If P0(x, y) = 0, all is clear.
Suppose now that P0(x, y) > 0. As a consequence of this,

(t, s) ∈ Ω; where t := P0(x, y), s := P(x, y).
Combining with the upper diagonal property of Ω , one gets t < s;
i.e., P0(x, y) < P (x, y). Summing up, T is strictly contractive (modulo
(d,R;P)).

(ii): Let ε > 0 be arbitrary fixed; and δ > 0 be the number assured by the geometric
Meir–Keeler property of Ω . Further, let x, y ∈ X be such that xRy and ε <
s := P(x, y) < ε + δ. As before, if P0(x, y) = 0, all is clear. Suppose now
that P0(x, y) > 0. By definition, we must have

(t, s) ∈ Ω; where t := P0(x, y), s := P(x, y);
and this along with ε < s < ε+δ gives (by the geometric Meir–Keeler property
of Ω), t ≤ ε; i.e., P0(x, y) ≤ ε. Putting these together, it follows that T has
the Meir–Keeler property (modulo (d,R;P)). The proof is complete.

(5-III-3) In the following, a converse result is formulated. Given the mapping
P : X × X → R+, let Ω = Ω[d,R;P ; T ] stand for the associated relation over
R0+:
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Ω = {(P0(x, y), P (x, y)); xRy, P0(x, y), P (x, y) > 0};
or, in other words:
(t, s) ∈ Ω iff t = P0(x, y), s = P(x, y), where
xRy and P0(x, y), P (x, y) > 0.

Proposition 26 Under these conventions, we have

(55-1) If T is Meir–Keeler (d,R;P)-contractive, then the attached relation
Ω = Ω[d,R;P ; T ] is upper diagonal and geometric Meir–Keeler
(55-2) T is Meir–Keeler (d,R;P)-contractive if and only if the attached
relation Ω = Ω[d,R;P ; T ] is upper diagonal and geometric Meir–Keeler.

Proof

(i) Suppose that T is Meir–Keeler (d,R;P)-contractive. There are two steps to
be passed.

(i-1) Let (t, s) ∈ R0+ × R0+ be such that (t, s) ∈ Ω; hence (by definition)

t = P0(x, y), s = P(x, y), where xRy and P0(x, y), P (x, y) > 0.

From the strict contractive property of T , we must have P0(x, y) < P (x, y);
or, equivalently, t < s, which shows that Ω is upper diagonal.

(i-2) Let ε > 0 be arbitrary fixed; and δ > 0 be the number associated by the Meir–
Keeler property of T . Further, let (t, s) ∈ R0+ × R0+ be such that (t, s) ∈ Ω
and ε < s < ε + δ; hence (see above)

t = P0(x, y), s = P(x, y), where xRy and P0(x, y), P (x, y) > 0;

so that (by definition):

xRy, P0(x, y) > 0, and ε < P (x, y) < ε + δ.
By the underlying Meir–Keeler-property for T , we get

P0(x, y) ≤ ε; i.e. (under our notation): t ≤ ε;
so that Ω has the geometric Meir–Keeler property.

(ii) Suppose that the associated relation Ω = Ω[d,R;P ; T ] over R0+ is upper
diagonal and has the geometric Meir–Keeler property. By the very definition
of this object, T is (d,R;P ;Ω)-contractive. Combining with the preceding
result, one derives that T appears as Meir–Keeler (d,R;P)-contractive.

As a consequence of this, it follows that the Meir–Keeler (d,R;P)-contractive
properties of T are finally reducible to the upper diagonal and geometric Meir–
Keeler properties for the associated relation Ω[d,R;P ; T ].

Concerning this aspect, remember that various examples of such objects were
treated in a previous place. There are three cases to discuss.

Case I Given ϕ ∈ F (R0+, R), we say that the mapping T is Boyd–Wong
(d,R;P ;ϕ)-contractive, if

P0(x, y) ≤ ϕ(P (x, y)), ∀x, y ∈ X, xRy, P(x, y) > 0.



804 M. Turinici

The specific classes of such functions ϕ are founded on Meir–Keeler admissible
concepts. Let F (re)(R0+, R) stand for the class of all ϕ ∈ F (R0+, R) with

ϕ is regressive: ϕ(t) < t , ∀t > 0.

We say that ϕ ∈ F (re)(R+) is Meir–Keeler admissible, if

∀γ > 0, ∃β > 0, ∀t : γ < t < γ + β �⇒ ϕ(t) ≤ γ ;
or, equivalently: [∀γ > 0, ∃β > 0, ∀t : 0 < t < γ + β �⇒ ϕ(t) ≤ γ ].

The usefulness of this concept is to be judged from

Proposition 27 Let ϕ ∈ F (re)(R+) be Meir–Keeler admissible (see above). Then,
the following inclusion is true in (ZF-AC+DC):

If T is Boyd–Wong (d,R;P ;ϕ)-contractive, then
T is Meir–Keeler (d,R;P)-contractive.

Proof Let Ω := Ω[ϕ] be the relation over R0+ introduced as

(t, s ∈ R+): tΩs iff t ≤ ϕ(s).
By a previous fact,Ω is upper diagonal and geometric Meir–Keeler. This along with
T being (d,R;P ;Ω)-contractive yields (see above) the written conclusion.

Case II Given the functional couple (ψ, ϕ) ∈ F 2(R0+, R), let us say that the
mapping T is Rhoades (d,R;P ;ψ, ϕ)-contractive, provided

ψ(P0(x, y)) ≤ ψ(P (x, y))− ϕ(P (x, y)),
for all x, y ∈ X, with xRy and P0(x, y), P (x, y) > 0.

To discuss it, remember that some compatible properties of the couple (ψ, ϕ)
were introduced. First, let us assume that

(comp-1) (ψ, ϕ) is normal:
ψ is increasing, and ϕ is strictly positive (ϕ(t) > 0, ∀t > 0).

Further, let us introduce the condition upon (ψ, ϕ)

(comp-2) ϕ is asymptotic positive:
for each strictly descending sequence
(tn; n ≥ 0) in R0+ and each ε > 0 with tn→ ε+,
we must have lim supn(ϕ(tn)) > 0.

Proposition 28 Suppose that (ψ, ϕ) is normal and ϕ is asymptotic positive. Then,
the inclusion below holds in (ZF-AC+DC)

T is Rhoades (d,R;P ;ψ, ϕ)-contractive implies
T is Meir–Keeler (d,R;P)-contractive.

Proof Let Ω := Ω[ψ, ϕ] be the associated relation over R0+
(t, s ∈ R0+): tΩs iff ψ(t) ≤ ψ(s)− ϕ(s).
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First, by the normality of (ψ, ϕ), Ω is upper diagonal. Second, the asymptotic
positivity of ϕ gives (by a previous result) thatΩ is asymptotic Meir–Keeler; hence
geometric Meir–Keeler as well. This along with T being (d,R;P ;Ω)-contractive
yields (see above) the written conclusion.

Case III Denote, for x, y ∈ X,

M1(x, y) = (Q1(x, y),Q6(x, y)),

M1(x, y) = maxM1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = (Q1(x, y),Q2(x, y),Q6(x, y)),

M2(x, y) = maxM2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)}.

Given the couple of maps g ∈ F (R+), H ∈ F (R3+, R+), let us say that the
mapping T is Khan (d,R;M2; g,H)-contractive, provided

(K-con) g(P0(x, y)) ≤ g(M2(x, y))−H(M2(x, y)), ∀x, y ∈ X, xRy.

The class of functions (g,H) appearing here may be described as follows.
Let k ≥ 1 be a natural number. According to Khan et al. [32], we say that
G ∈ F (Rk+, R+) is an altering function, in case

(alter-1) G is increasing in each variable
(alter-2) G is reflexive sufficient: (t1 = . . . = tk = 0) iff G(t1, . . . , tk) = 0.

The class of all such functions will be denoted F (alt)(Rk+, R+). Note that, given
G ∈ F (alt)(R3+, R+), the associated function (g(t) = G(t, t, t); t ∈ R+) is an
element of F (alt)(R+). Moreover, by our previous notations,

G(M2(x, y)) ≤ g(M2(x, y)), ∀x, y ∈ X.

Proposition 29 Suppose that the mapping T is Khan (d,R;M2; g,H)-
contractive, where g ∈ F (alt)(R+) and H ∈ F (alt)(R3+, R+). Then, necessarily,
T is Meir–Keeler (d,R;M2)-contractive, in (ZF-AC+DC).

Proof The verification consists of two stages.

(i) Assume by contradiction that T is not strictly contractive (modulo (d,R;M2)):
there exist x, y ∈ X such that xRy, M2(x, y) > 0 and P0(x, y) ≥ M2(x, y).
By the contractive condition (and g=increasing),

g(M2(x, y)) ≤ g(P0(x, y)) ≤ g(M2(x, y))−H(M2(x, y));
wherefrom H(M2(x, y)) = 0.

This, along with H ∈ F (alt)(R3+, R+), yields M2(x, y) = 0; hence
M2(x, y) = 0; in contradiction with the posed hypothesis.

(ii) Assume by contradiction that T does not have the Meir–Keeler property
(modulo (d,R;M2)): there exists ε > 0, so that

C(δ) := {(u, v) ∈ X ×X; uRv, ε < M2(u, v) < ε + δ, P0(u, v) > ε}
is a nonempty subset of X ×X, for each δ > 0.
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Taking a zero converging sequence (δn) in R0+, we get by the Denumerable Axiom
of Choice (deductible in (ZF-AC+DC)), a sequence ((xn, yn); n ≥ 0) in X × X,
with the property

(∀n): (xn, yn) ∈ C(δn); that is (by definition and preceding step),
xnRyn, ε < P0(xn, yn) < M2(xn, yn) < ε + δn;

note that, as a direct consequence of this,

P0(xn, yn)→ ε+ andM2(xn, yn)→ ε+, as n→∞.

By the contractive condition, we get for all n,

H(M2(xn, yn)) ≤ g(M2(xn, yn))− g(P0(xn, yn));

and this (via g=increasing) gives (by the above)

(0 ≤) lim supn H(M2(xn, yn)) ≤ g(ε + 0)− g(ε + 0) = 0;
so, limn H(M2(xn, yn)) = 0.

On the other hand, by the very construction of our sequence ((xn, yn); n ≥ 0), there
must be some index i ∈ {1, 2, 6} such that

ε < Qi(xn, yn) < ε + δn, for infinitely many n.

Without loss, one may assume that i = 1. Combining with (H=increasing in all
variables) yields

H(M2(xn, yn)) ≥ H(ε, 0, 0), for infinitely many n;
wherefrom limn H(M2(xn, yn)) ≥ H(ε, 0, 0) > 0;

in contradiction with the limit property above. Consequently, our working assump-
tion is not acceptable; wherefrom, T does have the Meir–Keeler property (modulo
(d,R;M2)). The proof is complete.

Note that similar conclusions may be derived for the pair (M1,M1); we do not
give further details.

6 Main Result

Let X be a nonempty set. Take a metric d(., .) and a relation R on X; the triple
(X, d,R) will be then referred to as a relational metric space. Further, take some
selfmap T ∈ F (X), and put Fix(T ) = {z ∈ X; z = T z}; each point of it will be
referred to as fixed with respect to T . As precise, we have to determine conditions
assuring us that Fix(T ) is nonempty.

(6-I) By an iterative couple attached to T , we mean any couple (x0; (xn)), where
x0 is a point in X and (xn = T nx0; n ≥ 0) is the associated iterative sequence.
Then, we say that the iterative couple (x0; (xn)) is R-ascending, provided

(xn) is R-ascending (xnRxn+1, ∀n).
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The class of all such R-ascending iterative couples will be denoted as icouA(T ).
Further, let (x0; (xn)) be a R-ascending iterative couple attached to T . Given the

natural number k ≥ 1, let us say that (x0; (xn)) is (R, k)-uscattered, provided

∀(m, n) ∈ N(<), ∃p ∈ N , such that n < p ≤ n+ k and xmRxp.

When k ≥ 1 is generic here, we say that (x0; (xn)) is R-uscattered. The class
of all (R-ascending, R-uscattered) iterative couples (x0; (xn)) will be denoted as
icouAUS(T ).

In the following, the basic condition to be posed is

(a-usc-reg) T is ascending-uscattered regular: icouAUS(T ) is nonempty.

As a consequence of this, there exists an iterative couple (x0; (xn)), with

(adm-1) (x0; (xn)) is R-ascending
(adm-2) (x0; (xn)) is R-uscattered.

In addition (cf. a previous discussion) one may suppose that

(adm-3) (x0; (xn)) is non-telescopic (d(xn, xn+1) > 0, ∀n).

We then say that the iterative couple (x0; (xn)) is (a-us-nt)-admissible.
The specific directions under which the posed problem is to be solved were

already listed; as precise, these are based on local/global regularity conditions
involving the (a-us-nt)-admissible iterative couples we just introduced. On the
other hand, the metrical tools of our investigations consist in geometric contractive
conditions upon T , involving the couple (d,R), a mapping P = P(T ) : X×X→
R+, and a relation Ω ⊆ R0+ × R0+. Precisely, denote, for x, y ∈ X
Q1(x, y) = d(x, T x),Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y),Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y),Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)),
K1(x, y) = d(x, T 2x),K2(x, y) = d(T x, T 2x), K (x, y) = (K1(x, y),K2(x, y)).

Then, let us construct the family of functions [for x, y ∈ X]

P0(x, y) = Q5(x, y) = d(T x, T y),
P1(x, y) = (1/2)[Q3(x, y)+Q4(x, y)],
P2(x, y) = (1/2)[K1(x, y)+Q4(x, y)],
M0(x, y) = min{Q1(x, y),Q2(x, y),Q5(x, y),Q6(x, y),K2(x, y)},
M1(x, y) = max{Q1(x, y),Q6(x, y)},
M2(x, y) = max{Q1(x, y),Q2(x, y),Q6(x, y)}.

Usually, the mapping P(., .) above is of the form

P = Θ(Q,K ); i.e., P(x, y) = Θ(Q(x, y),K (x, y)), x, y ∈ X;

whereΘ : R6+×R2+ → R+ fulfills certain mild conditions; but, this does not exhaust
the class of all these. Likewise, the relation Ω is upper diagonal (see above).
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(6-II) The second condition upon our data is of starting type; and writes

(posi) (P ;M0) is positive: for each x, y ∈ X with (xRy, xRT x, T xRT 2x),
we have [M0(x, y) > 0 implies P(x, y) > 0].

This condition allows us applying the contractive conditions (to be introduced
below) at each stage of the proof.

(6-III) The third group of conditions allows us to get a d-asymptotic property and
full property for the (a-us-nt)-admissible iterative couple (x0; (xn)) to be considered.
It may be formulated as

(o-bd) (P ;M1) is orbitally bounded over each (a-us-nt)-admissible iterative
couple (x0; (xn)): P(xn, xn+1) ≤ M1(xn, xn+1), ∀n.

Some concrete versions of it will be discussed a bit further.
(6-IV) The fourth group of conditions has, as objective, a deduction of d-Cauchy

properties for the full d-asymptotic (a-us-nt)-admissible iterative couples (x0; (xn))
above. Some preliminaries are needed. Let the (a-us-nt)-admissible iterative couple
(x0; (xn)) be d-asymptotic but not d-Cauchy. According to a previous auxiliary fact,
there exist a natural number h ≥ 1, a number ε ∈ R0+, a rank J := j (ε, h) ≥ 1, and
a sequence ((m(j), n(j)); j ≥ 0) in N ×N , such that

(aqua-1) j ≤ m(j) < n(j), xm(j)Rxn(j), ∀j ≥ 0
(aqua-2) for each s, t ∈ N(0, 2h),
the sequence (Vj (s, t) := d(xm(j)+s , xn(j)+t ); j ≥ 0) (in R+)
is J -nearly in ]ε,∞[, with Vj (s, t)→ ε ++ as j →∞.

By definition, [h; ε, J ; ((m(j), n(j)); j ≥ 0)] will be referred to as the associated
to (x0; (xn)) quadruple.

Having these precise, we may now formulate the announced condition:

P is orbitally small over each full, d-asymptotic, d-non-Cauchy, and (a-us-nt)-
admissible iterative couple (x0; (xn)):
for each associated to (x0; (xn)) quadruple [h; ε, J ; ((m(j), n(j)); j ≥ 0)], we
have lim supj P (xm(j), xn(j)) ≤ ε.

As before, some concrete realizations of it will be given a bit further.
(6-V) Finally, the fifth group of conditions—referred to as orbitally normal

ones—assures us the desired fixed point property for the limit of each full d-
convergent (a-us-nt)-admissible couple (x0; (xn)). These may be written as

(o-nor-1) P is orbitally singular asymptotic over each full d-convergent (a-us-
nt)-admissible couple (x0; (xn)):
whenever xn

d−→ z and d(z, T z) > 0, we have lim infn P (un, z) < d(z, T z), for
each subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz
(o-nor-2) P is orbitally regular asymptotic over each full d-convergent (a-us-
nt)-admissible couple (x0; (xn)):
whenever xn

d−→ z and d(z, T z) > 0, we have P(un, z) → d(z, T z), for each
subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz
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(o-nor-3) P is orbitally strongly regular asymptotic over each full d-convergent
(a-us-nt)-admissible couple (x0; (xn)):
whenever xn

d−→ z and d(z, T z) > 0, we have P(un, z) →→ d(z, T z), for
each subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz.

Here, given the sequence (rn; n ≥ 0) in R and the point r ∈ R, we denoted

rn→→ r , if rn→ r and there exists a subsequence
(sn = ri(n); n ≥ 0) of (rn; n ≥ 0) such that [sn = r , ∀n ≥ 0].

The main (fixed point) result of this exposition (referred to as Geometric Meir–
Keeler theorem; in short: (MK-g)) may be stated as below.

Theorem 2 Suppose that T is ascending-uscattered regular as well as
(d,R;P ;Ω)-contractive, for some mapping P = P(T ) : X × X → R+ and
some relation Ω ⊆ R0+ × R0+ with the properties:

(61-i) (P ;M0) is positive
(61-ii) Ω is upper diagonal and geometric Meir–Keeler.

In addition, let X be (a-o-f,d)-complete; and take an (a-us-nt)-admissible iterative
couple (x0; (xn)), with (in addition)

(61-iii) (P ;M1) is orbitally bounded at (x0; (xn))
(61-iv) P is orbitally small at (x0; (xn)), whenever this iterative couple is d-
asymptotic and d-non-Cauchy.

Then,
(61-a) (x0; (xn)) is Picard (modulo (d,R; T ))
(61-b) (x0; (xn)) is strongly Picard (modulo (d,R; T )) provided the following

extra condition holds

(61-b-1) T is (a-o-f,d)-continuous

(61-c) (x0; (xn)) is Bellman Picard (modulo (d,R; T )), whenever R is (a-o-f,d)-
almost-selfclosed and one of the following extra conditions holds:

(61-c-1) P is orbitally singular asymptotic over (x0; (xn))
(61-c-2) P is orbitally regular asymptotic over (x0; (xn)), and Ω is asymptotic
bilateral separable
(61-c-3) P is orbitally strongly regular asymptotic over (x0; (xn)), and Ω is
asymptotic left separable.

Proof There are some steps to be passed.

Step 1 We firstly show that, under these conditions, the (a-us-nt)-admissible
iterative couple (x0; (xn)) is full and d-asymptotic. Denote, for simplicity,

(rn := d(xn, xn+1); n ≥ 0); hence (by hypothesis), (rn > 0, ∀n).

Let n ≥ 0 be arbitrary fixed. According to definition,
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Q1(xn, xn+1) = rn > 0,Q2(xn, xn+1) = rn > 0,
Q3(xn, xn+1) = d(xn, xn+2),Q4(xn, xn+1) = d(xn+1, xn+1) = 0,
Q5(xn, xn+1) = rn+1 > 0,Q6(xn, xn+1) = rn+1 > 0,
K1(xn, xn+1) = d(xn, xn+2), K2(xn, xn+1) = rn+1 > 0;

and this yields

P0(xn, xn+1) = Q5(xn, xn+1) = rn+1,
P1(xn, xn+1) = (1/2)d(xn, xn+2), P2(xn, xn+1) = (1/2)d(xn, xn+2),
M0(xn, xn+1) = min{rn, rn+1} > 0,
M1(xn, xn+1) = max{rn, rn+1},M2(xn, xn+1) = max{rn, rn+1}.

By the relation involvingM0,

P(xn, xn+1) > 0 (if we remember that (P ;M0) is positive).

Moreover, as xnRxn+1, the contractive property applies to (xn, xn+1); and yields

(contr) rn+1ΩP(xn, xn+1), ∀n.

Combining with (P ;M1) being orbitally bounded yields

P(xn, xn+1) ≤ M1(xn, xn+1) = max{rn, rn+1},
This, along with (contr), gives (via Ω=upper diagonal)

(P-ev) rn+1 < P(xn, xn+1) ≤ max{rn, rn+1}.
From the inequality between extremal terms, one derives

(rn+1 < rn, ∀n); i.e., (rn) is strictly descending.

Note that, as a first consequence of this,

(xn) is full: i < j implies xi �= xj (whence d(xi, xj ) > 0).

In fact, suppose by contradiction that

there exists i, j ∈ N with i < j , xi = xj .
Then, by definition

xi+1 = xj+1; so that ri = rj ;
in contradiction with ri > rj ; and the assertion follows. As a second consequence,

r := limn rn exists in R+; with, in addition, (rn > r , ∀n).

Suppose by contradiction that r > 0; and let δ = δ(r) > 0 be the number given
by the Meir–Keeler property of Ω . By definition, there exists m = m(δ) ≥ 1 such
that

n ≥ m implies r < rn < r + δ.
Let n ≥ m be fixed in the sequel. From (P-ev),

r < rn+1 < P(xn, xn+1) ≤ rn < r + δ.
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This, combined with (contr), yields (by the underlying property of Ω)

(r <)rn+1 ≤ r; contradiction.

Hence, r = 0; and this tells us that the (a-us-nt)-admissible iterative couple
(x0; (xn)) is, in addition, d-asymptotic.

Step 2 We prove that under the imposed conditions, the full d-asymptotic (a-us-nt)-
admissible iterative couple (x0; (xn)) is d-Cauchy. Suppose by contradiction that
this is not true:

(x0; (xn)) is (full, d-asymptotic and) d-non-Cauchy.

By a previous auxiliary fact, there exist a natural number h ≥ 1, a number ε ∈ R0+,
a rank J := j (ε, h) ≥ 1, and a sequence ((m(j), n(j)); j ≥ 0) in N ×N , with

(aqua-1) j ≤ m(j) < n(j), xm(j)Rxn(j), ∀j ≥ 0
(aqua-2) for each s, t ∈ N [0, 2h],
the sequence (Vj (s, t) := d(xm(j)+s , xn(j)+t ); j ≥ 0) (in R+)
is J -nearly in ]ε,∞[, with Vj (s, t)→ ε ++ as j →∞;

by definition, [h, ε, J ; ((m(j), n(j)); j ≥ 0)] will be referred to as the associated
to (x0; (xn)) quadruple. By these properties (and the choice of our iterative couple
(x0; (xn))), we have for each j ≥ J
Q1(xm(j), xn(j)) = rm(j) > 0, Q2(xm(j), xn(j)) = Vj (0, 0) > ε,
Q3(xm(j), xn(j)) = Vj (0, 1) > ε, Q4(xm(j), xn(j)) = Vj (1, 0) > ε,
Q5(xm(j), xn(j)) = Vj (1, 1) > ε, Q6(xm(j), xn(j)) = rn(j) > 0,
K1(xm(j), xn(j)) = d(xm(j), xm(j)+2) > 0,
K2(xm(j), xn(j)) = rm(j)+1 > 0;

and this yields (again for all j ≥ J )

M0(xm(j), xn(j)) > 0; hence, P(xm(j), xn(j)) > 0,

if we remember that (P,M0) is positive. Putting these together yields

xm(j)Rxn(j)), P0(xm(j), xn(j)) > ε, P(xm(j), xn(j)) > 0, for all j ≥ J ;

which shows that the contractive condition applies to the precise data, for all j ≥ J .
This along with the convention

αj = P0(xm(j), xn(j)), βj = P(xm(j), xn(j)), j ≥ J ,

tells us that we have

(contr) AjΩBj , ∀j ≥ 0;

where, for simplicity, we denoted

(Aj = αj+J ; j ≥ 0), (Bj = βj+J ; j ≥ 0).

As Ω is upper diagonal, we derive [Aj < Bj , ∀j ≥ 0]. This by the limit properties
above gives (via P=orbitally small)
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limj Aj = ε+, limj Bj = ε+.

By a previous auxiliary fact, there exists a couple of strictly descending subse-
quences (A∗j := Aq(j); j ≥ 0) and (B∗j := Bq(j); j ≥ 0) of (Aj ; j ≥ 0) and
(Bj ; j ≥ 0) respectively, so that

(A∗jΩB∗j , ∀j ≥ 0), and (A∗j → ε+, B∗j → ε+).

This, however, is in contradiction with Ω being asymptotic Meir–Keeler; or,
equivalently: geometric Meir–Keeler. Hence, our initial d-non-Cauchy hypothesis
about the iterative couple (x0; (xn)) is not acceptable; and our assertion follows.

Step 3 We prove that under the extra conditions above, the full d-Cauchy (a-us-nt)-
admissible iterative couple (x0; (xn)) yields a fixed point of T .

As X is (a-o-f,d)-complete, xn
d−→ z, for some (uniquely determined) z ∈ X.

There are two cases to discuss.

Case 3a Suppose that T is (a-o-f,d)-continuous. Then yn := T xn d−→ T z as n→
∞. On the other hand, (yn = xn+1; n ≥ 0) is a subsequence of (xn; n ≥ 0); whence

yn
d−→ z; and this gives (as d is separated), z = T z.

Case 3b Suppose that R is (a-o-f,d)-almost-selfclosed.

By the full property of (T xn = xn+1; n ≥ 0),

E := {n ∈ N; T xn = T z} is an asingleton;

so that the following separation property holds:

(sepa) ∃k = k(z) ≥ 0, such that n ≥ k implies
Q5(xn, z) = d(T xn, T z) > 0; hence,Q2(xn, z) = d(xn, z) > 0.

On the other hand, by the non-telescopic property of (xn),

Q1(xn, z) = d(xn, T xn) > 0, K2(xn, z) = d(T xn, T 2xn) > 0, ∀n.

Suppose by contradiction that

(pos) b := d(z, T z) > 0 [whenceQ6(xn, z) = b > 0, ∀n].

We show that this is not compatible with any of the orbital conditions upon P .
From the preceding observations, we have, ∀n ≥ k,
M0(xn, z) > 0; hence, P(xn, z) > 0 (as (P ;M0) is positive).

Further, as R is (a-o-f,d)-almost-selfclosed, we must have

(xn; n ≥ 0)RRz; i.e., there exists a subsequence (un = xi(n); n ≥ 0)
of (xn; n ≥ 0) with (un; n ≥ 0)Rz.

Note that, since (i(n)) is divergent, one may arrange for (i(n) ≥ k, ∀n); so,
combining with the preceding relation,
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unRz, d(T un, T z) > 0, and P(un, z) > 0, ∀n.

The contractive condition is therefore applicable ((un, z); n ≥ 0); and yields

(Om-contr) d(T un, T z)ΩP(un, z), ∀n ≥ 0.

Moreover, from the d-Cauchy and convergence properties, one gets (taking a
metrical property of d(., .) into account)

d(un, z), d(T un, z), d(T
2u,z)→ 0;

d(un, T un), d(T un, T
2un), d(un, T

2un)→ 0;
d(un, T z), d(T un, T z), d(T

2un, T z)→ b.

There are several sub-cases to be analyzed.

Alter 1 Assume that P is orbitally singular asymptotic. By the contractive property
and Ω being upper-diagonal,

(str-in) d(T un, T z) < P (un, z), for all n,

Passing to (inferior) limit as n→∞ gives

b = lim infn d(T un, T z) ≤ lim infn P (un, z) < b;

a contradiction. Hence, this alternative is not acceptable.

Alter 2 Suppose that P is orbitally regular asymptotic, and Ω is asymptotic
bilateral separable. From the above limit relations (and the choice of P )

limn d(T un, T z) = limn P (un, z) = b.

This, along with the contractive condition, yields a contradiction with respect to the
choice of Ω . Hence, this alternative is non-acceptable too.

Alter 3 Finally, assume that P is orbitally strongly regular asymptotic and Ω is
asymptotic left separable. According to this property (involving P ) there must be a
subsequence (wn := uj(n); n ≥ 0) of (un; n ≥ 0), such that (in addition)

P(wn, z) = b(> 0), for all n ≥ 0.

From the imposed contractive condition, we get

tnΩb (hence, tn < b), ∀n; where (tn = d(T wn, T z); n ≥ 0).

On the other hand, from the limit relations above, we have tn → β; whence
tn → β−. Taking an auxiliary fact into account, there exists a subsequence
(t∗n = tg(n); n ≥ 0) of (tn; n ≥ 0), with

(t∗n ) is strictly ascending and t∗nΩb, ∀n.

The obtained relation contradicts the choice of Ω; so, the posed alternative is again
non-acceptable for us.

Summing up, the working hypothesis d(z, T z) > 0 cannot be true; so that z =
T z. The proof is complete.
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Note that coincidence type versions of these facts are available, by means of
related techniques in Roldán et al. [54]. On the other hand, all these developments
may be extended to quasi-metric structures, under the lines in Nastasi and Vetro
[46]. Further aspects may be found in Leader [37]; see also Turinici [67].

7 Particular Aspects

Let (X, d,R) be a relational metric space; and T be a selfmap of X. As precise,
we have to determine appropriate conditions under which Fix(T ) is nonempty.
The specific directions for solving this problem were already listed. Sufficient
conditions for getting such properties are being founded on the (orbital type)
positivity, boundedness, small and normal concepts we just introduced. Finally, the
specific contractive properties to be used have been described; and the main result
incorporating all these is the already formulated one. It is our aim in the sequel
to expose certain particular cases of it, with some technical relevance. To do this,
remember that for each x, y ∈ X, we defined the (basic) maps

Q1(x, y) = d(x, T x),Q2(x, y) = d(x, y),
Q3(x, y) = d(x, T y),Q4(x, y) = d(T x, y),
Q5(x, y) = d(T x, T y),Q6(x, y) = d(y, T y),
Q(x, y) = (Q1(x, y),Q2(x, y),Q3(x, y),Q4(x, y),Q5(x, y),Q6(x, y)),
K1(x, y) = d(x, T 2x),K2(x, y) = d(T x, T 2x), K (x, y) = (K1(x, y),K2(x, y)).

By taking elementary order/algebraic combinations between these, one gets a lot of
functions to be used in our reasonings:

P0 = Q5, P1 = (1/2)[Q3 +Q4],
P2 = (1/2)[K1 +Q4],M0 = min{Q1,Q2,Q5,Q6,K2},
M1 = max{Q1,Q6},M2 = max{Q1,Q2,Q6};
or, explicitly (for x, y ∈ X)
P0(x, y) = d(T x, T y), P1(x, y) = (1/2)[d(x, T y)+ d(T x, y)],
P2(x, y) = (1/2)[d(x, T 2x)+ d(T x, y)],
M0(x, y) = min{d(x, T x), d(x, y), d(T x, T y), d(y, T y), d(T x, T 2x)},
M1(x, y) = max{d(x, T x), d(y, T y)},
M2(x, y) = max{d(x, T x), d(x, y), d(y, T y)}.

Then, by means of (further) intricate order/algebraic operations, we may define
some other functions of this type; the following ones will be taken as concrete
examples in our developments. Let us introduce the diagonal type subset of R2+
Δ = {(ξ, η) ∈ R+ × R0+; ξ ≤ η}.

This set is composed of a “singular” and “regular” part, expressed as

Δs = {(ξ, η) ∈ Δ; ξ < η},
Δr = {(ξ, η) ∈ Δ; ξ = η} = {(ζ, ζ ); ζ ∈ R0+}.
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For each (ξ, η) ∈ Δ, let us introduce the map B := B[ξ, η] : X ×X→ R+, as

B = Q6(ξ +Q1)/(η +Q2); or, explicitly (for x, y ∈ X)
B(x, y) = d(y, T y)[ξ + d(x, T x)]/[η + d(x, y)].

Further, let us define

B1=one of the maps B[ξ, η] with (ξ, η) ∈ Δs ,
B2=one of the maps B[ξ, η] with (ξ, η) ∈ Δr ; or, equivalently:
B2=one of the maps B[ζ, ζ ] with ζ ∈ R0+.

The reason of splitting these maps will become clear later. Finally, given (α, β) ∈ Δ,
let us introduce the map B3 := B3[α, β] : X ×X→ R+, according to

B3 = K2(α +Q4)/(β +Q2); or, explicitly (for x, y ∈ X):
B3(x, y) = d(T x, T 2x)[α + d(T x, y)]/[β + d(x, y)].
Having these precise, fix in the following the couples (ξ, η) ∈ Δs , (ζ, ζ ) ∈ Δr ,

(α, β) ∈ Δ; and (according to the previous conventions), denote

A = {Q1,Q2,Q4,Q5,Q6,K2},
A+ = {Q1,Q2,Q5,Q6,K2}, A− = {Q4},
B = {P1, P2, B1, B2, B3}, B+ = {B1, B2}, B− = {P1, P2, B3},
H = A ∪B, H+ = A+ ∪B+ = {Q1,Q2,Q5,Q6,K2, B1, B2},
H− = A− ∪B− = {Q4, P1, P2, B3}.

For each (nonempty) subset Υ ∈ exp(H ), let max(Υ ) ∈ F (X × X,R+) be the
mapping defined as

max(Υ )(x, y) = max{G(x, y);G ∈ Υ }, x, y ∈ X;

clearly, there are card[exp(H )] = 211 − 1 = 2047 subsets of this type. Denote
also

exp(H ;H+) = {Υ ∈ exp(H );Υ ∩H+ �= ∅}.
Note that any Υ ∈ exp(H ;H+) may be written as

Υ = Υ+ ∪ Υ−, where Υ+ ∈ exp(H+), Υ− ∈ exp[H−];
so, there are (27 − 1)24 = 2032 subsets of this type.

Technically speaking, the admissible maps P : X × X → R+ to be considered
are of the form

P = max(Υ ); where, Υ ∈ exp(H ;H+).

So, it remains to establish of to what extent is this functional family compatible with
the regularity conditions required by our main result.

(I) The first of these properties is positivity. Precisely, we have to establish that
(with P : X ×X→ R+ as before)

(posi) (P ;M0) is positive: for each x, y ∈ X with (xRy, xRT x, T xRT 2x),
we have [M0(x, y) > 0 implies P(x, y) > 0].
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The following positivity result is valid.

Proposition 30 All maps P = max(Υ ), where Υ ∈ exp(H ;H+) fulfill the
property (P ;M0)=positive.

Proof Clearly, all maps P ∈ H+ have the property in question. This conclusion
extends to all maps P = max(Υ ) where Υ ∈ exp(H ;H+); so that we are done.

Remark 10 In the case when

(a-sym) R is antisymmetric: xRy and yRx imply x = y
the positivity condition includes P1 = (1/2)[Q3 +Q4] as well; that is:

(xRy, xRT x, T xRT 2x) andM0(x, y) > 0 imply P1(x, y) > 0.

In fact, suppose—under these premises—that

P1(x, y) = 0; that is: x = Ty and T x = y.

As a consequence of these, x = T 2x; whence T 2xRT x. Combining with T xRT 2x

yields (as R=antisymmetric)

T x = T 2x; in contradiction with d(T x, T 2x) ≥ M0(x, y) > 0.

Hence, P1(x, y) > 0; and conclusion follows.

(II) The next property to be checked is orbital boundedness, which writes

(o-bd) (P ;M1) is orbitally bounded over each (a-us-nt)-admissible iterative
couple (x0; (xn)): P(xn, xn+1) ≤ M1(xn, xn+1), ∀n.

This, in particular holds whenever (letting P be as before)

(o-bd-a) (P ;M1) is almost orbitally bounded:
for each x ∈ X with (xRT x, T xRT 2x), we have P(x, T x) ≤ M1(x, T x).

Proposition 31 All maps P = max(Υ ), where Υ ∈ exp(H ;H+) fulfill

(72-1) (P ;M1) is almost orbitally bounded; whence
(72-2) (P,M1)=orbitally bounded at each iterative couple (x0; (xn)).

Proof It will suffice verifying the first part. Given the arbitrary fixed point x ∈ X
with xRT x, T xRT 2x, we have

Qi(x, T x) ≤ d(x, T x) ≤ M1(x, T x), i ∈ {1, 2, 4},
Qj(x, T x) = d(T x, T 2x) ≤ M1(x, T x), j ∈ {5, 6},
K2(x, T x) = d(T x, T 2x) ≤ M1(x, T x),
Pj (x, T x) = (1/2)d(x, T 2x) ≤ M1(x, T x), j ∈ {1, 2},
B(x, T x) = d(T x, T 2x)[ξ + d(x, T x)]/[η + d(x, T x)] ≤
d(T x, T 2x) ≤ M1(x, T x), ∀(ξ, η) ∈ Δ,
B3(x, T x) = d(T x, T 2x)(α + 0)/(β + d(x, T x)) ≤
d(T x, T 2x) ≤ M1(x, T x), ∀(α, β) ∈ Δ;
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and this, along with any map B1 or B2 having the form B = B[ξ, η] where
(ξ, η) ∈ Δ, tells us that each P ∈ H fulfills the written property. Combining
with the structure of exp(H ;H+), we are done.

(III) Passing to the orbitally small property, let the full d-asymptotic, d-non-
Cauchy (a-us-nt)-admissible iterative couple (x0; (xn)) be given. According to a
previous auxiliary fact, there exist a number h ∈ N(1,≤), a number ε ∈ R0+, a rank
J := j (ε, h) ≥ 1, and a sequence ((m(j), n(j)); j ≥ 0) in N ×N , such that

(aq-1) j ≤ m(j) < n(j), xm(j)Rxn(j), ∀j ≥ 0
(aq-2) for each s, t ∈ N [0, 2h],
the sequence (Vj (s, t) := d(xm(j)+s , xn(j)+t ); j ≥ 0) (in R+)
is J -nearly in ]ε,∞[, with Vj (s, t)→ ε ++ as j →∞.

By definition, [h, ε, J ; ((m(j), n(j)); j ≥ 0)] will be referred to as the associated
to (x0; (xn)) quadruple. Note that putting (rn = d(xn, xn+1); n ≥ 0), we have

(aq-3) limj Q1(xm(j), xn(j)) = limj rm(j) = 0,
limj Q2(xm(j), xn(j)) = limj Vj (0, 0) = ε,
limj Q3(xm(j), xn(j)) = limj Vj (0, 1) = ε,
limj Q4(xm(j), xn(j)) = limj Vj (1, 0) = ε,
limj Q5(xm(j), xn(j)) = limj Vj (1, 1) = ε,
limj Q6(xm(j), xn(j)) = limj rn(j) = 0,
limj K1(xm(j), xn(j)) = limj d(xm(j), xm(j)+2) = 0,
limj K2(xm(j), xn(j)) = limj rm(j)+1 = 0.

Having these precise, we have to establish that (with P : X×X→ R+ as before)

P is orbitally small over each full d-asymptotic, d-non-Cauchy, (a-us-nt)-
admissible iterative couple (x0; (xn)): for each associated to (x0; (xn)) quadruple
[h, ε, J ; ((m(j), n(j)); j ≥ 0)], lim supj P (xm(j), xn(j)) ≤ ε.
An appropriate situation when such a property holds is defined as

P = Θ(Q,K ) (i.e., P(x, y) = Θ(Q(x, y),K (x, y)), x, y ∈ X),
where Θ : R6+ × R2+ → R+ is a function.

Proposition 32 Suppose that Θ is a continuous function with

Θ(t(ε), s(ε)) ≤ ε, for all ε > 0,
where (t (ε) = (0, ε, ε, ε, ε, 0); ε > 0), (s(ε) = (0, 0); ε > 0).

Then,
(73-1) All composed maps P = Θ(Q,K ) are orbitally small.
As a consequence of this,
(73-2) All maps P = max(Υ ), where Υ ∈ exp(H ;H+) are orbitally small.

Proof

(i) Let the full d-asymptotic, d-non-Cauchy, (a-us-nt)-admissible iterative couple
(x0; (xn)) be given; and [h, ε, J ; ((m(j), n(j)); j ≥ 0)] be an associated
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to (x0; (xn)) quadruple. By the above limit properties we have (cf. our
notations)

limj Q(xm(j), xn(j)) = (0, ε, ε, ε, ε, 0) = t (ε),
limj K (xm(j), xn(j)) = (0, 0) = s(ε).

This, along with the choice of P , yields (by the continuity of Θ)

lim supj P (xm(j), xn(j)) = limj P (xm(j), xn(j)) = Θ(t(ε), s(ε)) ≤ ε;
and the proof is complete.

(ii) Clearly, all maps in H are composed ones, in the sense

(Qi = Θ[Qi](Q,K ), i ∈ {1, 2, 4, 5, 6}), K2 = Θ[K2](Q,K ),
(Pk = Θ[Pk](Q,K ), 1 ≤ k ≤ 2), (Bi = Θ[Bi](Q,K ), 1 ≤ i ≤ 3);

where the corresponding functions (Θ[Qi]; i ∈ {1, 2, 4, 5, 6}), Θ[K2],
(Θ[Pk]; 1 ≤ k ≤ 2), (Θ[Bi]; 1 ≤ i ≤ 3) in the class F (R6+ × R4+, R+)
are expressed as: for each t = (t1, t2, t3, t4, t5, t6) ∈ R6+, and each
s = (s1, s2) ∈ R2+,

Θ[Qi](t, s) = ti , i ∈ {1, 2, 4, 5, 6}, Θ[K2](t, s) = s2,
Θ[P1](t, s) = (1/2)(t3 + t4), Θ[P2](t, s) = (1/2)(s1 + t4),
Θ[B1](t, s) = t6(ξ + t1)/(η + t2), Θ[B2](t, s) = t6(ζ + t1)/(ζ + t2),
Θ[B3](t, s) = s2(α + t4)/(β + t2).

In this case, letting ε > 0, we have

Θ[Qi](t (ε), s(ε)) ≤ ε, i ∈ {1, 2, 4, 5, 6}, Θ[K2](t (ε), s(ε)) ≤ ε,
Θ[P1](t (ε), s(ε)) = (1/2)(ε + ε) = ε,
Θ[P2](t (ε), s(ε)) = (1/2)(0+ ε) = ε/2 ≤ ε,
Θ[B1](t (ε), s(ε)) = 0(ξ + 0)/(η + ε) = 0 ≤ ε,
Θ[B2](t (ε), s(ε)) = 0(ζ + 0)/(ζ + ε) = 0 ≤ ε
Θ[B3](t (ε), s(ε)) = 0(α + ε)/(β + ε) ≤ ε.

This completes the argument.

(IV) Concerning the orbital asymptotic properties, remember that these may be
written as (letting P : X ×X→ R+ be as before)

(o-nor-1) P is orbitally singular asymptotic over each full d-Cauchy (a-us-nt)-
admissible couple (x0; (xn)):
whenever xn

d−→ z and d(z, T z) > 0, we have lim infn P (un, z) < d(z, T z), for
each subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz
(o-nor-2) P is orbitally regular asymptotic over each full d-Cauchy (a-us-nt)-
admissible couple (x0; (xn)):
whenever xn

d−→ z and d(z, T z) > 0, we have P(un, z) → d(z, T z), for each
subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz
(o-nor-3) P is orbitally strongly regular asymptotic over each full d-Cauchy
(a-us-nt)-admissible couple (x0; (xn)):



Meir–Keeler Sequential Contractions and Applications 819

whenever xn
d−→ z and d(z, T z) > 0, we have P(un, z) →→ d(z, T z), for

each subsequence (un; n ≥ 0) of (xn; n ≥ 0) with (un; n ≥ 0)Rz.

In this direction, the following synthetic answer is available.

Proposition 33 Under the above conventions,
(74-1) Each (admissible) map P = max(Υ ), where Υ ∈ exp(H ;H+) fulfills

{Q5,Q6, B2} ∩ Υ = ∅ is orbitally singular asymptotic
(74-2) Each (admissible) map P = max(Υ ), where Υ ∈ exp(H ;H+) fulfills

{Q5,Q6, B2} ∩ Υ �= ∅ is orbitally regular asymptotic
(74-3) Each (admissible) map P = max(Υ ), where Υ ∈ exp(H ;H+) fulfills

{Q5, B2} ∩ Υ = ∅ andQ6 ∈ Υ is orbitally strongly regular asymptotic.

Proof There are three steps to be passed.

Step 1 First, we have to discuss the orbital asymptotic properties of the maps P ∈
A ∪ {P1, P2} at each full d-Cauchy (a-us-nt)-admissible couple (x0; (xn)). Let the

point z ∈ X be such that xn
d−→ z and b := d(z, T z) > 0; then, let the subsequence

(un = xi(n); n ≥ 0) of (xn; n ≥ 0) be taken so as (un; n ≥ 0)Rz. From the d-
Cauchy and convergence properties one gets (taking a metrical property of d(., .)
into account) the limit properties (as n→∞)

d(un, z), d(T un, z), d(T
2un, z)→ 0,

d(un, T un), d(T un, T
2un), d(un, T

2un)→ 0,
d(un, T z), d(T un, T z), d(T

2un, T z)→ b.

This, by definition, gives (as n→∞)

Q1(un, z) = d(un, T un)→ 0,Q2(un, z) = d(un, z)→ 0
Q3(un, z) = d(un, T z)→ b,Q4(un, z) = d(T un, z)→ 0
Q5(un, z) = d(T un, T z)→ b,Q6(un, z) = d(z, T z) = b,
K1(un, z) = d(un, T 2un)→ 0, K2(un, z) = d(T un, T 2un)→ 0;

wherefrom (according to involved constructions)

P1(un, z)→ b/2, P2(un, z)→ 0, as n→∞.

As a consequence,

(o-sa) any mapping P ∈ {Q1,Q2,Q4,K2, P1, P2}
is orbitally singular asymptotic
(o-ra) the mapping P = Q5 is orbitally regular asymptotic
(o-sra) the mapping P = Q6 is orbitally strongly regular asymptotic.

Step 2 Second, we discuss the orbital asymptotic properties of the maps Q ∈
{B1, B2, B3} at each full d-Cauchy (a-us-nt)-admissible couple (x0; (xn)). Let the

point z ∈ X be such that xn
d−→ z and b := d(z, T z) > 0; then, let the subsequence

(un = xi(n); n ≥ 0) of (xn; n ≥ 0) be taken so as (un; n ≥ 0)Rz. By definition, we
have for B = B[ξ η], where (ξ, η) ∈ Δ,
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B(un, z) = b[ξ + d(un, T un)]/[η + d(un, z)], ∀n; so, limn B(un, z) = bξ/η.

This, along with the above conventions, means

limn B1(un, z) = bξ/η < b; limn B2(xn, z) = bζ/ζ = b.

On the other hand,

B3(un, z) = d(T un, T 2un)[α + d(T un, z)]/[β + d(un, z)], ∀n;
so, limn B3(xn, z) = 0 < b.

Putting these together yields

(o-sa-1) each mapping P ∈ {B1, B3} is orbitally singular asymptotic
(o-ra-1) the mapping P = B2 is orbitally regular asymptotic.

Step 3 By the above discussion and limit definition, our conclusion follows.

Now, by simply combining these with our main result, one gets the following
rational type fixed point statement (referred to as Rational Function geometric
theorem; in short: (G-ra)).

Theorem 3 Suppose that the selfmap T is ascending-uscattered regular as well as
(d,R;max(Υ );Ω)-contractive, for some subset Υ ∈ exp(H ) and some relation
Ω ⊆ R0+ × R0+ with

(71-i) Υ ∈ exp(H ;H+) (see above)
(71-ii) Ω is upper diagonal and geometric Meir–Keeler.

In addition, let X be (a-o-f,d)-complete; and take an (a-us-nt)-admissible iterative
couple (x0; (xn)).

Then,
(71-a) (x0; (xn)) is Picard (modulo (d,R; T ))
(71-b) (x0; (xn)) is strongly Picard (modulo (d,R; T )) provided the following

extra condition holds:

(71-b-1) T is (a-o-f,d)-continuous

(71-c) (x0; (xn)) is Bellman Picard (modulo (d,R; T )) whenever R is (a-o-f,d)-
almost-selfclosed and one of the following extra conditions holds:

(71-c-1) {Q5,Q6, B2} ∩ Υ = ∅
(71-c-2) {Q5,Q6, B2} ∩ Υ �= ∅ and Ω is asymptotic bilateral separable
(71-c-3) {Q5, B2} ∩ Υ = ∅,Q6 ∈ Υ , and Ω is asymptotic left separable.

Some particular cases of this result may be described as follows.

Case 1 Suppose that R is the trivial relation over X. Then, our particular main
result includes in a direct way the basic ones in Boyd and Wong [9], Matkowski
[41] and Leader [36]; see also Yadava et al. [71].

Case 2 Suppose that R is a partial order on X. Then, our particular main result
includes the related statements in Agarwal et al. [3] when Υ = {Q1,Q2,Q6, P1},
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the ones in Cabrera et al. [10] when Υ = {Q2, B2}, as well as the ones in Choudhury
and Kundu [12] when Υ = {Q1,Q6}. Further aspects may be given in Harjani et al.
[23], Saluja et al. [56], or Chandok et al. [11]; see also Wardowski [69].

Finally, it is worth noting that, by the used techniques, our particular fixed point
statement does not include the ones in Berzig [7] or Samet and Turinici [57];
because, in the quoted results, the ambient relation R is amorphous; i.e., it has
no further properties at all. However, if one starts from a technical version of the
present developments—involving a deduction of d-Cauchy property by avoiding
the d-asymptotic stage—this inclusion holds; we do not give details. Some other
aspects will be developed elsewhere.

8 Application (Integral Equations)

Let n ∈ N1 := N(1,≤) be a natural number; and Rn = {(ξ1, . . . , ξn); ξ1, . . . , ξn ∈
R} be the standard n-dimensional vector space endowed with the usual norm

||(ξ1, . . . , ξn)|| = max{|ξi |; 1 ≤ i ≤ n}, (ξ1, . . . , ξn) ∈ Rn,
and the standard order

(ξ1, . . . , ξn) ≤ (η1, . . . , ηn) iff ξi ≤ ηi , i ∈ {1, . . . , n}.
Then, let Xn stand for the class of all continuous applications x : R+ → Rn.
Clearly, Xn is a vectorial space with respect to the operations: for each x, y ∈ Xn,
λ ∈ R,

(x + y)(t) = x(t)+ y(t), (λx)(t) = λx(t), t ∈ R+.

Concerning its topological structure, let us define for each i ∈ N1 a seminorm
qi : Xn→ R+ as

qi(x) = sup(||x(t)||; 0 ≤ t ≤ i), x ∈ Xn.
The family of seminormsQ := (qi; i ∈ N1) has the properties

(asc) Q is ascending: qi ≤ qj when i ≤ j
(suf) Q is sufficient: qi(x) = 0, ∀i ∈ N1 implies x = 0.

As a consequence of this, the structure (Xn,Q) appears as a metrizable complete
locally convex space. Let also (≤) stand for the usual order

(x, y ∈ Xn): x ≤ y iff x(t) ≤ y(t), t ∈ R+.

Finally, denote byX0 the class of all continuous applications a : R+ → R+. Clearly,
X0 is but a convex cone in X1; precisely,

(cc-1) a, b ∈ X0 implies a + b ∈ X0
(cc-2) λ ∈ R+, a ∈ X0 imply λa ∈ X0.

Further, it will be useful to introduce the mapping x �→ ||x|| from Xn to X0 as

||x||(t) = ||x(t)||, t ∈ R+, x ∈ Xn.
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Having these precise, let x �→ k(x) be an application from Xn to Xn, and x0 ∈
Rn, a given vector. We may consider the integro-functional equation

(IFE) x(t) = x0 + ∫ t0 k(x)(s)ds, t ∈ R+;

as well as the integro-functional inequality

(IFI) x(t) ≤ x0 + ∫ t0 k(x)(s)ds, t ∈ R+.

Note that, by defining the integro-functional operator T : Xn→ Xn, as

T x(t) = x0 + ∫ t0 k(x)(s)ds, t ∈ R+, x ∈ Xn,
the above equation/inequality may be abstractly written as

x = T x (respectively, x ≤ T x).

This tells us that, for solving such problems, one may use the general results in our
preceding sections. This may be done under the lines below.

(L1) Let g ∈ X0 be a given function. Define a (generalized) map ||.||g : Xn →
R+ ∪ {∞} as: for each x ∈ Xn,
||x||g = inf{λ ≥ 0; ||x|| ≤ λg}, if {λ ≥ 0; ||x|| ≤ λg} �= ∅
||x|g = ∞, if {λ ≥ 0; ||x|| ≤ λg} = ∅.

Then, let dg : Xn×Xn→ R+∪{∞} be the associated (generalized) pseudometric

dg(x, y) = ||x − y||g , x, y ∈ Xn.
It is not hard to see that (according to Luxemburg [40] and Jung [29])

(g-Bs) (Xn, ||.||g) is a generalized Banach space
(g-ms) (Xn, dg) is a complete generalized metric space.

In addition, denote

(Xn)g = (x ∈ Xn; ||x||g <∞) (the component of 0 ∈ Xn).
By the observations above,

(g-Bs-0) ((Xn)g, ||.||g) is a (standard) Banach space
(g-ms-0) ((Xn)g, dg) is a complete metric space.

These conclusions remain valid for all translates Xu := u+ (Xn)g , where u ∈ Xn.
(L2) Let ϕ : R+ → R+ be a function; we say that it is regressive, provided

(ϕ(0) = 0), and (ϕ(t) < t , ∀t > 0);

the class of all these functions will be denoted as F (re)(R+). Let also
F (re, in)(R+) stand for the class of all increasing ϕ ∈ F (re)(R+). Given some
ϕ ∈ F (re, in)(R+), call it Matkowski admissible, provided

ϕn(t)→ 0 as n→∞, for each t ≥ 0.
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(Here, ϕn is the n-th iterate of ϕ, for all n ∈ N ). In particular, the Matkowski
admissible property holds whenever ϕ ∈ F (re, in)(R+) fulfills

ϕ is Meir–Keeler admissible:
∀γ > 0, ∃β > 0, (∀t): γ < t < γ + β �⇒ ϕ(t) ≤ γ .

On the other hand, the Meir–Keeler admissible property for ϕ ∈ F (re, in)(R+) is
obtainable under (see above)

ϕ is Boyd–Wong admissible: (Λ+ϕ(s) =)ϕ(s + 0) < s, for all s > 0.

This tells us that the class of Matkowski admissible functions in F (re, in)(R+) is
large enough; we do not give further details.

In the following, an existence, uniqueness, and approximation result for the
solutions of integro-functional equation (IFE) will be established, by means of
successive approximation method. To this end, the following conditions will be
used.

(I) Suppose that there exist a (nonzero) function g ∈ X0, a mapping x �→ h(x)

from X0 to itself, and a function ϕ ∈ F (R+) such that

(I-1) (x, y ∈ Xn, x ≤ y), a ∈ X0, ||x − y|| ≤ a imply ||k(x)− k(y)|| ≤ h(a)
(I-2)

∫ t
0 h(gτ)(s)ds ≤ ϕ(τ)g(t), τ > 0, t ∈ R+

(I-3) ϕ is regressive, increasing, and Matkowski admissible.

Under these circumstances, the attached operator T is contractive, in the sense

whenever x, y ∈ Xn with x ≤ y and τ > 0 satisfy
||x − y||g ≤ τ , then ||T x − Ty||g ≤ ϕ(τ).

In fact, let x, y ∈ Xn and τ > 0 be as in this premise. According to the definition of
metric ||.||g , we have ||x − y|| ≤ gτ ; and then, by the posed hypotheses,

||T x(t)− Ty(t)|| ≤ ∫ t0 ||k(x)(s)− k(y)(s)||ds
≤ ∫ t0 h(gτ)(s)ds ≤ ϕ(τ)g(t), t ∈ R+; that is: ||T x − Ty||g ≤ ϕ(τ).
(II) Suppose that the set Xn(T ) of all u ∈ Xn with

u(t) ≤ x0 + ∫ t0 k(u)(s)ds, t ∈ R+, and
||u(t)− x0 − ∫ t0 k(u)(s)ds|| ≤ μg(t), t ∈ R+, for some μ > 0,

is a nonempty part of Xn.
In this case, it is clear that

(∀u ∈ Xn(T )): u=solution of (IFI) with ||u− T u||g <∞.

(III) Suppose that the following local increasing condition for k(.) is valid:

(x, y ∈ Xn, x ≤ y, ||x − y||g <∞) imply k(x)(t) ≤ k(y)(t), t ∈ R+.

Clearly, under such an assumption, we have a corresponding increasing property for
the associated operator:

(x, y ∈ Xn, x ≤ y, ||x − y||g <∞) imply T x ≤ Ty.
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This, however, does not give us a global increasing property of the underlying
operator, as it can be directly seen.

We may now pass to the announced statement.

Theorem 4 Suppose that the posed conditions hold. Then, fix u0 ∈ Xn(T ); and let
(up := T pu0;p ≥ 0) be its iterative sequence, described as

up+1(t) = x0 + ∫ t0 k(up)(s)ds, t ∈ R+, p ≥ 0.

Then,
(81-a) the iterative sequence (up;p ≥ 0) is ||.||g-convergent in u0 + (Xn)g;

hence, in particular, ρ := sup{dg(up, uq);p, q ≥ 0} exists in R+
(81-b) the associated dg-limit z = limp up is the unique solution of the integro-

functional equation (IF) in u0 + (Xn)g up to comparison:

z,w = solution of (IF) in u0 + (Xn)g , and z ≤ w imply z = w
(81-c) the iterative process (up;p ≥ 0) converges to its limit z according to the

error approximation formula

dg(up, z) ≤ ϕp(ρ), p ≥ 0.

Proof Roughly speaking, the existence part of this statement follows at once from
our previous developments; however, for completeness reasons, we shall provide it,
with some modifications.

Step 1 Let x, y ∈ u0 + (Xn)g and τ > 0 be a couple of elements with x ≤ y,
dg(x, y) ≤ τ . We claim that the following relation holds

(it-comp) (∀p): dg(T px, T py) ≤ ϕp(τ).
To this end, the induction argument with respect to p will be used. The case p = 0
is clear. Suppose that (it-comp) is clear, for each p ∈ {0, . . . , q}, where q ≥ 0; we
claim that it holds as well for p = q + 1. This, however, is evident in view of our
contractive condition and increasing property of T ; so, the claim is proved.

Step 2 As a direct consequence of the obtained fact,

limp dg(up, up+1) = 0; whence (up) is dg-asymptotic.

Step 3 We now establish that (up) is a dg-Cauchy sequence. Let ε > 0 be arbitrary
fixed. By the previous observation,

there exists p = p(ε) such that dg(ui, ui+1) < ε − ϕ(ε), for all i ≥ p.

We claim that

(dg-C) (∀r ≥ 1): dg(ui, ui+r ) < ε, for all i ≥ p;

and, from this, the dg-Cauchy property of (up) follows. To this end, an induction
argument with respect to r will be performed. The case r = 1 is clear, by the very
choice of our index p. Suppose now that (dg-C) holds for all r ∈ {1, . . . , s}, where
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s ≥ 1; we claim that it holds for r = s + 1. In fact, given i ≥ p, we have by
induction hypothesis

dg(ui+1, ui+s+1) ≤ ϕ(ε) (cf. the contractive property);

and this, along with the preceding relation, yields

dg(ui, ui+s+1) ≤ dg(ui, ui+1)+ dg(ui+1, ui+s+1) < ε − ϕ(ε)+ ϕ(ε) = ε;
and our assertion follows.

Step 4 By the completeness of u0+(Xn)g (and self-closeness of (≤) over the same)
z := limp(up) exists in u0 + (Xn)g , with up ≤ z, ∀p. Again by the contractive
condition, we have, under the convention (σp := dg(up, z);p ≥ 0),

dg(up+1, T z) ≤ ϕ(σp) ≤ σp, ∀p; whence T z ∈ u0 + (Xn)g .

Passing to limit as p→∞ yields limp dp(up, T z) = 0; This, and limp dg(up, z) =
0, yields z = T z (as dg is separated on up+(Xn)g); i.e., z ∈ u0+(Xn)g is a solution
of our integro-functional equation (IF).

Step 5 Let w ∈ u0+ (Xn)g be another solution of (IF) with z ≤ w. By a preceding
step, we have

dg(z,w) = dg(T pz, T pw) ≤ ϕp(τ), ∀p, where τ = dg(z,w).
Passing to limit as p → ∞ gives dg(z,w) = 0; that is, z = w. Hence, (IF) has a
unique solution over u0 + (Xn)g .

Step 6 As z = limp up, we must have

d(u0, z) ≤ τ , where τ := sup{dg(up, uq);p, q ≥ 0}.
This, again by a preceding step, yields

dg(up, z) = dg(T pu0, T
pz) ≤ ϕp(τ), ∀p;

and the final conclusion follows. The proof is complete.

Remark 11 Concerning the first group of conditions, note that, under

(I-1a) h(.) is increasing (a, b ∈ X0, a ≤ b imply h(a) ≤ h(b))
then, (I-1) is equivalent with

(I-1b) ||k(x)− k(y)|| ≤ h(||x − y||), x, y ∈ Xn, x ≤ y, ||x − y||g <∞.

On the other hand, whenever

(I-2a) h(.) is homogeneous: h(τa) = τh(a), τ > 0, a ∈ X0,
(I-3a) ϕ is linear: ϕ(t) = λt , t ∈ R+, for some λ ∈ [0, 1[,

then, (I-2)+(I-3) are equivalent with

(I-4)
∫ t

0 h(g)(s)ds ≤ λg(t), t ∈ R+;
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which allows us to determine the admissible functions g ∈ X0 for the problem (IFE)
under discussion. For example, in the particular case of

(I-5) h(g) ≤ Lg, for all g ∈ X0,

unde L ∈ X0 is positive, a solution in X0 of (I-4) is

(I-4a) g(t) = exp((1/λ)
∫ t

0 L(s)ds), t ∈ R+
which leads us to norms ||.||g or metrics dg of the form introduced by Bielecki [8]
and Corduneanu [15].

Remark 12 Concerning the second group of conditions, note that, under

(II-2a) ||x0|| + ∫ t0 k(0)(s)|| ≤ μg(t), t ∈ R+, for some μ > 0,

it follows that 0 ∈ X0 fulfills this requirement; so that, under the remaining
hypotheses, our existence and uniqueness result holds.

Finally, we stress that, technically speaking, a solution in Xn of the integro-
functional equation (IFE) is to be determined by means of a solution in Xn of the
integro-functional inequality (IFI). But, the reverse way is also valid: a solution in
Xn of the integro-functional inequality (IFI) is ultimately obtainable by means of
a solution in Xn of the integro-functional equation (IFE). This means that, for a
large class of Gronwall–Bellman inequalities, a solution of these is to be obtained
by means of attached equation. Further aspects may be found in Turinici [64].
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An Extended Multidimensional
Half-Discrete Hardy–Hilbert-Type
Inequality with a General Homogeneous
Kernel

Bicheng Yang

Abstract By the use of the weight functions, the transfer formula, and the
technique of real analysis, an extended multidimensional half-discrete Hardy–
Hilbert-type inequality with a general homogeneous kernel and a best possible
constant factor is given, which is an extension of a published result. Moreover, the
equivalent forms, a few particular cases, and the operator expressions with some
examples are considered.
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1 Introduction

If p > 1, 1
p
+ 1
q
= 1, f (x), g(y) ≥ 0, f ∈ Lp(R+), g ∈ Lq(R+),

||f ||p = (
∫ ∞

0
f p(x)dx)

1
p > 0,

||g||q > 0, then we have the following Hardy–Hilbert’s integral inequality (cf. [1]):

∫ ∞

0

∫ ∞

0

f (x)g(y)

x + y dxdy <
π

sin(π/p)
||f ||p||g||q, (1)

where the constant factor π
sin(π/p) is the best possible. Assuming that am, bn ≥

0, a = {am}∞m=1 ∈ lp, b = {bn}∞n=1 ∈ lq ,
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||a||p = (
∞∑
m=1

a
p
m)

1
p > 0,

||b||q > 0, we still have the following discrete variant of the above inequality with
the same best constant factor π

sin(π/p) :
∞∑
m=1

∞∑
n=1

ambn

m+ n <
π

sin(π/p)
||a||p||b||q . (2)

Inequalities (1) and (2) are important in analysis and its applications (cf. [1–6]).
In 1998, by introducing an independent parameter λ ∈ (0, 1], Yang [7] gave an

extension of (1) at p = q = 2. In 2009–2011, Yang [3, 4] gave some extensions
of (1) and (2) as follows:

Assuming that λ1, λ2 ∈ R = (−∞,∞), λ1 + λ2 = λ, kλ(x, y) is a nonnegative
homogeneous function of degree −λ, such that

kλ(tx, ty) = t−λkλ(x, y) (t, x, y > 0),

if k(λ1) =
∫∞

0 kλ(t, 1)tλ1−1dt ∈ R+ = (0,∞), φ(x) = xp(1−λ1)−1, ψ(y) =
yq(1−λ2)−1, f (x), g(y) ≥ 0, satisfying

f ∈ Lp,φ(R+) =
{
f ; ||f ||p,φ := {

∫ ∞

0
φ(x)|f (x)|pdx} 1

p <∞
}
,

g ∈ Lq,ψ(R+), ||f ||p,φ, ||g||q,ψ > 0, then we have

∫ ∞

0

∫ ∞

0
kλ(x, y)f (x)g(y)dxdy < k(λ1)||f ||p,φ ||g||q,ψ , (3)

where the constant factor k(λ1) is the best possible. Moreover, if kλ(x, y) is finite
and kλ(x, y)xλ1−1(kλ(x, y)y

λ2−1) is decreasing with respect to x > 0(y > 0), then
for am,bn ≥ 0,

a ∈ lp,φ =
{
a; ||a||p,φ := {

∞∑
n=1

φ(n)|an|p}
1
p <∞

}
,

b = {bn}∞n=1 ∈ lq,ψ , ||a||p,φ, ||b||q,ψ > 0, we have

∞∑
m=1

∞∑
n=1

kλ(m, n)ambn < k(λ1)||a||p,φ ||b||q,ψ , (4)
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where the constant factor k(λ1) is still the best possible. Clearly, for λ =
1, k1(x, y) = 1

x+y , λ1 = 1
q
, λ2 = 1

p
, (3) reduces to (1), while (4) reduces to (2).

Some other results including multidimensional integral and discrete Hilbert-type
inequalities are provided by [8–25]. Kato [26–30] also published some other type of
inequalities and operators.

About the topic of half-discrete Hilbert-type inequalities with the non-
homogeneous kernels, Hardy et al. provided a few results in Theorem 351 of
[1]. But they did not prove that the constant factors are the best possible. However,
Yang [31] gave a result with the kernel 1

(1+nx)λ by introducing an interval variable
and proved that the constant factor is the best possible. In 2011 Yang [32] gave the
following half-discrete Hardy–Hilbert’s inequality with the best possible constant
factor B (λ1, λ2):

∫ ∞

0
f (x)

∞∑
n=1

an

(x + n)λ dx < B (λ1, λ2) ||f ||p,φ ||a||q,ψ , (5)

where λ1, λ2 > 0, 0 ≤ λ2 ≤ 1, λ1 + λ2 = λ,

B (u, v) =
∫ ∞

0

1

(1+ t)u+v t
u−1dt (u, v > 0)

is the beta function. Zhong et al. [33–38] investigated several half-discrete Hilbert-
type inequalities with particular kernels.

Using the weight functions and the techniques of discrete and integral Hilbert-
type inequalities with some additional conditions on the kernel, a half-discrete
Hilbert-type inequality with a general homogeneous kernel of degree −λ ∈ R and a
best constant factor k (λ1) is obtained as follows:

∫ ∞

0
f (x)

∞∑
n=1

kλ(x, n)andx < k(λ1)||f ||p,φ ||a||q,ψ , (6)

which is an extension of (5) (see Yang and Chen [39]). A half-discrete Hilbert-
type inequality with a general non-homogeneous kernel and a best constant factor
is given by Yang [40]. In 2013–2014, Micheal and Yang [41, 42] gave two
multidimensional half-discrete Hilbert-type inequalities with the particular non-
homogeneous kernels.

Remark 1

(1) Many different kinds of discrete, half-discrete and integral Hilbert-type inequal-
ities with applications are presented in recent 20 years. Special attention is given
to new results proved during 2009–2014. Included are many generalizations,
extensions, and refinements of discrete, half-discrete, and integral Hilbert-
type inequalities involving many special functions such as beta, gamma,
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hypergeometric, trigonometric, hyperbolic, zeta, Bernoulli functions, Bernoulli
numbers, and Euler constant

(2) In his six books, Yang [3–6, 43, 44] presented many new results on Hilbert-
type operators with general homogeneous kernels of degree of real numbers
and two pairs of conjugate exponents as well as the related inequalities. These
research monographs contained recent developments of discrete, half-discrete,
and integral types of operators and inequalities with proofs, examples and
applications.

In this chapter, by the use of the weight functions, the transfer formula, and
the technique of real analysis, an extended multidimensional half-discrete Hardy–
Hilbert-type inequality with a general homogeneous kernel and a best possible
constant factor is given, which is an extension of (6). Moreover, the equivalent
forms, a few particular cases, and the operator expressions with some examples
are considered.

2 Some Lemmas

If μ(k)i > 0 (k = 1, . . . , i0; i = 1, . . . , m), υ(l)j > 0 (l = 1, . . . , j0; j=1, . . . , n),
then we set

V (l)n : =
n∑
j=1

υ
(l)
j (l = 1, . . . , j0), (7)

Vn = (V (1)n , . . . , V
(j0)
n ) (n ∈ N = {1,2, . . .}). (8)

We also set functions μi(t) := μ
(i)
m , t ∈ (m − 1,m] (m ∈ N); υj (t) := υ

(j)
n ,

t ∈ (n− 1, n] (n ∈ N), and

Ui(x) : =
∫ x

0
μi(t)dt (i = 1, . . . , i0), (9)

Vj (y) : =
∫ y

0
υj (t)dt (j = 1, . . . , j0), (10)

U(x) : = (U1(x), . . . , Ui0(x)),

V (y) : = (V1(y), . . . , Vj0(y)) (x, y ≥ 0). (11)

It follows that Vj (n) = V (j)n (j = 1, . . . , j0; n ∈ N), and for x ∈ (m − 1,m),

U ′i (x) = μi(x) = μ
(i)
m (i = 1, . . . , i0;m ∈ N); for y ∈ (n − 1, n), V ′j (y) =

υj (y) = υ(j)n (j = 1, . . . , j0; n ∈ N).We still have

dU(x) =
i0∑
i=1

μi(x)dx (x ∈ Ri0+), dV (y) =
j0∑
j=1

υj (y)dy (y ∈ Rj0+ ).
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Lemma 1 (cf. [45]) Suppose that g(t)(> 0) is decreasing in R+ and strictly
decreasing in [n0,∞) (n0 ∈ N), satisfying

∫∞
0 g(t)dt ∈ R+.We have

∫ ∞

1
g(t)dt <

∞∑
n=1

g(n) <

∫ ∞

0
g(t)dt. (12)

Lemma 2 If i0 ∈ N,α,M > 0, Ψ (u) is a non-negative measurable function in
(0, 1], and

DM :=
⎧⎨
⎩x ∈ Ri0+; u =

i0∑
i=1

( xi
M

)α ≤ 1

⎫⎬
⎭ , (13)

then we have the following transfer formula (cf. [6]):

∫
· · ·
∫
DM

Ψ

⎛
⎝ i0∑
i=1

( xi
M

)α⎞⎠ dx1 · · · dxi0

= Mi0Γ i0( 1
α
)

αi0Γ (
i0
α
)

∫ 1

0
Ψ (u)u

i0
α
−1du. (14)

Lemma 3 For i0, j0 ∈ N,υ(l)n ≥ υ(l)n+1 (n ∈ N; l = 1, . . . , j0), α, β, ε > 0,

b = min
1≤i≤i0,1≤j≤j0

{μ(i)1 , υ
(j)

1 },

[1,∞)i0 := {x ∈ Ri0+; xi ≥ 1 (i = 1, . . . , i0)},

we have

∫
[1,∞)i0

||U(x)||−i0−εα

i0∏
k=1

μk(x)dx ≤ Γ i0( 1
α
)

εbεi
ε/α

0 αi0−1Γ (
i0
α
)
, (15)

∑
n

||Vn||−j0−εβ

j0∏
k=1

υ(k)n ≤ Γ j0( 1
β
)

εbεj
ε/β

0 βj0−1Γ (
j0
β
)
+O(1) , (16)

where
∑
n =

∑∞
nj0
. . .
∑∞
n1
,

||x||α = (
i0∑
i=1

xαi )
1
α (x ∈ Ri0+), ||y||β = (

j0∑
j=1

y
β
j )

1
β (y ∈ Rj0+ ).
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Proof Setting v = U(x), we find

∫
[1,∞)i0

||U(x)||−i0−εα

i0∏
k=1

μk(x)dx

=
∫
{v∈R

i0+ ;vi≥μ(i)1 }
dv

||v||i0+εα

≤
∫
[b,∞)i0

dv

||v||i0+εα

.

ForM > bi
1/α
0 , by (14), it follows that

∫
[b,∞)i0

dv

||v||i0+εα

= lim
M→∞

∫
{v∈R

i0+ ; b
αi0
Mα

<
∑i0
i=1

(
vi
M

)α≤1}
dv1 · · · dvi0

{M[∑i0
i=1

(
vi
M

)α] 1
α }i0+ε

= lim
M→∞

Mi0Γ i0( 1
α
)

αi0Γ (
i0
α
)

∫ 1

bαi0/M
α

u
i0
α
−1

(Mu1/α)i0+ε
du

= Γ i0( 1
α
)

εbεi
ε/α

0 αi0−1Γ (
i0
α
)
.

Then we have (15).
We have

∑
n

||Vn||−j0−εβ

j0∏
k=1

υ(k)n ≤ H0 +
j0∑
i=1

Hi,

H0 :=
∑

{n∈Nj0 ;nj≥2}
||Vn||−j0−εβ

j0∏
k=1

υ(k)n ,

Hi :=
∑

{n∈Nj0 ;ni=1;nj≥1(j �=i)}
||Vn||−j0−εβ

j0∏
l=1

υ(l)n .

By (12) and the way of obtaining (15), we find

0 < H0 =
∑

{n∈Nj0 ;nj≥2}

∫
{y∈Nj0 ;nj−1≤yj<nj }

||V (n)||−j0−εβ

j0∏
l=1

υ(l)n dy
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<
∑

{n∈Nj0 ;nj≥2}

∫
{y∈R

j0+ ;nj−1≤yj<nj }
||V (y)||−j0−εβ

j0∏
l=1

υl(y)dy

=
∫
[1,∞)j0

||V (y)||−j0−εβ

j0∏
l=1

υl(y)dy (v = V (y))

≤
∫
[b,∞)j0

||v||−j0−εβ dv = Γ i0( 1
β
)

εbεj
ε/α

0 βj0−1Γ (
j0
β
)
.

Without loss of generality, we estimate Hj0 . If j0 = 1, then we find

0 < Hj0 = (υ(1)1 )−1−ευ(1)1 = (υ(1)1 )−ε <∞;

if j0 ≥ 2, then we find

Hj0 =
∑

{n∈Nj0−1}

∫
{y∈R

j0−1
+ ;nj−1<yj≤nj }

υ
(j0)

1

∏j0−1
l=1 υl(y)dy

[(υ(j0)1 )β +∑j0−1
j=1 (V

(j)
n )β ]

j0+ε
β

≤ υ(j0)1

∫
R
j0−1
+

∏j0−1
l=1 υl(y)

[(υ(j0)1 )β +∑j0−1
j=1 (V

(j)(y))β ] 1
β
(j0+ε)

dy.

Setting v = V (y) = (V1(y), . . . , Vj0−1(y)), by (14), we have

0 < Hj0 ≤ υ(j0)1

∫
R
j0−1
+

1

[(υ(j0)1 )β +∑j0−1
j=1 v

β
j ]

1
β
(j0+ε)

dv

= υ(j0)1 lim
M→∞

Mj0−1Γ j0−1( 1
β
)

βj0−1Γ (
j0−1
β
)

∫ 1

0

u
j0−1
β
−1
du

[(υ(j0)1 )β +Mβu] 1
β
(j0+ε)

t= Mβu

(υ
(j0)
1 )β= (υ

(j0)

1 )−ε
Γ j0−1( 1

β
)

βj0−1Γ (
j0−1
β
)

∫ ∞

0

t
j0−1
β
−1

(1+ t) 1
β
(j0+ε)

dt

= (υ(j0)1 )−ε
Γ j0−1( 1

β
)

βj0−1Γ (
j0−1
β
)
B(
j0 − 1

β
,

1+ ε
β
) <∞.
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Hence, we have

∑
n

||Vn||−j0−εβ

j0∏
k=1

υ(k)n ≤ Γ i0( 1
β
)

εbεj
ε/α

0 βj0−1Γ (
j0
β
)
+

j0∑
i=1

Oi(1) ,

namely, (16) follows.
The lemma is proved.

Definition 1 If i0, j0 ∈ N,α, β > 0, λ1, λ2 ∈ R, λ1 + λ2 = λ, kλ(x, y) is a
nonnegative homogeneous function of degree −λ, such that for any fixed x >
0, kλ(x, y) 1

yj0−λ2
is decreasing with respect to y ∈ R+, and strictly decreasing in an

interval (bx,∞) ⊂ (0,∞),

k(λ1) =
∫ ∞

0
kλ(u, 1)u

λ1−1du ∈ R+,

then we define two weight functions w(λ1, n) (n ∈ Nj0) and W(λ2, x) (x ∈ Ri0+)
as follows:

w(λ1, n) : =
∫

R
i0+
kλ(||U(x)||α, ||Vn||β)

||Vn||λ2
β

||U(x)||i0−λ1
α

i0∏
k=1

μk(x)dx, (17)

W(λ2, x) : =
∑
n

kλ(||U(x)||α, ||Vn||β) ||U(x)||
λ1
α

||Vn||j0−λ2
β

j0∏
l=1

υ(l)n . (18)

Example 1 For λ1, λ2 ∈ R, λ1 + λ2 = λ, λ1 + η > 0, 0 < λ2 + η ≤ j0, we set

kλ(x, y) = (min{x, y})η
(max{x, y})λ+η (x, y > 0).

Then for any fixed x > 0,

kλ(x, y)
1

yj0−λ2
=
{ 1
xλ+ηyj0−λ2−η , 0 < y < x

xη

yj0+λ1+η , y ≥ x

is decreasing in y ∈ R+, and strictly decreasing in interval ([x] + 1,∞) ⊂ (0,∞).
We still have

k(λ1) =
∫ ∞

0

(min{u, 1})η
(max{u, 1})λ+η

1

u1−λ1
du

=
∫ 1

0

uη

u1−λ1
du+

∫ ∞

1

1

uλ+η
1

u1−λ1
du
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= λ+ 2η

(λ1 + η)(λ2 + η) ∈ R+.

Note 1 For b, β > 0, we have

d

dy
(b + yβ) 1

β = (b + yβ) 1
β
−1
yβ−1 > 0 (y > 0).

Hence, with regard to the assumptions of Definition 1, for nj − 1 < yj < nj (j =
1, . . . , j0; n ∈ Nj0), we have ||V (n)||β > ||V (y)||β and

kλ(||U(x)||α, ||V (n)||β)
||V (n)||j0−λ2

β

<
kλ(||U(x)||α, ||V (y)||β)

||V (y)||j0−λ2
β

;

for nj < yj < nj + 1(j = 1, . . . , j0; n ∈ Nj0), ε
q
> 0, we have ||V (n)||β <

||V (y)||β, and

kλ(||U(x)||α, ||Vn||β)
||Vn||j0−λ2+ εq

β

= kλ(||U(x)||α, ||V (n)||β)
||V (n)||j0−λ2

β

1

||V (n)||
ε
q

β

>
kλ(||U(x)||α, ||V (y)||β)

||V (y)||j0−λ2
β

1

||V (y)||
ε
q

β

= kλ(||U(x)||α, ||V (y)||β)
||V (y)||j0−λ2+ εq

β

. (19)

Lemma 4 With regard to the assumptions of Definition 1, we have

w(λ1, n) ≤ Kα(λ1) (n ∈ Nj0), (20)

W(λ2, x) < Kβ(λ1) (x ∈ Ri0+), (21)

where

Kβ(λ1) =
Γ j0( 1

β
)

βj0−1Γ (
j0
β
)
k(λ1),Kα(λ1) = Γ i0( 1

α
)

αi0−1Γ (
i0
α
)
k(λ1); (22)

Proof Setting v = U(x)
||Vn||β , since Uk(∞) ≤ ∞ (k = 1, . . . , i0), we find

w(λ1, n) ≤
∫

R
i0+
kλ(||v||α, 1) 1

vi0−λ1
dv.
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By (14), it follows that

∫
R
i0+
kλ(||v||α, 1) dv

vi0−λ1

= lim
M→∞

∫
DM

kλ(M[∑i0
i=1

(
vi
M

)α] 1
α , 1)dv1 · · · dvi0

{M[∑i0
i=1

(
vi
M

)α] 1
α }i0−λ1

= lim
M→∞

Mi0Γ i0( 1
α
)

αi0Γ (
i0
α
)

∫ 1

0

kλ(Mu
1
α , 1)u

i0
α
−1du

(Mu1/α)i0−λ1

= Γ i0( 1
α
)

αi0−1Γ (
i0
α
)

∫ ∞

0
kλ(v, 1)v

λ1−1dv

= Γ i0( 1
α
)

αi0−1Γ (
i0
α
)
k(λ1).

Hence, we have (20).
By (12), (14) and Note 1, it follows that

W(λ2, x)

=
∑
n

∫
{y∈R

j0+ ;nj−1<yj≤nj }
kλ(||U(x)||α, ||V (n)||β) ||U(x)||

λ1
α

||V (n)||j0−λ2
β

j0∏
l=1

υl(y)dy

<
∑
n

∫
{y∈R

j0+ ;nj−1<yj≤nj }
kλ(||U(x)||α, ||V (y)||β) ||U(x)||

λ1
α

||V (y)||j0−λ2
β

j0∏
l=1

υl(y)dy

=
∫

R
j0+
kλ(||U(x)||α, ||V (y)||β) ||U(x)||

λ1
α

||V (y)||j0−λ2
β

j0∏
l=1

υl(y)dy (v = V (y))

≤
∫

R
j0+
kλ(||U(x)||α, ||v||β) ||U(x)||

λ1
α

||v||j0−λ2
β

dv.

= lim
M→∞

∫
{
v∈R

j0+ ;
∑j0
j=1

(
vj
M

)α≤1
} kλ(||U(x)||α,M[

j0∑
j=1

(
vj

M
)β ]1/β)

× ||U(x)||λ1
α

{M[∑j0
j=1(

vj
M
)β ] 1

β }j0−λ2

dv1 . . . dvj0



An Extended Multidimensional Half-Discrete Hardy–Hilbert-Type Inequality 841

= lim
M→∞

Mj0Γ j0( 1
β
)

βj0Γ (
j0
β
)

∫ 1

0
kλ(||U(x)||α,Mv1/β)

||U(x)||λ1
α v

j0
β
−1

(Mv
1
β )j0−λ2

dv

t= Mv1/β
||U(x)||α= Γ j0( 1

β
)

βj0−1Γ (
j0
β
)

∫ ∞

0
kλ(1, t)t

λ2−1dt

= Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

∫ ∞

0
kλ(v, 1)v

λ1−1dv.

Hence, we have (21).
The lemma is proved.

Note 2 If Uk(∞) = ∞ (k = 1, . . . , i0), then we have w(λ1, n) = Kα(λ1) (n ∈
Nj0).

3 Main Results

For p > 1, 1
p
+ 1
q
= 1, setting functions

Φ(x) : = ||U(x)||p(i0−λ1)−i0
α

(
∏i0
k=1 μk(x))

p−1
(x ∈ Ri0+),

Ψ (n) : = ||Vn||q(j0−λ2)−j0
β

(
∏j0
l=1 υ

(l)
n )

q−1
(n ∈ Nj0),

and the following normed spaces:

Lp,Φ(R
i0+) : =

{
f = f (x); ||f ||p,Φ := (

∫
R
i0+
Φ(x)|f (x)|pdx) 1

p <∞
}
,

lq,Ψ : =
{
b = {bn}; ||b||q,Ψ := (

∑
n

Ψ (n)|bn|q)
1
q <∞

}
,

Lq,Φ1−q (Ri0+) : =
{
g = g(x); ||g||q,Φ1−q := (

∫
R
i0+
Φ1−q(x)|g(x)|qdx) 1

q <∞
}
,

lp,Ψ 1−p : =
{
c = {cn}; ||c||p,Ψ 1−p := (

∑
n

Ψ 1−p(n)|cn|p)
1
p <∞

}
,
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we have

Theorem 1 With regard to the assumptions of Definition 1, if p > 1, 1
p
+ 1
q
= 1,

f (x), bn ≥ 0, f = f (x) ∈ Lp,Φ(Ri0+), b = {bn} ∈ lq,Ψ , ||f ||p,Φ, ||b||q,Ψ > 0,
then we have the following equivalent inequalities:

I : =
∑
n

bn

∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

< K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ ||b||q,Ψ , (23)

J1 : =
⎧⎨
⎩
∑
n

∏j0
j=1 υ

(j)
n

||Vn||j0−pλ2
β

[∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

]p⎫⎬
⎭

1
p

< K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ, (24)

J2 : =
{∫

R
i0+

∏i0
i=1 μi(x)

||U(x)||i0−qλ1
α

[∑
n

kλ(||U(x)||α, ||Vn||β)bn
]q
dx

} 1
q

< K
1
p

β (λ1)K
1
q
α (λ1)||b||q,Ψ (25)

where

K
1
p

β (λ1)K
1
q
α (λ1) =

[
Γ j0( 1

β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q

k(λ1).

Proof By Hölder’s inequality with weight (cf. [46]), we have

I =
∑
n

∫
R
i0+
kλ(||U(x)||α, ||Vn||β)

⎡
⎢⎣ ||U(x)||

i0−λ1
q

α (
∏j0
j=1 υ

(j)
n )

1
p f (x)

||Vn||
j0−λ2
p

β (
∏i0
i=1 μk(x))

1
q

⎤
⎥⎦

×
⎡
⎢⎣ ||Vn||

j0−λ2
p

β (
∏i0
i=1 μk(x))

1
q bn

||U(x)||
i0−λ1
q

α (
∏j0
j=1 υ

(j)
n )

1
p

⎤
⎥⎦ dx
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≤
[∫

R
i0+
W(λ2, x)

||U(x)||p(i0−λ1)−i0
α f p(x)

(
∏i0
i=1 μi(x))

p−1
dx

] 1
p

×
⎡
⎣∑

n

w(λ1, n)
||Vn||q(j0−λ2)−j0

β b
q
n

(
∏j0
j=1 υ

(j)
n )

⎤
⎦

1
q

.

Then by (20) and (21), we have (23). We set

bn :=
∏j0
j=1 υ

(j)
n

||Vn||j0−pλ2
β

[∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

]p−1

, n ∈ Nj0 .

Then we have J1 = ||b||q−1
q,Ψ . Since the right-hand side of (24) is finite, it follows

J1 <∞. If J1 = 0, then (24) is trivially valid; if J1 > 0, then by (23), we have

||b||qq,Ψ = Jp1 = I < K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ ||b||q,Ψ ,

||b||q−1
q,Ψ = J1 < K

1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ,

namely, (24) follows.
On the other hand, assuming that (24) is valid, by Hölder’s inequality (cf. [46]),

we have

I =
∑
n

⎡
⎣ (
∏j0
j=1 υ

(j)
n )

1/p

||Vn||(j0/p)−λ2
β

∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

⎤
⎦

× ||Vn||(j0/p)−λ2
β

(
∏j0
j=1 υ

(j)
n )

1/p
bn ≤ J1||b||q,Ψ . (26)

Then by (24), we have (23), which is equivalent to (24).
In the same way, we still can find

I ≤ ||f ||p,ΦJ2, (27)

and prove that (23) is equivalent to (25). Therefore, (23), (24), and (25) are
equivalent.

The theorem is proved.
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Theorem 2 With regard to the assumptions of Theorem 1, if υ(j)n ≥ υ(j)n+1 (n ∈ N),

Ui(∞) = V
(j)∞ = ∞ (i = 1, . . . , i0, j = 1, . . . , j0), then the constant factor

K
1
p

β (λ1)K
1
q
α (λ1) in (23), (24), and (25) is the best possible.

Proof For ε > 0, we set

f̃ = f̃ (x), f̃ (x) :=
{

0, x ∈ Ri0+\[1,∞)i0
||U(x)||−i0+λ1− ε

p
α

∏i0
i=1 μi(x), x ∈ [1,∞)i0

,

b̃ = {̃bn}, b̃n := ||Vn||−j0+λ2− εq
β

j0∏
j=1

υ
(j)
n (n ∈ Nj0).

Then by (15) and (16), we obtain

||f̃ ||p,Φ ||̃b||q,Ψ

=
[∫

R
i0+

||U(x)||p(i0−λ1)−i0
α f̃ p(x)

(
∏i0
i=1 μi(x))

p−1
dx

] 1
p

⎡
⎣∑

n

||Vn||q(j0−λ2)−j0
β b̃

q
n

(
∏j0
j=1 υ

(j)
n )

q−1

⎤
⎦

1
q

=
⎛
⎝∫

[1,∞)i0
||U(x)||−i0−εα

i0∏
i=1

μi(x)dx

⎞
⎠

1
p
⎛
⎝∑

n

||Vn||−j0−εβ

j0∏
j=1

υ
(j)
n

⎞
⎠

1
q

≤ 1

ε

(
Γ i0( 1

α
)

bεi
ε/α

0 αi0−1Γ (
i0
α
)

) 1
p

⎛
⎝ Γ j0( 1

β
)

bεj
ε/β

0 βj0−1Γ (
j0
β
)
+ εO(1)

⎞
⎠

1
q

.

By (19), since υ(j)n ≥ υ(j)n+1 = υj (y)(nj < yj < nj + 1), we find

Ĩ : =
∑
n

∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f̃ (x)̃bndx

=
∑
n

∫
[1,∞)i0

∫
{y∈R

j0+ ;nj≤yj<nj+1}
kλ(||U(x)||α, ||Vn||β)

||U(x)||i0−λ1+ ε
p

α ||Vn||j0−λ2+ εq
β

×
j0∏
j=1

υj (y)

i0∏
i=1

μk(x)dydx



An Extended Multidimensional Half-Discrete Hardy–Hilbert-Type Inequality 845

>

∫
[1,∞)i0

∑
n

∫
{y∈R

j0+ ;nj≤yj<nj+1}
kλ(||U(x)||α, ||V (y)||β)

||U(x)||i0−λ1+ ε
p

α ||V (y)||j0−λ2+ εq
β

×
j0∏
l=1

υl(y)

i0∏
k=1

μk(x)dydx

=
∫
[1,∞)i0

∫
[1,∞)j0

kλ(||U(x)||α, ||V (y)||β)∏j0l=1 υl(y)

||U(x)||i0−λ1+ ε
p

α ||V (y)||j0−λ2+ εq
β

i0∏
k=1

μk(x)dydx.

Setting u = U(x), v = V (y), c := max1≤i≤i0,1≤j≤j0{μ(i)1 , υ
(j)

1 } , since U(k)∞ =
V
(l)∞ = ∞, we have

Ĩ >

∫
[c,∞)i0

∫
[c,∞)j0

kλ(||u||α, ||v||β)
||u||i0−λ1+ ε

p
α ||v||j0−λ2+ εq

β

dvdu

=
∫
[c,∞)i0

∫
[c,∞)j0

kλ(M1[∑i0
i=1(

xi
M1
)α] 1

α ,M2[∑j0
j=1(

yj
M2
)β ] 1

β )dydx

{M1[∑i0
i=1(

xi
M1
)α] 1

α }i0−λ1+ ε
p {M2[∑j0

j=1(
yj
M2
)β ] 1

β }j0−λ2+ εq
.

ForM1 > ci
1/α
0 ,M2 > cj

1/β
0 , we put

Ψ1(u) =
⎧⎨
⎩

0, 0 < u ≤ cαi0
Mα1
,

kλ(M1u
1/α,M2[∑j0

j=1(
yj
M2
)β ] 1

β ) 1
(M1u

1/α)i0−λ1
,
cαi0
Mα1

< u ≤ 1
,

Ψ2(v) =

⎧⎪⎨
⎪⎩

0, 0 < v ≤ cβj0

M
β
2

,

kλ(M1u
1/α,M2v

1/β) 1
(M2v

1/β )j0−λ2
,
cβj0

M
β
2

< v ≤ 1
,

By (14) twice, it follows that

Ĩ > lim
M1→∞

lim
M2→∞

M
i0
1 Γ

i0( 1
α
)

αi0Γ (
i0
α
)

M
j0
2 Γ

j0( 1
β
)

βi0Γ (
j0
β
)

∫ 1

cαi0/M
α
1

u
i0
α
−1

×
⎡
⎣∫ 1

cβj0/M
β
2

kλ(M1u
1
α ,M2v

1
β )v

j0
β
−1

(M1u
1
α )
i0−λ1+ ε

p (M2v
1
β )
j0−λ2+ εq

dv

⎤
⎦ du.

Setting x = M1u
1
α , y = M2v

1
β in the above, we find
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Ĩ >
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

×
∫ ∞

ci
1/α
0

x
λ1− ε

p
−1

(∫ ∞

cj
1/β
0

kλ(x, y)y
λ2− εq−1

dy

)
dx

= Γ i0( 1
α
)

αi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

×
∫ ∞

ci
1/α
0

x−ε−1

(∫ x/cj
1/β
0

0
kλ(v, 1)v

λ1+ εq−1
dv

)
dx

= Γ i0( 1
α
)

αi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

×
[∫ ∞

ci
1/α
0

x−ε−1

(∫ i
1/α
0 /j

1/β
0

0
kλ(v, 1)v

λ1+ εq−1
dv

)
dx

+
∫ ∞

ci
1/α
0

x−ε−1

(∫ x/cj
1/β
0

i
1/α
0 /j

1/β
0

kλ(v, 1)v
λ1+ εq−1

dv

)
dx

]

= Γ i0( 1
α
)

αi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

×
[

1

ε(ci
1/α
0 )ε

∫ i
1/α
0 /j

1/β
0

0
kλ(v, 1)v

λ1+ εq−1
dv

+
∫ ∞

i
1/α
0 /j

1/β
0

(∫ ∞

cj
1/β
0 v

x−ε−1dx

)
kλ(v, 1)v

λ1+ εq−1
dv

]

= Γ i0( 1
α
)

εαi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

×
[

1

(ci
1/α
0 )ε

∫ i
1/α
0 /j

1/β
0

0
kλ(v, 1)v

λ1+ εq−1
dv

+ 1

(cj
1/β
0 )ε

∫ ∞

i
1/α
0 /j

1/β
0

kλ(v, 1)v
λ1− ε

p
−1
dv

]
.
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If there exists a constant K ≤ K
1
p

β (λ1)K
1
q
α (λ1), such that (23) is valid when

replacing K
1
p

β (λ1)K
1
q
α (λ1) by K, then we have εĨ < εK||̃a||p,Φ ||̃b||q,Ψ , namely,

Γ i0( 1
α
)

αi0−1Γ (
i0
α
)

Γ j0( 1
β
)

βi0−1Γ (
j0
β
)

[
1

(ci
1/α
0 )ε

∫ i
1/α
0 /j

1/β
0

0
kλ(v, 1)v

λ1+ εq−1
dv

+ 1

(cj
1/β
0 )ε

∫ ∞

i
1/α
0 /j

1/β
0

kλ(v, 1)v
λ1− ε

p
−1
dv

]

< K

(
Γ i0( 1

α
)

bεi
ε/α

0 αi0−1Γ (
i0
α
)

) 1
p

⎛
⎝ Γ j0( 1

β
)

bεj
ε/β

0 βj0−1Γ (
j0
β
)
+ εO(1)

⎞
⎠

1
q

.

For ε→ 0+, in view of Fatou lemma (cf. [47]), we find

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

Γ i0( 1
α
)

αi0−1Γ (
i0
α
)
k(λ1)

≤ K
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
p
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
q

,

and then K
1
p

β (λ1)K
1
q
α (λ1) ≤ K. Hence, K = K

1
p

β (λ1)K
1
q
α (λ1) is the best possible

constant factor of (23). The constant factor in (24) ((25)) is still the best possible,
otherwise, we would reach a contradiction by (26) ((27)) that the constant factor
in (23) is not the best possible.

The theorem is proved.

In particular, for μi(t) = 1 (i = 1, . . . , i0), υ
(l)
j = 1 (l = 1, . . . , j0; j =

1, . . . , n) in Theorem 1-2, setting

ϕ(x) := ||x||p(i0−λ1)−i0
α (x ∈ Ri0+), ψ(n) := ||n||q(j0−λ2)−j0

β (n ∈ Nj0),

we have

Corollary 1 With regard to the assumptions of Definition 1, if p > 1, 1
p
+ 1
q
= 1,

f (x), bn ≥ 0, f = f (x) ∈ Lp,ϕ(Ri0+), b = {bn} ∈ lq,ψ , ||f ||p,ϕ, ||b||q,ψ > 0, then
we have the following equivalent inequalities:

∑
n

bn

∫
R
i0+
kλ(||x||α, ||n||β)f (x)dx < K

1
p

β (λ1)K
1
q
α (λ1)||f ||p,ϕ ||b||q,ψ , (28)
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{∑
n

1

||n||j0−λ2
β

[∫
R
i0+
kλ(||x||α, ||n||β)f (x)dx

]p} 1
p

< K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,ϕ, (29)

{∫
R
i0+

1

||x||i0−qλ1
α

[∑
n

kλ(||x||α, ||n||β)bn
]q
dx

} 1
q

(30)

< K
1
p

β (λ1)K
1
q
α (λ1)||b||q,ψ (31)

where the constant factor

K
1
p

β (λ1)K
1
q
α (λ1)

=
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

βi0−1Γ (
i0
α
)

] 1
q

k(λ1)

is the best possible.

Corollary 2 With regard to the assumptions of Definition 1 (for i0 = j0 = 1),
setting

Φ1(x) : = (U1(x))
p(1−λ1)−1

(μ1(x))p−1
,

Ψ1(n) : = (V
(1)
n )q(1−λ2)−1

(υ
(1)
n )

q−1
(x ∈ R+, n ∈ N),

if p > 1, 1
p
+ 1

q
= 1, f (x), bn ≥ 0, f = f (x) ∈ Lp,Φ1(R+), b = {bn} ∈

lq,Ψ1 , ||f ||p,Φ1 , ||b||q,Ψ1 > 0, then we have the following equivalent inequalities:

∞∑
n=1

bn

∫ ∞

0
kλ(U1(x), V

(1)
n )f (x)dx < k(λ1)||f ||p,Φ1 ||b||q,Ψ1, (32)

{ ∞∑
n=1

υ
(1)
n

(V
(1)
n )1−pλ2

[∫ ∞

0
kλ(U1(x), V

(1)
n )f (x)dx

]p} 1
p

< k(λ1)||f ||p,Φ1,

(33)
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{∫ ∞

0

μ1(x)

(U1(x))1−qλ1

[ ∞∑
n=1

kλ(U1(x), V
(1)
n )bn

]q
dx

} 1
q

< k(λ1)||b||q,Ψ1 . (34)

Moreover, if υ(1)n ≥ υ(1)n+1 (n ∈ N), U1(∞) = V
(1)∞ = ∞, then the constant

factor k(λ1) is the best possible.

Remark 2 For i0 = j0 = 1 (μ1(t) = 1, υ(1)j = 1(j = 1, . . . , n)), (28) ((32))
reduces to (6). Hence, (28) ((32)) is an extension of (6). So is (23).

4 Operator Expressions

With regard to the assumptions of Theorem 2, in view of

cn : =
∏j0
j=1 υ

(j)
n

||Vn||j0−pλ2
β

[∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

]p−1

, n ∈ Nj0 ,

c = {cn}, ||c||p,Ψ 1−p = J1 < K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ <∞,

we can set the following definition:

Definition 2 Define a half-discrete multidimensional Hardy–Hilbert-type operator
T1 : Lp,Φ(Ri0+)→ lp,Ψ 1−p as follows: For any f ∈ Lp,Φ(Ri0+), there exists a unique
representation T1f = c ∈ lp,Ψ 1−p , satisfying

T1f (n) :=
∫

R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx (n ∈ Nj0). (35)

For b ∈ lq,Ψ , we define the following formal inner product of T1f and b as follows:

(T1f, b) :=
∑
n

[∫
R
i0+
kλ(||U(x)||α, ||Vn||β)f (x)dx

]
bn. (36)

Then by (23) and (24), we have the following equivalent inequalities:

(T1f, b) < K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ ||b||q,Ψ , (37)

||T1f ||p,Ψ 1−p < K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ. (38)
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It follows that T1 is bounded with

||T1|| := sup
f ( �=θ)∈Lp,Φ(Ri0+ )

||T1f ||p,Ψ 1−p

||f ||p,Φ ≤ K
1
p

β (λ1)K
1
q
α (λ1). (39)

By Theorem 2, the constant factor K
1
p

β (λ1)K
1
q
α (λ1) in (38) is the best possible, we

have

||T1|| = K
1
p

β (λ1)K
1
q
α (λ1)

=
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q

k(λ1). (40)

With regard to the assumptions of Theorem 2, in view of

g(x) : =
∏i0
i=1 μi(x)

||U(x)||i0−qλ1
α

[∑
n

kλ(||U(x)||α, ||Vn||β)bn
]q−1

, x ∈ Ri0+,

g = g(x), ||g||q,Φ1−q = J2 < K
1
p

β (λ1)K
1
q
α (λ1)||b||q,Ψ <∞,

we can set the following definition:

Definition 3 Define a half-discrete multidimensional Hardy–Hilbert-type operator
T2 : lq,Ψ → Lq,Φ1−q (Ri0+) as follows: For any b ∈ lq,Ψ , there exists a unique

representation T2b = g ∈ Lq,Φ1−q (Ri0+), satisfying

T2b(x) :=
∑
n

kλ(||U(x)||α, ||Vn||β)bn (x ∈ Ri0+). (41)

For f ∈ Lp,Φ(Ri0+), we define the following formal inner product of T2b and f as
follows:

(f, T2b) :=
∫

R
i0+
f (x)

[∑
n

kλ(||U(x)||α, ||Vn||β)bn
]
dx. (42)

Then by (23) and (25), we have the following equivalent inequalities:

(f, T2b) < K
1
p

β (λ1)K
1
q
α (λ1)||f ||p,Φ ||b||q,Ψ , (43)

||T2b||q,Φ1−q < K
1
p

β (λ1)K
1
q
α (λ1)||b||q,Ψ . (44)
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It follows that T2 is bounded with

||T2|| := sup
b( �=θ)∈lq,Ψ

||T2b||q,Φ1−q

||b||q,Ψ ≤ K
1
p

β (λ1)K
1
q
α (λ1). (45)

By Theorem 2, the constant factor K
1
p

β (λ1)K
1
q
α (λ1) in (44) is the best possible, we

have

||T2|| = K
1
p

β (λ1)K
1
q
α (λ1)

=
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q

k(λ1). (46)

Example 2

(i) In view of Example 1, by (40) and (46), for kλ(x, y) = (min{x,y})η
(max{x,y})λ+η , we have

||T1|| = ||T2|| =
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q

× λ+ 2η

(λ1 + η)(λ2 + η) .

(ii) For kλ(x, y) = 1
xλ+yλ (λ1 > 0, 0 < λ2 ≤ j0, λ1 + λ2 = λ), we find k(λ1) =

π

λ sin(
πλ1
λ
)
, and then by (40) and (46), we have

||T1|| = ||T2|| =
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q

× π

λ sin(πλ1
λ
)
.

(iii) For kλ(x, y) = ln(x/y)
xλ−yλ (λ1 > 0, 0 < λ2 ≤ j0, λ1 + λ2 = λ), we find k(λ1) =

[ π

λ sin(
πλ1
λ
)
]2, and then by (40) and (46), we have

||T1|| = ||T2|| =
[

Γ j0( 1
β
)

βj0−1Γ (
j0
β
)

] 1
p
[
Γ i0( 1

α
)

αi0−1Γ (
i0
α
)

] 1
q
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×
[

π

λ sin(πλ1
λ
)

]2

.

Remark 3 For 0 < λ1 + η ≤ i0, 0 < λ2 + η ≤ j0,

kλ(x, y) = (min{x, y})η
(max{x, y})λ+η (x, y > 0),

(23) reduces to (23) in [48], which is an extension of (4) forμi = υj = 1 (i, j ∈ N).
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