Skip to main content

Mesoscale Classifications: Their History and Their Application to Forecasting

  • Chapter
Mesoscale Meteorology and Forecasting

Abstract

So-called synoptic meteorology is the study of meteorological data collected and transmitted by a network of weather stations. The Glossary of Meteorology (Huschke, 1959) defines “synoptic” as referring to “meteorological data obtained simultaneously over a wide area for the purpose of presenting a comprehensive and nearly instantaneous picture of the state of the atmosphere.” Thus, to be synoptic, weather observations must be made simultaneously; the areal extent or horizontal scale of the station network is not specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agee, E. M., J. T. Snow, F. S. Nickerson, P. R. Clare, C. R. Church, and C. A. Schaal, 1977: An observational study of the West Lafayette, Indiana, tornado of March 20, 1976. Mon. Wea. Rev., 105, 893–907.

    Article  Google Scholar 

  • Bjerknes, J., and H. Solberg, 1922: Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys. Publ. Norske Vidensk.-Akad. Oslo, 3 (1): 1–18.

    Google Scholar 

  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 16, 995–1011.

    Article  Google Scholar 

  • Brooks, E. M., 1949: The tornado cyclone. Weatherwise, 2, 32–33.

    Article  Google Scholar 

  • Brown, R. A., W. C. Bumgarner, K. C. Crawford, and D. Sirmans, 1971: Preliminary Doppler velocity measurements in a developing radar hook echo. Bull. Amer. Meteor. Soc., 52, 1186–1188.

    Article  Google Scholar 

  • Brunk, I. W., 1949: Pressure pulsations of April 11, 1944. J. Meteor., 6, 181–188.

    Article  Google Scholar 

  • Burgess, D. W., L. R. Lemon, and R. A. Brown, 1975: Evolution of a tornado signature and parent circulation as revealed by single Doppler radar. Preprints, 16th Radar Meteorology Conference, Houston, Tex., American Meteorological Society, Boston, 99–106.

    Google Scholar 

  • Burgess, D. W., L. H. Hennington, R. J. Doviak, and P. S. Ray, 1976: Multimoment Doppler display for severe storm identification. J. Appl. Meteor., 15, 1302–1306.

    Article  Google Scholar 

  • Byers, H. R., and R. R. Braham, Jr., 1949: The Thunderstorm. U.S. Department of Commerce, Weather Bureau, Washington D.C., 287 pp.

    Google Scholar 

  • Chromow, S. P., 1942: Einführung in die synoptische Wetteranalyse. Springer-Verlag, Berlin, 532 pp.

    Book  Google Scholar 

  • Durand-Gréville, E., 1892: Les grains et les orages. Ann. Centr. Meteor. France, 1, 249.

    Google Scholar 

  • Fitz-Roy, R., 1863: Weather Book: A Man-ual of Practical Meteorology. London.

    Google Scholar 

  • Fujita, T. T., 1950: Microanalytical study of thunder nose. Geophys. Mag. (Japan), 22, 78–88.

    Google Scholar 

  • Fujita, T. T., 1951: Microanalytical study of cold front. Geophys. Mag. (Japan), 22, 237–277.

    Google Scholar 

  • Fujita, T. T., 1955: Results of detailed synoptic studies of squall lines. Tellus, 4, 405–436.

    Article  Google Scholar 

  • Fujita, T. T., 1959: Study of mesosystems associated with stationary radar echoes. J. Meteor., 16, 454–466.

    Article  Google Scholar 

  • Fujita, T. T., 1963: Analytical mesometeorology: A Review. In Severe Local Storms, Meteor. Monogr. 5(27), American Meteorological Society, Boston, 77–125.

    Google Scholar 

  • Fujita, T. T., 1970: Lubbock tornadoes: A study of suction spots. Weatherwise, 23, 160–173.

    Article  Google Scholar 

  • Fujita, T. T., 1974: Jumbo tornado outbreak of 3 April 1974. Weatherwise, 27, 116–126.

    Article  Google Scholar 

  • Fujita, T. T., 1976: Close-up view of 20 March 1976 tornadoes: Sinking cloud tops to suction vortices. Weatherwise, 29, 116–131.

    Article  Google Scholar 

  • Fujita, T. T., 1981: Tornadoes and down-bursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 1512–1534.

    Article  Google Scholar 

  • Fujita, T. T., 1984: Andrews AFB microburst. SMRP Res. Paper 205, University of Chicago, 38 pp.

    Google Scholar 

  • Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc., 58, 1164–1181.

    Article  Google Scholar 

  • Fujita, T. T., H. Newstein, and M. Tepper, 1956: Mesoanalysis—an important scale in the analysis of weather data. U.S. Weather Bureau Research Paper 39., Supt. of Documents, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Fujiwara, S., 1943: Report of thunderstorm observation project. Japan Meteorological Agency, Tokyo, 248 pp.

    Google Scholar 

  • Garrett, R. A., and V. D. Rockney, 1962: Tornado in Northern Kansas, May 19, 1960. Mon. Wea. Rev., 90, 231–240.

    Article  Google Scholar 

  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 1429–1440.

    Article  Google Scholar 

  • Harper, W. G., 1960: An unusual indicator of convection. Mar. Obs., 30, 36–40.

    Google Scholar 

  • Huschke, R. E. (Ed.), 1959: Glossary of Meteorology, American Meteorological Society, Boston, 638 pp.

    Google Scholar 

  • Kochin, P. J., 1983: An analysis of the Blizzard of ‘88. Bull. Amer. Meteor. Soc., 64, 1258–1272.

    Article  Google Scholar 

  • Koschmieder, H., 1955: Ergebnisse der Deutschen Böenmessungen, 1939/41. Friedr. Vieweg & Sohn, Braunschweig, 148 pp.

    Google Scholar 

  • Ligda, M. G. H., 1951: Radar storm observation. In Compendium of Meteorology, American Meteorological Society, Boston, 1265–1282.

    Chapter  Google Scholar 

  • Ligda, M. G. H., and S. G. Bigler, 1958: Radar echoes from a cloudless cold front. J. Meteor., 15, 494–501.

    Article  Google Scholar 

  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527–530.

    Google Scholar 

  • Petterssen, S., 1956: Weather Analysis and Forecasting. McGraw-Hill, New York, 428 pp.

    Google Scholar 

  • Purdom, J. F. W., 1973: Meso-high and satellite imagery. Mon. Wea. Rev., 101, 180–181.

    Article  Google Scholar 

  • Purdom, J. F. W., 1976: Some uses of high-resolution GOES imagery in the mesoscale forecasting of convection and its behavior. Mon. Wea. Rev., 104, 1474–1483.

    Article  Google Scholar 

  • Ray, P. S., R. J. Doviak, G. B. Walker, D. Sirmans, J. Carter, and B., Bumgrner, 1975: Dual-Doppler observation of tornadic storms. J. Appl. Meteor., 14, 1521–1530.

    Article  Google Scholar 

  • Rotunno, R., 1981: A numerical simulation of multiple vortices. In Intense Atmospheric Vortices, L. Bengtsson and J. Lighthill (Eds.), Springer-Verlag, Berlin, 213–226.

    Google Scholar 

  • Schaefer, V. J., 1960: Hailstorms and hailstones of the Great Plains. Nubila, 3, 18–29.

    Google Scholar 

  • Smith, R. L., and D. W. Holmes, 1961: Use of Doppler radar in meteorological observations. Mon. Wea. Rev., 89, 1–7.

    Article  Google Scholar 

  • Stout, G. E., and F. A. Huff, 1953: Radar records Illinois tornadogenesis. Bull. Amer. Meteor. Soc., 34, 281–284.

    Google Scholar 

  • Suckstorff, G. A., 1938: Kaltlufterzeugung durch Niederschrag. Z. Meteor., 55, 287–292.

    Google Scholar 

  • Swingle, D. M., and L. Rosenberg, 1953: Mesometeorological analysis of cold front passage using radar weather data. Proceedings, 4th Weather Radar Conference, Boston, Mass., American Meteorological Society, Boston, XI - 5, 1–3.

    Google Scholar 

  • Tepper, M., 1950a: Proposed mechanism of squall line: The pressure jump line. J. Meteor., 7, 21–29.

    Article  Google Scholar 

  • Tepper, M., 1950b: On the origin of tornadoes. Bull. Amer. Meteor. Soc., 31, 311–314.

    Google Scholar 

  • Tepper, M., 1955: On the generation of pressure-jump lines by the impulsive addition of momentum to simple current systems. J. Meteor., 12, 287–297.

    Article  Google Scholar 

  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 1060–1082.

    Article  Google Scholar 

  • Williams, D. T., 1948: A surface micro-study of squall-line thunderstorms. Mon. Wea. Rev., 76, 239–246.

    Article  Google Scholar 

  • Williams, D. T., 1953: Pressure wave observations in the central midwest, 1952. Mon. Wea. Rev., 81, 278–298.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 American Meteorological Society

About this chapter

Cite this chapter

Fujita, T.T. (1986). Mesoscale Classifications: Their History and Their Application to Forecasting. In: Ray, P.S. (eds) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-935704-20-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-935704-20-1_2

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-935704-20-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics