Skip to main content

Radar Storm Observation

  • Chapter
Compendium of Meteorology

Abstract

Through the use of radar for precipitation detection the science of meteorology has acquired an entirely new and unique method of weather observation [14]. As a result of this use the meteorologist has been presented with graphic, dynamic, and up-to-the-second depictions of precipitation formations of all types, and these in several dimensions. Techniques for analysis of radar precipitation echo signals have not yet been completely developed, and for this reason radar is presently of minor (but rapidly increasing) meteorological importance. It appears to have vast potentialities both in the fields of physical meteorological research and weather observation and forecasting, as well as other closely allied activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 36.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. American Airlines System. Flight Test Rep. No. 64. New York, 1949.

    Google Scholar 

  2. Army Air Forces, Headquarters. AAF Manual 101-66-1. Washington, D. C., 1945.

    Google Scholar 

  3. Army Air Forces, Headquarters. Radar Weather Reconnaissance. AAF Manual 105-101-1. Washington, D. C., May 1945.

    Google Scholar 

  4. Army Air Forces, Headquarters. Radar Storm Detection. AAF Manual 105-101-2. Washington, D. C., 1945.

    Google Scholar 

  5. Atlas, D., Preliminary Report on New Techniques in Quantitative Radar Analysis of Thunderstorms. Rep. AWNW-7-4, Pt. I, Dayton, Air Materiel Command, 1947.

    Google Scholar 

  6. Austin, P. M., A Group of Graphs Showing Estimated Radar Return from Precipitation. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 6, 1948.

    Google Scholar 

  7. Austin, P. M., On the Probability of Detecting Bases and Tops of Clouds by Radar at K-Band or at Shorter Wave Lengths. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 2, Oct. 1, 1947.

    Google Scholar 

  8. Austin, P. M.,Note on Comparison of Ranges of Radio Set SCR 615B and Radar Set AN/TPS-10A for Storm Detection. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 5, 1947.

    Google Scholar 

  9. Austin, P. M., “Measurement of Approximate Rain Drop Size by Microwave Attenuation.” J. Meteor., 4: 121–124 (1947).

    Article  Google Scholar 

  10. Austin, P. M., and Bemis, A. C., “A Quantitative Study of the ‘Bright Band’ in Radar Precipitation Echoes.” J. Meteor., 7: 145–151 (1950).

    Article  Google Scholar 

  11. Ayer, R. W., White, F. C., and Armstrong, L. W., The Development of an Airborne Radar Method of Avoiding Severe Turbulence and Heavy Precipitation in the Precipitation Areas of Thunderstorms and Squall Lines. New York, American Airlines System, 1949.

    Google Scholar 

  12. Bemis, A. C., “Weather Radar Research at M.I.T.” Bull. Amer. meteor. Soc., 28: 115–117 (1947).

    Google Scholar 

  13. Bent, A. E., Echoes from Tropical Rain on X-Band Radar. Rep. 728, Cambridge, M.I.T. Radiation Lab., 1945.

    Google Scholar 

  14. Bent, A. E., “Radar Detection of Precipitation.” J. Meteor., 3: 78–84 (1946).

    Article  Google Scholar 

  15. Bent, A. E., Climate in Relation to Microwave Radar Propagation in Panama. Rep. 476, Cambridge, M.I.T. Radiation Lab., 1944.

    Google Scholar 

  16. Bent, A. E., Radar Echoes from Precipitation Layers. Rep. 689, Cambridge, M.I.T. Radiation Lab., 1945.

    Google Scholar 

  17. Brooks, H. R., “A Summary of Some Radar Thunder storm Observations.” Bull. Amer. meteor. Soc., 27: 557–563 (1946).

    Google Scholar 

  18. Burrows, C. R. (chairman) and Attwood, S. S. (editor), Radio Wave Propagation. New York, Academic Press, 1949. (Consolidated Summary Tech. Rep. of Comm. on Propagation of the Nat. Res. Comm.)

    Google Scholar 

  19. Byers, H. R., and Coons, R. D., “The Bright Band in Radar Cloud Echoes and Its Probable Explanation.” Meteor., 4: 75–81 (1947).

    Google Scholar 

  20. Byers, H. R., and Collaborators, “The Use of Radar in Determining the Amount of Rain Falling over a Small Area.” Trans. Amer. geophys. Un., 29: 187–196 (1948).

    Article  Google Scholar 

  21. Byers, H. R., and Battan, L. J., “Some Effects of Vertical Wind Shear on Thunderstorm Structure.” Bull. Amer. meteor. Soc., 30: 168–175 (1949).

    Google Scholar 

  22. Canadian Army Operational Research Group, Investigations of the “Bright Band” Discussed in CAORG Report No. 30. Rep. No. 42, Nov. 16, 1945.

    Google Scholar 

  23. Crawford, A. B., “Radar Reflections in the Lower At mosphere.” Proc. Inst. Radio Engrs., 37: 404–405 (1949).

    Google Scholar 

  24. Cunningham, R. M., “A Different Explanation of the ‘Bright Line.’”J. Meteor., 4: 163 (1947).

    Article  Google Scholar 

  25. Cunningham, R. M., and Miller, R. W., Five Weather Flights: Measure ments and Analysis. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 7, 1948.

    Google Scholar 

  26. Eon, L. G., and Tibbles, L. G., Investigations of the “Bright Band.” Rep. No. 30, Canadian Army Operational Research Group, 1945.

    Google Scholar 

  27. Friend, A. W., “Theory and Practice of Tropospheric Sounding by Radar.” Proc. Inst. Radio Engrs., N. Y., 37: 116–138 (1949).

    Google Scholar 

  28. Gould, W. B., Cloud Detection by Radar. Paper presented at Joint Meeting of Amer. Geophys. Un. and Amer. Meteor. Soc., Washington, D. C., April 20, 1949.

    Google Scholar 

  29. Hare, F. K., Movement of Precipitation Areas. Rep. No. 48, Canadian Army Operational Research Group, 1947.

    Google Scholar 

  30. Hilst, G. R., Analysis of the Audio-Frequency Fluctua tions in Radar Storm Echoes: A Key to the Relative Velocities of the Precipitation Particles. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 9A, 1949.

    Google Scholar 

  31. Hilst, G. R., and Macdowell, G. P., “Radar Measurements of the Initial Growth of Thunderstorm Precipitation Cells.” Bull. Amer. meteor. Soc., 31: 95–99 (1950).

    Google Scholar 

  32. Hooper, J. E. N., and Kippax, A. A., “Radar Echoes from Meteorological Precipitation.” Proc. Instn. elect. Engrs., Pt. 1, 97: 89–95 (1950).

    Google Scholar 

  33. Hooper, J. E. N., and Jones, F. E., Interim Report: Measurements of Radar Echo Intensities from Rain and Snow. Rep. No. T 2082, London Telecommunications Research Establishment, 1947.

    Google Scholar 

  34. Jones, F. E., “Radar as an Aid to the Study of the Atmosphere.” J. R. aero. Soc., 53: 437–448 (1949).

    Google Scholar 

  35. Kirkman, R. A., and Lebedda, J. M., “Meteorological Radio Direction Finding for Measurement of Upper Winds.” J. Meteor., 5: 28–37 (1948).

    Article  Google Scholar 

  36. Langille, R. C., Gunn,K. L. S., and Palmer, W. McK., Quantitative Analysis of Vertical Structure in Precipitation. Ottawa, Defense Research Board, 1948.

    Google Scholar 

  37. Latour, M. H., and Bunting, D. C., “Radar Observation of Florida Hurricane, August 26–27, 1949.” Gainesville, Univ. of Florida, College of Engineering, Bull. Ser., Vol. 3, No. 8 (1949).

    Google Scholar 

  38. Laws, J. O., and Parsons, D. A., “The Relation of Rain drop-Size to Intensity.” Trans. Amer. geophys. Un., 24: 452–459 (1943).

    Article  Google Scholar 

  39. Ligda, M. G. H., “Lightning Detection by Radar.” Bull. Amer, meteor. Soc., 31: 279–283 (1950).

    Google Scholar 

  40. Ligda, M. G. H., Radar Scope Photography. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 4, 1947.

    Google Scholar 

  41. Macdowell, G. P., A Study of the Slopes of Radar Precipitation Echoes. Unpublished Thesis, M.I.T. Dept. of Meteor., Cambridge, Mass., 1948.

    Google Scholar 

  42. Marshall, J. S., Langille, R. C., and Palmer, W. McK., “Measurement of Rainfall by Radar.” J. Meteor., 4: 186–192 (1947).

    Article  Google Scholar 

  43. Mather, J. R., “An Investigation of the Dimensions of Precipitation Echoes by Radar.” Bull. Amer. meteor. Soc., 30: 271–277 (1949).

    Google Scholar 

  44. Maynard, R. H., “Radar and Weather.” J. Meteor., 2: 214–226 (1945).

    Article  Google Scholar 

  45. Mie, G., “Beitrage zur Optik truber Medien.” Ann. Physik, 25: 377–445 (1908).

    Article  Google Scholar 

  46. Miller, R. W., “The Use of Airborne Navigational and Bombing Radars for Weather Radar Operations and Verifications,” Bull. Amer. meteor. Soc., 28: 19–28 (1947).

    Google Scholar 

  47. Perrie, D. W., “The Rain Required for a Radar Echo.” Bull. Amer. meteor. Soc., 30: 278–281 (1949).

    Google Scholar 

  48. Rayleigh, Lord, “On the Light from the Sky, Its Polarization and Colour.” Phil. Mag., 41: 107–120, 274–279 (1871).

    Google Scholar 

  49. Ridenour, L. N., Radar System Engineering. New York, McGraw, 1947.

    Google Scholar 

  50. Ryde, J. W., Echo Intensities and Attenuation Due to Clouds, Rain, Hail, Sand and Dust Storms. Rep. No. 7831, Wembley (Eng.), General Electric Co., 1941.

    Google Scholar 

  51. Ryde, J. W., “The Attenuation of Centimetre Radio Waves and Echo Intensities Resulting from Atmospheric Phenomena.” J. Instn. elect. Engrs., 93 (3A): 101–103 (1946).

    Google Scholar 

  52. Ryde, J. W., “The Attenuation and Radar Echoes Produced at Centimetre Wavelengths by Various Meteorological Phenomena” in Factors in Microwave Propagation. Royal Phys. Soc., Report of Conference, 1946. (See pp. 169–188)

    Google Scholar 

  53. Siegert, A. J. F., On the Appearance of the uA-Scope When the Pulse Travels Through a Homogeneous Distribution of Scatterers. Rep. 466, Cambridge, M.I.T. Radiation Lab., 1943.

    Google Scholar 

  54. Smith, E. D., and Fletcher, R. D., “A Summary of the Uses of Radar in Meteorology.” Trans. Amer. geophys. Un., 28: 713–714 (1947).

    Article  Google Scholar 

  55. Spilhaus, A. F., “Drop Size, Intensity, and Radar Echo of Rain.” J. Meteor., 5: 161–164 (1948).

    Article  Google Scholar 

  56. Stout, G. E., and Huff, F. A., Radar and Rainfall. Urbana, Illinois State Water Survey Div., 1949.

    Google Scholar 

  57. U. S. Navy, A Note on the Double Eye Phenomenon as Observed During the Hurricane, 11–20 September, 1947. NAVAER 50-IR-207, Washington, D. C., Aerology, Flight Section, C.N.O., 1947.

    Google Scholar 

  58. U. S. Navy, Report of Hurricane at Key West 18–21 September, 1948. NAVAER 50–45T-11, Washington, D. C., Aerology, Flight Section, C.N.O., 1948.

    Google Scholar 

  59. U. S. Weather Bureau, Manual of Radar Meteorological Observations. Washington, D. C., Aug. 1, 1949.

    Google Scholar 

  60. U. S. Weather Bureau, A Report on Thunderstorm Conditions Affecting Flight Operations. Washington, D. C., Thunderstorm Project, Tech. Paper No. 7, 1948.

    Google Scholar 

  61. U. S. Weather Bureau, Operation and Activity of the Thunderstorm Project to September 20, 1946. Chicago, 111., Thunderstorm Project, Rep. No. 1, Nov. 1946.

    Google Scholar 

  62. U. S. Weather Bureau, The Thunderstorm. Washington, D. C., U. S. Govt. Printing Office, 1949.

    Google Scholar 

  63. Van Vleck, J. H., “Absorption of Microwaves by Uncon-densed Water Vapor.” Phys. Rev., 71: 425–433 (1947).

    Article  Google Scholar 

  64. Van Vleck, J. H., “Absorption of Microwaves by Oxygen.” Phys. Rev., 71: 413–424 (1947).

    Article  Google Scholar 

  65. Weather Radar Research, First Technical Report under Signal Corps Contract. Cambridge, M.I.T. Weather Radar Research, 1946.

    Google Scholar 

  66. Wexler, H., “Structure of Hurricanes as Determined by Radar.” Ann. N. Y. Acad. Sci., 48: 821–844 (1947).

    Article  Google Scholar 

  67. Wexler, R., “Radar Detection of a Frontal Storm, 18 June, 1946.” J. Meteor., 4: 38–44 (1947).

    Article  Google Scholar 

  68. Wexler, R., Optimum Wavelength for Storm Detection Through Rain. Belmar, N. J., Evans Signal Laboratory, 1946.

    Google Scholar 

  69. Wexler, R., and Swingle, D. M., “Radar Storm Detection.” Bull. Amer. meteor. Soc., 28: 159–167 (1947).

    Google Scholar 

  70. Williams, E. L., The Pulse Integrator, Part A: Descrip tion of the Instrument and Its Circuitry. Cambridge, M.I.T. Weather Radar Research Tech. Rep. No. 8A, 1950.

    Google Scholar 

  71. Zurcher, L. A., Storm Detection Radar. Belmar, N. J., Evans Signal Laboratory, 1949.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Thomas F. Malone

Rights and permissions

Reprints and permissions

Copyright information

© 1951 American Meteorological Society

About this chapter

Cite this chapter

Ligda, M.G.H. (1951). Radar Storm Observation. In: Malone, T.F. (eds) Compendium of Meteorology. American Meteorological Society, Boston, MA. https://doi.org/10.1007/978-1-940033-70-9_103

Download citation

  • DOI: https://doi.org/10.1007/978-1-940033-70-9_103

  • Publisher Name: American Meteorological Society, Boston, MA

  • Online ISBN: 978-1-940033-70-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics