Skip to main content

Abstract

THE increasing complexity of aircraft structures and the many exact or approximate methods available for their analysis demand an integrated view of the whole subject, not only in order to simplify their applications but also to discover some more general truths and methods. There are also other reasons demanding a more comprehensive discussion of the basic theory. We mention only the increasing attention paid to temperature stresses and the realization of the importance of nonlinear effects. When viewed from all these aspects the idea of presenting a unified analysis appears more than necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

General References

  1. Biezeno, C. B., and Grammel, R. Technische Dynamik, 1st ed., Springer, Berlin, 1939.

    Book  Google Scholar 

  2. Engesser, F. Z. Architek u. Ing. Verein Hannover, Vol. 35, pp. 733–774, 1899.

    Google Scholar 

  3. Lord Rayleigh. Theory of Sound, 2nd ed., Vols. I and II, Macmillan, London, 1892 and 1896.

    MATH  Google Scholar 

  4. Maxwell, J. C. Phil. Mag., Vol. 27, p. 294, 1864.

    Google Scholar 

  5. Mohr, O. Z. Arch. u. Ing. Verein Hannover, 1874, p. 509, and 1875, p. 17.

    Google Scholar 

  6. Mueller-Breslau, H. Die neueren Methoden der Festigkeitslehre und der Statik der Baukon-struktionen, 1st ed., Körner, Leipzig, 1886.

    Google Scholar 

  7. Southwell, R. V. Introduction to the Theory of Elasticity, 2nd ed., Clarendon Press, Oxford, 1941.

    Google Scholar 

  8. Timoshenko, S., and Goodier, J. N. Theory of Elasticity, 2nd ed., MacGraw-Hill, New York, 1951.

    MATH  Google Scholar 

  9. Timoshenko, S. History of Strength of Materials, MacGraw-Hill, New York, 1953.

    Google Scholar 

  10. Trefftz, E. Handbuch der Physik, Vol. VI, Springer, Berlin, 1928.

    Google Scholar 

  11. Westergaard, H. M. ‘On the Methods of Complementary Energy,’ Proceedings Amer. Soc. Civ. Engrs., 1941, p. 190.

    Google Scholar 

  12. Argyris, J. H. Thermal Stress Analysis and Energy Theorems, A.R.C. 16,489, Dec. 1953.

    Google Scholar 

  13. Argyris, J. H., and Kelsey, S. Applications to A.R.C. 16,489, A.R.C. 16,513, Jan. 1954. Additional references are given as footnotes.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1960 J. H. Argyris

About this chapter

Cite this chapter

Argyris, J.H. (1960). General Theory. In: Energy Theorems and Structural Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-5850-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-5850-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-5852-5

  • Online ISBN: 978-1-4899-5850-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics