Skip to main content

Abstract

The chief advantages of polymeric insulators over conventional porcelain and glass insulators in outdoor high voltage (HV) insulation applications are given by Gorur and Orbeck1 as light weight, superior vandal resistance and better contamination performance. However, polymers are more easily degraded than inert inorganic materials under exposure to discharges and arcing. Corona discharges and dry band arcing occur when the surface of an energized insulator is covered by an electrolytic film formed by the presence of moisture and contamination. The intense localized energy of the dry band arcs can cause material degradation in the form of tracking and erosion. Other environmental factors such as ultraviolet (UV) radiation from sunlight, temperature and flammability must also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. S. Gomr and T. Orbeck, Surface Dielectric Behavior of Polymeric Insulation under HV Outdoor Conditions, IEEE Transactions on Electrical Insulation, 26(5):1064 (1991).

    Article  Google Scholar 

  2. M. J. Owen, Analysis of Surfaces, The Analytical Chemistry of Surfaces, Ed. A. L. Smith, Wiley-Interscience, New York, 1991, p. 97.

    Google Scholar 

  3. P. J. Smith, M. J. Owen, P. H. Holm and G. A. Toskey, Surface Studies of Corona-Treated Silicone Rubber High-Voltage Insulation, Proc. IEEE CEIDP Conference, Victoria, B. C., 1992, p. 829.

    Google Scholar 

  4. W. A. Lee and R. A. Rutherford, Glass Transition Temperatures of Polymers, Polymer Handbook, Eds. J. Brandrup and E. H. Immergut, Wiley, New York, 1975, p. 111–139.

    Google Scholar 

  5. D. K. Owens and R. C. Wendt, Estimation of the Surface Free Energy of Polymers, J. Appl. Polym. Sci, 13:1741 (1969).

    Article  CAS  Google Scholar 

  6. H. Kobayashi and M. J. Owen, Surface tension of Poly[(3,3,4,4,5,5,6,6,6-nonafluorohexyl)methylsiloxane], Macromolecules, 23:4929 (1990).

    Article  CAS  Google Scholar 

  7. T. Kasemura, N. Yamashita, K. Suzuki, T. Kondo and T. Hata, Kobunshi Ronbunshu 35: 263 (1978).

    Article  CAS  Google Scholar 

  8. B. B. Sauer and N. V. Dipaolo, Surface Tension and Dynamic Wetting of Polymers Using the Wilhelmy Method: Applications to High Molecular Weights and Elevated Temperatures, J. Colloid Interface Sci., 144:527 (1991).

    Article  CAS  Google Scholar 

  9. S-H. Kim, E. A. Cherney and R. Hackam, Thermal Characteristics of RTV Silicone Rubber Coatings as a Function of Filler Level, IEEE Trans. Electr. Insul., 27(6):1065 (1992).

    Article  CAS  Google Scholar 

  10. C. L. Lee and G. R. Homan, Silicone Protective Coatings for High Voltage Insulators, Annual Report (81 CH1668-3) IEEE CEIDP Conf, 1981, p. 435.

    Google Scholar 

  11. J. L. Fritz and M. J. Owen, Hydrophobie Recovery of Plasma-Treated Polydimethylsiloxane, J. Adhesion, 54:33 (1995).

    Article  CAS  Google Scholar 

  12. J. R. Hollahan and G. L. Carlson, Hydroxylation of Polymethylsiloxane Surfaces by Oxidizing Plasmas, J. Appl. Polym. Sci., 14:2499 (1970).

    Article  CAS  Google Scholar 

  13. J. J. Kennan, Y. A. Peters, D. E. Swarthout, M. J. Owen, A. Namkanisorn and M. K. Chaudhury, accepted by J. Biomed. Mater. Res..

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Owen, M.J. (1998). Surface Properties of Silicone High Voltage Insulators. In: Prasad, P.N., Mark, J.E., Kandil, S.H., Kafafi, Z.H. (eds) Science and Technology of Polymers and Advanced Materials. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0112-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0112-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0114-9

  • Online ISBN: 978-1-4899-0112-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics