Skip to main content

Track Structure, Chromosome Geometry and Chromosome Aberrations

  • Chapter
Computational Approaches in Molecular Radiation Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 63))

  • 107 Accesses

Abstract

The joint role of radiation track structure and chromosome geometry in determining yields of chromosome aberrations is discussed. Ideally, the geometric models of chromosomes used for analyzing aberration yields should have the same degree of realism as track structure models. However, observed chromosome aberrations are produced by processes on comparatively large scales, e.g., misrepair involving two DSB located on different chromosomes or two DSB separated by millions of base pairs on one chromosome, and quantitative models for chromatin on such large scales have to date almost never been attempted. We survey some recent data on large-scale chromosome geometry, mainly results obtained with fluorescence in situ hybridization (“chromosome painting”) techniques. Using two chromosome models suggested by the data, we interpret the relative yields, at low and high LET, of inter-chromosomal aberrations compared to intra-chromosomal, inter-arm aberrations. The models consider each chromosome confined within its own “chromosome localization sphere,” either as a random cloud of points in one model or as a confined Gaussian polymer in the other. In agreement with other approaches, our results indicate that at any given time during the G 0/G l part of the cell cycle a chromosome is largely confined to a sub-volume comprising less than 10% of the volume of the cell nucleus. The possible significance of the ratio of inter-chromosomal aberrations to intra-chromosomal, inter-arm aberrations as an indicator of previous exposure to high LET radiation is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D.T. Goodhead. Relationship of microdosimetric techniques to applications in biological systems. Int. J. Radiat. Biol. 56: 623–634 (1989).

    Article  PubMed  CAS  Google Scholar 

  2. R.B. Painter. The role of DNA damage and repair in cell killing induced by ionizing radiation. In Radiation Biology in Cancer Research, R.E. Meyn and H.R. Withers eds., pp. 59–68. Raven Press, New York (1979).

    Google Scholar 

  3. M. Sorsa, J. Wilbourn and H. Vainio. Human cytogenetic damage as a predictor of cancer risk. larc Scientific Publications 116: 543–54 (1992).

    CAS  Google Scholar 

  4. D.C. Lloyd and A.A. Edwards. Chromosome aberrations in human lymphocytes: effects of radiation quality, dose, and dose rate. In Radiation-Induced Chromosome Damage in Man, T. Ishihara and M.S. Sasaki, eds., pp. 23–29. Alan R Liss, New York (1983).

    Google Scholar 

  5. D.J. Brenner, and J.F. Ward. Constraints on energy deposition and target size of multiply-damaged sites associated with DNA double strand breaks. Int. J. Radiat. Biol. 61: 737–748 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. A.M. Kellerer. Fundamentals of microdosimetry. In The Dosimetry of Ionizing Radiation, K. Kase, B. Bjarngard and F. Attix, eds., pp. 78–162. Academic Press, Orlando (1985).

    Google Scholar 

  7. D.J. Brenner and R.K. Sachs. Chromosomal “fingerprints” of prior exposure to densely-ionizing radiation. Rad. Res. 140: 134–142.

    Google Scholar 

  8. P. Lichter, T. Cremer, J. Borden, L. Manuelidis, and D.C. Ward. Delineation of individual human chromosome aberrations in metaphase and interphase tumor cells by in situ suppression hybridization using chromosome-specific library probes. Human Genetics 80: R224–34 (1988).

    Article  Google Scholar 

  9. H. Van Dekken, D. Pinkel, J. Mulliken, B. Trask, G. Van den Engh, and J. Gray. Three-dimensional analysis of the organization of human chromosome domains in human and hamster hybrid cells. J. Cell Sci. 94: 299–306 (1989).

    PubMed  Google Scholar 

  10. J.N. Lucas, T. Tenjin, T. Straume, D. Pinkel, D. Moore, 2d., M. Litt, and J.W. Gray. Rapid human chromosome aberration analysis using fluorescence in situ hybridization. Int. J. Radiat. Biol. 56: 35–44, 56: 201 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. T. Cremer, S. Popp, P. Emmerich, P. Lichter P and C. Cremer, Rapid metaphase and interphase detection of radiation-induced chromosome aberrations in human lymphocytes by chromosomal suppression in situ hybridization. Cytometry 11: 110–8 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. J.W. Evans, J.A. Chang, A.J. Giaccia, D. Pinkel, and J.M. Brown. The use of fluorescence in situ hybridisation combined with premature chromosome condensation for the identification of chromosome damage. British Journal of Cancer 63: 517–21 (1991).

    Article  PubMed  CAS  Google Scholar 

  13. B.J. Trask, H. Massa, S. Kenwrick and J. Gitschier. Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. American Journal of Human Genetics 48: 1–15 (1991).

    PubMed  CAS  Google Scholar 

  14. J.N. Lucas, A. Awa, T. Straume, M. Poggensee, Y. Kodama, M. Nakano, K. Ohtaki, H.-U. Weir, D. Pinkel, J.W. Gray and G. Littlefield, Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int. J. Radiat. Biol. 62: 53–63 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. J.M. Brown and J.W. Evans. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair. Brit. J. Rad. Supplement 24: 61–4 (1992).

    CAS  Google Scholar 

  16. J.N. Lucas and R.K. Sachs. Using 3-colour chromosome painting to decide between chromosome aberration models. Proc. Nat Acad. Sci. U.S. 90: 1484–1487 (1993).

    Article  CAS  Google Scholar 

  17. G. van den Engh, R. Sachs and B. Trask. Estimating genomic distance from DNA sequence location in cell nuclei using a random walk model, Science 257: 1410–1412 (1992).

    Article  PubMed  Google Scholar 

  18. J.F. Ward, G.D.D. Jones and J.R. Milligan. biological consequences of non-homogeneous energy deposition by ionizing radiation. Radiation Protection Dosimetry 52: 271–276. (1994).

    Google Scholar 

  19. K.E. Van Holde. Chromatin. Springer Verlag, NY (1989).

    Google Scholar 

  20. A. Wolffe. Chromatin: Structure and Function. Academic Press, San Diego (1992).

    Google Scholar 

  21. A. Chatterjee and W. R. Holley. Early Chemical Events and Initial DNA Damage. In Physical and Chemical Mechanisms in Molecular Radiation Biology, W.A. Glass and M.N. Vanna, eds., pp. 257–285. Plenum Press, NY (1992).

    Google Scholar 

  22. J.R.K. Savage, and D.G. Papworth. The relationship of radiation-induced yield to chromosome arm number. Mutat. Res. 19: 139–143 (1973).

    Article  PubMed  CAS  Google Scholar 

  23. D.J. Brenner. On the probability of interaction between elementary radiation-induced chromosomal injuries. Radiat. Environ. Biophys. 27: 189–199 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. P. Hahnfeldt, J.E. Hearst, D.J. Brenner, R.K. Sachs and L.R. Hlatky. Polymer models for interphase chromosomes. Proc. Nat. Acad. Sci. USA 90: 7854–7858 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. L. Hlatky L, R.K. Sachs, and P. Hahnfeldt. The ratio of dicentrics to centric rings produced in human lymphocytes by acute low-LET radiation. Radiat. Res. 129: 304–308 (1992).

    Google Scholar 

  26. L.G. Littlefield. Application of fluorescence in situ hybridization techniques in radiation cytogenetics. Radiation Research Meeting #41:126 (Dallas 1993 ).

    Google Scholar 

  27. K. Sax. An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics 25: 41–68 (1940).

    PubMed  CAS  Google Scholar 

  28. D.E. Lea. Actions of radiations on living cells. Cambridge University Press, Cambridge [Eng.] (1955).

    Google Scholar 

  29. L. Manuelidis. A view of interphase chromosomes. Science 250: 1533–4 (1990).

    Article  PubMed  CAS  Google Scholar 

  30. T. Haaf and M. Schmid, Chromosome topology in mammalian interphase nuclei. Experimental Cell Research 192: 325–332 (1991).

    Article  PubMed  CAS  Google Scholar 

  31. M. Fergusson and D.C. Ward. Cell cycle dependent chromosomal movement in pre-mitotic human T-lymphocyte nuclei. Chromosoma 101: 557–565 (1992).

    Article  Google Scholar 

  32. J.R.K. Savage. Mechanisms of chromosome aberrations. In Mutation and the Environment, Progress in Clinical and Biological Research 340B, M. Mendelsohn and R.J. Albertini, eds., pp. 385–396. Wiley-Liss, NY (1990).

    Google Scholar 

  33. M.A. Bender, and P.C. Gooch. Persistent chromosome aberrations in irradiated human subjects. II. Three and one-half year investigation. Radiat. Res. 18: 389–396 (1963).

    Article  PubMed  CAS  Google Scholar 

  34. S. Sasaki, T. Takatsuji, Y. Ejima, S. Kodama, and C. Kido. Chromosome aberration frequency and radiation dose to lymphocytes by alpha-particles from internal deposit of Thorotrast. Radiat. Environ. Biophys. 26: 227–238 (1987).

    Article  PubMed  CAS  Google Scholar 

  35. E.J. Tawn, J.W. Hall, and G.B. Schofield. Chromosome studies in plutonium workers. Int. J. Radiat. Biol. 47: 599–610. (1985).

    Article  CAS  Google Scholar 

  36. J. Pohl-Ruling, P. Fisher, D.C. Lloyd, A.A. Edwards, A.T. Natarajan, G. Obe, K.E. Buckton, N.O. Bianchi, P.P.W. Buul, B.C. Das, F. Dashil, L. Fabry, M. Kucerova, A. Leonard, R.N. Mukherjee, U. Mukherjee, R. Nowotny, P. Palitti, Z. Polivkova, T. Sharma, and W. Schmidt. Chromosomal damage induced in human lymphocytes by low doses of D-T neutrons. Mutat. Res. 173: 267–272 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. J.S. Prosser, A.A. Edwards and D.C. Lloyd. The relationship between colony forming ability and chromosomal aberrations induced in human T-lymphocytes after y-irradiation. Int. J. Radiat. Biol. 58: 293–301 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. M. Doi and S.F. Edwards. The Theory of Polymer Dynamics. Oxford Press, Oxford (1988).

    Google Scholar 

  39. R.K. Sachs, A. Awa, Y. Kodama, M. Nakano, K. Ohtaki, and J.N. Lucas. Ratios of radiation-produced chromosome aberrations as indicators of large-scale DNA geometry during interphase. Radiation Research 133: 345–350 (1993).

    Article  PubMed  CAS  Google Scholar 

  40. B. Trask, D. Pinkel, and G. van den Engh. The proximity of DNA sequences in interphase cell nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–17 (1991).

    Article  Google Scholar 

  41. M.G. Kendall and P.A.P Moran. Geometrical Probability, pp. 53–54. Charles Griffin Co., London (1963).

    Google Scholar 

  42. P.M. Morse and H. Feshbach. Methods of Theoretical Physics. McGraw-Hill, New York ) (1953).

    Google Scholar 

  43. D.J. Brenner. Track structure, lesion development, and cell survival. Rad. Res. 124: S29 - S37 (1990).

    Article  CAS  Google Scholar 

  44. S.B. Curtis. Mechanistic Models. In Physical and Chemical Mechanisms in Molecular Radiation Biology, W.A. Glass and M.N. Vanna, eds., pp. 367–386. Plenum Press, NY (1992).

    Google Scholar 

  45. R. Sachs, P-L. Chen, P. Hahnfeldt, and L. Hlatky, DNA damage caused by ionizing radiation. Mathematical Biosciences 112: 271–303 (1993).

    Article  Google Scholar 

  46. N. Madras and A. Sokal. The pivot algorithm: a highly efficient Monte Carlo method for self avoiding walks. J. Stat. Phys. 50: 107–186 (1988).

    Article  Google Scholar 

  47. M. Hoshi, K. Yokoru, S. Sawada, K. Shizuma, K. Iwatani, H. Hasai, T. Oka, H. Morishima, and D.J. Brenner. Europium-152 activity induced by Hiroshima atomic-bomb neutrons. Comparison with the 32P, 60Co and 152Eu activities in Dosimetry System 1986 (DS86). Hlth. Phys. 57: 831–837 (1989).

    CAS  Google Scholar 

  48. T. Straume, S.D. Egbert, W.A. Woolson, R.C. Finkel, P.W. Kubik, H.E. Gove, P. Sharma, and M. Hoshi. Neutron discrepancies in the new (DS86) Hiroshima dosimetry. Hlth. Phys. 63: 421–426 (1992).

    Article  CAS  Google Scholar 

  49. W.C. Roesch, (ed.), US-Japan Joint Reassessment of Atomic Bomb Radiation Dosimetry in Hiroshima and Nagasaki. Radiation Effects Research Foundation, Hiroshima (1987).

    Google Scholar 

  50. A.A. Awa, and J.V. Neel. Cytogenetic ‘rogué cells, what is their frequency, origin and evolutionary significance? Proc Nat. Acad. Sci. USA, 83: 1021–1025 (1986).

    Article  PubMed  CAS  Google Scholar 

  51. J.V. Neel, A.A. Awa, Y. Kodama, M. Nakono, and K. Mabuchi. ‘Rogue lymphocytes among Ukrainians not exposed to radioactive fallout from the Chernobyl accident, the possible role of this phenomenon in oncogenesis, teratogenesis, and mutagenesis. Proc. Nat. Acad. Sci. USA 89: 6973–6977 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. A.V. Sevan’kaev, A.F., Tsyb, D.C. Lloyd, A.A. Zhloba, V.V. Moiseenko, A.M. Skrjabin, and V.M. Climov. ‘Rogue cells observed in children exposed to radiation from the Chernobyl accident. Int. J. Radiat. Biol. 63: 361–367 (1993).

    Article  PubMed  Google Scholar 

  53. A.E. Romanenko. Medical consequences of the accident at the Chernobyl nuclear power station. Medical Science Academy of the USSR, Kiev (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brenner, D.J., Ward, J.F., Sachs, R.K. (1994). Track Structure, Chromosome Geometry and Chromosome Aberrations. In: Varma, M.N., Chatterjee, A. (eds) Computational Approaches in Molecular Radiation Biology. Basic Life Sciences, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9788-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9788-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9790-9

  • Online ISBN: 978-1-4757-9788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics