Skip to main content

Biologic and Molecular Effects of Vitamin D on Bone

  • Chapter
Vitamin D

Part of the book series: Nutrition and Health ((NH))

Abstract

The skeleton provides rigid mechanical support to the body, protects vital organs, and serves as a reservoir of ions, especially for calcium and phosphate required for serum homeostasis. The integrity of the skeleton is maintained by continuous remodeling of bone tissues throughout life in response to a broad spectrum of physiologic signals. As described in Chapter 9, the active hormone 1,25-dihydroxyvitamin D3 (vitamin D) plays a key role in the maintenance of calcium and phosphate blood levels. In response to reduced serum calcium levels, calcium transport is stimulated across the gut and from the renal tubular lumen into the bloodstream. At the same time, calcium is mobilized from bone. Vitamin D actively promotes the release of bone mineral into the circulation by direct effects on the several cellular populations that reside in bone. The hormone influences differentiation and activity of cells of the osteoblast lineage, which form the mineralized bone matrix and cells of the osteoclast lineage, which resorb the mineralized bone (Fig. 1). Vitamin D exerts its effects on these cells by modulating the transcription of a broad spectrum of genes related to these bone cell phenotypes (1). How vitamin D mediates resorption of the bone matrix and subsequent bone formation through complex interactions between different populations of bone cells and at the level of regulation of gene expression is the primary subject of this chapter. The molecular mechanisms contributing to vitamin D-dependent transcription of the bone-specific osteocalcin gene have provided new insights for understanding steroid hormone responses in relation to a broad spectrum of physiologic conditions and phenotypic properties of a cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hannah SS, Norman AW. 1-Alpha,25(OH)2 vitamin D3-regulated expression of the eukaryotic genome. Nutr Rev 1994; 52: 376–382.

    Article  PubMed  CAS  Google Scholar 

  2. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop 1995; 314: 266–280.

    PubMed  Google Scholar 

  3. Boskey AL. Mineral-matrix interactions in bone and cartilage. Clin Orthop 1992; 281: 244–274.

    PubMed  Google Scholar 

  4. Gehron Robey P. Bone matrix proteoglycans and glycoproteins. In: Principles of Bone Biology. Bilezikian JP, Raisz LG, Rodan GA, eds. San Diego: Academic Press, 1996; 155–165.

    Google Scholar 

  5. Hui M, Li SQ, Holmyard D, Cheng P. Stable transfection of nonosteogenic cell lines with tissue nonspecific alkaline phosphatase enhances mineral deposition both in the presence and absence of beta-glycerophosphate: possible role for alkaline phosphatase in pathological mineralization. Calcif Tissue Int 1997; 60: 467–472.

    Article  PubMed  CAS  Google Scholar 

  6. Lian JB, Stein GS. Vitamin D regulation of osteoblast growth and differentiation. In: Nutrition and Gene Expression. Berdanier CD, Hargrove JL, eds. Boca Raton, FL: CRC Press, 1993; 391–429.

    Google Scholar 

  7. Boyan BD, Schwartz Z, Swain LD. In vitro studies on the regulation of endochondral ossification by vitamin D. Crit Rev Oral Biol Med 1992; 3: 15–30.

    PubMed  CAS  Google Scholar 

  8. Wittenberg JB, Stein JL. Hemoglobin in the symbiont-harboring gill of the marine gastropod Alviniconcha hessleri. Biol Bull 1995; 188: 5–7.

    Article  PubMed  CAS  Google Scholar 

  9. Marie PJ, Hott M, Garba MT. Contrasting effects of 1,25-dihydroxyvitamin D3 on bone matrix and mineral appositional rates in the mouse. Metabolism 1985; 34: 777–783.

    Article  PubMed  CAS  Google Scholar 

  10. Hock JM, Gunness-Hey M, Poser J, Olson H, Bell NH, Raisz LG. Stimulation of undermineralized matrix formation by 1,25 dihydroxyvitamin D3 in long bones of rats. Calcif Tissue Int 1986; 38: 79–86.

    Article  PubMed  CAS  Google Scholar 

  11. Wronski TJ, Halloran BP, Bikle DD, Globus RK, Morey-Holton ER. Chronic administration of 1,25-dihydroxyvitamin D3: increased bone but impaired mineralization. Endocrinology 1986; 119: 2580–2585.

    Article  PubMed  CAS  Google Scholar 

  12. Burger EH, Klein-Nulend J, van der Plas A, Nijweide PJ. Function of osteocytes in bone-their role in mechanotransduction. J Nutr 1995; 125: 2020S - 20235.

    PubMed  CAS  Google Scholar 

  13. Mundy GR, Boyce B, Hughes D, Wright K, Bonewald L, Dallas S, Harris S, Ghosh-Choudhury N, Chen D, Dunstan C, et al. The effects of cytokines and growth factors on osteoblastic cells. Bone 1995; 17: 71S - 715S.

    Article  PubMed  CAS  Google Scholar 

  14. Gerstenfeld LC, Zurakowski D, Schaffer JL, Nichols DP, Toma CD, Broess M, Bruder SP, Caplan AI. Variable hormone responsiveness of osteoblast populations isolated at different stages of embryo-genesis and its relationship to the osteogenic lineage. Endocrinology 1996; 137: 3957–3968.

    Article  PubMed  CAS  Google Scholar 

  15. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 1991; 128: 1496–1504.

    Article  PubMed  CAS  Google Scholar 

  16. Suda T, Takahashi N, Etsuko A. Role of vitamin D in bone resorption. J Cell Biochem 1992; 49: 53–58.

    Article  PubMed  CAS  Google Scholar 

  17. Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev 1996; 17: 308–332.

    PubMed  CAS  Google Scholar 

  18. Baron R, Neff L, Louvard D, Courtoy PJ. Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J Cell Biol 1985; 101: 2210–2222.

    Article  PubMed  CAS  Google Scholar 

  19. Noda M, Vogel R, L., Craig AM, Prahl J, DeLuca HF, Denhardt D. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (Spp-1 or osteopontin) gene expression. Proc Natl Acad Sci USA 1990; 87: 9995–9999.

    Article  PubMed  CAS  Google Scholar 

  20. Cao X, Ross FP, Zhang L, MacDonald PN, Chappel J, Teitelbaum SL. Cloning of the promoter for the avian integrin beta 3 subunit gene and its regulation by 1,25-dihydroxyvitamin D3. J Biol Chem 1993; 268:27, 371–27, 380.

    Google Scholar 

  21. Reinholt FP, Hultenby K, Oldberg A, Heinegard D. Osteopontin-a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 1990; 87: 4473–4475.

    Article  PubMed  CAS  Google Scholar 

  22. Grano M, Zigrino P, Colucci S, Zambonin G, Trusolino L, Serra M, Baldini N, Teti A, Marchisio PC, Zallone AZ. Adhesion properties and integrin expression of cultured human osteoclast-like cells. Exp Cell Res 1994; 212: 209–218.

    Article  PubMed  CAS  Google Scholar 

  23. Oursler MJ. Osteoclast synthesis and secretion and activation of latent transforming growth factor beta. J Bone Miner Res 1994; 9: 443–252.

    Article  PubMed  CAS  Google Scholar 

  24. Lian JB, Stein GS. Osteoblast biology. In: Osteoporosis. Marcus R, Feldman D, Kelsey J, eds. San Diego: Academic Press, 1996; 23–60.

    Google Scholar 

  25. Aubin JE, Liu F. The osteoblast lineage. In: Principles of Bone Biology. Bilezikian JP, Raisz LG, Rodan GA, eds. San Diego: Academic Press, 1996; 51–68.

    Google Scholar 

  26. McCabe LR, Kockx M, Lian J, Stein J, Stein G. Selective expression of fos-and jun-related genes during osteoblast proliferation and differentiation. Exp Cell Res 1995; 218: 255–262.

    Article  PubMed  CAS  Google Scholar 

  27. Hoffmann HM, Catron KM, van Wijnen AJ, McCabe LR, Lian JB, Stein GS, Stein JL. Transcriptional control of the tissue-specific, developmentally regulated osteocalcin gene requires a binding motif for the Msx family of homeodomain proteins. Proc Natl Acad Sci USA 1994; 91:12, 887–12, 891.

    Google Scholar 

  28. Ryoo H-M, Hoffmann HM, Beumer TL, et al. Stage specific expression of Dlx-5 during osteoblast differentiation: involvement in regulation of osteocalcin gene expression. Mol Endocrinol 1997; 11: 1681–1694.

    Article  PubMed  CAS  Google Scholar 

  29. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao Y-H, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997; 89: 755–764.

    Article  PubMed  CAS  Google Scholar 

  30. Banerjee C, McCabe LR, Choi J-Y, Hiebert SW, Stein JL, Stein GS, Lian JB. Runt homology domain proteins in osteoblast differentiation: AML-3/CBFA1 is a major component of a bone specific complex. J Cell Biochem 1997; 66: 1–8.

    Article  PubMed  CAS  Google Scholar 

  31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell 1997; 89: 747–754.

    Article  PubMed  CAS  Google Scholar 

  32. Pockwinse SM, Stein JL, Lian JB, Stein GS. Developmental stage-specific cellular responses to vitamin D and glucocorticoids during differentiation of the osteoblast phenotype: interrelationship of morphology and gene expression by in situ hybridization. Exp Cell Res 1995; 216: 244–260.

    Article  PubMed  CAS  Google Scholar 

  33. Glowacki J, Rey C, Glimcher MJ, Cox KA, Lian J. A role for osteocalcin in osteoclast differentiation. J Cell Biochem 1991; 45: 292–302.

    Article  PubMed  CAS  Google Scholar 

  34. Ishida H, Bellows CG, Aubin JE, Heersche JN. Characterization of the 1,25-(OH)2D3-induced inhibition of bone nodule formation in long-term cultures of fetal rat calvaria cells. Endocrinology 1993; 132: 61–66.

    Article  PubMed  CAS  Google Scholar 

  35. Lian JB, Stein GS. The developmental stages of osteoblast growth and differentiation exhibit selective responses of genes to growth factors (TGF beta 1) and hormones (vitamin D and glucocorticoids). J Oral Implantol 1993; 19: 95–105.

    PubMed  CAS  Google Scholar 

  36. Candeliere GA, Prud’homme J, St-Arnaud R. Differential stimulation of fos and jun family members by calcitrol in osteoblastic cells. Mol Endocrinol 1991; 5: 1780–1788.

    Article  PubMed  CAS  Google Scholar 

  37. Wong M-M, Rao LG, Ly H, Hamilton L, Tong J, Sturtridge W, McBroom R, Aubin JE, Murray TM. Long-term effects of physiologic concentrations of dexamethasone on human bone-derived cells. J Bone Miner Res 1990; 5: 803–813.

    Article  PubMed  CAS  Google Scholar 

  38. Matsumoto T, Igarashi C, Takeuchi Y, Harada S, Kikuchi T, Yamato H, Ogata E. Stimulation by 1,25-dihydroxyvitamin D3 of in vitro mineralization induced by osteoblast-like MC3T3–E1 cells. Bone 1991; 12: 27–32.

    Article  PubMed  CAS  Google Scholar 

  39. Stein GS, Lian JB. Molecular mechanisms mediating proliferation-differentiation interrelationships during progressive development of the osteoblast phenotype: update. 1995. Endocr Rev 1995; 4: 290–297.

    CAS  Google Scholar 

  40. Merriman HL, van Wijnen AJ, Hiebert S, Bidwell JP, Fey E, Lian J, Stein J, Stein GS. The tissue-specific nuclear matrix protein, NMP-2, is a member of the AML/CBF/PEBP2/runt domain transcription factor family: interactions with the osteocalcin gene promoter. Biochemistry 1995; 34:13, 125–13, 132.

    Google Scholar 

  41. Banerjee C, Hiebert SW, Stein JL, Lian JB, Stein GS. An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci USA 1996; 93: 4968–4973.

    Article  PubMed  CAS  Google Scholar 

  42. Ducy P, Karsenty G. Two distinct osteoblast-specific cis-acting elements control expression of a mouse osteocalcin gene. Mol Cell Biol 1995; 15: 1858–1869.

    PubMed  CAS  Google Scholar 

  43. Bidwell JP, van Wijnen AJ, Fey EG, Dworetzky S, Penman S, Stein JL, Lian JB, Stein GS. Osteocalcin gene promoter-binding factors are tissue-specific nuclear matrix components. Proc Natl Acad Sci USA 1993; 90: 3162–3166.

    Article  PubMed  CAS  Google Scholar 

  44. Lian JB, Stein GS, Stein JL, van Wijnen AJ, McCabe L, Banerjee C, Hoffmann H. The osteocalcin gene promoter provides a molecular blueprint for regulatory mechanisms controlling bone tissue formation: role of transcription factors involved in development. Conn Tissue Res 1996; 35: 15–21.

    Article  CAS  Google Scholar 

  45. Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tiro JA, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Bone tissue-specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex and suppressor hox proteins that bind the OC box. J Cell Biochem 1996; 61: 310–324.

    Article  PubMed  CAS  Google Scholar 

  46. Hodgkinson JE, Davidson CL, Beresford J, Sharpe PT. Expression of a human homeobox-containing gene is regulated by 1,25(OH)2D3 in bone cells. Biochim Biophys Acta 1993; 1174: 11–116.

    Article  PubMed  CAS  Google Scholar 

  47. Zhang R, Ducy P, Karsenty G. 1,25-dihydroxyvitamin D3 inhibits osteocalcin expression in mouse through an indirect mechanism. J Biol Chem 1997; 272: 110–116.

    Article  PubMed  CAS  Google Scholar 

  48. Banerjee C, Stein JL, van Wijnen AJ, Frenkel B, Lian JB, Stein GS. Transforming growth factor-beta 1 responsiveness of the rat osteocalcin gene is mediated by an activator protein-1 binding site. Endocrinology 1996; 137: 1991–2000.

    Article  PubMed  CAS  Google Scholar 

  49. Newberry EP, Boudreaux JM, Towler DA. The rat osteocalcin fibroblast growth factor (FGF)-responsive element: an okadaic acid-sensitive, FGF-selective transcriptional response motif. Mol Endocrinol 1996; 10: 1029–1040.

    Article  PubMed  CAS  Google Scholar 

  50. Rhodes SJ, Chen R, DiMattia GE, Scully KM, Kalla KA, Lin SC, Yu VC, Rosenfeld MG. A tissue-specific enhancer confers Pit- 1-dependent morphogen inducibility and autoregulation on the pit-1 gene. Genes Dev 1993; 7: 913–932.

    Article  PubMed  CAS  Google Scholar 

  51. Candeliere GA, Jurutka PW, Haussler MR, St-Arnaud R. A composite element binding the vitamin D receptor, retinoid X receptor alpha, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter. Mol Cell Biol 1996; 16: 584–592.

    PubMed  CAS  Google Scholar 

  52. Pavlin D, Bedalov A, Kronenberg MS, Kream BE, Rowe DW, Smith CL, Pike JW, Lichtler AC. Analysis of regulatory regions in the COL1A1 gene responsible for 1,25-dihydroxyvitamin D3-mediated transcriptional repression in osteoblastic cells. J Cell Biochem 1994; 56: 490–501.

    Article  PubMed  CAS  Google Scholar 

  53. Ohyama Y, Ozono K, Uchida M, Shinki T, Kato S, Suda T, Yamamoto O, Noshiro M, Kato Y. Identification of a vitamin D-responsive element in the 5’-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1994; 269:10, 545–10, 550.

    Google Scholar 

  54. Hahn CN, Kerry DM, Omdahl JL, May BK. Identification of a vitamin D responsive element in the promoter of the rat cytochrome P450(24) gene. Nucleic Acids Res 1994; 22: 2410–2416.

    Article  PubMed  CAS  Google Scholar 

  55. Medhora MM, Teitelbaum S, Chappel J, Alvarez J, Mimura H, Ross FP, Hruska K. 1 Alpha,25-dihydroxyvitamin D3 up-regulates expression of the osteoclast integrin alpha v beta 3. J Biol Chem 1993; 268: 1456–1461.

    PubMed  CAS  Google Scholar 

  56. Mimura H, Cao X, Ross FP, Chiba M, Teitelbaum SL. 1,25-Dihydroxyvitamin D3 transcriptionally activates the beta 3-integrin subunit gene in avian osteoclast precursors. Endocrinology 134: 1994; 1061–1066.

    Article  PubMed  CAS  Google Scholar 

  57. Yu VC, Delsert C, Andersen B, Holloway JM, Devary OV, Naar AM, Kim SY, Boutin JM, Glass CK, Rosenfeld MG. RXR beta: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 1991; 67: 1251–1266.

    Article  PubMed  CAS  Google Scholar 

  58. Kliewer SA, Umesono K, Mangelsdorf DJ, Evans RM. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature 1992; 355: 446–449.

    Article  PubMed  CAS  Google Scholar 

  59. Kerner SA, Scott RA, Pike JW. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci USA 1989; 86: 4455–4459.

    Article  PubMed  CAS  Google Scholar 

  60. Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the 1, 25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1992; 89: 8097–8101.

    CAS  Google Scholar 

  61. Markose ER, Stein JL, Stein GS, Lian JB. Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene. Proc Natl Acad Sci USA 1990; 87: 1701–1705.

    Article  PubMed  CAS  Google Scholar 

  62. Ozono K, Liao J, Kerner SA, Scott RA, Pike JW. The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. J Biol Chem 1990; 265: 21, 881–21, 888.

    Google Scholar 

  63. Mader S, Chen JY, Chen Z, White J, Chambon P, Gronemeyer H. The patterns of binding of RAR, RXR and TR homo-and heterodimers to direct repeats are dictated by the binding specificites of the DNA binding domains. EMBO J 1993; 12: 5029–5041.

    PubMed  CAS  Google Scholar 

  64. Perlmann T, Rangarajan PN, Umesono K, Evans RM. Determinants for selective RAR and TR recognition of direct repeat HREs. Genes Dev 1993; 7: 1411–1422.

    Article  PubMed  CAS  Google Scholar 

  65. Kurokawa R, Yu VC, Naar A, Kyakumoto S, Han Z, Silverman S, Rosenfeld MG, Glass CK. Differential orientations of the DNA-binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev 1993; 7: 1423–1435.

    Article  PubMed  CAS  Google Scholar 

  66. Arbour NC, Prahl JM, DeLuca HF. Stabilization of the vitamin D receptor in rat osteosarcoma cells through the action of 1,25-dihydroxyvitamin D3. Mol Endocrinol 1993; 7: 1307–1312.

    Article  PubMed  CAS  Google Scholar 

  67. Breen EC, van Wijnen AJ, Lian JB, Stein GS, Stein JL. In vivo occupancy of the vitamin D responsive element in the osteocalcin gene supports vitamin D-dependent transcriptional upregulation in intact cells. Proc Natl Acad Sci USA 1994; 91:12,902–12,906.

    Google Scholar 

  68. Hsieh JC, Jurutka PW, Galligan MA, Terpening CM, Haussler CA, Samuels DS, Shimizu Y, Shimizu N, Haussler MR. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci USA 1991; 88: 9315–9319.

    Article  PubMed  CAS  Google Scholar 

  69. Schräder M, Muller KM, Nayeri S, Kahlen JP, Carlberg C. Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature 1994; 370: 382–386.

    Article  PubMed  Google Scholar 

  70. Liao J, Ozono K, Sone T, McDonnell DP, Pike JW. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 1990; 87: 9751–9755.

    Article  PubMed  CAS  Google Scholar 

  71. Liu M, Freedman LP. Transcriptional synergism between the vitamin D3 receptor and other nonreceptor transcription factors. Mol Endocrinol 1994; 8: 1593–1604.

    Article  PubMed  CAS  Google Scholar 

  72. St-Arnaud R, Prud’homme J, Leung-Hagesteijn C, Dedhar S. Constitutive expression of calreticulin in osteoblasts inhibits mineralization. J Cell Biol 1995; 131: 1351–1359.

    Article  PubMed  CAS  Google Scholar 

  73. MacDonald PN, Dowd DR, Nakajima S, Galligan MA, Reeder MC, Haussler CA, Ozato K, Haussler MR. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol Cell Biol 1993; 13: 5907–5917.

    PubMed  CAS  Google Scholar 

  74. Zhang XK, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M. Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 1992; 358: 587–591.

    Article  PubMed  CAS  Google Scholar 

  75. Eisman JA. Vitamin D receptor gene alleles and osteoporosis: an affirmative view [editorial]. J Bone Miner Res 1995; 10: 1289–1293.

    Article  PubMed  CAS  Google Scholar 

  76. Morrison NA, Qi JC, Tokita A, Kelly PJ, Crofts L, Nguyen TV, Sambrook PN, Eisman JA. Prediction of bone density from vitamin D receptor alleles [see comments]. Nature 1994; 367: 284–287.

    Article  PubMed  CAS  Google Scholar 

  77. Uitterlinden AG, Pols HA, Burger H, Huang Q, Van Daele PL, Van Duijn CM, Hofman A, Birkenhager JC, Van Leeuwen JP. A large-scale population-based study of the association of vitamin D receptor gene polymorphisms with bone mineral density. J Bone Miner Res 1996; 11: 1241–1248.

    Article  PubMed  CAS  Google Scholar 

  78. Guo B, Aslam F, van Wijnen AJ, Roberts SGE, Frenkel B, Green M, DeLuca H, Lian JB, Stein GS, Stein JL. YY1 regulates VDR/RXR mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci USA 1997; 94: 121–126.

    Article  PubMed  CAS  Google Scholar 

  79. Aslam F, McCabe LR, Frenkel B, van Wijnen AJ, Stein GS, Lian JB, and Stein JL. Convergence of AP-1 and vitamin D receptor (VDR) signalling pathways at the rat osteocalcin VDR element: requirement of the internal AP-1 site for vitamin D-mediated transactivation. Submitted.

    Google Scholar 

  80. Lian JB, Stein GS, Bortell R, Owen TA. Phenotype suppression: a postulated molecular mechanism for mediating the relationship of proliferation and differentiation by Fos/Jun interactions at AP-1 sites in steroid responsive promoter elements of tissue-specific genes. J Cell Biochem 1991; 45: 9–14.

    Article  PubMed  CAS  Google Scholar 

  81. Owen TA, Bortell R, Yocum SA, Smock SL, Zhang M, Abate C, Shalhoub V, Aronin N, Wright KL, van Wijnen AJ, Stein JL, Curran T, Lian JB, Stein GS. Coordinate occupancy of AP-1 sites in the vitamin D responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci USA 1990; 87: 9990–9994.

    Article  PubMed  CAS  Google Scholar 

  82. Blanco JCG, Wang I-M, Tsai SY, Tsai M-J, O’Malley BW, Jurutka PW, Haussler MR, Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci USA 1995; 92: 1535–1539.

    Article  PubMed  CAS  Google Scholar 

  83. MacDonald PN, Sherman DR, Dowd DR, Jefcoat SCJ, DeLisle K. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem 1995; 270: 4748–4752.

    Article  PubMed  CAS  Google Scholar 

  84. Usheva A, Shenk T. TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 1994; 76: 1115–1121.

    Article  PubMed  CAS  Google Scholar 

  85. Staal A, van Wijnen AJ, Birkenhäger JC, Pols HAP, Prahl J, DeLuca H, Gaub M-P, Lian JB, Stein GS, van Leeuwen JPTM, Stein JL. Distinct conformations of VDR/RXRa heterodimers are specified by dinucleotide differences in the vitamin D responsive elements of the osteocalcin and osteopontin genes. Mol Endocrinol 1996; 10: 1444–1456.

    Article  PubMed  CAS  Google Scholar 

  86. Kesterson RA, Stanley L, DeMayo F, Finegold M, Pike JW. The human osteocalcin promoter directs bone-specific vitamin D-regulatable gene expression in transgenic mice. Mol Endocrinol 1993; 7: 462–467.

    Article  PubMed  CAS  Google Scholar 

  87. Baker AR, Hollingshead PG, Pitts-Meek S, Hansen S, Taylor R, Stewart TA. Osteoblast-specific expression of growth hormone stimulates bone growth in transgenic mice. Mol Cell Biol 1992; 12: 5541–5547.

    PubMed  CAS  Google Scholar 

  88. Towler DA, Bennett CD, Rodan GA. Activity of the rat osteocalcin basal promoter in osteoblastic cells is dependent upon homeodomain and CP1 binding motifs. Mol Endocrinol 1994; 8: 614–624.

    Article  PubMed  CAS  Google Scholar 

  89. Uchida M, Ozono K, Pike JW. Activation of the human osteocalcin gene by 24R,25-dihydroxyvitamin D3 occurs through the vitamin D receptor and the vitamin D-responsive element. J Bone Miner Res 1994; 9: 1981–1987.

    Article  PubMed  CAS  Google Scholar 

  90. Lian JB, Shalhoub V, Aslam F, Frenkel B, Green J, Hamrah M, Stein GS, Stein JL. Species-specific glucocorticoid and 1,25-dihydroxyvitamin D responsiveness in mouse MC3T3–E1 osteoblasts: dexamethasone inhibits osteoblast differentiation and vitamin D downregulates osteocalcin gene expression. Endocrinology 1997; 138: 2117–2127.

    Article  PubMed  CAS  Google Scholar 

  91. Montecino M, Pockwinse S, Lian J, Stein G, Stein J. DNase I hypersensitive sites in promoter elements associated with basal and vitamin D dependent transcription of the bone-specific osteocalcin gene. Biochemistry 1994; 33: 348–353.

    Article  PubMed  CAS  Google Scholar 

  92. Montecino M, Lian J, Stein G, Stein J. Changes in chromatin structure support constitutive and develomentally regulated transcription of the bone-specific osteocalcin gene in osteoblastic cells. Biochemistry 1996; 35: 5093–5102.

    Article  PubMed  CAS  Google Scholar 

  93. Dworetzky SI, Fey EG, Penman S, Lian JB, Stein JL, Stein GS. Progressive changes in the protein composition of the nuclear matrix during rat osteoblast differentiation. Proc Natl Acad Sci USA 1990; 87: 4605–4609.

    Article  PubMed  CAS  Google Scholar 

  94. Zeng C, van Wijnen Ai, Stein JL, Meyers S, Sun W, Shopland L, Lawrence JB, Penman S, Lian JB, Stein GS, Hiebert SW. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBFa transcription factors. Proc Natl Acad Sci USA 1997; 94: 6746–6751.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lian, J.B., Staal, A., van Wijnen, A., Stein, J.L., Stein, G.S. (1999). Biologic and Molecular Effects of Vitamin D on Bone. In: Holick, M.F. (eds) Vitamin D. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4757-2861-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2861-3_11

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4757-2863-7

  • Online ISBN: 978-1-4757-2861-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics