Skip to main content

Condensed Tannins as a Source of Novel Biocides

  • Chapter
Chemistry and Significance of Condensed Tannins

Abstract

The condensed tannins are natural preservatives of lignocellulosic materials. They are commonly found in high concentrations in many external protective plant tissues like seedcoats and bark as well as in the heartwood of some tree species. Condensed tannins have traditionally been used in many areas of the world as preservatives for fishing nets, twines, and fabrics. More modern applications that have been investigated are food and wood preservatives, with especially good results achieved for the latter. Treatment with a procyanidin/copper(II) chelate yielded wood blocks with greater resistance to decay by Coriolus versicolor than pentachlorophenol when evaluated in a standard ASTM soil-block test. Condensed tannins can also be reacted directly with the wood to give it decay resistance and dimensional stability similar to a naturally durable wood. It is also possible to synthesize flavonoids with antimicrobial activity by thiolysis of procyanidins and ketalization of catechin. The structure-activity relations of these semisynthetic flavonoids have provided information on the mode of action of flavonoid phytoalexins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gottleib, O.R. Evolution of natural products. In: Rowe, J.W., (ed.) Natural Products Extraneous to the Lignocellulosic Cell Wall of Woody Plants. Springer-Verlag, New York (in press).

    Google Scholar 

  2. Harun, J.; Labosky, P. Antitermitic and antifungal properties of selected bark extractives. Wood Fiber Sci. 17 (3): 327 (1985).

    CAS  Google Scholar 

  3. Rao, S.S.R.; Rao, K.V.N. Fungitoxic activity of proanthocyanidins. Indian J. Plant Physiol. 19 (3): 278 (1986).

    Google Scholar 

  4. Samejima, M.; Yoshimoto, T. Effect of hot-water extracts from coniferous barks on mycelial growth of edible and pathogenic fungi. Mokuzai Gakkaishi30 (5): 413 (1984).

    Google Scholar 

  5. Ingham, J.L. Phytoalexins from the leguminosae. In: Bailey, J.A.; Mansfield, J.W. (eds.) Phytoalexins. John Wiley and Sons, New York p. 21 (1982).

    Google Scholar 

  6. Pan, S.; Mukherjee, B.; Ganguly, A. Mitra, R.R.; Bhattacharyya, A. Antifungal activity of some Naturally occurring flavonoids. J. Plant Dis. Protect. 92 (4): 392 (1985).

    CAS  Google Scholar 

  7. Mori, A.; Nishino, C.; Enoki, N.; Tawata, S. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26 (8): 2231 (1987).

    Article  CAS  Google Scholar 

  8. Selway, J.W.T. Antiviral activity of flavones and flavans. In: Cody, E.; Middleton, E.; Harborne, J.B. (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Alan R. Liss, Inc., New York p. 521 (1986).

    Google Scholar 

  9. Isobe, T.; Fukushige, T.; Noda, Y. A new flavonoid glycoside from Polygonum nodosum. Chem. Lett.: 27 (1979).

    Google Scholar 

  10. Laks, P.E. Flavonoid biocides: Phytoalexin analogues from condensed tannins. Phytochemistry 26 (6): 1617 (1987).

    Article  CAS  Google Scholar 

  11. Laks, P.E.; Pruner, M.S. Flavonoid biocides: Structure/activity relations of flavonoid phytoalexin analogues. Phytochemistryl 28: 87 (1989).

    Article  CAS  Google Scholar 

  12. Dekker, J. In: Green, M.C.; Spilker, D.A. (eds.) Fungicide Chemistry: Advances and Practical Applications. ACS Symp. Ser. 304:107 (1986).

    Google Scholar 

  13. Hait, G.N.; Sinha, A.K. Protection of wheat seedlings from Helminthosporium infection by seed treatment with chemicals. J. Phytopathol. 115: 97 (1986).

    Article  CAS  Google Scholar 

  14. VanEtten, H.D. Importance of phytoalexin detoxification for plant pathogenesis. Presentation at ACS National Meeting, New Orleans, Aug. 30 - Sept. 4 (1987).

    Google Scholar 

  15. Hansch, C.; Lien, E.J. Structure-activity relationships in antifungal agents. A survey. J. Med. Chem. 14 (8): 653 (1971).

    Article  PubMed  CAS  Google Scholar 

  16. Bush, I.E. Applications of the RM treatment in chromatographic analysis. Methods Biochem. Anal. 13: 357 (1965).

    Google Scholar 

  17. Ingham, J.L. Phytoalexins from the Leguminosae. In: Bailey, J.A.; Mansfield, J.W. (eds.) Phytoalexins. John Wiley and Sons, New York. (1982).

    Google Scholar 

  18. Stossel, P. Structure-activity relationship of some bean phytoalexins and related isoflavonoids. Physiol. Plant Pathol. 26: 269 (1985).

    Article  Google Scholar 

  19. Weinstein, L.I.; Albersheim, P. Host-pathogen interactions XXIII. The mechanism of the antibacterial action of glycinol, a pterocarpan phytoalexin synthesized by soybeans. Plant Physiol. 72: 557 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. Boydston, R.; Paxton, J.D.; Koeppe, D.E. Glyceollin: A site-specific inhibitor of electron transport in isolated soybean mitochondria. Plant Physiol. 72: 151 (1983).

    Article  PubMed  CAS  Google Scholar 

  21. Adesanya, S.A.; O’Neill, M.J.; Roberts, M.F. Structure-related fungitoxicity of isoflavonoids. Physiol. Molec. Plant Pathol. 29: 95 (1986).

    CAS  Google Scholar 

  22. Anderson, A.B. The influence of extractives on tree properties. 1. California redwood (Sequoia sempervirens). J. Inst. Wood Sci. 8: 14 (1961).

    Google Scholar 

  23. Zavarin, E.; Snajberk, K.; Smith, R.M. The chemistry of the natural phlobaphenes II. Further pyrolysis studies of the phlobaphenes from redwood (Sequoia sempervirensEndl.). TAPPI 48: 574 (1965).

    CAS  Google Scholar 

  24. Laks, P.E. Wood preservation as trees do it. Proceed. of the Amer. Wood Preservers’ Assoc., Minneapolis, p. 147 (1988).

    Google Scholar 

  25. Laks, P.E.; McKaig, P.A.; Hemingway, R.W. Flavonoid biocides: wood preservatives based on condensed tannins. Holzforschung 42 (5): 299 (1988).

    Article  CAS  Google Scholar 

  26. Laks, P.E.; Hemingway, R.W. Condensed tannins. Structure of the ‘phenolic acids’. Holzforschung 41 (5): 287 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Laks, P.E. (1989). Condensed Tannins as a Source of Novel Biocides. In: Hemingway, R.W., Karchesy, J.J., Branham, S.J. (eds) Chemistry and Significance of Condensed Tannins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7511-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7511-1_32

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7513-5

  • Online ISBN: 978-1-4684-7511-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics