Skip to main content

Regulation of the Ca2+-Force Relationship in Permeabilized Arterial Smooth Muscle

  • Chapter
Regulation of Smooth Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 304))

Abstract

It is generally accepted that the primary trigger for smooth muscle contraction is the elevation of intracellular Ca2+ concentration ([Ca2+]i) and subsequent phosphorylation of myosin light chain (MLC) by the Ca2+-calmodulin dependent MLC kinase (for reviews see Kamm and Stull, 1985; Somlyo, 1985). However, simultaneous measurements of tension and [Ca2+]i in intact tissues have shown that during continuous stimulation, although a-adrenergic agonist induced force is maintained at high constant levels, [Ca2+]i falls close to basal concentrations (Morgan and Morgan, 1982; 1984a). It has also been demonstrated that levels of both MLC phosphorylation and shortening velocity fall to suprabasal levels during the phase of force maintenance in intact smooth muscle (Dillon et al., 1981). In order to account for these phenomena, a high Ca2+ sensitivity state, the latch state, was proposed to be important for the maintenance of developed force in the face of significant decreases in the [Ca2+]i and levels of MLC phosphorylation (Dillon et al., 1981). Similar phenomena, increases in the Ca2+-force relationship, have been demonstrated in skinned smooth muscle preparations by the addition of exogenous calmodulin (Cassidy et al., 1981; Rüegg and Paul, 1982), an initial stimulation in high [Ca2+] followed by exposure to a lower [Ca2+] (Chatterjee and Murphy, 1981; Moreland and Murphy, 1986), and stimulation by phorbol esters (Chatterjee and Tajeda, 1986; Itoh et al., 1988) or GTPγS (Fujiwara et al., 1989). However, until recently it has not been possible to increase the Ca2+ sensitivity of force by a physiological mode of stimulation. Recent studies utilizing the Staphylcoccal α-toxin permeabilized smooth muscle preparation have shown that receptor stimulation by a physiological agonist plus GTP can produce a significant level of additional force, at a fixed submaximal [Ca2+], as compared to the force developed in response to Ca2+ alone (Nishimura et al., 1988; Kitazawa et al., 1989; Kobavashi et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelstein, R. S., Conti, M. A., Hathaway, D. R., and Klee, C. B., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′: 5′-monophosphate-dependent protein kinase, J. Biol Chem., 253: 8347.

    PubMed  CAS  Google Scholar 

  • Aksoy, M. O., Mras, S., Kamm, K. E., and Murphy, R. A., 1983, Ca2+, cAMP, and changes in myosin light chain phosphorylation during contraction of smooth muscle, Am. J. Physiol, 245: C255.

    PubMed  CAS  Google Scholar 

  • Cassidy, P., Hoar, P. E., and Kerrick, W. G. L., 1979, Irreversible thiophosphory-lation and activation of tension in functionally skinned rabbit ileum strips by [35S]ATPγS, J. Biol Chem., 254: 11148.

    PubMed  CAS  Google Scholar 

  • Cassidy, P. S., Kerrick, W. G. L., Hoar, P. E., and Malencik, D. A., 1981, Exogenous calmodulin increases Ca2+ sensitivity of isometric tension activation and myosin phosphorylation in skinned smooth muscle, Pflügers Arch., 392: 115.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, M. and Murphy, R. A., 1983, Calcium-dependent stress maintenance without myosin phosphorylation in skinned smooth muscle, Science, 221: 464.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, M. and Tejada, M., 1986, Phorbol ester-induced contraction in chemically skinned vascular smooth muscle, Am. J. Physiol, 251: C356.

    PubMed  CAS  Google Scholar 

  • Danthuluri, N. R. and Deth, R. C., 1984, Phorbol ester-induced contraction of arterial smooth muscle and inhibition of α-adrenergic response, Biochem. Biophys. Res. Commun., 125: 1103.

    Article  PubMed  CAS  Google Scholar 

  • Dillon, P. F., Aksoy, M. O., Driska, S. P., and Murphy, R. A., 1981, Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle, Science, 211: 495.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, E. and Greene, L. E., 1980, The relation of muscle biochemistry to muscle physiology, Ann. Rev. Physiol, 42: 293.

    Article  CAS  Google Scholar 

  • Fain, J. N., Wallage, M. A., and Wojcikiewicz, R. J. H., 1988, Evidence for involvement of guanine nucleotide-binding regulatory proteins in the activation of phospholipases by hormones, FASEB J., 2: 2569.

    PubMed  CAS  Google Scholar 

  • Forder, J., Scriabine, A., and Rasmussen, H., 1985, Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction, J. Pharmacol Exp. Ther., 235: 267.

    PubMed  CAS  Google Scholar 

  • Fujiwara, T., Itoh, T., Kubota, Y., and Kuriyama, H., 1989, Effect of guanosine nucleotides on skinned smooth muscle tissue of the rabbit mesenteric artery, J. Physiol, 408: 535.

    PubMed  CAS  Google Scholar 

  • Gaylinn, B. D. and Murphy, R. A., 1990, Quantitation of myosin 20 kD light chain phosphorylation using colloidal gold stained Western blots, Biophys. J., 57: 165a.

    Google Scholar 

  • Gilman, A. G., 1987, G proteins: Transducers of receptor-generated signals, Ann. Rev. Biochem., 56: 615.

    Article  PubMed  CAS  Google Scholar 

  • Hohman, R. J., 1988, Aggregation of IgE receptors induces degranulation in rat basophilic leukemia cells permeabilized with α-toxin from Staphylococcus aureus, Proc. Nat’l Acad. Sci. U.S.A., 85: 1624.

    Article  CAS  Google Scholar 

  • Itoh, T., Kanmura, Y., Kuriyama, H., and Sasaguri, T., 1985, Nitroglycerine-and isoprenaline-induced vasodilation: assessment from the actions of cyclic nucleotides, Br. J. Pharmacol., 84: 393.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Kanmura, Y., and Kuriyama, H., 1986, Inorganic phosphate regulates the contraction-relaxation cycle in skinned muscles of the rabbit mesenteric artery, J. Physiol., 376: 231.

    PubMed  CAS  Google Scholar 

  • Itoh, T., Kubota, Y., and Kuriyama, H., 1988, Effects of phorbol ester on acetyl-choline-induced Ca2+ mobilization and contraction in the porcine coronary artery, J. Physiol., 397: 401.

    PubMed  CAS  Google Scholar 

  • Kai, H., Kanaide, H., Matsumoto, T., and Nakamura, M., 1987, 8-Bromoguanosine 3′: 5′-cyclic monophosphate decreases intracellular free calcium concentrations in cultured vascular smooth muscle cells from rat aorta, FEBS Lett., 221: 284.

    Article  PubMed  CAS  Google Scholar 

  • Kamm, K. E. and Stull, J. T., 1985, The function of myosin and myosin light chain kinase phosphorylation in smooth muscle, Ann. Rev. Pharmacol. Toxicol., 25: 593.

    Article  CAS  Google Scholar 

  • Kamm, K. E. and Stull, J. T., 1989, Regulation of smooth muscle contractile elements by second messengers, Ann. Rev. Physiol, 51: 299.

    Article  CAS  Google Scholar 

  • Karaki, H., Sato, K., Ozaki, H., and Murakami, K., 1988, Effects of sodium nitroprusside on cytosolic calcium level in vascular smooth muscle, Eur. J. Pharmacol., 156: 259.

    Article  PubMed  CAS  Google Scholar 

  • Kerrick, W. G. L. and Hoar, P. E., 1981, Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase, Nature, 292: 253.

    Article  PubMed  CAS  Google Scholar 

  • Kerrick, W. G. L. and Hoar, P. E., 1987, Non-Ca2+-activated contraction in smooth muscle, in: “Regulation and Contraction of Smooth Muscle”, M. J. Siegman, A. P. Somlyo, and N. L. Stephens, eds., Alan R. Liss, New York, p. 437.

    Google Scholar 

  • Kitazawa, T., Kobayashi, S., Horiuchi, K., Somlyo, A. V., and Somlyo, A. P., 1989, Receptor coupled, permeabilized smooth muscle: Role of the phos-phatidylinositol cascade, G-proteins and modulation of the contractile response to Ca2+, J. Biol. Chem., 264: 5339.

    PubMed  CAS  Google Scholar 

  • Kobayashi, S., Kanaide, H., and Nakamura, M., 1985, Cytosolic free calcium transient in cultured smooth muscle cells: Microfluorometric measurements, Science, 229: 553.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, S., Kitazawa, T., Somlyo, A. V., and Somlyo, A. P., 1989, Cytosolic heparin inhibits muscarinic and α-adrenergic Ca2+ release in smooth muscle. Physiological role of inositol 1,4,5-trisphosphate in pharmaco-mechanical coupling, J. Biol. Chem., 264: 17997

    PubMed  CAS  Google Scholar 

  • Kubota, Y., Kamm, K. E., and Stull, J. T., 1990, Mechanism of GTPγS-dependent regulation of smooth muscle contraction, Biophys. J., 57: 163a.

    Article  Google Scholar 

  • Lash, J. A., Sellers, J. R., and Hathaway, D. R., 1986, The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin, J. Biol Chem., 261: 16155.

    PubMed  CAS  Google Scholar 

  • Moreland, R. S. and Murphy, R. A., 1986, Determinants of Ca2+-dependent stress maintenance in skinned swine carotid media, Am. J. Physiol, 251: C892.

    PubMed  CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., 1982, Vascular smooth muscle: The first recorded Ca2+ transients, Pflügers Arch., 395: 75.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., 1984a, Stimulus-specific patterns of intracellular calcium levels in smooth muscle of the ferret portal vein, J. Physiol, 351: 155.

    PubMed  CAS  Google Scholar 

  • Morgan, J. P. and Morgan, K. G., 1984b, Alteration of cytoplasmic ionized calcium level in smooth muscle by vasodilators in the ferret, J. Physiol., 357: 539.

    PubMed  CAS  Google Scholar 

  • Neer, E. J. and Clapham, D. E., 1988, Roles of G protein subunits in transmembrane signalling, Nature, 333: 129.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, J., Kolber, M., and van Breemen, C., 1988, Norepinephrine and GTP-γ-S increase myofilament Ca2+ sensitivity in α-toxin permeabilized arterial smooth muscle, Biochem. Biophys. Res. Commun., 157: 677.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, J. and van Breemen, C., 1989a, Direct regulation of smooth muscle contractile elements by second messengers, Biochem. Biophys. Res. Commun., 163: 929.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, J. and van Breemen, C., 1989b, Possible involvement of acto-myosin ADP complex in regulation of Ca2+ sensitivity in α-toxin permeabilized smooth muscle, Biochem. Biophys. Res. Commun., 165: 408.

    Google Scholar 

  • Nishimura, J., Khalil, R. A., and van Breemen, C., 1989, Agonist-induced vascular tone, Hypertension, 13: 835.

    PubMed  CAS  Google Scholar 

  • Nishimura, J., Khalil, R. A., Drenth, J. P., and van Breemen, C., 1990, Evidence for increased myofilament Ca2+ sensitivity in norepinephrine-activated vascular smooth muscle, Am. J. Physiol., 259: H2.

    PubMed  CAS  Google Scholar 

  • Nishizuka, Y., 1986, Studies and perspectives of protein kinase C., Science, 233: 305.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, H., Forder, J., Kojima, I., and Scriabine, A., 1984, TPA-induced contraction of isolated rabbit vascular smooth muscle, Biochem. Biophys. Res. Commun., 122: 776.

    Article  PubMed  CAS  Google Scholar 

  • Rüegg, J. C. and Paul, R. J., 1982, Vascular smooth muscle calmodulin and cyclic AMP-dependent protein kinase alter calcium sensitivity in porcine carotid skinned fibers, Circ. Res., 50: 394.

    PubMed  Google Scholar 

  • Schultz, K. D., Schultz, K., and Schultz, G., 1977, Sodium nitroprusside and other smooth muscle-relaxants increase cyclic GMP levels in rat ductus deferens, Nature, 265: 750.

    Article  PubMed  CAS  Google Scholar 

  • Sellers, J. R., 1985, Mechanism of the phosphorylation-dependent regulation of smooth muscle heavy meromyosin, J. Biol. Chem., 260: 15815.

    PubMed  CAS  Google Scholar 

  • Sleep, J. A. and Hutton, R. L., 1980, Exchange between inorganic phosphate nd adenosine 5′-triphosphate in the medium by actomyosin subfragment 1, Biochemistry, 19: 1276.

    Article  PubMed  CAS  Google Scholar 

  • Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S., 1981, Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin, Proc. Nat’l. Acad. Sci. U.S.A., 78: 5652.

    Article  CAS  Google Scholar 

  • Somlyo, A. P., 1985, Excitation-contraction coupling and the ultrastructure of smooth muscle, Circ. Res., 57: 497.

    PubMed  CAS  Google Scholar 

  • Takahashi, K., Hiwada, K., and Kokubo, T., 1986, Isolation and characterization of a 34000 dalton calmodulin-and F-actin-binding protein from chicken gizzard smooth muscle, Biochem. Biophys. Res. Commun., 141: 20.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Nishimura, J., Moreland, S., Moreland, R.S., van Breemen, C. (1991). Regulation of the Ca2+-Force Relationship in Permeabilized Arterial Smooth Muscle. In: Moreland, R.S. (eds) Regulation of Smooth Muscle Contraction. Advances in Experimental Medicine and Biology, vol 304. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-6003-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-6003-2_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-6005-6

  • Online ISBN: 978-1-4684-6003-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics