Skip to main content

Conversion of Chemical into Mechanical Energy by Synsthetic Polymer Gels (Chemomechanical System)

  • Chapter
Polymer Gels

Abstract

System which undergoes shape change and develop contractile force responsing to outside stimulus is called “Chemomechanical (or Mechanochemical) System” 1) and refers to thermodynamic systems capable of transforming chemical energy directly into mechanical work or conversely of transforming mechanical into chemical potential energy2). The isothermal conversion of chemical energy into mechanical work underlies the motility of all living organisms and can easily be seen, for instance, in muscle, flagella and ciliary movement. All these biological systems are characterized by an extremely high efficiency of energy conversion. The high efficiency of the biological systems is largely due to direct conversion of chemical energy without unnecessary intermediate passes producing heat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mechanochemical (chemomechanical) system is well known as a model converting chemical into mechanical energy and a variety of systems have been reported. The system developed by us is considered as a prototype model of a chemomechanical (mechanochemica1) system operated under electric similus. We prefer the term “chemomechanical reaction,” “chemomechanical system” instead of “mechanochemical” proposed by A. Katchalsky to give more precise difinition and to avoid a confusion with other terminology. Note that Mechanochemical reaction often refers to chemical reaction induced by mechanical stress fracture and dumpling to give radical and crosslinking formation. Y.Osada, Adv.Polymr Sci., 82, 1(1987)]

    Article  CAS  Google Scholar 

  2. Transformation from mechanical into chemical energy may be envisaged in which the application of mechanical energy may rise the chemical potential of substance and permit its transfer from a reservoir of a lower chemical potential to a reservoir of higher potential (reverse chemomechanical system). Details are given in Y. Osada, Adv. Polym. Sci., 82, 1, springer-Ver1ag, Heidelberg, 1987.

    Article  CAS  Google Scholar 

  3. K. Iwasa and T. Tasaki, Biochem. Biophys. Res. Comm., 95, 1328(1980). I. Tasaki, K. Iwasa, Structure and Function of Excitable Gel. ed. by D.C. Chang, I. Tasaki, W.J. Adelman and H. R. Leuchtag Plenum Pub., Corp. New York, 307(1983).

    Article  PubMed  CAS  Google Scholar 

  4. Y. Osada, M. Hasebe, Chem. Lett., 1985, 1285.

    Google Scholar 

  5. Y. H. Bae, T. Okano, R. Hsu, S.W. Kim, Makromol Chem. Rapid Comm. 8, 481(1987).

    Article  CAS  Google Scholar 

  6. L. C. Dong and A. Hoffman, ACS Symp. Series, 350, 236(1987).

    Article  Google Scholar 

  7. Y. Osada and R. Kishi, J. Chem. Soc., Faraday Trans., 1, 85, 655(1989).

    Article  Google Scholar 

  8. J. Hasa, M. Ilavsky, K. Dusek, J. Polym. Sci., Polym. Phys. Ed., 13, 253(1975).

    Article  CAS  Google Scholar 

  9. R. Kishi, M. Hasebe, M. Hara and Y. Osada, Polymer for advanced Technologies, 1, (1990).

    Google Scholar 

  10. T. Tanaka and D.J. Fillmore, J. Chem. Phys. 70, 1214(1979)

    Article  CAS  Google Scholar 

  11. Y. Osada, R. Kishi and M. Hasebe, J. Polym. Sci.: Part C: Polym. Lett., 25, 481(1987).

    Article  CAS  Google Scholar 

  12. Y. Osada, R. Kishi, Y. Yasunaga and K. Sawahata,

    Google Scholar 

  13. Y. Osada and Y. Yasunaga, Koubunshi Ronbunshu, 46 655(1989).

    Article  CAS  Google Scholar 

  14. R. Kishi, M. Sisido and S. Tazuke, Polymer Preprints, Japan, 38, 3859, (1989).

    Google Scholar 

  15. R. Kishi, M. Sisido and S. Tazuke, Polymer Preprints, Japan, 38, 3862(1989).

    Google Scholar 

  16. K. Umezawa and Y. Osada, Chem. Lett., 187, 1795.

    Google Scholar 

  17. Y. Osada, K. Umezawa and A. Yamauchi, Makromol. Chem., 189, 597(1988).

    Article  CAS  Google Scholar 

  18. Y. Osada, K. Umezawa and A. Yamauchi, Bull. Chem. Soc. Jpn., 62, 3232(1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kishi, R., Hara, M., Sawahata, K., Osada, Y. (1991). Conversion of Chemical into Mechanical Energy by Synsthetic Polymer Gels (Chemomechanical System). In: DeRossi, D., Kajiwara, K., Osada, Y., Yamauchi, A. (eds) Polymer Gels. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5892-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5892-3_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5894-7

  • Online ISBN: 978-1-4684-5892-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics